
A Hilbert space approach to singularities of
functions

Zinaida Lykova

Newcastle University, UK

Jointly with J. Agler (UCSD), N. J. Young (Newcastle)

Granada, July 2022

– Typeset by FoilTEX – 1



Outline of the talk

• Introduction - pseudomultipliers

• Examples of pseudomultipliers

• Ambiguous vectors and the ambiguous space

• Definable vectors, polar vectors and the polar space

• Decomposition of the singular space

– Typeset by FoilTEX – 2



Reproducing Kernel Hilbert spaces

There is a long tradition of using Hilbert space methods to study problems
in complex analysis; this is sometimes called “operator analysis”. One of the
challenges in this area is to translate function theoretic properties into Hilbert
space concepts, typically involving reproducing kernel Hilbert spaces (RKHS).

There has been a substantial development of the theory of reproducing kernel
Hilbert spaces, see N. Aronszajn [4] and S. Saitoh [5]. In this talk we approach
singularities of functions from a RKHS perspective.

By a Hilbert function space on a set Ω we mean a Hilbert space H whose
elements are complex-valued functions on Ω such that, for each λ ∈ Ω, the linear
functional f 7→ f(λ) is continuous on H. It follows that, for each λ ∈ Ω there
exists an element of H, which we shall denote by kλ, such that f(λ) = 〈f, kλ〉 for
every f ∈ H. We call kλ the kernel corresponding to λ, and we call the function
k : Ω× Ω→ C given by

k(µ, λ) = kλ(µ) for all λ, µ ∈ Ω

the reproducing kernel of H.
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The Hardy space H2

Before giving a formal definition of a pseudomultiplier, let us consider an archetypal
example. The Hardy space H2 is the space of analytic functions f on the open
unit disc D such that

sup
0<r<1

∫ 2π

0

|f(reiθ)|2 dθ <∞.

When endowed with pointwise addition and scalar multiplication and the inner
product

〈f, g〉 = lim
r→1−

1

2π

∫ 2π

0

f(reiθ)g(reiθ) dθ

H2 is a Hilbert function space, whose reproducing kernel is the Szegő kernel k,
defined by

k(λ, µ) =
1

1− µ̄λ
for all λ, µ ∈ D.
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Multipliers

Definition 1. A multiplier of a Hilbert function space H on a set Ω is defined
to be a function ϕ : Ω→ C such that ϕf ∈ H for every f ∈ H. Here ϕf denotes
the pointwise product of ϕ and f .
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Multipliers of H2

One can show directly from the definitions that every function in the space H∞

of bounded analytic functions on D is a multiplier of H2.

On the other hand, if ϕ is a multiplier of H2, then since the constant function
1 ∈ H2, we have ϕ = ϕ1 ∈ H2, and so ϕ is analytic on D. Moreover, the
operator Xϕ on H2 defined, for all f ∈ H2, by

(Xϕf)(λ) = ϕ(λ)f(λ), for all λ ∈ Ω (1)

is linear and is easily seen to have a closed graph, and hence Xϕ is a bounded
linear operator on H2. The calculation〈

X∗ϕkλ, f
〉

= 〈kλ, Xϕf〉 = 〈kλ, ϕf〉

= (ϕf)(λ) = ϕ(λ) 〈kλ, f〉 for all λ ∈ D and all f ∈ H2

shows that X∗ϕkλ = ϕ(λ)kλ, so that ϕ(λ) is an eigenvalue of X∗ϕ, and therefore
|ϕ(λ)| ≤ ‖Xϕ‖ for all λ ∈ D, which is to say that ϕ is bounded on D. Thus the
multipliers of H2 are precisely the elements of H∞.
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Pseudomultipliers

Definition 2. Let H be a Hilbert function space on a set Ω. We say that a
function

ϕ : Dϕ ⊂ Ω→ C
is a pseudomultiplier of H if

(1) Dϕ is a set of uniqueness for H;

(2) the subspace Eϕ of H, defined to be

{h ∈ H : there exists g ∈ H such that g(λ) = ϕ(λ)h(λ) for all λ ∈ Dϕ}

is closed in H, and

(3) Eϕ has finite codimension in H.

