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Fixed point problem

Let X be a Hilbert or Banach space, C a nonempty closed
subset of X and T : C → C a nonlinear operator. We
denote by F(T) the set of fixed points of T, i.e.
F (T ) = {x ∈ C : Tx = x}.

The Fixed Point Problem (FPP) is formulated as follows:

Find x ∈ C such that Tx = x. (1.1)

In connection with the FPP are the following questions:

Does a fixed point exist?
If exist, is it unique?
If exist, how can we approximate it?

This work focus on the last question, i.e. approximating a
fixed point of T if its fixed point exists.
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Fixed point problem
Picard iteration process (PIP) and Banach contraction mapping principle
(BCMP)

PIP is defined in a metric space X as follows:{
x1 ∈ X,

xn+1 = Txn, ∀n ≥ 1,
(1.2)

BCMP (see [Ba]): For a complete metric space X and
T : X → X a contraction. Then

T has a unique fixed point
PIP (1.2) converges strongly to the unique fixed point of T.

BCMP is the pivot of metric fixed point theory.

For mappings more general than the contraction mapping,
one may not be able to apply the BCMP.
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Variational inequality problem (VIP)

The VIP is defined as finding a point x∗ ∈ C such that

⟨Ax∗, y − x∗⟩ ≥ 0, ∀ y ∈ H, (1.3)

A : H → H is a nonlinear operator, H is a Hilbert space
and C ⊂ H is nonempty, closed, convex.

It is known that VIP (1.3) is equivalent to the FPP, for all
γ > 0,

x∗ = PC(I − γA)x∗. (1.4)

Thus Fixed point methods can be applied to solve VIP.
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Split variational inequality problem (SVIP)

The VIP (1.3) was later generalized to the following SVIP
by Censor et al.: Find x ∈ C such that

⟨Ax, y − x⟩ ≥ 0, ∀ y ∈ C, (1.5)

and z = Tx ∈ Q solves

⟨Fz, u− z⟩ ≥ 0, ∀ u ∈ Q, (1.6)

where C and Q are nonempty, closed and convex subsets
of real Hilbert spaces H1 and H2 respectively,
A : H1 → H1, F : H2 → H2 are two operators and
T : H1 → H2 is a bounded linear operator.
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Split variational inequality problem (SVIP) contd

The SVIP can be viewed as a pair of VIPs in which a
solution of one VIP occurs in a given space H1 whose
image under a given bounded linear operator T is a
solution of another VIP in another space H2.

Thus SVIP (1.5)-(1.6) is an interesting combination of the
VIP.

Many practical nonlinear problems arising in applied
sciences such as optimization, image recovery, signal
processing and machine learning can be formulated as
SVIP.

The SVIP has only been studied by very few authors when
the operators A and F are not necessarily co-coercive.
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Split variational inequality problem (SVIP) contd

The first known attempt to solve the SVIP when A and F
are monotone and Lipschitz continuous was made by
Censor et al. [C]. First, they transformed the SVIP into an
equivalent constrained VIP in the product space H1 ×H2

(see [Section 4][C]). Then, they employed the well-known
subgradient extragradient method to solve the problem.

However, the potential difficulty in this approach lies in
the computation of the projection onto some new product
subspace formulations and the difficulty in translating the
method back to the original spaces H1 and H2.

They obtained weak convergence to a solution of SVIP
provided that the solution set of SVIP is nonempty, A,F
are L1, L2-co-coercive operators respectively.
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Our interest

Our interest in this work is to solve the SVIP when A and
F are pseudomonotone and Lipschitz continuous, without
any product space reformulation of the original problem,
and with minimal number of projections per iteration.

To this end, we construct two extensions of the projection
and contraction methods for solving the SVIP (1.5)-(1.6).

Our methods do not depend on the knowledge of the
bounded linear operator norm ||T ||.
The sequence generated by our methods converges
strongly to a minimum-norm solution of the SVIP. In many
practical problems, it is very important and useful if the
minimum-norm solutions of such problems can be found.

