Insights into the *Invariant Subspace Problem* for compact perturbations of normal operators

Eva A. Gallardo Gutiérrez

UCM-ICMAT

July, 2022

< □ > < □ > <</pre>

July 2022

1/44



During almost a century, the so-called "Invariant Subspace Problem" has turned out to be one of the most *intriguing* questions within the field of Operator Theory.

During almost a century, the so-called "Invariant Subspace Problem" has turned out to be one of the most *intriguing* questions within the field of Operator Theory.

 $\left. \begin{array}{l} T: \mathcal{H} \to \mathcal{H}, \text{linear and bounded} \\ \\ T(M) \subset (M), \text{closed subspace} \end{array} \right\} \quad \Rightarrow \quad M = \{0\} \text{ or } M = \mathcal{H}?$ 

During almost a century, the so-called "Invariant Subspace Problem" has turned out to be one of the most *intriguing* questions within the field of Operator Theory.

$$T: \mathcal{H} \to \mathcal{H}, \text{linear and bounded}$$
  
$$T(M) \subset (M), \text{closed subspace}$$
$$\Rightarrow \quad M = \{0\} \text{ or } M = \mathcal{H}?$$

・ロト < 団ト < 三ト < 三 ・ つへで</li>

• Finite dimensional complex Hilbert spaces.

During almost a century, the so-called "Invariant Subspace Problem" has turned out to be one of the most *intriguing* questions within the field of Operator Theory.

$$T: \mathcal{H} \to \mathcal{H}, \text{linear and bounded} \\ T(M) \subset (M), \text{closed subspace} \end{cases} \Rightarrow M = \{0\} \text{ or } M = \mathcal{H}?$$

・ロト < 団ト < 三ト < 三 ・ つへで</li>

- Finite dimensional complex Hilbert spaces.
- Non-separable Hilbert spaces.

During almost a century, the so-called "Invariant Subspace Problem" has turned out to be one of the most *intriguing* questions within the field of Operator Theory.

$$T: \mathcal{H} \to \mathcal{H}, \text{linear and bounded} \\ T(M) \subset (M), \text{closed subspace} \end{cases} \Rightarrow M = \{0\} \text{ or } M = \mathcal{H}?$$

・ロト < 団ト < 三ト < 三 ・ つへで</li>

- Finite dimensional complex Hilbert spaces.
- Non-separable Hilbert spaces.

#### Question

Given any linear bounded operator T acting on a separable infinite-dimensional Hilbert space, does there exist a non-trivial closed invariant subspace?

《口》 《聞》 《臣》 《臣》 三臣

#### Question

Given any linear bounded operator T acting on a separable infinite-dimensional Hilbert space, does there exist a non-trivial closed invariant subspace?

《口》 《聞》 《臣》 《臣》 三臣

200

• An intrinsic difficulty:

#### Question

Given any linear bounded operator T acting on a separable infinite-dimensional Hilbert space, does there exist a non-trivial closed invariant subspace?

• An intrinsic difficulty: The lack of well-known examples (Halmos)

《口》 《聞》 《臣》 《臣》 三臣

• 
$$\ell^2 = \{\{a_n\}_{n \ge 1} \subset \mathbb{C} : \sum_{n=1}^{\infty} |a_n|^2 < \infty\}$$

•  $\{e_n\}_{n\geq 1}$  canonical bases in  $\ell^2$ 

$$Se_n = e_{n+1}, \qquad n \ge 1$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ のへで

• 
$$\ell^2 = \{\{a_n\}_{n \ge 1} \subset \mathbb{C} : \sum_{n=1}^{\infty} |a_n|^2 < \infty\}$$

•  $\{e_n\}_{n\geq 1}$  canonical bases in  $\ell^2$ 

$$Se_n = e_{n+1}, \qquad n \ge 1$$

Characterization of the invariant subspaces of S in  $\ell^2$ 



• 
$$\ell^2 = \{\{a_n\}_{n \ge 1} \subset \mathbb{C} : \sum_{n=1}^{\infty} |a_n|^2 < \infty\}$$

•  $\{e_n\}_{n\geq 1}$  canonical bases in  $\ell^2$ 

$$Se_n = e_{n+1}, \qquad n \ge 1$$

Characterization of the invariant subspaces of S in  $\ell^2$ 

**Classical Beurling Theory:** 

• 
$$\ell^2 = \{\{a_n\}_{n \ge 1} \subset \mathbb{C} : \sum_{n=1}^{\infty} |a_n|^2 < \infty\}$$

•  $\{e_n\}_{n\geq 1}$  canonical bases in  $\ell^2$ 

$$Se_n = e_{n+1}, \qquad n \ge 1$$

Characterization of the invariant subspaces of S in  $\ell^2$ 

### **Classical Beurling Theory:**

#### Inner-outer factorization of the functions in the Hardy space



Arne Beurling (1905-1986)

《口》 《聞》 《臣》 《臣》 三臣

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ ∽へぐ

• Normal operators (Spectral theorem).

