
CENTRES OF IDEALS IN βG

M. FILALI

1. PART I

G discrete (and abelian for simplicity).
βG is a compact right topological semigroup

• with the first Arens on ℓ1(G)∗∗ restricted to βG, or
• Using the property of βG:

For each s ∈ G, the continuous mapping

t 7→ s t : G → βG

extends to a continuous mapping

y 7→ s y : βG → βG.

Then, for each y ∈ βG, we extend the mapping s 7→ s y defined from
G into βG to a continuous mapping

x 7→ x y : βG → βG,

making βG a compact right topological semigroup.
(βG has the weak∗-topology inherited from ℓ∞(G)∗).

The topological centre of βG is

Z(βG) = {x ∈ βG; y 7→ yx : βG → βG is continuous}.
The algebraic centre of βG

Za(βG) = {x ∈ βG; xy = yx for all y ∈ βG}.
Since we are assuming that G is abelian, Z(βG) = Za(βG).

If I is a left, right ideal or a subsemigroup of βG,

Z(I) = {x ∈ I; y 7→ yx : I → I is continuous} = (when G is abelian)

Za(I) = {x ∈ I : xy = yx for all y ∈ I}.
(Again I is with the weak∗-topology inherited from ℓ∞(G)∗.)

For example, G∗ = βG \G is a closed ideal in βG.
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John’s drawing: If G = Z, then βG is

©××××××××××××××××××©

R and L are closed left ideals in βZ, Z∗ = R ∪ L is a closed ideal in βZ.
Z(βZ) = Z, Z(Z∗) = Z(R ∪ L) = ∅

(−∞ = lim
n

lim
m

(n−m) 6= lim
m

lim
n
(n−m) = ∞).

But how about Z(R) and Z(L)?

Theorem 1.1 (Hindman-Davenport-Strauss). Z(βG) = G and Z(G∗) = ∅.

Sketch: For simplicity assume that G is countable.
van Douwen decomposition vD = {I} of G∗: Partition G∗ into closed left

ideals G∗ =
∪
I.

x ∈ G∗ =⇒ x ∈ I for some I ∈ vD =⇒ yx ∈ I but xy ∈ J for y ∈ J ∈ vD with J ∩ I = ∅
=⇒ xy 6= yx =⇒ x /∈ Z(βG) and x /∈ Z(G∗) =⇒
Z(βG) = G and Z(G∗) = ∅.

A point p is right (left) cancellable in βG when

yp = zp (py = pz) ⇐⇒ y = z.

Theorem 1.2. If a left (right) ideal L in βG (and so L ⊆ G∗) has a right
(left) cancellable point p, then Z(L) = ∅.
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Sketch:

x ∈ Z(L), y ∈ βG =⇒ (xy)p = x(yp) = (yp)x = y(px) = y(xp) = (yx)p

=⇒ xy = yx =⇒ x ∈ Z(βG) =⇒
Z(L) = ∅.

Theorem 1.3. p ∈ βG right (left) cancellable =⇒ Z(βGp) = Z(G∗p) = ∅
and Z(pβG) = Z(pG∗) = ∅.

(Note that βGp and G∗p are nowhere dense sets.)

Theorem 1.4. A left ideal L with a non-empty interior in βG has an empty
centre.

Sketch: A non-empty interior gives T ⊆ A ⊆ G with

T ⊆ A ⊆ L

and T thin (|sT ∩ tT | < |G| whenever s 6= t in G). Since T consists of right
cancellable points, the claim follows.

How about when p2 = p, is it true that Z(βGp) = ∅?
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1.1. Algebra in βG.

In a semigroup S, an element p is an idempotent if pp = p2 = p.

The left and right preorderings of idempotents in a semigroup S (and so
in βG), induced by the inclusion relation on principal left and right ideals,
are given by

p ≤L q ⇐⇒ pq = p ⇐⇒ Sp ⊆ Sq

p ≤R q ⇐⇒ qp = p ⇐⇒ pS ⊆ qS.