If H is a Hilbert function space on a set Ω then we say that a subset D of Ω
is a set of uniqueness for H if, for any functions f, g ∈ H, if f(λ) = g(λ) for all
λ ∈ D then f = g.
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The regular space Eϕ and the singular space Sϕ of a
pseudomultiplier ϕ

The space Eϕ will be called the regular space of ϕ, while the space E⊥ϕ will be
called the singular space of ϕ and will be denoted by Sϕ.

When conditions (1) to (3) hold we define the operator Xϕ : Eϕ → H by
Xϕh = g where g is the element of H (necessarily unique, by condition (1)) such
that g(λ) = ϕ(λ)h(λ) for all λ ∈ Dϕ.

The idea of a pseudomultiplier of the Hilbert function space H2 came from papers
of Adamyan, Arov and Krein [1] and their forerunner by Akhiezer [3]. One can
construct meromorphic functions in the disc with a prescribed number of poles
by the spectral analysis of Hankel operators on H2. In this approach a function
with singularities determines a multiplier not on the whole of H2 but on a closed
subspace of finite codimension.
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Examples of Pseudomultipliers

Example 1. A pseudomultiplier of H2. Consider the function ϕ(z) = 1/z,
defined on the set D \ {0}.

This function is clearly not a multiplier of H2, since it is unbounded on D,
nor even defined on the whole of D. On the other hand it is close to being a
multiplier in the sense that there is a finite-codimensional closed subspace of
H2, namely zH2, which is a closed subspace of codimension 1 in H2 with the
property that, for every f ∈ zH2, ϕf is the restriction to D \ {0} of a function
in H2.

For the pseudomultiplier ϕ(z) = 1/z on H2 of Example 1, Dϕ = D \ {0} and
Eϕ is the closed subspace zH2 of H2, which has codimension 1 in H2. Thus
Sϕ = H2 	 zH2, the subspace of constant functions in H2. The operator
Xϕ : zH2 → H2 is given by Xϕzf = f for all f ∈ H2.
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Examples of Pseudomultipliers

Example 2. A pseudomultiplier on a Sobolev space. Let H be the space
W 1,2[0, 1] of absolutely continuous functions on [0, 1] whose weak derivatives
are in L2 and with inner product given by

〈f, g〉 =

∫ 1

0

f(t)g(t)dt+

∫ 1

0

f ′(t)g′(t)dt.

It is well known that W 1,2[0, 1] is a reproducing kernel Hilbert space, with
reproducing kernel k given by

k(λ, µ) =

{
cosech1 cosh(1− µ) coshλ if 0 ≤ λ ≤ µ ≤ 1,
cosech1 cosh(1− λ) coshµ if 0 ≤ µ ≤ λ ≤ 1.

(2)

One can check that χ(t) =
√
t is a pseudomultiplier of W 1,2 with Eχ = k⊥0 =

{f ∈W 1,2 such that f(0) = 0} and Sχ = Ck0. Here

k0(λ) = k(λ, 0) for all λ ∈ [0, 1].
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Consider a function f ∈ k⊥0 , so that f ∈ W 1,2[0, 1] and f(0) = 0. We have to
prove that the function χf is absolutely continuous and (χf)′ is in L2(0, 1).
Note that

(χf)′(t) =
1

2
√
t
f(t) +

√
tf ′(t).

To prove that (χf)′ is in L2(0, 1), it is enough to show that 1√
t
f(t) is in L2(0, 1).

It can be done using Hardy’s inequality. Therefore (χf)′ ∈ L1(0, 1), and so

(χf)(x) =

∫ x

0

(χf)′(t) dt

is absolutely continuous on [0, 1].

The operator Xχ : Eχ →W 1,2 is given by Xχf =
√
tf for all f ∈ k⊥0 .
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Seeing a vector

Let H be a Hilbert function space on Ω and fix v ∈ H. We shall formalise the
idea of enlarging the set Ω by adjoining an extra point p /∈ Ω in such a way that
the vector v is the reproducing kernel associated with p. Let Ω̃ = Ω ∪ {p}, and
for f ∈ H define fv : Ω̃→ C by the formula

fv(λ) =

 f(λ) if λ ∈ Ω

〈f, v〉 if λ = p .

