Amenability constants of central Fourier algebras of finite groups

John Sawatzky

University of Waterloo

Banach Algebras and Applications, Granada

July 20th, 2022

Banach Algebra Amenability

Amenability

A bounded approximate diagonal for Banach algebra \mathcal{A} is a bounded net $(d_{\alpha})_{\alpha}$ in $\mathcal{A}\hat{\otimes}\mathcal{A}$ such that for $a \in \mathcal{A}$

- $a \cdot d_{\alpha} d_{\alpha} \cdot a \rightarrow 0$
- $\mathit{am}(\mathit{d}_{\alpha})
 ightarrow \mathit{a}$

If a bounded approximate diagonal exists than $\mathcal A$ is called amenable.

Banach Algebra Amenability

Amenability

A bounded approximate diagonal for Banach algebra \mathcal{A} is a bounded net $(d_{\alpha})_{\alpha}$ in $\mathcal{A}\hat{\otimes}\mathcal{A}$ such that for $a \in \mathcal{A}$

- $a \cdot d_{\alpha} d_{\alpha} \cdot a \rightarrow 0$
- $\mathit{am}(\mathit{d}_{lpha})
 ightarrow \mathit{a}$

If a bounded approximate diagonal exists than $\mathcal A$ is called amenable.

Amenability constant: We denote the amenability constant of a Banach algebra \mathcal{A} by

 $AM(\mathcal{A}) = \inf \{ \sup_{\alpha} \|\omega_{\alpha}\| : (\omega_{\alpha}) \text{ is a bounded approximate diagonal for } \mathcal{A} \}$

Banach Algebra Amenability

Amenability

A bounded approximate diagonal for Banach algebra \mathcal{A} is a bounded net $(d_{\alpha})_{\alpha}$ in $\mathcal{A}\hat{\otimes}\mathcal{A}$ such that for $a \in \mathcal{A}$

- $a \cdot d_{\alpha} d_{\alpha} \cdot a \rightarrow 0$
- $\mathit{am}(\mathit{d}_{lpha})
 ightarrow \mathit{a}$

If a bounded approximate diagonal exists than ${\mathcal A}$ is called amenable.

Amenability constant: We denote the amenability constant of a Banach algebra \mathcal{A} by

 $AM(\mathcal{A}) = \inf\{\sup_{\alpha} \|\omega_{\alpha}\| : (\omega_{\alpha}) \text{ is a bounded approximate diagonal for } \mathcal{A}\}$

Theorem [Johnson]

The group algebra $L^1(G)$ is amenable if and only if G is an amenable group, in which case $AM(L^1(G)) = 1$.

Let G be a finite group, denote the irreducible characters on G by Irr(G), and let A(G) be the Fourier algebra of G. Then

$$AM(A(G)) = rac{1}{|G|} \sum_{\chi \in \operatorname{Irr}(G)} d_{\chi}^{3}$$

Let G be a finite group, denote the irreducible characters on G by Irr(G), and let A(G) be the Fourier algebra of G. Then

$$AM(A(G)) = rac{1}{|G|} \sum_{\chi \in \operatorname{Irr}(G)} d_{\chi}^3$$

Theorem [6, Choi (Preprint on arXiv)]

A locally compact group G is abelian if and only if $AM(A(G)) < \frac{3}{2}$. In this case AM(A(G)) = 1.

Let G be a finite group, denote the irreducible characters on G by Irr(G), and let A(G) be the Fourier algebra of G. Then

$$AM(A(G)) = rac{1}{|G|} \sum_{\chi \in \operatorname{Irr}(G)} d_{\chi}^{3}$$

Theorem [6, Choi (Preprint on arXiv)]

A locally compact group G is abelian if and only if $AM(A(G)) < \frac{3}{2}$. In this case AM(A(G)) = 1.

This is what is known as a gap result, with the idea being that there is a "gap" between 1 and $\frac{3}{2}$ that AM(A(G)) can never achieve.

Let G be a finite group, denote the irreducible characters on G by Irr(G), and let A(G) be the Fourier algebra of G. Then

$$AM(A(G)) = rac{1}{|G|} \sum_{\chi \in \operatorname{Irr}(G)} d_{\chi}^3$$

Theorem [6, Choi (Preprint on arXiv)]

A locally compact group G is abelian if and only if $AM(A(G)) < \frac{3}{2}$. In this case AM(A(G)) = 1.

