CENTRES OF IDEALS IN βG

M. FILALI

1. PART I

G discrete (and abelian for simplicity). βG is a compact right topological semigroup

- with the first Arens on $\ell^1(G)^{**}$ restricted to βG , or
- Using the property of βG :

For each $s \in G$, the continuous mapping

 $t \mapsto s t : G \to \beta G$

extends to a continuous mapping

$$y \mapsto s y : \beta G \to \beta G.$$

Then, for each $y \in \beta G$, we extend the mapping $s \mapsto s y$ defined from G into βG to a continuous mapping

 $x \mapsto x y : \beta G \to \beta G,$

making βG a compact right topological semigroup. (βG has the weak*-topology inherited from $\ell^{\infty}(G)^*$).

The topological centre of βG is

 $\mathcal{Z}(\beta G)=\{x\in\beta G;\;y\mapsto yx:\beta G\to\beta G\;\;\text{is continuous}\}.$ The algebraic centre of βG

 $\mathcal{Z}_a(\beta G) = \{ x \in \beta G; \ xy = yx \text{ for all } y \in \beta G \}.$

Since we are assuming that G is abelian, $\mathcal{Z}(\beta G) = \mathcal{Z}_a(\beta G)$.

If I is a left, right ideal or a subsemigroup of βG ,

 $\mathcal{Z}(I) = \{ x \in I; \ y \mapsto yx : I \to I \text{ is continuous} \} = \text{ (when } G \text{ is abelian)}$ $\mathcal{Z}_a(I) = \{ x \in I : xy = yx \text{ for all } y \in I \}.$

(Again I is with the weak*-topology inherited from $\ell^{\infty}(G)^*$.)

For example, $G^* = \beta G \setminus G$ is a closed ideal in βG .

Date: July 20, 2022.

Key words and phrases. Granada, BAA July 2022.

JOHN'S DRAWING: If $G = \mathbb{Z}$, then βG is

R and L are closed left ideals in $\beta \mathbb{Z}$, $\mathbb{Z}^* = R \cup L$ is a closed ideal in $\beta \mathbb{Z}$. $\mathcal{Z}(\beta \mathbb{Z}) = \mathbb{Z}, \quad \mathcal{Z}(\mathbb{Z}^*) = \mathcal{Z}(R \cup L) = \emptyset$

$$(-\infty = \lim_{n} \lim_{m} (n-m) \neq \lim_{m} \lim_{n} (n-m) = \infty).$$

But how about $\mathcal{Z}(R)$ and $\mathcal{Z}(L)$?

Theorem 1.1 (Hindman-Davenport-Strauss). $\mathcal{Z}(\beta G) = G$ and $\mathcal{Z}(G^*) = \emptyset$.

Sketch: For simplicity assume that G is countable. van Douwen decomposition $v\mathcal{D} = \{I\}$ of G^* : Partition G^* into closed left ideals $G^* = \bigcup I$.

 $\begin{aligned} x \in G^* \Longrightarrow x \in I \text{ for some } I \in v\mathcal{D} \Longrightarrow yx \in I \text{ but } xy \in J \text{ for } y \in J \in v\mathcal{D} \text{ with } J \cap I = \varnothing \\ \Longrightarrow xy \neq yx \Longrightarrow x \notin \mathcal{Z}(\beta G) \text{ and } x \notin \mathcal{Z}(G^*) \Longrightarrow \\ \mathcal{Z}(\beta G) = G \text{ and } \mathcal{Z}(G^*) = \varnothing. \end{aligned}$

A point p is right (left) cancellable in βG when $yp = zp \ (py = pz) \iff y = z.$

Theorem 1.2. If a left (right) ideal L in βG (and so $L \subseteq G^*$) has a right (left) cancellable point p, then $\mathcal{Z}(L) = \emptyset$.

