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Peak interpolation



Peak interpolation in the disc algebra

The disc algebra is

A(D) =
{
f ∈ C (D) : f

∣∣
D is holomorphic

}
.

Theorem (Rudin–Carleson, 1950s)

Let E ⊂ ∂D be a compact set with Lebesgue measure zero and let

g ∈ C (E ) \ {0}. Then there exists f ∈ A(D) with

(1) f
∣∣
E

= g , and

(2) |f (z)| < ‖g‖∞ for z ∈ D \ E .

E is called a peak interpolation set for A(D).

In particular, E is peak set, i.e. there exists f ∈ A(D) with f
∣∣
E

= 1 and

|f (z)| < 1 for z ∈ D \ E .
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Peak interpolation in the ball algebra

Let Bd = {z ∈ Cd : ‖z‖2 < 1} and

A(Bd) = {f ∈ C (Bd) : f
∣∣
Bd

is holomorphic}.

Theorem (Bishop, 1962)

Let E ⊂ ∂Bd be compact and totally null and let g ∈ C (E ) \ {0}. Then

there exists f ∈ A(Bd) with

(1) f
∣∣
E

= g , and

(2) |f (z)| < ‖g‖∞ for z ∈ B \ E .

More generally, Bishop considered peak interpolation in uniform algebras.



Goal for today

Goal

Find peak interpolation theorems in Banach algebras of analytic

functions on D and Bd , not necessarily uniform algebras.

Motivation: Multivariable operator theory, classical Dirichlet space theory.



Spaces on the ball

A unitarily invariant space is a reproducing kernel Hilbert space H of

analytic functions on Bd with C[z1, . . . , zd ] ⊂ H and

||f ◦ U|| = ||f ||

for all f ∈ H and all unitary maps U on Cd .

Examples

• Hardy space H2(D) = {f =
∑∞

n=0 anz
n ∈ O(D) :

∑∞
n=0 |an|2 <∞}

• Hardy space on the ball H2(Bd)

• The Dirichlet space D = {f ∈ O(D) : f ′ ∈ L2(D)}.

Regularity condition

We will assume that limn→∞ ||zn+1
1 ||/||zn1 || = 1.
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The Drury-Arveson space

The Drury-Arveson space H2
d is the RKHS on Bd with reproducing kernel

1

1− 〈z ,w〉
.

Concrete description

H2
d =

{
f =

∑
α∈Nd

f̂ (α)zα ∈ O(Bd) :
∑
α∈Nd

(
|α|
α

)−1
|f̂ (α)|2 <∞

}
.

Theorem (Drury, Müller–Vasilescu, Arveson)

Let T = (T1, . . . ,Td) be a tuple of commuting operators on Hilbert

space with
∑d

i=1 TiT
∗
i ≤ I . Then

‖p(T )‖ ≤ ‖p‖Mult(H2
d )

= ‖f 7→ p · f ‖H2
d→H2

d
.

for all polynomials p.
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Algebras of multipliers

Let H be a unitarily invariant space. The multiplier algebra is

Mult(H) = {ϕ : Bd → C : ϕ · f ∈ H whenever f ∈ H},

equipped with the multiplier norm ‖ϕ‖Mult(H) = ‖f 7→ ϕ · f ‖H→H.

Definition

A(H) = C[z1, . . . , zd ]
‖·‖ ⊂ Mult(H).

Then

A(H) ⊂ Mult(H) ∩ A(Bd) ⊂ H ∩ A(Bd).

Examples

• A(H2(D)) = A(D). More generally, A(H2(Bd)) = A(Bd).

• A(H2
d) is Arveson’s algebra Ad , key in multivariable operator theory.
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Small sets on the boundary

A regular Borel measure µ on ∂Bd is called Mult(H)-Henkin if

Mult(H) 7→ C, p 7→
∫
∂Bd

p dµ (p ∈ C[z ])

is weak-∗ continuous.