Our methods include inertial extrapolation steps. This aid
to improved the convergence speed.
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Nonexpansive mappings

Let H be a real Hilbert space with inner product ⟨, ⟩ and
norm ∥.∥. A mapping T : H → H is said to be

L-Lipschitz continuous, if there exists a constant L > 0
such that

∥Tx− Ty∥ ≤ L∥x− y∥, x, y ∈ H;

a contraction if L ∈ [0, 1);
nonexpansive if L = 1;
α-averaged if α ∈ (0, 1) and

T = (1− α)I + αS,

where S : H → H is nonexpansive and I is the identity
mapping on H.

Remark
Every averaged mapping is nonexpansive.
F(S) = F(T).
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Co-coercive mappings

T is said to be

L-co-coercive (or L-inverse strongly monotone), if there
exists L > 0 such that〈

Tx− Ty, x− y
〉
≥ L∥Tx− Ty∥2, ∀ x, y ∈ H,

monotone, if〈
Tx− Ty, x− y

〉
≥ 0, ∀ x, y ∈ H,

pseudomonotone, if〈
Tx, y − x

〉
≥ 0 =⇒

〈
Ty, y − x

〉
≥ 0, ∀ x, y ∈ H,

sequentially weakly continuous, if for every sequence {xn}
that converges weakly to a point x, the sequence {Txn}
converges weakly to Tx.
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Co-coercive mappings

Clearly, L-co-coercive operators are 1
L -Lipschitz continuous

and monotone but the converse is not always true.

Also, monotone operators are pseudomonotone but the
converse is not always true.

The following is an example of a pseudomonotone,
Lipschitz continuous and sequentially weakly continuous
operator but fails to be a monotone operator.

Example

Let H = l2(R). Then, the operator A : H → H defined by

A(x1, x2, x3, . . . ) = (x1e
−x2

1 , 0, 0, . . . )

is pseudomonotone, Lipschitz continuous and sequentially
weakly continuous but not monotone.
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Our assumptions

Assumption

The feasible sets C and Q are nonempty closed and convex
subsets of the real Hilbert spaces H1 and H2, respectively.

A : H1 → H1 and F : H2 → H2 are pseudomonotone,
sequentially weakly continuous and Lipschitz continuous
with Lipschitz constants L1 and L2, respectively.

T : H1 → H2 is a bounded linear operator and the solution
set Γ := {z ∈ V I(A, C) : Tz ∈ V I(F,Q)} is nonempty.

{δn}∞n=1 and {τn}∞n=1 are positive sequences satisfying the
following conditions:

δn ∈ (0, 1), lim
n→∞

δn = 0,
∞∑
n=1

δn = ∞ and lim
n→∞

τn
δn

= 0.

{θn} ⊂ (a, 1− δn) for some a > 0.
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Solving SVIP with L1 and L2 known

Algorithm

Modified projection and contraction method with fixed stepsize.

Step 0: Choose sequences {δn}∞n=1, {θn}∞n=1 and {τn}∞n=1

such that the conditions from Assumption 3.1 hold and let
η ≥ 0, γi ∈ (0, 2), i = 1, 2, µ ∈ (0, 1

L1
), λ ∈ (0, 1

L2
), α ≥ 3

and x0, x1 ∈ H1 be given arbitrarily. Set n := 1.

Step 1: Given the iterates xn−1 and xn (n ≥ 1), choose
αn such that 0 ≤ αn ≤ ᾱn, where

ᾱn :=

{
min

{
n−1

n+α−1 ,
τn

∥xn−xn−1∥

}
, if xn ̸= xn−1

n−1
n+α−1 , otherwise.

(3.1)

O.T Mewomo (UKZN, South Africa) Projection & contraction methods for SVIP Wednesday, 20th July, 2022 15 / 37



Projection &
contraction
methods for

SVIP

O.T Mewomo

Introduction

Preliminaries

Main Results

Assumptions

Proposed methods

Convergence
analysis

Numerical
Examples

References

Solving SVIP with L1 and L2 known

Algorithm

Modified projection and contraction method with fixed stepsize.

Step 0: Choose sequences {δn}∞n=1, {θn}∞n=1 and {τn}∞n=1

such that the conditions from Assumption 3.1 hold and let
η ≥ 0, γi ∈ (0, 2), i = 1, 2, µ ∈ (0, 1

L1
), λ ∈ (0, 1

L2
), α ≥ 3

and x0, x1 ∈ H1 be given arbitrarily. Set n := 1.

