r-Fredholm theory in general ordered Banach algebras

Ronalda Benjamin

Stellenbosch University

Banach algebras and Applications Conference Granada 18 - 23 July 2022

(This is joint work with Sonja Mouton)

• Banach algebra : complex unital Banach algebra

- Banach algebra : complex unital Banach algebra
- A^{-1} : the set of invertible elements of a Banach algebra A

- Banach algebra : complex unital Banach algebra
- A^{-1} : the set of invertible elements of a Banach algebra A

$$a \in A$$

- Banach algebra : complex unital Banach algebra
- A^{-1} : the set of invertible elements of a Banach algebra A

$a \in A$

•
$$\sigma(a, A) = \{\lambda \in \mathbb{C} : \lambda \mathbf{1} - a \notin A^{-1}\}$$
: the spectrum of a in A

- 3 ► ►

- Banach algebra : complex unital Banach algebra
- A^{-1} : the set of invertible elements of a Banach algebra A

$$a \in A$$

- Banach algebra : complex unital Banach algebra
- A^{-1} : the set of invertible elements of a Banach algebra A

$$a \in A$$

σ(a, A) = {λ ∈ C : λ1 − a ∉ A⁻¹} : the spectrum of a in A
r(a, A) := sup_{λ∈σ(a,A)} |λ|: spectral radius of a in A

• $p(a, \lambda)$: spectral idempotent of $a \in A$ corresponding to $\lambda \in iso \sigma(a)$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

< □ > < □ > < □ > < □ > < □ > < □ >

• $N(T) = \{a \in A : Ta = 0\}$: the null space of T

- $N(T) = \{a \in A : Ta = 0\}$: the null space of T
- *T* has the Riesz property whenever the spectrum of each element of N(*T*) is either finite or a sequence converging to zero

- $N(T) = \{a \in A : Ta = 0\}$: the null space of T
- *T* has the Riesz property whenever the spectrum of each element of N(*T*) is either finite or a sequence converging to zero

1

- $N(T) = \{a \in A : Ta = 0\}$: the null space of T
- *T* has the Riesz property whenever the spectrum of each element of N(*T*) is either finite or a sequence converging to zero

- $N(T) = \{a \in A : Ta = 0\}$: the null space of T
- *T* has the Riesz property whenever the spectrum of each element of N(*T*) is either finite or a sequence converging to zero

$$\mathbb{Q}$$

acc $\sigma(a,A)\subseteq \{0\}$ for all $a\in \mathsf{N}(T)$

T has the strong Riesz property whenever σ(a) ⊆ ησ(Ta) ∪ iso σ(a) for all a ∈ A.

- $N(T) = \{a \in A : Ta = 0\}$: the null space of T
- *T* has the Riesz property whenever the spectrum of each element of N(*T*) is either finite or a sequence converging to zero

$$\$$
 acc $\sigma(a,A)\subseteq \{0\}$ for all $a\in \mathsf{N}(\mathcal{T})$

T has the strong Riesz property whenever σ(a) ⊆ ησ(Ta) ∪ iso σ(a) for all a ∈ A.

- $N(T) = \{a \in A : Ta = 0\}$: the null space of T
- *T* has the Riesz property whenever the spectrum of each element of N(*T*) is either finite or a sequence converging to zero

$$\$$
 acc $\sigma(a,A)\subseteq \{0\}$ for all $a\in {\sf N}(T)$

T has the strong Riesz property whenever σ(a) ⊆ ησ(Ta) ∪ iso σ(a) for all a ∈ A.

- $N(T) = \{a \in A : Ta = 0\}$: the null space of T
- *T* has the Riesz property whenever the spectrum of each element of N(*T*) is either finite or a sequence converging to zero

- $N(T) = \{a \in A : Ta = 0\}$: the null space of T
- T has the Riesz property whenever the spectrum of each element of N(T) is either finite or a sequence converging to zero

• T has the strong Riesz property whenever $\sigma(a) \subseteq \eta \sigma(Ta) \cup \text{iso } \sigma(a)$ $(- \Lambda) \subset n\sigma(Ta, B)$ for all $a \in A$.

acc
$$\sigma(a, A) \subseteq \eta \sigma(I)$$

strong Riesz \implies Riesz

• ηK : Connected hull of a compact set $K \subseteq \mathbb{C}$ (the complement of the unique unbounded component of $\mathbb{C} \setminus K$)

- $N(T) = \{a \in A : Ta = 0\}$: the null space of T
- *T* has the Riesz property whenever the spectrum of each element of N(*T*) is either finite or a sequence converging to zero

T has the strong Riesz property whenever σ(a) ⊆ ησ(Ta) ∪ iso σ(a) for all a ∈ A.

$$\operatorname{acc} \sigma(a, A) \subseteq \eta \sigma(Ta, B)$$

strong Riesz \Longrightarrow Riesz

strong Riesz \Longleftarrow Riesz and closed range

- $N(T) = \{a \in A : Ta = 0\}$: the null space of T
- *T* has the Riesz property whenever the spectrum of each element of N(*T*) is either finite or a sequence converging to zero

T has the strong Riesz property whenever σ(a) ⊆ ησ(Ta) ∪ iso σ(a) for all a ∈ A.

$$\mathsf{acc} \ \sigma(\mathsf{a},\mathsf{A}) \subseteq \eta \sigma(\mathsf{\mathit{Ta}},\mathsf{B})$$

strong Riesz \Longrightarrow Riesz

strong Riesz \Longleftarrow Riesz and closed range

$$\pi:\mathcal{L}(X)
ightarrow \mathcal{L}(X)/\mathcal{K}(X)$$

Fredholm theory in Banach algebras and some motivation

2

æ

<ロト < 四ト < 三ト < 三ト

Let $T : A \rightarrow B$ be a homomorphism. W.r.t. T, an element $a \in A$ is called:

- (日)

∃ ► < ∃ ►

Let $T : A \rightarrow B$ be a homomorphism. W.r.t. T, an element $a \in A$ is called:

• Fredholm if $Ta \in B^{-1}$,

э

3 K 4 3 K

< 4[™] >

Let $T : A \rightarrow B$ be a homomorphism. W.r.t. T, an element $a \in A$ is called:

- Fredholm if $Ta \in B^{-1}$,
- Weyl if $a \in A^{-1} + N(T)$,

< 4[™] ▶

Let $T : A \rightarrow B$ be a homomorphism. W.r.t. T, an element $a \in A$ is called:

- Fredholm if $Ta \in B^{-1}$,
- Weyl if $a \in A^{-1} + N(T)$,
- Browder if $a \in A^{-1} \in N(T)$.

Let $T : A \rightarrow B$ be a homomorphism. W.r.t. T, an element $a \in A$ is called:

- Fredholm if $Ta \in B^{-1}$,
- Weyl if $a \in A^{-1} + N(T)$,
- Browder if $a \in A^{-1} \in \mathcal{N}(T)$.

Evidently,

 $\mathsf{Browder} \Rightarrow \mathsf{Weyl}$

∃ ► < ∃ ►

Let $T : A \rightarrow B$ be a homomorphism. W.r.t. T, an element $a \in A$ is called:

- Fredholm if $Ta \in B^{-1}$,
- Weyl if $a \in A^{-1} + N(T)$,
- Browder if $a \in A^{-1} \in \mathcal{N}(T)$.

Evidently,

 $\mathsf{invertible} \Rightarrow \mathsf{Browder} \Rightarrow \mathsf{Weyl} \Rightarrow \mathsf{Fredholm}$

Let $T : A \rightarrow B$ be a homomorphism. W.r.t. T, an element $a \in A$ is called:

- Fredholm if $Ta \in B^{-1}$,
- Weyl if $a \in A^{-1} + N(T)$,
- Browder if $a \in A^{-1} \in \mathcal{N}(T)$.

Evidently,

 $\mathsf{invertible} \Rightarrow \mathsf{Browder} \Rightarrow \mathsf{Weyl} \Rightarrow \mathsf{Fredholm}$

 $a \in A$ almost invertible: $0 \notin \text{acc } \sigma(a)$

Let $T : A \rightarrow B$ be a homomorphism. W.r.t. T, an element $a \in A$ is called:

- Fredholm if $Ta \in B^{-1}$,
- Weyl if $a \in A^{-1} + N(T)$,
- Browder if $a \in A^{-1} \in \mathcal{N}(T)$.

Evidently,

 $\mathsf{invertible} \Rightarrow \mathsf{Browder} \Rightarrow \mathsf{Weyl} \Rightarrow \mathsf{Fredholm}$

 $a \in A$ almost invertible: $0 \notin \text{acc } \sigma(a)$

Clearly, invertible \Rightarrow almost invertible

Let $T : A \rightarrow B$ be a homomorphism. W.r.t. T, an element $a \in A$ is called:

- Fredholm if $Ta \in B^{-1}$,
- Weyl if $a \in A^{-1} + N(T)$,
- Browder if $a \in A^{-1} \in \mathcal{N}(T)$.

Evidently,

```
\mathsf{invertible} \Rightarrow \mathsf{Browder} \Rightarrow \mathsf{Weyl} \Rightarrow \mathsf{Fredholm}
```

 $a \in A$ almost invertible: $0 \notin \text{acc } \sigma(a)$

Clearly, invertible \Rightarrow almost invertible Fredholm

Let $T : A \rightarrow B$ be a homomorphism. W.r.t. T, an element $a \in A$ is called:

- Fredholm if $Ta \in B^{-1}$,
- Weyl if $a \in A^{-1} + N(T)$,
- Browder if $a \in A^{-1} \in \mathcal{N}(T)$.

Evidently,

 $\mathsf{invertible} \Rightarrow \mathsf{Browder} \Rightarrow \mathsf{Weyl} \Rightarrow \mathsf{Fredholm}$

 $a \in A$ almost invertible: $0 \notin \text{acc } \sigma(a)$

Clearly, invertible \Rightarrow almost invertible Fredholm \Rightarrow Browder

Let $T : A \rightarrow B$ be a homomorphism. W.r.t. T, an element $a \in A$ is called:

- Fredholm if $Ta \in B^{-1}$,
- Weyl if $a \in A^{-1} + N(T)$,
- Browder if $a \in A^{-1} \in N(T)$.

