r-Fredholm theory in general ordered Banach algebras

Ronalda Benjamin

Stellenbosch University

Banach algebras and Applications Conference Granada
 18-23 July 2022

(This is joint work with Sonja Mouton)

Terminology and fixed notation

- Banach algebra : complex unital Banach algebra

Terminology and fixed notation

- Banach algebra : complex unital Banach algebra
- A^{-1} : the set of invertible elements of a Banach algebra A

Terminology and fixed notation

- Banach algebra : complex unital Banach algebra
- A^{-1} : the set of invertible elements of a Banach algebra A

$$
a \in A
$$

Terminology and fixed notation

- Banach algebra : complex unital Banach algebra
- A^{-1} : the set of invertible elements of a Banach algebra A

$$
a \in A
$$

- $\sigma(a, A)=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \notin A^{-1}\right\}$: the spectrum of a in A

Terminology and fixed notation

- Banach algebra : complex unital Banach algebra
- A^{-1} : the set of invertible elements of a Banach algebra A

$$
a \in A
$$

- $\sigma(a, A)=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \notin A^{-1}\right\}$: the spectrum of a in A
- $r(a, A):=\sup _{\lambda \in \sigma(a, A)}|\lambda|:$ spectral radius of a in A

Terminology and fixed notation

- Banach algebra : complex unital Banach algebra
- A^{-1} : the set of invertible elements of a Banach algebra A

$$
a \in A
$$

- $\sigma(a, A)=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \notin A^{-1}\right\}$: the spectrum of a in A
- $r(a, A):=\sup _{\lambda \in \sigma(a, A)}|\lambda|$: spectral radius of a in A
- $p(a, \lambda)$: spectral idempotent of $a \in A$ corresponding to $\lambda \in$ iso $\sigma(a)$

> (Algebra) homomorphism: $T: A \rightarrow B$ preserves algebraic structure and satisfies $T \mathbf{1}_{A}=\mathbf{1}_{B}$

- $\mathrm{N}(T)=\{a \in A: T a=0\}$: the null space of T

(Algebra) homomorphism: $T: A \rightarrow B$ preserves algebraic structure and satisfies $T \mathbf{1}_{A}=\mathbf{1}_{B}$

- $\mathrm{N}(T)=\{a \in A: T a=0\}$: the null space of T
- T has the Riesz property whenever the spectrum of each element of $\mathrm{N}(T)$ is either finite or a sequence converging to zero

(Algebra) homomorphism: $T: A \rightarrow B$ preserves algebraic structure and satisfies $T \mathbf{1}_{A}=\mathbf{1}_{B}$

- $\mathrm{N}(T)=\{a \in A: T a=0\}$: the null space of T
- T has the Riesz property whenever the spectrum of each element of $\mathrm{N}(T)$ is either finite or a sequence converging to zero

(Algebra) homomorphism: $T: A \rightarrow B$ preserves algebraic structure and satisfies $T \mathbf{1}_{A}=\mathbf{1}_{B}$

- $\mathrm{N}(T)=\{a \in A: T a=0\}$: the null space of T
- T has the Riesz property whenever the spectrum of each element of $\mathrm{N}(T)$ is either finite or a sequence converging to zero

$$
\text { acc } \sigma(a, A) \subseteq\{0\} \text { for all } a \in \mathrm{~N}(T)
$$

(Algebra) homomorphism: $T: A \rightarrow B$ preserves algebraic structure and satisfies $T \mathbf{1}_{A}=\mathbf{1}_{B}$

- $\mathrm{N}(T)=\{a \in A: T a=0\}$: the null space of T
- T has the Riesz property whenever the spectrum of each element of $\mathrm{N}(T)$ is either finite or a sequence converging to zero

$$
\operatorname{acc} \sigma(a, A) \subseteq\{0\} \text { for all } a \in \mathrm{~N}(T)
$$

- T has the strong Riesz property whenever $\sigma(a) \subseteq \eta \sigma(T a) \cup$ iso $\sigma(a)$ for all $a \in A$.

(Algebra) homomorphism: $T: A \rightarrow B$ preserves algebraic structure and satisfies $T \mathbf{1}_{A}=\mathbf{1}_{B}$

- $\mathrm{N}(T)=\{a \in A: T a=0\}$: the null space of T
- T has the Riesz property whenever the spectrum of each element of $\mathrm{N}(T)$ is either finite or a sequence converging to zero

$$
\operatorname{acc} \sigma(a, A) \subseteq\{0\} \text { for all } a \in \mathrm{~N}(T)
$$

- T has the strong Riesz property whenever $\sigma(a) \subseteq \eta \sigma(T a) \cup$ iso $\sigma(a)$ for all $a \in A$.
- ηK : Connected hull of a compact set $K \subseteq \mathbb{C}$ (the complement of the unique unbounded component of $\mathbb{C} \backslash K$)

(Algebra) homomorphism: $T: A \rightarrow B$ preserves algebraic structure and satisfies $T \mathbf{1}_{A}=\mathbf{1}_{B}$

- $\mathrm{N}(T)=\{a \in A: T a=0\}$: the null space of T
- T has the Riesz property whenever the spectrum of each element of $\mathrm{N}(T)$ is either finite or a sequence converging to zero

$$
\operatorname{acc} \sigma(a, A) \subseteq\{0\} \text { for all } a \in \mathrm{~N}(T)
$$

- T has the strong Riesz property whenever $\sigma(a) \subseteq \eta \sigma(T a) \cup$ iso $\sigma(a)$ for all $a \in A$.
- ηK : Connected hull of a compact set $K \subseteq \mathbb{C}$
(the complement of the unique unbounded component of $\mathbb{C} \backslash K$)

(Algebra) homomorphism: $T: A \rightarrow B$ preserves algebraic structure and satisfies $T \mathbf{1}_{A}=\mathbf{1}_{B}$

- $\mathrm{N}(T)=\{a \in A: T a=0\}$: the null space of T
- T has the Riesz property whenever the spectrum of each element of $\mathrm{N}(T)$ is either finite or a sequence converging to zero

$$
\operatorname{acc} \sigma(a, A) \subseteq\{0\} \text { for all } a \in \mathrm{~N}(T)
$$

- T has the strong Riesz property whenever $\sigma(a) \subseteq \eta \sigma(T a) \cup$ iso $\sigma(a)$ for all $a \in A$.

$$
\operatorname{acc} \sigma(a, A) \subseteq \eta \sigma(T a, B)
$$

- ηK : Connected hull of a compact set $K \subseteq \mathbb{C}$ (the complement of the unique unbounded component of $\mathbb{C} \backslash K$)

(Algebra) homomorphism: $T: A \rightarrow B$ preserves algebraic structure and satisfies $T \mathbf{1}_{A}=\mathbf{1}_{B}$

- $N(T)=\{a \in A: T a=0\}$: the null space of T
- T has the Riesz property whenever the spectrum of each element of $\mathrm{N}(T)$ is either finite or a sequence converging to zero

$$
\operatorname{acc} \sigma(a, A) \subseteq\{0\} \text { for all } a \in \mathrm{~N}(T)
$$

- T has the strong Riesz property whenever $\sigma(a) \subseteq \eta \sigma(T a) \cup$ iso $\sigma(a)$ for all $a \in A$.

$$
\operatorname{acc} \sigma(a, A) \subseteq \eta \sigma(T a, B)
$$

strong Riesz \Longrightarrow Riesz

- ηK : Connected hull of a compact set $K \subseteq \mathbb{C}$ (the complement of the unique unbounded component of $\mathbb{C} \backslash K$)

(Algebra) homomorphism: $T: A \rightarrow B$ preserves algebraic structure and satisfies $T \mathbf{1}_{A}=\mathbf{1}_{B}$

- $N(T)=\{a \in A: T a=0\}$: the null space of T
- T has the Riesz property whenever the spectrum of each element of $\mathrm{N}(T)$ is either finite or a sequence converging to zero

$$
\operatorname{acc} \sigma(a, A) \subseteq\{0\} \text { for all } a \in \mathrm{~N}(T)
$$

- T has the strong Riesz property whenever $\sigma(a) \subseteq \eta \sigma(T a) \cup$ iso $\sigma(a)$ for all $a \in A$.

$$
\operatorname{acc} \sigma(a, A) \subseteq \eta \sigma(T a, B)
$$

strong Riesz \Longrightarrow Riesz
strong Riesz \Longleftarrow Riesz and closed range

- ηK : Connected hull of a compact set $K \subseteq \mathbb{C}$ (the complement of the unique unbounded component of $\mathbb{C} \backslash K$)

(Algebra) homomorphism: $T: A \rightarrow B$ preserves algebraic structure and satisfies $T \mathbf{1}_{A}=\mathbf{1}_{B}$

- $N(T)=\{a \in A: T a=0\}$: the null space of T
- T has the Riesz property whenever the spectrum of each element of $\mathrm{N}(T)$ is either finite or a sequence converging to zero

$$
\operatorname{acc} \sigma(a, A) \subseteq\{0\} \text { for all } a \in \mathrm{~N}(T)
$$

- T has the strong Riesz property whenever $\sigma(a) \subseteq \eta \sigma(T a) \cup$ iso $\sigma(a)$ for all $a \in A$.

$$
\operatorname{acc} \sigma(a, A) \subseteq \eta \sigma(T a, B)
$$

strong Riesz \Longrightarrow Riesz
strong Riesz \Longleftarrow Riesz and closed range

$$
\pi: \mathcal{L}(X) \rightarrow \mathcal{L}(X) / \mathcal{K}(X)
$$

- ηK : Connected hull of a compact set $K \subseteq \mathbb{C}$ (the complement of the unique unbounded component of $\mathbb{C} \backslash K$)

Fredholm theory in Banach algebras and some motivation

Definition (Harte, 1982)

Definition (Harte, 1982)

Let $T: A \rightarrow B$ be a homomorphism. W.r.t. T, an element $a \in A$ is called:

Definition (Harte, 1982)

Let $T: A \rightarrow B$ be a homomorphism. W.r.t. T, an element $a \in A$ is called:

- Fredholm if $T a \in B^{-1}$,

Definition (Harte, 1982)

Let $T: A \rightarrow B$ be a homomorphism. W.r.t. T, an element $a \in A$ is called:

- Fredholm if $T a \in B^{-1}$,
- Weyl if $a \in A^{-1}+\mathrm{N}(T)$,

Definition (Harte, 1982)

Let $T: A \rightarrow B$ be a homomorphism. W.r.t. T, an element $a \in A$ is called:

- Fredholm if $T a \in B^{-1}$,
- Weyl if $a \in A^{-1}+\mathrm{N}(T)$,
- Browder if $a \in A^{-1} \Subset N(T)$.

Definition (Harte, 1982)

Let $T: A \rightarrow B$ be a homomorphism. W.r.t. T, an element $a \in A$ is called:

- Fredholm if $T a \in B^{-1}$,
- Weyl if $a \in A^{-1}+\mathrm{N}(T)$,
- Browder if $a \in A^{-1} \Subset N(T)$.

