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Motivation

Based on joint works with Jean Roydor

Extension of “contractive results” in harmonic analysis

Quantitive perturbation theories

Gap phenomena



Basic facts on contractive maps on C∗-algebras

A, B unital C∗-algebra and let T ∶ A→ B be contractive

T (1) = 1 ⇔ T ⩾ 0

In particular T (x∗) = T (x)∗.

We say that T is completely contractive if T ⊗ id ∶Mn(A)→Mn(B) is
contractive.
We say that T is completely positive if T ⊗ id ∶Mn(A)→Mn(B) is
positive for all n ⩾ 1.

Actually if T (1) = 1, then

T is (completely) contractive ⇔ T is (completely) positive
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Basic facts on contractive maps on C∗-algebras

Recall that Jordan product is defined by

x ○ y = xy + yx
2

x ○ x∗ = Re(x)2 + Im(x)2

Kadison’s inequality
Assume T (1) = 1 and T is contractive (or positive), then

∀x ∈ A, T (x ○ x∗) ⩾ T (x) ○ T (x)∗

If T is 2-positive then

∀x ∈ A, T (xx∗) ⩾ T (x)T (x)∗
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Basic facts on contractive maps on C∗-algebras

If T is unital cp then T (x) = a∗π(x)a with π a unital ∗-representation
and a∗a = 1 :

T (xx∗) − T (x)T (x)∗ = a∗π(x)(1 − aa∗)π(x)∗a ⩾ 0

Considering, the sesquilinear map (x ,y)↦ T (xy∗) − T (x)T (y)∗
If T (xx∗) − T (x)T (x)∗ then for all y ∈ A, T (xy) = T (x)T (y)

Multiplicative domain
Assume T (1) = 1 and T is completely contractive, then

L = {x ∣ T (xx∗) = T (x)T (x)∗} = {x ∣ ∀y ,T (xy) = T (x)T (y)∗}

L is called the left multiplicative domain.
R ∩ L is a C∗-algebra.
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Basic facts on contractive maps on C∗-algebras

Similarly,

Jordan Multiplicative domain
Assume T (1) = 1 and T is contractive, then

M = {x ∣ T (x ○ x∗) = T (x) ○ T (x)∗} = {x ∣ ∀y ,T (x ○ y) = T (x) ○ T (y)∗}

M is a Jordan algebra
Beware that the Jordan product is not associative.



Basic facts on contractive maps on C∗-algebras

An application

Korovkin’s Theorem
Let Tn ∶ C([0,1])→ C([0,1] be a sequence of unital positive maps
such that ∥Tn(x) − x∥→ 0 and ∥Tn(x2) − x2∥, then for any f ∈ C([0,1]),
∥Tn(f ) − f ∥→ 0

A = B =∏U C[0,1], T =∏U Tn, then by assumption T (x) = x and x is in
the multiplicative domain, hence T (f ) = f for all f ∈ C([0,1]) by
Weierstrass’ theorem.
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What can be said if one drop the assumption to ∥T ∥ < 1 + ε?
It is clear that one looses positivity!

Since we have algebraic characterization, one can use

The ultraproduct argument
For every δ > 0, there exists ε > 0 such that for any T ∶ A→ B with
T (1) = 1 and ∥T ∥ < 1 + ε and any x ∈ A+ with ∥x∥ = 1,

dist(T (x),B+) < δ

Pf : assume it is false, then there is δ > 0 and εn → 0 and Tn ∶ An → Bn,
xn ∈ A+n such that dist(Tn(xn),B+) ⩾ δ.
Let A =∏U An, B =∏U Bn, T =∏U Tn and x = (xn).
Then T is positive thus T (x) ⩾ 0, but then 0 = limdist(Tn(xn),B+).
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It can be applied in many situations but it has a major drawback it is
not explicit.
With Jean Roydor, we made them explicit

Examples of quantitative estimates
Let T ∶ A→ B with T (1) = 1 and ∥T ∥ < 1 + ε, then for any x ∈ A:

∥T (x)∗ − T (x∗)∥ ⩽ 4
√

2ε + ε2∥x∥

∥KT (x ,y)∥ ⩽ 2(∥KT (x ,x)∥+δε∥x∥2)1/2(∥KT (y ,y)∥+δε∥x∥2)1/2+vε∥x∥∥y∥,

where KT (x ,y) = T (x∗ ○ y) − T (x∗) ○ T (y) and δε = 2(4 + 3ε)
√

2ε + ε2

and vε = 2(5 + 4ε)
√

2ε + ε2.



