Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries

nes) Inertial methods for finding minimum-norm solutions of the split variational inequality problem beyond monotonicity

Banach Algebras and Applications Conference Granada Spain 2022
 O.T. Mewomo

School of Mathematics, Statistics \& Computer Science University of KwaZulu-Natal, Durban, South Africa

Wednesday, 20th July, 2022

Outline

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical Examples

References
(1) Introduction

- Fixed point problem
- Background of the study
- Purpose of the study
(2) Preliminaries
(3) Main Results
- Assumptions
- Proposed methods
- Convergence analysis

4 Numerical Examples
(5) References

๗ฺ马 Acknowledgement

Introduction
Preliminaries
Main Results
Numerical Examples

References

- I acknowledge with thanks the invitation and opportunity by the organizers of the 25th Conference on Banach Algebras and Applications 2022.
- I acknowledge the financial support of 250 CHF by Symmetry towards my participation in this conference.
- A Special Issue can be proposed at any time to Symmetry. For details, see https://www.mdpi.com/journal/symmetry.

Fixed point problem

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Fixed point problem Background of the study
Purpose of the study
Preliminaries
Main Results
Numerical Examples

References

- Let \mathcal{X} be a Hilbert or Banach space, \mathcal{C} a nonempty closed subset of \mathcal{X} and $T: \mathcal{C} \rightarrow \mathcal{C}$ a nonlinear operator. We denote by $\mathrm{F}(\mathrm{T})$ the set of fixed points of T, i.e. $F(T)=\{x \in \mathcal{C}: T x=x\}$.

Fixed point problem

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Fixed point problem Background of the study
Purpose of the study
Preliminaries
Main Results
Numerical Examples

References

- Let \mathcal{X} be a Hilbert or Banach space, \mathcal{C} a nonempty closed subset of \mathcal{X} and $T: \mathcal{C} \rightarrow \mathcal{C}$ a nonlinear operator. We denote by $\mathrm{F}(\mathrm{T})$ the set of fixed points of T, i.e. $F(T)=\{x \in \mathcal{C}: T x=x\}$.
- The Fixed Point Problem (FPP) is formulated as follows:

Fixed point problem

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Fixed point problem
Background of the study
Purpose of the study
Preliminaries
Main Results
Numerical Examples

References

- Let \mathcal{X} be a Hilbert or Banach space, \mathcal{C} a nonempty closed subset of \mathcal{X} and $T: \mathcal{C} \rightarrow \mathcal{C}$ a nonlinear operator. We denote by $\mathrm{F}(\mathrm{T})$ the set of fixed points of T, i.e. $F(T)=\{x \in \mathcal{C}: T x=x\}$.
- The Fixed Point Problem (FPP) is formulated as follows:

Find $x \in \mathcal{C}$ such that $T x=x$.

Fixed point problem

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Fixed point problem Background of the study
Purpose of the study
Preliminaries
Main Results
Numerical Examples

References

- Let \mathcal{X} be a Hilbert or Banach space, \mathcal{C} a nonempty closed subset of \mathcal{X} and $T: \mathcal{C} \rightarrow \mathcal{C}$ a nonlinear operator. We denote by $\mathrm{F}(\mathrm{T})$ the set of fixed points of T, i.e. $F(T)=\{x \in \mathcal{C}: T x=x\}$.
- The Fixed Point Problem (FPP) is formulated as follows:

Find $x \in \mathcal{C}$ such that $T x=x$.

- In connection with the FPP are the following questions:

Fixed point problem

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Fixed point problem Background of the study
Purpose of the study
Preliminaries
Main Results
Numerical Examples

References

- Let \mathcal{X} be a Hilbert or Banach space, \mathcal{C} a nonempty closed subset of \mathcal{X} and $T: \mathcal{C} \rightarrow \mathcal{C}$ a nonlinear operator. We denote by $\mathrm{F}(\mathrm{T})$ the set of fixed points of T, i.e. $F(T)=\{x \in \mathcal{C}: T x=x\}$.
- The Fixed Point Problem (FPP) is formulated as follows:

Find $x \in \mathcal{C}$ such that $T x=x$.

- In connection with the FPP are the following questions:
- Does a fixed point exist?

Fixed point problem

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Fixed point problem Background of the study
Purpose of the study
Preliminaries
Main Results
Numerical Examples

References

- Let \mathcal{X} be a Hilbert or Banach space, \mathcal{C} a nonempty closed subset of \mathcal{X} and $T: \mathcal{C} \rightarrow \mathcal{C}$ a nonlinear operator. We denote by $\mathrm{F}(\mathrm{T})$ the set of fixed points of T, i.e. $F(T)=\{x \in \mathcal{C}: T x=x\}$.
- The Fixed Point Problem (FPP) is formulated as follows:

Find $x \in \mathcal{C}$ such that $T x=x$.

- In connection with the FPP are the following questions:
- Does a fixed point exist?
- If exist, is it unique?

Fixed point problem

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Fixed point problem Background of the study
Purpose of the study
Preliminaries
Main Results
Numerical Examples

References

- Let \mathcal{X} be a Hilbert or Banach space, \mathcal{C} a nonempty closed subset of \mathcal{X} and $T: \mathcal{C} \rightarrow \mathcal{C}$ a nonlinear operator. We denote by $\mathrm{F}(\mathrm{T})$ the set of fixed points of T, i.e. $F(T)=\{x \in \mathcal{C}: T x=x\}$.
- The Fixed Point Problem (FPP) is formulated as follows:

Find $x \in \mathcal{C}$ such that $T x=x$.

- In connection with the FPP are the following questions:
- Does a fixed point exist?
- If exist, is it unique?
- If exist, how can we approximate it?

Fixed point problem

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Fixed point problem Background of the study
Purpose of the study
Preliminaries
Main Results
Numerical Examples

References

- Let \mathcal{X} be a Hilbert or Banach space, \mathcal{C} a nonempty closed subset of \mathcal{X} and $T: \mathcal{C} \rightarrow \mathcal{C}$ a nonlinear operator. We denote by $\mathrm{F}(\mathrm{T})$ the set of fixed points of T, i.e. $F(T)=\{x \in \mathcal{C}: T x=x\}$.
- The Fixed Point Problem (FPP) is formulated as follows:

Find $x \in \mathcal{C}$ such that $T x=x$.

- In connection with the FPP are the following questions:
- Does a fixed point exist?
- If exist, is it unique?
- If exist, how can we approximate it?
- This work focus on the last question, i.e. approximating a fixed point of T if its fixed point exists.

Fixed point problem

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Fixed point problem Background of the study
Purpose of the study
Preliminaries
Main Results
Numerical Examples

References

- Let \mathcal{X} be a Hilbert or Banach space, \mathcal{C} a nonempty closed subset of \mathcal{X} and $T: \mathcal{C} \rightarrow \mathcal{C}$ a nonlinear operator. We denote by $\mathrm{F}(\mathrm{T})$ the set of fixed points of T, i.e. $F(T)=\{x \in \mathcal{C}: T x=x\}$.
- The Fixed Point Problem (FPP) is formulated as follows:

Find $x \in \mathcal{C}$ such that $T x=x$.

- In connection with the FPP are the following questions:
- Does a fixed point exist?
- If exist, is it unique?
- If exist, how can we approximate it?
- This work focus on the last question, i.e. approximating a fixed point of T if its fixed point exists.

Fixed point problem

Picard iteration process (PIP) and Banach contraction mapping principle (BCMP)

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Fixed point problem
Background of the study
Purpose of the study
Preliminaries
Main Results
Numerical Examples

References

- PIP is defined in a metric space X as follows:

$$
\left\{\begin{array}{l}
x_{1} \in X \\
x_{n+1}=T x_{n}, \forall n \geq 1
\end{array}\right.
$$

Fixed point problem

Picard iteration process (PIP) and Banach contraction mapping principle (BCMP)

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Fixed point problem
Background of the study
Purpose of the study
Preliminaries
Main Results
Numerical Examples

References

- PIP is defined in a metric space X as follows:

$$
\left\{\begin{array}{l}
x_{1} \in X \tag{1.2}\\
x_{n+1}=T x_{n}, \forall n \geq 1
\end{array}\right.
$$

- BCMP (see [Ba]): For a complete metric space X and $T: X \rightarrow X$ a contraction. Then

Fixed point problem

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Fixed point problem
Background of the study
Purpose of the study
Preliminaries
Main Results
Numerical Examples

References

Picard iteration process (PIP) and Banach contraction mapping principle (BCMP)

- PIP is defined in a metric space X as follows:

$$
\left\{\begin{array}{l}
x_{1} \in X \tag{1.2}\\
x_{n+1}=T x_{n}, \forall n \geq 1
\end{array}\right.
$$

- BCMP (see [Ba]): For a complete metric space X and $T: X \rightarrow X$ a contraction. Then
- T has a unique fixed point

Fixed point problem

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Fixed point problem Background of the study
Purpose of the study
Preliminaries
Main Results
Numerical Examples

References

Picard iteration process (PIP) and Banach contraction mapping principle (BCMP)

- PIP is defined in a metric space X as follows:

$$
\left\{\begin{array}{l}
x_{1} \in X \tag{1.2}\\
x_{n+1}=T x_{n}, \forall n \geq 1
\end{array}\right.
$$

- BCMP (see [Ba]): For a complete metric space X and $T: X \rightarrow X$ a contraction. Then
- T has a unique fixed point
- PIP (1.2) converges strongly to the unique fixed point of T.

Fixed point problem

Picard iteration process (PIP) and Banach contraction mapping principle (BCMP)

- PIP is defined in a metric space X as follows:

$$
\left\{\begin{array}{l}
x_{1} \in X \tag{1.2}\\
x_{n+1}=T x_{n}, \forall n \geq 1
\end{array}\right.
$$

- BCMP (see [Ba]): For a complete metric space X and $T: X \rightarrow X$ a contraction. Then
- T has a unique fixed point
- PIP (1.2) converges strongly to the unique fixed point of T.
- BCMP is the pivot of metric fixed point theory.

Fixed point problem

Picard iteration process (PIP) and Banach contraction mapping principle (BCMP)

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Fixed point problem
Background of the study
Purpose of the study
Preliminaries
Main Results
Numerical Examples

References

- PIP is defined in a metric space X as follows:

$$
\left\{\begin{array}{l}
x_{1} \in X, \tag{1.2}\\
x_{n+1}=T x_{n}, \forall n \geq 1
\end{array}\right.
$$

- BCMP (see [Ba]): For a complete metric space X and $T: X \rightarrow X$ a contraction. Then
- T has a unique fixed point
- PIP (1.2) converges strongly to the unique fixed point of T.
- BCMP is the pivot of metric fixed point theory.
- For mappings more general than the contraction mapping, one may not be able to apply the BCMP.

Fixed point problem

Picard iteration process (PIP) and Banach contraction mapping principle (BCMP)

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Fixed point problem
Background of the study
Purpose of the study
Preliminaries
Main Results
Numerical Examples

References

- PIP is defined in a metric space X as follows:

$$
\left\{\begin{array}{l}
x_{1} \in X, \tag{1.2}\\
x_{n+1}=T x_{n}, \forall n \geq 1
\end{array}\right.
$$

- BCMP (see [Ba]): For a complete metric space X and $T: X \rightarrow X$ a contraction. Then
- T has a unique fixed point
- PIP (1.2) converges strongly to the unique fixed point of T.
- BCMP is the pivot of metric fixed point theory.
- For mappings more general than the contraction mapping, one may not be able to apply the BCMP.

Variational inequality problem (VIP)

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Fixed point problem Background of the study
Purpose of the study
Preliminaries
Main Results
Numerical Examples

References

- The VIP is defined as finding a point $x^{*} \in \mathcal{C}$ such that

$$
\begin{equation*}
\left\langle A x^{*}, y-x^{*}\right\rangle \geq 0, \quad \forall y \in \mathcal{H} \tag{1.3}
\end{equation*}
$$

$A: \mathcal{H} \rightarrow \mathcal{H}$ is a nonlinear operator, \mathcal{H} is a Hilbert space and $\mathcal{C} \subset \mathcal{H}$ is nonempty, closed, convex.

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Fixed point problem Background of the study
Purpose of the study
Preliminaries
Main Results
Numerical Examples

References

Variational inequality problem (VIP)

- The VIP is defined as finding a point $x^{*} \in \mathcal{C}$ such that

$$
\begin{equation*}
\left\langle A x^{*}, y-x^{*}\right\rangle \geq 0, \quad \forall y \in \mathcal{H} \tag{1.3}
\end{equation*}
$$

$A: \mathcal{H} \rightarrow \mathcal{H}$ is a nonlinear operator, \mathcal{H} is a Hilbert space and $\mathcal{C} \subset \mathcal{H}$ is nonempty, closed, convex.

