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Let (A, ‖ · ‖) be a Banach algebra.

We say that ‖ · ‖ is minimal if for any
alternative algebra norm |||·||| on A, there is some C > 0 for which ‖a‖ ≤ C |||a|||
for all a ∈ A.
We say that ‖ · ‖ is maximal if for any alternative algebra norm |||·||| on A,
there is some D > 0 for which D|||a||| ≤ ‖a‖ for all a ∈ A.
Then, (A, ‖ · ‖) has a unique algebra norm if ‖ · ‖ is both minimal and
maximal.
I ‖ · ‖ is maximal on A if and only if all algebra homomorphisms from

(A, ‖ · ‖) into a normed algebra are continuous.
I ‖ · ‖ is minimal on A if and only every injective homomorphism from

(A, ‖ · ‖) into a normed algebra is bounded below.
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Previous Results

I Meyer showed that the Calkin algebras (= B(X )/K(X )) of X = c0 and
X = `p (1 ≤ p <∞) have unique algebra norms.

I Astala and Tylli constructed a Banach space which has a Calkin algebra
without a unique algebra norm.

I Ware, in his PhD thesis, proved that the Calkin algebras of the following
spaces have unique algebra norms:
I Finite direct sums of c0 and `p (1 ≤ p <∞).
I
(⊕

n∈N `np
)
c0

and
(⊕

n∈N `np
)
`q

, (1 ≤ p ≤ ∞), 1 ≤ q <∞.
I James’ space Jp for 1 < p <∞.

He also generalised Meyer’s result by proving that every quotient of B(X )
by one of its closed ideals has a unique algebra norm for X = c0(Γ) and
X = `p(Γ), (1 ≤ p <∞), Γ uncountable.

I Johnson, Phillips, and Schechtman proved that for (1 < p <∞),
Lp([0, 1]) has a Calkin algebra with a unique norm, but there is a closed
ideal J of B(Lp([0, 1])) for which B(Lp([0, 1]))/J does not have a unique
algebra norm.
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New results

For the following Banach spaces X , a quotient of B(X ) by any one of its closed
ideals has a unique algebra norm:

I X =
(⊕

n∈N `
n
2
)
c0

and X =
(⊕

n∈N `
n
2
)
`1
,

I X =
(⊕

n∈N `
n
2
)
c0
⊕ c0(Γ) and X =

(⊕
n∈N `

n
2
)
`1
⊕ `1(Γ), for Γ

uncountable,
I X = C0(KA), where KA is Koszmider’s Mröwka space for which X has few

operators.

For each of these spaces, we know the entire lattice of closed ideals of B(X ).
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Minimality and Maximality

I We say that A is incompressible if every continuous injective algebra
homomorphism from A into another Banach algebra, is bounded below.

I It is easy to see then that if A has a maximal algebra norm, then
incompressibility and norm minimality are equivalent properties.

I For the Banach spaces X which we examine, B(X ) has a maximal algebra
norm, and this property easily passes to its quotients. Our job is therefore
to show that they are also minimal, and we do this by proving that these
quotient algebras are incompressible.

I We in fact prove the stronger condition of uniform incompressibility : A is
uniformly incompressible if there exists f : (0,∞)→ (0,∞) such that for
any Banach algebra B, for all a ∈ A with ‖a‖ = 1, and for every
continuous, injective algebra homomorphism φ : A → B, we have that
‖φ(a)‖ ≥ f (‖φ‖).

This notion is helpful to us because we have access to the following method,
courtesy of Johnson, Phillips, and Schechtman:
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A Uniform Incompressibility Method

I Let (A, ‖ · ‖) be a Banach algebra. Suppose that there is a nonzero
idempotent a ∈ A and a constant M ∈ (0,∞) such that for each
norm-one x ∈ A, there exist b, c ∈ A for which ‖b‖‖c‖ ≤ M and such
that a = bxc. Then A is uniformly incompressible.

Proof.
Let φ be a continuous, injective Banach algebra homomorphsism with domain
A.We will find a lower bound of φ in terms of ‖φ‖.
Let M > 0 and a ∈ A a nonzero idempotent be such that for every x ∈ A with
‖x‖ = 1, we have b, c ∈ A with ‖b‖‖c‖ ≤ M and a = bxc.
Then, for each unit vector x ∈ A, we have

1 ≤ ‖φ(a)‖ ≤ ‖φ(b)‖‖φ(x)‖‖φ(c)‖ ≤ ‖φ‖2‖b‖‖c‖‖φ(x)‖ ≤ M‖φ‖2‖φ(x)‖ .

So, a lower bound of φ is (M‖φ‖2)−1.
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Recall that the Banach spaces X which we chose to examine have the lattice of
closed ideals of B(X ) fully known.
Factorisations of some idempotent through all norm one elements of quotient
algebras are very common in classifying closed ideal lattices of bounded
operators.For example, due to Laustsen, Loy, and Read, the lattice of closed
ideals of B(X ) for X =

(⊕
n∈N `

n
2
)
c0

is:

{0} ( K(X ) ( Gc0(X ) ( B(X ) .