Harmonic analysis

To any G s.c. locally compact group, one can associate several
algebras.
A natural question is to know how they remember the group.
Example : L1(G)

At Banach space level, isometrically L1(G) only remembers the
measure space (G, µ). If ones want the group structure one has to
take the convolution ∗ product into account:

Wendel’s thms (1951, 1952)
If there is an isometric algebra isomorphism (L1(G),∗)→ (L1(H),∗)
then G and H are homeomorphic as topological groups.
If there is a contractive algebra isomorphism (L1(G),∗)→ (L1(H),∗)
then G and H are homeomorphic as topological groups.

Johnson and Rigelhof also did it for measure algebras.
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Harmonic analysis

The assumption in Wendel’s theorem can be relaxed a little bit

Kalton and Wood (1976)
Assume that T ∶ (L1(G),∗)→ (L1(H),∗) is an algebra isomorphism
with norm less than 1.247 then G and H are homeomorphic as
topological groups.
If G and H are abelian, one can take

√
2, this is the best possible.



The Fourier-Stieltjes algebra

G s.c. locally countable group
ω ∶ G → B(K ) the universal unitary representation of G

B(G) = {g ↦ ⟨ω(g)ξ, η⟩ ; ξ, η ∈ K}

∥f ∥B(G) = inf{∥ξ∥.∥η∥ ; f (g) = ⟨ω(g)ξ, η⟩}

With the pointwise product, the Fourier-Stieltjes algebra (B(G), .) is a
Banach algebra.

B(G) = C∗(G)∗, B(G)∗ =W (G) = {ω(g) ; g ∈ G}′′



The Fourier algebra

λ ∶ G → B(L2(G, µ)) the left regular representation of G

A(G) = {g ↦ ⟨λ(g)ξ, η⟩ ; ξ, η ∈ L2(G)}

This is the same as considering

A(G) = {g ↦ ⟨
∞

∑
i=1

λ(g)ξi , ηi⟩ ; ξi , ηi ∈ L2(G),∑ ∥ξi∥.∥ηi∥ <∞}

∥f ∥A(G) = inf{∥ξ∥.∥η∥ ; f (g) = ⟨λ(g)ξ, η⟩}

With the pointwise product, the Fourier algebra (A(G), .) is a Banach
algebra.

A(G) ⊂ C∗c (G)∗, A(G)∗ = L(G) = {λ(g) ; g ∈ G}′′

A(G) ⊂ B(G) is isometrically a subspace and is an ideal



General problem : To understand algebra homomorphisms
Φ ∶ A(G)→ B(H)?

They are automatically continuous (Silov).

We have σ(A(G)) ≃ G, it follows that

There exist an open subset Ω ⊂ H and a continuous map α ∶ Ω→ G
such that

Φ(f )(h) = { f (α(h)) if h ∈ Ω
0 if h ∉ Ω

Pb : find all α that works !
Idea : to look at Φ∗ !
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Cohen (1960)
If G and H are abelian, this works iff α is a continuous piecewise affine
map.

Extensions by Host, Ilie

Ilie and Spronk (2005)
If G is amenable and H arbitrary, this also works for completely
bounded homomorphisms iff α is a continuous piecewise affine map.
This is fall if G ⊃ F2.
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By analogy with Wendel :

Walter (1972)
If there is an isometric algebra isomorphism Φ ∶ A(G)→ A(H), then
G ≃ H.
Moreover, we have Φ(f )(h) = f (g0τ(h−1

0 h)) for τ a group isomorphism
or anti-isomorphism for some g0 ∈ G, h0 ∈ H.

By analogy with Wendel 2 :

Le Pham (2010)
If there is an conctractive algebra homorphism Φ ∶ A(G)→ B(H),
There is an open subgroup Ω and τ a continuous group
homomorphism or anti-homomorphism and g0 ∈ G, h0 ∈ H so that

Φ(f )(h) = { f (g0τ(h−1
0 h)) if h ∈ h0Ω

0 if h ∉ h0Ω

Pb : to relax the contractive assumption !
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A first cb version, analogous to Kalton and Wood

Kuznetsova and Roydor (2015)
If there is an algebra homomorphism Φ ∶ A(G)→ B(H) with
∥IdM2 ⊗Φ∥ ⩽

√
5/2. Then, there is an open subgroup Ω and τ a group

isomorphism and g0 ∈ G, h0 ∈ H so that

Φ(f )(h) = { f (g0τ(h−1
0 h)) if h ∈ h0Ω

0 if h ∉ h0Ω

In particular ∥Φ∥cb ⩽ 1.

The proof relies on some estimates on “almost multiplicative maps”
between von Neumann algebras in a previous work of Roydor and
myself.



Using the ultraproduct argument :

Kuznetsova and Roydor (2015)
There is some ε > 0 so that if T ∶ A(G)→ A(H) is an algebra
homomorphism with ∥T ∥.∥T −1∥ < 1 + ε then we have
Φ(f )(h) = f (g0τ(h−1

0 h)) for τ a group isomorphism or anti-isomorphism
for some g0 ∈ G, h0 ∈ H.
In particular ∥T ∥ = ∥T −1∥ = 1.