Step 1: Given the iterates xn−1 and xn (n ≥ 1), choose
αn such that 0 ≤ αn ≤ ᾱn, where
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Solving SVIP with L1 and L2 known contd

Algorithm

Step 2: Compute wn = xn + αn(xn − xn−1),

yn = PQ(Twn − λFTwn),

zn = Twn − γ2βnrn,

where rn := Twn − yn − λ(FTwn − Fyn) and

βn := ⟨Twn−yn,rn⟩
∥rn∥2 , if rn ̸= 0; otherwise, βn = 0.

Step 3: Compute bn = wn + ηnT
∗(zn − Twn), where

ϵ > 0, ηn ∈
[
ϵ, ∥Twn−zn∥2

∥T ∗(Twn−zn)∥2 − ϵ
]
, if zn ̸= Twn;

otherwise, ηn = η. ηn being a stepsize.
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Solving SVIP with L1 and L2 known contd

Algorithm

Step 4: Compute

un = PC(bn − µAbn),

tn = bn − γ1γnvn,

where vn := bn − un − µ(Abn −Aun) and

γn := ⟨bn−un,vn⟩
∥vn∥2 , if vn ̸= 0; otherwise, γn = 0.

Step 5: Compute

xn+1 = (1− θn − δn)bn + θntn.

Set n := n+ 1 and go back to Step 1.
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Solving SVIP with L1 and L2 unknown

Algorithm

Modified projection and contraction method with self adaptive
stepsize.

Step 0: Choose sequences {δn}∞n=1, {θn}∞n=1 and {τn}∞n=1

such that the conditions from Assumption 3.1 (d)-(e) hold
and let η ≥ 0, γi ∈ (0, 2), ai ∈ (0, 1), i = 1, 2, λ1 > 0,
µ1 > 0, α ≥ 3 and x0, x1 ∈ H1 be given arbitrarily. Set
n := 1.

Step 1: Given the iterates xn−1 and xn for each n ≥ 1,
choose αn such that 0 ≤ αn ≤ ᾱn, where

ᾱn :=

{
min

{
n−1

n+α−1 ,
τn

∥xn−xn−1∥

}
, if xn ̸= xn−1

n−1
n+α−1 , otherwise.

(3.2)
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Solving SVIP with L1 and L2 unknown contd

Algorithm

Step 2: Compute

wn = xn + αn(xn − xn−1),

yn = PQ(Twn − λnFTwn),

zn = Twn − γ2βnrn,

where rn := Twn − yn − λn(FTwn − Fyn),

βn := ⟨Twn−yn,rn⟩
∥rn∥2 , if rn ̸= 0; otherwise, βn = 0; and

λn+1 =

{
min

{
a2||Twn−yn||
||FTwn−Fyn|| , λn

}
, if FTwn ̸= Fyn

λn, otherwise.
(3.3)
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Solving SVIP with L1 and L2 unknown contd

Algorithm

Step 3: Compute

bn = wn + ηnT
∗(zn − Twn),

where the stepsize ηn is chosen such that for small enough

ϵ > 0, ηn ∈
[
ϵ, ∥Twn−zn∥2

∥T ∗(Twn−zn)∥2 − ϵ
]
, if zn ̸= Twn;

otherwise, ηn = η.
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Solving SVIP with L1 and L2 unknown contd

Algorithm

Step 4: Compute un = PC(bn − µnAbn),

tn = bn − γ1γnvn,

where vn := bn − un − µn(Abn −Aun), γn = ⟨bn−un,vn⟩
∥vn∥2 ,

if vn ̸= 0; otherwise, γn = 0; and

µn+1 =

{
min

{
a1||bn−un||
||Aun−Abn|| , µn

}
, if Abn ̸= Aun

µn, otherwise.
(3.4)

Step 5: Compute

xn+1 = (1− θn − δn)bn + θntn.