Evidently,

```
\mathsf{invertible} \Rightarrow \mathsf{Browder} \Rightarrow \mathsf{Weyl} \Rightarrow \mathsf{Fredholm}
```

 $a \in A$ almost invertible: $0 \notin \text{acc } \sigma(a)$

 $\mathsf{Clearly,\ invertible}\ \Rightarrow \mathsf{almost\ invertible}\ \mathsf{Fredholm}\ \Rightarrow\ \mathsf{Browder}$

Theorem (Harte ,1982)

almost invertble Fredholm = Browder

 $\label{eq:tau} \begin{array}{l} \text{if and only if} \\ \mathcal{T}: \mathcal{A} \to \mathcal{B} \text{ has the Riesz property} \end{array}$

э

< □ > < □ > < □ > < □ > < □ > < □ >

Benjamin

æ

< □ > < □ > < □ > < □ > < □ >

Let $T : A \rightarrow B$ be a homomorphism and $a \in A$. W.r.t T, the

Let $T : A \rightarrow B$ be a homomorphism and $a \in A$. W.r.t T, the

• Fredholm spectrum of a is given by $\tau_T(a) := \{\lambda \in \mathbb{C} : \lambda \mathbf{1} - a \notin \mathcal{F}_T\},\$

Let $T : A \rightarrow B$ be a homomorphism and $a \in A$. W.r.t T, the

- Fredholm spectrum of *a* is given by $\tau_T(a) := \{\lambda \in \mathbb{C} : \lambda \mathbf{1} a \notin \mathcal{F}_T\},\$
- Weyl spectrum of a is given by $\omega_T(a) = \{\lambda \in \mathbb{C} : \lambda \mathbf{1} a \notin \mathcal{W}_T\},\$
Let $T : A \rightarrow B$ be a homomorphism and $a \in A$. W.r.t T, the

- Fredholm spectrum of a is given by $\tau_T(a) := \{\lambda \in \mathbb{C} : \lambda \mathbf{1} a \notin \mathcal{F}_T\},\$
- Weyl spectrum of a is given by $\omega_T(a) = \{\lambda \in \mathbb{C} : \lambda \mathbf{1} a \notin \mathcal{W}_T\},\$
- Browder spectrum of a is given by $\beta_T(a) = \{\lambda \in \mathbb{C} : \lambda \mathbf{1} a \notin \mathcal{B}_T\}.$

Let $T : A \rightarrow B$ be a homomorphism and $a \in A$. W.r.t T, the

- Fredholm spectrum of *a* is given by $\tau_T(a) := \{\lambda \in \mathbb{C} : \lambda \mathbf{1} a \notin \mathcal{F}_T\},\$
- Weyl spectrum of a is given by $\omega_T(a) = \{\lambda \in \mathbb{C} : \lambda \mathbf{1} a \notin \mathcal{W}_T\},\$
- Browder spectrum of *a* is given by $\beta_T(a) = \{\lambda \in \mathbb{C} : \lambda \mathbf{1} a \notin B_T\}.$

Recall: invertible \Rightarrow Browder \Rightarrow Weyl \Rightarrow Fredholm

Let $T : A \rightarrow B$ be a homomorphism and $a \in A$. W.r.t T, the

- Fredholm spectrum of a is given by $\tau_T(a) := \{\lambda \in \mathbb{C} : \lambda \mathbf{1} a \notin \mathcal{F}_T\},\$
- Weyl spectrum of a is given by $\omega_T(a) = \{\lambda \in \mathbb{C} : \lambda \mathbf{1} a \notin \mathcal{W}_T\},\$
- Browder spectrum of *a* is given by $\beta_T(a) = \{\lambda \in \mathbb{C} : \lambda \mathbf{1} a \notin \mathcal{B}_T\}.$

Recall: invertible \Rightarrow Browder \Rightarrow Weyl \Rightarrow Fredholm Now:

Let $T : A \rightarrow B$ be a homomorphism and $a \in A$. W.r.t T, the

- Fredholm spectrum of a is given by $\tau_T(a) := \{\lambda \in \mathbb{C} : \lambda \mathbf{1} a \notin \mathcal{F}_T\},\$
- Weyl spectrum of a is given by $\omega_T(a) = \{\lambda \in \mathbb{C} : \lambda \mathbf{1} a \notin \mathcal{W}_T\},\$
- Browder spectrum of *a* is given by $\beta_T(a) = \{\lambda \in \mathbb{C} : \lambda \mathbf{1} a \notin \mathcal{B}_T\}.$

Recall: invertible \Rightarrow Browder \Rightarrow Weyl \Rightarrow Fredholm Now:

 $\tau_T(a) \subseteq \omega_T(a) \subseteq \beta_T(a) \subseteq \sigma(a).$

Let $T : A \rightarrow B$ be a homomorphism and $a \in A$. W.r.t T, the

- Fredholm spectrum of a is given by $\tau_T(a) := \{\lambda \in \mathbb{C} : \lambda \mathbf{1} a \notin \mathcal{F}_T\},\$
- Weyl spectrum of a is given by $\omega_T(a) = \{\lambda \in \mathbb{C} : \lambda \mathbf{1} a \notin \mathcal{W}_T\},\$
- Browder spectrum of *a* is given by $\beta_T(a) = \{\lambda \in \mathbb{C} : \lambda \mathbf{1} a \notin \mathcal{B}_T\}.$

Recall: invertible \Rightarrow Browder \Rightarrow Weyl \Rightarrow Fredholm Now:

$$au_T(a) \subseteq \omega_T(a) \subseteq \beta_T(a) \subseteq \sigma(a).$$

 $\parallel \sigma(Ta, B)$

Let $T : A \rightarrow B$ be a homomorphism and $a \in A$. W.r.t T, the

- Fredholm spectrum of a is given by $\tau_T(a) := \{\lambda \in \mathbb{C} : \lambda \mathbf{1} a \notin \mathcal{F}_T\},\$
- Weyl spectrum of a is given by $\omega_T(a) = \{\lambda \in \mathbb{C} : \lambda \mathbf{1} a \notin \mathcal{W}_T\},\$
- Browder spectrum of *a* is given by $\beta_T(a) = \{\lambda \in \mathbb{C} : \lambda \mathbf{1} a \notin \mathcal{B}_T\}.$

Recall: invertible \Rightarrow Browder \Rightarrow Weyl \Rightarrow Fredholm Now: $\bigcap \sigma(a+c)$

 $\tau_{T}(a) \subseteq \omega_{T}(a) \subseteq \beta_{T}(a) \subseteq \sigma(a).$ $\| \sigma(Ta, B)$

Let $T : A \rightarrow B$ be a homomorphism and $a \in A$. W.r.t T, the

- Fredholm spectrum of a is given by $\tau_T(a) := \{\lambda \in \mathbb{C} : \lambda \mathbf{1} a \notin \mathcal{F}_T\},\$
- Weyl spectrum of a is given by $\omega_T(a) = \{\lambda \in \mathbb{C} : \lambda \mathbf{1} a \notin \mathcal{W}_T\},\$
- Browder spectrum of *a* is given by $\beta_T(a) = \{\lambda \in \mathbb{C} : \lambda \mathbf{1} a \notin \mathcal{B}_T\}.$

Recall: invertible \Rightarrow Browder \Rightarrow Weyl \Rightarrow Fredholm Now: $\bigcap \sigma(a+c)$

Let $T : A \rightarrow B$ be a homomorphism and $a \in A$. W.r.t T, the

- Fredholm spectrum of a is given by $\tau_T(a) := \{\lambda \in \mathbb{C} : \lambda \mathbf{1} a \notin \mathcal{F}_T\},\$
- Weyl spectrum of a is given by $\omega_T(a) = \{\lambda \in \mathbb{C} : \lambda \mathbf{1} a \notin \mathcal{W}_T\},\$
- Browder spectrum of *a* is given by $\beta_T(a) = \{\lambda \in \mathbb{C} : \lambda \mathbf{1} a \notin \mathcal{B}_T\}.$

Recall: invertible \Rightarrow Browder \Rightarrow Weyl \Rightarrow Fredholm Now: $\bigcap \sigma(a+c)$

 $\tau_{T}(a) \subseteq \omega_{T}(a) \subseteq \beta_{T}(a) \subseteq \sigma(a).$ $\| \sigma(Ta, B) \qquad \qquad \bigcap_{\substack{c \in \mathbb{N}(T) \\ a \subset = ca}} \sigma(a + c)$

Theorem (R. Harte, S. Živković-Zlatanović, 2014)

If $T: A \rightarrow B$ has the strong Riesz property, then

$$\eta \sigma(Ta) = \eta \omega_T(a) = \eta \beta_T(a)$$
 for all $a \in A$.

Theorem (R. Harte, S. Živković-Zlatanović, 2014)

If $T: A \rightarrow B$ has the strong Riesz property, then

$$\eta \sigma(Ta) = \eta \omega_T(a) = \eta eta_T(a)$$
 for all $a \in A$.

In particular, $r(a) \notin \sigma(Ta) \iff r(a) \notin \omega_T(a) \iff r(a) \notin \beta_T(a)$.

Theorem (R. Harte, S. Živković-Zlatanović, 2014)

If $T: A \rightarrow B$ has the strong Riesz property, then

$$\eta \sigma(Ta) = \eta \omega_T(a) = \eta \beta_T(a)$$
 for all $a \in A$.

In particular, $r(a) \notin \sigma(Ta) \iff r(a) \notin \omega_T(a) \iff r(a) \notin \beta_T(a)$.

Applied to
$$\pi:\mathcal{L}(X)
ightarrow \mathcal{L}(X)/\mathcal{K}(X)$$

Theorem (R. Harte, S. Živković-Zlatanović, 2014)

If $T: A \rightarrow B$ has the strong Riesz property, then

$$\eta \sigma(Ta) = \eta \omega_T(a) = \eta \beta_T(a)$$
 for all $a \in A$.

In particular, $r(a) \notin \sigma(Ta) \iff r(a) \notin \omega_T(a) \iff r(a) \notin \beta_T(a)$.

