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Classes of operators with known invariant subspaces:

• Normal operators (Spectral theorem).

• Compact operators.

σ(T ) = {λj}j≥1 ∪ {0}

⋆ 1951, J. von Neumann (Hilbert space case).
⋆ 1954, Aronszajn and Smith (general case),

• Polinomially compact operators

⋆ 1966, Bernstein y Robinson (Hilbert spaces).

⋆ 1967, Halmos.

⋆ 1960’s Gillespie, Hsu, Kitano, Pearcy, . . .
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Classes of operators with known invariant subspaces

• “Lomonosov operators”

Theorem (Lomonosov; 1973)

Let T be a linear bounded operator on H, T ̸= CId. If T commutes with a non-zero
compact operator, then T has a non-trivial closed invariant subspace.

• Not every operator satisfy “Lomonosov Hypotheses”

Theorem (Hadwin, Nordgren, Radjavi, Rosenthal; 1980)

There exists a “quasi-analytic” shift S on a weighted ℓ2 space which has the following
property: if K is a compact operator which commutes with a nonzero, non scalar
operator in the commutant of S, then K = 0.
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Invariant subspace problem: current status

Invariant subspace problem

Given any linear bounded operator T acting on a separable infinite-dimensional
reflexive complex Banach space, does there exist a non-trivial closed invariant
subspace?



An attempt to find a examples: quasitriangular operators

Based on the work of Aronszajn and Smith (1954), Halmos (1968) introduced the
concept of quasitriangular operators.

Definition (Halmos, 1968)

An operator Q : H → H acting on a separable infinite-dimensional complex Hilbert
space is said to be quasitriangular whenever there exists an increasing sequence
(Pn)n∈N of finite-rank projections converging strongly to the identity I and such that

∥QPn − PnQPn∥ → 0, as n → ∞.

• Quasitriangular operators were conceived as an attempt to transfer some of the most
important features of triangular operators into a more general context.

• Note that, given a triangular operator T : H → H, there exists an increasing sequence
(Pn)n∈N of finite-rank projections converging strongly to the identity I and satisfying

TPn − PnTPn = (I − Pn)TPn = 0, for each n = 1, 2, . . .

• Roughly speaking, the definition of quasitriangularity means that Q has a sequence of
“approximately invariant” finite-dimensional subspaces.

• Examples of quasitriangular operators: compact operators, normal operators,
compact perturbations of normal operators,...

• An example of non-quasitriangular operator: Shift operator acting on ℓ2(N).
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A remarkable theorem due to Apostol, Foiaş and Voiculescu (1973) reduced the
Invariant Subspace Problem in Hilbert spaces to the class of quasitriangular
operators.

Theorem (Apostol, Foias and Voiculescu, 1973)

If T ∈ L(H) is not a quasitriangular operator, then T has non-trivial closed
invariant subspaces.

r Initial goal: Understand quasitriangular operators from the standpoint of
view of invariant subspaces.
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Invariant Subspace Problem in Hilbert spaces to the class of quasitriangular
operators.

Theorem (Apostol, Foias and Voiculescu, 1973)

If T ∈ L(H) is not a quasitriangular operator, then T has non-trivial closed
invariant subspaces.

r Initial goal: Understand quasitriangular operators from the standpoint of
view of invariant subspaces.



Quasitriangularity and invariant subspaces

r A first attempt: Compact perturbations of normal operators.

Question

It is still unknown if every rank-one perturbation of a diagonal operator
(T = D + u⊗ v), has non-trivial invariant subspaces (problem explicitly posed by
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• The study of the existence of nontrivial closed invariant subspaces for the
perturbation of a Hermitian (self-adjoint) operator A by a compact operator of a
Schatten class Cp, 1 ≤ p < ∞ (1960’s)

• Kitano generalized the previous results to the case where A was a normal
operator with spectrum on a C2 Jordan curve (1968).

• The situation turns out to be drastically different if the assumption on the
spectra being contained in a curve is dropped off since, in such a case, it is still
an open question if every compact perturbation of a normal operator has
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Theorem (Radjabalipour and Radjavi, 1975)

Let T = N +K be a bounded linear operator in a complex Hilbert space, where N is a
normal operator with spectrum on a C2 Jordan curve γ and K a compact operator
belonging to a Schatten class Cp for 1 ≤ p < ∞. Then T is decomposable if and only
if σ(T ) does not fill the interior of γ.

