Spectrally Additive Maps on Banach Algebras

Francois Schulz

Joint work with Miles Askes and Rudi Brits

Banach Algebras and Applications 2022
Granada, Spain

Tuesday, 19 July 2022

Notational Conventions

- Throughout, A and B shall denote complex Banach algebras with identity elements.

Notational Conventions

- Throughout, A and B shall denote complex Banach algebras with identity elements.
- Additional assumptions to A and B will be indicated as needed.

Notational Conventions

- Throughout, A and B shall denote complex Banach algebras with identity elements.
- Additional assumptions to A and B will be indicated as needed.
- We shall use 1 to denote the identity element in a Banach algebra under consideration.

Notational Conventions

- Throughout, A and B shall denote complex Banach algebras with identity elements.
- Additional assumptions to A and B will be indicated as needed.
- We shall use $\mathbf{1}$ to denote the identity element in a Banach algebra under consideration.
- The group of invertible elements of A shall be denoted by $G(A)$.

Notational Conventions

- Throughout, A and B shall denote complex Banach algebras with identity elements.
- Additional assumptions to A and B will be indicated as needed.
- We shall use 1 to denote the identity element in a Banach algebra under consideration.
- The group of invertible elements of A shall be denoted by $G(A)$.
- For any element x in A, its spectrum is given by

$$
\sigma(x)=\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-x \notin G(A)\} ;
$$

Notational Conventions

- Throughout, A and B shall denote complex Banach algebras with identity elements.
- Additional assumptions to A and B will be indicated as needed.
- We shall use 1 to denote the identity element in a Banach algebra under consideration.
- The group of invertible elements of A shall be denoted by $G(A)$.
- For any element x in A, its spectrum is given by

$$
\sigma(x)=\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-x \notin G(A)\} ;
$$

and we use $\sigma^{\prime}(x)=\sigma(x) \backslash\{0\}$ to denote its nonzero spectrum.

Some Terminology

- A map $\phi: A \rightarrow B$ is spectrum-preserving if $\sigma(x)=\sigma(\phi(x))$ for all $x \in A ;$

Some Terminology

- A map $\phi: A \rightarrow B$ is spectrum-preserving if $\sigma(x)=\sigma(\phi(x))$ for all $x \in A$; and ϕ is unital if $\phi(\mathbf{1})=\mathbf{1}$.

Some Terminology

- A map $\phi: A \rightarrow B$ is spectrum-preserving if $\sigma(x)=\sigma(\phi(x))$ for all $x \in A$; and ϕ is unital if $\phi(\mathbf{1})=\mathbf{1}$.
- We also mention that a Banach algebra A is semisimple if its Jacobson radical, $\operatorname{rad}(A)$, is $\{\mathbf{0}\}$.

Some Terminology

- A map $\phi: A \rightarrow B$ is spectrum-preserving if $\sigma(x)=\sigma(\phi(x))$ for all $x \in A$; and ϕ is unital if $\phi(\mathbf{1})=\mathbf{1}$.
- We also mention that a Banach algebra A is semisimple if its Jacobson radical, $\operatorname{rad}(A)$, is $\{\mathbf{0}\}$.
- Equivalently, A is semisimple if $\sigma(x+y)=\sigma(y)$ for all $y \in A$ implies $x=\mathbf{0}$. (Zemánek)

Some Terminology

- A map $\phi: A \rightarrow B$ is spectrum-preserving if $\sigma(x)=\sigma(\phi(x))$ for all $x \in A$; and ϕ is unital if $\phi(\mathbf{1})=\mathbf{1}$.
- We also mention that a Banach algebra A is semisimple if its Jacobson radical, $\operatorname{rad}(A)$, is $\{\mathbf{0}\}$.
- Equivalently, A is semisimple if $\sigma(x+y)=\sigma(y)$ for all $y \in A$ implies $x=\mathbf{0}$. (Zemánek)
- A two-sided ideal J of a Banach algebra is said to be essential if it has a nonzero intersection with every nonzero ideal in the Banach algebra.

Some Terminology

- A map $\phi: A \rightarrow B$ is spectrum-preserving if $\sigma(x)=\sigma(\phi(x))$ for all $x \in A$; and ϕ is unital if $\phi(\mathbf{1})=\mathbf{1}$.
- We also mention that a Banach algebra A is semisimple if its Jacobson radical, $\operatorname{rad}(A)$, is $\{\mathbf{0}\}$.
- Equivalently, A is semisimple if $\sigma(x+y)=\sigma(y)$ for all $y \in A$ implies $x=\mathbf{0}$. (Zemánek)
- A two-sided ideal J of a Banach algebra is said to be essential if it has a nonzero intersection with every nonzero ideal in the Banach algebra.
- If the Banach algebra is semisimple, then this is equivalent to saying that the condition $x J=\{\mathbf{0}\}$ implies $x=\mathbf{0}$.

Some Terminology

- A map $\phi: A \rightarrow B$ is spectrum-preserving if $\sigma(x)=\sigma(\phi(x))$ for all $x \in A$; and ϕ is unital if $\phi(\mathbf{1})=\mathbf{1}$.
- We also mention that a Banach algebra A is semisimple if its Jacobson radical, $\operatorname{rad}(A)$, is $\{\mathbf{0}\}$.
- Equivalently, A is semisimple if $\sigma(x+y)=\sigma(y)$ for all $y \in A$ implies $x=\mathbf{0}$. (Zemánek)
- A two-sided ideal J of a Banach algebra is said to be essential if it has a nonzero intersection with every nonzero ideal in the Banach algebra.
- If the Banach algebra is semisimple, then this is equivalent to saying that the condition $x J=\{\mathbf{0}\}$ implies $x=\mathbf{0}$.
- A Banach algebra is said to be prime if and only if every nonzero two-sided ideal is essential.