Sketch:

$$\begin{aligned} x \in \mathcal{Z}(L), \ y \in \beta G \Longrightarrow (xy)p &= x(yp) = (yp)x = y(px) = y(xp) = (yx)p \\ \implies xy = yx \Longrightarrow x \in \mathcal{Z}(\beta G) \Longrightarrow \\ \mathcal{Z}(L) &= \varnothing. \end{aligned}$$

Theorem 1.3. $p \in \beta G$ right (left) cancellable $\Longrightarrow \mathfrak{Z}(\beta Gp) = \mathfrak{Z}(G^*p) = \varnothing$ and $\mathfrak{Z}(p\beta G) = \mathfrak{Z}(pG^*) = \varnothing$. (Note that βGp and G^*p are nowhere dense sets.)

Theorem 1.4. A left ideal L with a non-empty interior in βG has an empty centre.

Sketch: A non-empty interior gives $T\subseteq A\subseteq G$ with

$$\overline{T} \subseteq \overline{A} \subseteq L$$

and T thin $(|sT \cap tT| < |G|$ whenever $s \neq t$ in G). Since \overline{T} consists of right cancellable points, the claim follows.

How about when $p^2 = p$, is it true that $\mathcal{Z}(\beta Gp) = \varnothing$?

1.1. Algebra in βG .

In a semigroup S, an element p is an *idempotent* if $pp = p^2 = p$.

The left and right preorderings of idempotents in a semigroup S (and so in βG), induced by the inclusion relation on principal left and right ideals, are given by

$$p \leq_L q \iff pq = p \iff Sp \subseteq Sq$$
$$p \leq_R q \iff qp = p \iff pS \subseteq qS.$$

In any compact right topological semigroup S, in particular when $S = \beta G$ or G^* ,

- idempotents exist in ZFC (Numakura 1952, Wallace 1952-1953-1955, and Ellis 1969).
- left minimal and right minimal idempotents are the same, and exist in ZFC.
- right maximal idempotents exist in ZFC [Ruppert, 2.7-2.9].
- S has a smallest (2-sided) ideal K(S).
- If E(K(S)) is the set of idempotents in K(S), then $p \in E(K(S))$ if and only if it is minimal.
- Each of the families

 $\{Sp: p \in E(K(S))\}, \{pS: p \in E(K(S))\}, \{pSp: p \in E(K(S))\}$

partitions K(S), and they are, respectively, the set of minimal left ideals of S, the set of minimal right ideals of S, and the set of maximal subgroups of K(S).

- There are $2^{2^{|G|}}$ many idempotents in G^* [HS].
- There are $2^{2^{|G|}}$ many minimal idempotents in G^* [HS].
- βG (and so G^*) contains $2^{2^{|G|}}$ minimal left ideals [HS].
- βG (and so G^*) contains $2^{2^{|G|}}$ minimal right ideals [Zelenyuk, 2009] and [Filali-Galindo for $G^{\mathcal{LUC}}$, preprint]. [HS, at least 2^c], [Baker-Milnes for $G^{\mathcal{LUC}}$, at least 2^c].
- Each minimal right ideal and each minimal left ideal contains $2^{2^{|G|}}$ many idempotents [Filali-Galindo for $G^{\mathcal{LUC}}$, preprint]. [HS, at least 2^{c}].
- When G is countable, there are 2^c non-minimal idempotents in $\overline{K(\beta G)}$ [HS, Theorem 8.65].

4

- There are 2^c many right maximal idempotents in \mathbb{N}^* [HS, Theorem 9.1].
- Right maximal idempotents are not in $K(\beta G)$, so minimal idempotents cannot be right maximal [HS, Theorem 9.8 or Exercise 9.1.4].
- Left maximal idempotents (which are minimal) exist in βG in ZFC when G is countable [Zelenyuk, 2014].

M. FILALI

Theorem 1.5 (HS). If G is countable (not necessarily abelian) and p is a non-minimal idempotent in βG , then $\mathcal{Z}(p\beta Gp) \subseteq Gp$.

