25th Conference on "Banach Algebras and Applications" held at the University of Granada during 18-23 July, 2022.

On Herz's extension Theorem

by

Antoine Derighetti

Professeur honoraire, Ecole Polytechnique fédérale de Lausanne, CH-1015 Lausanne Dorigny, Switzerland.

Abstract.

We present a self-contained proof of the following famous extension theorem due to Carl Herz. A closed subgroup Hof a locally compact group G is a set of p-synthesis in G if and only if, for every $u \in A_p(H) \cap C_{00}(H)$ and every $\varepsilon > 0$, there is $v \in A_p(G) \cap C_{00}(G)$, an extension of u, such that

$$||v||_{A_p(G)} < ||u||_{A_p(H)} + \varepsilon.$$

1 Introduction

We present a self-contained proof of the following famous extension theorem due to Carl Herz (see [3], Proposition 2, p. 94)

Theorem 1. Let G be a locally compact group, let H a closed subgroup and let 1 . The following properties are equivalent:

1) The subgroup H is a set of p-synthesis in G;

2) For every $u \in A_p(H) \cap C_{00}(H)$ and for every $\varepsilon > 0$, there is a function $v \in A_p(G) \cap C_{00}(G)$ with $\operatorname{Res}_H v = u$ and such that

$$||v||_{A_p(G)} < ||u||_{A_p(H)} + \varepsilon.$$

This important theorem is a consequence of two results which are both highly interesting (Proposition 2 and Theorem 8). We fill a gap (see Remark 5) and correct a mistake (see Remark 7). In [1], we proved a more simple result (also due to C. Herz): for every $\varepsilon > 0$ and for every $\varphi \in A_p(H)$, there is $\psi \in A_p(G)$ with $\operatorname{Res}_H \psi = \varphi$ and such that

$$\|\psi\|_{A_p(G)} < \|\varphi\|_{A_p(H)} + \varepsilon.$$

We denote by $\mathcal{A}_p(G)$ the set of all pairs $((k_n), (l_n))$ where (k_n) is a sequence of $\mathcal{L}^p(G)$ and (l_n) is a sequence of $\mathcal{L}^{p'}(G)$ (1/p + 1/p' = 1) such that $\sum N_p(k_n)N_{p'}(l_n) < \infty$. This permits to give the definition of the Banach space $A_p(G)$: $A_p(G)$ is the set

$$\left\{ u: G \to \mathbb{C} : \text{ there is } ((k_n), (l_n)) \in \mathcal{A}_p(G) \text{ such that} \right\}$$

$$u = \sum \overline{k_n} * \overline{l_n} \}$$

where $\check{l_n}(x) = l_n(x^{-1})$. For $u \in A_p(G)$ we put:

$$\|u\|_{A_p(G)} = \inf \left\{ \sum N_p(k_n) N_{p'}(l_n) : ((k_n), (l_n)) \in \mathcal{A}_p(G) \right\}$$

such that $u = \sum \overline{k_n} * \check{l_n}$.

We refer to [2] Chap 3, section 3.1, pages 33-44.

2 The fact that a closed subgroup is a set of synthesis being equivalent with some sort of Reiter-Glicksberg property.

The following result is a special case of a proposition due to Herz (see [3] Proposition 4 p. 103). We recall that a closed subset F of a locally compact group G is said to be a set of p-synthesis in G if, for every $u \in A_p(G)$ with $\operatorname{Res}_F u = 0$ and for every $\varepsilon > 0$ there is $v \in A_p(G) \cap C_{00}(G)$ with $\operatorname{supp} v \cap F = \emptyset$ and $||u - v||_{A_p(G)} < \varepsilon$.

Proposition 2. Let G be a locally compact group, let H be a closed subgroup and let 1 . The following properties are equivalent:

(1) The H is a set of p-synthesis in G;

(2) For every $g \in A_p(G) \cap C_{00}(G)$ and for every $\varepsilon > 0$, there is a function $h \in A_p(G) \cap C_{00}(G)$ such that g = h on a neighborhood of H in G and with

 $\|h\|_{A_p(G)} < \|\operatorname{Res}_H g\|_{A_p(H)} + \varepsilon.$

Inspired by Reiter [4] p. 181 we introduce the following definition.

Definition 1. Let G be a locally compact group, let H be a closed subgroup and let $1 . For every <math>g \in A_p(G) \cap C_{00}(G)$, we put

$$I_H^p(g) = \inf \Big\{ \|h\|_{A_p(G)} : h \in A_p(G) \cap C_{00}(G), \\ h = g \text{ on a neighborhood of } H \text{ in } G \Big\}.$$

Corollary 3. Let G be a locally compact group, let H be a closed subgroup and let 1 . Then:

- 1) $\|\operatorname{Res}_H g\|_{A_p(H)} \leq I_H^p(g)$ for every $g \in A_p(G) \cap C_{00}(G)$.
- 2) The following two statements are equivalent :
 - (i) The subgroup H is a set of p-synthesis in G;
 - (ii) $\|\operatorname{Res}_H g\|_{A_p(H)} = I_H^p(g)$ for every $g \in A_p(G) \cap C_{00}(G)$.