Some Reminders about the Socle

- An important two-sided ideal of a semisimple Banach algebra A is the socle.

Some Reminders about the Socle

- An important two-sided ideal of a semisimple Banach algebra A is the socle.
- The socle of A, denoted $\operatorname{soc}(A)$, is the collection of all finite sums formed by using elements taken from any of the minimal left (or right) ideals of A.

Some Reminders about the Socle

- An important two-sided ideal of a semisimple Banach algebra A is the socle.
- The socle of A, denoted $\operatorname{soc}(A)$, is the collection of all finite sums formed by using elements taken from any of the minimal left (or right) ideals of A.
- If the Banach algebra lacks minimal one-sided ideals, then its socle is trivial i.e. $\{\mathbf{0}\}$.

Introduction

Theorem (Gleason-Kahane-Żelazko, 1967, 1968)
If a linear functional $f: A \rightarrow \mathbb{C}$ maps every $x \in A$ into its spectrum $\sigma(x)$, then f is multiplicative.

Introduction

Theorem (Gleason-Kahane-Żelazko, 1967, 1968)
If a linear functional $f: A \rightarrow \mathbb{C}$ maps every $x \in A$ into its spectrum $\sigma(x)$, then f is multiplicative.

Equivalently, this result says that every unital linear functional mapping every invertible element to a nonzero scalar is multiplicative.

Introduction

Theorem (Gleason-Kahane-Żelazko, 1967, 1968)

If a linear functional $f: A \rightarrow \mathbb{C}$ maps every $x \in A$ into its spectrum $\sigma(x)$, then f is multiplicative.

Equivalently, this result says that every unital linear functional mapping every invertible element to a nonzero scalar is multiplicative.

Key observation: Since f maps invertible elements of A to invertible elements of \mathbb{C}, it is automatically well-behaved with respect to multiplication.

Introduction

More generally, we say that a map $\phi: \mathcal{A} \rightarrow \mathcal{B}$ between two algebras preserves invertibility if $\phi(a)$ is invertible in \mathcal{B} whenever a is invertible in \mathcal{A}.

Introduction

More generally, we say that a map $\phi: \mathcal{A} \rightarrow \mathcal{B}$ between two algebras preserves invertibility if $\phi(a)$ is invertible in \mathcal{B} whenever a is invertible in \mathcal{A}.

The GKZ Theorem (among others) motivated I. Kaplansky to formulate the problem of determining the conditions under which a unital linear invertibility preserving map ϕ between two algebras must be a Jordan-homomorphism.

Introduction

More generally, we say that a map $\phi: \mathcal{A} \rightarrow \mathcal{B}$ between two algebras preserves invertibility if $\phi(a)$ is invertible in \mathcal{B} whenever a is invertible in \mathcal{A}.

The GKZ Theorem (among others) motivated I. Kaplansky to formulate the problem of determining the conditions under which a unital linear invertibility preserving map ϕ between two algebras must be a Jordan-homomorphism.

A Jordan-homomorphism ϕ is a linear map with the property that

$$
\phi\left(x^{2}\right)=\phi(x)^{2} \text { for all } x \text { in its domain. }
$$

Introduction

As mentioned by Kaplansky himself, the appropriate setting for the study of these types of maps seems to be between two Banach algebras.

Introduction

As mentioned by Kaplansky himself, the appropriate setting for the study of these types of maps seems to be between two Banach algebras.

In this context, if $\phi: A \rightarrow B$ is a unital linear invertibility preserving map between complex Banach algebras A and B, then ϕ is spectrum-compressing, i.e.

$$
\sigma(\phi(a)) \subseteq \sigma(a) \text { for each } a \in A
$$

Introduction

As mentioned by Kaplansky himself, the appropriate setting for the study of these types of maps seems to be between two Banach algebras.

In this context, if $\phi: A \rightarrow B$ is a unital linear invertibility preserving map between complex Banach algebras A and B, then ϕ is spectrum-compressing, i.e.

$$
\sigma(\phi(a)) \subseteq \sigma(a) \text { for each } a \in A
$$

If, in addition, ϕ actually preserves invertibility in both directions, that is, if $\phi(a)$ is invertible in B if and only if a is invertible in A, then ϕ is spectrum-preserving.

Introduction

As mentioned by Kaplansky himself, the appropriate setting for the study of these types of maps seems to be between two Banach algebras.

In this context, if $\phi: A \rightarrow B$ is a unital linear invertibility preserving map between complex Banach algebras A and B, then ϕ is spectrum-compressing, i.e.

$$
\sigma(\phi(a)) \subseteq \sigma(a) \text { for each } a \in A
$$

If, in addition, ϕ actually preserves invertibility in both directions, that is, if $\phi(a)$ is invertible in B if and only if a is invertible in A, then ϕ is spectrum-preserving.

Since $0 \in \sigma(a)$ if and only if $a \notin G(A)$, we can also work our way back to invertibility preservation.

Introduction

As a result of this connection to Kaplansky's problem, over the years there has been a surge of literature on linear maps preserving or compressing various parts of the spectrum, or preserving the spectral radius.

Introduction

Theorem (Jafarian-Sourour, 1986)

Any surjective and linear spectrum preserving map $\phi: \mathcal{L}(X) \rightarrow \mathcal{L}(Y)$ satisfies the following: Either
(a) there exists an invertible bounded linear operator $U: X \rightarrow Y$ such that $\phi(T)=U T U^{-1}$ for each $T \in \mathcal{L}(X)$, or
(b) there exists an invertible bounded linear operator $V: X^{\prime} \rightarrow Y$ such that $\phi(T)=V T^{*} V^{-1}$ for each $T \in \mathcal{L}(X)$.
Hence, ϕ is either an (algebra) isomorphism or anti-isomorphism.