• The situation turns out to be drastically different if the assumption on the
spectra being contained in a curve is dropped off since, in such a case, it is still
an open question if every compact perturbation of a normal operator has
non-trivial closed invariant subspaces. Even, in particular, it is still open if every
rank-one perturbation of a normal operator whose eigenvectors span the Hilbert
space H has non-trivial closed invariant subspaces.



Question

It is still unknown if every rank-one perturbation of a diagonal operator
(T = D + u⊗ v), has non-trivial invariant subspaces (problem explicitly posed by
Pearcy in 1979).



Invariant Subspaces for Rank-One Perturbations of Diagonal Operators

If DΛ ∈ L(H) is a diagonal operator, that is, there exists an orthonormal basis
(en)n≥1 of H and a bounded sequence of complex numbers Λ = (λn)n≥1 ⊂ C such
that

DΛen = λnen,

a rank-one perturbations of DΛ can be written as

T = DΛ + u⊗ v, (1)

where u, and v are non-zero vectors in H and u⊗ v(x) = ⟨x, v⟩u for every x ∈ H.
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If DΛ ∈ L(H) is a diagonal operator, that is, there exists an orthonormal basis
(en)n≥1 of H and a bounded sequence of complex numbers Λ = (λn)n≥1 ⊂ C such
that

DΛen = λnen,

a rank-one perturbations of DΛ can be written as

T = DΛ + u⊗ v, (1)

where u, and v are non-zero vectors in H and u⊗ v(x) = ⟨x, v⟩u for every x ∈ H.

Remark

Rank-one perturbations of normal operators whose eigenvectors span H belongs are
unitarily equivalent to those expressed by (1).



Invariant Subspaces for Rank-One Perturbations of Diagonal Operators

Theorem (Foias, Ko, Jung and Pearcy, JFA 2007)

Let T = DΛ + u⊗ v in L(H) \ CI where u =
∑∞

n=1 αnen, v =
∑∞

n=1 βnen and

∞∑
n=1

|αn|2/3 + |βn|2/3 < ∞.

Then, T has non-trivial hyperinvariant subspaces.



Invariant Subspaces for Rank-One Perturbations of Diagonal Operators

Note that if {αn} ∈ ℓp and {βn} ∈ ℓq, Foias, Jung, Ko and Pearcy Theorem can be
“seen”:

T = D + u⊗ v



Invariant Subspaces for Rank-One Perturbations of Diagonal Operators

r Foias, Ko, Jung and Pearcy’s insight:

A Riesz functional calculus unconventional because it involves integration over
contours that may intersect the spectrum.

Λ

Figure: Spectrum of T .
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Invariant Subspaces For Rank-One Perturbations of Diagonal Operators

Theorem (Fang and Xia, JFA 2012)

Let T = DΛ + u⊗ v in L(H) \ CI where u =
∑∞

n=1 αnen, v =
∑∞

n=1 βnen and

∞∑
n=1

|αn|+ |βn| < ∞.
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Invariant Subspaces For Rank-One Perturbations of Diagonal Operators

• The authors show the decomposability for a subclass of the rank-one perturbations
that satisfy the summability assumption.

• An operator T ∈ L(H) is decomposable if for every open cover U1, U2 ⊂ C such
that σ(T ) ⊂ U1 ∪ U2 there exists invariant subspaces M,N for T such that
H = M +N and σ(T |M ) ⊂ U1 and σ(T |N ) ⊂ U2.
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Invariant Subspaces For Rank-One Perturbations of Diagonal Operators

Theorem (GG,González-Doña, 2021)

Let T = DΛ + u⊗ v ∈ L(H) \ C IdH be any rank-one perturbation of a diagonal
normal operator respect to an orthonormal basis (en)n≥1 where u =

∑∞
n=1 αnen and

v =
∑∞

n=1 βnen. If either

∞∑
n=1

|αn| < ∞ or

∞∑
n=1

|βn| < ∞,

then T has non-trivial closed hyperinvariant subspaces.
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Invariant Subspaces For Rank-One Perturbations: straightforward cases

Theorem (Ionascu, 2001)

Suppose T = DΛ + u⊗ v ∈ L(H) where Λ = (λn)n≥1 ⊂ C, u =
∑∞

n=1 αnen and
v =

∑∞
n=1 βnen are nonzero vectors in H.

1 If there exists n ∈ N such that αnβn = 0, then either λn is an eigenvalue of T or
λn is an eigenvalue of the adjoint T ∗.