- It is known that VIP (1.3) is equivalent to the FPP, for all $\gamma>0$,

$$
\begin{equation*}
x^{*}=P_{C}(I-\gamma A) x^{*} . \tag{1.4}
\end{equation*}
$$

Thus Fixed point methods can be applied to solve VIP.

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Fixed point problem Background of the study
Purpose of the study
Preliminaries
Main Results
Numerical Examples

References

Variational inequality problem (VIP)

- The VIP is defined as finding a point $x^{*} \in \mathcal{C}$ such that

$$
\begin{equation*}
\left\langle A x^{*}, y-x^{*}\right\rangle \geq 0, \quad \forall y \in \mathcal{H} \tag{1.3}
\end{equation*}
$$

$A: \mathcal{H} \rightarrow \mathcal{H}$ is a nonlinear operator, \mathcal{H} is a Hilbert space and $\mathcal{C} \subset \mathcal{H}$ is nonempty, closed, convex.

- It is known that VIP (1.3) is equivalent to the FPP, for all $\gamma>0$,

$$
\begin{equation*}
x^{*}=P_{C}(I-\gamma A) x^{*} . \tag{1.4}
\end{equation*}
$$

Thus Fixed point methods can be applied to solve VIP.

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Fixed point problem
Background of the study
Purpose of the study
Preliminaries
Main Results
Numerical Examples

References

Split variational inequality problem (SVIP)

- The VIP (1.3) was later generalized to the following SVIP by Censor et al.: Find $x \in \mathcal{C}$ such that

$$
\begin{equation*}
\langle A x, y-x\rangle \geq 0, \quad \forall y \in \mathcal{C} \tag{1.5}
\end{equation*}
$$

and $z=T x \in \mathcal{Q}$ solves

$$
\begin{equation*}
\langle F z, u-z\rangle \geq 0, \quad \forall u \in \mathcal{Q}, \tag{1.6}
\end{equation*}
$$

where \mathcal{C} and \mathcal{Q} are nonempty, closed and convex subsets of real Hilbert spaces \mathcal{H}_{1} and \mathcal{H}_{2} respectively, $A: \mathcal{H}_{1} \rightarrow \mathcal{H}_{1}, F: \mathcal{H}_{2} \rightarrow \mathcal{H}_{2}$ are two operators and $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is a bounded linear operator.

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Fixed point problem
Background of the study
Purpose of the study
Preliminaries
Main Results
Numerical Examples

References

Split variational inequality problem (SVIP)

- The VIP (1.3) was later generalized to the following SVIP by Censor et al.: Find $x \in \mathcal{C}$ such that

$$
\begin{equation*}
\langle A x, y-x\rangle \geq 0, \quad \forall y \in \mathcal{C} \tag{1.5}
\end{equation*}
$$

and $z=T x \in \mathcal{Q}$ solves

$$
\begin{equation*}
\langle F z, u-z\rangle \geq 0, \quad \forall u \in \mathcal{Q}, \tag{1.6}
\end{equation*}
$$

where \mathcal{C} and \mathcal{Q} are nonempty, closed and convex subsets of real Hilbert spaces \mathcal{H}_{1} and \mathcal{H}_{2} respectively, $A: \mathcal{H}_{1} \rightarrow \mathcal{H}_{1}, F: \mathcal{H}_{2} \rightarrow \mathcal{H}_{2}$ are two operators and $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is a bounded linear operator.

Split variational inequality problem (SVIP) contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Fixed point problem
Background of the study
Purpose of the study
Preliminaries
Main Results
Numerical Examples

References

- The SVIP can be viewed as a pair of VIPs in which a solution of one VIP occurs in a given space \mathcal{H}_{1} whose image under a given bounded linear operator T is a solution of another VIP in another space \mathcal{H}_{2}.

Split variational inequality problem (SVIP) contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Fixed point problem Background of the study
Purpose of the study
Preliminaries
Main Results
Numerical Examples

References

- The SVIP can be viewed as a pair of VIPs in which a solution of one VIP occurs in a given space \mathcal{H}_{1} whose image under a given bounded linear operator T is a solution of another VIP in another space \mathcal{H}_{2}.
- Thus SVIP (1.5)-(1.6) is an interesting combination of the VIP.

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Fixed point problem Background of the study
Purpose of the study
Preliminaries
Main Results
Numerical Examples

References

Split variational inequality problem (SVIP) contd

- The SVIP can be viewed as a pair of VIPs in which a solution of one VIP occurs in a given space \mathcal{H}_{1} whose image under a given bounded linear operator T is a solution of another VIP in another space \mathcal{H}_{2}.
- Thus SVIP (1.5)-(1.6) is an interesting combination of the VIP.
- Many practical nonlinear problems arising in applied sciences such as optimization, image recovery, signal processing and machine learning can be formulated as SVIP.

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Fixed point problem Background of the study
Purpose of the study
Preliminaries
Main Results
Numerical Examples

References

Split variational inequality problem (SVIP) contd

- The SVIP can be viewed as a pair of VIPs in which a solution of one VIP occurs in a given space \mathcal{H}_{1} whose image under a given bounded linear operator T is a solution of another VIP in another space \mathcal{H}_{2}.
- Thus SVIP (1.5)-(1.6) is an interesting combination of the VIP.
- Many practical nonlinear problems arising in applied sciences such as optimization, image recovery, signal processing and machine learning can be formulated as SVIP.
- The SVIP has only been studied by very few authors when the operators A and F are not necessarily co-coercive.

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Fixed point problem Background of the study
Purpose of the study
Preliminaries
Main Results
Numerical Examples

References

Split variational inequality problem (SVIP) contd

- The SVIP can be viewed as a pair of VIPs in which a solution of one VIP occurs in a given space \mathcal{H}_{1} whose image under a given bounded linear operator T is a solution of another VIP in another space \mathcal{H}_{2}.
- Thus SVIP (1.5)-(1.6) is an interesting combination of the VIP.
- Many practical nonlinear problems arising in applied sciences such as optimization, image recovery, signal processing and machine learning can be formulated as SVIP.
- The SVIP has only been studied by very few authors when the operators A and F are not necessarily co-coercive.

Purpose of the study
Preliminaries
Main Results
Numerical Examples

Split variational inequality problem (SVIP) contd

- The first known attempt to solve the SVIP when A and F are monotone and Lipschitz continuous was made by Censor et al. [C]. First, they transformed the SVIP into an equivalent constrained VIP in the product space $\mathcal{H}_{1} \times \mathcal{H}_{2}$ (see [Section 4][C]). Then, they employed the well-known subgradient extragradient method to solve the problem.

Split variational inequality problem (SVIP) contd

- The first known attempt to solve the SVIP when A and F are monotone and Lipschitz continuous was made by Censor et al. [C]. First, they transformed the SVIP into an equivalent constrained VIP in the product space $\mathcal{H}_{1} \times \mathcal{H}_{2}$ (see [Section 4][C]). Then, they employed the well-known subgradient extragradient method to solve the problem.
- However, the potential difficulty in this approach lies in the computation of the projection onto some new product subspace formulations and the difficulty in translating the method back to the original spaces \mathcal{H}_{1} and \mathcal{H}_{2}.

Split variational inequality problem (SVIP) contd

- The first known attempt to solve the SVIP when A and F are monotone and Lipschitz continuous was made by Censor et al. [C]. First, they transformed the SVIP into an equivalent constrained VIP in the product space $\mathcal{H}_{1} \times \mathcal{H}_{2}$ (see [Section 4][C]). Then, they employed the well-known subgradient extragradient method to solve the problem.
- However, the potential difficulty in this approach lies in the computation of the projection onto some new product subspace formulations and the difficulty in translating the method back to the original spaces \mathcal{H}_{1} and \mathcal{H}_{2}.
- They obtained weak convergence to a solution of SVIP provided that the solution set of SVIP is nonempty, A, F are L_{1}, L_{2}-co-coercive operators respectively.

Split variational inequality problem (SVIP) contd

- The first known attempt to solve the SVIP when A and F are monotone and Lipschitz continuous was made by Censor et al. [C]. First, they transformed the SVIP into an equivalent constrained VIP in the product space $\mathcal{H}_{1} \times \mathcal{H}_{2}$ (see [Section 4][C]). Then, they employed the well-known subgradient extragradient method to solve the problem.
- However, the potential difficulty in this approach lies in the computation of the projection onto some new product subspace formulations and the difficulty in translating the method back to the original spaces \mathcal{H}_{1} and \mathcal{H}_{2}.
- They obtained weak convergence to a solution of SVIP provided that the solution set of SVIP is nonempty, A, F are L_{1}, L_{2}-co-coercive operators respectively.

Our interest

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Fixed point problem
Background of the study

Purpose of the study
Preliminaries
Main Results
Numerical Examples

References

- Our interest in this work is to solve the SVIP when A and F are pseudomonotone and Lipschitz continuous, without any product space reformulation of the original problem, and with minimal number of projections per iteration.

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Fixed point problem Background of the study
Purpose of the study
Preliminaries
Main Results
Numerical Examples

References

Our interest

- Our interest in this work is to solve the SVIP when A and F are pseudomonotone and Lipschitz continuous, without any product space reformulation of the original problem, and with minimal number of projections per iteration.
- To this end, we construct two extensions of the projection and contraction methods for solving the SVIP (1.5)-(1.6).

Purpose of the study
Preliminaries
Main Results
Numerical Examples

Our interest

- Our interest in this work is to solve the SVIP when A and F are pseudomonotone and Lipschitz continuous, without any product space reformulation of the original problem, and with minimal number of projections per iteration.
- To this end, we construct two extensions of the projection and contraction methods for solving the SVIP (1.5)-(1.6).
- Our methods do not depend on the knowledge of the bounded linear operator norm $\|T\|$.

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Fixed point problem Background of the study
Purpose of the study
Preliminaries
Main Results
Numerical Examples

References

Our interest

- Our interest in this work is to solve the SVIP when A and F are pseudomonotone and Lipschitz continuous, without any product space reformulation of the original problem, and with minimal number of projections per iteration.
- To this end, we construct two extensions of the projection and contraction methods for solving the SVIP (1.5)-(1.6).
- Our methods do not depend on the knowledge of the bounded linear operator norm $\|T\|$.
- The sequence generated by our methods converges strongly to a minimum-norm solution of the SVIP. In many practical problems, it is very important and useful if the minimum-norm solutions of such problems can be found.

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Fixed point problem Background of the study
Purpose of the study
Preliminaries
Main Results
Numerical Examples

References

Our interest

- Our interest in this work is to solve the SVIP when A and F are pseudomonotone and Lipschitz continuous, without any product space reformulation of the original problem, and with minimal number of projections per iteration.
- To this end, we construct two extensions of the projection and contraction methods for solving the SVIP (1.5)-(1.6).
- Our methods do not depend on the knowledge of the bounded linear operator norm $\|T\|$.
- The sequence generated by our methods converges strongly to a minimum-norm solution of the SVIP. In many practical problems, it is very important and useful if the minimum-norm solutions of such problems can be found.
- Our methods include inertial extrapolation steps. This aid to improved the convergence speed.

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Fixed point problem Background of the study
Purpose of the study
Preliminaries
Main Results
Numerical Examples

References

Our interest

- Our interest in this work is to solve the SVIP when A and F are pseudomonotone and Lipschitz continuous, without any product space reformulation of the original problem, and with minimal number of projections per iteration.
- To this end, we construct two extensions of the projection and contraction methods for solving the SVIP (1.5)-(1.6).
- Our methods do not depend on the knowledge of the bounded linear operator norm $\|T\|$.
- The sequence generated by our methods converges strongly to a minimum-norm solution of the SVIP. In many practical problems, it is very important and useful if the minimum-norm solutions of such problems can be found.
- Our methods include inertial extrapolation steps. This aid to improved the convergence speed.