Introduction

Theorem (Jafarian-Sourour, 1986)

Any surjective and linear spectrum preserving map $\phi: \mathcal{L}(X) \rightarrow \mathcal{L}(Y)$ satisfies the following: Either
(a) there exists an invertible bounded linear operator $U: X \rightarrow Y$ such that $\phi(T)=U T U^{-1}$ for each $T \in \mathcal{L}(X)$, or
(b) there exists an invertible bounded linear operator $V: X^{\prime} \rightarrow Y$ such that $\phi(T)=V T^{*} V^{-1}$ for each $T \in \mathcal{L}(X)$.
Hence, ϕ is either an (algebra) isomorphism or anti-isomorphism.

This result was then extended in two directions which is of relevance here.

Introduction

Theorem (Omladič-Šemrl, 1991)

Any surjective and additive spectrum preserving map $\phi: \mathcal{L}(X) \rightarrow \mathcal{L}(Y)$ satisfies the following: Either
(a) there exists an invertible bounded linear operator $U: X \rightarrow Y$ such that $\phi(T)=U T U^{-1}$ for each $T \in \mathcal{L}(X)$, or
(b) there exists an invertible bounded linear operator $V: X^{\prime} \rightarrow Y$ such that $\phi(T)=V T^{*} V^{-1}$ for each $T \in \mathcal{L}(X)$.
Hence, ϕ is either an (algebra) isomorphism or anti-isomorphism.

Introduction

Theorem (Aupetit-Mouton, 1994)

If $\phi: A \rightarrow B$ is a surjective linear spectrum-preserving map between semisimple Banach algebras and $\operatorname{soc}(B)$ is essential, then ϕ is a Jordan-isomorphism.

Introduction

Theorem (Aupetit-Mouton, 1994)

If $\phi: A \rightarrow B$ is a surjective linear spectrum-preserving map between semisimple Banach algebras and $\operatorname{soc}(B)$ is essential, then ϕ is a Jordan-isomorphism.

Corollary (Aupetit-Mouton, 1994)

If $\phi: A \rightarrow B$ is a surjective linear spectrum-preserving map between semisimple Banach algebras and and B is a prime Banach algebra with minimal ideals, then ϕ is an isomorphism or an anti-isomorphism.

Introduction

Theorem (Aupetit-Mouton, 1994)

If $\phi: A \rightarrow B$ is a surjective linear spectrum-preserving map between semisimple Banach algebras and $\operatorname{soc}(B)$ is essential, then ϕ is a Jordan-isomorphism.

Corollary (Aupetit-Mouton, 1994)

If $\phi: A \rightarrow B$ is a surjective linear spectrum-preserving map between semisimple Banach algebras and and B is a prime Banach algebra with minimal ideals, then ϕ is an isomorphism or an anti-isomorphism.

Remark. Aupetit and Mouton actually considered a slightly more general problem on maps which preserve the full spectrum.

Introduction

Theorem (Aupetit-Mouton, 1994)

If $\phi: A \rightarrow B$ is a surjective linear spectrum-preserving map between semisimple Banach algebras and $\operatorname{soc}(B)$ is essential, then ϕ is a Jordan-isomorphism.

Corollary (Aupetit-Mouton, 1994)

If $\phi: A \rightarrow B$ is a surjective linear spectrum-preserving map between semisimple Banach algebras and and B is a prime Banach algebra with minimal ideals, then ϕ is an isomorphism or an anti-isomorphism.

Remark. Aupetit and Mouton actually considered a slightly more general problem on maps which preserve the full spectrum.

Finite Rank Elements and the Socle

- Following B. Aupetit and H. du T. Mouton, we define the rank of $a \in A$ by

$$
\operatorname{rank}^{\sigma}(a)=\sup _{x \in A} \# \sigma^{\prime}(x a) \leq \infty
$$

Finite Rank Elements and the Socle

- Following B. Aupetit and H. du T. Mouton, we define the rank of $a \in A$ by

$$
\operatorname{rank}^{\sigma}(a)=\sup _{x \in A} \# \sigma^{\prime}(x a) \leq \infty
$$

- This definition of rank generalizes the classical rank of an operator.

Finite Rank Elements and the Socle

- Following B. Aupetit and H. du T. Mouton, we define the rank of $a \in A$ by

$$
\operatorname{rank}^{\sigma}(a)=\sup _{x \in A} \# \sigma^{\prime}(x a) \leq \infty
$$

- This definition of rank generalizes the classical rank of an operator.
- Moreover, it satisfies all the classical properties such as subadditivity, lower-semicontinuity, and so forth.

Finite Rank Elements and the Socle

- Following B. Aupetit and H. du T. Mouton, we define the rank of $a \in A$ by

$$
\operatorname{rank}^{\sigma}(a)=\sup _{x \in A} \# \sigma^{\prime}(x a) \leq \infty
$$

- This definition of rank generalizes the classical rank of an operator.
- Moreover, it satisfies all the classical properties such as subadditivity, lower-semicontinuity, and so forth.
- If A is semisimple then $\operatorname{soc}(A)=\left\{a \in A: \operatorname{rank}^{\sigma}(a)<\infty\right\}$. (Aupetit-Mouton, 1996)

Trace, Determinant and Multiplicity

- For $a \in \operatorname{soc}(A)$, Aupetit and Mouton define the trace of a and the determinant of $\mathbf{1}+a$ by

$$
\operatorname{tr}(a)=\sum_{\alpha \in \sigma(a)} \alpha m(\alpha, a)
$$

and

$$
\operatorname{det}(\mathbf{1}+a)=\prod_{\alpha \in \sigma(a)}(1+\alpha)^{m(\alpha, a)},
$$

respectively.

