Interpolation in algebras of multipliers on the ball

Michael Hartz

based on joint works with Ken Davidson and Nikolaos Chalmoukis
Banach Algebras 2022
Saarland University

Peak interpolation

Peak interpolation in the disc algebra

The disc algebra is

$$
A(\mathbb{D})=\left\{f \in C(\overline{\mathbb{D}}):\left.f\right|_{\mathbb{D}} \text { is holomorphic }\right\} .
$$

Theorem (Rudin-Carleson, 1950s)
Let $E \subset \partial \mathbb{D}$ be a compact set with Lebesgue measure zero and let $g \in C(E) \backslash\{0\}$. Then there exists $f \in A(\mathbb{D})$ with
(1) $\left.f\right|_{E}=g$, and
(2) $|f(z)|<\|g\|_{\infty}$ for $z \in \overline{\mathbb{D}} \backslash E$.

Peak interpolation in the disc algebra

The disc algebra is

$$
A(\mathbb{D})=\left\{f \in C(\overline{\mathbb{D}}):\left.f\right|_{\mathbb{D}} \text { is holomorphic }\right\} .
$$

Theorem (Rudin-Carleson, 1950s)

Let $E \subset \partial \mathbb{D}$ be a compact set with Lebesgue measure zero and let $g \in C(E) \backslash\{0\}$. Then there exists $f \in A(\mathbb{D})$ with
(1) $\left.f\right|_{E}=g$, and
(2) $|f(z)|<\|g\|_{\infty}$ for $z \in \overline{\mathbb{D}} \backslash E$.
E is called a peak interpolation set for $A(\mathbb{D})$.
In particular, E is peak set, i.e. there exists $f \in A(\mathbb{D})$ with $\left.f\right|_{E}=1$ and $|f(z)|<1$ for $z \in \overline{\mathbb{D}} \backslash E$.

Peak interpolation in the ball algebra

Let $\mathbb{B}_{d}=\left\{z \in \mathbb{C}^{d}:\|z\|_{2}<1\right\}$ and

$$
A\left(\mathbb{B}_{d}\right)=\left\{f \in C\left(\overline{\mathbb{B}_{d}}\right):\left.f\right|_{\mathbb{B}_{d}} \text { is holomorphic }\right\}
$$

Theorem (Bishop, 1962)

Let $E \subset \partial \mathbb{B}_{d}$ be compact and totally null and let $g \in C(E) \backslash\{0\}$. Then there exists $f \in A\left(\mathbb{B}_{d}\right)$ with
(1) $\left.f\right|_{E}=g$, and
(2) $|f(z)|<\|g\|_{\infty}$ for $z \in \overline{\mathbb{B}} \backslash E$.

More generally, Bishop considered peak interpolation in uniform algebras.

Goal for today

Goal

Find peak interpolation theorems in Banach algebras of analytic functions on \mathbb{D} and \mathbb{B}_{d}, not necessarily uniform algebras.

Motivation: Multivariable operator theory, classical Dirichlet space theory.

Spaces on the ball

A unitarily invariant space is a reproducing kernel Hilbert space \mathcal{H} of analytic functions on \mathbb{B}_{d} with $\mathbb{C}\left[z_{1}, \ldots, z_{d}\right] \subset \mathcal{H}$ and

$$
\|f \circ U\|=\|f\|
$$

for all $f \in \mathcal{H}$ and all unitary maps U on \mathbb{C}^{d}.

Spaces on the ball

A unitarily invariant space is a reproducing kernel Hilbert space \mathcal{H} of analytic functions on \mathbb{B}_{d} with $\mathbb{C}\left[z_{1}, \ldots, z_{d}\right] \subset \mathcal{H}$ and

$$
\|f \circ U\|=\|f\|
$$

for all $f \in \mathcal{H}$ and all unitary maps U on \mathbb{C}^{d}.

Examples

- Hardy space $H^{2}(\mathbb{D})=\left\{f=\sum_{n=0}^{\infty} a_{n} z^{n} \in \mathcal{O}(\mathbb{D}): \sum_{n=0}^{\infty}\left|a_{n}\right|^{2}<\infty\right\}$
- Hardy space on the ball $H^{2}\left(\mathbb{B}_{d}\right)$
- The Dirichlet space $\mathcal{D}=\left\{f \in \mathcal{O}(\mathbb{D}): f^{\prime} \in L^{2}(\mathbb{D})\right\}$.