Nonexpansive mappings

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical
Examples
References

- Let \mathcal{H} be a real Hilbert space with inner product \langle,$\rangle and$ norm $\|$.$\| . A mapping T: \mathcal{H} \rightarrow \mathcal{H}$ is said to be

Nonexpansive mappings

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical Examples

References

- Let \mathcal{H} be a real Hilbert space with inner product \langle,$\rangle and$ norm $\|$.$\| . A mapping T: \mathcal{H} \rightarrow \mathcal{H}$ is said to be
- L-Lipschitz continuous, if there exists a constant $L>0$ such that

$$
\|T x-T y\| \leq L\|x-y\|, \quad x, y \in \mathcal{H}
$$

Nonexpansive mappings

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical Examples

References

- Let \mathcal{H} be a real Hilbert space with inner product \langle,$\rangle and$ norm $\|$.$\| . A mapping T: \mathcal{H} \rightarrow \mathcal{H}$ is said to be
- L-Lipschitz continuous, if there exists a constant $L>0$ such that

$$
\|T x-T y\| \leq L\|x-y\|, \quad x, y \in \mathcal{H}
$$

- a contraction if $L \in[0,1)$;

Nonexpansive mappings

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical Examples

References

- Let \mathcal{H} be a real Hilbert space with inner product \langle,$\rangle and$ norm $\|$.$\| . A mapping T: \mathcal{H} \rightarrow \mathcal{H}$ is said to be
- L-Lipschitz continuous, if there exists a constant $L>0$ such that

$$
\|T x-T y\| \leq L\|x-y\|, \quad x, y \in \mathcal{H}
$$

- a contraction if $L \in[0,1)$;
- nonexpansive if $L=1$;

Nonexpansive mappings

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical Examples

References

- Let \mathcal{H} be a real Hilbert space with inner product \langle,$\rangle and$ norm $\|$.$\| . A mapping T: \mathcal{H} \rightarrow \mathcal{H}$ is said to be
- L-Lipschitz continuous, if there exists a constant $L>0$ such that

$$
\|T x-T y\| \leq L\|x-y\|, \quad x, y \in \mathcal{H}
$$

- a contraction if $L \in[0,1)$;
- nonexpansive if $L=1$;
- α-averaged if $\alpha \in(0,1)$ and

$$
T=(1-\alpha) I+\alpha S
$$

where $S: \mathcal{H} \rightarrow \mathcal{H}$ is nonexpansive and I is the identity mapping on \mathcal{H}.

Nonexpansive mappings

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical Examples

References

- Let \mathcal{H} be a real Hilbert space with inner product \langle,$\rangle and$ norm $\|$.$\| . A mapping T: \mathcal{H} \rightarrow \mathcal{H}$ is said to be
- L-Lipschitz continuous, if there exists a constant $L>0$ such that

$$
\|T x-T y\| \leq L\|x-y\|, \quad x, y \in \mathcal{H}
$$

- a contraction if $L \in[0,1)$;
- nonexpansive if $L=1$;
- α-averaged if $\alpha \in(0,1)$ and

$$
T=(1-\alpha) I+\alpha S
$$

where $S: \mathcal{H} \rightarrow \mathcal{H}$ is nonexpansive and I is the identity mapping on \mathcal{H}.

- Remark

Nonexpansive mappings

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical Examples

References

- Let \mathcal{H} be a real Hilbert space with inner product \langle,$\rangle and$ norm $\|$.$\| . A mapping T: \mathcal{H} \rightarrow \mathcal{H}$ is said to be
- L-Lipschitz continuous, if there exists a constant $L>0$ such that

$$
\|T x-T y\| \leq L\|x-y\|, \quad x, y \in \mathcal{H}
$$

- a contraction if $L \in[0,1)$;
- nonexpansive if $L=1$;
- α-averaged if $\alpha \in(0,1)$ and

$$
T=(1-\alpha) I+\alpha S
$$

where $S: \mathcal{H} \rightarrow \mathcal{H}$ is nonexpansive and I is the identity mapping on \mathcal{H}.

- Remark
- Every averaged mapping is nonexpansive.

Nonexpansive mappings

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical Examples

References

- Let \mathcal{H} be a real Hilbert space with inner product \langle,$\rangle and$ norm $\|$.$\| . A mapping T: \mathcal{H} \rightarrow \mathcal{H}$ is said to be
- L-Lipschitz continuous, if there exists a constant $L>0$ such that

$$
\|T x-T y\| \leq L\|x-y\|, \quad x, y \in \mathcal{H}
$$

- a contraction if $L \in[0,1)$;
- nonexpansive if $L=1$;
- α-averaged if $\alpha \in(0,1)$ and

$$
T=(1-\alpha) I+\alpha S
$$

where $S: \mathcal{H} \rightarrow \mathcal{H}$ is nonexpansive and I is the identity mapping on \mathcal{H}.

- Remark
- Every averaged mapping is nonexpansive.
- $F(S)=F(T)$.

Nonexpansive mappings

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical Examples

References

- Let \mathcal{H} be a real Hilbert space with inner product \langle,$\rangle and$ norm $\|$.$\| . A mapping T: \mathcal{H} \rightarrow \mathcal{H}$ is said to be
- L-Lipschitz continuous, if there exists a constant $L>0$ such that

$$
\|T x-T y\| \leq L\|x-y\|, \quad x, y \in \mathcal{H}
$$

- a contraction if $L \in[0,1)$;
- nonexpansive if $L=1$;
- α-averaged if $\alpha \in(0,1)$ and

$$
T=(1-\alpha) I+\alpha S
$$

where $S: \mathcal{H} \rightarrow \mathcal{H}$ is nonexpansive and I is the identity mapping on \mathcal{H}.

- Remark
- Every averaged mapping is nonexpansive.
- $F(S)=F(T)$.

Co-coercive mappings

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical
Examples
References

- T is said to be

Co-coercive mappings

YAKWAZULU-NATALI

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical
Examples
References

- T is said to be
- L-co-coercive (or L-inverse strongly monotone), if there exists $L>0$ such that

$$
\langle T x-T y, x-y\rangle \geq L\|T x-T y\|^{2}, \quad \forall x, y \in \mathcal{H}
$$

Co-coercive mappings

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical
Examples
References

- T is said to be
- L-co-coercive (or L-inverse strongly monotone), if there exists $L>0$ such that

$$
\langle T x-T y, x-y\rangle \geq L\|T x-T y\|^{2}, \quad \forall x, y \in \mathcal{H}
$$

- monotone, if

$$
\langle T x-T y, x-y\rangle \geq 0, \quad \forall x, y \in \mathcal{H}
$$

Co-coercive mappings

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical
Examples
References

- T is said to be
- L-co-coercive (or L-inverse strongly monotone), if there exists $L>0$ such that

$$
\langle T x-T y, x-y\rangle \geq L\|T x-T y\|^{2}, \quad \forall x, y \in \mathcal{H},
$$

- monotone, if

$$
\langle T x-T y, x-y\rangle \geq 0, \quad \forall x, y \in \mathcal{H}
$$

- pseudomonotone, if

$$
\langle T x, y-x\rangle \geq 0 \Longrightarrow\langle T y, y-x\rangle \geq 0, \quad \forall x, y \in \mathcal{H}
$$

Co-coercive mappings

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical Examples

References

- T is said to be
- L-co-coercive (or L-inverse strongly monotone), if there exists $L>0$ such that

$$
\langle T x-T y, x-y\rangle \geq L\|T x-T y\|^{2}, \quad \forall x, y \in \mathcal{H}
$$

- monotone, if

$$
\langle T x-T y, x-y\rangle \geq 0, \quad \forall x, y \in \mathcal{H},
$$

- pseudomonotone, if

$$
\langle T x, y-x\rangle \geq 0 \Longrightarrow\langle T y, y-x\rangle \geq 0, \quad \forall x, y \in \mathcal{H}
$$

- sequentially weakly continuous, if for every sequence $\left\{x_{n}\right\}$ that converges weakly to a point x, the sequence $\left\{T x_{n}\right\}$ converges weakly to $T x$.

Co-coercive mappings

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical Examples

References

- T is said to be
- L-co-coercive (or L-inverse strongly monotone), if there exists $L>0$ such that

$$
\langle T x-T y, x-y\rangle \geq L\|T x-T y\|^{2}, \quad \forall x, y \in \mathcal{H}
$$

- monotone, if

$$
\langle T x-T y, x-y\rangle \geq 0, \quad \forall x, y \in \mathcal{H},
$$

- pseudomonotone, if

$$
\langle T x, y-x\rangle \geq 0 \Longrightarrow\langle T y, y-x\rangle \geq 0, \quad \forall x, y \in \mathcal{H}
$$

- sequentially weakly continuous, if for every sequence $\left\{x_{n}\right\}$ that converges weakly to a point x, the sequence $\left\{T x_{n}\right\}$ converges weakly to $T x$.

Co-coercive mappings

$$
\frac{\begin{array}{c}
\text { UNIVERSITY OF } \\
\text { KWAZULU-NATAL }
\end{array}}{\text { INYUVESI }}
$$

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical
Examples
References

- Clearly, L-co-coercive operators are $\frac{1}{L}$-Lipschitz continuous and monotone but the converse is not always true.

Co-coercive mappings

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical
Examples
References

- Clearly, L-co-coercive operators are $\frac{1}{L}$-Lipschitz continuous and monotone but the converse is not always true.
- Also, monotone operators are pseudomonotone but the converse is not always true.

Co-coercive mappings

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical Examples

References

- Clearly, L-co-coercive operators are $\frac{1}{L}$-Lipschitz continuous and monotone but the converse is not always true.
- Also, monotone operators are pseudomonotone but the converse is not always true.
- The following is an example of a pseudomonotone, Lipschitz continuous and sequentially weakly continuous operator but fails to be a monotone operator.

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical Examples

References

Co-coercive mappings

- Clearly, L-co-coercive operators are $\frac{1}{L}$-Lipschitz continuous and monotone but the converse is not always true.
- Also, monotone operators are pseudomonotone but the converse is not always true.
- The following is an example of a pseudomonotone, Lipschitz continuous and sequentially weakly continuous operator but fails to be a monotone operator.

Example

Let $\mathcal{H}=l_{2}(\mathbb{R})$. Then, the operator $A: \mathcal{H} \rightarrow \mathcal{H}$ defined by

$$
A\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{1} e^{-x_{1}^{2}}, 0,0, \ldots\right)
$$

is pseudomonotone, Lipschitz continuous and sequentially weakly continuous but not monotone.

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical Examples

References

Co-coercive mappings

- Clearly, L-co-coercive operators are $\frac{1}{L}$-Lipschitz continuous and monotone but the converse is not always true.
- Also, monotone operators are pseudomonotone but the converse is not always true.
- The following is an example of a pseudomonotone, Lipschitz continuous and sequentially weakly continuous operator but fails to be a monotone operator.

Example

Let $\mathcal{H}=l_{2}(\mathbb{R})$. Then, the operator $A: \mathcal{H} \rightarrow \mathcal{H}$ defined by

$$
A\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{1} e^{-x_{1}^{2}}, 0,0, \ldots\right)
$$

is pseudomonotone, Lipschitz continuous and sequentially weakly continuous but not monotone.

Our assumptions

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries

Main Results

Assumptions
Proposed methods
Convergence analysis

Numerical Examples

References

Assumption

- The feasible sets \mathcal{C} and \mathcal{Q} are nonempty closed and convex subsets of the real Hilbert spaces \mathcal{H}_{1} and \mathcal{H}_{2}, respectively.

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries

Main Results

Assumptions

Proposed methods
Convergence analysis
Numerical Examples

References

Our assumptions

Assumption

- The feasible sets \mathcal{C} and \mathcal{Q} are nonempty closed and convex subsets of the real Hilbert spaces \mathcal{H}_{1} and \mathcal{H}_{2}, respectively.
- $A: \mathcal{H}_{1} \rightarrow \mathcal{H}_{1}$ and $F: \mathcal{H}_{2} \rightarrow \mathcal{H}_{2}$ are pseudomonotone, sequentially weakly continuous and Lipschitz continuous with Lipschitz constants L_{1} and L_{2}, respectively.

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Assumptions
Proposed methods
Convergence analysis

Numerical Examples

References

Our assumptions

Assumption

- The feasible sets \mathcal{C} and \mathcal{Q} are nonempty closed and convex subsets of the real Hilbert spaces \mathcal{H}_{1} and \mathcal{H}_{2}, respectively.
- $A: \mathcal{H}_{1} \rightarrow \mathcal{H}_{1}$ and $F: \mathcal{H}_{2} \rightarrow \mathcal{H}_{2}$ are pseudomonotone, sequentially weakly continuous and Lipschitz continuous with Lipschitz constants L_{1} and L_{2}, respectively.
- $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is a bounded linear operator and the solution set $\Gamma:=\{z \in V I(A, \mathcal{C}): T z \in V I(F, \mathcal{Q})\}$ is nonempty.