Applied to
$$\pi:\mathcal{L}(X)
ightarrow\mathcal{L}(X)/\mathcal{K}(X)$$

$$\eta\sigma(\pi T) = \eta\omega_{\pi}(T) = \eta\beta_{\pi}(T)$$
 for all $T \in \mathcal{L}(X)$.

In particular, $r(T) \notin \sigma(\pi T) \iff r(T) \notin \omega_{\pi}(T) \iff r(T) \notin \beta_{\pi}(T)$.

Theorem (R. Harte, S. Živković-Zlatanović, 2014)

If $\mathcal{T}: \mathcal{A} \to \mathcal{B}$ has the strong Riesz property, then

$$\eta \sigma(Ta) = \eta \omega_T(a) = \eta \beta_T(a)$$
 for all $a \in A$.

In particular, $r(a) \notin \sigma(Ta) \iff r(a) \notin \omega_T(a) \iff r(a) \notin \beta_T(a)$.

Applied to
$$\pi:\mathcal{L}(X)
ightarrow\mathcal{L}(X)/\mathcal{K}(X)$$

$$\eta \sigma(\pi T) = \eta \omega_{\pi}(T) = \eta \beta_{\pi}(T)$$
 for all $T \in \mathcal{L}(X)$.

In particular, $r(T) \notin \sigma(\pi T) \iff r(T) \notin \omega_{\pi}(T) \iff r(T) \notin \beta_{\pi}(T)$.

Recall for
$$T \in \mathcal{L}(X)$$
: $\bigcap_{S \in \mathcal{K}(X)} \sigma(T+S)$

Theorem (R. Harte, S. Živković-Zlatanović, 2014)

If $\mathcal{T}: \mathcal{A} \to \mathcal{B}$ has the strong Riesz property, then

$$\eta \sigma(Ta) = \eta \omega_T(a) = \eta \beta_T(a)$$
 for all $a \in A$.

In particular, $r(a) \notin \sigma(Ta) \iff r(a) \notin \omega_T(a) \iff r(a) \notin \beta_T(a)$.

Applied to
$$\pi:\mathcal{L}(X)
ightarrow\mathcal{L}(X)/\mathcal{K}(X)$$

$$\eta \sigma(\pi T) = \eta \omega_{\pi}(T) = \eta \beta_{\pi}(T)$$
 for all $T \in \mathcal{L}(X)$.

In particular, $r(T) \notin \sigma(\pi T) \iff r(T) \notin \omega_{\pi}(T) \iff r(T) \notin \beta_{\pi}(T)$.

Recall for
$$T \in \mathcal{L}(X)$$
: $\bigcap_{S \in \mathcal{K}(X)} \sigma(T+S)$

Now for $T \in \mathcal{L}(E)$: $\bigcap_{S \in K \cap \mathcal{K}(E)} \sigma(T + S)$, *K*: positive operators on *E*

For $T \in K$, does $r(T) \notin \sigma(\pi T)$ imply $r(T) \notin \bigcap_{S \in K \cap \mathcal{K}(E)} \sigma(T+S)$?

э

< □ > < □ > < □ > < □ > < □ > < □ >

For $T \in K$, does $r(T) \notin \sigma(\pi T)$ imply $r(T) \notin \bigcap_{S \in K \cap \mathcal{K}(E)} \sigma(T+S)$?

YES!

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

For $T \in K$, does $r(T) \notin \sigma(\pi T)$ imply $r(T) \notin \bigcap_{S \in K \cap \mathcal{K}(E)} \sigma(T+S)$?

YES!

Theorem (Alekhno, 2009)

For $T \in \mathcal{L}(E)$, $\omega_{\pi}(T) = \bigcap_{S \in K \cap \mathcal{K}(E)} \sigma(T+S).$

э

(日)

For $T \in K$, does $r(T) \notin \sigma(\pi T)$ imply $r(T) \notin \bigcap_{S \in K \cap \mathcal{K}(E)} \sigma(T+S)$?

YES!

Theorem (Alekhno, 2009)

For $T \in \mathcal{L}(E)$, $\omega_{\pi}(T) = \bigcap_{S \in \mathcal{K} \cap \mathcal{K}(E)} \sigma(T+S).$

•
$$\mathcal{L}(E)^{-1} + \mathcal{K}(E) = \mathcal{L}(E)^{-1} + \mathcal{F}(E)$$

э

(日)

For $T \in K$, does $r(T) \notin \sigma(\pi T)$ imply $r(T) \notin \bigcap_{S \in K \cap \mathcal{K}(E)} \sigma(T+S)$?

YES!

Theorem (Alekhno, 2009)

For $T \in \mathcal{L}(E)$, $\omega_{\pi}(T) = \bigcap_{S \in K \cap \mathcal{K}(E)} \sigma(T+S).$

• $\mathcal{L}(E)^{-1} + \mathcal{K}(E) = \mathcal{L}(E)^{-1} + \mathcal{F}(E)$ • $\mathcal{F}(E) \subseteq \operatorname{span}(K \cap \mathcal{K}(E))$

э

< ロト < 同ト < ヨト < ヨト -

For $T \in K$, does $r(T) \notin \sigma(\pi T)$ imply $r(T) \notin \bigcap_{S \in K \cap \mathcal{K}(E)} \sigma(T+S)$?

YES!

Theorem (Alekhno, 2009)

For $T \in \mathcal{L}(E)$, $\omega_{\pi}(T) = \bigcap_{S \in K \cap \mathcal{K}(E)} \sigma(T + S).$

•
$$\mathcal{L}(E)^{-1} + \mathcal{K}(E) = \mathcal{L}(E)^{-1} + \mathcal{F}(E)$$

• $\mathcal{F}(E) \subseteq \operatorname{span}(K \cap \mathcal{K}(E))$

Natural generalization

Ordered Banach algebra $(A, C), a \in A$: $\bigcap_{c \in C \cap N(T)} \sigma(a + c)$

Benjamin

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$\omega_{\mathcal{T}}(a) := \bigcap_{c \in \mathbb{N}(\mathcal{T})} \sigma(a+c) \subsetneq \bigcap_{c \in C \cap \mathbb{N}(\mathcal{T})} \sigma(a+c)$$

э

글 🕨 🖌 글

< 4[™] >

$$\omega_{\mathcal{T}}(a) := \bigcap_{c \in \mathcal{N}(\mathcal{T})} \sigma(a+c) \subsetneq \bigcap_{c \in C \cap \mathcal{N}(\mathcal{T})} \sigma(a+c)$$

Example $(C(K, \mathbb{C}), C)$; $C := \{f \in C(K) : f(x) \in \mathbb{R}^+ \text{ for all } x \in K\}.)$

A B b A B b

$$\omega_{\mathcal{T}}(a) := \bigcap_{c \in \mathbb{N}(\mathcal{T})} \sigma(a+c) \subsetneq \bigcap_{c \in C \cap \mathbb{N}(\mathcal{T})} \sigma(a+c)$$

Example $(C(K, \mathbb{C}), C)$; $C := \{f \in C(K) : f(x) \in \mathbb{R}^+ \text{ for all } x \in K\}$.)

Let K := [0,1] and $T : C(K, \mathbb{C}) \to C(K, \mathbb{C})$ be the homomorphism induced by composition with the unit function **1**; i.e.

 $Tf = f \circ \mathbf{1}$ for all $f \in C(K)$.

Consider $g \in C(K)$ defined by g(z) = -z for all $z \in K$. Then $\omega_T(g) = \{-1\}$ and $\bigcap_{c \in C \cap \mathbb{N}(T)} \sigma(a + c) = [-1, 0].$

$$\omega_{\mathcal{T}}(a) := \bigcap_{c \in \mathbb{N}(\mathcal{T})} \sigma(a+c) \subsetneq \bigcap_{c \in C \cap \mathbb{N}(\mathcal{T})} \sigma(a+c) = \omega_{\mathcal{T}}^+(a)$$

Example $(C(K, \mathbb{C}), C)$; $C := \{f \in C(K) : f(x) \in \mathbb{R}^+ \text{ for all } x \in K\}$.)

Let K := [0,1] and $T : C(K, \mathbb{C}) \to C(K, \mathbb{C})$ be the homomorphism induced by composition with the unit function **1**; i.e.

 $Tf = f \circ \mathbf{1}$ for all $f \in C(K)$.

Consider $g \in C(K)$ defined by g(z) = -z for all $z \in K$. Then $\omega_T(g) = \{-1\}$ and $\bigcap_{c \in C \cap \mathbb{N}(T)} \sigma(a + c) = [-1, 0].$

$$\omega_{\mathcal{T}}(a) := \bigcap_{c \in \mathbb{N}(\mathcal{T})} \sigma(a+c) \subsetneq \bigcap_{c \in C \cap \mathbb{N}(\mathcal{T})} \sigma(a+c) = \omega_{\mathcal{T}}^+(a)$$

Example $(C(K, \mathbb{C}), C)$; $C := \{f \in C(K) : f(x) \in \mathbb{R}^+ \text{ for all } x \in K\}$.)

Let K := [0,1] and $T : C(K, \mathbb{C}) \to C(K, \mathbb{C})$ be the homomorphism induced by composition with the unit function **1**; i.e.

 $Tf = f \circ \mathbf{1}$ for all $f \in C(K)$.

Consider $g \in C(K)$ defined by g(z) = -z for all $z \in K$. Then $\omega_T(g) = \{-1\}$ and $\bigcap_{c \in C \cap \mathbb{N}(T)} \sigma(a + c) = [-1, 0]$.

Question: Let (A, C) be an ordered Banach algebra and $T : A \to B$ a homomorphism with the strong Riesz property. If $a \in C$, does $r(a) \notin \sigma(Ta, B)$ imply that $r(a) \notin \omega_T^+(a)$?

Benjamin

$$\omega_{\mathcal{T}}(a) := \bigcap_{c \in \mathbb{N}(\mathcal{T})} \sigma(a+c) \subsetneq \bigcap_{c \in C \cap \mathbb{N}(\mathcal{T})} \sigma(a+c) = \omega_{\mathcal{T}}^+(a)$$

Example $(C(K, \mathbb{C}), C)$; $C := \{f \in C(K) : f(x) \in \mathbb{R}^+ \text{ for all } x \in K\}$.)