Let Hv = {fv : f ∈ H}. Since f = 0 in H implies that fv = 0 in Hv, we see
that the formula

〈fv, gv〉Hv = 〈f, g〉H
defines an inner product on Hv. Furthermore, with this inner product, Hv is a
Hilbert function space on Ω̃, and the restriction map

Hv 3 fv 7→ fv|Ω = f ∈ H

is a Hilbert space isomorphism.
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Seeing a vector

Now let H be a Hilbert function space, fix v ∈ H, and let ϕ be a pseudomultiplier
of H. Since Dϕ is a set of uniqueness for H, Dϕ is also a set of uniqueness for
Hv and thus ϕ is also a pseudomultiplier of Hv. Its domain when so regarded
is still just Dϕ and its regular space is unchanged. One can wonder, however,
whether ϕ can be extended to a pseudomultiplier of Hv with domain containing
Dϕ ∪ {p}.

Definition 3. Let H be a Hilbert function space on Ω, let v ∈ H, let c ∈ C,
and let ϕ be a pseudomultiplier of H. We say that ϕ sees v with value c if there
exists a pseudomultiplier ψ of Hv such that ψ extends ϕ (that is, Dϕ ⊆ Dψ

and ϕ = ψ|Dϕ), p ∈ Dψ, Eϕ = Eψ|Ω, and ψ(p) = c. We say ϕ sees v if there
exists c ∈ C such that ϕ sees v with value c; in this case we also say that v is
visible to ϕ.
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Examples - Seeing a vector

Example 3. Let H be a Hilbert function space on Ω and let ϕ be a
pseudomultiplier of H. For any c ∈ C, ϕ sees the zero vector in H with value
c.

Example 4. Let H be a Hilbert function space on Ω and let ϕ be a
pseudomultiplier of H. If λ ∈ Dϕ, then ϕ sees kλ with value ϕ(λ).

Example 5. What vectors does 1/z see in H2? Consider the pseudomultiplier
ϕ of Example 1: ϕ(z) = 1/z on H2. Here, Dϕ = D \ {0} and Eϕ = zH2. One
can show that the vectors in H2 visible to ϕ are precisely the scalar multiples
of the kernels kλ, for λ ∈ D \ {0}.
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Ambiguous vector and the ambiguous space for a
pseudomultiplier

Definition 4. Let ϕ be a pseudomultiplier of H and let v ∈ H. We say that
v is an ambiguous vector for ϕ if ϕ sees v with arbitrary value, and we define
Aϕ to be the set of ambiguous vectors for ϕ.

Observe also that Example 3 immediately implies that, for any Hilbert function
space H, the zero vector of H is an ambiguous vector of every pseudomultiplier
of H.

Example 6. ϕ(z) = 1/z on H2 has no non-zero ambiguities. The
pseudomultiplier ϕ(z) = 1/z of H2 sees only the scalar multiples of kernels kλ
for some λ ∈ D \ {0}. Moreover, for such λ, ϕ sees kλ only with value ϕ(λ).
Thus ϕ does not see any non-zero vector with arbitrary value, which is to say
that ϕ has no ambiguous vectors other than 0.

Example 7. Consider the pseudomultiplier χ(t) =
√
t on W 1,2[0, 1] of

Example 2. One can show that Aχ = Ck0.
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An operator-theoretic expression of the concepts of seeing a
vector and ambiguity

Recall that if ϕ is a pseudomultiplier then Xϕ is a bounded linear transformation
from Eϕ into H. Thus X∗ϕ is a bounded linear transformation from H into Eϕ.
Recall also a basic fact in the theory of multipliers that if ϕ is a multiplier of H
and kλ is the reproducing kernel for λ ∈ Ω, then X∗ϕkλ = ϕ(λ)kλ. We generalize
this fact to pseudomultipliers in the following lemma.