Sketch: Beautiful long proof, based on

 $p \text{ non-minimal} \implies p \notin K(\beta G) \implies \exists B \subseteq G \text{ such that}$ $\beta Gr_1 p \cap \beta Gr_2 p = \emptyset \text{ for } r_1, \neq r_2 \in B^* \text{ and}$ $rp \text{ is right cancellable in } \beta G \text{ for every } r \in B^*.$

Corollary 1.6 (HS). If G is countable and abelian and $p \in \beta G$ is nonminimal, then

$$\mathcal{Z}(p\beta Gp) = \mathcal{Z}(pG^*p) = Gp.$$

Sketch: Note first that $p\beta Gp = pG^*p$ since $psp = p(sp)p \in pG^*p$ for any $s \in G$. Now if $s \in G$, then

$$sp = spp = psp \in p\beta Gp$$
,

and so for any $y = pxp \in p\beta Gp$,

(sp)y=(sp)(pxp)=spxp=sy=ys=(pxp)s=(pxp)ps=(pxp)(sp)=y(sp),i.e., $Gp\subseteq \mathbb{Z}(p\beta Gp)=\mathbb{Z}(pG^*p).$

Corollary 1.7. Let G be countable and L a left ideal in βG not contained in $K(\beta G)$. Then $\mathcal{Z}(L) = \emptyset$.

Sketch: Let $x \in L \setminus K(\beta G)$. By [HS, Theorem 6.56], there exists $r \in G^*$ such that rx is right cancellable. Since $rx \in L$, $\mathcal{Z}(L) = \emptyset$ by Theorem 1.2.

What happens when the idempotent is minimal?

Theorem 1.8. $\mathcal{Z}(K(\beta G)) = \emptyset$.

Sketch: If $xp \in K(\beta G)$ for some $x \in \beta G$ and an idempotent $p \in K(\beta G)$, then $(xp)q \in \beta Gq$ and $q(xp) \in \beta Gp$ for any other idempotent $q \in K(\beta G)$ with $\beta Gp \cap \beta Gq = \emptyset$.

In fact, in the same way, the centre of each of the left ideal $\beta Gp \cup \beta Gq$ and the right ideal $p\beta G \cup q\beta G$ is empty whenever p and q are not in the same ideal.

SUMMARY:

Let L be a proper left ideal in βG .

- If $L \nsubseteq K(\beta G) \Longrightarrow \mathfrak{Z}(L) = \emptyset$.
- $L \subseteq K(\beta G)$ and $L = \bigcup_{p \in S} \beta Gp$, where $S \subseteq K(\beta G)$ and |S| > 1 $\implies \mathcal{Z}(L) = \emptyset$.
- If $L = \beta G p$ for some minimal idempotent $p \implies ??$.
- If $R = p\beta G$ for some minimal idempotent $p \implies ??$.
- If $M = p\beta Gp$ for some minimal idempotent $p \implies ??$.

It is known that each maximal group in βG , namely $p\beta Gp$ (and so each βGp and $p\beta G$) for p a minimal idempotent contains a free group on 2^c generators. So these are very non-commutative subsemigroups of βG .

(The proof works for discrete commutative semigroups)

Theorem 1.9. Let G be abelian and p be an idempotent in G^* . Let Gp has the topology induced by βG . Then Gp is an extremely disconnected, Hausdorff, non-locally compact semitopological group, and

(J.W. Baker, 1979)
$$\beta(Gp) = \overline{Gp} = (\overline{G})p = (\beta G)p.$$

Proof. That Gp is a group is clear. To prove that Gp is extremely disconnected, let $A \cap Gp$ and $B \cap Gp$ be two disjoint open sets in Gp with A and B open in βG . Define f on G by f(s) = 1 is $sp \in A$, f(sp) = -1 if $sp \in B$, and f(s) = 0 otherwise. Extend f to a continuous function \tilde{f} on βG . Note now that if $x \in A \cap Gp$, then x = xp and $\tilde{f}(x) = 1$, and so $\tilde{f}(x) = 1$ for every $x \in cl_{Gp}(A \cap Gp) = \overline{A} \cap Gp$. Similarly $\tilde{f}(x) = -1$ if $x \in cl_{Gp}(B \cap Gp)$. Therefore, $cl_{Gp}(A \cap Gp) \cap cl_{Gp}(B \cap Gp) = \emptyset$.