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Assumptions
Proposed methods
Convergence analysis

Numerical Examples

References

Our assumptions

Assumption

- The feasible sets \mathcal{C} and \mathcal{Q} are nonempty closed and convex subsets of the real Hilbert spaces \mathcal{H}_{1} and \mathcal{H}_{2}, respectively.
- $A: \mathcal{H}_{1} \rightarrow \mathcal{H}_{1}$ and $F: \mathcal{H}_{2} \rightarrow \mathcal{H}_{2}$ are pseudomonotone, sequentially weakly continuous and Lipschitz continuous with Lipschitz constants L_{1} and L_{2}, respectively.
- $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is a bounded linear operator and the solution set $\Gamma:=\{z \in V I(A, \mathcal{C}): T z \in V I(F, \mathcal{Q})\}$ is nonempty.
- $\left\{\delta_{n}\right\}_{n=1}^{\infty}$ and $\left\{\tau_{n}\right\}_{n=1}^{\infty}$ are positive sequences satisfying the following conditions:

$$
\delta_{n} \in(0,1), \quad \lim _{n \rightarrow \infty} \delta_{n}=0, \quad \sum_{n=1}^{\infty} \delta_{n}=\infty \text { and } \lim _{n \rightarrow \infty} \frac{\tau_{n}}{\delta_{n}}=0
$$

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Assumptions
Proposed methods
Convergence analysis

Numerical Examples

References

Our assumptions

Assumption

- The feasible sets \mathcal{C} and \mathcal{Q} are nonempty closed and convex subsets of the real Hilbert spaces \mathcal{H}_{1} and \mathcal{H}_{2}, respectively.
- $A: \mathcal{H}_{1} \rightarrow \mathcal{H}_{1}$ and $F: \mathcal{H}_{2} \rightarrow \mathcal{H}_{2}$ are pseudomonotone, sequentially weakly continuous and Lipschitz continuous with Lipschitz constants L_{1} and L_{2}, respectively.
- $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is a bounded linear operator and the solution set $\Gamma:=\{z \in V I(A, \mathcal{C}): T z \in V I(F, \mathcal{Q})\}$ is nonempty.
- $\left\{\delta_{n}\right\}_{n=1}^{\infty}$ and $\left\{\tau_{n}\right\}_{n=1}^{\infty}$ are positive sequences satisfying the following conditions:
$\delta_{n} \in(0,1), \quad \lim _{n \rightarrow \infty} \delta_{n}=0, \quad \sum_{n=1}^{\infty} \delta_{n}=\infty$ and $\lim _{n \rightarrow \infty} \frac{\tau_{n}}{\delta_{n}}=0$.
- $\left\{\theta_{n}\right\} \subset\left(a, 1-\delta_{n}\right)$ for some $a>0$.

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Assumptions
Proposed methods
Convergence analysis

Numerical Examples

References

Our assumptions

Assumption

- The feasible sets \mathcal{C} and \mathcal{Q} are nonempty closed and convex subsets of the real Hilbert spaces \mathcal{H}_{1} and \mathcal{H}_{2}, respectively.
- $A: \mathcal{H}_{1} \rightarrow \mathcal{H}_{1}$ and $F: \mathcal{H}_{2} \rightarrow \mathcal{H}_{2}$ are pseudomonotone, sequentially weakly continuous and Lipschitz continuous with Lipschitz constants L_{1} and L_{2}, respectively.
- $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is a bounded linear operator and the solution set $\Gamma:=\{z \in V I(A, \mathcal{C}): T z \in V I(F, \mathcal{Q})\}$ is nonempty.
- $\left\{\delta_{n}\right\}_{n=1}^{\infty}$ and $\left\{\tau_{n}\right\}_{n=1}^{\infty}$ are positive sequences satisfying the following conditions:
$\delta_{n} \in(0,1), \quad \lim _{n \rightarrow \infty} \delta_{n}=0, \quad \sum_{n=1}^{\infty} \delta_{n}=\infty$ and $\lim _{n \rightarrow \infty} \frac{\tau_{n}}{\delta_{n}}=0$.
- $\left\{\theta_{n}\right\} \subset\left(a, 1-\delta_{n}\right)$ for some $a>0$.

Solving SVIP with L_{1} and L_{2} known

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results

Assumptions

Proposed methods

Convergence

 analysis
Numerical

 ExamplesReferences

Algorithm

Modified projection and contraction method with fixed stepsize.

- Step 0: Choose sequences $\left\{\delta_{n}\right\}_{n=1}^{\infty},\left\{\theta_{n}\right\}_{n=1}^{\infty}$ and $\left\{\tau_{n}\right\}_{n=1}^{\infty}$ such that the conditions from Assumption 3.1 hold and let $\eta \geq 0, \gamma_{i} \in(0,2), i=1,2, \mu \in\left(0, \frac{1}{L_{1}}\right), \lambda \in\left(0, \frac{1}{L_{2}}\right), \alpha \geq 3$ and $x_{0}, x_{1} \in \mathcal{H}_{1}$ be given arbitrarily. Set $n:=1$.

Solving SVIP with L_{1} and L_{2} known

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Assumptions

Proposed methods

Convergence analysis

Numerical Examples

References

Algorithm

Modified projection and contraction method with fixed stepsize.

- Step 0: Choose sequences $\left\{\delta_{n}\right\}_{n=1}^{\infty},\left\{\theta_{n}\right\}_{n=1}^{\infty}$ and $\left\{\tau_{n}\right\}_{n=1}^{\infty}$ such that the conditions from Assumption 3.1 hold and let $\eta \geq 0, \gamma_{i} \in(0,2), i=1,2, \mu \in\left(0, \frac{1}{L_{1}}\right), \lambda \in\left(0, \frac{1}{L_{2}}\right), \alpha \geq 3$ and $x_{0}, x_{1} \in \mathcal{H}_{1}$ be given arbitrarily. Set $n:=1$.
- Step 1: Given the iterates x_{n-1} and $x_{n} \quad(n \geq 1)$, choose α_{n} such that $0 \leq \alpha_{n} \leq \bar{\alpha}_{n}$, where

$$
\bar{\alpha}_{n}:= \begin{cases}\min \left\{\frac{n-1}{n+\alpha-1}, \frac{\tau_{n}}{\left\|x_{n}-x_{n-1}\right\|}\right\}, & \text { if } x_{n} \neq x_{n-1} \tag{3.1}\\ \frac{n-1}{n+\alpha-1}, & \text { otherwise }\end{cases}
$$

Solving SVIP with L_{1} and L_{2} known

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Assumptions

Proposed methods

Convergence analysis

Numerical Examples

References

Algorithm

Modified projection and contraction method with fixed stepsize.

- Step 0: Choose sequences $\left\{\delta_{n}\right\}_{n=1}^{\infty},\left\{\theta_{n}\right\}_{n=1}^{\infty}$ and $\left\{\tau_{n}\right\}_{n=1}^{\infty}$ such that the conditions from Assumption 3.1 hold and let $\eta \geq 0, \gamma_{i} \in(0,2), i=1,2, \mu \in\left(0, \frac{1}{L_{1}}\right), \lambda \in\left(0, \frac{1}{L_{2}}\right), \alpha \geq 3$ and $x_{0}, x_{1} \in \mathcal{H}_{1}$ be given arbitrarily. Set $n:=1$.
- Step 1: Given the iterates x_{n-1} and $x_{n} \quad(n \geq 1)$, choose α_{n} such that $0 \leq \alpha_{n} \leq \bar{\alpha}_{n}$, where

$$
\bar{\alpha}_{n}:= \begin{cases}\min \left\{\frac{n-1}{n+\alpha-1}, \frac{\tau_{n}}{\left\|x_{n}-x_{n-1}\right\|}\right\}, & \text { if } x_{n} \neq x_{n-1} \tag{3.1}\\ \frac{n-1}{n+\alpha-1}, & \text { otherwise }\end{cases}
$$

Solving SVIP with L_{1} and L_{2} known contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries

Main Results

Assumptions
Proposed methods
Convergence analysis

Numerical Examples

References

Algorithm

- Step 2: Compute $w_{n}=x_{n}+\alpha_{n}\left(x_{n}-x_{n-1}\right)$,

$$
\begin{gathered}
y_{n}=P_{\mathcal{Q}}\left(T w_{n}-\lambda F T w_{n}\right), \\
z_{n}=T w_{n}-\gamma_{2} \beta_{n} r_{n}, \\
\text { where } r_{n}:=T w_{n}-y_{n}-\lambda\left(F T w_{n}-F y_{n}\right) \text { and } \\
\beta_{n}:=\frac{\left\langle T w_{n}-y_{n}, r_{n}\right\rangle}{\left\|r_{n}\right\|^{2}}, \text { if } r_{n} \neq 0 ; \text { otherwise, } \beta_{n}=0 .
\end{gathered}
$$

Solving SVIP with L_{1} and L_{2} known contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Assumptions
Proposed methods
Convergence analysis

Numerical Examples

References

Algorithm

- Step 2: Compute $w_{n}=x_{n}+\alpha_{n}\left(x_{n}-x_{n-1}\right)$,

$$
\begin{gathered}
y_{n}=P_{\mathcal{Q}}\left(T w_{n}-\lambda F T w_{n}\right) \\
z_{n}=T w_{n}-\gamma_{2} \beta_{n} r_{n} \\
\text { where } r_{n}:=T w_{n}-y_{n}-\lambda\left(F T w_{n}-F y_{n}\right) \text { and } \\
\beta_{n}:=\frac{\left\langle T w_{n}-y_{n}, r_{n}\right\rangle}{\left\|r_{n}\right\|^{2}}, \text { if } r_{n} \neq 0 ; \text { otherwise, } \beta_{n}=0
\end{gathered}
$$

- Step 3: Compute $b_{n}=w_{n}+\eta_{n} T^{*}\left(z_{n}-T w_{n}\right)$, where $\epsilon>0, \eta_{n} \in\left[\epsilon, \frac{\left\|T w_{n}-z_{n}\right\|^{2}}{\left\|T^{*}\left(T w_{n}-z_{n}\right)\right\|^{2}}-\epsilon\right]$, if $z_{n} \neq T w_{n}$; otherwise, $\eta_{n}=\eta . \eta_{n}$ being a stepsize.

Solving SVIP with L_{1} and L_{2} known contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Assumptions
Proposed methods
Convergence analysis

Numerical Examples

References

Algorithm

- Step 2: Compute $w_{n}=x_{n}+\alpha_{n}\left(x_{n}-x_{n-1}\right)$,

$$
\begin{gathered}
y_{n}=P_{\mathcal{Q}}\left(T w_{n}-\lambda F T w_{n}\right) \\
z_{n}=T w_{n}-\gamma_{2} \beta_{n} r_{n} \\
\text { where } r_{n}:=T w_{n}-y_{n}-\lambda\left(F T w_{n}-F y_{n}\right) \text { and } \\
\beta_{n}:=\frac{\left\langle T w_{n}-y_{n}, r_{n}\right\rangle}{\left\|r_{n}\right\|^{2}}, \text { if } r_{n} \neq 0 ; \text { otherwise, } \beta_{n}=0
\end{gathered}
$$

- Step 3: Compute $b_{n}=w_{n}+\eta_{n} T^{*}\left(z_{n}-T w_{n}\right)$, where $\epsilon>0, \eta_{n} \in\left[\epsilon, \frac{\left\|T w_{n}-z_{n}\right\|^{2}}{\left\|T^{*}\left(T w_{n}-z_{n}\right)\right\|^{2}}-\epsilon\right]$, if $z_{n} \neq T w_{n}$; otherwise, $\eta_{n}=\eta . \eta_{n}$ being a stepsize.

Solving SVIP with L_{1} and L_{2} known contd

Projection \& contraction methods for SVIP
O.T Mewomo

Algorithm

- Step 4: Compute

$$
\begin{gathered}
u_{n}=P_{\mathcal{C}}\left(b_{n}-\mu A b_{n}\right) \\
t_{n}=b_{n}-\gamma_{1} \gamma_{n} v_{n} \\
\text { where } v_{n}:=b_{n}-u_{n}-\mu\left(A b_{n}-A u_{n}\right) \text { and } \\
\gamma_{n}:=\frac{\left\langle b_{n}-u_{n}, v_{n}\right\rangle}{\left\|v_{n}\right\|^{2}}, \text { if } v_{n} \neq 0 ; \text { otherwise, } \gamma_{n}=0 .
\end{gathered}
$$

Solving SVIP with L_{1} and L_{2} known contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Assumptions
Proposed methods
Convergence analysis

Numerical Examples

References

Algorithm

- Step 4: Compute

$$
\begin{gathered}
u_{n}=P_{\mathcal{C}}\left(b_{n}-\mu A b_{n}\right) \\
t_{n}=b_{n}-\gamma_{1} \gamma_{n} v_{n} \\
\text { where } v_{n}:=b_{n}-u_{n}-\mu\left(A b_{n}-A u_{n}\right) \text { and } \\
\gamma_{n}:=\frac{\left\langle b_{n}-u_{n}, v_{n}\right\rangle}{\left\|v_{n}\right\|^{2}}, \text { if } v_{n} \neq 0 ; \text { otherwise, } \gamma_{n}=0 .
\end{gathered}
$$

- Step 5: Compute

$$
x_{n+1}=\left(1-\theta_{n}-\delta_{n}\right) b_{n}+\theta_{n} t_{n} .
$$

Set $n:=n+1$ and go back to Step 1.