In any compact right topological semigroup S, in particular when S = βG
or G∗,

• idempotents exist in ZFC (Numakura 1952, Wallace 1952-1953-1955,
and Ellis 1969).

• left minimal and right minimal idempotents are the same, and exist
in ZFC.

• right maximal idempotents exist in ZFC [Ruppert, 2.7-2.9].
• S has a smallest (2-sided) ideal K(S).
• If E(K(S)) is the set of idempotents in K(S), then p ∈ E(K(S)) if
and only if it is minimal.

• Each of the families

{Sp : p ∈ E(K(S))}, {pS : p ∈ E(K(S))}, {pSp : p ∈ E(K(S))}

partitions K(S), and they are, respectively, the set of minimal left
ideals of S, the set of minimal right ideals of S, and the set of
maximal subgroups of K(S).

• There are 22
|G|

many idempotents in G∗ [HS].

• There are 22
|G|

many minimal idempotents in G∗ [HS].

• βG (and so G∗) contains 22
|G|

minimal left ideals [HS].

• βG (and so G∗) contains 22
|G|

minimal right ideals [Zelenyuk, 2009]
and [Filali-Galindo for GLUC, preprint]. [HS, at least 2c], [Baker-
Milnes for GLUC, at least 2c].

• Each minimal right ideal and each minimal left ideal contains 22
|G|

many idempotents [Filali-Galindo for GLUC, preprint]. [HS, at least
2c].

• When G is countable, there are 2c non-minimal idempotents in
K(βG) [HS, Theorem 8.65].
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• There are 2c many right maximal idempotents in N∗ [HS, Theorem
9.1].

• Right maximal idempotents are not in K(βG), so minimal idempo-
tents cannot be right maximal [HS, Theorem 9.8 or Exercise 9.1.4].

• Left maximal idempotents (which are minimal) exist in βG in ZFC
when G is countable [Zelenyuk, 2014].
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Theorem 1.5 (HS). If G is countable (not necessarily abelian) and p is a
non-minimal idempotent in βG, then Z(pβGp) ⊆ Gp.

Sketch: Beautiful long proof, based on

p non-minimal =⇒ p /∈ K(βG) =⇒ ∃B ⊆ G such that

βGr1p ∩ βGr2p = ∅ for r1, 6= r2 ∈ B∗ and

rp is right cancellable in βG for every r ∈ B∗.

Corollary 1.6 (HS). If G is countable and abelian and p ∈ βG is non-
minimal, then

Z(pβGp) = Z(pG∗p) = Gp.

Sketch: Note first that pβGp = pG∗p since psp = p(sp)p ∈ pG∗p for any
s ∈ G. Now if s ∈ G, then

sp = spp = psp ∈ pβGp,

and so for any y = pxp ∈ pβGp,

(sp)y = (sp)(pxp) = spxp = sy = ys = (pxp)s = (pxp)ps = (pxp)(sp) = y(sp),

i.e., Gp ⊆ Z(pβGp) = Z(pG∗p).

Corollary 1.7. Let G be countable and L a left ideal in βG not contained
in K(βG). Then Z(L) = ∅.

Sketch: Let x ∈ L \K(βG). By [HS, Theorem 6.56], there exists r ∈ G∗

such that rx is right cancellable. Since rx ∈ L, Z(L) = ∅ by Theorem 1.2.

What happens when the idempotent is minimal?
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Theorem 1.8. Z(K(βG)) = ∅.

Sketch: If xp ∈ K(βG) for some x ∈ βG and an idempotent p ∈ K(βG),
then (xp)q ∈ βGq and q(xp) ∈ βGp for any other idempotent q ∈ K(βG)
with βGp ∩ βGq = ∅.

In fact, in the same way, the centre of each of the left ideal βGp ∪ βGq
and the right ideal pβG ∪ qβG is empty whenever p and q are not in the
same ideal.