M. FILALI

To show that Gp is not locally compact, we claim first that a subset Ep in Gp is closed in βG if and only if E is finite. Suppose otherwise that E is infinite and $C \subseteq E$ be countable. If Ep were closed, we would get

$$Ep = Cp \cup (E \setminus C) = \overline{Cp} \cup \overline{(E \setminus C)p},$$

where Cp and $(E \setminus C)p$ are disjoint by Veech's Theorem (Ellis Theorem since G is discrte). So, arguing as previously, we see that \overline{Cp} and $(\overline{E \setminus C})p$ are also disjoint. Therefore, $\overline{Cp} = Cp$ and $(\overline{E \setminus C})p = (E \setminus C)p$. In particular, Cp is closed in βG . This is not possible since the cardinality of a closed set in βG must be at least 2^c by [GJ76] Gillman and Jersion. 9.12, or see [4, Theorem 3.59], while by Veech's Theorem, Cp is countable.

It is now straightforward that a basic (closed) neighbourhood $\overline{E} \cap Gp$ of p in Gp is not closed in βG and so it cannot be compact (in either βG or Gp). To see this, use the fact that p is an idempotent and pick $F \subseteq G$ with $p \in \overline{F}$ and $Fp \subseteq \overline{E} \cap Gp$. Use Veech's Theorem to see that $\overline{E} \cap Gp = E'p$ for some infinite subset E' in G, and apply the above.

Consider now $\overline{P} \cap Gp$, where \overline{P} is any neighbourhood of p in βG . Pick $Q \subseteq G$ with $p \in \overline{Q}$ and $Qp \subseteq \overline{P}$. Then |Qp| = |Q| by Veech's Theorem (Ellis Theorem since G is discrete) and $Qp \subseteq \overline{P} \cap Gp$.

We claim that Gp is properly contained in G^*p and βG

Baker's argument:

For a given continuous bounded function f on Gp, define g on G by g(s) = f(sp). Then extend g to a continuous function \tilde{g} on βG . The functions \tilde{g} and f agree on Gp since

$$\tilde{g}(sp) = \lim_{\alpha} g(sp_{\alpha}) = \lim_{\alpha} f(sp_{\alpha}p) = f(spp) = f(sp)$$
 for every $s \in G$.

Since every continuous bounded function on Gp extends continuously to $\overline{Gp} = (\overline{G})p = (\beta G)p$, we see that $\beta(Gp)$ and the left ideal $(\beta G)p$ in βG are the same.

A topology on G induced by idempotents in G^*

Let G be an infinite group with identity e, and let p be an idempotent in G^* . We put

$$\tau_p = \{ P_e = P \cup \{ e \} \subseteq G : p \in \overline{P} \}$$

Then (G, τ_p) is a Hausdorff (due to Veech-Ellis Theorem, or apply directly the 3-set lemma) left topological group. We denote (G, τ_p) by G(p). If G is abelian, then G(p) is a semitopological group, but not necessarily a *topological* group.

Proposition 1.10. Let G be discrete with identity e. Let $p \in \beta G$ be an idempotent. Then the map $r_p: s \mapsto sp$ from G(p) onto Gp is a continuous isomorphism.

Proof. We prove the continuity at the identity e. The continuity at any other point in G will follow from $G \subseteq \mathcal{Z}(\beta G)$. Let $P \subseteq G$ such that $p \in \overline{P}$ (i.e., \overline{P} is a neighbourhood of p in βG). Since $p = pp \in \overline{A}$ and the mapping $x \mapsto xp \colon \beta G \to \beta G$ is continuous, pick $Q \subseteq G$ such that $p \in \overline{Q}$ and $\overline{Q}p \subseteq \overline{P}$. Then

$$r_p(Q_e) = Q_e p \subseteq \overline{Q}p \subseteq \overline{P},$$

as wanted.

By Veech's Theorem (see e.g. [?, Theorem 4.8.9]), the mapping $r_p: s \mapsto sp$ is injective. Hence, the mapping r_p is a continuous isomorphism from G(p) onto Gp.