Let K := [0,1] and $T : C(K, \mathbb{C}) \to C(K, \mathbb{C})$ be the homomorphism induced by composition with the unit function **1**; i.e.

 $Tf = f \circ \mathbf{1}$ for all $f \in C(K)$.

Consider $g \in C(K)$ defined by g(z) = -z for all $z \in K$. Then $\omega_T(g) = \{-1\}$ and $\bigcap_{c \in C \cap \mathbb{N}(T)} \sigma(a + c) = [-1, 0]$.

Question: Let (A, C) be an ordered Banach algebra and $T : A \to B$ a homomorphism with the strong Riesz property. If $a \in C$, does $r(a) \notin \sigma(Ta, B)$ imply that $r(a) \notin \omega_T^+(a)$? YES!

Benjamin

Recall for
$$T \in \mathcal{L}(X)$$
: $\bigcap_{\substack{S \in \mathcal{K}(X) \\ TS = ST}} \sigma(T + S)$

< □ > < □ > < □ > < □ > < □ > < □ >

Recall for
$$T \in \mathcal{L}(X)$$
: $\bigcap_{\substack{S \in \mathcal{K}(X) \\ TS = ST}} \sigma(T + S)$

Now for
$$T \in \mathcal{L}(E)$$
: $\bigcap_{\substack{S \in K \cap \mathcal{K}(E) \\ TS = ST}} \sigma(T + S)$, *K*: positive operators on *E*

< □ > < □ > < □ > < □ > < □ > < □ >

Recall for
$$T \in \mathcal{L}(X)$$
: $\bigcap_{\substack{S \in \mathcal{K}(X) \\ TS = ST}} \sigma(T + S)$

Now for
$$T \in \mathcal{L}(E)$$
: $\bigcap_{\substack{S \in \mathcal{K} \cap \mathcal{K}(E) \\ TS = ST}} \sigma(T + S)$, \mathcal{K} : positive operators on E

For
$$T \in K$$
, does $r(T) \notin \sigma(\pi T)$ imply $r(T) \notin \bigcap_{\substack{S \in K \cap \mathcal{K}(E) \\ TS = ST}} \sigma(T + S)$?

- 4 回 ト 4 ヨ ト 4 ヨ ト

Recall for
$$T \in \mathcal{L}(X)$$
: $\bigcap_{\substack{S \in \mathcal{K}(X) \\ TS = ST}} \sigma(T + S)$

Now for
$$T \in \mathcal{L}(E)$$
: $\bigcap_{\substack{S \in \mathcal{K} \cap \mathcal{K}(E) \\ TS = ST}} \sigma(T + S)$, \mathcal{K} : positive operators on E

For
$$T \in K$$
, does $r(T) \notin \sigma(\pi T)$ imply $r(T) \notin \bigcap_{\substack{S \in K \cap \mathcal{K}(E) \\ TS = ST}} \sigma(T+S)$?

Definition (R. Benjamin and S. Mouton, 2016)

Let (A, C) be an ordered Banach algebra and $T : A \to B$ be a homomorphism. For $a \in A$, the upper Browder spectrum of a (relative to T) is given by

$$\bigcap_{\substack{c \in C \cap \mathbb{N}(T) \\ ac = ca}} \sigma(a + c)$$

Recall for
$$T \in \mathcal{L}(X)$$
: $\bigcap_{\substack{S \in \mathcal{K}(X) \\ TS = ST}} \sigma(T + S)$

Now for
$$T \in \mathcal{L}(E)$$
: $\bigcap_{\substack{S \in \mathcal{K} \cap \mathcal{K}(E) \\ TS = ST}} \sigma(T + S)$, \mathcal{K} : positive operators on E

For
$$T \in K$$
, does $r(T) \notin \sigma(\pi T)$ imply $r(T) \notin \bigcap_{\substack{S \in K \cap \mathcal{K}(E) \\ TS = ST}} \sigma(T+S)$?

Definition (R. Benjamin and S. Mouton, 2016)

Let (A, C) be an ordered Banach algebra and $T : A \to B$ be a homomorphism. For $a \in A$, the upper Browder spectrum of a (relative to T) is given by

$$\beta_T^+(a) = \bigcap_{\substack{c \in C \cap \mathbb{N}(T) \\ ac = ca}} \sigma(a + c)$$

Recall for
$$T \in \mathcal{L}(X)$$
: $\bigcap_{\substack{S \in \mathcal{K}(X) \\ TS = ST}} \sigma(T + S)$

Now for
$$T \in \mathcal{L}(E)$$
: $\bigcap_{\substack{S \in \mathcal{K} \cap \mathcal{K}(E) \\ TS = ST}} \sigma(T + S)$, \mathcal{K} : positive operators on E

For
$$T \in K$$
, does $r(T) \notin \sigma(\pi T)$ imply $r(T) \notin \bigcap_{\substack{S \in K \cap \mathcal{K}(E) \\ TS = ST}} \sigma(T+S)$?

Definition (R. Benjamin and S. Mouton, 2016)

Let (A, C) be an ordered Banach algebra and $T : A \to B$ be a homomorphism. For $a \in A$, the upper Browder spectrum of a (relative to T) is given by

$$\beta_T^+(a) = \bigcap_{\substack{c \in C \cap \mathbb{N}(T) \\ ac = ca}} \sigma(a + c) = \{\lambda \in \mathbb{C} : \lambda \mathbf{1}_A - a \notin A^{-1} \in (C \cap \mathbb{N}(T))\}$$

Consider the homomorphism $T: M_3^u(\mathbb{C}) \to \mathbb{C}$ defined by

$$T\begin{bmatrix} x_{11} & x_{12} & x_{13} \\ 0 & x_{22} & x_{23} \\ 0 & 0 & x_{33} \end{bmatrix} = x_{11}$$

and $M := \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \in M_3^u(\mathbb{C})$. Then

 $\eta\sigma(TM) = \eta\beta_T(M) = \eta\omega_T(M) = \eta\omega_T^+(M) = \{1\} \neq \{0,1\} = \eta\beta_T^+(M).$

э

イロト イヨト イヨト -

Consider the homomorphism $T: M_3^u(\mathbb{C}) \to \mathbb{C}$ defined by

$$T\begin{bmatrix} x_{11} & x_{12} & x_{13} \\ 0 & x_{22} & x_{23} \\ 0 & 0 & x_{33} \end{bmatrix} = x_{11}$$

and $M := \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \in M_3^u(\mathbb{C})$. Then

 $\eta\sigma(TM) = \eta\beta_T(M) = \eta\omega_T(M) = \eta\omega_T^+(M) = \{1\} \neq \{0,1\} = \eta\beta_T^+(M).$

Question: Let (A, C) be an ordered Banach algebra and $T : A \to B$ a homomorphism with the strong Riesz property. If $a \in C$, does $r(a) \notin \sigma(Ta, B)$ imply that $r(a) \notin \beta_T^+(a)$?

- 4 目 ト - 4 日 ト

Consider the homomorphism $T: M_3^u(\mathbb{C}) \to \mathbb{C}$ defined by

$$T\begin{bmatrix} x_{11} & x_{12} & x_{13} \\ 0 & x_{22} & x_{23} \\ 0 & 0 & x_{33} \end{bmatrix} = x_{11}$$

and $M := \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \in M_3^u(\mathbb{C})$. Then

 $\eta\sigma(TM) = \eta\beta_T(M) = \eta\omega_T(M) = \eta\omega_T^+(M) = \{1\} \neq \{0,1\} = \eta\beta_T^+(M).$

Question: Let (A, C) be an ordered Banach algebra and $T : A \to B$ a homomorphism with the strong Riesz property. If $a \in C$, does $r(a) \notin \sigma(Ta, B)$ imply that $r(a) \notin \beta_T^+(a)$?

•
$$r(a) \in iso \sigma(a, A)$$

- 4 目 ト - 4 日 ト

Consider the homomorphism $T: M_3^u(\mathbb{C}) \to \mathbb{C}$ defined by

$$T\begin{bmatrix} x_{11} & x_{12} & x_{13} \\ 0 & x_{22} & x_{23} \\ 0 & 0 & x_{33} \end{bmatrix} = x_{11}$$

and $M := \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \in M_3^u(\mathbb{C})$. Then

 $\eta\sigma(TM) = \eta\beta_T(M) = \eta\omega_T(M) = \eta\omega_T^+(M) = \{1\} \neq \{0,1\} = \eta\beta_T^+(M).$

Question: Let (A, C) be an ordered Banach algebra and $T : A \to B$ a homomorphism with the strong Riesz property. If $a \in C$, does $r(a) \notin \sigma(Ta, B)$ imply that $r(a) \notin \beta_T^+(a)$?

• $r(a) \in iso \sigma(a, A)$

• In ordered Banach algebras, we have information about p(a, r(a))
r-Fredholm theory in (ordered) Banach algebras

æ

イロト イポト イヨト イヨト

э

A ∰ ▶ A ∃ ▶ A

Let $T : A \rightarrow B$ be a homomorphism. W.r.t. T an element $a \in A$ is called:

Let $T : A \to B$ be a homomorphism. W.r.t. T an element $a \in A$ is called: • Fredholm if $0 \notin \sigma(Ta, B)$,

Let $T : A \to B$ be a homomorphism. W.r.t. T an element $a \in A$ is called: • Fredholm if $0 \notin \sigma(Ta, B)$,

 Browder if there exist commuting elements b ∈ A⁻¹ (0 ∉ σ(b, A)) and c ∈ N(T) such that a = b + c.