This is what is known as a gap result, with the idea being that there is a "gap" between 1 and $\frac{3}{2}$ that AM(A(G)) can never achieve.

This particular bound is sharp because $AM(A(D_4)) = \frac{3}{2}$.

John Sawatzky (University of Waterloo)

Amenability constants of ZA(G)

$$ZL^1(G) = \operatorname{span}^{L^1(G)}\operatorname{Irr}(G)$$

$$ZL^1(G) = \operatorname{span}^{L^1(G)}\operatorname{Irr}(G)$$

Theorem [5, Choi, 2016]

A finite group G is abelian if and only if $AM(ZL^1(G)) < \frac{7}{4}$. In this case $AM(ZL^1(G)) = 1$.

$$ZL^1(G) = \operatorname{span}^{L^1(G)}\operatorname{Irr}(G)$$

Theorem [5, Choi, 2016]

A finite group G is abelian if and only if $AM(ZL^1(G)) < \frac{7}{4}$. In this case $AM(ZL^1(G)) = 1$.

The proof of the gap of $ZL^1(G)$ heavily relies on the fact that if $N \trianglelefteq G$ then $AM(ZL^1(G/N)) \le AM(ZL^1(G))$

$$ZL^1(G) = \operatorname{span}^{L^1(G)}\operatorname{Irr}(G)$$

Theorem [5, Choi, 2016]

A finite group G is abelian if and only if $AM(ZL^1(G)) < \frac{7}{4}$. In this case $AM(ZL^1(G)) = 1$.

The proof of the gap of $ZL^1(G)$ heavily relies on the fact that if $N \trianglelefteq G$ then $AM(ZL^1(G/N)) \le AM(ZL^1(G))$

This bound is also sharp, because $AM(ZL^1(D_4)) = \frac{7}{4}$.

For a compact group G denote the central Fourier algebra of G by

$$ZA(G) = A(G) \cap ZL^1(G)$$

where the norm is the A(G) norm. If we restrict to finite groups then ZA(G) and $ZL^{1}(G)$ are both equal to the class functions on G, albeit with different norms and multiplication.

For a compact group G denote the central Fourier algebra of G by

$$ZA(G) = A(G) \cap ZL^1(G)$$

where the norm is the A(G) norm. If we restrict to finite groups then ZA(G) and $ZL^{1}(G)$ are both equal to the class functions on G, albeit with different norms and multiplication.

Theorem [3, Alaghmandan and Spronk, 2014]

A finite group G is abelian if and only if $AM(ZA(G)) < \frac{2}{\sqrt{3}}$. In this case $AM(ZL^1(G)) = 1$.

For a compact group G denote the central Fourier algebra of G by

$$ZA(G) = A(G) \cap ZL^1(G)$$

where the norm is the A(G) norm. If we restrict to finite groups then ZA(G) and $ZL^{1}(G)$ are both equal to the class functions on G, albeit with different norms and multiplication.

Theorem [3, Alaghmandan and Spronk, 2014]

A finite group G is abelian if and only if $AM(ZA(G)) < \frac{2}{\sqrt{3}}$. In this case $AM(ZL^1(G)) = 1$.

Importantly, the above gap is not necessarily sharp. The smallest known value for AM(ZA(G)) is $\frac{7}{4}$, and just like with $AM(ZL^1(G))$ it is achieved at D_4 .

AM(ZA(G)) and $AM(ZL^1(G))$

Theorem [4] and [5]

Let G be a finite group. Then

$$AM(ZL^{1}(G)) = \frac{1}{|G|^{2}} \sum_{C,C' \in \operatorname{Conj}(G)} |C||C'| \left| \sum_{\chi \in \operatorname{Irr}(G)} d_{\chi}^{2} \chi_{\pi}(C) \overline{\chi_{\pi}(C')} \right|$$

and
$$AM(ZA(G)) = \frac{1}{|G|^{2}} \sum_{\chi,\chi' \in \operatorname{Irr}(G)} d_{\chi} d_{\chi'} \left| \sum_{C \in \operatorname{Conj}(G)} |C|^{2} \chi(C) \overline{\chi'(C)} \right|.$$

AM(ZA(G)) and $AM(ZL^1(G))$

Theorem [4] and [5]