Trace, Determinant and Multiplicity

- For $a \in \operatorname{soc}(A)$, Aupetit and Mouton define the trace of a and the determinant of $\mathbf{1}+a$ by

$$
\operatorname{tr}(a)=\sum_{\alpha \in \sigma(a)} \alpha m(\alpha, a)
$$

and

$$
\operatorname{det}(\mathbf{1}+a)=\prod_{\alpha \in \sigma(a)}(1+\alpha)^{m(\alpha, a)},
$$

respectively.

- Here $m(\alpha, a)$ is the multiplicity of a at α.

Rank One Elements and the Trace

- Denote the set of rank one elements of A by $\mathscr{F}_{1}(A)$.

Rank One Elements and the Trace

- Denote the set of rank one elements of A by $\mathscr{F}_{1}(A)$.
- Then for any $x \in \mathscr{F}_{1}(A)$, we have that $\operatorname{tr}(x)=0$ or $\sigma^{\prime}(x)=\{\operatorname{tr}(x)\}$.

Rank One Elements and the Trace

- Denote the set of rank one elements of A by $\mathscr{F}_{1}(A)$.
- Then for any $x \in \mathscr{F}_{1}(A)$, we have that $\operatorname{tr}(x)=0$ or $\sigma^{\prime}(x)=\{\operatorname{tr}(x)\}$.
- Now, tr is a linear functional on $\operatorname{soc}(A)$. (Aupetit-Mouton, 1996; Braatvedt-Brits-S., 2015)

Rank One Elements and the Trace

- Denote the set of rank one elements of A by $\mathscr{F}_{1}(A)$.
- Then for any $x \in \mathscr{F}_{1}(A)$, we have that $\operatorname{tr}(x)=0$ or $\sigma^{\prime}(x)=\{\operatorname{tr}(x)\}$.
- Now, tr is a linear functional on $\operatorname{soc}(A)$. (Aupetit-Mouton, 1996; Braatvedt-Brits-S., 2015)
- Moreover, if A is semisimple, then every $a \in \operatorname{soc}(A)$ can be written as a finite sum of rank one elements. (Aupetit-Mouton, 1996)

Rank One Elements and the Trace

- Denote the set of rank one elements of A by $\mathscr{F}_{1}(A)$.
- Then for any $x \in \mathscr{F}_{1}(A)$, we have that $\operatorname{tr}(x)=0$ or $\sigma^{\prime}(x)=\{\operatorname{tr}(x)\}$.
- Now, tr is a linear functional on $\operatorname{soc}(A)$. (Aupetit-Mouton, 1996; Braatvedt-Brits-S., 2015)
- Moreover, if A is semisimple, then every $a \in \operatorname{soc}(A)$ can be written as a finite sum of rank one elements. (Aupetit-Mouton, 1996)

Theorem (Aupetit-Mouton, 1996)

Let A be semisimple and let $a \in A$. If $\operatorname{tr}(a x)=0$ for each $x \in \operatorname{soc}(A)$, then $\operatorname{asoc}(A)=\{\mathbf{0}\}$. Moreover, if $a \in \operatorname{soc}(A)$, then $a=\mathbf{0}$.

Spectrally Additive Maps - A Motivation

Theorem (Gleason-Kahane-Żelazko, 1967, 1968)
If a linear functional $f: A \rightarrow \mathbb{C}$ maps every $x \in A$ into its spectrum $\sigma(x)$, then f is multiplicative.

Spectrally Additive Maps - A Motivation

Theorem (Gleason-Kahane-Żelazko, 1967, 1968)
If a linear functional $f: A \rightarrow \mathbb{C}$ maps every $x \in A$ into its spectrum $\sigma(x)$, then f is multiplicative.

Theorem (Kowalski-Słodkowski, 1980)

Every functional f on A satisfying $f(x)+f(y) \in \sigma(x+y)$ for each $x, y \in A$ is linear and multiplicative.

Spectrally Additive Maps - A Motivation

Theorem (Gleason-Kahane-Żelazko, 1967, 1968)
If a linear functional $f: A \rightarrow \mathbb{C}$ maps every $x \in A$ into its spectrum $\sigma(x)$, then f is multiplicative.

Theorem (Kowalski-Słodkowski, 1980)

Every functional f on A satisfying $f(x)+f(y) \in \sigma(x+y)$ for each $x, y \in A$ is linear and multiplicative.

In view of this it seems quite natural to ask if it is possible to do the same with linear spectrum preserving maps?

Spectrally Additive Maps - A Motivation

> Theorem (Gleason-Kahane-Żelazko, 1967, 1968)
> If a linear functional $f: A \rightarrow \mathbb{C}$ maps every $x \in A$ into its spectrum $\sigma(x)$, then f is multiplicative.

Theorem (Kowalski-Słodkowski, 1980)

Every functional f on A satisfying $f(x)+f(y) \in \sigma(x+y)$ for each $x, y \in A$ is linear and multiplicative.

In view of this it seems quite natural to ask if it is possible to do the same with linear spectrum preserving maps?

More precisely, if a surjective map ϕ (with no linearity or even additivity assumed) only has the property that $\sigma(\phi(x)+\phi(y))=\sigma(x+y)$ for each x, y in the domain of ϕ, is ϕ a Jordan-isomorphism?

Spectrally Additive Group Homomorphisms

Theorem (Askes-Brits-S., 2022)

Let A be semisimple and suppose that $\phi: A \rightarrow B$ is a surjective map with the property that $\sigma(x \pm y)=\sigma(\phi(x) \pm \phi(y))$ for all $x, y \in A$. Then:

Spectrally Additive Group Homomorphisms

Theorem (Askes-Brits-S., 2022)

Let A be semisimple and suppose that $\phi: A \rightarrow B$ is a surjective map with the property that $\sigma(x \pm y)=\sigma(\phi(x) \pm \phi(y))$ for all $x, y \in A$. Then:
(a) $(\phi(\alpha x+\beta y)-\alpha \phi(x)-\beta \phi(y)) \operatorname{soc}(B)=\{\mathbf{0}\}$ for all $x, y \in A$ and any $\alpha, \beta \in \mathbb{C}$.
(b) $\left(\phi\left(x^{2}\right)-\phi(x)^{2}\right) \operatorname{soc}(B)=\{\mathbf{0}\}$ for all $x \in A$.