Lemma 1. Let ϕ be a pseudomultiplier of H and let v ∈ H. Then
(i) ϕ sees v with value c if and only if there exists u ∈ E⊥ϕ such that

X∗ϕv = cv + u. (3)

(ii) ϕ sees v with value c if and only if

X∗ϕv = cPEϕv, (4)

where PEϕ is the orthogonal projection of H onto Eϕ.
(iii) If ϕ sees v with two distinct values then v is an ambiguous vector for ϕ.
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An operator-theoretic expression of the concept of the
ambiguous space

As a further corollary of Lemma 1 we obtain

Proposition 1. Let ϕ be a pseudomultiplier and let v ∈ H. Then

(i) v is an ambiguous vector for ϕ if and only if v ∈ E⊥ϕ ∩ kerX∗ϕ.

(ii)
Aϕ = E⊥ϕ ∩ kerX∗ϕ (5)

is a finite-dimensional subspace of H.
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Definable vectors and the polar space

In addition to singularities that arise from ambiguous vectors, pseudomultipliers
can possess another type of singular vector, which we call a polar vector. We say
that a vector d ∈ H is definable for ϕ if d 6= 0, ϕ sees d, and d ⊥ Aϕ. We denote
by Dϕ the set of vectors that are definable for ϕ. For any definable vector v for
a pseudomultiplier ϕ, there is a unique c ∈ C such that ϕ sees v with value c.
We denote this number c by ϕ(v). Thus we can regard ϕ as a function on Dϕ.

Example 8. The definable vectors for 1/z on H2. By Example 6, for the
pseudomultiplier ϕ(z) = 1/z of H2, Aϕ = {0}, and so the definable vectors
for ϕ coincide with the non-zero vectors visible to ϕ. Hence, by Example 5,
Dϕ comprises the non-zero scalar multiples of the kernels kλ, for λ ∈ D \ {0}.
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Polar vectors and the polar space

Definition 5. Let ϕ be a pseudomultiplier and let p ∈ H. We say p is a
polar vector for ϕ if p 6= 0 and there exists a sequence of definable vectors
{dn} ⊆ Dϕ such that dn → p (with respect to ‖ · ‖H) and ϕ(dn) → ∞ as
n → ∞. We define Pϕ, the polar space of ϕ, to be the set of vectors v ∈ H
such that either v is a polar vector of ϕ or v = 0.

Example 9. The polar space of 1/z. In Example 8 we proved that the set of
definable vectors Dϕ for ϕ(z) = 1/z onH2 comprises the scalar multiples of the
kernels kλ, for λ ∈ D\{0}. Recall that the singular space Sϕ = E⊥ϕ = H2	zH2.
Let us show that

Pϕ = Sϕ = E⊥ϕ = H2 	 zH2 = {constant functions on D}.

It is enough to show that k0 is in Pϕ. Choose λn ∈ D, n ≥ 1, such that λn → 0.
By Example 4, ϕ sees kλn with value 1

λn
. Since kλn → kµ in H2 if and only if

λn → µ in the usual topology of D, {kλn} is a sequence of definable vectors
such that kλn → k0 in H2 and ϕ(kλn) = ϕ(λn) = 1

λn
→ ∞. This implies that

k0 ∈ Pϕ. �
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Another example of the psedomultiplier on H2

Example 10. Let H = H2, the classical Hardy space on D, let n ≥ 2, and
define ϕ on D by

ϕ(λ) =


1
λn if λ 6= 0

1 if λ = 0.

Here

Eϕ = {f ∈ H2 : f(0) = f ′(0) = · · · = f (n)(0) = 0} = zn+1H2.

Let us describe the space of ambiguous vectors Aϕ for ϕ. By Proposition 1,

Aϕ = E⊥ϕ ∩ kerX∗ϕ.

The operator Xϕ : zn+1H2 → H2 is given by Xϕ = (S∗)nP ∗
zn+1H2 where S

denotes the forward shift operator on H2 and Pzn+1H2 : H2 → zn+1H2 is
the orthogonal projection operator (so that P ∗

zn+1H2 is the injection operator
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zn+1H2 → H2). Note that

X∗ϕf = 0 ⇔ Snf ∈ H2 	 zn+1H2

⇔ f is constant.