Spaces on the ball

A unitarily invariant space is a reproducing kernel Hilbert space \mathcal{H} of analytic functions on \mathbb{B}_{d} with $\mathbb{C}\left[z_{1}, \ldots, z_{d}\right] \subset \mathcal{H}$ and

$$
\|f \circ U\|=\|f\|
$$

for all $f \in \mathcal{H}$ and all unitary maps U on \mathbb{C}^{d}.

Examples

- Hardy space $H^{2}(\mathbb{D})=\left\{f=\sum_{n=0}^{\infty} a_{n} z^{n} \in \mathcal{O}(\mathbb{D}): \sum_{n=0}^{\infty}\left|a_{n}\right|^{2}<\infty\right\}$
- Hardy space on the ball $H^{2}\left(\mathbb{B}_{d}\right)$
- The Dirichlet space $\mathcal{D}=\left\{f \in \mathcal{O}(\mathbb{D}): f^{\prime} \in L^{2}(\mathbb{D})\right\}$.

Regularity condition

We will assume that $\lim _{n \rightarrow \infty}\left\|z_{1}^{n+1}\right\| /\left\|z_{1}^{n}\right\|=1$.

The Drury-Arveson space

The Drury-Arveson space H_{d}^{2} is the RKHS on \mathbb{B}_{d} with reproducing kernel

$$
\frac{1}{1-\langle z, w\rangle} .
$$

The Drury-Arveson space

The Drury-Arveson space H_{d}^{2} is the RKHS on \mathbb{B}_{d} with reproducing kernel

$$
\frac{1}{1-\langle z, w\rangle} .
$$

Concrete description

$$
H_{d}^{2}=\left\{f=\sum_{\alpha \in \mathbb{N}^{d}} \widehat{f}(\alpha) z^{\alpha} \in \mathcal{O}\left(\mathbb{B}_{d}\right): \sum_{\alpha \in \mathbb{N}^{d}}\binom{|\alpha|}{\alpha}^{-1}|\widehat{f}(\alpha)|^{2}<\infty\right\} .
$$

The Drury-Arveson space

The Drury-Arveson space H_{d}^{2} is the RKHS on \mathbb{B}_{d} with reproducing kernel

$$
\frac{1}{1-\langle z, w\rangle} .
$$

Concrete description

$$
H_{d}^{2}=\left\{f=\sum_{\alpha \in \mathbb{N}^{d}} \widehat{f}(\alpha) z^{\alpha} \in \mathcal{O}\left(\mathbb{B}_{d}\right): \sum_{\alpha \in \mathbb{N}^{d}}\binom{|\alpha|}{\alpha}^{-1}|\widehat{f}(\alpha)|^{2}<\infty\right\} .
$$

Theorem (Drury, Müller-Vasilescu, Arveson)
Let $T=\left(T_{1}, \ldots, T_{d}\right)$ be a tuple of commuting operators on Hilbert space with $\sum_{i=1}^{d} T_{i} T_{i}^{*} \leq 1$. Then

$$
\|p(T)\| \leq\|p\|_{\mathrm{Mult}\left(H_{d}^{2}\right)}=\|f \mapsto p \cdot f\|_{H_{d}^{2} \rightarrow H_{d}^{2}} .
$$

for all polynomials p.

Algebras of multipliers

Let \mathcal{H} be a unitarily invariant space. The multiplier algebra is

$$
\operatorname{Mult}(\mathcal{H})=\left\{\varphi: \mathbb{B}_{d} \rightarrow \mathbb{C}: \varphi \cdot f \in \mathcal{H} \text { whenever } f \in \mathcal{H}\right\}
$$

equipped with the multiplier norm $\|\varphi\|_{\operatorname{Mult}(\mathcal{H})}=\|f \mapsto \varphi \cdot f\|_{\mathcal{H} \rightarrow \mathcal{H}}$.

Definition

$$
\left.A(\mathcal{H})=\overline{\mathbb{C}\left[z_{1}, \ldots, z_{d}\right]}\right]^{\|\cdot\|} \subset \operatorname{Mult}(\mathcal{H})
$$

Algebras of multipliers

Let \mathcal{H} be a unitarily invariant space. The multiplier algebra is

$$
\operatorname{Mult}(\mathcal{H})=\left\{\varphi: \mathbb{B}_{d} \rightarrow \mathbb{C}: \varphi \cdot f \in \mathcal{H} \text { whenever } f \in \mathcal{H}\right\}
$$

equipped with the multiplier norm $\|\varphi\|_{\operatorname{Mult}(\mathcal{H})}=\|f \mapsto \varphi \cdot f\|_{\mathcal{H} \rightarrow \mathcal{H}}$.