Solving SVIP with L_{1} and L_{2} known contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Assumptions
Proposed methods
Convergence analysis

Numerical Examples

References

Algorithm

- Step 4: Compute

$$
\begin{gathered}
u_{n}=P_{\mathcal{C}}\left(b_{n}-\mu A b_{n}\right) \\
t_{n}=b_{n}-\gamma_{1} \gamma_{n} v_{n} \\
\text { where } v_{n}:=b_{n}-u_{n}-\mu\left(A b_{n}-A u_{n}\right) \text { and } \\
\gamma_{n}:=\frac{\left\langle b_{n}-u_{n}, v_{n}\right\rangle}{\left\|v_{n}\right\|^{2}}, \text { if } v_{n} \neq 0 ; \text { otherwise, } \gamma_{n}=0 .
\end{gathered}
$$

- Step 5: Compute

$$
x_{n+1}=\left(1-\theta_{n}-\delta_{n}\right) b_{n}+\theta_{n} t_{n} .
$$

Set $n:=n+1$ and go back to Step 1.

Solving SVIP with L_{1} and L_{2} unknown

Projection \& contraction methods for SVIP
O.T Mewomo

Algorithm

Modified projection and contraction method with self adaptive stepsize.

- Step 0: Choose sequences $\left\{\delta_{n}\right\}_{n=1}^{\infty},\left\{\theta_{n}\right\}_{n=1}^{\infty}$ and $\left\{\tau_{n}\right\}_{n=1}^{\infty}$ such that the conditions from Assumption 3.1 (d)-(e) hold and let $\eta \geq 0, \gamma_{i} \in(0,2), a_{i} \in(0,1), i=1,2, \lambda_{1}>0$, $\mu_{1}>0, \alpha \geq 3$ and $x_{0}, x_{1} \in \mathcal{H}_{1}$ be given arbitrarily. Set $n:=1$.

Solving SVIP with L_{1} and L_{2} unknown

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Assumptions

Proposed methods

Convergence analysis

Numerical Examples

References

Algorithm

Modified projection and contraction method with self adaptive stepsize.

- Step 0: Choose sequences $\left\{\delta_{n}\right\}_{n=1}^{\infty},\left\{\theta_{n}\right\}_{n=1}^{\infty}$ and $\left\{\tau_{n}\right\}_{n=1}^{\infty}$ such that the conditions from Assumption 3.1 (d)-(e) hold and let $\eta \geq 0, \gamma_{i} \in(0,2), a_{i} \in(0,1), i=1,2, \lambda_{1}>0$, $\mu_{1}>0, \alpha \geq 3$ and $x_{0}, x_{1} \in \mathcal{H}_{1}$ be given arbitrarily. Set $n:=1$.
- Step 1: Given the iterates x_{n-1} and x_{n} for each $n \geq 1$, choose α_{n} such that $0 \leq \alpha_{n} \leq \bar{\alpha}_{n}$, where

$$
\bar{\alpha}_{n}:= \begin{cases}\min \left\{\frac{n-1}{n+\alpha-1}, \frac{\tau_{n}}{\left\|x_{n}-x_{n-1}\right\|}\right\}, & \text { if } x_{n} \neq x_{n-1} \tag{3.2}\\ \frac{n-1}{n+\alpha-1}, & \text { otherwise }\end{cases}
$$

[^0]
Solving SVIP with L_{1} and L_{2} unknown

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Assumptions

Proposed methods

Convergence analysis

Numerical Examples

References

Algorithm

Modified projection and contraction method with self adaptive stepsize.

- Step 0: Choose sequences $\left\{\delta_{n}\right\}_{n=1}^{\infty},\left\{\theta_{n}\right\}_{n=1}^{\infty}$ and $\left\{\tau_{n}\right\}_{n=1}^{\infty}$ such that the conditions from Assumption 3.1 (d)-(e) hold and let $\eta \geq 0, \gamma_{i} \in(0,2), a_{i} \in(0,1), i=1,2, \lambda_{1}>0$, $\mu_{1}>0, \alpha \geq 3$ and $x_{0}, x_{1} \in \mathcal{H}_{1}$ be given arbitrarily. Set $n:=1$.
- Step 1: Given the iterates x_{n-1} and x_{n} for each $n \geq 1$, choose α_{n} such that $0 \leq \alpha_{n} \leq \bar{\alpha}_{n}$, where

$$
\bar{\alpha}_{n}:= \begin{cases}\min \left\{\frac{n-1}{n+\alpha-1}, \frac{\tau_{n}}{\left\|x_{n}-x_{n-1}\right\|}\right\}, & \text { if } x_{n} \neq x_{n-1} \tag{3.2}\\ \frac{n-1}{n+\alpha-1}, & \text { otherwise }\end{cases}
$$

[^1]
Solving SVIP with L_{1} and L_{2} unknown contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Assumptions
Proposed methods
Convergence analysis

Numerical Examples

References

Algorithm

- Step 2: Compute

$$
\begin{gathered}
w_{n}=x_{n}+\alpha_{n}\left(x_{n}-x_{n-1}\right) \\
y_{n}=P_{\mathcal{Q}}\left(T w_{n}-\lambda_{n} F T w_{n}\right) \\
z_{n}=T w_{n}-\gamma_{2} \beta_{n} r_{n} \\
\text { where } r_{n}:=T w_{n}-y_{n}-\lambda_{n}\left(F T w_{n}-F y_{n}\right), \\
\beta_{n}:=\frac{\left\langle T w_{n}-y_{n}, r_{n}\right\rangle}{\left\|r_{n}\right\|^{2}}, \text { if } r_{n} \neq 0 ; \text { otherwise, } \beta_{n}=0 ; \text { and } \\
\lambda_{n+1}= \begin{cases}\min \left\{\frac{a_{2}\left\|T w_{n}-y_{n}\right\|}{\left\|F T w_{n}-F y_{n}\right\|},\right. & \left.\lambda_{n}\right\}, \\
\text { if } F T w_{n} \neq F y_{n}(3.3) \\
\lambda_{n}, & \text { otherwise. }\end{cases}
\end{gathered}
$$

Solving SVIP with L_{1} and L_{2} unknown contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Assumptions
Proposed methods
Convergence analysis

Numerical Examples

References

Algorithm

- Step 2: Compute

$$
\begin{gathered}
w_{n}=x_{n}+\alpha_{n}\left(x_{n}-x_{n-1}\right) \\
y_{n}=P_{\mathcal{Q}}\left(T w_{n}-\lambda_{n} F T w_{n}\right) \\
z_{n}=T w_{n}-\gamma_{2} \beta_{n} r_{n} \\
\text { where } r_{n}:=T w_{n}-y_{n}-\lambda_{n}\left(F T w_{n}-F y_{n}\right), \\
\beta_{n}:=\frac{\left\langle T w_{n}-y_{n}, r_{n}\right\rangle}{\left\|r_{n}\right\|^{2}}, \text { if } r_{n} \neq 0 ; \text { otherwise, } \beta_{n}=0 ; \text { and } \\
\lambda_{n+1}= \begin{cases}\min \left\{\frac{a_{2}\left\|T w_{n}-y_{n}\right\|}{\left\|F T w_{n}-F y_{n}\right\|},\right. & \left.\lambda_{n}\right\}, \\
\text { if } F T w_{n} \neq F y_{n}(3.3) \\
\lambda_{n}, & \text { otherwise. }\end{cases}
\end{gathered}
$$

Solving SVIP with L_{1} and L_{2} unknown contd

Projection \& contraction methods for SVIP
O.T Mewomo

Algorithm

Introduction
Preliminaries
Main Results
Assumptions
Proposed methods
Convergence analysis

Numerical Examples

References

- Step 3: Compute

$$
b_{n}=w_{n}+\eta_{n} T^{*}\left(z_{n}-T w_{n}\right),
$$

where the stepsize η_{n} is chosen such that for small enough $\epsilon>0, \quad \eta_{n} \in\left[\epsilon, \frac{\left\|T w_{n}-z_{n}\right\|^{2}}{\left\|T^{*}\left(T w_{n}-z_{n}\right)\right\|^{2}}-\epsilon\right]$, if $z_{n} \neq T w_{n}$; otherwise, $\eta_{n}=\eta$.

Solving SVIP with L_{1} and L_{2} unknown contd

Projection \& contraction methods for SVIP
O.T Mewomo

Algorithm

Introduction
Preliminaries
Main Results
Assumptions
Proposed methods
Convergence analysis

Numerical Examples

References

- Step 3: Compute

$$
b_{n}=w_{n}+\eta_{n} T^{*}\left(z_{n}-T w_{n}\right),
$$

where the stepsize η_{n} is chosen such that for small enough $\epsilon>0, \quad \eta_{n} \in\left[\epsilon, \frac{\left\|T w_{n}-z_{n}\right\|^{2}}{\left\|T^{*}\left(T w_{n}-z_{n}\right)\right\|^{2}}-\epsilon\right]$, if $z_{n} \neq T w_{n}$; otherwise, $\eta_{n}=\eta$.

Solving SVIP with L_{1} and L_{2} unknown contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Assumptions
Proposed methods
Convergence analysis

Numerical Examples

References

Algorithm

- Step 4: Compute $u_{n}=P_{\mathcal{C}}\left(b_{n}-\mu_{n} A b_{n}\right)$,

$$
\begin{aligned}
& \qquad t_{n}=b_{n}-\gamma_{1} \gamma_{n} v_{n} \\
& \text { where } v_{n}:=b_{n}-u_{n}-\mu_{n}\left(A b_{n}-A u_{n}\right), \gamma_{n}=\frac{\left\langle b_{n}-u_{n}, v_{n}\right\rangle}{\left\|v_{n}\right\|^{2}} \\
& \text { if } v_{n} \neq 0 ; \text { otherwise, } \gamma_{n}=0 ; \text { and }
\end{aligned}
$$

$$
\mu_{n+1}= \begin{cases}\min \left\{\frac{a_{1}\left\|b_{n}-u_{n}\right\|}{\left\|A u_{n}-A b_{n}\right\|}, \mu_{n}\right\}, & \text { if } A b_{n} \neq A u_{n} \tag{3.4}\\ \mu_{n}, & \text { otherwise }\end{cases}
$$

Solving SVIP with L_{1} and L_{2} unknown contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Assumptions
Proposed methods
Convergence analysis

Numerical Examples

References

Algorithm

- Step 4: Compute $u_{n}=P_{\mathcal{C}}\left(b_{n}-\mu_{n} A b_{n}\right)$,

$$
t_{n}=b_{n}-\gamma_{1} \gamma_{n} v_{n},
$$

where $v_{n}:=b_{n}-u_{n}-\mu_{n}\left(A b_{n}-A u_{n}\right), \gamma_{n}=\frac{\left\langle b_{n}-u_{n}, v_{n}\right\rangle}{\left\|v_{n}\right\|^{2}}$,
if $v_{n} \neq 0$; otherwise, $\gamma_{n}=0$; and

$$
\mu_{n+1}= \begin{cases}\min \left\{\frac{a_{1}\left\|b_{n}-u_{n}\right\|}{\left\|A u_{n}-A b_{n}\right\|}, \mu_{n}\right\}, & \text { if } A b_{n} \neq A u_{n} \tag{3.4}\\ \mu_{n}, & \text { otherwise } .\end{cases}
$$

- Step 5: Compute

$$
x_{n+1}=\left(1-\theta_{n}-\delta_{n}\right) b_{n}+\theta_{n} t_{n}
$$

Solving SVIP with L_{1} and L_{2} unknown contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Assumptions
Proposed methods
Convergence analysis

Numerical Examples

References

Algorithm

- Step 4: Compute $u_{n}=P_{\mathcal{C}}\left(b_{n}-\mu_{n} A b_{n}\right)$,

$$
t_{n}=b_{n}-\gamma_{1} \gamma_{n} v_{n},
$$

where $v_{n}:=b_{n}-u_{n}-\mu_{n}\left(A b_{n}-A u_{n}\right), \gamma_{n}=\frac{\left\langle b_{n}-u_{n}, v_{n}\right\rangle}{\left\|v_{n}\right\|^{2}}$,
if $v_{n} \neq 0$; otherwise, $\gamma_{n}=0$; and

$$
\mu_{n+1}= \begin{cases}\min \left\{\frac{a_{1}\left\|b_{n}-u_{n}\right\|}{\left\|A u_{n}-A b_{n}\right\|}, \mu_{n}\right\}, & \text { if } A b_{n} \neq A u_{n} \tag{3.4}\\ \mu_{n}, & \text { otherwise } .\end{cases}
$$

- Step 5: Compute

$$
x_{n+1}=\left(1-\theta_{n}-\delta_{n}\right) b_{n}+\theta_{n} t_{n}
$$

Highlight on some of the features of our methods

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction

- Our methods can be viewed as modified projection and contraction methods involving one projection onto \mathcal{C} per iteration for solving VIP in \mathcal{H}_{1} and another projection and contraction methods involving one projection onto \mathcal{Q} per iteration under a bounded linear operator T for solving another VIP in another space \mathcal{H}_{2}, with no extra projections onto the feasible sets.