Evidently,
Browder \Rightarrow Weyl

Definition (Harte, 1982)

Let $T: A \rightarrow B$ be a homomorphism. W.r.t. T, an element $a \in A$ is called:

- Fredholm if $T a \in B^{-1}$,
- Weyl if $a \in A^{-1}+\mathrm{N}(T)$,
- Browder if $a \in A^{-1} \Subset N(T)$.

Evidently,

$$
\text { invertible } \Rightarrow \text { Browder } \Rightarrow \text { Weyl } \Rightarrow \text { Fredholm }
$$

Definition (Harte, 1982)

Let $T: A \rightarrow B$ be a homomorphism. W.r.t. T, an element $a \in A$ is called:

- Fredholm if $T a \in B^{-1}$,
- Weyl if $a \in A^{-1}+\mathrm{N}(T)$,
- Browder if $a \in A^{-1} \Subset N(T)$.

Evidently,

$$
\text { invertible } \Rightarrow \text { Browder } \Rightarrow \text { Weyl } \Rightarrow \text { Fredholm }
$$

$a \in A$ almost invertible: $0 \notin \operatorname{acc} \sigma(a)$

Definition (Harte, 1982)

Let $T: A \rightarrow B$ be a homomorphism. W.r.t. T, an element $a \in A$ is called:

- Fredholm if $T a \in B^{-1}$,
- Weyl if $a \in A^{-1}+\mathrm{N}(T)$,
- Browder if $a \in A^{-1} \Subset N(T)$.

Evidently,

$$
\text { invertible } \Rightarrow \text { Browder } \Rightarrow \text { Weyl } \Rightarrow \text { Fredholm }
$$

$a \in A$ almost invertible: $0 \notin$ acc $\sigma(a)$
Clearly, invertible \Rightarrow almost invertible

Definition (Harte, 1982)

Let $T: A \rightarrow B$ be a homomorphism. W.r.t. T, an element $a \in A$ is called:

- Fredholm if $T a \in B^{-1}$,
- Weyl if $a \in A^{-1}+\mathrm{N}(T)$,
- Browder if $a \in A^{-1} \Subset N(T)$.

Evidently,

$$
\text { invertible } \Rightarrow \text { Browder } \Rightarrow \text { Weyl } \Rightarrow \text { Fredholm }
$$

$a \in A$ almost invertible: $0 \notin$ acc $\sigma(a)$
Clearly, invertible \Rightarrow almost invertible Fredholm

Definition (Harte, 1982)

Let $T: A \rightarrow B$ be a homomorphism. W.r.t. T, an element $a \in A$ is called:

- Fredholm if $T a \in B^{-1}$,
- Weyl if $a \in A^{-1}+\mathrm{N}(T)$,
- Browder if $a \in A^{-1} \Subset N(T)$.

Evidently,

$$
\text { invertible } \Rightarrow \text { Browder } \Rightarrow \text { Weyl } \Rightarrow \text { Fredholm }
$$

$a \in A$ almost invertible: $0 \notin$ acc $\sigma(a)$
Clearly, invertible \Rightarrow almost invertible Fredholm \Rightarrow Browder

Definition (Harte, 1982)

Let $T: A \rightarrow B$ be a homomorphism. W.r.t. T, an element $a \in A$ is called:

- Fredholm if $T a \in B^{-1}$,
- Weyl if $a \in A^{-1}+\mathrm{N}(T)$,
- Browder if $a \in A^{-1} \Subset N(T)$.

Evidently,

$$
\text { invertible } \Rightarrow \text { Browder } \Rightarrow \text { Weyl } \Rightarrow \text { Fredholm }
$$

$a \in A$ almost invertible: $0 \notin$ acc $\sigma(a)$
Clearly, invertible \Rightarrow almost invertible Fredholm \Rightarrow Browder
Theorem (Harte ,1982)

> almost invertble Fredholm $=$ Browder if and only if
$T: A \rightarrow B$ has the Riesz property

Definition (Harte, 1982)

Definition (Harte, 1982)
Let $T: A \rightarrow B$ be a homomorphism and $a \in A$. W.r.t T, the

Let $T: A \rightarrow B$ be a homomorphism and $a \in A$. W.r.t T, the

- Fredholm spectrum of a is given by $\tau_{T}(a):=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \notin \mathcal{F}_{T}\right\}$,

Let $T: A \rightarrow B$ be a homomorphism and $a \in A$. W.r.t T, the

- Fredholm spectrum of a is given by $\tau_{T}(a):=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \notin \mathcal{F}_{T}\right\}$,
- Weyl spectrum of a is given by $\omega_{T}(a)=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \notin \mathcal{W}_{T}\right\}$,

Let $T: A \rightarrow B$ be a homomorphism and $a \in A$. W.r.t T, the

- Fredholm spectrum of a is given by $\tau_{T}(a):=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \notin \mathcal{F}_{T}\right\}$,
- Weyl spectrum of a is given by $\omega_{T}(a)=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \notin \mathcal{W}_{T}\right\}$,
- Browder spectrum of a is given by $\beta_{T}(a)=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \notin \mathcal{B}_{T}\right\}$.

Definition (Harte, 1982)

Let $T: A \rightarrow B$ be a homomorphism and $a \in A$. W.r.t T, the

- Fredholm spectrum of a is given by $\tau_{T}(a):=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \notin \mathcal{F}_{T}\right\}$,
- Weyl spectrum of a is given by $\omega_{T}(a)=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \notin \mathcal{W}_{T}\right\}$,
- Browder spectrum of a is given by $\beta_{T}(a)=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \notin \mathcal{B}_{T}\right\}$.

Recall: invertible \Rightarrow Browder \Rightarrow Weyl \Rightarrow Fredholm

Definition (Harte, 1982)

Let $T: A \rightarrow B$ be a homomorphism and $a \in A$. W.r.t T, the

- Fredholm spectrum of a is given by $\tau_{T}(a):=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \notin \mathcal{F}_{T}\right\}$,
- Weyl spectrum of a is given by $\omega_{T}(a)=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \notin \mathcal{W}_{T}\right\}$,
- Browder spectrum of a is given by $\beta_{T}(a)=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \notin \mathcal{B}_{T}\right\}$.

Recall: invertible \Rightarrow Browder \Rightarrow Weyl \Rightarrow Fredholm
Now:

Definition (Harte, 1982)

Let $T: A \rightarrow B$ be a homomorphism and $a \in A$. W.r.t T, the

- Fredholm spectrum of a is given by $\tau_{T}(a):=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \notin \mathcal{F}_{T}\right\}$,
- Weyl spectrum of a is given by $\omega_{T}(a)=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \notin \mathcal{W}_{T}\right\}$,
- Browder spectrum of a is given by $\beta_{T}(a)=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \notin \mathcal{B}_{T}\right\}$.

Recall: invertible \Rightarrow Browder \Rightarrow Weyl \Rightarrow Fredholm
Now:
$\tau_{T}(a) \subseteq$
$\omega_{T}(a)$
\subseteq
$\beta_{T}(a)$
$\subseteq \sigma(a)$.

Definition (Harte, 1982)

Let $T: A \rightarrow B$ be a homomorphism and $a \in A$. W.r.t T, the

- Fredholm spectrum of a is given by $\tau_{T}(a):=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \notin \mathcal{F}_{T}\right\}$,
- Weyl spectrum of a is given by $\omega_{T}(a)=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \notin \mathcal{W}_{T}\right\}$,
- Browder spectrum of a is given by $\beta_{T}(a)=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \notin \mathcal{B}_{T}\right\}$.

Recall: invertible \Rightarrow Browder \Rightarrow Weyl \Rightarrow Fredholm
Now:

$$
\begin{array}{cllll}
\tau_{T}(a) & \subseteq & \omega_{T}(a) & \subseteq & \beta_{T}(a) \\
\|(T a, B) & & & & \\
\sigma(a) .
\end{array}
$$

Definition (Harte, 1982)

Let $T: A \rightarrow B$ be a homomorphism and $a \in A$. W.r.t T, the

- Fredholm spectrum of a is given by $\tau_{T}(a):=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \notin \mathcal{F}_{T}\right\}$,
- Weyl spectrum of a is given by $\omega_{T}(a)=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \notin \mathcal{W}_{T}\right\}$,
- Browder spectrum of a is given by $\beta_{T}(a)=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \notin \mathcal{B}_{T}\right\}$.

Recall: invertible \Rightarrow Browder \Rightarrow Weyl \Rightarrow Fredholm
Now:

$$
\bigcap_{c \in \mathrm{~N}(T)} \sigma(a+c)
$$

$\tau_{T}(a) \quad \subseteq \quad \omega_{T}(a) \quad \subseteq \quad \beta_{T}(a) \quad \subseteq \quad \sigma(a)$.
$\stackrel{\|}{\sigma(T a, B)}$

Definition (Harte, 1982)

Let $T: A \rightarrow B$ be a homomorphism and $a \in A$. W.r.t T, the

- Fredholm spectrum of a is given by $\tau_{T}(a):=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \notin \mathcal{F}_{T}\right\}$,
- Weyl spectrum of a is given by $\omega_{T}(a)=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \notin \mathcal{W}_{T}\right\}$,
- Browder spectrum of a is given by $\beta_{T}(a)=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \notin \mathcal{B}_{T}\right\}$.

Recall: invertible \Rightarrow Browder \Rightarrow Weyl \Rightarrow Fredholm
Now:

$$
\bigcap_{c \in \mathbb{N}(T)} \sigma(a+c)
$$

Definition (Harte, 1982)

Let $T: A \rightarrow B$ be a homomorphism and $a \in A$. W.r.t T, the

- Fredholm spectrum of a is given by $\tau_{T}(a):=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \notin \mathcal{F}_{T}\right\}$,
- Weyl spectrum of a is given by $\omega_{T}(a)=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \notin \mathcal{W}_{T}\right\}$,
- Browder spectrum of a is given by $\beta_{T}(a)=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \notin \mathcal{B}_{T}\right\}$.

Recall: invertible \Rightarrow Browder \Rightarrow Weyl \Rightarrow Fredholm Now:

$$
\bigcap_{c \in \mathrm{~N}(T)} \sigma(a+c)
$$

Theorem (R. Harte, S. Živković-Zlatanović, 2014)

If $T: A \rightarrow B$ has the strong Riesz property, then

$$
\eta \sigma(T a)=\eta \omega_{T}(a)=\eta \beta_{T}(a) \text { for all } a \in A .
$$

Interplay between Fredholm theory and ordering

Theorem (R. Harte, S. Živković-Zlatanović, 2014)
If $T: A \rightarrow B$ has the strong Riesz property, then

$$
\eta \sigma(T a)=\eta \omega_{T}(a)=\eta \beta_{T}(a) \text { for all } a \in A .
$$

In particular, $r(a) \notin \sigma(T a) \Longleftrightarrow r(a) \notin \omega_{T}(a) \Longleftrightarrow r(a) \notin \beta_{T}(a)$.