A Borel set E ⊂ ∂Bd is called Mult(H)-totally null if µ(E ) = 0 for every

Mult(H)-Henkin measure µ.

Example

• µ is Mult(H2(D))-Henkin iff it is absolutely continuous.

• E is Mult(H2(D))-totally null iff it has Lebesgue measure zero.

H = H2(Bd): Henkin (1968), Cole–Range (1972)

H = H2
d : Clouâtre–Davidson (2016)

General H: Bickel–H.–McCarthy (2017)
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Peak interpolation in the Drury–Arveson space

Theorem (Clouâtre–Davidson, 2016)

Let E ⊂ ∂Bd be compact and Mult(H2
d)-totally null, let g ∈ C (E ) \ {0}

and let ε > 0. Then there exists f ∈ A(H2
d) with

(1) f
∣∣
E

= g ,

(2) |f (z)| < ‖g‖∞ for all z ∈ Bd \ E , and

(3) ‖f ‖Mult(H2
d )
≤ (1 + ε)‖g‖∞.



Sharp peak interpolation on the ball

Let H be a unitarily invariant space on Bd .

Theorem (Davidson–H.)

Let E ⊂ ∂Bd be compact and Mult(H)-totally null and let

g ∈ C (E ) \ {0}. Then there exists f ∈ A(H) with

(1) f
∣∣
E

= g ,

(2) |f (z)| < ‖g‖∞ for all z ∈ Bd \ E , and

(3) ‖f ‖Mult(H) ≤ ‖g‖∞.

H = H2(D): Rudin–Carleson

H = H2(Bd): Bishop

H = H2
d : Clouâtre–Davidson with ε = 0
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Duality

A regular Borel measure ν on ∂Bd is called Mult(H)-totally singular if

ν⊥µ for all µ Mult(H)-Henkin.

Let TS(Mult(H)) = {ν ∈ M(∂Bd) : ν is Mult(H)-totally singular}.

Theorem (Davidson-H.)

Let H be a unitarily invariant space on Bd . Then

A(H)∗ = Mult(H)∗ ⊕1 TS(Mult(H)).

H = H2(Bd): Henkin and Cole–Range

H = H2
d : Clouâtre–Davidson
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From duality to interpolation

Let E ⊂ ∂Bd be compact and Mult(H)-totally null.

Goal

Show that

R : A(H)→ C (E ), f 7→ f
∣∣
E
,

maps the closed unit ball onto the closed unit ball.

The adjoint

R∗ : M(E )→ A(H)∗ = Mult(H)∗ ⊕1 TS(Mult(H))

is an isometry. Hence (1 + ε)-interpolation works.

Show that ker(R) is an M-ideal to prove ε = 0 works.
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Pick and peak interpolation



Pick’s theorem

Theorem (Pick 1916, Nevanlinna 1919)

Let z1, . . . , zn ∈ D and λ1, . . . , λn ∈ C. There exists f ∈ A(D) with

f (zi ) = λi for 1 ≤ i ≤ n and ||f ||∞ ≤ 1

if and only if the matrix [1− λiλj
1− zizj

]n
i ,j=1

is positive.

Question

Can we solve Pick and peak interpolation problems simultaneously?

Extremal Pick problems have a unique solution.
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Pick and peak interpolation in the disc algebra

Theorem (Izzo, 2018)

Let z1, . . . , zn ∈ D and λ1, . . . , λn ∈ C with[1− λiλj
1− zizj

]n
i ,j=1

≥ 0.

Let E ⊂ ∂D be compact with Lebesgue measure zero and let g ∈ C (E )

with ‖g‖∞ ≤ 1.

Then for each ε > 0, there exists f ∈ A(D) with

f (zi ) = λi (1 ≤ i ≤ n), f
∣∣
E

= g and ‖f ‖∞ ≤ 1 + ε.

ε > 0 is necessary in general.