Let $T : A \to B$ be a homomorphism. W.r.t. T an element $a \in A$ is called: • Fredholm if $0 \notin \sigma(Ta, B)$,

 Browder if there exist commuting elements b ∈ A⁻¹ (0 ∉ σ(b, A)) and c ∈ N(T) such that a = b + c.

a almost invertible: $0 \notin \text{acc } \sigma(a)$

Let $T : A \to B$ be a homomorphism. W.r.t. T an element $a \in A$ is called: • Fredholm if $0 \notin \sigma(Ta, B)$,

 Browder if there exist commuting elements b ∈ A⁻¹ (0 ∉ σ(b, A)) and c ∈ N(T) such that a = b + c.

a invertible: $0 \notin \sigma(a)$ a almost invertible: $0 \notin \text{acc } \sigma(a)$

Let $T : A \to B$ be a homomorphism. W.r.t. T an element $a \in A$ is called: • Fredholm if $0 \notin \sigma(Ta, B)$,

 Browder if there exist commuting elements b ∈ A⁻¹ (0 ∉ σ(b, A)) and c ∈ N(T) such that a = b + c.

a invertible: $0 \notin \sigma(a)$ *a* almost invertible: $0 \notin \text{acc } \sigma(a)$

• invertible \Rightarrow almost invertible

Let $T : A \to B$ be a homomorphism. W.r.t. T an element $a \in A$ is called: • Fredholm if $0 \notin \sigma(Ta, B)$,

 Browder if there exist commuting elements b ∈ A⁻¹ (0 ∉ σ(b, A)) and c ∈ N(T) such that a = b + c.

```
a invertible: 0 \notin \sigma(a)
a almost invertible: 0 \notin \text{acc } \sigma(a)
```

```
• invertible \Rightarrow almost invertible

\Downarrow

Browder
```

Let $T : A \to B$ be a homomorphism. W.r.t. T an element $a \in A$ is called: • Fredholm if $0 \notin \sigma(Ta, B)$,

 Browder if there exist commuting elements b ∈ A⁻¹ (0 ∉ σ(b, A)) and c ∈ N(T) such that a = b + c.

```
a invertible: 0 \notin \sigma(a)
a almost invertible: 0 \notin \text{acc } \sigma(a)
```

```
• invertible \Rightarrow almost invertible

\Downarrow

Browder \Rightarrow Fredholm
```

Let $T : A \to B$ be a homomorphism. W.r.t. T an element $a \in A$ is called: • Fredholm if $0 \notin \sigma(Ta, B)$,

 Browder if there exist commuting elements b ∈ A⁻¹ (0 ∉ σ(b, A)) and c ∈ N(T) such that a = b + c.

a invertible: $0 \notin \sigma(a)$ a *r*-invertible: $r(a) \notin \sigma(a)$ a almost invertible: $0 \notin \text{acc } \sigma(a)$

```
• invertible \Rightarrow almost invertible

\Downarrow

Browder \Rightarrow Fredholm
```

Let $T : A \to B$ be a homomorphism. W.r.t. T an element $a \in A$ is called: • Fredholm if $0 \notin \sigma(Ta, B)$,

 Browder if there exist commuting elements b ∈ A⁻¹ (0 ∉ σ(b, A)) and c ∈ N(T) such that a = b + c.

a invertible: $0 \notin \sigma(a)$ a almost invertible: $0 \notin \text{acc } \sigma(a)$ a *r*-invertible: $r(a) \notin \sigma(a)$ a almost *r*-invertible: $r(a) \notin \text{acc } \sigma(a)$

```
• invertible \Rightarrow almost invertible

\Downarrow

Browder \Rightarrow Fredholm
```

Let $T : A \to B$ be a homomorphism. W.r.t. T an element $a \in A$ is called: • Fredholm if $0 \notin \sigma(Ta, B)$,

- *r*-Fredholm if $r(a) \notin \sigma(Ta, B)$,
- Browder if there exist commuting elements b ∈ A⁻¹ (0 ∉ σ(b, A)) and c ∈ N(T) such that a = b + c.

```
a invertible: 0 \notin \sigma(a)
a almost invertible: 0 \notin \text{acc } \sigma(a)
```

a *r*-invertible: $r(a) \notin \sigma(a)$ a almost *r*-invertible: $r(a) \notin \text{acc } \sigma(a)$

```
• invertible \Rightarrow almost invertible

\Downarrow

Browder \Rightarrow Fredholm
```

Let $T : A \to B$ be a homomorphism. W.r.t. T an element $a \in A$ is called:

- Fredholm if $0 \notin \sigma(Ta, B)$,
- *r*-Fredholm if $r(a) \notin \sigma(Ta, B)$,
- Browder if there exist commuting elements b ∈ A⁻¹ (0 ∉ σ(b, A)) and c ∈ N(T) such that a = b + c.
- *r*-Browder if there exist commuting elements b ($r(b) \notin \sigma(b, A)$) and $c \in N(T)$ such that a = b + c.

a invertible: $0 \notin \sigma(a)$ a r-invertible: $r(a) \notin \sigma(a)$ a almost invertible: $0 \notin acc \sigma(a)$ a almost r-invertible: $r(a) \notin acc \sigma(a)$

```
    invertible ⇒ almost invertible
    ↓
    Browder ⇒ Fredholm
```

Let $T : A \rightarrow B$ be a homomorphism. W.r.t. T an element $a \in A$ is called:

- Fredholm if $0 \notin \sigma(Ta, B)$,
- *r*-Fredholm if $r(a) \notin \sigma(Ta, B)$,
- Browder if there exist commuting elements b ∈ A⁻¹ (0 ∉ σ(b, A)) and c ∈ N(T) such that a = b + c.
- *r*-Browder if there exist commuting elements b ($r(b) \notin \sigma(b, A)$) and $c \in N(T)$ such that a = b + c.

a invertible: $0 \notin \sigma(a)$ a almost invertible: $0 \notin \text{acc } \sigma(a)$

- a r-invertible: $r(a) \notin \sigma(a)$ a almost r-invertible: $r(a) \notin \operatorname{acc} \sigma(a)$
- invertible \Rightarrow almost invertible \Downarrow **Browder** \Rightarrow Fredholm
- r-invertible \Rightarrow almost r-invertible

Let $T : A \rightarrow B$ be a homomorphism. W.r.t. T an element $a \in A$ is called:

- Fredholm if $0 \notin \sigma(Ta, B)$,
- *r*-Fredholm if $r(a) \notin \sigma(Ta, B)$,
- Browder if there exist commuting elements b ∈ A⁻¹ (0 ∉ σ(b, A)) and c ∈ N(T) such that a = b + c.
- *r*-Browder if there exist commuting elements b ($r(b) \notin \sigma(b, A)$) and $c \in N(T)$ such that a = b + c.

a invertible: $0 \notin \sigma(a)$ a almost invertible: $0 \notin \text{acc } \sigma(a)$

> • invertible \Rightarrow almost invertible \Downarrow **Browder** \Rightarrow Fredholm

a *r*-invertible: $r(a) \notin \sigma(a)$ a almost *r*-invertible: $r(a) \notin \operatorname{acc} \sigma(a)$

r-invertible ⇒ almost *r*-invertible
 ↓
 r-Browder

Let $T : A \to B$ be a homomorphism. W.r.t. T an element $a \in A$ is called:

- Fredholm if $0 \notin \sigma(Ta, B)$,
- *r*-Fredholm if $r(a) \notin \sigma(Ta, B)$,
- Browder if there exist commuting elements b ∈ A⁻¹ (0 ∉ σ(b, A)) and c ∈ N(T) such that a = b + c.
- *r*-Browder if there exist commuting elements b ($r(b) \notin \sigma(b, A)$) and $c \in N(T)$ such that a = b + c.

a invertible: $0 \notin \sigma(a)$ a almost invertible: $0 \notin \text{acc } \sigma(a)$

> • invertible \Rightarrow almost invertible \Downarrow **Browder** \Rightarrow Fredholm

a *r*-invertible: $r(a) \notin \sigma(a)$ a almost *r*-invertible: $r(a) \notin \text{acc } \sigma(a)$

• r-invertible \Rightarrow almost r-invertible \Downarrow **r**-Browder \Rightarrow r-Fredholm

Let $T : A \to B$ be a homomorphism. W.r.t. T an element $a \in A$ is called: • Fredholm if $0 \notin \sigma(Ta, B)$,

- *r*-Fredholm if $r(a) \notin \sigma(Ta, B)$,
- Browder if there exist commuting elements b ∈ A⁻¹ (0 ∉ σ(b, A)) and c ∈ N(T) such that a = b + c.
- *r*-Browder if there exist commuting elements b ($r(b) \notin \sigma(b, A)$) and $c \in N(T)$ such that a = b + c.

a invertible: $0 \notin \sigma(a)$ a almost invertible: $0 \notin \text{acc } \sigma(a)$

> • invertible \Rightarrow almost invertible \Downarrow **Browder** \Rightarrow Fredholm \Uparrow

```
almost invertible Fredholm
```

a *r*-invertible: $r(a) \notin \sigma(a)$ a almost *r*-invertible: $r(a) \notin \text{acc } \sigma(a)$

• r-invertible \Rightarrow almost r-invertible \Downarrow **r**-Browder \Rightarrow r-Fredholm

Let $T : A \to B$ be a homomorphism. W.r.t. T an element $a \in A$ is called: • Fredholm if $0 \notin \sigma(Ta, B)$,

- *r*-Fredholm if $r(a) \notin \sigma(Ta, B)$,
- Browder if there exist commuting elements b ∈ A⁻¹ (0 ∉ σ(b, A)) and c ∈ N(T) such that a = b + c.
- *r*-Browder if there exist commuting elements b ($r(b) \notin \sigma(b, A)$) and $c \in N(T)$ such that a = b + c.

a invertible: $0 \notin \sigma(a)$ a almost invertible: $0 \notin \text{acc } \sigma(a)$

> • invertible \Rightarrow almost invertible \Downarrow **Browder** \Rightarrow Fredholm

```
↑
almost invertible Fredholm
```

a *r*-invertible: $r(a) \notin \sigma(a)$ a almost *r*-invertible: $r(a) \notin \text{acc } \sigma(a)$

• r-invertible \Rightarrow almost r-invertible \Downarrow **r**-Browder \Rightarrow r-Fredholm \Uparrow almost r-invertible r-Fredholm

Let $T : A \to B$ be a homomorphism. W.r.t. T an element $a \in A$ is called: • Fredholm if $0 \notin \sigma(Ta, B)$,