Interplay between Fredholm theory and ordering

Theorem (R. Harte, S. Živković-Zlatanović, 2014)
If $T: A \rightarrow B$ has the strong Riesz property, then

$$
\eta \sigma(T a)=\eta \omega_{T}(a)=\eta \beta_{T}(a) \text { for all } a \in A .
$$

In particular, $r(a) \notin \sigma(T a) \Longleftrightarrow r(a) \notin \omega_{T}(a) \Longleftrightarrow r(a) \notin \beta_{T}(a)$.
Applied to $\pi: \mathcal{L}(X) \rightarrow \mathcal{L}(X) / \mathcal{K}(X)$

Interplay between Fredholm theory and ordering

Theorem (R. Harte, S. Živković-Zlatanović, 2014)
If $T: A \rightarrow B$ has the strong Riesz property, then

$$
\eta \sigma(T a)=\eta \omega_{T}(a)=\eta \beta_{T}(a) \text { for all } a \in A .
$$

In particular, $r(a) \notin \sigma(T a) \Longleftrightarrow r(a) \notin \omega_{T}(a) \Longleftrightarrow r(a) \notin \beta_{T}(a)$.
Applied to $\pi: \mathcal{L}(X) \rightarrow \mathcal{L}(X) / \mathcal{K}(X)$

$$
\eta \sigma(\pi T)=\eta \omega_{\pi}(T)=\eta \beta_{\pi}(T) \text { for all } T \in \mathcal{L}(X)
$$

In particular, $r(T) \notin \sigma(\pi T) \Longleftrightarrow r(T) \notin \omega_{\pi}(T) \Longleftrightarrow r(T) \notin \beta_{\pi}(T)$.

Interplay between Fredholm theory and ordering

Theorem (R. Harte, S. Živković-Zlatanović, 2014)
If $T: A \rightarrow B$ has the strong Riesz property, then

$$
\eta \sigma(T a)=\eta \omega_{T}(a)=\eta \beta_{T}(a) \text { for all } a \in A .
$$

In particular, $r(a) \notin \sigma(T a) \Longleftrightarrow r(a) \notin \omega_{T}(a) \Longleftrightarrow r(a) \notin \beta_{T}(a)$.
Applied to $\pi: \mathcal{L}(X) \rightarrow \mathcal{L}(X) / \mathcal{K}(X)$

$$
\eta \sigma(\pi T)=\eta \omega_{\pi}(T)=\eta \beta_{\pi}(T) \text { for all } T \in \mathcal{L}(X)
$$

In particular, $r(T) \notin \sigma(\pi T) \Longleftrightarrow r(T) \notin \omega_{\pi}(T) \Longleftrightarrow r(T) \notin \beta_{\pi}(T)$.

$$
\text { Recall for } T \in \mathcal{L}(X): \bigcap_{S \in \mathcal{K}(X)} \sigma(T+S)
$$

Interplay between Fredholm theory and ordering

Theorem (R. Harte, S. Živković-Zlatanović, 2014)
If $T: A \rightarrow B$ has the strong Riesz property, then

$$
\eta \sigma(T a)=\eta \omega_{T}(a)=\eta \beta_{T}(a) \text { for all } a \in A .
$$

In particular, $r(a) \notin \sigma(T a) \Longleftrightarrow r(a) \notin \omega_{T}(a) \Longleftrightarrow r(a) \notin \beta_{T}(a)$.
Applied to $\pi: \mathcal{L}(X) \rightarrow \mathcal{L}(X) / \mathcal{K}(X)$

$$
\eta \sigma(\pi T)=\eta \omega_{\pi}(T)=\eta \beta_{\pi}(T) \text { for all } T \in \mathcal{L}(X)
$$

In particular, $r(T) \notin \sigma(\pi T) \Longleftrightarrow r(T) \notin \omega_{\pi}(T) \Longleftrightarrow r(T) \notin \beta_{\pi}(T)$.

$$
\text { Recall for } T \in \mathcal{L}(X): \bigcap_{S \in \mathcal{K}(X)} \sigma(T+S)
$$

Now for $T \in \mathcal{L}(E): \quad \bigcap_{\operatorname{Cos}} \sigma(T+S), \quad K$: positive operators on E $S \in K \cap \mathcal{K}(E)$

Problem [Alekhno, 2007]

For $T \in K$, does $r(T) \notin \sigma(\pi T)$ imply $r(T) \notin \bigcap \quad \sigma(T+S)$?

Problem [Alekhno, 2007]

For $T \in K$, does $r(T) \notin \sigma(\pi T)$ imply $r(T) \notin \bigcap_{S \in K \cap \mathcal{K}(E)} \sigma(T+S)$?

YES!

Problem [Alekhno, 2007]

For $T \in K$, does $r(T) \notin \sigma(\pi T)$ imply $r(T) \notin \bigcap \quad \sigma(T+S)$?

$$
S \in K \cap \mathcal{K}(E)
$$

YES!

Theorem (Alekhno, 2009)
For $T \in \mathcal{L}(E)$,

$$
\omega_{\pi}(T)=\bigcap_{S \in K \cap \mathcal{K}(E)} \sigma(T+S) .
$$

Problem [Alekhno, 2007]

For $T \in K$, does $r(T) \notin \sigma(\pi T)$ imply $r(T) \notin \bigcap \quad \sigma(T+S)$?

$$
S \in K \cap \mathcal{K}(E)
$$

YES!

Theorem (Alekhno, 2009)
For $T \in \mathcal{L}(E)$,

$$
\omega_{\pi}(T)=\bigcap_{S \in K \cap \mathcal{K}(E)} \sigma(T+S) .
$$

- $\mathcal{L}(E)^{-1}+\mathcal{K}(E)=\mathcal{L}(E)^{-1}+\mathcal{F}(E)$

Problem [Alekhno, 2007]

For $T \in K$, does $r(T) \notin \sigma(\pi T)$ imply $r(T) \notin \bigcap \quad \sigma(T+S)$?

$$
S \in K \cap \mathcal{K}(E)
$$

YES!

Theorem (Alekhno, 2009)
For $T \in \mathcal{L}(E)$,

$$
\omega_{\pi}(T)=\bigcap_{S \in K \cap \mathcal{K}(E)} \sigma(T+S) .
$$

- $\mathcal{L}(E)^{-1}+\mathcal{K}(E)=\mathcal{L}(E)^{-1}+\mathcal{F}(E)$
- $\mathcal{F}(E) \subseteq \operatorname{span}(K \cap \mathcal{K}(E))$

Problem [Alekhno, 2007]

For $T \in K$, does $r(T) \notin \sigma(\pi T)$ imply $r(T) \notin \bigcap \quad \sigma(T+S)$?

$$
s \in K \cap \mathcal{K}(E)
$$

YES!

Theorem (Alekhno, 2009)
For $T \in \mathcal{L}(E)$,

$$
\omega_{\pi}(T)=\bigcap_{S \in K \cap \mathcal{K}(E)} \sigma(T+S) .
$$

- $\mathcal{L}(E)^{-1}+\mathcal{K}(E)=\mathcal{L}(E)^{-1}+\mathcal{F}(E)$
- $\mathcal{F}(E) \subseteq \operatorname{span}(K \cap \mathcal{K}(E))$

Natural generalization

Ordered Banach algebra $(A, C), a \in A: \bigcap_{c \in C \cap N(T)} \sigma(a+c)$

In a general ordered Banach algebra (A, C),

$$
\omega_{T}(a):=\bigcap_{c \in \mathrm{~N}(T)} \sigma(a+c) \subsetneq \bigcap_{c \in C \cap \mathrm{~N}(T)} \sigma(a+c)
$$

In a general ordered Banach algebra (A, C),

$$
\omega_{T}(a):=\bigcap_{c \in N(T)} \sigma(a+c) \subsetneq \bigcap_{c \in C \cap N(T)} \sigma(a+c)
$$

Example $(C(K, \mathbb{C}), C) ; C:=\left\{f \in C(K): f(x) \in \mathbb{R}^{+}\right.$for all $\left.x \in K\right\}$.)

In a general ordered Banach algebra (A, C),

$$
\omega_{T}(a):=\bigcap_{c \in N(T)} \sigma(a+c) \subsetneq \bigcap_{c \in C \cap N(T)} \sigma(a+c)
$$

Example $(C(K, \mathbb{C}), C) ; C:=\left\{f \in C(K): f(x) \in \mathbb{R}^{+}\right.$for all $\left.x \in K\right\}$.)

Let $K:=[0,1]$ and $T: C(K, \mathbb{C}) \rightarrow C(K, \mathbb{C})$ be the homomorphism induced by composition with the unit function 1 ; i.e.

$$
T f=f \circ \mathbf{1} \text { for all } f \in C(K) .
$$

Consider $g \in C(K)$ defined by $g(z)=-z$ for all $z \in K$. Then $\omega_{T}(g)=\{-1\}$ and $\bigcap_{c \in C \cap N(T)} \sigma(a+c)=[-1,0]$.

In a general ordered Banach algebra (A, C),

$$
\omega_{T}(a):=\bigcap_{c \in \mathbb{N}(T)} \sigma(a+c) \subsetneq \bigcap_{c \in C \cap N(T)} \sigma(a+c)=\omega_{T}^{+}(a)
$$

Example ($C(K, \mathbb{C}), C) ; C:=\left\{f \in C(K): f(x) \in \mathbb{R}^{+}\right.$for all $\left.x \in K\right\}$.)

Let $K:=[0,1]$ and $T: C(K, \mathbb{C}) \rightarrow C(K, \mathbb{C})$ be the homomorphism induced by composition with the unit function 1 ; i.e.

$$
T f=f \circ \mathbf{1} \text { for all } f \in C(K) .
$$

Consider $g \in C(K)$ defined by $g(z)=-z$ for all $z \in K$. Then $\omega_{T}(g)=\{-1\}$ and $\bigcap_{c \in C \cap N(T)} \sigma(a+c)=[-1,0]$.

In a general ordered Banach algebra (A, C),

$$
\omega_{T}(a):=\bigcap_{c \in \mathrm{~N}(T)} \sigma(a+c) \subsetneq \bigcap_{c \in C \cap \mathrm{~N}(T)} \sigma(a+c)=\omega_{T}^{+}(a)
$$

Example ($C(K, \mathbb{C}), C) ; C:=\left\{f \in C(K): f(x) \in \mathbb{R}^{+}\right.$for all $\left.x \in K\right\}$.)

Let $K:=[0,1]$ and $T: C(K, \mathbb{C}) \rightarrow C(K, \mathbb{C})$ be the homomorphism induced by composition with the unit function $\mathbf{1}$; i.e.

$$
T f=f \circ \mathbf{1} \text { for all } f \in C(K) .
$$

Consider $g \in C(K)$ defined by $g(z)=-z$ for all $z \in K$. Then $\omega_{T}(g)=\{-1\}$ and $\bigcap_{c \in C \cap N(T)} \sigma(a+c)=[-1,0]$.

Question: Let (A, C) be an ordered Banach algebra and $T: A \rightarrow B$ a homomorphism with the strong Riesz property. If $a \in C$, does $r(a) \notin \sigma(T a, B)$ imply that $r(a) \notin \omega_{T}^{+}(a) ?$

In a general ordered Banach algebra (A, C),

$$
\omega_{T}(a):=\bigcap_{c \in \mathrm{~N}(T)} \sigma(a+c) \subsetneq \bigcap_{c \in C \cap \mathrm{~N}(T)} \sigma(a+c)=\omega_{T}^{+}(a)
$$

Example ($C(K, \mathbb{C}), C) ; C:=\left\{f \in C(K): f(x) \in \mathbb{R}^{+}\right.$for all $\left.x \in K\right\}$.)