- Normal operators (Spectral theorem).
- Compact operators.

$$\sigma(T) = \{\lambda_j\}_{j \ge 1} \cup \{0\}$$

- Normal operators (Spectral theorem).
- Compact operators.

$$\sigma(T) = \{\lambda_j\}_{j \ge 1} \cup \{0\}$$

\* 1951, J. von Neumann (Hilbert space case).

- Normal operators (Spectral theorem).
- Compact operators.

$$\sigma(T) = \{\lambda_j\}_{j \ge 1} \cup \{0\}$$

・ロト < 団ト < 三ト < 三 ・ つへで</li>

- \* 1951, J. von Neumann (Hilbert space case).
- $\star$  1954, Aronszajn and Smith (general case),

- Normal operators (Spectral theorem).
- Compact operators.

$$\sigma(T) = \{\lambda_j\}_{j \ge 1} \cup \{0\}$$

・ロト < 団ト < 三ト < 三 ・ つへで</li>

- $\star$  1951, J. von Neumann (Hilbert space case).
- $\star\,$  1954, Aronszajn and Smith (general case),
- Polinomially compact operators

- Normal operators (Spectral theorem).
- Compact operators.

$$\sigma(T) = \{\lambda_j\}_{j \ge 1} \cup \{0\}$$

《曰》 《聞》 《臣》 《臣》 三臣

- \* 1951, J. von Neumann (Hilbert space case).
- $\star\,$  1954, Aronszajn and Smith (general case),
- Polinomially compact operators
  - ★ 1966, Bernstein y Robinson (Hilbert spaces).
  - $\star$  1967, Halmos.
  - $\star$  1960's Gillespie, H<br/>su, Kitano, Pearcy,  $\ldots$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ ∽へぐ

• "Lomonosov operators"

Theorem (Lomonosov; 1973)

Let T be a linear bounded operator on  $\mathcal{H}$ ,  $T \neq \mathbb{C}Id$ . If T commutes with a non-zero compact operator, then T has a non-trivial closed invariant subspace.

《口》 《聞》 《臣》 《臣》 三臣

### Theorem (Lomonosov; 1973)

Let T be a linear bounded operator on  $\mathcal{H}$ ,  $T \neq \mathbb{C}Id$ . If T commutes with a non-zero compact operator, then T has a non-trivial closed invariant subspace. Moreover, T has a non-trivial closed hyperinvariant subspace.

#### Theorem (Lomonosov; 1973)

Let T be a linear bounded operator on  $\mathcal{H}$ ,  $T \neq \mathbb{C}Id$ . If T commutes with a non-zero compact operator, then T has a non-trivial closed invariant subspace. Moreover, T has a non-trivial closed hyperinvariant subspace.

《口》 《圖》 《臣》 《臣》

900

• Not every operator satisfy "Lomonosov Hypotheses"

#### Theorem (Lomonosov; 1973)

Let T be a linear bounded operator on  $\mathcal{H}$ ,  $T \neq \mathbb{C}Id$ . If T commutes with a non-zero compact operator, then T has a non-trivial closed invariant subspace. Moreover, T has a non-trivial closed hyperinvariant subspace.

《口》 《圖》 《臣》 《臣》

900

• Not every operator satisfy "Lomonosov Hypotheses"

### Theorem (Lomonosov; 1973)

Let T be a linear bounded operator on  $\mathcal{H}$ ,  $T \neq \mathbb{C}Id$ . If T commutes with a non-zero compact operator, then T has a non-trivial closed invariant subspace. Moreover, T has a non-trivial closed hyperinvariant subspace.

• Not every operator satisfy "Lomonosov Hypotheses"

#### Theorem (Hadwin, Nordgren, Radjavi, Rosenthal; 1980)

There exists a "quasi-analytic" shift S on a weighted  $\ell^2$  space which has the following property: if K is a compact operator which commutes with a nonzero, non scalar operator in the commutant of S, then K = 0.

# In the Banach space setting

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ ∽へぐ

## In the Banach space setting

• 1987, P. Enflo "On the invariant subspace problem for Banach spaces", Acta Math. 158 (1987), no. 3-4, 213-313.

• 1987, P. Enflo "On the invariant subspace problem for Banach spaces", Acta Math. 158 (1987), no. 3-4, 213-313.

• 1985, C. Read, A solution to the invariant subspace problem on the space  $\ell^1$ , Bull. London Math. Soc. 17 (1985) 305–317.