Definition 1.11. An idempotent $p \in G^*$ is

- (i) strongly right maximal when the equation xp = p is satisfied only for x = p in βG .
- (ii) strongly left maximal when the equation px = p is satisfied only for x = p in βG .
 - Strongly right maximal idempotents exist in ZFC [Protasov].
 - Strongly right maximal are not in $K(\beta G)$, so minimal idempotents cannot be right maximal [HS].
 - Minimal idempotents can be left maximal [Zelenyuk, 2014].

Theorem 1.12 (HS, Theorem 9.15 for example). Let G be an abelian discrete group with identity e and let p be an idempotent in G^* . Then TFAE

- (i) τ_p is regular.
- (ii) p is strongly right maximal.
- (iii) G(p) and Gp are isomorphic and homeomorphic.

So here we have G(p) as a semitopological group such that $\beta(G(p))$ identified with the left ideal βGp of βG and

$$\mathcal{Z}(\beta(G(p)) = \mathcal{Z}(\beta Gp) = \emptyset.$$

Let G be abelian and for a subset X of G, let

$$FP(X) = \{\prod_{s \in F} s : F \subseteq X, \text{ finite}\}.$$

It is well known that, if p is an idempotent, then every $P \subseteq G$ with $p \in \overline{P}$, contains a set of the form FP(X) for some infinite subset X of G. However,

we do not normally expect that $p \in \overline{FP(X)}$. So the following definition states itself:

Definition 1.13. Let G be abelian. An element $p \in \beta G$ is strongly summable when for every $P \subseteq G$ with $p \in \overline{P}$, there exists $X \subseteq G$ such that $p \in \overline{FP(X)} \subseteq \overline{P}$.

- Strongly summable elements in βG are idempotents.
- Strongly summable are not in $K(\beta \mathbb{N})$ [HS, Theorem 12.21].
- Their existence is established under Martin's Axiom.
- their existence cannot be established in ZFC.
- Strongly summable \implies [HS, Theorem 12.39 (in $\beta \mathbb{N}$)] Strongly right maximal \implies Right maximal.
- Right maximal \Rightarrow Strongly right maximal [Zelenyuk, 2016].

Theorem 1.14 (Protasov). Let G be a countable Boolean group, and $p \in \beta G$ be strongly summable. Then G(p) is a (maximal) topological group.

Now under MA, we have G(p) as a topological group such that $\beta(G(p))$ identified with the left ideal βGp of βG and

$$\mathcal{Z}(\beta(G(p)) = \mathcal{Z}(\beta G p) = \emptyset.$$

Theorem 1.15 (F-Vedenjuoksu 2010). Let G be a topological group which is not a P-group. The Stone Čech compactification βG of G is a right topological semigroup with $G \subseteq \mathcal{Z}(\beta G)$ if and only if G is pseudocompact.

By Protasov, G(p) is not totally bounded unless p is minimal.

10

2. PART II

G a locally compact group. $G^{\mathcal{LUC}}$ is a compact right topological semigroup.

M. FILALI

3. PART III

G a locally compact group.

 $L^1(G)^{**}$ and $\mathcal{LUC}(G)^*$ are Banach algebras with the first Arens product.

References

- 1. J. W. Baker, personal communication, University of Sheffield, 1979
- 2. L. Gillman and M. Jerison, Rings of continuous functions, Springer-Verlag, New York, 1976.
- 3. Hindman Protasov Strauss, Strongly Summable Ultrafilters on Abelian Groups, Matem. Studii 10 (1998), 121–132.
- 4. Hindman Strauss
- 5. Pym, John S. Compact semigroups with one-sided continuity. The analytical and topological theory of semigroups, 197–217, De Gruyter Exp. Math., 1, de Gruyter, Berlin, 1990
- Zelenyuk, Yevhen (SA-WITW-SM) Almost maximal topologies on groups. (English summary) Fund. Math. 234 (2016), no. 1, 91–100.

MAHMOUD FILALI, E-MAIL: mfilali09@yahoo.com