Set n := n+ 1 and go back to Step 1.
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Highlight on some of the features of our
methods

Our methods can be viewed as modified projection and
contraction methods involving one projection onto C per
iteration for solving VIP in H1 and another projection and
contraction methods involving one projection onto Q per
iteration under a bounded linear operator T for solving
another VIP in another space H2, with no extra
projections onto the feasible sets.

Another notable advantage of our methods is that the
monotonicity assumption on A and F usually used to
guarantee convergence, is dispensed with and no extra
projections are required under this setting.
The stepsizes {λn} and {µn} given by (3.3) and (3.4),
resp. are generated at each iteration by some simple
computations. Thus, the second method is easily
implemented without the prior knowledge of the Lipschitz
constants L1 and L2.
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Highlight on some of the features of our
methods

Step 5 of both algorithms guarantee the strong
convergence to a minimum-norm solution of the problem.

Our methods do not require any product space
formulation, thereby avoiding any potential difficulties that
might be caused by the product space.

The choice of the stepsize ηn in Step 3 of both methods do
not require the prior knowledge of the operator norm ∥T∥.
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Lemmas and Theorems

Lemma

The stepsize ηn given in Step 3 of Algorithms 3.2 and 3.5 is
well-defined.

Lemma

Let {xn} be a sequence generated by Algorithm 3.2 under
Assumption 3.1. Then, {xn} is bounded.

Theorem

Let {xn} be a sequence generated by Algorithm 3.5 under
Assumption 3.1. Then, {xn} converges strongly to p ∈ Γ,
where ∥p∥ = min{∥z∥ : z ∈ Γ}.
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Example 1

Let H1 = (l2(R), ||.||l2) = H2.

Define T : l2(R) → l2(R) by

Tx =
(
0, x1,

x2
2
,
x3
3
, . . .

)
, ∀x ∈ l2(R).

Then, T is a bounded linear operator on l2(R) with adjoint

T ∗y =
(
y2,

y3
2
,
y4
3
, . . .

)
, ∀y ∈ l2(R).

Let C = Q = {x ∈ l2(R) : ||x− a||l2 ≤ r}, where
a = (1, 12 ,

1
3 , · · · ), r = 3 for C and a = (12 ,

1
4 ,

1
8 , · · · ), r = 1

for Q. Then C,Q are nonempty closed and convex subsets
of l2(R). Thus,

PC(x) = PQ(x) =

{
x, if x ∈ ||x− a||l2 ≤ r,

x−a
||x−a||l2

r + a, otherwise.
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Example 1 contd

Define A,F : l2(R) → l2(R) by

A(x1, x2, x3, . . . ) = (x1e
−x2

1 , 0, 0, . . . ),

F (x1, x2, x3, . . . ) = (5x1e
−x2

1 , 0, 0, . . . ).

Then, by Example 2.1, A,F are pseudomonotone,
Lipschitz continuous and sequentially weakly continuous
but not monotone.
We plot the graph of errors against the number of
iterations and compare our methods with some existing
methods.
we consider the following cases for the numerical example.

Case 1: Take x1 = (1, 1
2 ,

1
3 , · · · ) and x0 = ( 12 ,

1
5 ,

1
10 , · · · ).

Case 2: Take x1 = ( 12 ,
1
5 ,

1
10 , · · · ) and x0 = (1, 1

2 ,
1
3 , · · · ).

Case 3: Take x1 = (1, 1
4 ,

1
9 , · · · ) and x0 = ( 12 ,

1
4 ,

1
8 , · · · ).

Case 4: Take x1 = ( 12 ,
1
4 ,

1
8 , · · · ) and x0 = (1, 1

4 ,
1
9 , · · · ).
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iterations and compare our methods with some existing
methods.
we consider the following cases for the numerical example.

Case 1: Take x1 = (1, 1
2 ,

1
3 , · · · ) and x0 = ( 12 ,

1
5 ,

1
10 , · · · ).

Case 2: Take x1 = ( 12 ,
1
5 ,

1
10 , · · · ) and x0 = (1, 1

2 ,
1
3 , · · · ).

Case 3: Take x1 = (1, 1
4 ,

1
9 , · · · ) and x0 = ( 12 ,

1
4 ,

1
8 , · · · ).

