Insights into the Invariant Subspace Problem for compact perturbations of normal operators

Eva A. Gallardo Gutiérrez
UCM-ICMAT
July, 2022

Introduction

- Invariant Subspace Problem

Introduction

- Invariant Subspace Problem

During almost a century, the so-called "Invariant Subspace Problem" has turned out to be one of the most intriguing questions within the field of Operator Theory.

Introduction

- Invariant Subspace Problem

During almost a century, the so-called "Invariant Subspace Problem" has turned out to be one of the most intriguing questions within the field of Operator Theory.

$$
\left.\begin{array}{l}
T: \mathcal{H} \rightarrow \mathcal{H} \text {, linear and bounded } \\
T(M) \subset(M) \text {, closed subspace }
\end{array}\right\} \Rightarrow M=\{0\} \text { or } M=\mathcal{H} ?
$$

Introduction

- Invariant Subspace Problem

During almost a century, the so-called "Invariant Subspace Problem" has turned out to be one of the most intriguing questions within the field of Operator Theory.

$$
\left.\begin{array}{c}
T: \mathcal{H} \rightarrow \mathcal{H} \text {, linear and bounded } \\
T(M) \subset(M) \text {, closed subspace }
\end{array}\right\} \Rightarrow M=\{0\} \text { or } M=\mathcal{H} \text { ? }
$$

- Finite dimensional complex Hilbert spaces.

Introduction

- Invariant Subspace Problem

During almost a century, the so-called "Invariant Subspace Problem" has turned out to be one of the most intriguing questions within the field of Operator Theory.

$$
\left.\begin{array}{c}
T: \mathcal{H} \rightarrow \mathcal{H} \text {, linear and bounded } \\
T(M) \subset(M) \text {, closed subspace }
\end{array}\right\} \Rightarrow M=\{0\} \text { or } M=\mathcal{H} \text { ? }
$$

- Finite dimensional complex Hilbert spaces.
- Non-separable Hilbert spaces.

Introduction

- Invariant Subspace Problem

During almost a century, the so-called "Invariant Subspace Problem" has turned out to be one of the most intriguing questions within the field of Operator Theory.

$$
\left.\begin{array}{c}
T: \mathcal{H} \rightarrow \mathcal{H} \text {, linear and bounded } \\
T(M) \subset(M) \text {, closed subspace }
\end{array}\right\} \Rightarrow M=\{0\} \text { or } M=\mathcal{H} \text { ? }
$$

- Finite dimensional complex Hilbert spaces.
- Non-separable Hilbert spaces.

Invariant Subspace Problem

Question

Given any linear bounded operator T acting on a separable infinite-dimensional Hilbert space, does there exist a non-trivial closed invariant subspace?

Invariant Subspace Problem

Question

Given any linear bounded operator T acting on a separable infinite－dimensional Hilbert space，does there exist a non－trivial closed invariant subspace？
－An intrinsic difficulty：

Invariant Subspace Problem

Question

Given any linear bounded operator T acting on a separable infinite-dimensional Hilbert space, does there exist a non-trivial closed invariant subspace?

- An intrinsic difficulty: The lack of well-known examples (Halmos)

Introduction

- $\ell^{2}=\left\{\left\{a_{n}\right\}_{n \geq 1} \subset \mathbb{C}: \sum_{n=1}^{\infty}\left|a_{n}\right|^{2}<\infty\right\}$
- $\left\{e_{n}\right\}_{n \geq 1}$ canonical bases in ℓ^{2}

$$
S e_{n}=e_{n+1}, \quad n \geq 1
$$

Introduction

- $\ell^{2}=\left\{\left\{a_{n}\right\}_{n \geq 1} \subset \mathbb{C}: \sum_{n=1}^{\infty}\left|a_{n}\right|^{2}<\infty\right\}$
- $\left\{e_{n}\right\}_{n \geq 1}$ canonical bases in ℓ^{2}

$$
S e_{n}=e_{n+1}, \quad n \geq 1
$$

Characterization of the invariant subspaces of S in ℓ^{2}

Introduction

- $\ell^{2}=\left\{\left\{a_{n}\right\}_{n \geq 1} \subset \mathbb{C}: \sum_{n=1}^{\infty}\left|a_{n}\right|^{2}<\infty\right\}$
- $\left\{e_{n}\right\}_{n \geq 1}$ canonical bases in ℓ^{2}

$$
S e_{n}=e_{n+1}, \quad n \geq 1
$$

Characterization of the invariant subspaces of S in ℓ^{2}

Classical Beurling Theory:

Introduction

- $\ell^{2}=\left\{\left\{a_{n}\right\}_{n \geq 1} \subset \mathbb{C}: \sum_{n=1}^{\infty}\left|a_{n}\right|^{2}<\infty\right\}$
- $\left\{e_{n}\right\}_{n \geq 1}$ canonical bases in ℓ^{2}

$$
S e_{n}=e_{n+1}, \quad n \geq 1
$$

Characterization of the invariant subspaces of S in ℓ^{2}

Classical Beurling Theory:

Inner-outer factorization of the functions in the Hardy space

Arne Beurling (1905-1986)

Introduction

Classes of operators with known invariant subspaces:

Introduction

Classes of operators with known invariant subspaces:

- Normal operators (Spectral theorem).

Introduction

Classes of operators with known invariant subspaces:

- Normal operators (Spectral theorem).
- Compact operators.

$$
\sigma(T)=\left\{\lambda_{j}\right\}_{j \geq 1} \cup\{0\}
$$

Introduction

Classes of operators with known invariant subspaces:

- Normal operators (Spectral theorem).
- Compact operators.

$$
\sigma(T)=\left\{\lambda_{j}\right\}_{j \geq 1} \cup\{0\}
$$

* 1951, J. von Neumann (Hilbert space case).

Introduction

Classes of operators with known invariant subspaces:

- Normal operators (Spectral theorem).
- Compact operators.

$$
\sigma(T)=\left\{\lambda_{j}\right\}_{j \geq 1} \cup\{0\}
$$

\star 1951, J. von Neumann (Hilbert space case).
\star 1954, Aronszajn and Smith (general case),

Introduction

Classes of operators with known invariant subspaces:

- Normal operators (Spectral theorem).
- Compact operators.

$$
\sigma(T)=\left\{\lambda_{j}\right\}_{j \geq 1} \cup\{0\}
$$

\star 1951, J. von Neumann (Hilbert space case).
\star 1954, Aronszajn and Smith (general case),

- Polinomially compact operators

Introduction

Classes of operators with known invariant subspaces:

- Normal operators (Spectral theorem).
- Compact operators.

$$
\sigma(T)=\left\{\lambda_{j}\right\}_{j \geq 1} \cup\{0\}
$$

\star 1951, J. von Neumann (Hilbert space case).
\star 1954, Aronszajn and Smith (general case),

- Polinomially compact operators
* 1966, Bernstein y Robinson (Hilbert spaces).
\star 1967, Halmos.
* 1960's Gillespie, Hsu, Kitano, Pearcy, ...

Classes of operators with known invariant subspaces

Classes of operators with known invariant subspaces

- "Lomonosov operators"

Classes of operators with known invariant subspaces

- "Lomonosov operators"

Theorem (Lomonosov; 1973)
Let T be a linear bounded operator on $\mathcal{H}, T \neq \mathbb{C}$ Id. If T commutes with a non-zero compact operator, then T has a non-trivial closed invariant subspace.

Classes of operators with known invariant subspaces

- "Lomonosov operators"

Theorem (Lomonosov; 1973)

Let T be a linear bounded operator on $\mathcal{H}, T \neq \mathbb{C} I d$. If T commutes with a non-zero compact operator, then T has a non-trivial closed invariant subspace. Moreover, T has a non-trivial closed hyperinvariant subspace.

Classes of operators with known invariant subspaces

- "Lomonosov operators"

Theorem (Lomonosov; 1973)

Let T be a linear bounded operator on $\mathcal{H}, T \neq \mathbb{C} I d$. If T commutes with a non-zero compact operator, then T has a non-trivial closed invariant subspace. Moreover, T has a non-trivial closed hyperinvariant subspace.

- Not every operator satisfy "Lomonosov Hypotheses"

Classes of operators with known invariant subspaces

- "Lomonosov operators"

Theorem (Lomonosov; 1973)

Let T be a linear bounded operator on $\mathcal{H}, T \neq \mathbb{C} I d$. If T commutes with a non-zero compact operator, then T has a non-trivial closed invariant subspace. Moreover, T has a non-trivial closed hyperinvariant subspace.