Pick and peak interpolation on the ball

A Pick space is an RKHS in which the Pick interpolation theorem is true

(e.g. Dirichlet space, Drury–Arveson space, . . . )

Theorem (Davidson–H.)

Let H be a unitarily invariant Pick space on Bd with kernel K .

Let z1, . . . , zn ∈ Bd , λ1, . . . , λn ∈ C with[
K (zi , zj)(1− λiλj)

]
≥ 0.

Let E ⊂ ∂Bd be compact and Mult(H)-totally null and let g ∈ C (E )

with ‖g‖∞ ≤ 1.

Then for each ε > 0, there exists f ∈ A(H) with

f (zi ) = λi (1 ≤ i ≤ n), f |E = g and ‖f ‖Mult(H) ≤ 1 + ε.
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Is the totally null condition

necessary?



Interpolation sets

A compact set E ⊂ ∂Bd is said to be an interpolation set if

A(H)→ C (E ), f 7→ f
∣∣
E
,

is surjective.

Theorem (Davidson–H.)

Let H be a unitarily invariant space that admits non-empty

Mult(H)-totally null sets (e.g. any space mentioned so far).

Then every interpolation set is Mult(H)-totally null.

Proposition

If H does not admit non-empty Mult(H)-totally null sets, then there are

no infinite interpolation sets.
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Summary of interpolation theorems

Theorem

The following are equivalent for a compact set E ⊂ ∂Bd :

(TN) E is Mult(H)-totally null;

(PI) E is a peak interpolation set;

(P) E is a peak set;

(PPI) E is a Pick-peak interpolation set.

Moreover, if there exist non-empty Mult(H)-totally null sets, then this is

equivalent to

(I) E is an interpolation set.



Which sets are totally null?



Capacity zero

Consider the Dirichlet space D = {f ∈ O(D) : f ′ ∈ L2(D)}.

Notion of smallness from potential theory: Logarithmic capacity zero.

Definition (Capacity zero, functional analysis view)

(a) A positive Borel measure µ on ∂D is said to have finite energy if

D → C, p 7→
∫
∂D

p dµ (p ∈ C[z ])

is continuous.

(b) A compact set E ⊂ ∂D has logarithmic capacity zero if it does not

support a Borel probability measure of finite energy.

Proposition

If E is Mult(D)-totally null, then E has logarithmic capacity zero.
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Capacity zero vs. totally null

Theorem (Chalmoukis–H.)

Let E ⊂ ∂D be compact. Then E is Mult(D)-totally null if and only if E

has logarithmic capacity zero.

Similar result holds for weighted Dirichlet spaces (a.k.a. Besov–Sobolev

spaces on Bd) and capacities of Ahern and Cohn.



Peak interpolation in the Dirichlet space

Theorem (Peller–Khrushchëv, 1982)

Let E ⊂ ∂D be compact with logarithmic capacity zero. Then for every

g ∈ C (E ), there exists f ∈ D ∩ A(D) with

(1) f
∣∣
E

= g , and

(2) max(‖f ‖D, ‖f ‖∞) ≤ ‖g‖∞.

Theorem (Davidson–H. + Chalmoukis–H.)

Let E ⊂ ∂D be compact with logarithmic capacity zero. Then for every

g ∈ C (E ) \ {0}, there exists f ∈ A(D) ⊂ Mult(D) ∩ A(D) with

(1) f
∣∣
E

= g , and

(2) |f (z)| < ‖g‖∞ for z ∈ D \ E , and

(3) ‖f ‖Mult(D) ≤ ‖g‖∞.

Similarly for weighted Dirichlet spaces on Bd , improves Cohn–Verbitsky.
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Summary

• Sharp peak interpolation and Pick-peak interpolation can be done on

totally null sets in many algebras of multipliers on the ball.

• Conversely, mere interpolation sets are typically totally null.

• Duality plays a key role in establishing interpolation theorems.

• In Dirichlet type spaces, totally null sets and capacity zero sets agree.

Thank you!
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