Let G be a finite group. Then

$$AM(ZL^{1}(G)) = \frac{1}{|G|^{2}} \sum_{C,C' \in \operatorname{Conj}(G)} |C||C'| \left| \sum_{\chi \in \operatorname{Irr}(G)} d_{\chi}^{2} \chi_{\pi}(C) \overline{\chi_{\pi}(C')} \right|$$

and
$$AM(ZA(G)) = \frac{1}{|G|^{2}} \sum_{\chi,\chi' \in \operatorname{Irr}(G)} d_{\chi} d_{\chi'} \left| \sum_{C \in \operatorname{Conj}(G)} |C|^{2} \chi(C) \overline{\chi'(C)} \right|.$$

Calculations in GAP show that of the 851 non-abelian groups with order less than 100, there are 678 groups with $AM(ZL^1(G)) = AM(ZA(G))$. Interestingly, the first group of odd order that doesn't satisfy this has order 567.

John Sawatzky (University of Waterloo)

The duality between $AM(ZL^1(G))$ and AM(ZA(G)) is no coincidence. Both can be understood as hypgroup algebras.

The duality between $AM(ZL^1(G))$ and AM(ZA(G)) is no coincidence. Both can be understood as hypgroup algebras.

- $ZL^1(G) \cong \ell^1(\operatorname{Conj}(G), \lambda_{\operatorname{Conj}(G)}(G))$, where $\lambda_{\operatorname{Conj}(G)}(C) = |C|$
- $ZA(G) \cong \ell^1(\hat{G}, \lambda_{\hat{G}})$, where $\lambda_{\hat{G}}(\pi) = d_{\pi}^2$.

The duality between $AM(ZL^1(G))$ and AM(ZA(G)) is no coincidence. Both can be understood as hypgroup algebras.

•
$$ZL^1(G) \cong \ell^1(\operatorname{Conj}(G), \lambda_{\operatorname{Conj}(G)}(G))$$
, where $\lambda_{\operatorname{Conj}(G)}(C) = |C|$

•
$$ZA(G) \cong \ell^1(\hat{G}, \lambda_{\hat{G}})$$
, where $\lambda_{\hat{G}}(\pi) = d_{\pi}^2$.

Proposition [1, Alaghmandan and Amini, 2016]

If G is a compact group then $\operatorname{Conj}(G)$ and \hat{G} are dual hypergoups.

The duality between $AM(ZL^1(G))$ and AM(ZA(G)) is no coincidence. Both can be understood as hypgroup algebras.

•
$$ZL^1(G) \cong \ell^1(\operatorname{Conj}(G), \lambda_{\operatorname{Conj}(G)}(G))$$
, where $\lambda_{\operatorname{Conj}(G)}(C) = |C|$

•
$$ZA(G) \cong \ell^1(\hat{G}, \lambda_{\hat{G}})$$
, where $\lambda_{\hat{G}}(\pi) = d_{\pi}^2$.

Proposition [1, Alaghmandan and Amini, 2016]

If G is a compact group then $\operatorname{Conj}(G)$ and \hat{G} are dual hypergoups.

Theorem [1, Alaghmandan and Amini, 2016]

Let H be a finite commutative hypergroup with Haar measure λ and dual \hat{H} . For $\chi \in \hat{H}$ let k_{χ} denote the hyperdimension of χ . Then we have that

$$AM(\ell^{1}(H,\lambda)) = \frac{1}{\lambda(H)^{2}} \sum_{x,y \in H} \left| \sum_{\chi \in \hat{H}} k_{\chi}^{2} \chi(x) \overline{\chi(y)} \right| \lambda(x) \lambda(y).$$

What kind of values can AM(ZA(G)) achieve? Recall that

$$AM(ZA(G)) = \frac{1}{|G|^2} \sum_{\chi,\chi' \in \operatorname{Irr}(G)} d_{\chi} d_{\chi'} \left| \sum_{C \in \operatorname{Conj}(G)} |C|^2 \chi(C) \overline{\chi'(C)} \right|.$$

What kind of values can AM(ZA(G)) achieve? Recall that

$$AM(ZA(G)) = \frac{1}{|G|^2} \sum_{\chi,\chi' \in \operatorname{Irr}(G)} d_{\chi} d_{\chi'} \left| \sum_{C \in \operatorname{Conj}(G)} |C|^2 \chi(C) \overline{\chi'(C)} \right|.$$

Fact

Because irreducible characters have values in the algebraic integers, we

know that
$$\left|\sum_{C\in \operatorname{Conj}(\mathcal{G})} |C|^2 \chi(C) \overline{\chi'(C)}\right| \in \mathbb{Z}$$