3 Proof of the first part of Theorem 1

Theorem 4. Let G be a locally compact group, let H be a closed subgroup and let $1 . Suppose that H is a set of p-synthesis in G. Then for every <math>u \in A_p(H) \cap C_{00}(H)$ and for every $\varepsilon > 0$, there is $v \in A_p(G) \cap C_{00}(G)$ with $\operatorname{Res}_H v = u$ such that

$$||v||_{A_p(G)} < ||u||_{A_p(H)} + \varepsilon.$$

Remark 5. There is a very serious gap in Herz's proof of Prop. 2 of [3], see [5].

4 Every closed subgroup of a locally compact group is a set of local *p*synthesis

Herz's proof of 2) implies 1) of Theorem 1 requires that H is a set of local p-synthesis in G.

Lemma 6. Let G be a locally compact goup, let H be a closed subgroup, let K be a compact subset of H, and W be a compact neighborhood of e in G. There is a positive integer N(=N(K,W)) depending of K and W such that, for every open neighborhood Ω of e in G, there is an open neighborhood V of e in G with

- 1) $V \subset W$,
- 2) $HV \subset H\Omega$,
- 3) $m_G(KV) \le Nm_G(V).$

Remark 7. The relation $V \subset \Omega$ ([3] page 100 line 8) is not correct.

Theorem 8. Let G be a locally compact group, let H be a closed subgroup and let 1 . Then H is a set of local p-synthesis in G.

Proof. Let u be a function of $A_p(G) \cap C_{00}(G)$ vanishing on H. Let ε be a positive real number. It suffices to prove the existence of $v \in A_p(G) \cap C_{00}(G)$ with $\operatorname{supp} v \cap H = \emptyset$ and $||u - v||_{A_p(G)} < \varepsilon$. The Lemma 6 together with the use of the dual of $A_p(G)$ permit to construct v explicitly. This proof (four pages and one half) is a jewel! (See [5]). \Box

5 Proof of the second part of Theorem 1

Theorem 9. Let G be a locally compact group, let H be a closed subgroup and let 1 . Suppose that for $every <math>u \in A_p(H) \cap C_{00}(H)$ and for every $\varepsilon > 0$ there is $v \in$ $A_p(G) \cap C_{00}(G)$ with $\operatorname{Res}_H v = u$ and such that $||v||_{A_p(G)} <$ $||u||_{A_p(H)} + \varepsilon$. Then H is a set of p-synthesis in G.

Proof. Let f be a function of $A_p(G)$ vanishing on H and ε a positive real number. We choose $g_1 \in A_p(G) \cap C_{00}(G)$ such that

$$\|f - g_1\|_{A_p(G)} < \frac{\varepsilon}{4}$$

This implies

$$\|\operatorname{Res}_H g_1\|_{A_p(H)} < \frac{\varepsilon}{4}$$

By assumption there is $g_2 \in A_p(G) \cap C_{00}(G)$ with $\operatorname{Res}_H g_2 = \operatorname{Res}_H g_1$ and

$$||g_2||_{A_p(G)} < ||\operatorname{Res}_H g_1||_{A_p(H)} + \frac{\varepsilon}{4}.$$

We have

$$\|g_2\|_{A_p(G)} < \frac{\varepsilon}{4}.$$

The set H being of local p-synthesis there is $\varphi \in A_p(G) \cap C_{00}(G)$ with $\operatorname{supp} \varphi \cap H = \emptyset$ and such that

$$\|g_1 - g_2 - \varphi\|_{A_p(G)} < \frac{\varepsilon}{4}.$$

We finally get

$$\|f-\varphi\|_{A_p(G)}<\varepsilon.$$

н		
н		1
н		1
L.		1

References

[1] J. Delaporte and A. Derighetti, On Herz's extension theorem, Boll. Un. Mat. Ital. A(7) 6 (1992), $n^{\circ} 2$, 245-247.

[2] A. Derighetti, Convolution operators on groups, Lecture Notes of the Unione Matematica Italiana, 11, Springer, Heidelberg; UMI, Bologna, 2011.

[3] C. Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (1973), n° 3, 91-123.

[4] H. Reiter, Classical harmonic analysis and locally compact groups, Clarendon Press, Oxford, 1968.

[5] A. Derighetti, On Herz's extension theorem, Adv. Oper. Theory 4 (2019), n° 2, 529-538.