Case 4: Take x1 = ( 12 ,
1
4 ,

1
8 , · · · ) and x0 = (1, 1

4 ,
1
9 , · · · ).
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Figure: Top Left: Case 1; Top Right: Case 2; Bottom Left: Case 3;
Bottom Right: Case 4.
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Example 2

Let H1 = H2 = L2([0, 1]).

Define T : L2([0, 1]) → L2([0, 1]) by

Tx(s) =

∫ 1

0
K(s, t)x(t)dt, ∀x ∈ L2([0, 1]),

where K is a continuous real-valued function on
[0, 1]× [0, 1]. Then, T is a bounded linear operator with
adjoint

T ∗x(s) =

∫ 1

0
K(t, s)x(t)dt, ∀x ∈ L2([0, 1]).

In particular, we define K(s, t) = e−st for all s, t ∈ [0, 1].

Let C = {x ∈ L2([0, 1]) : ⟨y, x⟩ ≤ b}, where y = t+ 1 and
b = 1, then C is a nonempty closed and convex subset of
L2([0, 1]).
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Example 2 contd

Thus, we define the metric projection PC as:

PC(x) =

{
b−⟨y,x⟩
||y||2 y + x, if ⟨y, x⟩ > b,

x, if ⟨y, x⟩ ≤ b.

Also, let Q = {x ∈ L2([0, 1]) : ∥x∥ ≤ r}, where r = 2,
then Q is a nonempty closed and convex subset of
L2([0, 1]).

Thus, we define PQ as:

PQ(x) =

{
x, if x ∈ Q,
x

∥x∥2 r, otherwise.

O.T Mewomo (UKZN, South Africa) Projection & contraction methods for SVIP Wednesday, 20th July, 2022 29 / 37



Projection &
contraction
methods for

SVIP

O.T Mewomo

Introduction

Preliminaries

Main Results

Numerical
Examples

References

Example 2 contd

Thus, we define the metric projection PC as:

PC(x) =

{
b−⟨y,x⟩
||y||2 y + x, if ⟨y, x⟩ > b,

x, if ⟨y, x⟩ ≤ b.

Also, let Q = {x ∈ L2([0, 1]) : ∥x∥ ≤ r}, where r = 2,
then Q is a nonempty closed and convex subset of
L2([0, 1]).

Thus, we define PQ as:

PQ(x) =

{
x, if x ∈ Q,
x

∥x∥2 r, otherwise.

O.T Mewomo (UKZN, South Africa) Projection & contraction methods for SVIP Wednesday, 20th July, 2022 29 / 37



Projection &
contraction
methods for

SVIP

O.T Mewomo

Introduction

Preliminaries

Main Results

Numerical
Examples

References

Example 2 contd

Thus, we define the metric projection PC as:

PC(x) =

{
b−⟨y,x⟩
||y||2 y + x, if ⟨y, x⟩ > b,

x, if ⟨y, x⟩ ≤ b.

Also, let Q = {x ∈ L2([0, 1]) : ∥x∥ ≤ r}, where r = 2,
then Q is a nonempty closed and convex subset of
L2([0, 1]).

Thus, we define PQ as:

PQ(x) =

{
x, if x ∈ Q,
x

∥x∥2 r, otherwise.

O.T Mewomo (UKZN, South Africa) Projection & contraction methods for SVIP Wednesday, 20th July, 2022 29 / 37



Projection &
contraction
methods for

SVIP

O.T Mewomo

Introduction

Preliminaries

Main Results

Numerical
Examples

References

Example 2 contd

Thus, we define the metric projection PC as:

PC(x) =

{
b−⟨y,x⟩
||y||2 y + x, if ⟨y, x⟩ > b,

x, if ⟨y, x⟩ ≤ b.

Also, let Q = {x ∈ L2([0, 1]) : ∥x∥ ≤ r}, where r = 2,
then Q is a nonempty closed and convex subset of
L2([0, 1]).

Thus, we define PQ as:

PQ(x) =

{
x, if x ∈ Q,
x

∥x∥2 r, otherwise.