What kind of values can AM(ZA(G)) achieve? Recall that

$$AM(ZA(G)) = \frac{1}{|G|^2} \sum_{\chi, \chi' \in \operatorname{Irr}(G)} d_{\chi} d_{\chi'} \left| \sum_{C \in \operatorname{Conj}(G)} |C|^2 \chi(C) \overline{\chi'(C)} \right|.$$

Fact

Because irreducible characters have values in the algebraic integers, we

know that
$$\left|\sum_{C\in\operatorname{Conj}(\mathcal{G})}|C|^2\chi(C)\overline{\chi'(C)}\right|\in\mathbb{Z}$$

However, it turns out that taking the complex multitude is unnecessary, as the inner quantity is always an integer.

Proposition [S.]

The value $\sum_{C \in \operatorname{Conj}(G)} |C|^2 \chi(C) \overline{\chi'(C)}$ is an integer divisible by |Z(G)|.

Image: Image:

→ < ∃ →</p>

Proposition [S.]

The value $\sum_{C \in \operatorname{Conj}(G)} |C|^2 \chi(C) \overline{\chi'(C)}$ is an integer divisible by |Z(G)|.

Idea of Proof

- Use Clifford theory to create a partition of Irr(G) based on Irr(Z(G)).
- Simplify the sum based on this partition.
- Use Galois theory to show that what remains is a rational algebraic integer, hence an integer.

Theorem [2, Alaghmandan, Choi, Samei, 2014]

Let G be a non-abelian finite group such that every non-linear irreducible character has degree m. Then

$$AM(ZL^{1}(G)) = 1 + 2(m^{2} - 1) \left(1 - \frac{1}{|G| \cdot |G'|} \sum_{C \in \operatorname{Conj}(G)} |C|^{2}\right)$$

10 / 17

Theorem [2, Alaghmandan, Choi, Samei, 2014]

Let G be a non-abelian finite group such that every non-linear irreducible character has degree m. Then

$$\mathsf{AM}(\mathsf{ZL}^1(\mathsf{G})) = 1 + 2(m^2 - 1) \left(1 - rac{1}{|\mathsf{G}| \cdot |\mathsf{G}'|} \sum_{\mathsf{C} \in \operatorname{Conj}(\mathsf{G})} |\mathsf{C}|^2
ight)$$

Theorem [S.]

Let G be a non-abelian finite group where all non-central conjugacy classes have size k. Then

$$AM(ZA(G)) = 2k - 1 + 2(1-k) \cdot rac{|Z(G)|}{|G|^2} \cdot \left(\sum_{\chi \in \operatorname{Irr}(G)} d_{\chi}^4\right)$$

John Sawatzky (University of Waterloo)

Example

Let p be a prime. A finite group G is called p-extraspecial if

- |Z(G)| = p
- G/Z(G) is non-trivial elementary abelian p-group

If the above is satisfied then $|G| = p^{2n+1}$, and G has both two character degrees and two conjugacy class sizes. Both the formulas for $AM(ZL^1(G))$ and AM(ZA(G)) apply and yield the same result, namely that

$$AM(ZL^{1}(G)) = AM(ZA(G)) = 1 + 2\left(1 - \frac{1}{p^{2n}}\right)\left(1 - \frac{1}{p}\right)$$

Example

Let p be a prime. A finite group G is called p-extraspecial if

- |Z(G)| = p
- G/Z(G) is non-trivial elementary abelian p-group

If the above is satisfied then $|G| = p^{2n+1}$, and G has both two character degrees and two conjugacy class sizes. Both the formulas for $AM(ZL^1(G))$ and AM(ZA(G)) apply and yield the same result, namely that

$$AM(ZL^1(G)) = AM(ZA(G)) = 1 + 2\left(1 - \frac{1}{p^{2n}}\right)\left(1 - \frac{1}{p}\right)$$

Theorem [Choi and S.]

If G is a finite group with two character degrees and two conjugacy class sizes then $AM(ZL^1(G)) = AM(ZA(G))$.

▲ □ ▶ ▲ □ ▶ ▲ □

A(G) and $ZL^1(G)$

Both AM(A(G)) and $AM(ZL^{1}(G))$ possess nice hereditary properties:

- If H is a closed subgroup of G then $AM(A(H)) \leq AM(A(G))$
- If $N \trianglelefteq G$ then $AM(ZL^1(G/N)) \le AM(ZL^1(G))$

A(G) and $ZL^1(G)$

Both AM(A(G)) and $AM(ZL^{1}(G))$ possess nice hereditary properties:

- If H is a closed subgroup of G then $AM(A(H)) \leq AM(A(G))$
- If $N \trianglelefteq G$ then $AM(ZL^1(G/N)) \le AM(ZL^1(G))$

Because $ZA(G) = ZL^1(G) \cap A(G)$, the hope would be that these hereditary properties would also hold for AM(ZA(G)).