- *r*-Fredholm if $r(a) \notin \sigma(Ta, B)$,
- Browder if there exist commuting elements b ∈ A⁻¹ (0 ∉ σ(b, A)) and c ∈ N(T) such that a = b + c.
- *r*-Browder if there exist commuting elements b ($r(b) \notin \sigma(b, A)$) and $c \in N(T)$ such that a = b + c.

a invertible: $0 \notin \sigma(a)$ a almost invertible: $0 \notin \text{acc } \sigma(a)$

> • invertible \Rightarrow almost invertible \Downarrow **Browder** \Rightarrow Fredholm

```
almost invertible Fredholm
```

a *r*-invertible: $r(a) \notin \sigma(a)$ a almost *r*-invertible: $r(a) \notin \text{acc } \sigma(a)$

• r-invertible \Rightarrow almost r-invertible \Downarrow **r**-Browder \Rightarrow r-Fredholm \Uparrow almost r-invertible r-Fredholm

Let $T : A \to B$ be a homomorphism. W.r.t. T an element $a \in A$ is called:

- Fredholm if $0 \notin \sigma(Ta, B)$,
- *r*-Fredholm if $r(a) \notin \sigma(Ta, B)$,
- Browder if there exist commuting elements b ∈ A⁻¹ (0 ∉ σ(b, A)) and c ∈ N(T) such that a = b + c.
- *r*-Browder if there exist commuting elements b ($r(b) \notin \sigma(b, A)$) and $c \in N(T)$ such that a = b + c.

a invertible: $0 \notin \sigma(a)$ a almost invertible: $0 \notin \text{acc } \sigma(a)$

> • invertible \Rightarrow almost invertible \Downarrow **Browder** \Rightarrow Fredholm

```
||
```

almost invertible Fredholm

a *r*-invertible: $r(a) \notin \sigma(a)$ a almost *r*-invertible: $r(a) \notin \text{acc } \sigma(a)$

• r-invertible \Rightarrow almost r-invertible \Downarrow r-Browder \Rightarrow r-Fredholm \Re

almost r-invertible r-Fredholm

Example

Let K and L be compact Hausdorff spaces and $T : C(K) \to C(L)$ be the homomorphism induced by composition with the continuous map $\theta : L \to K$; i.e.

$$Tf = f \circ \theta$$
 for all $f \in C(K)$.

Then

- r-Fredholm elements: $\{f \in C(K) : r(f) \notin f(\theta(L))\}$
- r-Browder elements = $\begin{cases} C(K)^r & \text{if } \theta(L) = K \\ C(K) & \text{otherwise} \end{cases}$

Example

Let K and L be compact Hausdorff spaces and $T : C(K) \to C(L)$ be the homomorphism induced by composition with the continuous map $\theta : L \to K$; i.e.

$$Tf = f \circ \theta$$
 for all $f \in C(K)$.

Then

- r-Fredholm elements: $\{f \in C(K) : r(f) \notin f(\theta(L))\}$
- r-Browder elements = $\begin{cases} C(K)^r & \text{if } \theta(L) = K \\ C(K) & \text{otherwise} \end{cases}$

Example

Let $A = M_2^u(\mathbb{C})$ and $T : A \to \mathbb{C}$ be the homomorphism defined by $Ta = a_1$, where $a := \begin{pmatrix} a_1 & a_2 \\ 0 & a_4 \end{pmatrix}$. Then • *a* is *r*-Fredholm if and only $r(a) \neq a_1$ • *r*-Browder elements: $A \setminus \left\{ \begin{pmatrix} x & y \\ 0 & x \end{pmatrix} : x \ge 0 \text{ and } y \neq 0 \right\}$

If $T: A \rightarrow B$ has the Riesz property, then

 $A \ni a$ is almost *r*-invertble *r*-Fredholm $\iff a$ is contractive *r*-Browder

If $T : A \rightarrow B$ has the Riesz property, then

 $A \ni a$ is almost *r*-invertble *r*-Fredholm $\iff a$ is contractive *r*-Browder

Recall:

a r-Browder:

If $T : A \rightarrow B$ has the Riesz property, then

 $A \ni a$ is almost *r*-invertble *r*-Fredholm $\iff a$ is contractive *r*-Browder

Recall:

a r-Browder: a = b + c, bc = cb,

If $T : A \rightarrow B$ has the Riesz property, then

 $A \ni a$ is almost *r*-invertble *r*-Fredholm $\iff a$ is contractive *r*-Browder

Recall:

a r-Browder: a = b + c, bc = cb, where *b* is *r*-invertible and $c \in N(T)$

If $T: A \rightarrow B$ has the Riesz property, then

 $A \ni a$ is almost *r*-invertble *r*-Fredholm $\iff a$ is contractive *r*-Browder

Recall:

a r-Browder: a = b + c, bc = cb, where b is r-invertible and $c \in N(T)$

(Now)

a contractive *r*-Browder:

If $T: A \rightarrow B$ has the Riesz property, then

 $A \ni a$ is almost *r*-invertble *r*-Fredholm $\iff a$ is contractive *r*-Browder

Recall:

a r-Browder: a = b + c, bc = cb, where *b* is *r*-invertible and $c \in N(T)$

(Now) a contractive r-Browder:a = b + c, bc = cb,

If $T: A \rightarrow B$ has the Riesz property, then

 $A \ni a$ is almost *r*-invertble *r*-Fredholm $\iff a$ is contractive *r*-Browder

Recall:

a r-Browder: a = b + c, bc = cb, where *b* is *r*-invertible and $c \in N(T)$

(Now) a contractive *r*-Browder: a = b + c, bc = cb, where *b* is *r*-invertible, $c \in N(T)$

If $T: A \rightarrow B$ has the Riesz property, then

 $A \ni a$ is almost *r*-invertble *r*-Fredholm $\iff a$ is contractive *r*-Browder

Recall:

a r-Browder: a = b + c, bc = cb, where *b* is *r*-invertible and $c \in N(T)$

(Now) a contractive *r*-Browder: a = b + c, bc = cb, where *b* is *r*-invertible, $c \in N(T)$ and $r(b) \le r(a)$

If $T: A \rightarrow B$ has the Riesz property, then

 $A \ni a$ is almost *r*-invertble *r*-Fredholm $\iff a$ is contractive *r*-Browder

Recall:

a r-Browder: a = b + c, bc = cb, where *b* is *r*-invertible and $c \in N(T)$

(Now) a contractive *r*-Browder: a = b + c, bc = cb, where *b* is *r*-invertible, $c \in N(T)$ and $r(b) \le r(a)$

a almost r-invertible r-Fredholm

If $T: A \rightarrow B$ has the Riesz property, then

 $A \ni a$ is almost *r*-invertble *r*-Fredholm $\iff a$ is contractive *r*-Browder

Recall:

a r-Browder: a = b + c, bc = cb, where *b* is *r*-invertible and $c \in N(T)$

(Now) a contractive *r*-Browder: a = b + c, bc = cb, where *b* is *r*-invertible, $c \in N(T)$ and $r(b) \le r(a)$

a almost r-invertible r-Fredholm \Leftrightarrow

If $T: A \rightarrow B$ has the Riesz property, then

 $A \ni a$ is almost *r*-invertble *r*-Fredholm $\iff a$ is contractive *r*-Browder

Recall:

a r-Browder: a = b + c, bc = cb, where *b* is *r*-invertible and $c \in N(T)$

(Now) a contractive *r*-Browder: a = b + c, bc = cb, where *b* is *r*-invertible, $c \in N(T)$ and $r(b) \le r(a)$

a almost r-invertible r-Fredholm $\Leftrightarrow r(a) \notin \operatorname{acc} \sigma(a, A)$

If $T : A \rightarrow B$ has the Riesz property, then

 $A \ni a$ is almost *r*-invertble *r*-Fredholm $\iff a$ is contractive *r*-Browder

Recall:

a r-Browder: a = b + c, bc = cb, where *b* is *r*-invertible and $c \in N(T)$

(Now) a contractive *r*-Browder: a = b + c, bc = cb, where *b* is *r*-invertible, $c \in N(T)$ and $r(b) \le r(a)$

a almost r-invertible r-Fredholm $\Leftrightarrow r(a) \notin acc \sigma(a, A)$ and $r(a) \notin \sigma(Ta, B)$

If $T: A \rightarrow B$ has the Riesz property, then

 $A \ni a$ is almost *r*-invertble *r*-Fredholm $\iff a$ is contractive *r*-Browder

Recall:

a r-Browder: a = b + c, bc = cb, where *b* is *r*-invertible and $c \in N(T)$

(Now) a contractive *r*-Browder: a = b + c, bc = cb, where *b* is *r*-invertible, $c \in N(T)$ and $r(b) \le r(a)$

a almost r-invertible r-Fredholm $\Leftrightarrow r(a) \notin acc \sigma(a, A)$ and $r(a) \notin \sigma(Ta, B)$

•
$$r(a) \notin \sigma(a, A)$$
 • $r(a) \in iso \sigma(a, A)$
If $T: A \rightarrow B$ has the Riesz property, then

 $A \ni a$ is almost *r*-invertble *r*-Fredholm $\iff a$ is contractive *r*-Browder

Recall:

a r-Browder: a = b + c, bc = cb, where *b* is *r*-invertible and $c \in N(T)$

(Now) a contractive *r*-Browder: a = b + c, bc = cb, where *b* is *r*-invertible, $c \in N(T)$ and $r(b) \le r(a)$

a almost r-invertible r-Fredholm $\Leftrightarrow r(a) \notin acc \sigma(a, A)$ and $r(a) \notin \sigma(Ta, B)$

• $r(a) \notin \sigma(a, A)$ \uparrow *a* is *r*-invertible • $r(a) \in iso \sigma(a, A)$

If $T: A \rightarrow B$ has the Riesz property, then

 $A \ni a$ is almost *r*-invertble *r*-Fredholm $\iff a$ is contractive *r*-Browder