- Not every operator satisfy "Lomonosov Hypotheses"

Classes of operators with known invariant subspaces

- "Lomonosov operators"

Theorem (Lomonosov; 1973)

Let T be a linear bounded operator on $\mathcal{H}, T \neq \mathbb{C}$ Id. If T commutes with a non-zero compact operator, then T has a non-trivial closed invariant subspace. Moreover, T has a non-trivial closed hyperinvariant subspace.

- Not every operator satisfy "Lomonosov Hypotheses"

Theorem (Hadwin, Nordgren, Radjavi, Rosenthal; 1980)

There exists a "quasi-analytic" shift S on a weighted ℓ^{2} space which has the following property: if K is a compact operator which commutes with a nonzero, non scalar operator in the commutant of S, then $K=0$.

In the Banach space setting

In the Banach space setting

- 1987, P. Enflo "On the invariant subspace problem for Banach spaces", Acta Math. 158 (1987), no. 3-4, 213-313.

In the Banach space setting

- 1987, P. Enflo "On the invariant subspace problem for Banach spaces", Acta Math. 158 (1987), no. 3-4, 213-313.
- 1985, C. Read, A solution to the invariant subspace problem on the space ℓ^{1}, Bull. London Math. Soc. 17 (1985) 305-317.

In the Banach space setting

- 1987, P. Enflo "On the invariant subspace problem for Banach spaces", Acta Math. 158 (1987), no. 3-4, 213-313.
- 1985, C. Read, A solution to the invariant subspace problem on the space ℓ^{1}, Bull. London Math. Soc. 17 (1985) 305-317.
- Remark: Known counterexamples are built up over non-reflexive Banach spaces

In the Banach space setting

- 1987, P. Enflo "On the invariant subspace problem for Banach spaces", Acta Math. 158 (1987), no. 3-4, 213-313.
- 1985, C. Read, A solution to the invariant subspace problem on the space ℓ^{1}, Bull. London Math. Soc. 17 (1985) 305-317.
- Remark: Known counterexamples are built up over non-reflexive Banach spaces

Invariant subspace problem: current status

Invariant subspace problem

Given any linear bounded operator T acting on a separable infinite-dimensional reflexive complex Banach space, does there exist a non-trivial closed invariant subspace?

An attempt to find a examples: quasitriangular operators

Based on the work of Aronszajn and Smith (1954), Halmos (1968) introduced the concept of quasitriangular operators.

Definition (Halmos, 1968)

An operator $Q: H \rightarrow H$ acting on a separable infinite-dimensional complex Hilbert space is said to be quasitriangular whenever there exists an increasing sequence $\left(P_{n}\right)_{n \in \mathbb{N}}$ of finite-rank projections converging strongly to the identity I and such that

$$
\left\|Q P_{n}-P_{n} Q P_{n}\right\| \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

An attempt to find a examples: quasitriangular operators

Based on the work of Aronszajn and Smith (1954), Halmos (1968) introduced the concept of quasitriangular operators.

Definition (Halmos, 1968)

An operator $Q: H \rightarrow H$ acting on a separable infinite-dimensional complex Hilbert space is said to be quasitriangular whenever there exists an increasing sequence $\left(P_{n}\right)_{n \in \mathbb{N}}$ of finite-rank projections converging strongly to the identity I and such that

$$
\left\|Q P_{n}-P_{n} Q P_{n}\right\| \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

- Quasitriangular operators were conceived as an attempt to transfer some of the most important features of triangular operators into a more general context.

An attempt to find a examples: quasitriangular operators

Based on the work of Aronszajn and Smith (1954), Halmos (1968) introduced the concept of quasitriangular operators.

Definition (Halmos, 1968)

An operator $Q: H \rightarrow H$ acting on a separable infinite-dimensional complex Hilbert space is said to be quasitriangular whenever there exists an increasing sequence $\left(P_{n}\right)_{n \in \mathbb{N}}$ of finite-rank projections converging strongly to the identity I and such that

$$
\left\|Q P_{n}-P_{n} Q P_{n}\right\| \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

- Quasitriangular operators were conceived as an attempt to transfer some of the most important features of triangular operators into a more general context.
- Note that, given a triangular operator $T: H \rightarrow H$, there exists an increasing sequence $\left(P_{n}\right)_{n \in \mathbb{N}}$ of finite-rank projections converging strongly to the identity I and satisfying

$$
T P_{n}-P_{n} T P_{n}=\left(I-P_{n}\right) T P_{n}=0, \quad \text { for each } n=1,2, \ldots
$$

An attempt to find a examples: quasitriangular operators

Based on the work of Aronszajn and Smith (1954), Halmos (1968) introduced the concept of quasitriangular operators.

Definition (Halmos, 1968)

An operator $Q: H \rightarrow H$ acting on a separable infinite-dimensional complex Hilbert space is said to be quasitriangular whenever there exists an increasing sequence $\left(P_{n}\right)_{n \in \mathbb{N}}$ of finite-rank projections converging strongly to the identity I and such that

$$
\left\|Q P_{n}-P_{n} Q P_{n}\right\| \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

- Quasitriangular operators were conceived as an attempt to transfer some of the most important features of triangular operators into a more general context.
- Note that, given a triangular operator $T: H \rightarrow H$, there exists an increasing sequence $\left(P_{n}\right)_{n \in \mathbb{N}}$ of finite-rank projections converging strongly to the identity I and satisfying

$$
T P_{n}-P_{n} T P_{n}=\left(I-P_{n}\right) T P_{n}=0, \quad \text { for each } n=1,2, \ldots
$$

- Roughly speaking, the definition of quasitriangularity means that Q has a sequence of "approximately invariant" finite-dimensional subspaces.

An attempt to find a examples: quasitriangular operators

Based on the work of Aronszajn and Smith (1954), Halmos (1968) introduced the concept of quasitriangular operators.

Definition (Halmos, 1968)

An operator $Q: H \rightarrow H$ acting on a separable infinite-dimensional complex Hilbert space is said to be quasitriangular whenever there exists an increasing sequence $\left(P_{n}\right)_{n \in \mathbb{N}}$ of finite-rank projections converging strongly to the identity I and such that

$$
\left\|Q P_{n}-P_{n} Q P_{n}\right\| \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

- Quasitriangular operators were conceived as an attempt to transfer some of the most important features of triangular operators into a more general context.
- Note that, given a triangular operator $T: H \rightarrow H$, there exists an increasing sequence $\left(P_{n}\right)_{n \in \mathbb{N}}$ of finite-rank projections converging strongly to the identity I and satisfying

$$
T P_{n}-P_{n} T P_{n}=\left(I-P_{n}\right) T P_{n}=0, \quad \text { for each } n=1,2, \ldots
$$

- Roughly speaking, the definition of quasitriangularity means that Q has a sequence of "approximately invariant" finite-dimensional subspaces.
- Examples of quasitriangular operators: compact operators, normal operators, compact perturbations of normal operators,...

An attempt to find a examples: quasitriangular operators

Based on the work of Aronszajn and Smith (1954), Halmos (1968) introduced the concept of quasitriangular operators.

Definition (Halmos, 1968)

An operator $Q: H \rightarrow H$ acting on a separable infinite-dimensional complex Hilbert space is said to be quasitriangular whenever there exists an increasing sequence $\left(P_{n}\right)_{n \in \mathbb{N}}$ of finite-rank projections converging strongly to the identity I and such that

$$
\left\|Q P_{n}-P_{n} Q P_{n}\right\| \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

- Quasitriangular operators were conceived as an attempt to transfer some of the most important features of triangular operators into a more general context.
- Note that, given a triangular operator $T: H \rightarrow H$, there exists an increasing sequence $\left(P_{n}\right)_{n \in \mathbb{N}}$ of finite-rank projections converging strongly to the identity I and satisfying

$$
T P_{n}-P_{n} T P_{n}=\left(I-P_{n}\right) T P_{n}=0, \quad \text { for each } n=1,2, \ldots
$$

- Roughly speaking, the definition of quasitriangularity means that Q has a sequence of "approximately invariant" finite-dimensional subspaces.
- Examples of quasitriangular operators: compact operators, normal operators, compact perturbations of normal operators,...
- An example of non-quasitriangular operator: Shift operator acting on $\ell^{2}(\mathbb{N})$.

Quasitriangularity and invariant subspaces

A remarkable theorem due to Apostol, Foiaş and Voiculescu (1973) reduced the Invariant Subspace Problem in Hilbert spaces to the class of quasitriangular operators.

Quasitriangularity and invariant subspaces

A remarkable theorem due to Apostol, Foiaş and Voiculescu (1973) reduced the Invariant Subspace Problem in Hilbert spaces to the class of quasitriangular operators.

Theorem (Apostol, Foias and Voiculescu, 1973)
If $T \in \mathcal{L}(H)$ is not a quasitriangular operator, then T has non-trivial closed invariant subspaces.