A(G) and $ZL^1(G)$

Both AM(A(G)) and $AM(ZL^1(G))$ possess nice hereditary properties:

- If H is a closed subgroup of G then $AM(A(H)) \leq AM(A(G))$
- If $N \trianglelefteq G$ then $AM(ZL^1(G/N)) \le AM(ZL^1(G))$

Because $ZA(G) = ZL^1(G) \cap A(G)$, the hope would be that these hereditary properties would also hold for AM(ZA(G)).

Example

If $G = C_8 \rtimes (C_2 \times C_2)$ and $N = D_8$ is identified as a normal subgroup of G, then AM(ZA(G)) = 2.59375 and AMZA(N) = 2.6875, so AM(ZA(G)) < AMZA(N).

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem [S.]

Let G be a finite group with the property that $AM(ZA(G)) \ge AMZA(G/N)$ for all $N \le G$. Then G is abelian if and only if $AM(ZA(G)) < \frac{7}{4}$, in which case AM(ZA(G)) = 1.

Theorem [S.]

Let G be a finite group with the property that $AM(ZA(G)) \ge AMZA(G/N)$ for all $N \le G$. Then G is abelian if and only if $AM(ZA(G)) < \frac{7}{4}$, in which case AM(ZA(G)) = 1.

Just like with $ZL^1(G)$ this bound is sharp, because $AM(ZA(D_4)) = \frac{7}{4}$.

13/17

Theorem [S.]

Let G be a finite group with the property that $AM(ZA(G)) \ge AMZA(G/N)$ for all $N \le G$. Then G is abelian if and only if $AM(ZA(G)) < \frac{7}{4}$, in which case AM(ZA(G)) = 1.

Just like with $ZL^1(G)$ this bound is sharp, because $AM(ZA(D_4)) = \frac{7}{4}$.

Example

There is a group G of order 192 with $C_2 \cong N \trianglelefteq G$ and $G/N \cong$ SmallGroup(96, 204) such that AM(ZA(G)) = 13.4921875 and AMZA(G/N) = 15.53125.

(人間) トイヨト イヨト ニヨ

Question

Is it true that a finite group G is abelian if and only if $AM(ZA(G)) < \frac{7}{4}$?

Question

Is it true that a finite group G is abelian if and only if $AM(ZA(G)) < \frac{7}{4}$?

Examples

- The $\frac{7}{4}$ gap holds for the following classes of finite groups:
 - All groups with order less than 384 (via GAP computations)
 - Frobenius Groups with abelian factor and kernel
 - Groups with two conjugacy class sizes and two character degrees.
 - Perfect groups
 - Any other group G with $AM(ZA(G)) = AM(ZL^1(G))$

Thank you for attending my talk :)

Image: Image:

References I

- Mahmood Alaghmandan and Massoud Amini, *Dual space and hyperdimension of compact hypergroups*, Glasg. Math. J. **59** (2017), no. 2, 421–435. MR 3628938
- Mahmood Alaghmandan, Yemon Choi, and Ebrahim Samei, ZL-amenability constants of finite groups with two character degrees, Canad. Math. Bull. 57 (2014), no. 3, 449–462. MR 3239107
- Mahmood Alaghmandan and Nico Spronk, *Amenability properties of the central Fourier algebra of a compact group*, Illinois J. Math. **60** (2016), no. 2, 505–527. MR 3680545
- Ahmadreza Azimifard, Ebrahim Samei, and Nico Spronk, *Amenability properties of the centres of group algebras*, J. Funct. Anal. **256** (2009), no. 5, 1544–1564. MR 2490229

Yemon Choi, A gap theorem for the ZL-amenability constant of a finite group, Int. J. Group Theory **5** (2016), no. 4, 27–46. MR 3490226

_____, An explicit minorant for the amenability constant of the fourier algebra, 2020, arXiv:1410.5093.

Barry Edward Johnson, *Non-amenability of the Fourier algebra of a compact group*, J. London Math. Soc. (2) **50** (1994), no. 2, 361–374. MR 1291743