Highlight on some of the features of our methods

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results

Assumptions

Proposed methods Convergence analysis
Numerical Examples

References

- Our methods can be viewed as modified projection and contraction methods involving one projection onto \mathcal{C} per iteration for solving VIP in \mathcal{H}_{1} and another projection and contraction methods involving one projection onto \mathcal{Q} per iteration under a bounded linear operator T for solving another VIP in another space \mathcal{H}_{2}, with no extra projections onto the feasible sets.
- Another notable advantage of our methods is that the monotonicity assumption on A and F usually used to guarantee convergence, is dispensed with and no extra projections are required under this setting.

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Assumptions
Proposed methods Convergence analysis
Numerical Examples

References

Highlight on some of the features of our methods

- Our methods can be viewed as modified projection and contraction methods involving one projection onto \mathcal{C} per iteration for solving VIP in \mathcal{H}_{1} and another projection and contraction methods involving one projection onto \mathcal{Q} per iteration under a bounded linear operator T for solving another VIP in another space \mathcal{H}_{2}, with no extra projections onto the feasible sets.
- Another notable advantage of our methods is that the monotonicity assumption on A and F usually used to guarantee convergence, is dispensed with and no extra projections are required under this setting.
- The stepsizes $\left\{\lambda_{n}\right\}$ and $\left\{\mu_{n}\right\}$ given by (3.3) and (3.4), resp. are generated at each iteration by some simple computations. Thus, the second method is easily implemented without the prior knowledge of the Lipschitz constants I_{1} and I_{0}
O.T Mewomo (UKZN, South Africa) Projection \& contraction methods for SVIP

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Assumptions
Proposed methods Convergence analysis
Numerical Examples

References

Highlight on some of the features of our methods

- Our methods can be viewed as modified projection and contraction methods involving one projection onto \mathcal{C} per iteration for solving VIP in \mathcal{H}_{1} and another projection and contraction methods involving one projection onto \mathcal{Q} per iteration under a bounded linear operator T for solving another VIP in another space \mathcal{H}_{2}, with no extra projections onto the feasible sets.
- Another notable advantage of our methods is that the monotonicity assumption on A and F usually used to guarantee convergence, is dispensed with and no extra projections are required under this setting.
- The stepsizes $\left\{\lambda_{n}\right\}$ and $\left\{\mu_{n}\right\}$ given by (3.3) and (3.4), resp. are generated at each iteration by some simple computations. Thus, the second method is easily implemented without the prior knowledge of the Lipschitz constants I_{1} and I_{0}
O.T Mewomo (UKZN, South Africa) Projection \& contraction methods for SVIP

Highlight on some of the features of our methods

- Step 5 of both algorithms guarantee the strong convergence to a minimum-norm solution of the problem.

Main Results
Assumptions
Proposed methods Convergence analysis

Numerical Examples

References

Highlight on some of the features of our methods

Introduction
Preliminaries

Main Results

Assumptions

Proposed methods

Convergence

 analysisNumerical Examples

References

- Step 5 of both algorithms guarantee the strong convergence to a minimum-norm solution of the problem.
- Our methods do not require any product space formulation, thereby avoiding any potential difficulties that might be caused by the product space.

Highlight on some of the features of our methods

Introduction
Preliminaries

Main Results

Assumptions

Proposed methods

Convergence

 analysisNumerical Examples

References

- Step 5 of both algorithms guarantee the strong convergence to a minimum-norm solution of the problem.
- Our methods do not require any product space formulation, thereby avoiding any potential difficulties that might be caused by the product space.
- The choice of the stepsize η_{n} in Step 3 of both methods do not require the prior knowledge of the operator norm $\|T\|$.

Highlight on some of the features of our methods

Introduction
Preliminaries

Main Results

Assumptions

Proposed methods

Convergence

 analysisNumerical Examples

References

- Step 5 of both algorithms guarantee the strong convergence to a minimum-norm solution of the problem.
- Our methods do not require any product space formulation, thereby avoiding any potential difficulties that might be caused by the product space.
- The choice of the stepsize η_{n} in Step 3 of both methods do not require the prior knowledge of the operator norm $\|T\|$.

Lemmas and Theorems

YAKWAZULU-NATALI

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Assumptions
Proposed methods
Convergence
analysis
Numerical
Examples
References

Lemma

The stepsize η_{n} given in Step 3 of Algorithms 3.2 and 3.5 is well-defined.

Lemmas and Theorems

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results

Assumptions

Proposed methods Convergence analysis
Numerical Examples

References

Lemma

The stepsize η_{n} given in Step 3 of Algorithms 3.2 and 3.5 is well-defined.

Lemma

Let $\left\{x_{n}\right\}$ be a sequence generated by Algorithm 3.2 under Assumption 3.1. Then, $\left\{x_{n}\right\}$ is bounded.

Lemmas and Theorems

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results

Assumptions

Proposed methods

Numerical Examples

References

Lemma

The stepsize η_{n} given in Step 3 of Algorithms 3.2 and 3.5 is well-defined.

Lemma

Let $\left\{x_{n}\right\}$ be a sequence generated by Algorithm 3.2 under Assumption 3.1. Then, $\left\{x_{n}\right\}$ is bounded.

Theorem

Let $\left\{x_{n}\right\}$ be a sequence generated by Algorithm 3.5 under Assumption 3.1. Then, $\left\{x_{n}\right\}$ converges strongly to $p \in \Gamma$, where $\|p\|=\min \{\|z\|: z \in \Gamma\}$.

Lemmas and Theorems

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results

Assumptions

Proposed methods

Numerical Examples

References

Lemma

The stepsize η_{n} given in Step 3 of Algorithms 3.2 and 3.5 is well-defined.

Lemma

Let $\left\{x_{n}\right\}$ be a sequence generated by Algorithm 3.2 under Assumption 3.1. Then, $\left\{x_{n}\right\}$ is bounded.

Theorem

Let $\left\{x_{n}\right\}$ be a sequence generated by Algorithm 3.5 under Assumption 3.1. Then, $\left\{x_{n}\right\}$ converges strongly to $p \in \Gamma$, where $\|p\|=\min \{\|z\|: z \in \Gamma\}$.

Example 1

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical
Examples
References

Example 1

YAKWAZULU-NATALI

Projection \& contraction methods for SVIP
O.T Mewomo

- Let $\mathcal{H}_{1}=\left(l_{2}(\mathbb{R}),\|.\| l_{l_{2}}\right)=\mathcal{H}_{2}$.
- Define $T: l_{2}(\mathbb{R}) \rightarrow l_{2}(\mathbb{R})$ by

$$
T x=\left(0, x_{1}, \frac{x_{2}}{2}, \frac{x_{3}}{3}, \ldots\right), \forall x \in l_{2}(\mathbb{R})
$$

Introduction
Preliminaries
Main Results
Numerical
Examples
References

Example 1

Projection \& contraction methods for SVIP
O.T Mewomo

- Let $\mathcal{H}_{1}=\left(l_{2}(\mathbb{R}),\|\cdot\| l_{l_{2}}\right)=\mathcal{H}_{2}$.
- Define $T: l_{2}(\mathbb{R}) \rightarrow l_{2}(\mathbb{R})$ by

$$
T x=\left(0, x_{1}, \frac{x_{2}}{2}, \frac{x_{3}}{3}, \ldots\right), \forall x \in l_{2}(\mathbb{R})
$$

- Then, T is a bounded linear operator on $l_{2}(\mathbb{R})$ with adjoint

$$
T^{*} y=\left(y_{2}, \frac{y_{3}}{2}, \frac{y_{4}}{3}, \ldots\right), \forall y \in l_{2}(\mathbb{R})
$$

Example 1

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical
Examples
References

- Let $\mathcal{H}_{1}=\left(l_{2}(\mathbb{R}),\|.\| l_{l_{2}}\right)=\mathcal{H}_{2}$.
- Define $T: l_{2}(\mathbb{R}) \rightarrow l_{2}(\mathbb{R})$ by

$$
T x=\left(0, x_{1}, \frac{x_{2}}{2}, \frac{x_{3}}{3}, \ldots\right), \forall x \in l_{2}(\mathbb{R})
$$

- Then, T is a bounded linear operator on $l_{2}(\mathbb{R})$ with adjoint

$$
T^{*} y=\left(y_{2}, \frac{y_{3}}{2}, \frac{y_{4}}{3}, \ldots\right), \forall y \in l_{2}(\mathbb{R})
$$

- Let $\mathcal{C}=\mathcal{Q}=\left\{x \in l_{2}(\mathbb{R}):\|x-a\|_{l_{2}} \leq r\right\}$, where $a=\left(1, \frac{1}{2}, \frac{1}{3}, \cdots\right), r=3$ for \mathcal{C} and $a=\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots\right), r=1$ for \mathcal{Q}. Then \mathcal{C}, \mathcal{Q} are nonempty closed and convex subsets of $l_{2}(\mathbb{R})$. Thus,

$$
P_{\mathcal{C}}(x)=P_{\mathcal{Q}}(x)= \begin{cases}x, & \text { if } x \in\|x-a\|_{l_{2}} \leq r \\ \frac{x-a}{\|x-a\|_{l_{o}}} r+a, & \text { otherwise }\end{cases}
$$

[^2]
Example 1

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical
Examples
References

- Let $\mathcal{H}_{1}=\left(l_{2}(\mathbb{R}),\|.\| l_{l_{2}}\right)=\mathcal{H}_{2}$.
- Define $T: l_{2}(\mathbb{R}) \rightarrow l_{2}(\mathbb{R})$ by

$$
T x=\left(0, x_{1}, \frac{x_{2}}{2}, \frac{x_{3}}{3}, \ldots\right), \forall x \in l_{2}(\mathbb{R})
$$

- Then, T is a bounded linear operator on $l_{2}(\mathbb{R})$ with adjoint

$$
T^{*} y=\left(y_{2}, \frac{y_{3}}{2}, \frac{y_{4}}{3}, \ldots\right), \forall y \in l_{2}(\mathbb{R})
$$

- Let $\mathcal{C}=\mathcal{Q}=\left\{x \in l_{2}(\mathbb{R}):\|x-a\|_{l_{2}} \leq r\right\}$, where $a=\left(1, \frac{1}{2}, \frac{1}{3}, \cdots\right), r=3$ for \mathcal{C} and $a=\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots\right), r=1$ for \mathcal{Q}. Then \mathcal{C}, \mathcal{Q} are nonempty closed and convex subsets of $l_{2}(\mathbb{R})$. Thus,

$$
P_{\mathcal{C}}(x)=P_{\mathcal{Q}}(x)= \begin{cases}x, & \text { if } x \in\|x-a\|_{l_{2}} \leq r \\ \frac{x-a}{\|x-a\|_{l_{o}}} r+a, & \text { otherwise }\end{cases}
$$

[^3]
Example 1 contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical
Examples
References

- Define $A, F: l_{2}(\mathbb{R}) \rightarrow l_{2}(\mathbb{R})$ by

$$
\begin{gathered}
A\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{1} e^{-x_{1}^{2}}, 0,0, \ldots\right) \\
F\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(5 x_{1} e^{-x_{1}^{2}}, 0,0, \ldots\right)
\end{gathered}
$$

Example 1 contd

Introduction
Preliminaries
Main Results
Numerical Examples

References

- Define $A, F: l_{2}(\mathbb{R}) \rightarrow l_{2}(\mathbb{R})$ by

$$
\begin{gathered}
A\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{1} e^{-x_{1}^{2}}, 0,0, \ldots\right) \\
F\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(5 x_{1} e^{-x_{1}^{2}}, 0,0, \ldots\right)
\end{gathered}
$$

- Then, by Example 2.1, A, F are pseudomonotone, Lipschitz continuous and sequentially weakly continuous but not monotone.