Quasitriangularity and invariant subspaces

A remarkable theorem due to Apostol，Foiass and Voiculescu（1973）reduced the Invariant Subspace Problem in Hilbert spaces to the class of quasitriangular operators．

Theorem（Apostol，Foias and Voiculescu，1973）

If $T \in \mathcal{L}(H)$ is not a quasitriangular operator，then T has non－trivial closed invariant subspaces．
－Initial goal：Understand quasitriangular operators from the standpoint of view of invariant subspaces．

Quasitriangularity and invariant subspaces

4ロ

Quasitriangularity and invariant subspaces

- A first attempt: Compact perturbations of normal operators.

Quasitriangularity and invariant subspaces

- A first attempt: Compact perturbations of normal operators.

Question

It is still unknown if every rank-one perturbation of a diagonal operator $(T=D+u \otimes v)$, has non-trivial invariant subspaces (problem explicitly posed by Pearcy in 1979).

An old problem

- The study of the existence of nontrivial closed invariant subspaces for the perturbation of a Hermitian (self-adjoint) operator A by a compact operator of a Schatten class $\mathcal{C}_{p}, 1 \leq p<\infty$ (1960's)

An old problem

- The study of the existence of nontrivial closed invariant subspaces for the perturbation of a Hermitian (self-adjoint) operator A by a compact operator of a Schatten class $\mathcal{C}_{p}, 1 \leq p<\infty$ (1960's)
- Kitano generalized the previous results to the case where A was a normal operator with spectrum on a C^{2} Jordan curve (1968).

An old problem

- The study of the existence of nontrivial closed invariant subspaces for the perturbation of a Hermitian (self-adjoint) operator A by a compact operator of a Schatten class $\mathcal{C}_{p}, 1 \leq p<\infty$ (1960's)
- Kitano generalized the previous results to the case where A was a normal operator with spectrum on a C^{2} Jordan curve (1968).

Theorem (Radjabalipour and Radjavi, 1975)

Let $T=N+K$ be a bounded linear operator in a complex Hilbert space, where N is a normal operator with spectrum on a C^{2} Jordan curve γ and K a compact operator belonging to a Schatten class \mathcal{C}_{p} for $1 \leq p<\infty$. Then T is decomposable if and only if $\sigma(T)$ does not fill the interior of γ.

An old problem

- The study of the existence of nontrivial closed invariant subspaces for the perturbation of a Hermitian (self-adjoint) operator A by a compact operator of a Schatten class $\mathcal{C}_{p}, 1 \leq p<\infty$ (1960's)
- Kitano generalized the previous results to the case where A was a normal operator with spectrum on a C^{2} Jordan curve (1968).

Theorem (Radjabalipour and Radjavi, 1975)

Let $T=N+K$ be a bounded linear operator in a complex Hilbert space, where N is a normal operator with spectrum on a C^{2} Jordan curve γ and K a compact operator belonging to a Schatten class \mathcal{C}_{p} for $1 \leq p<\infty$. Then T is decomposable if and only if $\sigma(T)$ does not fill the interior of γ.

- The situation turns out to be drastically different if the assumption on the spectra being contained in a curve is dropped off since, in such a case, it is still an open question if every compact perturbation of a normal operator has non-trivial closed invariant subspaces.

An old problem

- The study of the existence of nontrivial closed invariant subspaces for the perturbation of a Hermitian (self-adjoint) operator A by a compact operator of a Schatten class $\mathcal{C}_{p}, 1 \leq p<\infty$ (1960's)
- Kitano generalized the previous results to the case where A was a normal operator with spectrum on a C^{2} Jordan curve (1968).

Theorem (Radjabalipour and Radjavi, 1975)

Let $T=N+K$ be a bounded linear operator in a complex Hilbert space, where N is a normal operator with spectrum on a C^{2} Jordan curve γ and K a compact operator belonging to a Schatten class \mathcal{C}_{p} for $1 \leq p<\infty$. Then T is decomposable if and only if $\sigma(T)$ does not fill the interior of γ.

- The situation turns out to be drastically different if the assumption on the spectra being contained in a curve is dropped off since, in such a case, it is still an open question if every compact perturbation of a normal operator has non-trivial closed invariant subspaces.

An old problem

－The study of the existence of nontrivial closed invariant subspaces for the perturbation of a Hermitian（self－adjoint）operator A by a compact operator of a Schatten class $\mathcal{C}_{p}, 1 \leq p<\infty$（1960＇s）
－Kitano generalized the previous results to the case where A was a normal operator with spectrum on a C^{2} Jordan curve（1968）．

Theorem（Radjabalipour and Radjavi，1975）

Let $T=N+K$ be a bounded linear operator in a complex Hilbert space，where N is a normal operator with spectrum on a C^{2} Jordan curve γ and K a compact operator belonging to a Schatten class \mathcal{C}_{p} for $1 \leq p<\infty$ ．Then T is decomposable if and only if $\sigma(T)$ does not fill the interior of γ ．
－The situation turns out to be drastically different if the assumption on the spectra being contained in a curve is dropped off since，in such a case，it is still an open question if every compact perturbation of a normal operator has non－trivial closed invariant subspaces．Even，in particular，it is still open if every rank－one perturbation of a normal operator whose eigenvectors span the Hilbert space H has non－trivial closed invariant subspaces．

Question

It is still unknown if every rank-one perturbation of a diagonal operator $(T=D+u \otimes v)$, has non-trivial invariant subspaces (problem explicitly posed by Pearcy in 1979).

Invariant Subspaces for Rank-One Perturbations of Diagonal Operators

If $D_{\Lambda} \in \mathcal{L}(H)$ is a diagonal operator, that is, there exists an orthonormal basis $\left(e_{n}\right)_{n \geq 1}$ of H and a bounded sequence of complex numbers $\Lambda=\left(\lambda_{n}\right)_{n \geq 1} \subset \mathbb{C}$ such that

$$
D_{\Lambda} e_{n}=\lambda_{n} e_{n}
$$

a rank-one perturbations of D_{Λ} can be written as

$$
\begin{equation*}
T=D_{\Lambda}+u \otimes v \tag{1}
\end{equation*}
$$

where u, and v are non-zero vectors in H and $u \otimes v(x)=\langle x, v\rangle u$ for every $x \in H$.

Invariant Subspaces for Rank-One Perturbations of Diagonal Operators

If $D_{\Lambda} \in \mathcal{L}(H)$ is a diagonal operator, that is, there exists an orthonormal basis $\left(e_{n}\right)_{n \geq 1}$ of H and a bounded sequence of complex numbers $\Lambda=\left(\lambda_{n}\right)_{n \geq 1} \subset \mathbb{C}$ such that

$$
D_{\Lambda} e_{n}=\lambda_{n} e_{n},
$$

a rank-one perturbations of D_{Λ} can be written as

$$
\begin{equation*}
T=D_{\Lambda}+u \otimes v, \tag{1}
\end{equation*}
$$

where u, and v are non-zero vectors in H and $u \otimes v(x)=\langle x, v\rangle u$ for every $x \in H$.

Remark

Rank-one perturbations of normal operators whose eigenvectors span H belongs are unitarily equivalent to those expressed by (1).

Theorem（Foias，Ko，Jung and Pearcy，JFA 2007）
Let $T=D_{\Lambda}+u \otimes v$ in $\mathcal{L}(H) \backslash \mathbb{C} I$ where $u=\sum_{n=1}^{\infty} \alpha_{n} e_{n}, v=\sum_{n=1}^{\infty} \beta_{n} e_{n}$ and

$$
\sum_{n=1}^{\infty}\left|\alpha_{n}\right|^{2 / 3}+\left|\beta_{n}\right|^{2 / 3}<\infty
$$

Then，T has non－trivial hyperinvariant subspaces．

Invariant Subspaces for Rank-One Perturbations of Diagonal Operators

Note that if $\left\{\alpha_{n}\right\} \in \ell^{p}$ and $\left\{\beta_{n}\right\} \in \ell^{q}$, Foias, Jung, Ko and Pearcy Theorem can be "seen":

Invariant Subspaces for Rank-One Perturbations of Diagonal Operators

- Foias, Ko, Jung and Pearcy's insight:

A Riesz functional calculus unconventional because it involves integration over contours that may intersect the spectrum.

Invariant Subspaces for Rank-One Perturbations of Diagonal Operators

- Foias, Ko, Jung and Pearcy's insight:

A Riesz functional calculus unconventional because it involves integration over contours that may intersect the spectrum.

Figure: Spectrum of T.