Definition

$$
\left.A(\mathcal{H})=\overline{\mathbb{C}\left[z_{1}, \ldots, z_{d}\right]}\right]^{\|\cdot\|} \subset \operatorname{Mult}(\mathcal{H})
$$

Then

$$
A(\mathcal{H}) \subset \operatorname{Mult}(\mathcal{H}) \cap A\left(\mathbb{B}_{d}\right) \subset \mathcal{H} \cap A\left(\mathbb{B}_{d}\right)
$$

Examples

- $A\left(H^{2}(\mathbb{D})\right)=A(\mathbb{D})$. More generally, $A\left(H^{2}\left(\mathbb{B}_{d}\right)\right)=A\left(\mathbb{B}_{d}\right)$.
- $A\left(H_{d}^{2}\right)$ is Arveson's algebra \mathcal{A}_{d}, key in multivariable operator theory.

Small sets on the boundary

A regular Borel measure μ on $\partial \mathbb{B}_{d}$ is called $\operatorname{Mult}(\mathcal{H})$-Henkin if

$$
\operatorname{Mult}(\mathcal{H}) \mapsto \mathbb{C}, \quad p \mapsto \int_{\partial \mathbb{B}_{d}} p d \mu \quad(p \in \mathbb{C}[z])
$$

is weak-* continuous.

Small sets on the boundary

A regular Borel measure μ on $\partial \mathbb{B}_{d}$ is called $\operatorname{Mult}(\mathcal{H})$-Henkin if

$$
\operatorname{Mult}(\mathcal{H}) \mapsto \mathbb{C}, \quad p \mapsto \int_{\partial \mathbb{B}_{d}} p d \mu \quad(p \in \mathbb{C}[z])
$$

is weak-* continuous.
A Borel set $E \subset \partial \mathbb{B}_{d}$ is called $\operatorname{Mult}(\mathcal{H})$-totally null if $\mu(E)=0$ for every $\operatorname{Mult}(\mathcal{H})$-Henkin measure μ.

Small sets on the boundary

A regular Borel measure μ on $\partial \mathbb{B}_{d}$ is called $\operatorname{Mult}(\mathcal{H})$-Henkin if

$$
\operatorname{Mult}(\mathcal{H}) \mapsto \mathbb{C}, \quad p \mapsto \int_{\partial \mathbb{B}_{d}} p d \mu \quad(p \in \mathbb{C}[z])
$$

is weak-* continuous.
A Borel set $E \subset \partial \mathbb{B}_{d}$ is called Mult($\left.\mathcal{H}\right)$-totally null if $\mu(E)=0$ for every $\operatorname{Mult}(\mathcal{H})$-Henkin measure μ.

Example

- μ is $\operatorname{Mult}\left(H^{2}(\mathbb{D})\right)$-Henkin iff it is absolutely continuous.
- E is $\operatorname{Mult}\left(H^{2}(\mathbb{D})\right)$-totally null iff it has Lebesgue measure zero.

Small sets on the boundary

A regular Borel measure μ on $\partial \mathbb{B}_{d}$ is called $\operatorname{Mult}(\mathcal{H})$-Henkin if

$$
\operatorname{Mult}(\mathcal{H}) \mapsto \mathbb{C}, \quad p \mapsto \int_{\partial \mathbb{B}_{d}} p d \mu \quad(p \in \mathbb{C}[z])
$$

is weak-* continuous.
A Borel set $E \subset \partial \mathbb{B}_{d}$ is called $\operatorname{Mult}(\mathcal{H})$-totally null if $\mu(E)=0$ for every $\operatorname{Mult}(\mathcal{H})$-Henkin measure μ.