Spectrally Additive Group Homomorphisms

Theorem (Askes-Brits-S., 2022)

Let A be semisimple and suppose that $\phi: A \rightarrow B$ is a surjective map with the property that $\sigma(x \pm y)=\sigma(\phi(x) \pm \phi(y))$ for all $x, y \in A$. Then:
(a) $(\phi(\alpha x+\beta y)-\alpha \phi(x)-\beta \phi(y)) \operatorname{soc}(B)=\{\mathbf{0}\}$ for all $x, y \in A$ and any $\alpha, \beta \in \mathbb{C}$.
(b) $\left(\phi\left(x^{2}\right)-\phi(x)^{2}\right) \operatorname{soc}(B)=\{0\}$ for all $x \in A$.

In particular, if either $\operatorname{soc}(A)$ or $\operatorname{soc}(B)$ are essential, then $\phi: A \rightarrow B$ is a continuous Jordan-isomorphism.

Spectrally Additive Group Homomorphisms

Theorem (Askes-Brits-S., 2022)

Let A be semisimple and suppose that $\phi: A \rightarrow B$ is a surjective map with the property that $\sigma(x \pm y)=\sigma(\phi(x) \pm \phi(y))$ for all $x, y \in A$. Then:
(a) $(\phi(\alpha x+\beta y)-\alpha \phi(x)-\beta \phi(y)) \operatorname{soc}(B)=\{\mathbf{0}\}$ for all $x, y \in A$ and any $\alpha, \beta \in \mathbb{C}$.
(b) $\left(\phi\left(x^{2}\right)-\phi(x)^{2}\right) \operatorname{soc}(B)=\{\mathbf{0}\}$ for all $x \in A$.

In particular, if either $\operatorname{soc}(A)$ or $\operatorname{soc}(B)$ are essential, then $\phi: A \rightarrow B$ is a continuous Jordan-isomorphism. Moreover, if either A or B is a prime algebra with a nonzero socle, then ϕ is continuous and is either an (algebra) isomorphism or anti-isomorphism.

An Additive Characterization of Finite Rank Elements

Theorem (Askes-Brits-S., 2022)

Suppose that A is semisimple. Let $a \in A$, let $m \in \mathbb{N}$, and let K be any subset of \mathbb{C} with at least $m+1$ nonzero elements. Then the following are equivalent:
(a) $\operatorname{rank}^{\sigma}(a)=\sup _{x \in A} \# \sigma^{\prime}(x a)=m$.
(b) $\sup _{y \in G(A)} \#\{t \in K: y+$ ta $\notin G(A)\}=m$.

An Additive Characterization of Finite Rank Elements

Theorem (Askes-Brits-S., 2022)

Suppose that A is semisimple. Let $a \in A$, let $m \in \mathbb{N}$, and let K be any subset of \mathbb{C} with at least $m+1$ nonzero elements. Then the following are equivalent:
(a) $\operatorname{rank}^{\sigma}(a)=\sup _{x \in A} \# \sigma^{\prime}(x a)=m$.
(b) $\sup _{y \in G(A)} \#\{t \in K: y+$ ta $\notin G(A)\}=m$.

With $K=\{-1,1\}$ we readily obtain that a spectrally additive group homomorphism preserves rank one elements in both directions.

Spectrally Additive Group Homomorphisms

Indeed, notice that if $\phi: A \rightarrow B$ is a spectrally additive group homomorphism, then

$$
0 \in \sigma(y \pm a) \Longleftrightarrow 0 \in \sigma(\phi(y) \pm \phi(a))
$$

Spectrally Additive Group Homomorphisms

Indeed, notice that if $\phi: A \rightarrow B$ is a spectrally additive group homomorphism, then

$$
0 \in \sigma(y \pm a) \Longleftrightarrow 0 \in \sigma(\phi(y) \pm \phi(a))
$$

that is,

$$
y \pm a \notin G(A) \Longleftrightarrow \phi(y) \pm \phi(a) \notin G(B) .
$$

Spectrally Additive Group Homomorphisms

Indeed, notice that if $\phi: A \rightarrow B$ is a spectrally additive group homomorphism, then

$$
0 \in \sigma(y \pm a) \Longleftrightarrow 0 \in \sigma(\phi(y) \pm \phi(a))
$$

that is,

$$
y \pm a \notin G(A) \Longleftrightarrow \phi(y) \pm \phi(a) \notin G(B) .
$$

Corollary (Askes-Brits-S., 2022)

Suppose that A is semisimple. If $\phi: A \rightarrow B$ is a spectrally additive group homomorphism, then B is semisimple and $\phi\left(\mathscr{F}_{1}(A)\right)=\mathscr{F}_{1}(B)$.

Is Spectrally Additive enough?

Theorem (Askes-Brits-S., 2022)

Suppose that A is semisimple. Let $a \in A$, let $m \in \mathbb{N}$, and let K be any subset of \mathbb{C} with at least $m+1$ nonzero elements. Then the following are equivalent:
(a) $\operatorname{rank}^{\sigma}(a)=\sup _{x \in A} \# \sigma^{\prime}(x a)=m$.
(b) $\sup _{y \in G(A)} \#\{t \in K: y+$ ta $\notin G(A)\}=m$.

Since the set K in the theorem must contain at least two nonzero elements to characterize rank one elements, if ϕ is only spectrally additive, then this result cannot be used directly to obtain that $\phi\left(\mathscr{F}_{1}(A)\right)=\mathscr{F}_{1}(B)$.