Invariant Subspaces For Rank-One Perturbations of Diagonal Operators

Theorem (Fang and Xia, JFA 2012)
Let $T=D_{\Lambda}+u \otimes v$ in $\mathcal{L}(H) \backslash \mathbb{C} I$ where $u=\sum_{n=1}^{\infty} \alpha_{n} e_{n}, v=\sum_{n=1}^{\infty} \beta_{n} e_{n}$ and

$$
\sum_{n=1}^{\infty}\left|\alpha_{n}\right|+\left|\beta_{n}\right|<\infty
$$

Then, T has non-trivial closed hyperinvariant subspaces.

Invariant Subspaces For Rank-One Perturbations of Diagonal Operators

Theorem (Fang and Xia, JFA 2012)
Let $T=D_{\Lambda}+u \otimes v$ in $\mathcal{L}(H) \backslash \mathbb{C} I$ where $u=\sum_{n=1}^{\infty} \alpha_{n} e_{n}, v=\sum_{n=1}^{\infty} \beta_{n} e_{n}$ and

$$
\sum_{n=1}^{\infty}\left|\alpha_{n}\right|+\left|\beta_{n}\right|<\infty
$$

Then, T has non-trivial closed hyperinvariant subspaces.

Invariant Subspaces For Rank-One Perturbations of Diagonal Operators

- The authors show the decomposability for a subclass of the rank-one perturbations that satisfy the summability assumption.
- An operator $T \in \mathcal{L}(H)$ is decomposable if for every open cover $U_{1}, U_{2} \subset \mathbb{C}$ such that $\sigma(T) \subset U_{1} \cup U_{2}$ there exists invariant subspaces M, N for T such that $H=M+N$ and $\sigma\left(\left.T\right|_{M}\right) \subset U_{1}$ and $\sigma\left(\left.T\right|_{N}\right) \subset U_{2}$.

Invariant Subspaces For Rank-One Perturbations of Diagonal Operators

- The authors show the decomposability for a subclass of the rank-one perturbations that satisfy the summability assumption.
- An operator $T \in \mathcal{L}(H)$ is decomposable if for every open cover $U_{1}, U_{2} \subset \mathbb{C}$ such that $\sigma(T) \subset U_{1} \cup U_{2}$ there exists invariant subspaces M, N for T such that $H=M+N$ and $\sigma\left(\left.T\right|_{M}\right) \subset U_{1}$ and $\sigma\left(\left.T\right|_{N}\right) \subset U_{2}$.

Invariant Subspaces For Rank-One Perturbations of Diagonal Operators

- The authors show the decomposability for a subclass of the rank-one perturbations that satisfy the summability assumption.
- An operator $T \in \mathcal{L}(H)$ is decomposable if for every open cover $U_{1}, U_{2} \subset \mathbb{C}$ such that $\sigma(T) \subset U_{1} \cup U_{2}$ there exists invariant subspaces M, N for T such that $H=M+N$ and $\sigma\left(\left.T\right|_{M}\right) \subset U_{1}$ and $\sigma\left(\left.T\right|_{N}\right) \subset U_{2}$.

Figure: A decomposable operator.

Invariant Subspaces For Rank-One Perturbations of Diagonal Operators

- The authors show the decomposability for a subclass of the rank-one perturbations that satisfy the summability assumption.
- An operator $T \in \mathcal{L}(H)$ is decomposable if for every open cover $U_{1}, U_{2} \subset \mathbb{C}$ such that $\sigma(T) \subset U_{1} \cup U_{2}$ there exists invariant subspaces M, N for T such that $H=M+N$ and $\sigma\left(\left.T\right|_{M}\right) \subset U_{1}$ and $\sigma\left(\left.T\right|_{N}\right) \subset U_{2}$.

Figure: A decomposable operator.

Invariant Subspaces For Rank-One Perturbations of Diagonal Operators

Invariant Subspaces For Rank-One Perturbations of Diagonal Operators

Theorem (GG,González-Doña, 2021)
Let $T=D_{\Lambda}+u \otimes v \in \mathcal{L}(H) \backslash \mathbb{C} I d_{H}$ be any rank-one perturbation of a diagonal normal operator respect to an orthonormal basis $\left(e_{n}\right)_{n \geq 1}$ where $u=\sum_{n=1}^{\infty} \alpha_{n} e_{n}$ and $v=\sum_{n=1}^{\infty} \beta_{n} e_{n}$. If either

$$
\sum_{n=1}^{\infty}\left|\alpha_{n}\right|<\infty \quad \text { or } \quad \sum_{n=1}^{\infty}\left|\beta_{n}\right|<\infty
$$

then T has non-trivial closed hyperinvariant subspaces.

Invariant Subspaces For Rank-One Perturbations of Diagonal Operators

Theorem (GG,González-Doña, 2021)
Let $T=D_{\Lambda}+u \otimes v \in \mathcal{L}(H) \backslash \mathbb{C} I d_{H}$ be any rank-one perturbation of a diagonal normal operator respect to an orthonormal basis $\left(e_{n}\right)_{n \geq 1}$ where $u=\sum_{n=1}^{\infty} \alpha_{n} e_{n}$ and $v=\sum_{n=1}^{\infty} \beta_{n} e_{n}$. If either

$$
\sum_{n=1}^{\infty}\left|\alpha_{n}\right|<\infty \quad \text { or } \quad \sum_{n=1}^{\infty}\left|\beta_{n}\right|<\infty
$$

then T has non-trivial closed hyperinvariant subspaces.

Invariant Subspaces For Rank-One Perturbations: straightforward cases

Theorem (Ionascu, 2001)

Suppose $T=D_{\Lambda}+u \otimes v \in \mathcal{L}(H)$ where $\Lambda=\left(\lambda_{n}\right)_{n \geq 1} \subset \mathbb{C}, u=\sum_{n=1}^{\infty} \alpha_{n} e_{n}$ and $v=\sum_{n=1}^{\infty} \beta_{n} e_{n}$ are nonzero vectors in H.

Invariant Subspaces For Rank-One Perturbations: straightforward cases

Theorem (Ionascu, 2001)

Suppose $T=D_{\Lambda}+u \otimes v \in \mathcal{L}(H)$ where $\Lambda=\left(\lambda_{n}\right)_{n \geq 1} \subset \mathbb{C}, u=\sum_{n=1}^{\infty} \alpha_{n} e_{n}$ and $v=\sum_{n=1}^{\infty} \beta_{n} e_{n}$ are nonzero vectors in H.
(1) If there exists $n \in \mathbb{N}$ such that $\alpha_{n} \beta_{n}=0$, then either λ_{n} is an eigenvalue of T or $\overline{\lambda_{n}}$ is an eigenvalue of the adjoint T^{*}.

Invariant Subspaces For Rank-One Perturbations: straightforward cases

Theorem (Ionascu, 2001)

Suppose $T=D_{\Lambda}+u \otimes v \in \mathcal{L}(H)$ where $\Lambda=\left(\lambda_{n}\right)_{n \geq 1} \subset \mathbb{C}, u=\sum_{n=1}^{\infty} \alpha_{n} e_{n}$ and $v=\sum_{n=1}^{\infty} \beta_{n} e_{n}$ are nonzero vectors in H.
(1) If there exists $n \in \mathbb{N}$ such that $\alpha_{n} \beta_{n}=0$, then either λ_{n} is an eigenvalue of T or $\overline{\lambda_{n}}$ is an eigenvalue of the adjoint T^{*}.
(2) If there exists $m \neq n \in \mathbb{N}$ such that $\lambda_{m}=\lambda_{n}$, then λ_{n} is an eigenvalue of T.

Invariant Subspaces For Rank-One Perturbations: straightforward cases

Theorem (Ionascu, 2001)

Suppose $T=D_{\Lambda}+u \otimes v \in \mathcal{L}(H)$ where $\Lambda=\left(\lambda_{n}\right)_{n \geq 1} \subset \mathbb{C}, u=\sum_{n=1}^{\infty} \alpha_{n} e_{n}$ and $v=\sum_{n=1}^{\infty} \beta_{n} e_{n}$ are nonzero vectors in H.
(1) If there exists $n \in \mathbb{N}$ such that $\alpha_{n} \beta_{n}=0$, then either λ_{n} is an eigenvalue of T or $\overline{\lambda_{n}}$ is an eigenvalue of the adjoint T^{*}.
(2) If there exists $m \neq n \in \mathbb{N}$ such that $\lambda_{m}=\lambda_{n}$, then λ_{n} is an eigenvalue of T.
(3) If the derived set of $\left(\lambda_{n}\right)_{n \geq 1}$ reduces to a single point, then the commutant of T contains a non-zero compact operator.