Let $K:=[0,1]$ and $T: C(K, \mathbb{C}) \rightarrow C(K, \mathbb{C})$ be the homomorphism induced by composition with the unit function $\mathbf{1}$; i.e.

$$
T f=f \circ \mathbf{1} \text { for all } f \in C(K) .
$$

Consider $g \in C(K)$ defined by $g(z)=-z$ for all $z \in K$. Then $\omega_{T}(g)=\{-1\}$ and $\bigcap_{c \in C \cap N(T)} \sigma(a+c)=[-1,0]$.

Question: Let (A, C) be an ordered Banach algebra and $T: A \rightarrow B$ a homomorphism with the strong Riesz property. If $a \in C$, does $r(a) \notin \sigma(T a, B)$ imply that $r(a) \notin \omega_{T}^{+}(a)$? YES!

The upper Browder spectrum property

$$
\text { Recall for } T \in \mathcal{L}(X): \bigcap_{\substack{S \in \mathcal{K}(X) \\ T S=S T}} \sigma(T+S)
$$

The upper Browder spectrum property

$$
\text { Recall for } T \in \mathcal{L}(X): \bigcap_{\substack{S \in \mathcal{K}(X) \\ T S=S T}} \sigma(T+S)
$$

Now for $T \in \mathcal{L}(E): \bigcap_{\substack{S \in K \cap \mathcal{K}(E) \\ T S=S T}} \sigma(T+S), \quad K$: positive operators on E

The upper Browder spectrum property

Recall for $T \in \mathcal{L}(X): \bigcap_{\substack{S \in \mathcal{K}(X) \\ T S=S T}} \sigma(T+S)$
Now for $T \in \mathcal{L}(E): \quad \bigcap \quad \sigma(T+S), \quad K$: positive operators on E $\underset{\substack{S \in K \cap \mathcal{K}(E) \\ T S=S T}}{ }$
$T S=S T$
For $T \in K$, does $r(T) \notin \sigma(\pi T)$ imply $r(T) \notin \bigcap \quad \sigma(T+S)$?

$$
\begin{gathered}
S \in K \cap \mathcal{K}(E) \\
T S=S T
\end{gathered}
$$

The upper Browder spectrum property

Recall for $T \in \mathcal{L}(X): \bigcap_{\substack{S \in \mathcal{K}(X) \\ T S=S T}} \sigma(T+S)$
Now for $T \in \mathcal{L}(E): \quad \cap \quad \sigma(T+S), \quad K$: positive operators on E $S \in K \cap \mathcal{K}(E)$
$T S=S T$

$$
\text { For } T \in K \text {, does } r(T) \notin \sigma(\pi T) \text { imply } r(T) \underset{\substack{S \in K \cap \mathcal{K}(E) \\ T S=S T}}{\notin} \sigma(T+S) ?
$$

Definition (R. Benjamin and S. Mouton, 2016)

Let (A, C) be an ordered Banach algebra and $T: A \rightarrow B$ be a homomorphism. For $a \in A$, the upper Browder spectrum of a (relative to T) is given by

$$
\bigcap_{\substack{c \in \bigcap \cap N(T) \\ a c=c a}} \sigma(a+c)
$$

The upper Browder spectrum property

Recall for $T \in \mathcal{L}(X): \bigcap_{\substack{S \in \mathcal{K}(X) \\ T S=S T}} \sigma(T+S)$
Now for $T \in \mathcal{L}(E): \quad \cap \quad \sigma(T+S), \quad K$: positive operators on E $\underset{\substack{S \in K \cap \mathcal{K} \\ T S=S T}}{ }$ $T S=S T$

$$
\text { For } T \in K \text {, does } r(T) \notin \sigma(\pi T) \text { imply } r(T) \underset{\substack{S \in K \cap \mathcal{K}(E) \\ T S=S T}}{\notin} \sigma(T+S) ?
$$

Definition (R. Benjamin and S. Mouton, 2016)

Let (A, C) be an ordered Banach algebra and $T: A \rightarrow B$ be a homomorphism. For $a \in A$, the upper Browder spectrum of a (relative to T) is given by

$$
\beta_{T}^{+}(a)=\bigcap_{\substack{c \in C \cap N(T) \\ a C=c a}} \sigma(a+c)
$$

The upper Browder spectrum property

Recall for $T \in \mathcal{L}(X): \bigcap_{\substack{S \in \mathcal{K}(X) \\ T S=S T}} \sigma(T+S)$
Now for $T \in \mathcal{L}(E): \quad \cap \quad \sigma(T+S), \quad K$: positive operators on E $\underset{\substack{S \in K \cap \mathcal{K}(E) \\ T S=S T}}{ }$

$$
T S=S T
$$

$$
\text { For } T \in K \text {, does } r(T) \notin \sigma(\pi T) \text { imply } r(T) \underset{\substack{S \in K \cap \mathcal{K}(E) \\ T S=S T}}{\notin} \sigma(T+S) ?
$$

Definition (R. Benjamin and S. Mouton, 2016)

Let (A, C) be an ordered Banach algebra and $T: A \rightarrow B$ be a homomorphism. For $a \in A$, the upper Browder spectrum of a (relative to T) is given by
$\beta_{T}^{+}(a)=\bigcap_{\substack{c \in C \cap N(T) \\ a c=c a}} \sigma(a+c)=\left\{\lambda \in \mathbb{C}: \lambda \mathbf{1}_{A}-a \notin A^{-1} \oplus(C \cap N(T))\right\}$

Example

Consider the homomorphism $T: M_{3}^{\mu}(\mathbb{C}) \rightarrow \mathbb{C}$ defined by

$$
T\left[\begin{array}{ccc}
x_{11} & x_{12} & x_{13} \\
0 & x_{22} & x_{23} \\
0 & 0 & x_{33}
\end{array}\right]=x_{11}
$$

and $M:=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right) \in M_{3}^{\mu}(\mathbb{C})$. Then

$$
\eta \sigma(T M)=\eta \beta_{T}(M)=\eta \omega_{T}(M)=\eta \omega_{T}^{+}(M)=\{1\} \neq\{0,1\}=\eta \beta_{T}^{+}(M)
$$

Example

Consider the homomorphism $T: M_{3}^{\mu}(\mathbb{C}) \rightarrow \mathbb{C}$ defined by

$$
T\left[\begin{array}{ccc}
x_{11} & x_{12} & x_{13} \\
0 & x_{22} & x_{23} \\
0 & 0 & x_{33}
\end{array}\right]=x_{11}
$$

and $M:=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right) \in M_{3}^{u}(\mathbb{C})$. Then

$$
\eta \sigma(T M)=\eta \beta_{T}(M)=\eta \omega_{T}(M)=\eta \omega_{T}^{+}(M)=\{1\} \neq\{0,1\}=\eta \beta_{T}^{+}(M) .
$$

Question: Let (A, C) be an ordered Banach algebra and $T: A \rightarrow B$ a homomorphism with the strong Riesz property. If $a \in C$, does $r(a) \notin \sigma(T a, B)$ imply that $r(a) \notin \beta_{T}^{+}(a) ?$

Example

Consider the homomorphism $T: M_{3}^{\mu}(\mathbb{C}) \rightarrow \mathbb{C}$ defined by

$$
T\left[\begin{array}{ccc}
x_{11} & x_{12} & x_{13} \\
0 & x_{22} & x_{23} \\
0 & 0 & x_{33}
\end{array}\right]=x_{11}
$$

and $M:=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right) \in M_{3}^{u}(\mathbb{C})$. Then

$$
\eta \sigma(T M)=\eta \beta_{T}(M)=\eta \omega_{T}(M)=\eta \omega_{T}^{+}(M)=\{1\} \neq\{0,1\}=\eta \beta_{T}^{+}(M) .
$$

Question: Let (A, C) be an ordered Banach algebra and $T: A \rightarrow B$ a homomorphism with the strong Riesz property. If $a \in C$, does $r(a) \notin \sigma(T a, B)$ imply that $r(a) \notin \beta_{T}^{+}(a) ?$

- $r(a) \in$ iso $\sigma(a, A)$

Example

Consider the homomorphism $T: M_{3}^{\mu}(\mathbb{C}) \rightarrow \mathbb{C}$ defined by

$$
T\left[\begin{array}{ccc}
x_{11} & x_{12} & x_{13} \\
0 & x_{22} & x_{23} \\
0 & 0 & x_{33}
\end{array}\right]=x_{11}
$$

and $M:=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right) \in M_{3}^{u}(\mathbb{C})$. Then

$$
\eta \sigma(T M)=\eta \beta_{T}(M)=\eta \omega_{T}(M)=\eta \omega_{T}^{+}(M)=\{1\} \neq\{0,1\}=\eta \beta_{T}^{+}(M) .
$$

Question: Let (A, C) be an ordered Banach algebra and $T: A \rightarrow B$ a homomorphism with the strong Riesz property. If $a \in C$, does $r(a) \notin \sigma(T a, B)$ imply that $r(a) \notin \beta_{T}^{+}(a) ?$

- $r(a) \in$ iso $\sigma(a, A)$
- In ordered Banach algebras, we have information about $p(a, r(a))$

```
\(r\)-Fredholm theory in (ordered) Banach algebras
```


r-Fredholm theory relative to T

r-Fredholm theory relative to T

Let $T: A \rightarrow B$ be a homomorphism. W.r.t. T an element $a \in A$ is called:

r-Fredholm theory relative to T

Let $T: A \rightarrow B$ be a homomorphism. W.r.t. T an element $a \in A$ is called:

- Fredholm if $0 \notin \sigma(T a, B)$,

r-Fredholm theory relative to T

Let $T: A \rightarrow B$ be a homomorphism. W.r.t. T an element $a \in A$ is called:

- Fredholm if $0 \notin \sigma(T a, B)$,
- Browder if there exist commuting elements $b \in A^{-1}(0 \notin \sigma(b, A))$ and $c \in N(T)$ such that $a=b+c$.

r-Fredholm theory relative to T

Let $T: A \rightarrow B$ be a homomorphism. W.r.t. T an element $a \in A$ is called:

- Fredholm if $0 \notin \sigma(T a, B)$,
- Browder if there exist commuting elements $b \in A^{-1}(0 \notin \sigma(b, A))$ and $c \in N(T)$ such that $a=b+c$.
a almost invertible: $0 \notin$ acc $\sigma(a)$

r-Fredholm theory relative to T

Let $T: A \rightarrow B$ be a homomorphism. W.r.t. T an element $a \in A$ is called:

- Fredholm if $0 \notin \sigma(T a, B)$,
- Browder if there exist commuting elements $b \in A^{-1}(0 \notin \sigma(b, A))$ and $c \in N(T)$ such that $a=b+c$.
a invertible: $0 \notin \sigma(a)$
a almost invertible: $0 \notin$ acc $\sigma(a)$

r-Fredholm theory relative to T

Let $T: A \rightarrow B$ be a homomorphism. W.r.t. T an element $a \in A$ is called:

- Fredholm if $0 \notin \sigma(T a, B)$,
- Browder if there exist commuting elements $b \in A^{-1}(0 \notin \sigma(b, A))$ and $c \in N(T)$ such that $a=b+c$.
a invertible: $0 \notin \sigma(a)$
a almost invertible: $0 \notin$ acc $\sigma(a)$
- invertible \Rightarrow almost invertible

r-Fredholm theory relative to T

Let $T: A \rightarrow B$ be a homomorphism. W.r.t. T an element $a \in A$ is called:

- Fredholm if $0 \notin \sigma(T a, B)$,
- Browder if there exist commuting elements $b \in A^{-1}(0 \notin \sigma(b, A))$ and $c \in N(T)$ such that $a=b+c$.
a invertible: $0 \notin \sigma(a)$
a almost invertible: $0 \notin$ acc $\sigma(a)$
- invertible \Rightarrow almost invertible \Downarrow

Browder

r-Fredholm theory relative to T

Let $T: A \rightarrow B$ be a homomorphism. W.r.t. T an element $a \in A$ is called:

- Fredholm if $0 \notin \sigma(T a, B)$,
- Browder if there exist commuting elements $b \in A^{-1}(0 \notin \sigma(b, A))$ and $c \in N(T)$ such that $a=b+c$.
a invertible: $0 \notin \sigma(a)$
a almost invertible: $0 \notin$ acc $\sigma(a)$
- invertible \Rightarrow almost invertible
\Downarrow
Browder \Rightarrow Fredholm

r-Fredholm theory relative to T

Let $T: A \rightarrow B$ be a homomorphism. W.r.t. T an element $a \in A$ is called:

- Fredholm if $0 \notin \sigma(T a, B)$,
- Browder if there exist commuting elements $b \in A^{-1}(0 \notin \sigma(b, A))$ and $c \in N(T)$ such that $a=b+c$.
a invertible: $0 \notin \sigma(a)$
a r-invertible: $r(a) \notin \sigma(a)$
a almost invertible: $0 \notin$ acc $\sigma(a)$
- invertible \Rightarrow almost invertible
\Downarrow
Browder \Rightarrow Fredholm

r-Fredholm theory relative to T

Let $T: A \rightarrow B$ be a homomorphism. W.r.t. T an element $a \in A$ is called:

- Fredholm if $0 \notin \sigma(T a, B)$,
- Browder if there exist commuting elements $b \in A^{-1}(0 \notin \sigma(b, A))$ and $c \in N(T)$ such that $a=b+c$.
a invertible: $0 \notin \sigma(a)$
a almost invertible: $0 \notin \operatorname{acc} \sigma(a)$
a r-invertible: $r(a) \notin \sigma(a)$
a almost r-invertible: $r(a) \notin \operatorname{acc} \sigma(a)$
- invertible \Rightarrow almost invertible
\Downarrow
Browder \Rightarrow Fredholm

r-Fredholm theory relative to T

Let $T: A \rightarrow B$ be a homomorphism. W.r.t. T an element $a \in A$ is called:

- Fredholm if $0 \notin \sigma(T a, B)$,
- r-Fredholm if $r(a) \notin \sigma(T a, B)$,
- Browder if there exist commuting elements $b \in A^{-1}(0 \notin \sigma(b, A))$ and $c \in \mathrm{~N}(T)$ such that $a=b+c$.
a invertible: $0 \notin \sigma(a)$
a almost invertible: $0 \notin \operatorname{acc} \sigma(a)$
a r-invertible: $r(a) \notin \sigma(a)$
a almost r-invertible: $r(a) \notin \operatorname{acc} \sigma(a)$
- invertible \Rightarrow almost invertible
\Downarrow
Browder \Rightarrow Fredholm

r-Fredholm theory relative to T

Let $T: A \rightarrow B$ be a homomorphism. W.r.t. T an element $a \in A$ is called:

- Fredholm if $0 \notin \sigma(T a, B)$,
- r-Fredholm if $r(a) \notin \sigma(T a, B)$,
- Browder if there exist commuting elements $b \in A^{-1}(0 \notin \sigma(b, A))$ and $c \in \mathrm{~N}(T)$ such that $a=b+c$.
- r-Browder if there exist commuting elements $b(r(b) \notin \sigma(b, A))$ and $c \in N(T)$ such that $a=b+c$.
a invertible: $0 \notin \sigma(a)$
a almost invertible: $0 \notin \operatorname{acc} \sigma(a)$
a r-invertible: $r(a) \notin \sigma(a)$
a almost r-invertible: $r(a) \notin$ acc $\sigma(a)$
- invertible \Rightarrow almost invertible \Downarrow
Browder \Rightarrow Fredholm

r-Fredholm theory relative to T

Let $T: A \rightarrow B$ be a homomorphism. W.r.t. T an element $a \in A$ is called:

- Fredholm if $0 \notin \sigma(T a, B)$,
- r-Fredholm if $r(a) \notin \sigma(T a, B)$,
- Browder if there exist commuting elements $b \in A^{-1}(0 \notin \sigma(b, A))$ and $c \in \mathrm{~N}(T)$ such that $a=b+c$.
- r-Browder if there exist commuting elements $b(r(b) \notin \sigma(b, A))$ and $c \in N(T)$ such that $a=b+c$.
a invertible: $0 \notin \sigma(a)$
a almost invertible: $0 \notin \operatorname{acc} \sigma(a)$
- invertible \Rightarrow almost invertible \Downarrow
Browder \Rightarrow Fredholm
a r-invertible: $r(a) \notin \sigma(a)$
a almost r-invertible: $r(a) \notin$ acc $\sigma(a)$
- r-invertible \Rightarrow almost r-invertible

r-Fredholm theory relative to T

Let $T: A \rightarrow B$ be a homomorphism. W.r.t. T an element $a \in A$ is called:

- Fredholm if $0 \notin \sigma(T a, B)$,
- r-Fredholm if $r(a) \notin \sigma(T a, B)$,
- Browder if there exist commuting elements $b \in A^{-1}(0 \notin \sigma(b, A))$ and $c \in \mathrm{~N}(T)$ such that $a=b+c$.
- r-Browder if there exist commuting elements $b(r(b) \notin \sigma(b, A))$ and $c \in N(T)$ such that $a=b+c$.
a invertible: $0 \notin \sigma(a)$
a almost invertible: $0 \notin \operatorname{acc} \sigma(a)$
- invertible \Rightarrow almost invertible \Downarrow
Browder \Rightarrow Fredholm
a r-invertible: $r(a) \notin \sigma(a)$
a almost r-invertible: $r(a) \notin$ acc $\sigma(a)$
- r-invertible \Rightarrow almost r-invertible \Downarrow
r-Browder

r-Fredholm theory relative to T

Let $T: A \rightarrow B$ be a homomorphism. W.r.t. T an element $a \in A$ is called:

- Fredholm if $0 \notin \sigma(T a, B)$,
- r-Fredholm if $r(a) \notin \sigma(T a, B)$,
- Browder if there exist commuting elements $b \in A^{-1}(0 \notin \sigma(b, A))$ and $c \in \mathrm{~N}(T)$ such that $a=b+c$.
- r-Browder if there exist commuting elements $b(r(b) \notin \sigma(b, A))$ and $c \in N(T)$ such that $a=b+c$.
a invertible: $0 \notin \sigma(a)$
a almost invertible: $0 \notin \operatorname{acc} \sigma(a)$
- invertible \Rightarrow almost invertible \Downarrow
Browder \Rightarrow Fredholm
a r-invertible: $r(a) \notin \sigma(a)$
a almost r-invertible: $r(a) \notin$ acc $\sigma(a)$
- r-invertible \Rightarrow almost r-invertible \Downarrow
r-Browder $\nRightarrow r$-Fredholm

r-Fredholm theory relative to T

Let $T: A \rightarrow B$ be a homomorphism. W.r.t. T an element $a \in A$ is called:

- Fredholm if $0 \notin \sigma(T a, B)$,
- r-Fredholm if $r(a) \notin \sigma(T a, B)$,
- Browder if there exist commuting elements $b \in A^{-1}(0 \notin \sigma(b, A))$ and $c \in \mathrm{~N}(T)$ such that $a=b+c$.
- r-Browder if there exist commuting elements $b(r(b) \notin \sigma(b, A))$ and $c \in N(T)$ such that $a=b+c$.
a invertible: $0 \notin \sigma(a)$
a almost invertible: $0 \notin$ acc $\sigma(a)$
- invertible \Rightarrow almost invertible \Downarrow
Browder \Rightarrow Fredholm介 almost invertible Fredholm
a r-invertible: $r(a) \notin \sigma(a)$
a almost r-invertible: $r(a) \notin$ acc $\sigma(a)$
- r-invertible \Rightarrow almost r-invertible \Downarrow
r-Browder $\nRightarrow r$-Fredholm

r-Fredholm theory relative to T

Let $T: A \rightarrow B$ be a homomorphism. W.r.t. T an element $a \in A$ is called:

- Fredholm if $0 \notin \sigma(T a, B)$,
- r-Fredholm if $r(a) \notin \sigma(T a, B)$,
- Browder if there exist commuting elements $b \in A^{-1}(0 \notin \sigma(b, A))$ and $c \in \mathrm{~N}(T)$ such that $a=b+c$.
- r-Browder if there exist commuting elements $b(r(b) \notin \sigma(b, A))$ and $c \in N(T)$ such that $a=b+c$.
a invertible: $0 \notin \sigma(a)$
a almost invertible: $0 \notin$ acc $\sigma(a)$
- invertible \Rightarrow almost invertible \Downarrow
Browder \Rightarrow Fredholm介 almost invertible Fredholm
a r-invertible: $r(a) \notin \sigma(a)$
a almost r-invertible: $r(a) \notin$ acc $\sigma(a)$
- r-invertible \Rightarrow almost r-invertible \Downarrow
r-Browder $\nRightarrow r$-Fredholm介
almost r-invertible r-Fredholm

r-Fredholm theory relative to T

Let $T: A \rightarrow B$ be a homomorphism. W.r.t. T an element $a \in A$ is called:

- Fredholm if $0 \notin \sigma(T a, B)$,
- r-Fredholm if $r(a) \notin \sigma(T a, B)$,
- Browder if there exist commuting elements $b \in A^{-1}(0 \notin \sigma(b, A))$ and $c \in \mathrm{~N}(T)$ such that $a=b+c$.
- r-Browder if there exist commuting elements $b(r(b) \notin \sigma(b, A))$ and $c \in N(T)$ such that $a=b+c$.
a invertible: $0 \notin \sigma(a)$
a almost invertible: $0 \notin$ acc $\sigma(a)$
- invertible \Rightarrow almost invertible \Downarrow
Browder \Rightarrow Fredholm II almost invertible Fredholm
a r-invertible: $r(a) \notin \sigma(a)$
a almost r-invertible: $r(a) \notin$ acc $\sigma(a)$
- r-invertible \Rightarrow almost r-invertible \Downarrow
r-Browder $\nRightarrow r$-Fredholm介
almost r-invertible r-Fredholm

r-Fredholm theory relative to T

Let $T: A \rightarrow B$ be a homomorphism. W.r.t. T an element $a \in A$ is called:

- Fredholm if $0 \notin \sigma(T a, B)$,
- r-Fredholm if $r(a) \notin \sigma(T a, B)$,
- Browder if there exist commuting elements $b \in A^{-1}(0 \notin \sigma(b, A))$ and $c \in \mathrm{~N}(T)$ such that $a=b+c$.
- r-Browder if there exist commuting elements $b(r(b) \notin \sigma(b, A))$ and $c \in N(T)$ such that $a=b+c$.
a invertible: $0 \notin \sigma(a)$
a almost invertible: $0 \notin$ acc $\sigma(a)$
- invertible \Rightarrow almost invertible \Downarrow
Browder \Rightarrow Fredholm II
almost invertible Fredholm
a r-invertible: $r(a) \notin \sigma(a)$
a almost r-invertible: $r(a) \notin$ acc $\sigma(a)$
- r-invertible \Rightarrow almost r-invertible \Downarrow
r-Browder $\nRightarrow r$-Fredholm H
almost r-invertible r-Fredholm

Example

Let K and L be compact Hausdorff spaces and $T: C(K) \rightarrow C(L)$ be the homomorphism induced by composition with the continuous map $\theta: L \rightarrow K$; i.e.

$$
T f=f \circ \theta \text { for all } f \in C(K) .
$$

Then

- r-Fredholm elements: $\{f \in C(K): r(f) \notin f(\theta(L))\}$
- r-Browder elements $= \begin{cases}C(K)^{r} & \text { if } \theta(L)=K \\ C(K) & \text { otherwise }\end{cases}$

Example

Let K and L be compact Hausdorff spaces and $T: C(K) \rightarrow C(L)$ be the homomorphism induced by composition with the continuous map $\theta: L \rightarrow K$; i.e.

$$
T f=f \circ \theta \text { for all } f \in C(K) .
$$

Then

- r-Fredholm elements: $\{f \in C(K): r(f) \notin f(\theta(L))\}$
- r-Browder elements $= \begin{cases}C(K)^{r} & \text { if } \theta(L)=K \\ C(K) & \text { otherwise }\end{cases}$

Example

Let $A=M_{2}^{u}(\mathbb{C})$ and $T: A \rightarrow \mathbb{C}$ be the homomorphism defined by
$T a=a_{1}$, where $a:=\left(\begin{array}{cc}a_{1} & a_{2} \\ 0 & a_{4}\end{array}\right)$. Then

- a is r-Fredholm if and only $r(a) \neq a_{1}$
- r-Browder elements: $A \backslash\left\{\left(\begin{array}{cc}x & y \\ 0 & x\end{array}\right): x \geq 0\right.$ and $\left.y \neq 0\right\}$

Theorem (Benjamin, Laustsen, Mouton [2019])
If $T: A \rightarrow B$ has the Riesz property, then
$A \ni a$ is almost r-invertble r-Fredholm $\Longleftrightarrow a$ is contractive r-Browder

Theorem (Benjamin, Laustsen, Mouton [2019])
If $T: A \rightarrow B$ has the Riesz property, then
$A \ni a$ is almost r-invertble r-Fredholm $\Longleftrightarrow a$ is contractive r-Browder
Recall:
a r-Browder:

Theorem (Benjamin, Laustsen, Mouton [2019])
If $T: A \rightarrow B$ has the Riesz property, then
$A \ni a$ is almost r-invertble r-Fredholm $\Longleftrightarrow a$ is contractive r-Browder
Recall:
a r-Browder: $a=b+c, b c=c b$,

Theorem (Benjamin, Laustsen, Mouton [2019])

If $T: A \rightarrow B$ has the Riesz property, then
$A \ni a$ is almost r-invertble r-Fredholm $\Longleftrightarrow a$ is contractive r-Browder
Recall:
a r-Browder: $a=b+c, b c=c b$, where b is r-invertible and $c \in N(T)$

Theorem (Benjamin, Laustsen, Mouton [2019])

If $T: A \rightarrow B$ has the Riesz property, then
$A \ni a$ is almost r-invertble r-Fredholm $\Longleftrightarrow a$ is contractive r-Browder
Recall:
a r-Browder: $a=b+c, b c=c b$, where b is r-invertible and $c \in N(T)$
(Now) a contractive r-Browder:

Theorem (Benjamin, Laustsen, Mouton [2019])

If $T: A \rightarrow B$ has the Riesz property, then
$A \ni a$ is almost r-invertble r-Fredholm $\Longleftrightarrow a$ is contractive r-Browder
Recall:
a r-Browder: $a=b+c, b c=c b$, where b is r-invertible and $c \in N(T)$

```
(Now)
a contractive r-Browder:
a=b+c,bc=cb,
```


Theorem (Benjamin, Laustsen, Mouton [2019])

If $T: A \rightarrow B$ has the Riesz property, then
$A \ni a$ is almost r-invertble r-Fredholm $\Longleftrightarrow a$ is contractive r-Browder
Recall:
a r-Browder: $a=b+c, b c=c b$, where b is r-invertible and $c \in N(T)$
$a=b+c, b c=c b$, where b is r-invertible, $c \in \mathrm{~N}(T)$

Theorem (Benjamin, Laustsen, Mouton [2019])

If $T: A \rightarrow B$ has the Riesz property, then
$A \ni a$ is almost r-invertble r-Fredholm $\Longleftrightarrow a$ is contractive r-Browder
Recall:
a r-Browder: $a=b+c, b c=c b$, where b is r-invertible and $c \in N(T)$
(Now)
a contractive r-Browder:
$a=b+c, b c=c b$, where b is r-invertible, $c \in N(T)$ and $r(b) \leq r(a)$

Theorem (Benjamin, Laustsen, Mouton [2019])

If $T: A \rightarrow B$ has the Riesz property, then
$A \ni a$ is almost r-invertble r-Fredholm $\Longleftrightarrow a$ is contractive r-Browder
Recall:
a r-Browder: $a=b+c, b c=c b$, where b is r-invertible and $c \in N(T)$
(Now)
a contractive r-Browder:
$a=b+c, b c=c b$, where b is r-invertible, $c \in N(T)$ and $r(b) \leq r(a)$
a almost r-invertible r-Fredholm

Theorem (Benjamin, Laustsen, Mouton [2019])

If $T: A \rightarrow B$ has the Riesz property, then
$A \ni a$ is almost r-invertble r-Fredholm $\Longleftrightarrow a$ is contractive r-Browder
Recall:
a r-Browder: $a=b+c, b c=c b$, where b is r-invertible and $c \in N(T)$
(Now)
a contractive r-Browder:
$a=b+c, b c=c b$, where b is r-invertible, $c \in N(T)$ and $r(b) \leq r(a)$
a almost r-invertible r-Fredholm \Leftrightarrow

Theorem (Benjamin, Laustsen, Mouton [2019])

If $T: A \rightarrow B$ has the Riesz property, then
$A \ni a$ is almost r-invertble r-Fredholm $\Longleftrightarrow a$ is contractive r-Browder
Recall:
a r-Browder: $a=b+c, b c=c b$, where b is r-invertible and $c \in N(T)$
(Now)
a contractive r-Browder:
$a=b+c, b c=c b$, where b is r-invertible, $c \in N(T)$ and $r(b) \leq r(a)$
a almost r-invertible r-Fredholm $\Leftrightarrow r(a) \notin$ acc $\sigma(a, A)$

Theorem (Benjamin, Laustsen, Mouton [2019])

If $T: A \rightarrow B$ has the Riesz property, then
$A \ni a$ is almost r-invertble r-Fredholm $\Longleftrightarrow a$ is contractive r-Browder
Recall:
a r-Browder: $a=b+c, b c=c b$, where b is r-invertible and $c \in N(T)$
(Now)
a contractive r-Browder:
$a=b+c, b c=c b$, where b is r-invertible, $c \in N(T)$ and $r(b) \leq r(a)$
a almost r-invertible r-Fredholm $\Leftrightarrow r(a) \notin$ acc $\sigma(a, A)$ and $r(a) \notin \sigma(T a, B)$

Theorem (Benjamin, Laustsen, Mouton [2019])

If $T: A \rightarrow B$ has the Riesz property, then
$A \ni a$ is almost r-invertble r-Fredholm $\Longleftrightarrow a$ is contractive r-Browder
Recall:
a r-Browder: $a=b+c, b c=c b$, where b is r-invertible and $c \in N(T)$
(Now)
a contractive r-Browder:
$a=b+c, b c=c b$, where b is r-invertible, $c \in N(T)$ and $r(b) \leq r(a)$
a almost r-invertible r-Fredholm $\Leftrightarrow r(a) \notin$ acc $\sigma(a, A)$ and $r(a) \notin \sigma(T a, B)$

- $r(a) \notin \sigma(a, A)$
- $r(a) \in$ iso $\sigma(a, A)$

Theorem (Benjamin, Laustsen, Mouton [2019])

If $T: A \rightarrow B$ has the Riesz property, then
$A \ni a$ is almost r-invertble r-Fredholm $\Longleftrightarrow a$ is contractive r-Browder
Recall:
a r-Browder: $a=b+c, b c=c b$, where b is r-invertible and $c \in N(T)$
(Now) a contractive r-Browder:
$a=b+c, b c=c b$, where b is r-invertible, $c \in N(T)$ and $r(b) \leq r(a)$
a almost r-invertible r-Fredholm $\Leftrightarrow r(a) \notin$ acc $\sigma(a, A)$ and $r(a) \notin \sigma(T a, B)$

- $r(a) \notin \sigma(a, A)$
- $r(a) \in$ iso $\sigma(a, A)$
§
a is r-invertible

Theorem (Benjamin, Laustsen, Mouton [2019])

If $T: A \rightarrow B$ has the Riesz property, then
$A \ni a$ is almost r-invertble r-Fredholm $\Longleftrightarrow a$ is contractive r-Browder
Recall:
a r-Browder: $a=b+c, b c=c b$, where b is r-invertible and $c \in N(T)$
(Now) a contractive r-Browder:
$a=b+c, b c=c b$, where b is r-invertible, $c \in N(T)$ and $r(b) \leq r(a)$
a almost r-invertible r-Fredholm $\Leftrightarrow r(a) \notin$ acc $\sigma(a, A)$ and $r(a) \notin \sigma(T a, B)$

- $r(a) \notin \sigma(a, A)$
- $r(a) \in$ iso $\sigma(a, A)$
§
a is r-invertible
\Downarrow
a is contractive r-Browder

Theorem (Benjamin, Laustsen, Mouton [2019])

If $T: A \rightarrow B$ has the Riesz property, then
$A \ni a$ is almost r-invertble r-Fredholm $\Longleftrightarrow a$ is contractive r-Browder
Recall:
a r-Browder: $a=b+c, b c=c b$, where b is r-invertible and $c \in N(T)$
(Now) a contractive r-Browder:
$a=b+c, b c=c b$, where b is r-invertible, $c \in N(T)$ and $r(b) \leq r(a)$
a almost r-invertible r-Fredholm $\Leftrightarrow r(a) \notin$ acc $\sigma(a, A)$ and $r(a) \notin \sigma(T a, B)$