2 If there exists m ̸= n ∈ N such that λm = λn, then λn is an eigenvalue of T .

3 If the derived set of (λn)n≥1 reduces to a single point, then the commutant of T
contains a non-zero compact operator.

If T satisfies any of the previous conditions, T has a non-trivial closed hyperinvariant
subspace.
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The class (RO)

Definition (Class (RO))

Fixed an orthonormal basis E = (en)n≥1 of H and consider a bounded sequence of
complex numbers Λ = (λn)n≥1 ⊂ C. If DΛ denotes the diagonal operator associated
to Λ respect to E, the rank-one perturbation of DΛ

T = DΛ + u⊗ v

with u =
∑∞

n=1 αnen, v =
∑∞

n=1 βnen nonzero vectors in H, belongs to the class
(RO) if:

(i) αnβn ̸= 0 for every n ∈ N;
(ii) the map n ∈ N 7→ λn ∈ Λ is injective;

(iii) the derived set Λ′ is not a singleton.



The class (RO)

Spectrum σ(T ) and point spectrum σp(T ) of operators T ∈ (RO)

Let T ∈ (RO) and denote by fT the Borel series (or Denjoy series) associated to
T :

fT (z) =

∞∑
n=1

αnβn

λn − z
,

for those z ∈ C such that the series converges.
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A “brief” overview on Borel series

Definition

Let {zn}n≥1 be a bounded sequence of distinct points in C and A = {zn}n≥1. If
{cn}n≥1 ∈ ℓ1 the Borel series is the function defined by

∞∑
n=1

cn
zn − z

.

Note that the above series converges uniformly on compact subsets of Ac to an
analytic function which extends meromorphically to a neighborhood of each isolated
point of {zn}.
The study of Borel series has a rich history. Of particular interest has been
conditions for a function analytic on a region to be representable as a Borel series,
and conditions for such a representation, if one exists, to be unique.

In the interesting case where A disconnects the plane, it is not clear what, if any,
relations will exist between the restrictions of

∑∞
n=1

cn
zn−z

to the various components
of Ac

.

Indeed, it was long an open question, raised by Borel, whether one of these
restrictions could be zero without all the remaining ones vanishing. If lim |cn|1/n = 0,
a theorem of Walsh implies this is impossible.
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cn
zn − z
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r J. Wolff, 1921 Construction of an example of a (not identically zero) Borel series
vanishing in the unit disc.r Further constructions: Denjoy, Beurling, Leontéva constructed (non-trivial) Borel series
which sum to zero on a disk for which the coefficients {cn} are of certain exponential decay.r Uniqueness results: Borel, Carleman, Gonchar and Poincaré all determined decay rates
in the unicity problem. Results by Makarov, Nikolskii and definitive ones by Sibilev (1995).r Connections to operator theory: Sarason. The Borel series

∞∑
n=1

cn

zn − z
≡ 0

whenever |z| > sup |zn| for some non-trivial {cn} ∈ ℓ1 if and only if there exists a closed

invariant subspace for the diagonal operator D having eigenvalues {zn} which is not

invariant for the adjoint D∗.
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in the unicity problem. Results by Makarov, Nikolskii and definitive ones by Sibilev (1995).r Connections to operator theory: Sarason. The Borel series

∞∑
n=1

cn

zn − z
≡ 0

whenever |z| > sup |zn| for some non-trivial {cn} ∈ ℓ1 if and only if there exists a closed

invariant subspace for the diagonal operator D having eigenvalues {zn} which is not

invariant for the adjoint D∗.



A “brief” overview on Borel series

Definition

Let {zn}n≥1 be a bounded sequence of distinct points in C and A = {zn}n≥1. If
{cn}n≥1 ∈ ℓ1 the Borel series is the function defined by

∞∑
n=1

cn
zn − z

.

r J. Wolff, 1921 Construction of an example of a (not identically zero) Borel series
vanishing in the unit disc.r Further constructions: Denjoy, Beurling, Leontéva constructed (non-trivial) Borel series
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Spectrum σ(T ) and point spectrum σp(T ) of operators T ∈ (RO)
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Theorem (Ionascu, 2001)

Let T = DΛ + u⊗ v ∈ (RO). Then z ∈ C belongs to σp(T ) if and only if

(i) z ̸∈ Λ,

(ii)
∑∞

n=1
|αn|2

|z−λn|2 < ∞,

(iii) fT (z) + 1 = 0.