Invariant Subspaces For Rank-One Perturbations: straightforward cases

Theorem (Ionascu, 2001)

Suppose $T=D_{\Lambda}+u \otimes v \in \mathcal{L}(H)$ where $\Lambda=\left(\lambda_{n}\right)_{n \geq 1} \subset \mathbb{C}, u=\sum_{n=1}^{\infty} \alpha_{n} e_{n}$ and $v=\sum_{n=1}^{\infty} \beta_{n} e_{n}$ are nonzero vectors in H.
(1) If there exists $n \in \mathbb{N}$ such that $\alpha_{n} \beta_{n}=0$, then either λ_{n} is an eigenvalue of T or $\overline{\lambda_{n}}$ is an eigenvalue of the adjoint T^{*}.
(2) If there exists $m \neq n \in \mathbb{N}$ such that $\lambda_{m}=\lambda_{n}$, then λ_{n} is an eigenvalue of T.
(3) If the derived set of $\left(\lambda_{n}\right)_{n \geq 1}$ reduces to a single point, then the commutant of T contains a non-zero compact operator.

If T satisfies any of the previous conditions, T has a non-trivial closed hyperinvariant subspace.

The class ($\mathcal{R O}$)

Definition (Class ($\mathcal{R O} \mathcal{O})$)

Fixed an orthonormal basis $\mathcal{E}=\left(e_{n}\right)_{n \geq 1}$ of H and consider a bounded sequence of complex numbers $\Lambda=\left(\lambda_{n}\right)_{n \geq 1} \subset \mathbb{C}$. If D_{Λ} denotes the diagonal operator associated to Λ respect to \mathcal{E}, the rank-one perturbation of D_{Λ}

$$
T=D_{\Lambda}+u \otimes v
$$

with $u=\sum_{n=1}^{\infty} \alpha_{n} e_{n}, v=\sum_{n=1}^{\infty} \beta_{n} e_{n}$ nonzero vectors in H, belongs to the class $(\mathcal{R O})$ if:
(i) $\alpha_{n} \beta_{n} \neq 0$ for every $n \in \mathbb{N}$;
(ii) the map $n \in \mathbb{N} \mapsto \lambda_{n} \in \Lambda$ is injective;
(iii) the derived set Λ^{\prime} is not a singleton.

The class ($\mathcal{R O}$)

Spectrum $\sigma(T)$ and point spectrum $\sigma_{p}(T)$ of operators $T \in(\mathcal{R O})$

The class $(\mathcal{R O})$

Spectrum $\sigma(T)$ and point spectrum $\sigma_{p}(T)$ of operators $T \in(\mathcal{R O})$
Let $T \in(\mathcal{R O})$ and denote by f_{T} the Borel series（or Denjoy series）associated to T ：

$$
f_{T}(z)=\sum_{n=1}^{\infty} \frac{\alpha_{n} \overline{\beta_{n}}}{\lambda_{n}-z}
$$

for those $z \in \mathbb{C}$ such that the series converges．

A "brief" overview on Borel series

Definition

Let $\left\{z_{n}\right\}_{n \geq 1}$ be a bounded sequence of distinct points in \mathbb{C} and $A=\overline{\left\{z_{n}\right\}_{n \geq 1}}$. If $\left\{c_{n}\right\}_{n \geq 1} \in \ell^{1}$ the Borel series is the function defined by

$$
\sum_{n=1}^{\infty} \frac{c_{n}}{z_{n}-z}
$$

A "brief" overview on Borel series

Definition

Let $\left\{z_{n}\right\}_{n \geq 1}$ be a bounded sequence of distinct points in \mathbb{C} and $A=\overline{\left\{z_{n}\right\}_{n \geq 1}}$. If $\left\{c_{n}\right\}_{n \geq 1} \in \ell^{1}$ the Borel series is the function defined by

$$
\sum_{n=1}^{\infty} \frac{c_{n}}{z_{n}-z}
$$

Note that the above series converges uniformly on compact subsets of A^{c} to an analytic function which extends meromorphically to a neighborhood of each isolated point of $\left\{z_{n}\right\}$.

A "brief" overview on Borel series

Definition

Let $\left\{z_{n}\right\}_{n \geq 1}$ be a bounded sequence of distinct points in \mathbb{C} and $A=\overline{\left\{z_{n}\right\}_{n \geq 1}}$. If $\left\{c_{n}\right\}_{n \geq 1} \in \ell^{1}$ the Borel series is the function defined by

$$
\sum_{n=1}^{\infty} \frac{c_{n}}{z_{n}-z}
$$

Note that the above series converges uniformly on compact subsets of A^{c} to an analytic function which extends meromorphically to a neighborhood of each isolated point of $\left\{z_{n}\right\}$.
The study of Borel series has a rich history. Of particular interest has been conditions for a function analytic on a region to be representable as a Borel series, and conditions for such a representation, if one exists, to be unique.

A "brief" overview on Borel series

Definition

Let $\left\{z_{n}\right\}_{n \geq 1}$ be a bounded sequence of distinct points in \mathbb{C} and $A=\overline{\left\{z_{n}\right\}_{n \geq 1}}$. If $\left\{c_{n}\right\}_{n \geq 1} \in \ell^{1}$ the Borel series is the function defined by

$$
\sum_{n=1}^{\infty} \frac{c_{n}}{z_{n}-z}
$$

Note that the above series converges uniformly on compact subsets of A^{c} to an analytic function which extends meromorphically to a neighborhood of each isolated point of $\left\{z_{n}\right\}$.
The study of Borel series has a rich history. Of particular interest has been conditions for a function analytic on a region to be representable as a Borel series, and conditions for such a representation, if one exists, to be unique.
In the interesting case where A disconnects the plane, it is not clear what, if any, relations will exist between the restrictions of $\sum_{n=1}^{\infty} \frac{c_{n}}{z_{n}-z}$ to the various components of A^{c}.

A "brief" overview on Borel series

Definition

Let $\left\{z_{n}\right\}_{n \geq 1}$ be a bounded sequence of distinct points in \mathbb{C} and $A=\overline{\left\{z_{n}\right\}_{n \geq 1}}$. If $\left\{c_{n}\right\}_{n \geq 1} \in \ell^{1}$ the Borel series is the function defined by

$$
\sum_{n=1}^{\infty} \frac{c_{n}}{z_{n}-z}
$$

Note that the above series converges uniformly on compact subsets of A^{c} to an analytic function which extends meromorphically to a neighborhood of each isolated point of $\left\{z_{n}\right\}$.
The study of Borel series has a rich history. Of particular interest has been conditions for a function analytic on a region to be representable as a Borel series, and conditions for such a representation, if one exists, to be unique.
In the interesting case where A disconnects the plane, it is not clear what, if any, relations will exist between the restrictions of $\sum_{n=1}^{\infty} \frac{c_{n}}{z_{n}-z}$ to the various components of A^{c}.

Indeed, it was long an open question, raised by Borel, whether one of these restrictions could be zero without all the remaining ones vanishing.

A "brief" overview on Borel series

Definition

Let $\left\{z_{n}\right\}_{n \geq 1}$ be a bounded sequence of distinct points in \mathbb{C} and $A=\overline{\left\{z_{n}\right\}_{n \geq 1}}$. If $\left\{c_{n}\right\}_{n \geq 1} \in \ell^{1}$ the Borel series is the function defined by

$$
\sum_{n=1}^{\infty} \frac{c_{n}}{z_{n}-z}
$$

Note that the above series converges uniformly on compact subsets of A^{c} to an analytic function which extends meromorphically to a neighborhood of each isolated point of $\left\{z_{n}\right\}$.
The study of Borel series has a rich history. Of particular interest has been conditions for a function analytic on a region to be representable as a Borel series, and conditions for such a representation, if one exists, to be unique.
In the interesting case where A disconnects the plane, it is not clear what, if any, relations will exist between the restrictions of $\sum_{n=1}^{\infty} \frac{c_{n}}{z_{n}-z}$ to the various components of A^{c}.

Indeed, it was long an open question, raised by Borel, whether one of these restrictions could be zero without all the remaining ones vanishing. If $\lim \left|c_{n}\right|^{1 / n}=0$, a theorem of Walsh implies this is impossible.

A "brief" overview on Borel series

Definition

Let $\left\{z_{n}\right\}_{n \geq 1}$ be a bounded sequence of distinct points in \mathbb{C} and $A=\overline{\left\{z_{n}\right\}_{n \geq 1}}$. If $\left\{c_{n}\right\}_{n \geq 1} \in \ell^{1}$ the Borel series is the function defined by

$$
\sum_{n=1}^{\infty} \frac{c_{n}}{z_{n}-z}
$$

A "brief" overview on Borel series

Definition

Let $\left\{z_{n}\right\}_{n \geq 1}$ be a bounded sequence of distinct points in \mathbb{C} and $A=\overline{\left\{z_{n}\right\}_{n \geq 1}}$. If $\left\{c_{n}\right\}_{n \geq 1} \in \ell^{1}$ the Borel series is the function defined by

$$
\sum_{n=1}^{\infty} \frac{c_{n}}{z_{n}-z}
$$

- J. Wolff, 1921 Construction of an example of a (not identically zero) Borel series vanishing in the unit disc.