Example

- μ is $\operatorname{Mult}\left(H^{2}(\mathbb{D})\right)$-Henkin iff it is absolutely continuous.
- E is $\operatorname{Mult}\left(H^{2}(\mathbb{D})\right)$-totally null iff it has Lebesgue measure zero.
$\mathcal{H}=H^{2}\left(\mathbb{B}_{d}\right)$: Henkin (1968), Cole-Range (1972)
$\mathcal{H}=H_{d}^{2}$: Clouâtre-Davidson (2016)
General \mathcal{H} : Bickel-H.-M ${ }^{\mathrm{c}}$ Carthy (2017)

Peak interpolation in the Drury-Arveson space

Theorem (Clouâtre-Davidson, 2016)

Let $E \subset \partial \mathbb{B}_{d}$ be compact and $\operatorname{Mult}\left(H_{d}^{2}\right)$-totally null, let $g \in C(E) \backslash\{0\}$ and let $\varepsilon>0$. Then there exists $f \in A\left(H_{d}^{2}\right)$ with
(1) $\left.f\right|_{E}=g$,
(2) $|f(z)|<\|g\|_{\infty}$ for all $z \in \overline{\mathbb{B}_{d}} \backslash E$, and
(3) $\|f\|_{\text {Mult }\left(H_{d}\right)} \leq(1+\varepsilon)\|g\|_{\infty}$.

Sharp peak interpolation on the ball

Let \mathcal{H} be a unitarily invariant space on \mathbb{B}_{d}.
Theorem (Davidson-H.)
Let $E \subset \partial \mathbb{B}_{d}$ be compact and $\operatorname{Mult}(\mathcal{H})$-totally null and let $g \in C(E) \backslash\{0\}$. Then there exists $f \in A(\mathcal{H})$ with
(1) $\left.f\right|_{E}=g$,
(2) $|f(z)|<\|g\|_{\infty}$ for all $z \in \overline{\mathbb{B}_{d}} \backslash E$, and
(3) $\|f\|_{\operatorname{Mult}(\mathcal{H})} \leq\|g\|_{\infty}$.

Sharp peak interpolation on the ball

Let \mathcal{H} be a unitarily invariant space on \mathbb{B}_{d}.

Theorem (Davidson-H.)

Let $E \subset \partial \mathbb{B}_{d}$ be compact and $\operatorname{Mult}(\mathcal{H})$-totally null and let $g \in C(E) \backslash\{0\}$. Then there exists $f \in A(\mathcal{H})$ with
(1) $\left.f\right|_{E}=g$,
(2) $|f(z)|<\|g\|_{\infty}$ for all $z \in \overline{\mathbb{B}_{d}} \backslash E$, and
(3) $\|f\|_{\operatorname{Mult}(\mathcal{H})} \leq\|g\|_{\infty}$.
$\mathcal{H}=H^{2}(\mathbb{D})$: Rudin-Carleson
$\mathcal{H}=H^{2}\left(\mathbb{B}_{d}\right)$: Bishop
$\mathcal{H}=H_{d}^{2}$: Clouâtre-Davidson with $\varepsilon=0$

Duality

A regular Borel measure ν on $\partial \mathbb{B}_{d}$ is called $\operatorname{Mult}(\mathcal{H})$-totally singular if $\nu \perp \mu \quad$ for all $\mu \operatorname{Mult}(\mathcal{H})$-Henkin.

Let $\operatorname{TS}(\operatorname{Mult}(\mathcal{H}))=\left\{\nu \in M\left(\partial \mathbb{B}_{d}\right): \nu\right.$ is $\operatorname{Mult}(\mathcal{H})$-totally singular $\}$.

Duality

A regular Borel measure ν on $\partial \mathbb{B}_{d}$ is called $\operatorname{Mult}(\mathcal{H})$-totally singular if $\nu \perp \mu \quad$ for all $\mu \operatorname{Mult}(\mathcal{H})$-Henkin.

Let $\operatorname{TS}(\operatorname{Mult}(\mathcal{H}))=\left\{\nu \in M\left(\partial \mathbb{B}_{d}\right): \nu\right.$ is $\operatorname{Mult}(\mathcal{H})$-totally singular $\}$.

Theorem (Davidson-H.)

Let \mathcal{H} be a unitarily invariant space on \mathbb{B}_{d}. Then

$$
A(\mathcal{H})^{*}=\operatorname{Mult}(\mathcal{H})_{*} \oplus_{1} \operatorname{TS}(\operatorname{Mult}(\mathcal{H})) .
$$

$\mathcal{H}=H^{2}\left(\mathbb{B}_{d}\right)$: Henkin and Cole-Range
$\mathcal{H}=H_{d}^{2}$: Clouâtre-Davidson

From duality to interpolation

Let $E \subset \partial \mathbb{B}_{d}$ be compact and $\operatorname{Mult}(\mathcal{H})$-totally null.