One step in proving this ideal classification was to show that
∀T ∈ B(X ) \ Gc0(X ), there are A,B such that IX = ATB.
Our job is then for ‖T‖q = 1, to calculate an upper bound on the norms of A
and B.
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Quotients of B(X ) for X =
(⊕

n∈N `n2
)
c0

The lattice of closed ideals of B(X ) for X =
(⊕

n∈N `
n
2
)
c0

is:

{0} ( K(X ) ( Gc0(X ) ( B(X ) .

I By automatic continuity of homomorphisms, we have that each of the
quotients of B(X ) by its closed ideals have maximal algebra norms.

I The Eidelheit-Yood Lemma tells us that for any Banach space X , we have
that B(X )(= B(X )/{0}) has a minimal algebra norm.

I Ware showed that Calkin algebra of X has a unique algebra norm.
I B(X )/B(X ) = {0} has a unique algebra norm, trivially.
I It remains to be proved that B(X )/Gc0(X ) has a minimal algebra norm.

We prove this via uniform incompressibility.
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Quotients of B(X ) for X =
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n∈N `n2
)
c0

For n ∈ N, H1, . . . ,Hn Hilbert spaces, E a Banach space, and ε > 0, let
T ∈ B(H1 ⊕ · · · ⊕ Hn;E). Define the index mε(T ) as:

mε(T ) := sup{m ∈ N0 : ‖T (PH1
G⊥
1
⊕ PH2

G⊥
2
· · · ⊕ PHn

G⊥
n

)‖ > ε

for every subspace Gj ⊆ Hj with dim(Gj) ≤ m ∀j ∈ {1, . . . , n}} .

In words, mε(T ) is the largest number m of dimensions, such that if you
remove m dimensions from each of the Hilbert spaces in the domain of T , you
are still left with an operator with norm bigger than ε.
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I Expressing each T ∈ B(X ) as a matrix (Ti,j)i,j∈N, where Ti,j : `j2 → `i2, we
can approximate T via a compact perturbation with an operator which has
a matrix of finitely supported rows and columns.

I Letting Qn : X → `n2 denote the standard projection, and for T ∈ B(X ) an
operator of finite rows and columns, we can naturally define mε(QnT ) by
simply ignoring the Hilbert spaces in the domain of T on which QnT acts
trivially.

I From Laustsen, Loy, Read, we have that if ε satisfies
sup{mε(QnT ) : n ∈ N} =∞, then there are S ,R ∈ B(X ) for which
‖S‖‖R‖ < ε−1, and STR = IX .

I We showed that if T ∈ B(X ) \ Gc0(X ), then for all ε ∈ (0, ‖T‖q), we have
that sup{mε(QnT ) : n ∈ N} =∞. It follows that X is uniformly
incompressible.

A similar method also works to prove uniqueness of norm of B(X ∗)/G`1(X ∗).
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Quotients of B(X ) for X = E ⊕ c0(Γ), for E =
(⊕

n∈N `n2
)
c0

Found by Niels Laustsen and myself, the lattice of closed ideals of

Jℵ2(X ) Jℵ3(X ) Jℵ4(X ) . . . JΓ+ (X )

{0} K(X ) Gc0(X ) B(X )

Kℵ1(X ) Kℵ2(X ) Kℵ3(X ) . . . KΓ(X )

I Jκ(X ) =

(
Gc0(E) B(c0(Γ);E)
B(E ; c0(Γ)) Kκ(c0(Γ))

)
, with Jℵ1(X ) = Gc0(X )

I Kκ(X ) =

(
B(E) B(c0(Γ);E)

B(E ; c0(Γ)) Kκ(c0(Γ))

)
for κ ≥ ℵ1.
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Quotients B(X ) for X = C (K ), K scattered, locally compact, Hausdorff

I A topological space K is scattered if every nonempty subset of K contains
an isolated point.

I Recently, Niels and I proved the following result:
I Let K be a scattered, locally compact, Hausdorff space. Let X = C(K).

Suppose that there exists some δ > 0 such that for all T ∈ B(X ) \ K(X )
with ‖T +K(X )‖ = 1, there is an infinite dimensional subspace E of
C(K) on which T is bounded below by δ. Then the Calkin algebra of X is
uniformly incompressible.
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I Discovered by Koszmider, there exists a scattered, locally compact,
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I We proved that the Calkin algebra of X has a unique algebra norm, via the
method on the previous slide: we proved that there exists δ > 0 such that,
if T ∈ B(X ) : ‖T‖q = 1, then T is bounded below by δ on a copy of c0.

I Question: Does the Calkin algebra of C [0, ωω) have a unique algebra
norm?
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Thank you for listening!