Example 1 contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical
Examples
References

- Define $A, F: l_{2}(\mathbb{R}) \rightarrow l_{2}(\mathbb{R})$ by

$$
\begin{gathered}
A\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{1} e^{-x_{1}^{2}}, 0,0, \ldots\right) \\
F\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(5 x_{1} e^{-x_{1}^{2}}, 0,0, \ldots\right)
\end{gathered}
$$

- Then, by Example 2.1, A, F are pseudomonotone, Lipschitz continuous and sequentially weakly continuous but not monotone.
- We plot the graph of errors against the number of iterations and compare our methods with some existing methods.

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical
Examples
References

Example 1 contd

- Define $A, F: l_{2}(\mathbb{R}) \rightarrow l_{2}(\mathbb{R})$ by

$$
\begin{gathered}
A\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{1} e^{-x_{1}^{2}}, 0,0, \ldots\right) \\
F\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(5 x_{1} e^{-x_{1}^{2}}, 0,0, \ldots\right)
\end{gathered}
$$

- Then, by Example 2.1, A, F are pseudomonotone, Lipschitz continuous and sequentially weakly continuous but not monotone.
- We plot the graph of errors against the number of iterations and compare our methods with some existing methods.
- we consider the following cases for the numerical example.

Example 1 contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical
Examples
References

- Define $A, F: l_{2}(\mathbb{R}) \rightarrow l_{2}(\mathbb{R})$ by

$$
\begin{gathered}
A\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{1} e^{-x_{1}^{2}}, 0,0, \ldots\right) \\
F\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(5 x_{1} e^{-x_{1}^{2}}, 0,0, \ldots\right)
\end{gathered}
$$

- Then, by Example 2.1, A, F are pseudomonotone, Lipschitz continuous and sequentially weakly continuous but not monotone.
- We plot the graph of errors against the number of iterations and compare our methods with some existing methods.
- we consider the following cases for the numerical example.
- Case 1: Take $x_{1}=\left(1, \frac{1}{2}, \frac{1}{3}, \cdots\right)$ and $x_{0}=\left(\frac{1}{2}, \frac{1}{5}, \frac{1}{10}, \cdots\right)$.

Example 1 contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical
Examples
References

- Define $A, F: l_{2}(\mathbb{R}) \rightarrow l_{2}(\mathbb{R})$ by

$$
\begin{gathered}
A\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{1} e^{-x_{1}^{2}}, 0,0, \ldots\right) \\
F\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(5 x_{1} e^{-x_{1}^{2}}, 0,0, \ldots\right)
\end{gathered}
$$

- Then, by Example 2.1, A, F are pseudomonotone, Lipschitz continuous and sequentially weakly continuous but not monotone.
- We plot the graph of errors against the number of iterations and compare our methods with some existing methods.
- we consider the following cases for the numerical example.
- Case 1: Take $x_{1}=\left(1, \frac{1}{2}, \frac{1}{3}, \cdots\right)$ and $x_{0}=\left(\frac{1}{2}, \frac{1}{5}, \frac{1}{10}, \cdots\right)$.
- Case 2: Take $x_{1}=\left(\frac{1}{2}, \frac{1}{5}, \frac{1}{10}, \cdots\right)$ and $x_{0}=\left(1, \frac{1}{2}, \frac{1}{3}, \cdots\right)$.

Example 1 contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical
Examples
References

- Define $A, F: l_{2}(\mathbb{R}) \rightarrow l_{2}(\mathbb{R})$ by

$$
\begin{gathered}
A\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{1} e^{-x_{1}^{2}}, 0,0, \ldots\right) \\
F\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(5 x_{1} e^{-x_{1}^{2}}, 0,0, \ldots\right)
\end{gathered}
$$

- Then, by Example 2.1, A, F are pseudomonotone, Lipschitz continuous and sequentially weakly continuous but not monotone.
- We plot the graph of errors against the number of iterations and compare our methods with some existing methods.
- we consider the following cases for the numerical example.
- Case 1: Take $x_{1}=\left(1, \frac{1}{2}, \frac{1}{3}, \cdots\right)$ and $x_{0}=\left(\frac{1}{2}, \frac{1}{5}, \frac{1}{10}, \cdots\right)$.
- Case 2: Take $x_{1}=\left(\frac{1}{2}, \frac{1}{5}, \frac{1}{10}, \cdots\right)$ and $x_{0}=\left(1, \frac{1}{2}, \frac{1}{3}, \cdots\right)$.
- Case 3: Take $x_{1}=\left(1, \frac{1}{4}, \frac{1}{9}, \cdots\right)$ and $x_{0}=\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots\right)$.

Example 1 contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical
Examples
References

- Define $A, F: l_{2}(\mathbb{R}) \rightarrow l_{2}(\mathbb{R})$ by

$$
\begin{gathered}
A\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{1} e^{-x_{1}^{2}}, 0,0, \ldots\right) \\
F\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(5 x_{1} e^{-x_{1}^{2}}, 0,0, \ldots\right)
\end{gathered}
$$

- Then, by Example 2.1, A, F are pseudomonotone, Lipschitz continuous and sequentially weakly continuous but not monotone.
- We plot the graph of errors against the number of iterations and compare our methods with some existing methods.
- we consider the following cases for the numerical example.
- Case 1: Take $x_{1}=\left(1, \frac{1}{2}, \frac{1}{3}, \cdots\right)$ and $x_{0}=\left(\frac{1}{2}, \frac{1}{5}, \frac{1}{10}, \cdots\right)$.
- Case 2: Take $x_{1}=\left(\frac{1}{2}, \frac{1}{5}, \frac{1}{10}, \cdots\right)$ and $x_{0}=\left(1, \frac{1}{2}, \frac{1}{3}, \cdots\right)$.
- Case 3: Take $x_{1}=\left(1, \frac{1}{4}, \frac{1}{9}, \cdots\right)$ and $x_{0}=\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots\right)$.
- Case 4: Take $x_{1}=\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots\right)$ and $x_{0}=\left(1, \frac{1}{4}, \frac{1}{9}, \cdots\right)$.

[^4]
Example 1 contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical
Examples
References

- Define $A, F: l_{2}(\mathbb{R}) \rightarrow l_{2}(\mathbb{R})$ by

$$
\begin{gathered}
A\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{1} e^{-x_{1}^{2}}, 0,0, \ldots\right) \\
F\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(5 x_{1} e^{-x_{1}^{2}}, 0,0, \ldots\right)
\end{gathered}
$$

- Then, by Example 2.1, A, F are pseudomonotone, Lipschitz continuous and sequentially weakly continuous but not monotone.
- We plot the graph of errors against the number of iterations and compare our methods with some existing methods.
- we consider the following cases for the numerical example.
- Case 1: Take $x_{1}=\left(1, \frac{1}{2}, \frac{1}{3}, \cdots\right)$ and $x_{0}=\left(\frac{1}{2}, \frac{1}{5}, \frac{1}{10}, \cdots\right)$.
- Case 2: Take $x_{1}=\left(\frac{1}{2}, \frac{1}{5}, \frac{1}{10}, \cdots\right)$ and $x_{0}=\left(1, \frac{1}{2}, \frac{1}{3}, \cdots\right)$.
- Case 3: Take $x_{1}=\left(1, \frac{1}{4}, \frac{1}{9}, \cdots\right)$ and $x_{0}=\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots\right)$.
- Case 4: Take $x_{1}=\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots\right)$ and $x_{0}=\left(1, \frac{1}{4}, \frac{1}{9}, \cdots\right)$.

[^5]Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical Examples

References

Example 1: Errors against number of iterations

Example 2

Projection \& contraction methods for SVIP
 O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical
Examples
References

- Let $\mathcal{H}_{1}=\mathcal{H}_{2}=L_{2}([0,1])$.

Example 2

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical Examples

References

- Let $\mathcal{H}_{1}=\mathcal{H}_{2}=L_{2}([0,1])$.
- Define $T: L_{2}([0,1]) \rightarrow L_{2}([0,1])$ by

$$
T x(s)=\int_{0}^{1} K(s, t) x(t) d t, \forall x \in L_{2}([0,1])
$$

where K is a continuous real-valued function on $[0,1] \times[0,1]$. Then, T is a bounded linear operator with adjoint

$$
T^{*} x(s)=\int_{0}^{1} K(t, s) x(t) d t, \quad \forall x \in L_{2}([0,1])
$$

Example 2

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical Examples

References

- Let $\mathcal{H}_{1}=\mathcal{H}_{2}=L_{2}([0,1])$.
- Define $T: L_{2}([0,1]) \rightarrow L_{2}([0,1])$ by

$$
T x(s)=\int_{0}^{1} K(s, t) x(t) d t, \forall x \in L_{2}([0,1])
$$

where K is a continuous real-valued function on $[0,1] \times[0,1]$. Then, T is a bounded linear operator with adjoint

$$
T^{*} x(s)=\int_{0}^{1} K(t, s) x(t) d t, \quad \forall x \in L_{2}([0,1])
$$

- In particular, we define $K(s, t)=e^{-s t}$ for all $s, t \in[0,1]$.

Example 2

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical
Examples
References

- Let $\mathcal{H}_{1}=\mathcal{H}_{2}=L_{2}([0,1])$.
- Define $T: L_{2}([0,1]) \rightarrow L_{2}([0,1])$ by

$$
T x(s)=\int_{0}^{1} K(s, t) x(t) d t, \forall x \in L_{2}([0,1])
$$

where K is a continuous real-valued function on $[0,1] \times[0,1]$. Then, T is a bounded linear operator with adjoint

$$
T^{*} x(s)=\int_{0}^{1} K(t, s) x(t) d t, \forall x \in L_{2}([0,1])
$$

- In particular, we define $K(s, t)=e^{-s t}$ for all $s, t \in[0,1]$.
- Let $\mathcal{C}=\left\{x \in L_{2}([0,1]):\langle y, x\rangle \leq b\right\}$, where $y=t+1$ and $b=1$, then \mathcal{C} is a nonempty closed and convex subset of $L_{2}([0,1])$.

Example 2

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical
Examples
References

- Let $\mathcal{H}_{1}=\mathcal{H}_{2}=L_{2}([0,1])$.
- Define $T: L_{2}([0,1]) \rightarrow L_{2}([0,1])$ by

$$
T x(s)=\int_{0}^{1} K(s, t) x(t) d t, \forall x \in L_{2}([0,1])
$$

where K is a continuous real-valued function on $[0,1] \times[0,1]$. Then, T is a bounded linear operator with adjoint

$$
T^{*} x(s)=\int_{0}^{1} K(t, s) x(t) d t, \forall x \in L_{2}([0,1])
$$

- In particular, we define $K(s, t)=e^{-s t}$ for all $s, t \in[0,1]$.
- Let $\mathcal{C}=\left\{x \in L_{2}([0,1]):\langle y, x\rangle \leq b\right\}$, where $y=t+1$ and $b=1$, then \mathcal{C} is a nonempty closed and convex subset of $L_{2}([0,1])$.

Example 2 contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical
Examples
References

- Thus, we define the metric projection $P_{\mathcal{C}}$ as:

$$
P_{\mathcal{C}}(x)= \begin{cases}\frac{b-\langle y, x\rangle}{\|y\|^{2}} y+x, & \text { if }\langle y, x\rangle>b \\ x, & \text { if }\langle y, x\rangle \leq b\end{cases}
$$

Example 2 contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical Examples

References

- Thus, we define the metric projection $P_{\mathcal{C}}$ as:

$$
P_{\mathcal{C}}(x)= \begin{cases}\frac{b-\langle y, x\rangle}{\|y\|^{2}} y+x, & \text { if }\langle y, x\rangle>b \\ x, & \text { if }\langle y, x\rangle \leq b\end{cases}
$$

- Also, let $\mathcal{Q}=\left\{x \in L_{2}([0,1]):\|x\| \leq r\right\}$, where $r=2$, then \mathcal{Q} is a nonempty closed and convex subset of $L_{2}([0,1])$.