- 1987, P. Enflo "On the invariant subspace problem for Banach spaces", Acta Math. 158 (1987), no. 3-4, 213-313.
- 1985, C. Read, A solution to the invariant subspace problem on the space  $\ell^1$ , Bull. London Math. Soc. 17 (1985) 305–317.
- Remark: Known counterexamples are built up over non-reflexive Banach spaces

・ロト < 団ト < 三ト < 三 ・ つへで</li>

• 1987, P. Enflo "On the invariant subspace problem for Banach spaces", Acta Math. 158 (1987), no. 3-4, 213-313.

• 1985, C. Read, A solution to the invariant subspace problem on the space  $\ell^1$ , Bull. London Math. Soc. 17 (1985) 305–317.

• Remark: Known counterexamples are built up over non-reflexive Banach spaces

### Invariant subspace problem: current status

#### Invariant subspace problem

Given any linear bounded operator T acting on a separable infinite-dimensional **reflexive** complex Banach space, does there exist a non-trivial closed invariant subspace?

## An attempt to find a examples: quasitriangular operators

Based on the work of Aronszajn and Smith (1954), Halmos (1968) introduced the concept of **quasitriangular operators**.

### Definition (Halmos, 1968)

An operator  $Q: H \to H$  acting on a separable infinite-dimensional complex Hilbert space is said to be **quasitriangular** whenever there exists an increasing sequence  $(P_n)_{n \in \mathbb{N}}$  of finite-rank projections converging strongly to the identity I and such that

 $||QP_n - P_n QP_n|| \to 0$ , as  $n \to \infty$ .

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ ─ 臣

## An attempt to find a examples: quasitriangular operators

Based on the work of Aronszajn and Smith (1954), Halmos (1968) introduced the concept of **quasitriangular operators**.

### Definition (Halmos, 1968)

An operator  $Q: H \to H$  acting on a separable infinite-dimensional complex Hilbert space is said to be **quasitriangular** whenever there exists an increasing sequence  $(P_n)_{n \in \mathbb{N}}$  of finite-rank projections converging strongly to the identity I and such that

$$||QP_n - P_n QP_n|| \to 0$$
, as  $n \to \infty$ .

• Quasitriangular operators were conceived as an attempt to transfer some of the most important features of *triangular operators* into a more general context.

《日》 《國》 《注》 《注》 三百

## An attempt to find a examples: quasitriangular operators

Based on the work of Aronszajn and Smith (1954), Halmos (1968) introduced the concept of **quasitriangular operators**.

#### Definition (Halmos, 1968)

An operator  $Q: H \to H$  acting on a separable infinite-dimensional complex Hilbert space is said to be **quasitriangular** whenever there exists an increasing sequence  $(P_n)_{n \in \mathbb{N}}$  of finite-rank projections converging strongly to the identity I and such that

$$||QP_n - P_n QP_n|| \to 0$$
, as  $n \to \infty$ .

- Quasitriangular operators were conceived as an attempt to transfer some of the most important features of *triangular operators* into a more general context.
- Note that, given a triangular operator  $T: H \to H$ , there exists an increasing sequence  $(P_n)_{n \in \mathbb{N}}$  of finite-rank projections converging strongly to the identity I and satisfying

$$TP_n - P_n TP_n = (I - P_n)TP_n = 0$$
, for each  $n = 1, 2, ...$ 

・ロト ・四ト ・モト ・ モト - 王

## An attempt to find a examples: quasitriangular operators

Based on the work of Aronszajn and Smith (1954), Halmos (1968) introduced the concept of **quasitriangular operators**.

## Definition (Halmos, 1968)

An operator  $Q: H \to H$  acting on a separable infinite-dimensional complex Hilbert space is said to be **quasitriangular** whenever there exists an increasing sequence  $(P_n)_{n \in \mathbb{N}}$  of finite-rank projections converging strongly to the identity I and such that

$$||QP_n - P_n QP_n|| \to 0$$
, as  $n \to \infty$ .

- Quasitriangular operators were conceived as an attempt to transfer some of the most important features of *triangular operators* into a more general context.
- Note that, given a triangular operator  $T: H \to H$ , there exists an increasing sequence  $(P_n)_{n \in \mathbb{N}}$  of finite-rank projections converging strongly to the identity I and satisfying

$$TP_n - P_n TP_n = (I - P_n)TP_n = 0$$
, for each  $n = 1, 2, ...$ 

• Roughly speaking, the definition of quasitriangularity means that Q has a sequence of "approximately invariant" finite-dimensional subspaces.

## An attempt to find a examples: quasitriangular operators

Based on the work of Aronszajn and Smith (1954), Halmos (1968) introduced the concept of **quasitriangular operators**.