A "brief" overview on Borel series

Definition

Let $\left\{z_{n}\right\}_{n \geq 1}$ be a bounded sequence of distinct points in \mathbb{C} and $A=\overline{\left\{z_{n}\right\}_{n \geq 1}}$. If $\left\{c_{n}\right\}_{n \geq 1} \in \ell^{1}$ the Borel series is the function defined by

$$
\sum_{n=1}^{\infty} \frac{c_{n}}{z_{n}-z}
$$

- J. Wolff, 1921 Construction of an example of a (not identically zero) Borel series vanishing in the unit disc.
- Further constructions: Denjoy, Beurling, Leontéva constructed (non-trivial) Borel series which sum to zero on a disk for which the coefficients $\left\{c_{n}\right\}$ are of certain exponential decay.

A "brief" overview on Borel series

Definition

Let $\left\{z_{n}\right\}_{n \geq 1}$ be a bounded sequence of distinct points in \mathbb{C} and $A=\overline{\left\{z_{n}\right\}_{n \geq 1}}$. If $\left\{c_{n}\right\}_{n \geq 1} \in \ell^{1}$ the Borel series is the function defined by

$$
\sum_{n=1}^{\infty} \frac{c_{n}}{z_{n}-z}
$$

- J. Wolff, 1921 Construction of an example of a (not identically zero) Borel series vanishing in the unit disc.
- Further constructions: Denjoy, Beurling, Leontéva constructed (non-trivial) Borel series which sum to zero on a disk for which the coefficients $\left\{c_{n}\right\}$ are of certain exponential decay.
- Uniqueness results: Borel, Carleman, Gonchar and Poincaré all determined decay rates in the unicity problem. Results by Makarov, Nikolskii and definitive ones by Sibilev (1995).

A "brief" overview on Borel series

Definition

Let $\left\{z_{n}\right\}_{n \geq 1}$ be a bounded sequence of distinct points in \mathbb{C} and $A=\overline{\left\{z_{n}\right\}_{n \geq 1}}$. If $\left\{c_{n}\right\}_{n \geq 1} \in \ell^{1}$ the Borel series is the function defined by

$$
\sum_{n=1}^{\infty} \frac{c_{n}}{z_{n}-z}
$$

- J. Wolff, 1921 Construction of an example of a (not identically zero) Borel series vanishing in the unit disc.
- Further constructions: Denjoy, Beurling, Leontéva constructed (non-trivial) Borel series which sum to zero on a disk for which the coefficients $\left\{c_{n}\right\}$ are of certain exponential decay.
- Uniqueness results: Borel, Carleman, Gonchar and Poincaré all determined decay rates in the unicity problem. Results by Makarov, Nikolskii and definitive ones by Sibilev (1995).
- Connections to operator theory: Sarason.

A＂brief＂overview on Borel series

Definition

Let $\left\{z_{n}\right\}_{n \geq 1}$ be a bounded sequence of distinct points in \mathbb{C} and $A=\overline{\left\{z_{n}\right\}_{n \geq 1}}$ ．If $\left\{c_{n}\right\}_{n \geq 1} \in \ell^{1}$ the Borel series is the function defined by

$$
\sum_{n=1}^{\infty} \frac{c_{n}}{z_{n}-z}
$$

－J．Wolff， 1921 Construction of an example of a（not identically zero）Borel series vanishing in the unit disc．
－Further constructions：Denjoy，Beurling，Leontéva constructed（non－trivial）Borel series which sum to zero on a disk for which the coefficients $\left\{c_{n}\right\}$ are of certain exponential decay．
－Uniqueness results：Borel，Carleman，Gonchar and Poincaré all determined decay rates in the unicity problem．Results by Makarov，Nikolskii and definitive ones by Sibilev（1995）．
－Connections to operator theory：Sarason．The Borel series

$$
\sum_{n=1}^{\infty} \frac{c_{n}}{z_{n}-z} \equiv 0
$$

whenever $|z|>\sup \left|z_{n}\right|$ for some non－trivial $\left\{c_{n}\right\} \in \ell^{1}$ if and only if there exists a closed invariant subspace for the diagonal operator D having eigenvalues $\left\{z_{n}\right\}$ which is not invariant for the adjoint D^{*} ．

The class $(\mathcal{R O})$

Spectrum $\sigma(T)$ and point spectrum $\sigma_{p}(T)$ of operators $T \in(\mathcal{R O})$
Let $T \in(\mathcal{R O})$ and denote by f_{T} the Borel series（or Denjoy series）associated to T ：

$$
f_{T}(z)=\sum_{n=1}^{\infty} \frac{\alpha_{n} \overline{\beta_{n}}}{\lambda_{n}-z},
$$

for those $z \in \mathbb{C}$ such that the series converges．

The class ($\mathcal{R O}$)

Spectrum $\sigma(T)$ and point spectrum $\sigma_{p}(T)$ of operators $T \in(\mathcal{R O})$
Let $T \in(\mathcal{R O})$ and denote by f_{T} the Borel series (or Denjoy series) associated to T :

$$
f_{T}(z)=\sum_{n=1}^{\infty} \frac{\alpha_{n} \overline{\beta_{n}}}{\lambda_{n}-z},
$$

for those $z \in \mathbb{C}$ such that the series converges.

Theorem (Ionascu, 2001)

Let $T=D_{\Lambda}+u \otimes v \in(\mathcal{R O})$. Then $z \in \mathbb{C}$ belongs to $\sigma_{p}(T)$ if and only if
(i) $z \notin \Lambda$,
(ii) $\sum_{n=1}^{\infty} \frac{\left|\alpha_{n}\right|^{2}}{\left|z-\lambda_{n}\right|^{2}}<\infty$,
(iii) $f_{T}(z)+1=0$.

Moreover,

$$
\sigma(T)=\Lambda^{\prime} \cup\left\{z \in \mathbb{C} \backslash \bar{\Lambda}: f_{T}(z)+1=0\right\},
$$

and the essential spectrum

$$
\sigma_{e s s}(T)=\Lambda^{\prime} .
$$

Rank-One Perturbations Of Diagonal Operators

Theorem (GG,González-Doña, 2021)
Let $T=D_{\Lambda}+u \otimes v \in \mathcal{L}(H) \backslash \mathbb{C} I d_{H}$ be any rank-one perturbation of a diagonal normal operator respect to an orthonormal basis $\left(e_{n}\right)_{n \geq 1}$ where $u=\sum_{n=1}^{\infty} \alpha_{n} e_{n}$ and $v=\sum_{n=1}^{\infty} \beta_{n} e_{n}$. If either

$$
\sum_{n=1}^{\infty}\left|\alpha_{n}\right|<\infty \quad \text { or } \quad \sum_{n=1}^{\infty}\left|\beta_{n}\right|<\infty
$$

then T has non-trivial closed hyperinvariant subspaces.

Rank-One Perturbations Of Diagonal Operators

Theorem (GG,González-Doña, 2021)

Let $T=D_{\Lambda}+u \otimes v \in \mathcal{L}(H) \backslash \mathbb{C} I d_{H}$ be any rank-one perturbation of a diagonal normal operator respect to an orthonormal basis $\left(e_{n}\right)_{n \geq 1}$ where $u=\sum_{n=1}^{\infty} \alpha_{n} e_{n}$ and $v=\sum_{n=1}^{\infty} \beta_{n} e_{n}$. If either

$$
\sum_{n=1}^{\infty}\left|\alpha_{n}\right|<\infty \quad \text { or } \quad \sum_{n=1}^{\infty}\left|\beta_{n}\right|<\infty
$$

then T has non-trivial closed hyperinvariant subspaces. Moreover, for those $T \in(\mathcal{R O})$ with $\sigma(T)$ connected and $\sigma_{p}(T) \cup \sigma_{p}\left(T^{*}\right)=\emptyset$, it follows that they do have non-zero spectral subspaces which are no longer dense.