Example 2 contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical Examples

References

- Thus, we define the metric projection $P_{\mathcal{C}}$ as:

$$
P_{\mathcal{C}}(x)= \begin{cases}\frac{b-\langle y, x\rangle}{\|y\|^{2}} y+x, & \text { if }\langle y, x\rangle>b, \\ x, & \text { if }\langle y, x\rangle \leq b\end{cases}
$$

- Also, let $\mathcal{Q}=\left\{x \in L_{2}([0,1]):\|x\| \leq r\right\}$, where $r=2$, then \mathcal{Q} is a nonempty closed and convex subset of $L_{2}([0,1])$.
- Thus, we define $P_{\mathcal{Q}}$ as:

$$
P_{\mathcal{Q}}(x)= \begin{cases}x, & \text { if } x \in \mathcal{Q} \\ \frac{x}{\|x\|^{2}} r, & \text { otherwise }\end{cases}
$$

Example 2 contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical Examples

References

- Thus, we define the metric projection $P_{\mathcal{C}}$ as:

$$
P_{\mathcal{C}}(x)= \begin{cases}\frac{b-\langle y, x\rangle}{\|y\|^{2}} y+x, & \text { if }\langle y, x\rangle>b, \\ x, & \text { if }\langle y, x\rangle \leq b\end{cases}
$$

- Also, let $\mathcal{Q}=\left\{x \in L_{2}([0,1]):\|x\| \leq r\right\}$, where $r=2$, then \mathcal{Q} is a nonempty closed and convex subset of $L_{2}([0,1])$.
- Thus, we define $P_{\mathcal{Q}}$ as:

$$
P_{\mathcal{Q}}(x)= \begin{cases}x, & \text { if } x \in \mathcal{Q} \\ \frac{x}{\|x\|^{2}} r, & \text { otherwise }\end{cases}
$$

Example 2 contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical Examples

References

- Also, define $F: \mathcal{Q} \rightarrow L_{2}([0,1])$ by

$$
F(x)(t):=g(x) M(x)(t), \quad \forall x \in \mathcal{Q}, \quad t \in[0,1]
$$

where $g: \mathcal{Q} \rightarrow \mathbb{R}$ is defined by $g(x):=\frac{1}{1+\|x\|^{2}}$ and $M: L_{2}([0,1]) \rightarrow L_{2}([0,1])$ is defined by $M(x)(t):=\int_{0}^{t} x(s) d s, \quad \forall x \in L_{2}([0,1]), \quad t \in[0,1]$. Then g is $\frac{16}{25}$-Lipschitz continuous and $\frac{1}{5} \leq g(x) \leq 1, \quad \forall x \in \mathcal{C}$. Also, M is the Volterra intergral mapping which is bounded and linear monotone. Hence, F is pseudomonotone and Lipschitz continuous but not monotone.

Example 2 contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical Examples

References

- Also, define $F: \mathcal{Q} \rightarrow L_{2}([0,1])$ by

$$
F(x)(t):=g(x) M(x)(t), \quad \forall x \in \mathcal{Q}, \quad t \in[0,1]
$$

where $g: \mathcal{Q} \rightarrow \mathbb{R}$ is defined by $g(x):=\frac{1}{1+\|x\|^{2}}$ and $M: L_{2}([0,1]) \rightarrow L_{2}([0,1])$ is defined by $M(x)(t):=\int_{0}^{t} x(s) d s, \quad \forall x \in L_{2}([0,1]), \quad t \in[0,1]$. Then g is $\frac{16}{25}$-Lipschitz continuous and $\frac{1}{5} \leq g(x) \leq 1, \quad \forall x \in \mathcal{C}$. Also, M is the Volterra intergral mapping which is bounded and linear monotone. Hence, F is pseudomonotone and Lipschitz continuous but not monotone.

- We consider the following cases in this example:

Example 2 contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical Examples

References

- Also, define $F: \mathcal{Q} \rightarrow L_{2}([0,1])$ by

$$
F(x)(t):=g(x) M(x)(t), \quad \forall x \in \mathcal{Q}, \quad t \in[0,1]
$$

where $g: \mathcal{Q} \rightarrow \mathbb{R}$ is defined by $g(x):=\frac{1}{1+\|x\|^{2}}$ and $M: L_{2}([0,1]) \rightarrow L_{2}([0,1])$ is defined by $M(x)(t):=\int_{0}^{t} x(s) d s, \quad \forall x \in L_{2}([0,1]), \quad t \in[0,1]$. Then g is $\frac{16}{25}$-Lipschitz continuous and $\frac{1}{5} \leq g(x) \leq 1, \quad \forall x \in \mathcal{C}$. Also, M is the Volterra intergral mapping which is bounded and linear monotone. Hence, F is pseudomonotone and Lipschitz continuous but not monotone.

- We consider the following cases in this example:
- Case 1: Take $x_{1}(t)=1+t^{2}$ and $x_{0}(t)=t+5$.

Example 2 contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical
Examples
References

- Also, define $F: \mathcal{Q} \rightarrow L_{2}([0,1])$ by

$$
F(x)(t):=g(x) M(x)(t), \quad \forall x \in \mathcal{Q}, \quad t \in[0,1]
$$

where $g: \mathcal{Q} \rightarrow \mathbb{R}$ is defined by $g(x):=\frac{1}{1+\|x\|^{2}}$ and $M: L_{2}([0,1]) \rightarrow L_{2}([0,1])$ is defined by $M(x)(t):=\int_{0}^{t} x(s) d s, \quad \forall x \in L_{2}([0,1]), \quad t \in[0,1]$. Then g is $\frac{16}{25}$-Lipschitz continuous and $\frac{1}{5} \leq g(x) \leq 1, \quad \forall x \in \mathcal{C}$. Also, M is the Volterra intergral mapping which is bounded and linear monotone. Hence, F is pseudomonotone and Lipschitz continuous but not monotone.

- We consider the following cases in this example:
- Case 1: Take $x_{1}(t)=1+t^{2}$ and $x_{0}(t)=t+5$.
- Case 2: Take $x_{1}(t)=\sin (t)$ and $x_{0}(t)=t+1$.

Example 2 contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical
Examples
References

- Also, define $F: \mathcal{Q} \rightarrow L_{2}([0,1])$ by

$$
F(x)(t):=g(x) M(x)(t), \quad \forall x \in \mathcal{Q}, \quad t \in[0,1]
$$

where $g: \mathcal{Q} \rightarrow \mathbb{R}$ is defined by $g(x):=\frac{1}{1+\|x\|^{2}}$ and $M: L_{2}([0,1]) \rightarrow L_{2}([0,1])$ is defined by $M(x)(t):=\int_{0}^{t} x(s) d s, \quad \forall x \in L_{2}([0,1]), \quad t \in[0,1]$. Then g is $\frac{16}{25}$-Lipschitz continuous and $\frac{1}{5} \leq g(x) \leq 1, \quad \forall x \in \mathcal{C}$. Also, M is the Volterra intergral mapping which is bounded and linear monotone. Hence, F is pseudomonotone and Lipschitz continuous but not monotone.

- We consider the following cases in this example:
- Case 1: Take $x_{1}(t)=1+t^{2}$ and $x_{0}(t)=t+5$.
- Case 2: Take $x_{1}(t)=\sin (t)$ and $x_{0}(t)=t+1$.
- Case 3: Take $x_{1}(t)=t+1$ and $x_{0}(t)=t+t^{3}$.

Example 2 contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical Examples

References

- Also, define $F: \mathcal{Q} \rightarrow L_{2}([0,1])$ by

$$
F(x)(t):=g(x) M(x)(t), \quad \forall x \in \mathcal{Q}, \quad t \in[0,1]
$$

where $g: \mathcal{Q} \rightarrow \mathbb{R}$ is defined by $g(x):=\frac{1}{1+\|x\|^{2}}$ and $M: L_{2}([0,1]) \rightarrow L_{2}([0,1])$ is defined by $M(x)(t):=\int_{0}^{t} x(s) d s, \quad \forall x \in L_{2}([0,1]), \quad t \in[0,1]$. Then g is $\frac{16}{25}$-Lipschitz continuous and $\frac{1}{5} \leq g(x) \leq 1, \quad \forall x \in \mathcal{C}$. Also, M is the Volterra intergral mapping which is bounded and linear monotone. Hence, F is pseudomonotone and Lipschitz continuous but not monotone.

- We consider the following cases in this example:
- Case 1: Take $x_{1}(t)=1+t^{2}$ and $x_{0}(t)=t+5$.
- Case 2: Take $x_{1}(t)=\sin (t)$ and $x_{0}(t)=t+1$.
- Case 3: Take $x_{1}(t)=t+1$ and $x_{0}(t)=t+t^{3}$.
- Case 4: Take $x_{1}(t)=0.7 e^{-t}+1$ and $x_{0}(t)=t+t^{3}$.

Example 2 contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical Examples

References

- Also, define $F: \mathcal{Q} \rightarrow L_{2}([0,1])$ by

$$
F(x)(t):=g(x) M(x)(t), \quad \forall x \in \mathcal{Q}, \quad t \in[0,1]
$$

where $g: \mathcal{Q} \rightarrow \mathbb{R}$ is defined by $g(x):=\frac{1}{1+\|x\|^{2}}$ and $M: L_{2}([0,1]) \rightarrow L_{2}([0,1])$ is defined by $M(x)(t):=\int_{0}^{t} x(s) d s, \quad \forall x \in L_{2}([0,1]), \quad t \in[0,1]$. Then g is $\frac{16}{25}$-Lipschitz continuous and $\frac{1}{5} \leq g(x) \leq 1, \quad \forall x \in \mathcal{C}$. Also, M is the Volterra intergral mapping which is bounded and linear monotone. Hence, F is pseudomonotone and Lipschitz continuous but not monotone.

- We consider the following cases in this example:
- Case 1: Take $x_{1}(t)=1+t^{2}$ and $x_{0}(t)=t+5$.
- Case 2: Take $x_{1}(t)=\sin (t)$ and $x_{0}(t)=t+1$.
- Case 3: Take $x_{1}(t)=t+1$ and $x_{0}(t)=t+t^{3}$.
- Case 4: Take $x_{1}(t)=0.7 e^{-t}+1$ and $x_{0}(t)=t+t^{3}$.

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical Examples

References

Example 2: Errors against number of iterations

END OF TALK

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical
Examples
References
THANKS FOR LISTEN

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical Examples

References

References contd

Arg R. P. Agarwal, D. O'Regan, D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8 (2007), 61-79.

Ba S. Banach, Sur les operations dans les ensembles abstracts ET leur applications aux equations integrals, Fund. Math., 3 (1922), 133-181.
Bo E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Stud., 63 (1994), 123-145.
Ce Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numerical Algorithms, 8(2)(1994), 221-239.
CaY L. C. Ceng, Q. H. Ansari and J. C. Yao, An extragradient method for solving split feasibility and fixed noint nroblems Comnut Math Anol 64 (2012)

References

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical Examples

References

C C. E. Chidume, Geometric properties of Banach spaces and nonlinear iterations, Springer Verlag Series, Lecture Notes in Mathematics, ISBN 978-1-84882-189-7, (2009).
G O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim., 29 (1991), 403-419.
BHF B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73 (1967), 591-597.
Ish S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1) (1974), 147-150.
KT S. Kamimura and W. Takahashi, Approximating solutions of maximal monotone operators in Hilbert spaces, J. Approx. Theory, 106 (2000), 226-240.

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical Examples

References

References contd

KRA M. A. Krasnosel'skii, Two observations about the method of successive approximations, Uspehi. Math. Nauk., 10(1955), 123-127.
Li J.L. Lions and G. Stampacchia, Variational inequalities, COmm. Pure Appl. Math., 20 (1967), 493-519.
Ma W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506-510.
LM P. L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16 (6) (1979), 964-979.

Roc R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), 877-898.

References contd

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical Examples

References

YSX Y. Song and X. Liu, Convergence comparison of several iteration algorithms for the common fixed point problems, Fixed Point Theory Appl., 2009 (2009), Art. ID 824374.
Xu H. K. Xu, Viscosity approximation methods for nonexpansive mapping, J. Math. Anal. Appl., 298 (1) (2004), 279-291.

KWAZULU-NATAL INYUVES!

Projection \& contraction methods for SVIP
O.T Mewomo

Introduction
Preliminaries
Main Results
Numerical
Examples
References
Thank You!

[^0]: O.T Mewomo (UKZN, South Africa) Projection \& contraction methods for SVIP

[^1]: O.T Mewomo (UKZN, South Africa) Projection \& contraction methods for SVIP

[^2]: O.T Mewomo (UKZN, South Africa)

[^3]: O.T Mewomo (UKZN, South Africa)

[^4]: O.T Mewomo (UKZN, South Africa)

 Projection \& contraction methods for SVIP
 Wednesday, 20th July, 2022

[^5]: O.T Mewomo (UKZN, South Africa)

 Projection \& contraction methods for SVIP
 Wednesday, 20th July, 2022