O.T Mewomo (UKZN, South Africa) Projection & contraction methods for SVIP Wednesday, 20th July, 2022 29 / 37



Projection &
contraction
methods for

SVIP

O.T Mewomo

Introduction

Preliminaries

Main Results

Numerical
Examples

References

Example 2 contd

Also, define F : Q → L2([0, 1]) by

F (x)(t) := g(x)M(x)(t), ∀ x ∈ Q, t ∈ [0, 1],

where g : Q → R is defined by g(x) := 1
1+∥x∥2 and

M : L2([0, 1]) → L2([0, 1]) is defined by
M(x)(t) :=

∫ t
0 x(s)ds, ∀x ∈ L2([0, 1]), t ∈ [0, 1]. Then

g is 16
25 -Lipschitz continuous and 1

5 ≤ g(x) ≤ 1, ∀ x ∈ C.
Also, M is the Volterra intergral mapping which is
bounded and linear monotone. Hence, F is
pseudomonotone and Lipschitz continuous but not
monotone.

We consider the following cases in this example:
Case 1: Take x1(t) = 1 + t2 and x0(t) = t+ 5.
Case 2: Take x1(t) = sin(t) and x0(t) = t+ 1.
Case 3: Take x1(t) = t+ 1 and x0(t) = t+ t3.
Case 4: Take x1(t) = 0.7e−t + 1 and x0(t) = t+ t3.
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Figure: Top Left: Case 1; Top Right: Case 2; Bottom Left: Case 3;
Bottom Right: Case 4.
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G O. Güler, On the convergence of the proximal point
algorithm for convex minimization, SIAM J. Control
Optim., 29 (1991), 403-419.

BHF B. Halpern, Fixed points of nonexpanding maps, Bull.
Amer. Math. Soc., 73 (1967), 591-597.

Ish S. Ishikawa, Fixed points by a new iteration method,
Proc. Amer. Math. Soc., 44 (1) (1974), 147-150.

KT S. Kamimura and W. Takahashi, Approximating
solutions of maximal monotone operators in Hilbert
spaces, J. Approx. Theory, 106 (2000), 226-240.

O.T Mewomo (UKZN, South Africa) Projection & contraction methods for SVIP Wednesday, 20th July, 2022 34 / 37



Projection &
contraction
methods for

SVIP

O.T Mewomo

Introduction

Preliminaries

Main Results

Numerical
Examples

References

References contd

KRA M. A. Krasnosel’skii, Two observations about the method
of successive approximations, Uspehi. Math. Nauk.,
10(1955), 123-127.

Li J.L. Lions and G. Stampacchia, Variational inequalities,
COmm. Pure Appl. Math., 20 (1967), 493-519.

Ma W. R. Mann, Mean value methods in iteration, Proc.
Amer. Math. Soc., 4 (1953), 506-510.

LM P. L. Lions, B. Mercier, Splitting algorithms for the sum
of two nonlinear operators, SIAM J. Numer. Anal., 16 (6)
(1979), 964-979.

Roc R. T. Rockafellar, Monotone operators and the proximal
point algorithm, SIAM J. Control Optim., 14 (1976),
877-898.

O.T Mewomo (UKZN, South Africa) Projection & contraction methods for SVIP Wednesday, 20th July, 2022 35 / 37



Projection &
contraction
methods for

SVIP

O.T Mewomo

Introduction

Preliminaries

Main Results

Numerical
Examples

References

References contd

YSX Y. Song and X. Liu, Convergence comparison of several
iteration algorithms for the common fixed point problems,
Fixed Point Theory Appl., 2009 (2009), Art. ID 824374.

Xu H. K. Xu, Viscosity approximation methods for
nonexpansive mapping, J. Math. Anal. Appl., 298 (1)
(2004), 279-291.

O.T Mewomo (UKZN, South Africa) Projection & contraction methods for SVIP Wednesday, 20th July, 2022 36 / 37



Projection &
contraction
methods for

SVIP

O.T Mewomo

Introduction

Preliminaries

Main Results

Numerical
Examples

References

Thank You!

O.T Mewomo (UKZN, South Africa) Projection & contraction methods for SVIP Wednesday, 20th July, 2022 37 / 37


	Introduction
	Fixed point problem
	Background of the study
	Purpose of the study

	Preliminaries
	Main Results
	Assumptions
	Proposed methods
	Convergence analysis

	Numerical Examples
	References