Summary:

Let L be a proper left ideal in βG.

• If L * K(βG) =⇒ Z(L) = ∅.
• L ⊆ K(βG) and L =

∪
p∈S βGp, where S ⊆ K(βG) and |S| > 1

=⇒ Z(L) = ∅.

• If L = βGp for some minimal idempotent p =⇒??.
• If R = pβG for some minimal idempotent p =⇒??.
• If M = pβGp for some minimal idempotent p =⇒??.

It is known that each maximal group in βG, namely pβGp (and so each
βGp and pβG) for p a minimal idempotent contains a free group on 2c

generators. So these are very non-commutative subsemigroups of βG.

(The proof works for discrete commutative semigroups)

Theorem 1.9. Let G be abelian and p be an idempotent in G∗. Let Gp
has the topology induced by βG. Then Gp is an extremely disconnected,
Hausdorff, non-locally compact semitopological group, and

(J.W. Baker, 1979) β(Gp) = Gp = (G)p = (βG)p.

Proof. That Gp is a group is clear. To prove that Gp is extremely discon-
nected, let A ∩Gp and B ∩Gp be two disjoint open sets in Gp with A and
B open in βG. Define f on G by f(s) = 1 is sp ∈ A, f(sp) = −1 if sp ∈ B,

and f(s) = 0 otherwise. Extend f to a continuous function f̃ on βG. Note

now that if x ∈ A ∩ Gp, then x = xp and f̃(x) = 1, and so f̃(x) = 1 for

every x ∈ clGp(A ∩Gp) = A ∩Gp. Similarly f̃(x) = −1 if x ∈ clGp(B ∩Gp.
Therefore, clGp(A ∩Gp) ∩ clGp(B ∩Gp) = ∅.
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To show that Gp is not locally compact, we claim first that a subset Ep
in Gp is closed in βG if and only if E is finite. Suppose otherwise that E is
infinite and C ⊆ E be countable. If Ep were closed, we would get

Ep = Cp ∪ (E \ C) = Cp ∪ (E \ C)p,

where Cp and (E \C)p are disjoint by Veech’s Theorem (Ellis Theoem since

G is discrte). So, arguing as previously, we see that Cp and (E \ C)p are

also disjoint. Therefore, Cp = Cp and (E \ C)p = (E \ C)p. In particular,
Cp is closed in βG. This is not possible since the cardinality of a closed set
in βG must be at least 2c by [GJ76] Gillman and Jersion. 9.12, or see [4,
Theorem 3.59], while by Veech’s Theorem, Cp is countable.

It is now straightforward that a basic (closed) neighbourhood E ∩Gp of
p in Gp is not closed in βG and so it cannot be compact (in either βG or
Gp). To see this, use the fact that p is an idempotent and pick F ⊆ G with
p ∈ F and Fp ⊆ E ∩ Gp. Use Veech’s Theorem to see that E ∩ Gp = E′p
for some infinite subset E′ in G, and apply the above.

Consider now P ∩ Gp, where P is any neighbourhood of p in βG. Pick
Q ⊆ G with p ∈ Q and Qp ⊆ P . Then |Qp| = |Q| by Veech’s Theorem (Ellis
Theorem since G is discrete) and Qp ⊆ P ∩Gp.

We claim that Gp is properly contained in G∗p and βG....

Baker’s argument:
For a given continuous bounded function f on Gp, define g on G by

g(s) = f(sp). Then extend g to a continuous function g̃ on βG. The functions
g̃ and f agree on Gp since

g̃(sp) = lim
α

g(spα) = lim
α

f(spαp) = f(spp) = f(sp) for every s ∈ G.