A New Characterization of Rank One Elements

Theorem (Havlicek-Šemrl, 2006)

Let H be an infinite dimensional Hilbert space. Then an operator $B \in \mathcal{L}(H)$ has rank one if and only if there exists some $R \in \mathcal{L}(H)$, with $R \neq \mathbf{0}$ and $R \neq B$, such that for every $X \in \mathcal{L}(H)$,

$$
X+R \in G(\mathcal{L}(H)) \Longrightarrow X \in G(\mathcal{L}(H)) \text { or } X+B \in G(\mathcal{L}(H))
$$

A New Characterization of Rank One Elements

Theorem (Havlicek-Šemrl, 2006)

Let H be an infinite dimensional Hilbert space. Then an operator $B \in \mathcal{L}(H)$ has rank one if and only if there exists some $R \in \mathcal{L}(H)$, with $R \neq \mathbf{0}$ and $R \neq B$, such that for every $X \in \mathcal{L}(H)$,

$$
X+R \in G(\mathcal{L}(H)) \Longrightarrow X \in G(\mathcal{L}(H)) \text { or } X+B \in G(\mathcal{L}(H))
$$

Theorem (S., 2022)

Let A be semisimple and let $b \in A \backslash\{\mathbf{0}\}$. Then $\operatorname{rank}^{\sigma}(b)=1$ if and only if there exists some $r \in A$ such that for any $x \in A$, we have
(i) $x \in G(A) \Longrightarrow x+r \in G(A)$ or $x+b \in G(A)$;
(ii) $x+r \in G(A) \Longrightarrow x \in G(A)$ or $x+b \in G(A)$;
(iii) $x \notin G(A)$ and $x+b \in G(A) \Longrightarrow x+r \in G(A)$.

Spectrally Additive Maps

Proposition (Askes-Brits-S., 2022)

Suppose that A is semisimple and that $\phi: A \rightarrow B$ is a spectrally additive map. Then:
(a) For any $x, y \in A, x+y \in G(A) \Longleftrightarrow \phi(x)+\phi(y) \in G(B)$.
(b) ϕ is spectrum-preserving and $\phi(\mathbf{0})=\mathbf{0}$.
(c) $\phi(G(A))=G(B)$.
(d) ϕ is injective.
(e) B is semisimple.
(f) $\phi(\lambda \mathbf{1}+x)=\lambda \mathbf{1}+\phi(x)$ for each $\lambda \in \mathbb{C}$ and $x \in A$.

Spectrally Additive Maps

Proposition (Askes-Brits-S., 2022)

Suppose that A is semisimple and that $\phi: A \rightarrow B$ is a spectrally additive map. Then:
(a) For any $x, y \in A, x+y \in G(A) \Longleftrightarrow \phi(x)+\phi(y) \in G(B)$.
(b) ϕ is spectrum-preserving and $\phi(\mathbf{0})=\mathbf{0}$.
(c) $\phi(G(A))=G(B)$.
(d) ϕ is injective.
(e) B is semisimple.
(f) $\phi(\lambda \mathbf{1}+x)=\lambda \mathbf{1}+\phi(x)$ for each $\lambda \in \mathbb{C}$ and $x \in A$.

Corollary (S., 2022)

Suppose that A is semisimple. If $\phi: A \rightarrow B$ is a spectrally additive map, then $\phi\left(\mathscr{F}_{1}(A)\right)=\mathscr{F}_{1}(B)$.

Trace, Determinant and Multiplicity

(P1) If $a \in \operatorname{soc}(A)$ and $\alpha \in \sigma^{\prime}(a)$, then $m(\alpha, a)=m(\lambda \alpha, \lambda a)$ for all $\lambda \in \mathbb{C} \backslash\{0\}$. (Braatvedt-Brits-S., 2015)

Trace, Determinant and Multiplicity

(P1) If $a \in \operatorname{soc}(A)$ and $\alpha \in \sigma^{\prime}(a)$, then $m(\alpha, a)=m(\lambda \alpha, \lambda a)$ for all $\lambda \in \mathbb{C} \backslash\{0\}$. (Braatvedt-Brits-S., 2015)
(P2) tr is a linear functional on the socle. (Aupetit-Mouton, 1996 and Braatvedt-Brits-S., 2015)

Trace, Determinant and Multiplicity

(P1) If $a \in \operatorname{soc}(A)$ and $\alpha \in \sigma^{\prime}(a)$, then $m(\alpha, a)=m(\lambda \alpha, \lambda a)$ for all $\lambda \in \mathbb{C} \backslash\{0\}$. (Braatvedt-Brits-S., 2015)
(P2) tr is a linear functional on the socle. (Aupetit-Mouton, 1996 and Braatvedt-Brits-S., 2015)
(P3) Let $n \in \mathbb{N}$ and let $F_{n} \subseteq A$ be the collection of all elements $a \in A$ with $\operatorname{rank}^{\sigma}(a) \leq n$. Then tr is continuous on F_{n}. (Aupetit-Mouton, 1996)

Trace, Determinant and Multiplicity

(P1) If $a \in \operatorname{soc}(A)$ and $\alpha \in \sigma^{\prime}(a)$, then $m(\alpha, a)=m(\lambda \alpha, \lambda a)$ for all $\lambda \in \mathbb{C} \backslash\{0\}$. (Braatvedt-Brits-S., 2015)
(P2) tr is a linear functional on the socle. (Aupetit-Mouton, 1996 and Braatvedt-Brits-S., 2015)
(P3) Let $n \in \mathbb{N}$ and let $F_{n} \subseteq A$ be the collection of all elements $a \in A$ with $\operatorname{rank}^{\sigma}(a) \leq n$. Then tr is continuous on F_{n}. (Aupetit-Mouton, 1996)
(P4) $\operatorname{tr}(a b)=\operatorname{tr}(b a)$ for each $a \in \operatorname{soc}(A)$ and $b \in A$.
(Braatvedt-Brits-S., 2015)