Recall:

a r-Browder: a = b + c, bc = cb, where b is r-invertible and $c \in N(T)$

(Now) a contractive r-Browder: a = b + c, bc = cb, where b is r-invertible, $c \in N(T)$ and $r(b) \le r(a)$

a almost r-invertible r-Fredholm $\Leftrightarrow r(a) \notin acc \sigma(a, A)$ and $r(a) \notin \sigma(Ta, B)$

r(a) ∉ σ(a, A)
 r(a) ∈ iso σ(a, A)
 a is r-invertible
 ↓
 a is contractive r-Browder

If $T: A \rightarrow B$ has the Riesz property, then

 $A \ni a$ is almost *r*-invertble *r*-Fredholm $\iff a$ is contractive *r*-Browder

Recall:

a r-Browder: a = b + c, bc = cb, where b is r-invertible and $c \in N(T)$

(Now) a contractive *r*-Browder: a = b + c, bc = cb, where *b* is *r*-invertible, $c \in N(T)$ and $r(b) \le r(a)$

a almost r-invertible r-Fredholm $\Leftrightarrow r(a) \notin acc \sigma(a, A)$ and $r(a) \notin \sigma(Ta, B)$

- $r(a) \notin \sigma(a, A)$ $(a) \in iso \sigma(a, A)$ $(a) \in iso \sigma(a, A)$ • a = b + c,a = b + c,
- a is contractive r-Browder

If $T: A \rightarrow B$ has the Riesz property, then

 $A \ni a$ is almost *r*-invertble *r*-Fredholm $\iff a$ is contractive *r*-Browder

Recall:

a r-Browder: a = b + c, bc = cb, where b is r-invertible and $c \in N(T)$

(Now) a contractive r-Browder: a = b + c, bc = cb, where b is r-invertible, $c \in N(T)$ and $r(b) \le r(a)$

a almost r-invertible r-Fredholm $\Leftrightarrow r(a) \notin acc \sigma(a, A)$ and $r(a) \notin \sigma(Ta, B)$

- a is contractive r-Browder

If $T: A \rightarrow B$ has the Riesz property, then

 $A \ni a$ is almost *r*-invertble *r*-Fredholm $\iff a$ is contractive *r*-Browder

Recall:

a r-Browder: a = b + c, bc = cb, where b is r-invertible and $c \in N(T)$

(Now) a contractive *r*-Browder: a = b + c, bc = cb, where *b* is *r*-invertible, $c \in N(T)$ and $r(b) \le r(a)$

a almost r-invertible r-Fredholm $\Leftrightarrow r(a) \notin \operatorname{acc} \sigma(a, A)$ and $r(a) \notin \sigma(Ta, B)$

• $r(a) \notin \sigma(a, A)$ (1) a is r -invertible \downarrow a is contractive r -Browder• $r(a) \in \text{ iso } \sigma(a, A)$ • a = b + c, where b := a(1 - p(a, r(a)) - r(a)p(a, r(a)))is r -invertible,

If $T: A \rightarrow B$ has the Riesz property, then

 $A \ni a$ is almost *r*-invertble *r*-Fredholm $\iff a$ is contractive *r*-Browder

Recall:

a r-Browder: a = b + c, bc = cb, where b is r-invertible and $c \in N(T)$

(Now) a contractive r-Browder: a = b + c, bc = cb, where b is r-invertible, $c \in N(T)$ and $r(b) \le r(a)$

a almost r-invertible r-Fredholm $\Leftrightarrow r(a) \notin acc \sigma(a, A)$ and $r(a) \notin \sigma(Ta, B)$

• $r(a) \notin \sigma(a, A)$ (1) a is r -invertible \downarrow a is contractive r -Browder• $r(a) \in \text{ iso } \sigma(a, A)$ • a = b + c, where b := a(1 - p(a, r(a)) - r(a)p(a, r(a)))is r -invertible, r(b) = r(a),

If $T: A \rightarrow B$ has the Riesz property, then

 $A \ni a$ is almost r-invertible r-Fredholm $\iff a$ is contractive r-Browder

Recall:

a r-Browder: a = b + c, bc = cb, where b is r-invertible and $c \in N(T)$

(Now) a contractive *r*-Browder: a = b + c, bc = cb, where b is r-invertible, $c \in N(T)$ and $r(b) \leq r(a)$

a almost r-invertible r-Fredholm $\Leftrightarrow r(a) \notin acc \sigma(a, A)$ and $r(a) \notin \sigma(Ta, B)$

- $r(a) \notin \sigma(a, A)$ a is r-invertible 11 a is contractive r-Browder
 - $r(a) \in iso \sigma(a, A)$

•
$$a = b + c$$
, where
 $b := a(1 - p(a, r(a)) - r(a)p(a, r(a)))$
is *r*-invertible, $r(b) = r(a)$, and
 $c := (a + r(a)1)p(a, r(a)) \in N(T)$

If T: A
ightarrow B has the Riesz property, then

 $A \ni a$ is almost *r*-invertble *r*-Fredholm $\iff a$ is contractive *r*-Browder

Recall:

a r-Browder: a = b + c, bc = cb, where b is r-invertible and $c \in N(T)$

(Now) a contractive r-Browder: a = b + c, bc = cb, where b is r-invertible, $c \in N(T)$ and $r(b) \le r(a)$

If T: A
ightarrow B has the Riesz property, then

 $A \ni a$ is almost *r*-invertble *r*-Fredholm $\iff a$ is contractive *r*-Browder

Recall:

a r-Browder: a = b + c, bc = cb, where b is r-invertible and $c \in N(T)$

(Now) a contractive *r*-Browder: a = b + c, bc = cb, where *b* is *r*-invertible, $c \in N(T)$ and $r(b) \le r(a)$

Theorem [Benjamin, Mouton, 2020]

If $T: A \rightarrow B$ has the strong Riesz property, then

 $A \ni a$ is almost *r*-invertble *r*-Fredholm $\iff a$ is contractive *r*-Browder

 \iff *a* is *r*-Fredholm

a is an almost *r*-invertible *r*-Fredholm element \downarrow *a* is contractive *r*-Browder

 a is **a positive** almost *r*-invertible *r*-Fredholm element ↓

a = b + c, bc = cb, where b is r-invertible, $c \in C \cap N(T)$ and $r(b) \leq r(a)$

a is **a positive** almost *r*-invertible *r*-Fredholm element ↓

a = b + c, bc = cb, where b is r-invertible, $c \in C \cap N(T)$ and $r(b) \leq r(a)$

Theorem (Benjamin and Mouton)

Let $A = A_1 \oplus \cdots \oplus A_n$, where each A_j (j = 1, ..., n) is a finite-dimensional simple OBA with algebra cone C_j , and $C = C_1 \oplus \cdots \oplus C_n$. W.r.t. any $T : A \to B$,

positive almost *r*-invertible *r*-Fredholm \Rightarrow contractive upper *r*-Browder

a is **a positive** almost *r*-invertible *r*-Fredholm element ↓

```
a is contractive upper r-Browder 

↓
```

a = b + c, bc = cb, where b is r-invertible, $c \in C \cap N(T)$ and $r(b) \leq r(a)$

Theorem (Benjamin and Mouton)

Let $A = A_1 \oplus \cdots \oplus A_n$, where each A_j (j = 1, ..., n) is a finite-dimensional simple OBA with algebra cone C_j , and $C = C_1 \oplus \cdots \oplus C_n$. W.r.t. any $T : A \to B$,

positive almost *r*-invertible *r*-Fredholm \Rightarrow contractive upper *r*-Browder

Corollary

Any finite-dimensional semisimple OBA is algebraically isomorphic to an OBA (A, C) with the property that, w.r.t. any $T : A \rightarrow B$,

positive almost *r*-invertible *r*-Fredholm \Rightarrow contractive upper *r*-Browder

Let (A, C) be an OBA with <u>closed</u> algebra cone C. W.r.t. any $T : A \rightarrow B$,

Let (A, C) be a semisimple OBA with closed algebra cone. If A is either commutative or C is proper and inverse-closed, then, w.r.t. a homomorphism $T : A \to B$ with the strong Riesz property,

positive almost *r*-invertible *r*-Fredholm \Rightarrow contractive upper *r*-Browder

Let (A, C) be a semisimple OBA with closed algebra cone. If A is either commutative or C is proper and inverse-closed, then, w.r.t. a homomorphism $T : A \to B$ with the strong Riesz property,

positive almost *r*-invertible *r*-Fredholm \Rightarrow contractive upper *r*-Browder

くロト く伺 ト くきト くきト

Let (A, C) be a semisimple OBA with closed algebra cone. If A is either commutative or C is proper and inverse-closed, then, w.r.t. a homomorphism $T : A \to B$ with the strong Riesz property,

positive almost *r*-invertible *r*-Fredholm \Rightarrow contractive upper *r*-Browder

```
• proper: C \cap -C = \{0\}
```

< □ > < □ > < □ > < □ > < □ > < □ >

Let (A, C) be a semisimple OBA with closed algebra cone. If A is either commutative or C is proper and inverse-closed, then, w.r.t. a homomorphism $T : A \to B$ with the strong Riesz property,

positive almost *r*-invertible *r*-Fredholm \Rightarrow contractive upper *r*-Browder

- proper: $C \cap -C = \{0\}$
- inverse-closed: $a \in C \cap A^{-1} \Longrightarrow a^{-1} \in C$

< □ > < □ > < □ > < □ > < □ > < □ >

Let (A, C) be a Dedekind complete OBA

Dedekind complete:

Every non-empty order-bounded set in A has a supremum

,

Let (A, C) be a Dedekind complete OBA which has a disjunctive product

,

Dedekind complete:

Every non-empty order-bounded set in A has a supremum

Let (A, C) be a Dedekind complete OBA which has a disjunctive product and with closed and normal algebra cone C.