Hence, the space of ambiguous vectors for ϕ is

Aϕ = E⊥ϕ ∩ kerX∗ϕ = (H2 	 zn+1H2) ∩ C1 = C1.

Let us describe the set of definable vectors Dϕ of ϕ. By Lemma 1, for f ∈ H2,
ϕ sees f with value c if and only if there exists u ∈ E⊥ϕ such that

X∗ϕf = cf + u, (6)

equivalently, if and only if there exist a0, a1, . . . , an ∈ C such that

X∗ϕf = c̄f + a0 + a1z + · · ·+ anz
n.
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One can show that

Dϕ =

{
f(z) =

b1z + b2z
2 + · · ·+ bnz

n

1− c̄−1zn
: |c| > 1 and b1, . . . , bn ∈ C are not all zero

}
.

(7)

Now we can describe the polar space Pϕ for ϕ. For every non-zero polar vector
p there exists a convergent sequence of definable vectors{

dk =
b1kz + b2kz

2 + · · ·+ bnkz
n

1− c̄k−1zn

}∞
k=1

in Dϕ,

where b1k, b2k, . . . , bnk ∈ C, not all zero, are such that dk → p and ϕ(dk) =
ck →∞ as k →∞. The non-zero limits of such convergent sequences {dk}∞k=1

in H2 coincide with span{z, z2, . . . , zn}\{0}, so that Pϕ = span{z, z2, . . . , zn}.
We may observe that

Aϕ ⊕ Pϕ = C1⊕ span{z, z2, . . . , zn} = H2 	 zn+1H2 = E⊥ϕ .

�
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Polar vectors

The nature of polar vectors is much more rigid than one might at first expect.
This is brought out in the following proposition, which gives a clean relationship
between Dϕ and the set Pϕ of polar vectors of ϕ.

Proposition 2. Let ϕ be a pseudomultiplier and let p ∈ H with p 6= 0. The
following are equivalent.

(i) p is a polar vector for ϕ.

(ii) p ∈ D−ϕ and for every neighborhood U of p, ϕ is unbounded on U ∩Dϕ.

(iii) p ∈ D−ϕ\Dϕ.

(iv) p ∈ D−ϕ and lim
d→ p
d∈Dϕ

ϕ(d) =∞.
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Polar vectors

We say that a pseudomultiplier ϕ is locally bounded on D−ϕ if, for every point
d ∈ D−ϕ there is a neighbourhood U of d in H such that ϕ is bounded on U ∩Dϕ.

Theorem 1. Let ϕ be a pseudomultiplier of H. Then ϕ is locally bounded on
D−ϕ if and only if ϕ has no polar vectors.

We also establish an alternative description of the polar space in terms of definable
vectors.

Theorem 2. If H is infinite-dimensional and ϕ is a pseudomultiplier of H then

(i) Dϕ is non-empty.

(ii) Pϕ = Dϕ \Dϕ.
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Decomposition of the singular space

We prove that every singular vector of a pseudomultiplier can be represented in a
unique way as the sum of a polar vector and an ambiguous vector.

Theorem 3. Let H be a Hilbert function space on a set Ω. Let ϕ be a
pseudomultiplier of H. Pϕ is a closed subspace of H and

Sϕ = Pϕ ⊕Aϕ.

This theorem contains the very interesting fact that the polar space Pϕ, which
is the set of polar vectors of a pseudomultiplier ϕ, together with the zero vector,
constitutes a linear subspace of H.
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Decomposition of the singular space - Examples

Example 11. The pseudomultiplier ϕ(z) = 1

z(z−1
2)

on H2 has no ambiguities

Aϕ = {0}, and the polar space of ϕ

Pϕ = span{k0, k1
2
} = H2 	 z(z − 1

2)H2 = E⊥ϕ .

Example 12. If χ(t) =
√
t on W 1,2[0, 1] is the pseudomultiplier of Example

2, then, as Example 7 implies, the ambiguous space Aχ = Ck0 = Sχ, and so
we deduce that Pχ = {0}. Thus χ has no polar vectors.
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Thank you
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