A closer look to the invariant subspaces: local spectral subspaces

A closer look to the invariant subspaces：local spectral subspaces

Local spectral theory and local spectral manifolds

Recall that a linear bounded operator T on a Banach space X has the single－valued extension property（SVEP）if for every connected open set $G \subset \mathbb{C}$ and every analytic function $f: G \rightarrow X$ such that

$$
(T-\lambda I) f(\lambda) \equiv 0
$$

on G ，one has $f \equiv 0$ on G ．

A closer look to the invariant subspaces: local spectral subspaces

Local spectral theory and local spectral manifolds
Recall that a linear bounded operator T on a Banach space X has the single-valued extension property (SVEP) if for every connected open set $G \subset \mathbb{C}$ and every analytic function $f: G \rightarrow X$ such that

$$
(T-\lambda I) f(\lambda) \equiv 0
$$

on G, one has $f \equiv 0$ on G.
The local spectrum of T at the vector $x \in X$, denoted by $\sigma_{T}(x)$, is the complement of the set of all $\lambda \in \mathbb{C}$ for which there exists an open neighbourhood $U_{\lambda} \ni \lambda$ and an analytic function $f: U_{\lambda} \rightarrow X$ such that

$$
(T-z I) f(z)=x \text { for every } z \in U_{\lambda} .
$$

A closer look to the invariant subspaces: local spectral subspaces

Local spectral theory and local spectral manifolds
Recall that a linear bounded operator T on a Banach space X has the single-valued extension property (SVEP) if for every connected open set $G \subset \mathbb{C}$ and every analytic function $f: G \rightarrow X$ such that

$$
(T-\lambda I) f(\lambda) \equiv 0
$$

on G, one has $f \equiv 0$ on G.
The local spectrum of T at the vector $x \in X$, denoted by $\sigma_{T}(x)$, is the complement of the set of all $\lambda \in \mathbb{C}$ for which there exists an open neighbourhood $U_{\lambda} \ni \lambda$ and an analytic function $f: U_{\lambda} \rightarrow X$ such that

$$
(T-z I) f(z)=x \text { for every } z \in U_{\lambda} .
$$

- For every operator $T \in \mathcal{L}(X)$ and $x \in X$, the local spectrum $\sigma_{T}(x)$ is a compact subset of $\sigma(T)$.

A closer look to the invariant subspaces: local spectral subspaces

Definition (Local spectral manifold)

Given an operator $T \in \mathcal{L}(X)$ and any subset $\Omega \subseteq \mathbb{C}$, the local spectral manifold is defined by

$$
X_{T}(\Omega):=\left\{x \in X: \sigma_{T}(x) \subseteq \Omega\right\} .
$$

A closer look to the invariant subspaces: local spectral subspaces

Definition (Local spectral manifold)

Given an operator $T \in \mathcal{L}(X)$ and any subset $\Omega \subseteq \mathbb{C}$, the local spectral manifold is defined by

$$
X_{T}(\Omega):=\left\{x \in X: \sigma_{T}(x) \subseteq \Omega\right\} .
$$

- $X_{T}(\Omega)$ is always a (non-necessarily closed. . .) T-hyperinvariant linear manifold!!

A closer look to the invariant subspaces: local spectral subspaces

Definition (Local spectral manifold)

Given an operator $T \in \mathcal{L}(X)$ and any subset $\Omega \subseteq \mathbb{C}$, the local spectral manifold is defined by

$$
X_{T}(\Omega):=\left\{x \in X: \sigma_{T}(x) \subseteq \Omega\right\} .
$$

- $X_{T}(\Omega)$ is always a (non-necessarily closed...) T-hyperinvariant linear manifold!!
- Those operators $T \in \mathcal{B}(X)$ such that $X_{T}(\Omega)$ is norm-closed for every closed subset $\Omega \subseteq \mathbb{C}$ are said to satisfy Dunford property (\mathbf{C}).

SVEP for operators in $(\mathcal{R O})$

Proposition (GG, González-Doña, 2021)

Let $T=D_{\Lambda}+u \otimes v \in(\mathcal{R O})$, where $u=\sum_{n=1}^{\infty} \alpha_{n} e_{n}, v=\sum_{n=1}^{\infty} \beta_{n} e_{n} \in H$. The following conditions are equivalent:
(i) T has the SVEP.
(ii) $\sigma_{p}(T)$ does not fill any hole of $\bar{\Lambda}$.
(iii) $f_{T}+1$ is not constantly 0 on any hole of $\bar{\Lambda}$.

Strategy: characterizing particular spectral subspaces

Strategy: characterizing particular spectral subspaces

Given $T=D_{\Lambda}+u \otimes v \in(\mathcal{R O})$ where $\Lambda=\left(\lambda_{n}\right) \subset \mathbb{C}$ and provided any set $A \subset \mathbb{C}$, we will denote by N_{A} the set of positive integers:

$$
N_{A}=\left\{n \in \mathbb{N}: \lambda_{n} \in \Lambda \cap A\right\}
$$

Strategy: characterizing particular spectral subspaces

Given $T=D_{\Lambda}+u \otimes v \in(\mathcal{R O})$ where $\Lambda=\left(\lambda_{n}\right) \subset \mathbb{C}$ and provided any set $A \subset \mathbb{C}$, we will denote by N_{A} the set of positive integers:

$$
N_{A}=\left\{n \in \mathbb{N}: \lambda_{n} \in \Lambda \cap A\right\}
$$

Given an open set U, a holomorphic map g on U and $w \in U$, we define

$$
\Gamma(g)(z, w)=\left\{\begin{array}{cl}
\frac{g(z)-g(w)}{z-w} & z \neq w \\
g^{\prime}(w) & z=w
\end{array}\right.
$$

Strategy：characterizing particular spectral subspaces

Given $T=D_{\Lambda}+u \otimes v \in(\mathcal{R O})$ where $\Lambda=\left(\lambda_{n}\right) \subset \mathbb{C}$ and provided any set $A \subset \mathbb{C}$ ，we will denote by N_{A} the set of positive integers：

$$
N_{A}=\left\{n \in \mathbb{N}: \lambda_{n} \in \Lambda \cap A\right\}
$$

Given an open set U ，a holomorphic map g on U and $w \in U$ ，we define

$$
\Gamma(g)(z, w)=\left\{\begin{array}{cl}
\frac{g(z)-g(w)}{z-w} & z \neq w \\
g^{\prime}(w) & z=w
\end{array}\right.
$$

$\Gamma(g)(z, w)$ is continuous in $U \times U$ and for every $w \in U$ ，the map $z \mapsto \Gamma(g)(z, w)$ is， indeed，holomorphic in U ．

Strategy: characterizing particular spectral subspaces

Strategy: characterizing particular spectral subspaces

Theorem (GG, González-Doña, 2021)

Let $T=D_{\Lambda}+u \otimes v \in(\mathcal{R O})$ with $u=\sum_{n=1}^{\infty} \alpha_{n} e_{n}$ and $v=\sum_{n=1}^{\infty} \beta_{n} e_{n}$ nonzero vectors in H. Assume T has the SVEP and the spectrum $\sigma(T)$ is connected. Let F be a non-empty closed set such that $F \cap \sigma(T) \neq \emptyset$. A vector $x \in H$ belongs to the spectral subspace $H_{T}(F)$ if and only if there exists a holomorphic map g_{x} in F^{c} such that:
(i) If $x=\sum_{n} x_{n} e_{n}$, then

$$
x_{n}=g_{x}\left(\lambda_{n}\right) \alpha_{n}
$$

for every $n \in N_{F^{c}}$.
(ii) The function

$$
z \in F^{c} \mapsto \sum_{n \in N_{F^{c}}} \Gamma\left(g_{x}\right)\left(z, \lambda_{n}\right) \alpha_{n} e_{n}
$$

is a vector-valued holomorphic function on F^{c}.
(iii) The identity

$$
\sum_{n \in N_{F}} \frac{x_{n} \overline{\beta_{n}}}{\lambda_{n}-z}=g_{x}(z)\left(\sum_{n \in N_{F}} \frac{\alpha_{n} \overline{\beta_{n}}}{\lambda_{n}-z}+1\right)-\sum_{n \in N_{F^{c}}} \Gamma\left(g_{x}\right)\left(z, \lambda_{n}\right) \alpha_{n} \overline{\beta_{n}}
$$

holds for every $z \in F^{c}$.

A few remarks

A few remarks

Example

Observe that for $u=\sum_{n=1}^{\infty} \alpha_{n} e_{n}$ and $v=\sum_{n=1}^{\infty} \beta_{n} e_{n}$,

$$
g_{u}(z)=\frac{f_{T}(z)}{f_{T}(z)+1} \quad \text { and } \quad g_{v}(z)=\frac{1}{f_{T}(z)+1} \sum_{n=1}^{\infty} \frac{\left|\beta_{n}\right|^{2}}{\lambda_{n}-z}
$$

for every $z \in \rho(T)$.