Goal

Show that

$$
R: A(\mathcal{H}) \rightarrow C(E),\left.\quad f \mapsto f\right|_{E},
$$

maps the closed unit ball onto the closed unit ball.

From duality to interpolation

Let $E \subset \partial \mathbb{B}_{d}$ be compact and $\operatorname{Mult}(\mathcal{H})$-totally null.

Goal

Show that

$$
R: A(\mathcal{H}) \rightarrow C(E),\left.\quad f \mapsto f\right|_{E},
$$

maps the closed unit ball onto the closed unit ball.

The adjoint

$$
R^{*}: M(E) \rightarrow A(\mathcal{H})^{*}=\operatorname{Mult}(\mathcal{H})_{*} \oplus_{1} \operatorname{TS}(\operatorname{Mult}(\mathcal{H}))
$$

is an isometry. Hence $(1+\varepsilon)$-interpolation works.

From duality to interpolation

Let $E \subset \partial \mathbb{B}_{d}$ be compact and $\operatorname{Mult}(\mathcal{H})$-totally null.

Goal

Show that

$$
R: A(\mathcal{H}) \rightarrow C(E),\left.\quad f \mapsto f\right|_{E},
$$

maps the closed unit ball onto the closed unit ball.

The adjoint

$$
R^{*}: M(E) \rightarrow A(\mathcal{H})^{*}=\operatorname{Mult}(\mathcal{H})_{*} \oplus_{1} \operatorname{TS}(\operatorname{Mult}(\mathcal{H}))
$$

is an isometry. Hence $(1+\varepsilon)$-interpolation works.
Show that $\operatorname{ker}(R)$ is an M-ideal to prove $\varepsilon=0$ works.

Pick and peak interpolation

Pick's theorem

Theorem (Pick 1916, Nevanlinna 1919)
Let $z_{1}, \ldots, z_{n} \in \mathbb{D}$ and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$. There exists $f \in A(\mathbb{D})$ with

$$
f\left(z_{i}\right)=\lambda_{i} \text { for } 1 \leq i \leq n \quad \text { and } \quad\|f\|_{\infty} \leq 1
$$

if and only if the matrix

$$
\left[\frac{1-\lambda_{i} \overline{\lambda_{j}}}{1-z_{i} \overline{z_{j}}}\right]_{i, j=1}^{n}
$$

is positive.

Question

Can we solve Pick and peak interpolation problems simultaneously?

Pick's theorem

Theorem (Pick 1916, Nevanlinna 1919)
Let $z_{1}, \ldots, z_{n} \in \mathbb{D}$ and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$. There exists $f \in A(\mathbb{D})$ with

$$
f\left(z_{i}\right)=\lambda_{i} \text { for } 1 \leq i \leq n \quad \text { and } \quad\|f\|_{\infty} \leq 1
$$

if and only if the matrix

$$
\left[\frac{1-\lambda_{i} \overline{\lambda_{j}}}{1-z_{i} \overline{z_{j}}}\right]_{i, j=1}^{n}
$$

is positive.

Question

Can we solve Pick and peak interpolation problems simultaneously?

Extremal Pick problems have a unique solution.

Pick and peak interpolation in the disc algebra

Theorem (Izzo, 2018)
Let $z_{1}, \ldots, z_{n} \in \mathbb{D}$ and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ with

$$
\left[\frac{1-\lambda_{i} \bar{\lambda}_{j}}{1-z_{i} \bar{z}_{j}}\right]_{i, j=1}^{n} \geq 0
$$

Let $E \subset \partial \mathbb{D}$ be compact with Lebesgue measure zero and let $g \in C(E)$
with $\|g\|_{\infty} \leq 1$.
Then for each $\varepsilon>0$, there exists $f \in A(\mathbb{D})$ with

$$
f\left(z_{i}\right)=\lambda_{i} \quad(1 \leq i \leq n),\left.\quad f\right|_{E}=g \quad \text { and }\|f\|_{\infty} \leq 1+\varepsilon .
$$

$\varepsilon>0$ is necessary in general.

Pick and peak interpolation on the ball

A Pick space is an RKHS in which the Pick interpolation theorem is true (e.g. Dirichlet space, Drury-Arveson space, ...)

Pick and peak interpolation on the ball

A Pick space is an RKHS in which the Pick interpolation theorem is true (e.g. Dirichlet space, Drury-Arveson space, ...)