- $r(a) \notin \sigma(a, A)$ I
- $r(a) \in$ iso $\sigma(a, A)$
- $a=b+c$,
a is r-invertible \Downarrow
a is contractive r-Browder

Theorem (Benjamin, Laustsen, Mouton [2019])

If $T: A \rightarrow B$ has the Riesz property, then
$A \ni a$ is almost r-invertble r-Fredholm $\Longleftrightarrow a$ is contractive r-Browder
Recall:
a r-Browder: $a=b+c, b c=c b$, where b is r-invertible and $c \in N(T)$
(Now) a contractive r-Browder:
$a=b+c, b c=c b$, where b is r-invertible, $c \in N(T)$ and $r(b) \leq r(a)$
a almost r-invertible r-Fredholm $\Leftrightarrow r(a) \notin \operatorname{acc} \sigma(a, A)$ and $r(a) \notin \sigma(T a, B)$

- $r(a) \notin \sigma(a, A)$

I
a is r-invertible \Downarrow
a is contractive r-Browder

Theorem (Benjamin, Laustsen, Mouton [2019])

If $T: A \rightarrow B$ has the Riesz property, then
$A \ni a$ is almost r-invertble r-Fredholm $\Longleftrightarrow a$ is contractive r-Browder
Recall:
a r-Browder: $a=b+c, b c=c b$, where b is r-invertible and $c \in N(T)$
(Now) a contractive r-Browder:
$a=b+c, b c=c b$, where b is r-invertible, $c \in N(T)$ and $r(b) \leq r(a)$
a almost r-invertible r-Fredholm $\Leftrightarrow r(a) \notin \operatorname{acc} \sigma(a, A)$ and $r(a) \notin \sigma(T a, B)$

- $r(a) \notin \sigma(a, A)$

I
a is r-invertible \Downarrow
a is contractive r-Browder

- $r(a) \in$ iso $\sigma(a, A)$
- $a=b+c$, where $b:=a(\mathbf{1}-p(a, r(a))-r(a) p(a, r(a))$ is r-invertible,

Theorem (Benjamin, Laustsen, Mouton [2019])

If $T: A \rightarrow B$ has the Riesz property, then
$A \ni a$ is almost r-invertble r-Fredholm $\Longleftrightarrow a$ is contractive r-Browder
Recall:
a r-Browder: $a=b+c, b c=c b$, where b is r-invertible and $c \in N(T)$
(Now) a contractive r-Browder:
$a=b+c, b c=c b$, where b is r-invertible, $c \in N(T)$ and $r(b) \leq r(a)$
a almost r-invertible r-Fredholm $\Leftrightarrow r(a) \notin \operatorname{acc} \sigma(a, A)$ and $r(a) \notin \sigma(T a, B)$

- $r(a) \notin \sigma(a, A)$

I
a is r-invertible \Downarrow
a is contractive r-Browder

- $r(a) \in$ iso $\sigma(a, A)$
- $a=b+c$, where $b:=a(\mathbf{1}-p(a, r(a))-r(a) p(a, r(a))$ is r-invertible, $r(b)=r(a)$,

Theorem (Benjamin, Laustsen, Mouton [2019])

If $T: A \rightarrow B$ has the Riesz property, then
$A \ni a$ is almost r-invertble r-Fredholm $\Longleftrightarrow a$ is contractive r-Browder
Recall:
a r-Browder: $a=b+c, b c=c b$, where b is r-invertible and $c \in N(T)$
(Now) a contractive r-Browder:
$a=b+c, b c=c b$, where b is r-invertible, $c \in N(T)$ and $r(b) \leq r(a)$
a almost r-invertible r-Fredholm $\Leftrightarrow r(a) \notin \operatorname{acc} \sigma(a, A)$ and $r(a) \notin \sigma(T a, B)$

- $r(a) \notin \sigma(a, A)$

I
a is r-invertible \Downarrow
a is contractive r-Browder

- $r(a) \in$ iso $\sigma(a, A)$
- $a=b+c$, where $b:=a(\mathbf{1}-p(a, r(a))-r(a) p(a, r(a))$ is r-invertible, $r(b)=r(a)$, and $c:=(a+r(a) \mathbf{1}) p(a, r(a)) \in \mathrm{N}(T)$

Theorem (Benjamin, Laustsen, Mouton [2019])

If $T: A \rightarrow B$ has the Riesz property, then
$A \ni a$ is almost r-invertble r-Fredholm $\Longleftrightarrow a$ is contractive r-Browder
Recall:
a r-Browder: $a=b+c, b c=c b$, where b is r-invertible and $c \in N(T)$
(Now) a contractive r-Browder:
$a=b+c, b c=c b$, where b is r-invertible, $c \in \mathrm{~N}(T)$ and $r(b) \leq r(a)$

Theorem (Benjamin, Laustsen, Mouton [2019])

If $T: A \rightarrow B$ has the Riesz property, then
$A \ni a$ is almost r-invertble r-Fredholm $\Longleftrightarrow a$ is contractive r-Browder
Recall:
a r-Browder: $a=b+c, b c=c b$, where b is r-invertible and $c \in N(T)$
(Now) a contractive r-Browder:
$a=b+c, b c=c b$, where b is r-invertible, $c \in \mathrm{~N}(T)$ and $r(b) \leq r(a)$

Theorem [Benjamin, Mouton, 2020]

If $T: A \rightarrow B$ has the strong Riesz property, then
$A \ni a$ is almost r-invertble r-Fredholm $\Longleftrightarrow a$ is contractive r-Browder $\Longleftrightarrow a$ is r-Fredholm

```
    |
a=b+c,bc=cb, where b is r-invertible, c\inN(T) and r(b)\leqr(a)
```

a is a positive almost r-invertible r-Fredholm element \Downarrow
a is contractive upper r-Browder \Uparrow
$a=b+c, b c=c b$, where b is r-invertible, $c \in C \cap N(T)$ and $r(b) \leq r(a)$
a is a positive almost r-invertible r-Fredholm element \Downarrow
a is contractive upper r-Browder §
$a=b+c, b c=c b$, where b is r-invertible, $c \in C \cap N(T)$ and $r(b) \leq r(a)$
Theorem (Benjamin and Mouton)
Let $A=A_{1} \oplus \cdots \oplus A_{n}$, where each $A_{j}(j=1, \ldots, n)$ is a finite-dimensional simple OBA with algebra cone C_{j}, and $C=C_{1} \oplus \cdots \oplus C_{n}$.
W.r.t. any $T: A \rightarrow B$,
positive almost r-invertible r-Fredholm \Rightarrow contractive upper r-Browder
a is a positive almost r-invertible r-Fredholm element \Downarrow
a is contractive upper r-Browder \Downarrow
$a=b+c, b c=c b$, where b is r-invertible, $c \in C \cap \mathrm{~N}(T)$ and $r(b) \leq r(a)$

Theorem (Benjamin and Mouton)

Let $A=A_{1} \oplus \cdots \oplus A_{n}$, where each $A_{j}(j=1, \ldots, n)$ is a finite-dimensional simple OBA with algebra cone C_{j}, and $C=C_{1} \oplus \cdots \oplus C_{n}$. W.r.t. any $T: A \rightarrow B$,
positive almost r-invertible r-Fredholm \Rightarrow contractive upper r-Browder

Corollary

Any finite-dimensional semisimple OBA is algebraically isomorphic to an OBA (A, C) with the property that, w.r.t. any $T: A \rightarrow B$,
positive almost r-invertible r-Fredholm \Rightarrow contractive upper r-Browder

Theorem (Benjamin and Mouton)

Let (A, C) be an OBA with closed algebra cone C. W.r.t. any $T: A \rightarrow B$,

Theorem (Benjamin and Mouton)

Let (A, C) be an OBA with closed algebra cone C. W.r.t. any $T: A \rightarrow B$, a positive almost r-invertible r-Fredholm $\quad \Longrightarrow \quad \begin{gathered}\text { upper } \\ r \text {-Browder }\end{gathered}$

Theorem (Benjamin and Mouton)

Let (A, C) be an OBA with closed algebra cone C. W.r.t. any $T: A \rightarrow B$,
a positive almost r-invertible r-Fredholm
$r(a)$ simple pole of the resolvent of a
a contractive
\Longrightarrow upper r-Browder

Theorem (Benjamin and Mouton)

Let (A, C) be an OBA with closed algebra cone C. W.r.t. any $T: A \rightarrow B$, a positive almost r-invertible r-Fredholm a contractive
\Longrightarrow upper $r(a)$ simple pole of the resolvent of $a \quad r$-Browder

Corollary

Let (A, C) be a semisimple OBA with closed algebra cone. If A is either commutative or C is proper and inverse-closed, then, w.r.t. a homomorphism $T: A \rightarrow B$ with the strong Riesz property,
positive almost r-invertible r-Fredholm \Rightarrow contractive upper r-Browder

Theorem (Benjamin and Mouton)

Let (A, C) be an OBA with closed algebra cone C. W.r.t. any $T: A \rightarrow B$,
a positive almost r-invertible r-Fredholm a contractive
$\Longrightarrow \quad$ upper $r(a)$ simple pole of the resolvent of $a \quad r$-Browder

Corollary

Let (A, C) be a semisimple OBA with closed algebra cone. If A is either commutative or C is proper and inverse-closed, then, w.r.t. a homomorphism $T: A \rightarrow B$ with the strong Riesz property,
positive almost r-invertible r-Fredholm \Rightarrow contractive upper r-Browder

Theorem (Benjamin and Mouton)

Let (A, C) be an OBA with closed algebra cone C. W.r.t. any $T: A \rightarrow B$,
a positive almost r-invertible r-Fredholm a contractive
$\Longrightarrow \quad$ upper
$r(a)$ simple pole of the resolvent of $a \quad r$-Browder

Corollary

Let (A, C) be a semisimple OBA with closed algebra cone. If A is either commutative or C is proper and inverse-closed, then, w.r.t. a homomorphism $T: A \rightarrow B$ with the strong Riesz property,
positive almost r-invertible r-Fredholm \Rightarrow contractive upper r-Browder

- proper: $C \cap-C=\{0\}$

Theorem (Benjamin and Mouton)

Let (A, C) be an OBA with closed algebra cone C. W.r.t. any $T: A \rightarrow B$,
a positive almost r-invertible r-Fredholm a contractive
$\Longrightarrow \quad$ upper
$r(a)$ simple pole of the resolvent of a
r-Browder

Corollary

Let (A, C) be a semisimple OBA with closed algebra cone. If A is either commutative or C is proper and inverse-closed, then, w.r.t. a homomorphism $T: \overline{A \rightarrow B}$ with the strong Riesz property,
positive almost r-invertible r-Fredholm \Rightarrow contractive upper r-Browder

- proper: $C \cap-C=\{0\}$
- inverse-closed: $a \in C \cap A^{-1} \Longrightarrow a^{-1} \in C$

Theorem (Benjamin and Mouton)

Let (A, C) be a Dedekind complete OBA

- Dedekind complete:

Every non-empty order-bounded set in A has a supremum

Theorem (Benjamin and Mouton)

Let (A, C) be a Dedekind complete OBA which has a disjunctive product

- Dedekind complete:

Every non-empty order-bounded set in A has a supremum

Theorem (Benjamin and Mouton)

Let (A, C) be a Dedekind complete OBA which has a disjunctive product and with closed and normal algebra cone C.