• Dedekind complete:

Every non-empty order-bounded set in A has a supremum

o normal:

there exists a constant $\boldsymbol{\alpha}$ with the property that

if $0 \le a \le b$, then $||a|| \le \alpha ||b||$

Let (A, C) be a <u>Dedekind complete</u> OBA which has a <u>disjunctive product</u> and with closed and <u>normal</u> algebra cone C. W.r.t. a homomorphism $T: A \to B$ with the strong Riesz property such that the spectral radius in $(A/\overline{\mathbb{N}(T)})$ is weakly monotone,

• Dedekind complete:

Every non-empty order-bounded set in A has a supremum

o normal:

there exists a constant $\boldsymbol{\alpha}$ with the property that

if $0 \le a \le b$, then $||a|| \le \alpha ||b||$

Let (A, C) be a <u>Dedekind complete</u> OBA which has a <u>disjunctive product</u> and with closed and <u>normal</u> algebra cone C. W.r.t. a homomorphism $T: A \to B$ with the strong Riesz property such that the spectral radius in $(A/\overline{\mathbb{N}(T)})$ is weakly monotone,

• Dedekind complete:

Every non-empty order-bounded set in A has a supremum

o normal:

there exists a constant $\boldsymbol{\alpha}$ with the property that

if $0 \le a \le b$, then $||a|| \le \alpha ||b||$

Let (A, C) be a Dedekind complete OBA which has a disjunctive product and with closed and <u>normal</u> algebra cone C. W.r.t. a homomorphism $T: A \rightarrow B$ with the strong Riesz property such that the spectral radius in $(A/\overline{N(T)})$ is weakly monotone,

a positive almost r-invertible r-Fredholm

spectrally order continuous

 $p_i(\mathbf{1}-p_{i-1})ap_i(\mathbf{1}-p_{i-1})$

 \implies contractive upper

r-Browder

Dedekind complete: Every non-empty order-bounded set in A has a supremum
normal: there exists a constant α with the property that if 0 < a < b, then ||a|| < α||b||

Let (A, C) be a Dedekind complete OBA which has a disjunctive product and with closed and <u>normal</u> algebra cone C. W.r.t. a homomorphism $T: A \rightarrow B$ with the strong Riesz property such that the spectral radius in $(A/\overline{N(T)})$ is weakly monotone,

a positive almost r-invertible r-Fredholm

spectrally order continuous

$$p_i(\mathbf{1}-p_{i-1})ap_i(\mathbf{1}-p_{i-1})$$

 \implies contractive upper

r-Browder

for all $i \in \{1, ..., n\}$ such that $r(p_i(1 - p_{i-1})ap_i(1 - p_{i-1})) = r(a)$.

Dedekind complete: Every non-empty order-bounded set in A has a supremum
normal: there exists a constant α with the property that if 0 ≤ a ≤ b, then ||a|| ≤ α||b||

Upper Browder spectrum property

Let (A, C) be an OBA and $T : A \rightarrow B$ an algebra homomorphism. Then $a \in C$ has the upper Browder spectrum property if

$$r(a) \notin \sigma(Ta, B) \Longrightarrow r(a) \notin \beta_T^+(a)$$

Upper Browder spectrum property

Let (A, C) be an OBA and $T : A \rightarrow B$ an algebra homomorphism. Then $a \in C$ has the upper Browder spectrum property if

$$r(a) \notin \sigma(Ta, B) \Longrightarrow r(a) \notin \beta_T^+(a)$$

 $\beta_T^+(a) := \{\lambda \in \mathbb{C} : \lambda \mathbf{1} - a \text{ is not upper Browder}\}$

Upper Browder spectrum property

Let (A, C) be an OBA and $T : A \rightarrow B$ an algebra homomorphism. Then $a \in C$ has the upper Browder spectrum property if

$$r(a) \notin \sigma(Ta, B) \Longrightarrow r(a) \notin \beta_T^+(a)$$

 $\beta_T^+(a) := \{\lambda \in \mathbb{C} : \lambda \mathbf{1} - a \text{ is not upper Browder}\}$

a upper Browder element:

Upper Browder spectrum property

Let (A, C) be an OBA and $T : A \rightarrow B$ an algebra homomorphism. Then $a \in C$ has the upper Browder spectrum property if

$$r(a) \notin \sigma(Ta, B) \Longrightarrow r(a) \notin \beta_T^+(a)$$

 $\beta_T^+(a) := \{\lambda \in \mathbb{C} : \lambda \mathbf{1} - a \text{ is not upper Browder}\}$

a upper Browder element:

a = b + c, where b is invertible $(0 \notin \sigma(b))$ and $c \in C \cap N(T)$ commute

・ 何 ト ・ ヨ ト ・ ヨ ト

Upper Browder spectrum property

Let (A, C) be an OBA and $T : A \rightarrow B$ an algebra homomorphism. Then $a \in C$ has the upper Browder spectrum property if

$$r(a) \notin \sigma(Ta, B) \Longrightarrow r(a) \notin \beta_T^+(a)$$

 $\beta_T^+(a) := \{\lambda \in \mathbb{C} : \lambda \mathbf{1} - a \text{ is not upper Browder}\}$

a upper Browder element:

a = b + c, where b is invertible $(0 \notin \sigma(b))$ and $c \in C \cap N(T)$ commute

a positive almost r-invertible r-Fredholm \Rightarrow a contractive upper r-Browder

 $a \in C, r(a) \notin \sigma(Ta, B)$

Upper Browder spectrum property

Let (A, C) be an OBA and $T : A \rightarrow B$ an algebra homomorphism. Then $a \in C$ has the upper Browder spectrum property if

$$r(a) \notin \sigma(Ta, B) \Longrightarrow r(a) \notin \beta_T^+(a)$$

 $\beta_T^+(a) := \{\lambda \in \mathbb{C} : \lambda \mathbf{1} - a \text{ is not upper Browder}\}$

a upper Browder element:

a = b + c, where b is invertible $(0 \notin \sigma(b))$ and $c \in C \cap N(T)$ commute

a positive almost r-invertible r-Fredholm \Rightarrow a contractive upper r-Browder

 $a \in C, r(a) \notin \sigma(Ta, B)$

Upper Browder spectrum property

Let (A, C) be an OBA and $T : A \rightarrow B$ an algebra homomorphism. Then $a \in C$ has the upper Browder spectrum property if

$$r(a) \notin \sigma(Ta, B) \Longrightarrow r(a) \notin \beta_T^+(a)$$

 $\beta_T^+(a) := \{\lambda \in \mathbb{C} : \lambda \mathbf{1} - a \text{ is not upper Browder}\}$

a upper Browder element:

a = b + c, where b is invertible $(0 \notin \sigma(b))$ and $c \in C \cap N(T)$ commute

a positive almost r-invertible r-Fredholm \Rightarrow a contractive upper r-Browder

 $a \in C, r(a) \notin \sigma(Ta, B)$

$$\Rightarrow r(a) \notin \beta_T^+(a)$$

Recall:

Any finite-dimensional semisimple OBA is algebraically isomorphic to an OBA (A, C) with the property that, w.r.t. any $T : A \rightarrow B$,

positive almost *r*-invertible *r*-Fredholm \Rightarrow *a* contractive upper *r*-Browder

Recall:

Any finite-dimensional semisimple OBA is algebraically isomorphic to an OBA (A, C) with the property that, w.r.t. any $T : A \rightarrow B$,

positive almost *r*-invertible *r*-Fredholm \Rightarrow *a* contractive upper *r*-Browder

Any finite-dimensional semisimple OBA is algebraically isomorphic to an OBA (A, C) with the property that all positive elements in A has the upper Browder spectrum property relative to arbitrary algebra homomorphisms $T : A \rightarrow B$.
Let (A, C) be an OBA with closed algebra cone C. W.r.t. any $T : A \to B$, *a* positive almost *r*-invertible *r*-Fredholm \Rightarrow upper r(a) simple pole of the resolvent of a *r*-Browder

Let (A, C) be an OBA with closed algebra cone C. W.r.t. any $T : A \to B$, *a* positive almost *r*-invertible *r*-Fredholm \Rightarrow upper r(a) simple pole of the resolvent of a *r*-Browder

Let (A, C) be an OBA with closed algebra cone C and $T : A \to B$ an algebra homomorphism satisfying the Riesz property. If $a \in C$ with r(a) a simple pole of the resolvent of a, then

$$r(a) \notin \sigma(Ta, B) \Longrightarrow r(a) \notin \beta_T^+(a).$$

Let (A, C) be a Dedekind complete semisimple OBA which has a disjunctive product and with closed and normal algebra cone C. W.r.t. a homomorphism $T : A \to B$ with the strong Riesz property such that the spectral radius in $(A/\overline{N(T)})$ is weakly monotone,

 $\begin{array}{ll} a \text{ positive almost } r\text{-invertible } r\text{-Fredholm} & p_i(\mathbf{1} - p_{i-1})ap_i(\mathbf{1} - p_{i-1}) \\ \implies & \text{contractive upper} \\ & \text{spectrally order continuous} & r\text{-Browder} \end{array}$ for all $i \in \{1, \ldots, n\}$ such that $r(p_i(\mathbf{1} - p_{i-1})ap_i(\mathbf{1} - p_{i-1})) = r(a)$.

Let (A, C) be a Dedekind complete semisimple OBA which has a disjunctive product and with closed and normal algebra cone C. W.r.t. a homomorphism $T : A \to B$ with the strong Riesz property such that the spectral radius in $(A/\overline{N(T)})$ is weakly monotone,

a positive almost *r*-invertible *r*-Fredholm

spectrally order continuous

 $p_i(\mathbf{1}-p_{i-1})ap_i(\mathbf{1}-p_{i-1})$

 \Rightarrow contractive upper

r-Browder

for all $i \in \{1, \ldots, n\}$ such that $r(p_i(1-p_{i-1})ap_i(1-p_{i-1})) = r(a)$.

Let (A, C) be a Dedekind complete semisimple OBA which has a disjunctive product and with closed and normal algebra cone C. Also, suppose that $T : A \to B$ is an algebra homomorphism satisfying the strong Riesz property such that the spectral radius function in $(A/\overline{N(T)})$ is weakly monotone. If $a \in C$ is a spectrally order continuous element, then

$$r(a) \notin \sigma(Ta, B) \Longrightarrow r(a) \notin \bigcup_{i=1} \beta^+_T(p_i(1-p_{i-1})ap_i(1-p_{i-1}))$$

Thank you for your attention