Theorem (Davidson-H.)
Let \mathcal{H} be a unitarily invariant Pick space on \mathbb{B}_{d} with kernel K.
Let $z_{1}, \ldots, z_{n} \in \mathbb{B}_{d}, \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ with

$$
\left[K\left(z_{i}, z_{j}\right)\left(1-\lambda_{i} \overline{\lambda_{j}}\right)\right] \geq 0 .
$$

Pick and peak interpolation on the ball

A Pick space is an RKHS in which the Pick interpolation theorem is true (e.g. Dirichlet space, Drury-Arveson space, ...)

Theorem (Davidson-H.)
Let \mathcal{H} be a unitarily invariant Pick space on \mathbb{B}_{d} with kernel K.
Let $z_{1}, \ldots, z_{n} \in \mathbb{B}_{d}, \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ with

$$
\left[K\left(z_{i}, z_{j}\right)\left(1-\lambda_{i} \overline{\lambda_{j}}\right)\right] \geq 0 .
$$

Let $E \subset \partial \mathbb{B}_{d}$ be compact and $\operatorname{Mult}(\mathcal{H})$-totally null and let $g \in C(E)$ with $\|g\|_{\infty} \leq 1$.

Pick and peak interpolation on the ball

A Pick space is an RKHS in which the Pick interpolation theorem is true (e.g. Dirichlet space, Drury-Arveson space, ...)

Theorem (Davidson-H.)

Let \mathcal{H} be a unitarily invariant Pick space on \mathbb{B}_{d} with kernel K.
Let $z_{1}, \ldots, z_{n} \in \mathbb{B}_{d}, \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ with

$$
\left[K\left(z_{i}, z_{j}\right)\left(1-\lambda_{i} \overline{\lambda_{j}}\right)\right] \geq 0 .
$$

Let $E \subset \partial \mathbb{B}_{d}$ be compact and $\operatorname{Mult}(\mathcal{H})$-totally null and let $g \in C(E)$ with $\|g\|_{\infty} \leq 1$.

Then for each $\varepsilon>0$, there exists $f \in A(\mathcal{H})$ with

$$
f\left(z_{i}\right)=\lambda_{i} \quad(1 \leq i \leq n),\left.\quad f\right|_{E}=g \quad \text { and }\|f\|_{\operatorname{Mult}(\mathcal{H})} \leq 1+\varepsilon .
$$

Is the totally null condition necessary?

Interpolation sets

A compact set $E \subset \partial \mathbb{B}_{d}$ is said to be an interpolation set if

$$
A(\mathcal{H}) \rightarrow C(E),\left.\quad f \mapsto f\right|_{E},
$$

is surjective.

Interpolation sets

A compact set $E \subset \partial \mathbb{B}_{d}$ is said to be an interpolation set if

$$
A(\mathcal{H}) \rightarrow C(E),\left.\quad f \mapsto f\right|_{E}
$$

is surjective.

Theorem (Davidson-H.)

Let \mathcal{H} be a unitarily invariant space that admits non-empty Mult(\mathcal{H})-totally null sets (e.g. any space mentioned so far).

Then every interpolation set is $\operatorname{Mult}(\mathcal{H})$-totally null.

Interpolation sets

A compact set $E \subset \partial \mathbb{B}_{d}$ is said to be an interpolation set if

$$
A(\mathcal{H}) \rightarrow C(E),\left.\quad f \mapsto f\right|_{E}
$$

is surjective.

Theorem (Davidson-H.)

Let \mathcal{H} be a unitarily invariant space that admits non-empty Mult(\mathcal{H})-totally null sets (e.g. any space mentioned so far).

Then every interpolation set is $\operatorname{Mult}(\mathcal{H})$-totally null.

Proposition

If \mathcal{H} does not admit non-empty $\operatorname{Mult}(\mathcal{H})$-totally null sets, then there are no infinite interpolation sets.

Summary of interpolation theorems

Theorem

The following are equivalent for a compact set $E \subset \partial \mathbb{B}_{d}$:
(TN) E is $\operatorname{Mult}(\mathcal{H})$-totally null;
(PI) E is a peak interpolation set;
(P$) E$ is a peak set;
(PPI) E is a Pick-peak interpolation set.
Moreover, if there exist non-empty $\operatorname{Mult}(\mathcal{H})$-totally null sets, then this is equivalent to
(I) E is an interpolation set.

Which sets are totally null?