- Dedekind complete:

Every non-empty order-bounded set in A has a supremum

- normal:
there exists a constant α with the property that if $0 \leq a \leq b$, then $\|a\| \leq \alpha\|b\|$

Theorem (Benjamin and Mouton)

Let (A, C) be a Dedekind complete OBA which has a disjunctive product and with closed and normal algebra cone C. W.r.t. a homomorphism $T: A \rightarrow B$ with the strong Riesz property such that the spectral radius in $(A / \mathrm{N}(T))$ is weakly monotone,

- Dedekind complete:

Every non-empty order-bounded set in A has a supremum

- normal:
there exists a constant α with the property that if $0 \leq a \leq b$, then $\|a\| \leq \alpha\|b\|$

Theorem (Benjamin and Mouton)

Let (A, C) be a Dedekind complete OBA which has a disjunctive product and with closed and normal algebra cone C. W.r.t. a homomorphism $T: A \rightarrow B$ with the strong Riesz property such that the spectral radius in $(A / \mathrm{N}(T))$ is weakly monotone,

- Dedekind complete:

Every non-empty order-bounded set in A has a supremum

- normal:
there exists a constant α with the property that if $0 \leq a \leq b$, then $\|a\| \leq \alpha\|b\|$

Theorem (Benjamin and Mouton)

Let (A, C) be a Dedekind complete OBA which has a disjunctive product and with closed and normal algebra cone C. W.r.t. a homomorphism
$T: A \rightarrow B$ with the strong Riesz property such that the spectral radius in $(A / \overline{\mathrm{N}(T)})$ is weakly monotone,
a positive almost r-invertible r-Fredholm spectrally order continuous

\Longrightarrow contractive upper

r-Browder

- Dedekind complete:

Every non-empty order-bounded set in A has a supremum

- normal:
there exists a constant α with the property that if $0 \leq a \leq b$, then $\|a\| \leq \alpha\|b\|$

Theorem (Benjamin and Mouton)

Let (A, C) be a Dedekind complete OBA which has a disjunctive product and with closed and normal algebra cone C. W.r.t. a homomorphism
$T: A \rightarrow B$ with the strong Riesz property such that the spectral radius in $(A / \overline{\mathrm{N}(T)})$ is weakly monotone,
a positive almost r-invertible r-Fredholm
$p_{i}\left(\mathbf{1}-p_{i-1}\right) a p_{i}\left(\mathbf{1}-p_{i-1}\right)$
$\Longrightarrow \quad$ contractive upper
spectrally order continuous
r-Browder for all $i \in\{1, \ldots, n\}$ such that $r\left(p_{i}\left(\mathbf{1}-p_{i-1}\right) a p_{i}\left(\mathbf{1}-p_{i-1}\right)\right)=r(a)$.

- Dedekind complete:

Every non-empty order-bounded set in A has a supremum

- normal:
there exists a constant α with the property that if $0 \leq a \leq b$, then $\|a\| \leq \alpha\|b\|$

Application

Upper Browder spectrum property

Let (A, C) be an OBA and $T: A \rightarrow B$ an algebra homomorphism. Then $a \in C$ has the upper Browder spectrum property if

$$
r(a) \notin \sigma(T a, B) \Longrightarrow r(a) \notin \beta_{T}^{+}(a)
$$

Application

Upper Browder spectrum property

Let (A, C) be an OBA and $T: A \rightarrow B$ an algebra homomorphism. Then $a \in C$ has the upper Browder spectrum property if

$$
r(a) \notin \sigma(T a, B) \Longrightarrow r(a) \notin \beta_{T}^{+}(a)
$$

$$
\beta_{T}^{+}(a):=\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \text { is not upper Browder }\}
$$

Application

Upper Browder spectrum property

Let (A, C) be an OBA and $T: A \rightarrow B$ an algebra homomorphism. Then $a \in C$ has the upper Browder spectrum property if

$$
r(a) \notin \sigma(T a, B) \Longrightarrow r(a) \notin \beta_{T}^{+}(a)
$$

$$
\beta_{T}^{+}(a):=\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \text { is not upper Browder }\}
$$

a upper Browder element:

Application

Upper Browder spectrum property

Let (A, C) be an OBA and $T: A \rightarrow B$ an algebra homomorphism. Then $a \in C$ has the upper Browder spectrum property if

$$
r(a) \notin \sigma(T a, B) \Longrightarrow r(a) \notin \beta_{T}^{+}(a)
$$

$$
\beta_{T}^{+}(a):=\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \text { is not upper Browder }\}
$$

a upper Browder element:
$a=b+c$, where b is invertible $(0 \notin \sigma(b))$ and $c \in C \cap N(T)$ commute

Application

Upper Browder spectrum property

Let (A, C) be an OBA and $T: A \rightarrow B$ an algebra homomorphism. Then $a \in C$ has the upper Browder spectrum property if

$$
r(a) \notin \sigma(T a, B) \Longrightarrow r(a) \notin \beta_{T}^{+}(a)
$$

$$
\beta_{T}^{+}(a):=\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \text { is not upper Browder }\}
$$

a upper Browder element:
$a=b+c$, where b is invertible $(0 \notin \sigma(b))$ and $c \in C \cap N(T)$ commute
$\underbrace{a \text { positive almost } r \text {-invertible } r \text {-Fredholm }} \Rightarrow a$ contractive upper r-Browder

$$
a \in C, r(a) \notin \sigma(T a, B)
$$

Application

Upper Browder spectrum property

Let (A, C) be an OBA and $T: A \rightarrow B$ an algebra homomorphism. Then $a \in C$ has the upper Browder spectrum property if

$$
r(a) \notin \sigma(T a, B) \Longrightarrow r(a) \notin \beta_{T}^{+}(a)
$$

$$
\beta_{T}^{+}(a):=\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \text { is not upper Browder }\}
$$

a upper Browder element:
$a=b+c$, where b is invertible $(0 \notin \sigma(b))$ and $c \in C \cap N(T)$ commute
$\underbrace{a \text { positive almost } r \text {-invertible } r \text {-Fredholm }} \Rightarrow a$ contractive upper r-Browder

$$
a \in C, r(a) \notin \sigma(T a, B)
$$

Application

Upper Browder spectrum property

Let (A, C) be an OBA and $T: A \rightarrow B$ an algebra homomorphism. Then $a \in C$ has the upper Browder spectrum property if

$$
r(a) \notin \sigma(T a, B) \Longrightarrow r(a) \notin \beta_{T}^{+}(a)
$$

$$
\beta_{T}^{+}(a):=\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a \text { is not upper Browder }\}
$$

a upper Browder element:
$a=b+c$, where b is invertible $(0 \notin \sigma(b))$ and $c \in C \cap N(T)$ commute
$\underbrace{a \text { positive almost } r \text {-invertible } r \text {-Fredholm }} \Rightarrow a$ contractive upper r-Browder

$$
a \in C, r(a) \notin \sigma(T a, B)
$$

$$
\Rightarrow \quad r(a) \notin \beta_{T}^{+}(a)
$$

Results: Upper Browder spectrum property

Recall:

Any finite-dimensional semisimple OBA is algebraically isomorphic to an OBA (A, C) with the property that, w.r.t. any $T: A \rightarrow B$, positive almost r-invertible r-Fredholm $\Rightarrow a$ contractive upper r-Browder

Results: Upper Browder spectrum property

Recall:
Any finite-dimensional semisimple OBA is algebraically isomorphic to an OBA (A, C) with the property that, w.r.t. any $T: A \rightarrow B$, positive almost r-invertible r-Fredholm $\Rightarrow a$ contractive upper r-Browder

Any finite-dimensional semisimple OBA is algebraically isomorphic to an OBA (A, C) with the property that all positive elements in A has the upper Browder spectrum property relative to arbitrary algebra homomorphisms $T: A \rightarrow B$.

Results: Upper Browder spectrum property

Recall:
Let (A, C) be an OBA with closed algebra cone C. W.r.t. any $T: A \rightarrow B$, a positive almost r-invertible r-Fredholm a contractive \Longrightarrow upper $r(a)$ simple pole of the resolvent of a r-Browder

Results: Upper Browder spectrum property

Recall:
Let (A, C) be an OBA with closed algebra cone C. W.r.t. any $T: A \rightarrow B$, a positive almost r-invertible r-Fredholm a contractive
\Longrightarrow upper
$r(a)$ simple pole of the resolvent of a
r-Browder

Let (A, C) be an OBA with closed algebra cone C and $T: A \rightarrow B$ an algebra homomorphism satisfying the Riesz property.
If $a \in C$ with $r(a)$ a simple pole of the resolvent of a, then

$$
r(a) \notin \sigma(T a, B) \Longrightarrow r(a) \notin \beta_{T}^{+}(a) .
$$

Recall:
Let (A, C) be a Dedekind complete semisimple OBA which has a disjunctive product and with closed and normal algebra cone C. W.r.t. a homomorphism $T: A \rightarrow B$ with the strong Riesz property such that the spectral radius in $(A / \overline{\mathrm{N}(T)})$ is weakly monotone,
a positive almost r-invertible r-Fredholm $\quad p_{i}\left(\mathbf{1}-p_{i-1}\right) a p_{i}\left(\mathbf{1}-p_{i-1}\right)$
spectrally order continuous r-Browder
for all $i \in\{1, \ldots, n\}$ such that $r\left(p_{i}\left(\mathbf{1}-p_{i-1}\right) a p_{i}\left(\mathbf{1}-p_{i-1}\right)\right)=r(a)$.

Recall:
Let (A, C) be a Dedekind complete semisimple OBA which has a disjunctive product and with closed and normal algebra cone C. W.r.t. a homomorphism $T: A \rightarrow B$ with the strong Riesz property such that the spectral radius in $(A / \overline{\mathrm{N}(T)})$ is weakly monotone,
a positive almost r-invertible r-Fredholm $\quad p_{i}\left(\mathbf{1}-p_{i-1}\right) a p_{i}\left(\mathbf{1}-p_{i-1}\right)$
$\Longrightarrow \quad$ contractive upper spectrally order continuous r-Browder
for all $i \in\{1, \ldots, n\}$ such that $r\left(p_{i}\left(\mathbf{1}-p_{i-1}\right) a p_{i}\left(\mathbf{1}-p_{i-1}\right)\right)=r(a)$.
Let (A, C) be a Dedekind complete semisimple OBA which has a disjunctive product and with closed and normal algebra cone C. Also, suppose that $T: A \rightarrow B$ is an algebra homomorphism satisfying the strong Riesz property such that the spectral radius function in $(A / \overline{\mathrm{N}(T)})$ is weakly monotone. If $a \in C$ is a spectrally order continuous element, then

$$
r(a) \notin \sigma(T a, B) \Longrightarrow r(a) \notin \bigcup_{i=1}^{n} \beta_{T}^{+}\left(p_{i}\left(\mathbf{1}-p_{i-1}\right) a p_{i}\left(\mathbf{1}-p_{i-1}\right)\right)
$$

Thank you for your attention