Trace, Determinant and Multiplicity

(P1) If $a \in \operatorname{soc}(A)$ and $\alpha \in \sigma^{\prime}(a)$, then $m(\alpha, a)=m(\lambda \alpha, \lambda a)$ for all $\lambda \in \mathbb{C} \backslash\{0\}$. (Braatvedt-Brits-S., 2015)
(P2) tr is a linear functional on the socle. (Aupetit-Mouton, 1996 and Braatvedt-Brits-S., 2015)
(P3) Let $n \in \mathbb{N}$ and let $F_{n} \subseteq A$ be the collection of all elements $a \in A$ with $\operatorname{rank}^{\sigma}(a) \leq n$. Then tr is continuous on F_{n}. (Aupetit-Mouton, 1996)
(P4) $\operatorname{tr}(a b)=\operatorname{tr}(b a)$ for each $a \in \operatorname{soc}(A)$ and $b \in A$.
(Braatvedt-Brits-S., 2015)
(P5) For any $a, b \in \operatorname{soc}(A)$ it follows that

$$
\operatorname{det}((\mathbf{1}+a)(\mathbf{1}+b))=\operatorname{det}(\mathbf{1}+a) \operatorname{det}(\mathbf{1}+b)
$$

(Aupetit-Mouton, 1996)

Spectrally Additive Maps

Lemma (Askes-Brits-S., 2022)

Let $x \in \operatorname{soc}(A)$ with $\sigma^{\prime}(x)=\{\alpha\}$ and $m(\alpha, x)=k$. Then $m\left(\alpha^{2}, x^{2}\right)=k$.

Lemma (Askes-Brits-S., 2022)

Let $x \in \operatorname{soc}(A)$ with $\sigma^{\prime}(x)=\{\alpha,-\alpha\}$ and $m(\alpha, x)=m(-\alpha, x)=k$. Then $m\left(\alpha^{2}, x^{2}\right)=2 k$.

Spectrally Additive Maps

Lemma (Askes-Brits-S., 2022)

Let $x \in \operatorname{soc}(A)$ with $\sigma^{\prime}(x)=\{\alpha\}$ and $m(\alpha, x)=k$. Then $m\left(\alpha^{2}, x^{2}\right)=k$.

Lemma (Askes-Brits-S., 2022)

Let $x \in \operatorname{soc}(A)$ with $\sigma^{\prime}(x)=\{\alpha,-\alpha\}$ and $m(\alpha, x)=m(-\alpha, x)=k$. Then $m\left(\alpha^{2}, x^{2}\right)=2 k$.

From this we are able to show, with a bit of effort, that

$$
\operatorname{tr}\left((a+b)^{2}\right)=\operatorname{tr}\left((\phi(a)+\phi(b))^{2}\right) \text { for all } a, b \in \mathscr{F}_{1}(A)
$$

Spectrally Additive Maps

Lemma (Askes-Brits-S., 2022)

Let $x \in \operatorname{soc}(A)$ with $\sigma^{\prime}(x)=\{\alpha\}$ and $m(\alpha, x)=k$. Then $m\left(\alpha^{2}, x^{2}\right)=k$.

Lemma (Askes-Brits-S., 2022)

Let $x \in \operatorname{soc}(A)$ with $\sigma^{\prime}(x)=\{\alpha,-\alpha\}$ and $m(\alpha, x)=m(-\alpha, x)=k$. Then $m\left(\alpha^{2}, x^{2}\right)=2 k$.

From this we are able to show, with a bit of effort, that

$$
\operatorname{tr}\left((a+b)^{2}\right)=\operatorname{tr}\left((\phi(a)+\phi(b))^{2}\right) \text { for all } a, b \in \mathscr{F}_{1}(A)
$$

Hence, from the linearity and cyclic property of the trace, we obtain that

$$
\operatorname{tr}\left(a^{2}\right)+2 \operatorname{tr}(a b)+\operatorname{tr}\left(b^{2}\right)=\operatorname{tr}\left(\phi(a)^{2}\right)+2 \operatorname{tr}(\phi(a) \phi(b))+\operatorname{tr}\left(\phi(b)^{2}\right)
$$

for all $a, b \in \mathscr{F}_{1}(A)$.

Spectrally Additive Maps

Theorem (Askes-Brits-S., 2022)

Let A be semisimple and let $\phi: A \rightarrow B$ be a spectrally additive map. Then

$$
\operatorname{tr}(a b)=\operatorname{tr}(\phi(a) \phi(b)) \text { for all } a, b \in \mathscr{F}_{1}(A)
$$

Thus, we conclude that ϕ is homogeneous on $\mathscr{F}_{1}(A)$.

Spectrally Additive Maps

Theorem (Askes-Brits-S., 2022)

Let A be semisimple and let $\phi: A \rightarrow B$ be a spectrally additive map. Then

$$
\operatorname{tr}(a b)=\operatorname{tr}(\phi(a) \phi(b)) \text { for all } a, b \in \mathscr{F}_{1}(A)
$$

Thus, we conclude that ϕ is homogeneous on $\mathscr{F}_{1}(A)$.

Lemma (Askes-Brits-S., 2022)

Let A be semisimple and let $\phi: A \rightarrow B$ be a spectrally additive map. Then

$$
\operatorname{tr}\left(x^{-1} a\right)=\operatorname{tr}\left(\phi(x)^{-1} \phi(a)\right) \text { for all } x \in G(A) \text { and } a \in \mathscr{F}_{1}(A) .
$$

Spectrally Additive Maps

Hence,

$$
\operatorname{tr}\left((-\lambda \mathbf{1}+x)^{-1} a\right)=\operatorname{tr}\left(\phi(-\lambda \mathbf{1}+x)^{-1} \phi(a)\right)=\operatorname{tr}\left((-\lambda \mathbf{1}+\phi(x))^{-1} \phi(a)\right)
$$

for all $x \in A$ and $\lambda \in \mathbb{C}$ with $|\lambda|$ sufficiently large.