Since every continuous bounded function on Gp extends continuously to
Gp = (G)p = (βG)p, we see that β(Gp) and the left ideal (βG)p in βG are
the same. �

A topology on G induced by idempotents in G∗

Let G be an infinite group with identity e, and let p be an idempotent in
G∗. We put

τp = {Pe = P ∪ {e} ⊆ G : p ∈ P}.
Then (G, τp) is a Hausdorff (due to Veech-Ellis Theorem, or apply directly
the 3-set lemma) left topological group. We denote (G, τp) by G(p). If
G is abelian, then G(p) is a semitopological group, but not necessarily a
topological group.
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Proposition 1.10. Let G be discrete with identity e. Let p ∈ βG be an
idempotent. Then the map rp : s 7→ sp from G(p) onto Gp is a continuous
isomorphism.

Proof. We prove the continuity at the identity e. The continuity at any
other point in G will follow from G ⊆ Z(βG). Let P ⊆ G such that p ∈ P
(i.e., P is a neighbourhood of p in βG). Since p = pp ∈ A and the mapping
x 7→ xp : βG → βG is continuous, pick Q ⊆ G such that p ∈ Q and Qp ⊆ P .
Then

rp(Qe) = Qep ⊆ Qp ⊆ P ,

as wanted.
By Veech’s Theorem (see e.g. [?, Theorem 4.8.9]), the mapping rp : s 7→ sp

is injective. Hence, the mapping rp is a continuous isomorphism from G(p)
onto Gp.

�
Definition 1.11. An idempotent p ∈ G∗ is

(i) strongly right maximal when the equation xp = p is satisfied only
for x = p in βG.

(ii) strongly left maximal when the equation px = p is satisfied only for
x = p in βG.

• Strongly right maximal idempotents exist in ZFC [Protasov].
• Strongly right maximal are not in K(βG), so minimal idempotents
cannot be right maximal [HS].

• Minimal idempotents can be left maximal [Zelenyuk, 2014].

Theorem 1.12 (HS, Theorem 9.15 for example). Let G be an abelian dis-
crete group with identity e and let p be an idempotent in G∗. Then TFAE

(i) τp is regular.
(ii) p is strongly right maximal.
(iii) G(p) and Gp are isomorphic and homeomorphic.

So here we have G(p) as a semitopological group such that β(G(p)) iden-
tified with the left ideal βGp of βG and

Z(β(G(p)) = Z(βGp) = ∅.

Let G be abelian and for a subset X of G, let

FP (X) = {
∏
s∈F

s : F ⊆ X, finite}.

It is well known that, if p is an idempotent, then every P ⊆ G with p ∈ P ,
contains a set of the form FP (X) for some infinite subset X of G. However,
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we do not normally expect that p ∈ FP (X). So the following definition
states itself:

Definition 1.13. Let G be abelian. An element p ∈ βG is strongly sum-
mable when for every P ⊆ G with p ∈ P , there exists X ⊆ G such that
p ∈ FP (X) ⊆ P .

• Strongly summable elements in βG are idempotents.
• Strongly summable are not in K(βN) [HS, Theorem 12.21].
• Their existence is established under Martin’s Axiom.
• their existence cannot be established in ZFC.
• Strongly summable =⇒ [HS, Theorem 12.39 (in βN)] Strongly right
maximal =⇒ Right maximal.

• Right maximal ; Strongly right maximal [Zelenyuk, 2016].

Theorem 1.14 (Protasov). Let G be a countable Boolean group, and p ∈ βG
be strongly summable. Then G(p) is a (maximal) topological group.

Now under MA, we have G(p) as a topological group such that β(G(p))
identified with the left ideal βGp of βG and

Z(β(G(p)) = Z(βGp) = ∅.

Theorem 1.15 (F-Vedenjuoksu 2010). Let G be a topological group which
is not a P-group. The Stone Čech compactification βG of G is a right
topological semigroup with G ⊆ Z(βG) if and only if G is pseudocompact.

By Protasov, G(p) is not totally bounded unless p is minimal.
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2. PART II

G a locally compact group.
GLUC is a compact right topological semigroup.
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3. PART III

G a locally compact group.
L1(G)∗∗ and LUC(G)∗ are Banach algebras with the first Arens product.
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