Moreover,
σ(T ) = Λ′ ∪

{
z ∈ C \ Λ : fT (z) + 1 = 0

}
,

and the essential spectrum
σess(T ) = Λ′.



The class (RO)

Spectrum σ(T ) and point spectrum σp(T ) of operators T ∈ (RO)

Let T ∈ (RO) and denote by fT the Borel series (or Denjoy series) associated to
T :

fT (z) =

∞∑
n=1

αnβn

λn − z
,

for those z ∈ C such that the series converges.

Theorem (Ionascu, 2001)

Let T = DΛ + u⊗ v ∈ (RO). Then z ∈ C belongs to σp(T ) if and only if

(i) z ̸∈ Λ,

(ii)
∑∞

n=1
|αn|2

|z−λn|2 < ∞,

(iii) fT (z) + 1 = 0.

Moreover,
σ(T ) = Λ′ ∪

{
z ∈ C \ Λ : fT (z) + 1 = 0

}
,

and the essential spectrum
σess(T ) = Λ′.
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Theorem (GG,González-Doña, 2021)

Let T = DΛ + u⊗ v ∈ L(H) \ C IdH be any rank-one perturbation of a diagonal
normal operator respect to an orthonormal basis (en)n≥1 where u =

∑∞
n=1 αnen and

v =
∑∞

n=1 βnen. If either

∞∑
n=1

|αn| < ∞ or
∞∑

n=1

|βn| < ∞,

then T has non-trivial closed hyperinvariant subspaces. Moreover, for those
T ∈ (RO) with σ(T ) connected and σp(T ) ∪ σp(T

∗) = ∅, it follows that they do have
non-zero spectral subspaces which are no longer dense.
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SVEP for operators in (RO)

Proposition (GG, González-Doña, 2021)

Let T = DΛ + u⊗ v ∈ (RO), where u =
∑∞

n=1 αnen, v =
∑∞

n=1 βnen ∈ H. The
following conditions are equivalent:

(i) T has the SVEP.

(ii) σp(T ) does not fill any hole of Λ.

(iii) fT + 1 is not constantly 0 on any hole of Λ.
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Strategy: characterizing particular spectral subspaces

Given T = DΛ + u⊗ v ∈ (RO) where Λ = (λn) ⊂ C and provided any set A ⊂ C, we
will denote by NA the set of positive integers:

NA = {n ∈ N : λn ∈ Λ ∩A}.

Given an open set U , a holomorphic map g on U and w ∈ U , we define

Γ(g)(z, w) =

{
g(z)−g(w)

z−w
z ̸= w

g′(w) z = w

Γ(g)(z, w) is continuous in U × U and for every w ∈ U , the map z 7→ Γ(g)(z, w) is,
indeed, holomorphic in U .
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Strategy: characterizing particular spectral subspaces

Theorem (GG, González-Doña, 2021)

Let T = DΛ + u⊗ v ∈ (RO) with u =
∑∞

n=1 αnen and v =
∑∞

n=1 βnen nonzero
vectors in H. Assume T has the SVEP and the spectrum σ(T ) is connected. Let F be
a non-empty closed set such that F ∩ σ(T ) ̸= ∅. A vector x ∈ H belongs to the
spectral subspace HT (F ) if and only if there exists a holomorphic map gx in F c such
that:

(i) If x =
∑

n xnen, then
xn = gx(λn)αn

for every n ∈ NFc .

(ii) The function

z ∈ F c 7→
∑

n∈NFc

Γ(gx)(z, λn)αnen

is a vector-valued holomorphic function on F c.

(iii) The identity

∑
n∈NF

xnβn

λn − z
= gx(z)

 ∑
n∈NF

αnβn

λn − z
+ 1

−
∑

n∈NFc

Γ(gx)(z, λn)αnβn,

holds for every z ∈ F c.



A few remarks

Example

Observe that for u =
∑∞

n=1 αnen and v =
∑∞

n=1 βnen,

gu(z) =
fT (z)

fT (z) + 1
and gv(z) =

1

fT (z) + 1

∞∑
n=1

|βn|2

λn − z

for every z ∈ ρ(T ).