A few remarks

Example

Observe that for $u=\sum_{n=1}^{\infty} \alpha_{n} e_{n}$ and $v=\sum_{n=1}^{\infty} \beta_{n} e_{n}$,

$$
g_{u}(z)=\frac{f_{T}(z)}{f_{T}(z)+1} \quad \text { and } \quad g_{v}(z)=\frac{1}{f_{T}(z)+1} \sum_{n=1}^{\infty} \frac{\left|\beta_{n}\right|^{2}}{\lambda_{n}-z}
$$

for every $z \in \rho(T)$.

Theorem

Let $T=D_{\Lambda}+u \otimes v \in(\mathcal{R O})$ with $u=\sum_{n=1}^{\infty} \alpha_{n} e_{n}$ and $v=\sum_{n=1}^{\infty} \beta_{n} e_{n}$ nonzero vectors in H. Assume $\sigma(T)$ is connected and both $\sigma_{p}(T)$ and $\sigma_{p}\left(T^{*}\right)$ are empty. Let F be a non-empty closed set contained in $\sigma(T)$. Then the vector $u \in H_{T}(F)$ if and only if $F=\sigma(T)$.

A few remarks

Corollary

Let $T=D_{\Lambda}+u \otimes v \in(\mathcal{R O})$ with $u=\sum_{n=1}^{\infty} \alpha_{n} e_{n}$ and $v=\sum_{n=1}^{\infty} \beta_{n} e_{n}$ nonzero vectors in H. Assume $\sigma(T)$ is connected and both $\sigma_{p}(T)$ and $\sigma_{p}\left(T^{*}\right)$ are empty. Then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|\left(D_{\Lambda}+u \otimes v\right)^{n} u\right\|^{1 / n}=\max \left\{|z|: z \in \Lambda^{\prime}\right\}=r(T) \tag{2}
\end{equation*}
$$

and, analogously,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|\left(D_{\Lambda^{*}}+v \otimes u\right)^{n} v\right\|^{1 / n}=\max \left\{|z|: z \in \Lambda^{\prime}\right\}=r\left(T^{*}\right) \tag{3}
\end{equation*}
$$

Strategy: constructing spectral subspaces

Strategy: constructing spectral subspaces

Theorem (GG, González-Doña, 2021)

Let $T=D_{\Lambda}+u \otimes v \in(\mathcal{R O})$ with $u=\sum_{n=1}^{\infty} \alpha_{n} e_{n}$ and $v=\sum_{n=1}^{\infty} \beta_{n} e_{n}$ nonzero vectors in H. Assume $\sigma(T)$ is connected and both $\sigma_{p}(T)$ and $\sigma_{p}\left(T^{*}\right)$ are empty. Assume that there exists a closed, simple, piecewise differentiable curve γ in \mathbb{C} not intersecting Λ such that
(i) $\sigma(T) \cap \operatorname{int}(\gamma) \neq \emptyset$.
(ii) The map

$$
\xi \in \gamma \rightarrow \frac{1}{1+f_{T}(\xi)}
$$

is well defined and continuous on γ.

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\int_{\gamma} \frac{d|\xi|}{\left|\lambda_{n}-\xi\right|}\right)^{2}\left|\alpha_{n}\right|^{2}<\infty \tag{iii}
\end{equation*}
$$

Then, $H_{T}(\overline{\operatorname{int}(\gamma)})$ is a non-zero spectral subspace.

Strategy: constructing spectral subspaces

Strategy: constructing spectral subspaces

Final step: If both T and T^{*} enjoy the SVEP, and $F_{1}, F_{2} \subset \mathbb{C}$ are disjoint closed sets, then

$$
H_{T}\left(F_{1}\right) \subseteq H_{T^{*}}\left(F_{2}^{*}\right)^{\perp},
$$

Question

Question

Rank-One Perturbations Of Diagonal Operators: a step further

Theorem (GG,González-Doña, 2022)

With the notation as introduced above, the linear bounded operator $T=D_{\Lambda}+u \otimes v$ has non trivial closed invariant subspaces provided that either u or v have a Fourier coefficient which is zero or u and v have non zero Fourier coefficients and

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|\alpha_{n}\right|^{2} \log \frac{1}{\left|\alpha_{n}\right|}+\left|\beta_{n}\right|^{2} \log \frac{1}{\left|\beta_{n}\right|}<\infty \tag{4}
\end{equation*}
$$

Moreover, if T is not a scalar multiple of the identity, it has non trivial closed hyperinvariant subspaces.

Rank-One Perturbations Of Diagonal Operators: a step further

Finite Rank Perturbations Of Diagonal Operators

Let $\left(e_{n}\right)_{n \geq 1}$ be an orthonormal basis in H and $u_{1}, \cdots, u_{N}, v_{1}, \cdots v_{N}$ non-zero vectors in H. Let us we denote their Fourier coefficients by

$$
u_{k}=\sum_{n=1}^{\infty} \alpha_{n}^{(k)} e_{n}, \quad v_{k}=\sum_{n=1}^{\infty} \beta_{n}^{(k)} e_{n}
$$

for each $1 \leq k \leq N$.

Finite Rank Perturbations Of Diagonal Operators

Let $\left(e_{n}\right)_{n \geq 1}$ be an orthonormal basis in H and $u_{1}, \cdots, u_{N}, v_{1}, \cdots v_{N}$ non-zero vectors in H. Let us we denote their Fourier coefficients by

$$
u_{k}=\sum_{n=1}^{\infty} \alpha_{n}^{(k)} e_{n}, \quad v_{k}=\sum_{n=1}^{\infty} \beta_{n}^{(k)} e_{n}
$$

for each $1 \leq k \leq N$.

We consider operators that can be expressed by

$$
T=D_{\Lambda}+\sum_{k=1}^{N} u_{k} \otimes v_{k} \in \mathcal{L}(H)
$$

where D_{Λ} is a diagonal operator with respect to $\left(e_{n}\right)_{n \geq 1}$ with eigenvalues $\Lambda=\left(\lambda_{n}\right)_{n}$ and $N \in \mathbb{N}$ fixed.

Finite Rank Perturbations Of Diagonal Operators

Theorem (GG, González-Doña, 2022)

Let $T=D_{\Lambda}+\sum_{k=1}^{\infty} u_{k} \otimes v_{k} \in \mathcal{L}(H) \backslash \mathbb{C} I d_{H}$ be any finite rank perturbation of a diagonal normal operator D_{Λ} with respect to an orthonormal basis $\mathcal{E}=\left\{e_{n}\right\}_{n \geq 1}$ where $u_{k}=\sum_{n=1}^{\infty} \alpha_{n}^{(k)} e_{n}$ and $v_{k}=\sum_{n=1}^{\infty} \beta_{n}^{(k)} e_{n}$ are non zero vectors in H. Then T has non trivial closed hyperinvariant subspaces provided that

$$
\sum_{n \in \mathcal{N}}\left|\alpha_{n}^{(k)}\right|^{2} \log \frac{1}{\left|\alpha_{n}^{(k)}\right|}+\left|\beta_{n}^{(k)}\right|^{2} \log \frac{1}{\left|\beta_{n}^{(k)}\right|}<\infty
$$

where

$$
\mathcal{N}=\left\{n \in \mathbb{N}: \alpha_{n}^{(k)} \neq 0, \beta_{n}^{(k)} \neq 0 \text { for } 1 \leq k \leq N\right\}
$$

Invariant Subspace Problem

Question

Given any linear bounded operator T acting on a separable infinite-dimensional Hilbert space (or reflexive Banach space), does there exist a non-trivial closed invariant subspace?

- An intrinsic difficulty: The lack of well-known examples

Thank you for your attention

References

固
Q．Fang，J．Xia，Invariant subspaces for certain finite－rank perturbations of diagonal operators J．Funct．Anal． 263 （2012），no．5，1356－1377．

C．Foias，I．B．Jung，E．Ko and C．Pearcy，On rank－one perturbations of normal operators I，J．Funct．Anal． 253 （2007），no．2，628－646．

C．Foias，I．B．Jung，E．Ko and C．Pearcy，On rank－one perturbations of normal operators II，Indiana Univ．Math．J． 57 （2008），no．6，2745－2760．

E．A．Gallardo－Gutiérrez，F．J．González－Doña，Finite rank perturbations of normal operators：Spectral subspaces and Borel series，Journal de Mathématiques Pures et Appliquées， 162 （2022），23－75．
E．A．Gallardo－Gutiérrez and F．J．González－Doña，Finite rank perturbations of normal operators：hyperinvariant subspaces and a problem of Pearcy，submitted， 23 pps（2022）．

E．J．Ionascu，Rank－one perturbations of diagonal operators，Integral Equations Operator Theory 39 （2001），no．4，421－440．

Thank you for your attention