This is not totally satisfactory because it is in term of the distortion of T .



R. and Roydor
If T ∶ A(G)→ A(H) is an algebra isomorphism with ∥T ∥ < 1.0005 then
we have Φ(f )(h) = f (g0τ(h−1

0 h)) for τ a group isomorphism or
anti-isomorphism for some g0 ∈ G, h0 ∈ H.
In particular ∥T ∥ = ∥T −1∥ = 1.

R. and Roydor
If there is an algebra homomorphism Φ ∶ A(G)→ B(H) with
∥Φ∥ ⩽ 1.00018. Then, there is an open subgroup Ω and τ a group
morphism and g0 ∈ G, h0 ∈ H so that

Φ(f )(h) = { f (g0τ(h−1
0 h)) if h ∈ h0Ω

0 if h ∉ h0Ω

In particular ∥Φ∥cb ⩽ 1.



Ideas of the proof :
Look at Φ∗ ∶W ∗(H)→ L(G), assume Φ /0, then there is some h0 ∈ H
such that Φ(ωh0) = λg0 .

Do appropriate translations to define a unital T ∶W ∗(H)→ L(G) with
∥T ∥ = ∥Φ∥ (as well as Ω; assume Ω = H).
Hence T is almost positive !

We must have T (ωh) = λf(h).
Thus T (ωh ○ ω∗h) ≈ T (ωh) ○ T (ωh)∗.
Hence T is almost Jordan multiplicative on generators.
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Two easy lemmas to conclude

Lemma 1
Unless there are trivial simplifications to make it 0

∥λg1 + λg2 − λg3 − λg4∥ ⩾
√

3

T (ωh1h2) + T (ωh1h2) − T (ωh1)T (ωh2) − T (ωh2)T (ωh2) is small
i.e. λf(h1h2)

+ λf(h2h1)
− λf(h2)f(h1)

− λf(h2)f(h1)
= 0

Lemma 2
Let f ∶ G → H be a map such that f ({xy ,yx}) = {f (x)f (y), f (y)f (x)}.
Then f is a group morphism or a group anti-ismomorphism.
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Another application of almost contractive maps

A non commutative Amir-Cambern theorem

dcb(A,B) = inf{∥T ∥cb.∥T −1∥cb ; T ∶ A→ B cb-isomorphism}

R. and Roydor
Let A be a separable nuclear C∗-algebra or a von Neumann algebra,
then there exists an explicit ε0 > 0 such that for any C∗-algebra B, the
inequality dcb(A,B) < 1 + ε0 implies that A and B ∗-isomorphic as
C∗-algebras or von Neumann algebras.

When A and B are C(K )-spaces ε0 = 1 !
This is false for non separable C∗-algebras or without cb (Connes) !
It relies on a deep result by Christensen, Sinclair, Smith and White for
nuclear C∗-algebras.
It relies on cb-cohomology stuff for vN algebras.



Another application of almost multiplicativity

Assume A is a von Neumann with a nsf trace τ .
One can define for 1 ⩽ p <∞:

Lp(A, τ) = closure of {x ∈ A ∣ τ(∣x ∣p) <∞}

with ∥x∥pp = τ(∣x ∣p).

If T ∶ A→ A is unital and trace preserving then T extends to a
contraction on all Lp-spaces.

Caspers, Parcet, Perrin and R.
For any x ∈ L2p(A)+

∥T (x) − T (
√

x)2∥2p ⩽
1
2
∥T (x2) − T (x)2∥1/2p .
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Caspers, Parcet, Perrin and R.
There is some C > 0 such that for any x ∈ L+2 and any 0 < θ ⩽ 1

∥T (xθ) − xθ∥2/θ ⩽ C∥T (x) − x∥θ/22 ∥x∥
θ/2
2 .

It gives an answer to :
If f has Fourier support in [−ε, ε], then f 2 has Fourier support in
[−2ε,2ε]. What about the opposite ?

If f is positive in L2 with Fourier support in [−ε, ε], then
√

f must be
close in L4 to a function whose Fourier transform has support in
[−εα, εα] (0 < α < 1).



Caspers, Parcet, Perrin and R.
There is some C > 0 such that for any x ∈ L+2 and any 0 < θ ⩽ 1

∥T (xθ) − xθ∥2/θ ⩽ C∥T (x) − x∥θ/22 ∥x∥
θ/2
2 .

It gives an answer to :
If f has Fourier support in [−ε, ε], then f 2 has Fourier support in
[−2ε,2ε]. What about the opposite ?

If f is positive in L2 with Fourier support in [−ε, ε], then
√

f must be
close in L4 to a function whose Fourier transform has support in
[−εα, εα] (0 < α < 1).



THANK YOU !