Spectrally Additive Maps

Hence,

$$
\operatorname{tr}\left((-\lambda \mathbf{1}+x)^{-1} a\right)=\operatorname{tr}\left(\phi(-\lambda \mathbf{1}+x)^{-1} \phi(a)\right)=\operatorname{tr}\left((-\lambda \mathbf{1}+\phi(x))^{-1} \phi(a)\right)
$$

for all $x \in A$ and $\lambda \in \mathbb{C}$ with $|\lambda|$ sufficiently large.

Lemma (Askes-Brits-S., 2022)

Let A be semisimple and suppose that $\phi: A \rightarrow B$ is a spectrally additive map. Then for any $x \in A$ and $a \in \mathscr{F}_{1}(A)$, we have

$$
\operatorname{tr}\left(x^{n} a\right)=\operatorname{tr}\left(\phi(x)^{n} \phi(a)\right) \text { for all } n \in \mathbb{N}
$$

Spectrally Additive Maps

Hence,

$$
\operatorname{tr}\left((-\lambda \mathbf{1}+x)^{-1} a\right)=\operatorname{tr}\left(\phi(-\lambda \mathbf{1}+x)^{-1} \phi(a)\right)=\operatorname{tr}\left((-\lambda \mathbf{1}+\phi(x))^{-1} \phi(a)\right)
$$

for all $x \in A$ and $\lambda \in \mathbb{C}$ with $|\lambda|$ sufficiently large.

Lemma (Askes-Brits-S., 2022)

Let A be semisimple and suppose that $\phi: A \rightarrow B$ is a spectrally additive map. Then for any $x \in A$ and $a \in \mathscr{F}_{1}(A)$, we have

$$
\operatorname{tr}\left(x^{n} a\right)=\operatorname{tr}\left(\phi(x)^{n} \phi(a)\right) \text { for all } n \in \mathbb{N}
$$

From this one now deduces that
(a)' $\operatorname{tr}((\phi(\alpha x+\beta y)-\alpha \phi(x)-\beta \phi(y)) b)=0$ for all $x, y \in A, \alpha, \beta \in \mathbb{C}$ and $b \in \operatorname{soc}(B)$;
(b)' $\operatorname{tr}\left(\left(\phi\left(x^{2}\right)-\phi(x)^{2}\right) b\right)=0$ for all $x \in A$ and $b \in \operatorname{soc}(B)$.

Spectrally Additive Maps

Theorem (S., 2022)

Let A be semisimple and suppose that $\phi: A \rightarrow B$ is a spectrally additive map. Then:
(a) $(\phi(\alpha x+\beta y)-\alpha \phi(x)-\beta \phi(y)) \operatorname{soc}(B)=\{\mathbf{0}\}$ for all $x, y \in A$ and any $\alpha, \beta \in \mathbb{C}$.
(b) $\left(\phi\left(x^{2}\right)-\phi(x)^{2}\right) \operatorname{soc}(B)=\{\mathbf{0}\}$ for all $x \in A$.

In particular, if either $\operatorname{soc}(A)$ or $\operatorname{soc}(B)$ are essential, then $\phi: A \rightarrow B$ is a continuous Jordan-isomorphism.

Corollary (S., 2022)

Let A be semisimple and suppose that $\phi: A \rightarrow B$ is a spectrally additive map. If either A or B is a prime algebra with a nonzero socle, then ϕ is continuous and is either an (algebra) isomorphism or anti-isomorphism.

Acknowledgment

This work is based on the research supported in part by the National Research Foundation of South Africa (Grant Number: 129692).

References I

固 M．Askes，R．Brits，and F．Schulz，Spectrally additive group homomorphisms on Banach algebras，J．Math．Anal．Appl． 508 （2022）， 125910.
－B．Aupetit and H．du T．Mouton，Spectrum preserving linear mappings in Banach algebras，Stud．Math． 109 （1994），91－100．

围 \qquad ，Trace and determinant in Banach algebras，Stud．Math． 121 （1996），115－136．
A．M．Gleason，A characterization of maximal ideals，J．Anal．Math． 19 （1967），171－172．
R H．Havlicek and P．Šemrl，From geometry to invertibility preservers， Stud．Math． 174 （2006），99－109．
嗇 A．A．Jafarian and A．R．Sourour，Spectrum－preserving linear maps，J． Funct．Anal． 66 （1986），255－261．

References II

瞣 J. Kahane and W. Żelazko, A characterization of maximal ideals in commutative Banach algebras, Stud. Math. 29 (1968), 339-343.
R. Kaplansky, Algebraic and Analytic Aspects of Operator Algebras, Regional Conference Series in Mathematics 1, Amer. Math. Soc., 1970.
S. Kowalski and Z. Słodkowski, A characterization of multiplicative linear functionals in Banach algebras, Stud. Math. 67 (1980), 215-223.
R. M. Omladič and P. Šemrl, Spectrum-preserving additive maps, Linear Algebra Appl. 153 (1991), 67-72.
目 F. Schulz and R. Brits, Uniqueness under spectral variation in the socle of a Banach algebra, J. Math. Anal. Appl. 444 (2016), 1626-1639.

References III

R F. Schulz, R. Brits, and G. Braatvedt, Trace characterizations and socle identifications in Banach algebras, Linear Algebra Appl. 472 (2015), 151-166.
W. Żelazko, A characterization of multiplicative linear functionals in complex Banach algebras, Stud. Math. 30 (1968), 83-85.