Theorem

Let T = DΛ + u⊗ v ∈ (RO) with u =
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n=1 αnen and v =
∑∞

n=1 βnen nonzero
vectors in H. Assume σ(T ) is connected and both σp(T ) and σp(T

∗) are empty. Let
F be a non-empty closed set contained in σ(T ). Then the vector u ∈ HT (F ) if and
only if F = σ(T ).
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A few remarks

Corollary

Let T = DΛ + u⊗ v ∈ (RO) with u =
∑∞

n=1 αnen and v =
∑∞

n=1 βnen nonzero
vectors in H. Assume σ(T ) is connected and both σp(T ) and σp(T

∗) are empty. Then

lim sup
n→∞

||(DΛ + u⊗ v)nu||1/n = max{|z| : z ∈ Λ′} = r(T ), (2)

and, analogously,

lim sup
n→∞

||(DΛ∗ + v ⊗ u)nv||1/n = max{|z| : z ∈ Λ′} = r(T ∗). (3)
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Theorem (GG, González-Doña, 2021)

Let T = DΛ + u⊗ v ∈ (RO) with u =
∑∞

n=1 αnen and v =
∑∞

n=1 βnen nonzero
vectors in H. Assume σ(T ) is connected and both σp(T ) and σp(T

∗) are empty.
Assume that there exists a closed, simple, piecewise differentiable curve γ in C not
intersecting Λ such that

(i) σ(T ) ∩ int(γ) ̸= ∅.
(ii) The map

ξ ∈ γ → 1

1 + fT (ξ)

is well defined and continuous on γ.

(iii)
∞∑

n=1

(∫
γ

d|ξ|
|λn − ξ|

)2

|αn|2 < ∞.

Then, HT (int(γ)) is a non-zero spectral subspace.
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Final step: If both T and T ∗ enjoy the SVEP, and F1, F2 ⊂ C are disjoint closed
sets, then

HT (F1) ⊆ HT∗(F ∗
2 )

⊥,
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Rank-One Perturbations Of Diagonal Operators: a step further

Theorem (GG,González-Doña, 2022)

With the notation as introduced above, the linear bounded operator T = DΛ + u⊗ v
has non trivial closed invariant subspaces provided that either u or v have a Fourier
coefficient which is zero or u and v have non zero Fourier coefficients and

∞∑
n=1

|αn|2 log
1

|αn|
+ |βn|2 log

1

|βn|
< ∞. (4)

Moreover, if T is not a scalar multiple of the identity, it has non trivial closed
hyperinvariant subspaces.



Rank-One Perturbations Of Diagonal Operators: a step further



Finite Rank Perturbations Of Diagonal Operators

Let (en)n≥1 be an orthonormal basis in H and u1, · · · , uN , v1, · · · vN non-zero vectors
in H. Let us we denote their Fourier coefficients by

uk =
∞∑

n=1

α(k)
n en, vk =

∞∑
n=1

β(k)
n en

for each 1 ≤ k ≤ N.
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Let (en)n≥1 be an orthonormal basis in H and u1, · · · , uN , v1, · · · vN non-zero vectors
in H. Let us we denote their Fourier coefficients by

uk =
∞∑

n=1

α(k)
n en, vk =

∞∑
n=1

β(k)
n en

for each 1 ≤ k ≤ N.

We consider operators that can be expressed by

T = DΛ +

N∑
k=1

uk ⊗ vk ∈ L(H),

where DΛ is a diagonal operator with respect to (en)n≥1 with eigenvalues Λ = (λn)n
and N ∈ N fixed.



Finite Rank Perturbations Of Diagonal Operators

Theorem (GG, González-Doña, 2022)

Let T = DΛ +
∑∞

k=1 uk ⊗ vk ∈ L(H) \ C IdH be any finite rank perturbation of a
diagonal normal operator DΛ with respect to an orthonormal basis E = {en}n≥1

where uk =
∑∞

n=1 α
(k)
n en and vk =

∑∞
n=1 β

(k)
n en are non zero vectors in H. Then T

has non trivial closed hyperinvariant subspaces provided that∑
n∈N

∣∣∣α(k)
n

∣∣∣2 log 1∣∣∣α(k)
n

∣∣∣ +
∣∣∣β(k)

n

∣∣∣2 log 1∣∣∣β(k)
n

∣∣∣ < ∞,

where
N = {n ∈ N : α(k)

n ̸= 0, β(k)
n ̸= 0 for 1 ≤ k ≤ N}.



Invariant Subspace Problem

Question

Given any linear bounded operator T acting on a separable infinite-dimensional
Hilbert space (or reflexive Banach space), does there exist a non-trivial closed
invariant subspace?

r An intrinsic difficulty: The lack of well-known examples
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