Capacity zero

Consider the Dirichlet space $\mathcal{D}=\left\{f \in \mathcal{O}(\mathbb{D}): f^{\prime} \in L^{2}(\mathbb{D})\right\}$.
Notion of smallness from potential theory: Logarithmic capacity zero.

Capacity zero

Consider the Dirichlet space $\mathcal{D}=\left\{f \in \mathcal{O}(\mathbb{D}): f^{\prime} \in L^{2}(\mathbb{D})\right\}$.
Notion of smallness from potential theory: Logarithmic capacity zero.
Definition (Capacity zero, functional analysis view)
(a) A positive Borel measure μ on $\partial \mathbb{D}$ is said to have finite energy if

$$
\mathcal{D} \rightarrow \mathbb{C}, \quad p \mapsto \int_{\partial \mathbb{D}} p d \mu \quad(p \in \mathbb{C}[z])
$$

is continuous.
(b) A compact set $E \subset \partial \mathbb{D}$ has logarithmic capacity zero if it does not support a Borel probability measure of finite energy.

Capacity zero

Consider the Dirichlet space $\mathcal{D}=\left\{f \in \mathcal{O}(\mathbb{D}): f^{\prime} \in L^{2}(\mathbb{D})\right\}$.
Notion of smallness from potential theory: Logarithmic capacity zero.
Definition (Capacity zero, functional analysis view)
(a) A positive Borel measure μ on $\partial \mathbb{D}$ is said to have finite energy if

$$
\mathcal{D} \rightarrow \mathbb{C}, \quad p \mapsto \int_{\partial \mathbb{D}} p d \mu \quad(p \in \mathbb{C}[z])
$$

is continuous.
(b) A compact set $E \subset \partial \mathbb{D}$ has logarithmic capacity zero if it does not support a Borel probability measure of finite energy.

Proposition

If E is $\operatorname{Mult}(\mathcal{D})$-totally null, then E has logarithmic capacity zero.

Capacity zero vs. totally null

Theorem (Chalmoukis-H.)

Let $E \subset \partial \mathbb{D}$ be compact. Then E is $\operatorname{Mult}(\mathcal{D})$-totally null if and only if E has logarithmic capacity zero.

Similar result holds for weighted Dirichlet spaces (a.k.a. Besov-Sobolev spaces on \mathbb{B}_{d}) and capacities of Ahern and Cohn.

Peak interpolation in the Dirichlet space

Theorem (Peller-Khrushchëv, 1982)
Let $E \subset \partial \mathbb{D}$ be compact with logarithmic capacity zero. Then for every $g \in C(E)$, there exists $f \in \mathcal{D} \cap A(\mathbb{D})$ with
(1) $\left.f\right|_{E}=g$, and
(2) $\max \left(\|f\|_{\mathcal{D}},\|f\|_{\infty}\right) \leq\|g\|_{\infty}$.

Peak interpolation in the Dirichlet space

Theorem (Peller-Khrushchëv, 1982)

Let $E \subset \partial \mathbb{D}$ be compact with logarithmic capacity zero. Then for every $g \in C(E)$, there exists $f \in \mathcal{D} \cap A(\mathbb{D})$ with
(1) $\left.f\right|_{E}=g$, and
(2) $\max \left(\|f\|_{\mathcal{D}},\|f\|_{\infty}\right) \leq\|g\|_{\infty}$.

Theorem (Davidson-H. + Chalmoukis-H.)

Let $E \subset \partial \mathbb{D}$ be compact with logarithmic capacity zero. Then for every $g \in C(E) \backslash\{0\}$, there exists $f \in A(\mathcal{D}) \subset \operatorname{Mult}(\mathcal{D}) \cap A(\mathbb{D})$ with
(1) $\left.f\right|_{E}=g$, and
(2) $|f(z)|<\|g\|_{\infty}$ for $z \in \overline{\mathbb{D}} \backslash E$, and
(3) $\|f\|_{\operatorname{Mult}(\mathcal{D})} \leq\|g\|_{\infty}$.

Similarly for weighted Dirichlet spaces on \mathbb{B}_{d}, improves Cohn-Verbitsky.

Summary

- Sharp peak interpolation and Pick-peak interpolation can be done on totally null sets in many algebras of multipliers on the ball.
- Conversely, mere interpolation sets are typically totally null.
- Duality plays a key role in establishing interpolation theorems.
- In Dirichlet type spaces, totally null sets and capacity zero sets agree.

Thank you!