## Definition (Halmos, 1968)

An operator  $Q: H \to H$  acting on a separable infinite-dimensional complex Hilbert space is said to be **quasitriangular** whenever there exists an increasing sequence  $(P_n)_{n \in \mathbb{N}}$  of finite-rank projections converging strongly to the identity I and such that

$$||QP_n - P_n QP_n|| \to 0$$
, as  $n \to \infty$ .

- Quasitriangular operators were conceived as an attempt to transfer some of the most important features of *triangular operators* into a more general context.
- Note that, given a triangular operator  $T: H \to H$ , there exists an increasing sequence  $(P_n)_{n \in \mathbb{N}}$  of finite-rank projections converging strongly to the identity I and satisfying

$$TP_n - P_n TP_n = (I - P_n)TP_n = 0$$
, for each  $n = 1, 2, ...$ 

- Roughly speaking, the definition of quasitriangularity means that Q has a sequence of "approximately invariant" finite-dimensional subspaces.
- Examples of quasitriangular operators: compact operators, normal operators, compact perturbations of normal operators,...

# An attempt to find a examples: quasitriangular operators

Based on the work of Aronszajn and Smith (1954), Halmos (1968) introduced the concept of **quasitriangular operators**.

## Definition (Halmos, 1968)

An operator  $Q: H \to H$  acting on a separable infinite-dimensional complex Hilbert space is said to be **quasitriangular** whenever there exists an increasing sequence  $(P_n)_{n \in \mathbb{N}}$  of finite-rank projections converging strongly to the identity I and such that

$$||QP_n - P_n QP_n|| \to 0$$
, as  $n \to \infty$ .

- Quasitriangular operators were conceived as an attempt to transfer some of the most important features of *triangular operators* into a more general context.
- Note that, given a triangular operator  $T: H \to H$ , there exists an increasing sequence  $(P_n)_{n \in \mathbb{N}}$  of finite-rank projections converging strongly to the identity I and satisfying

$$TP_n - P_n TP_n = (I - P_n)TP_n = 0$$
, for each  $n = 1, 2, ...$ 

・ロト < 団ト < 三ト < 三 ・ つへで</li>

- Roughly speaking, the definition of quasitriangularity means that Q has a sequence of "approximately invariant" finite-dimensional subspaces.
- Examples of quasitriangular operators: compact operators, normal operators, compact perturbations of normal operators,...
- An example of non-quasitriangular operator: Shift operator acting on  $\ell^2(\mathbb{N})$ .

A remarkable theorem due to Apostol, Foiaş and Voiculescu (1973) reduced the Invariant Subspace Problem in Hilbert spaces to the class of quasitriangular operators.

A remarkable theorem due to Apostol, Foiaş and Voiculescu (1973) reduced the Invariant Subspace Problem in Hilbert spaces to the class of quasitriangular operators.

Theorem (Apostol, Foias and Voiculescu, 1973)

If  $T \in \mathcal{L}(H)$  is **not** a quasitriangular operator, then T has non-trivial closed invariant subspaces.

A remarkable theorem due to Apostol, Foiaş and Voiculescu (1973) reduced the Invariant Subspace Problem in Hilbert spaces to the class of quasitriangular operators.

Theorem (Apostol, Foias and Voiculescu, 1973)

If  $T \in \mathcal{L}(H)$  is **not** a quasitriangular operator, then T has non-trivial closed invariant subspaces.

• Initial goal: Understand quasitriangular operators from the standpoint of view of invariant subspaces.

《口》 《聞》 《臣》 《臣》 三臣

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ ∽へぐ

• A first attempt: Compact perturbations of normal operators.

◆ロト ◆母ト ◆臣ト ◆臣ト 三臣 - のへで

• A first attempt: Compact perturbations of normal operators.

## Question

It is still unknown if every rank-one perturbation of a diagonal operator  $(T = D + u \otimes v)$ , has non-trivial invariant subspaces (problem explicitly posed by Pearcy in 1979).

• The study of the existence of nontrivial closed invariant subspaces for the perturbation of a Hermitian (self-adjoint) operator A by a compact operator of a Schatten class  $C_p$ ,  $1 \le p < \infty$  (1960's)

・ロト < 団ト < 三ト < 三 ・ つへで</li>

• The study of the existence of nontrivial closed invariant subspaces for the perturbation of a Hermitian (self-adjoint) operator A by a compact operator of a Schatten class  $C_p$ ,  $1 \le p < \infty$  (1960's)

• Kitano generalized the previous results to the case where A was a normal operator with spectrum on a  $C^2$  Jordan curve (1968).

# An old problem

- The study of the existence of nontrivial closed invariant subspaces for the perturbation of a Hermitian (self-adjoint) operator A by a compact operator of a Schatten class  $C_p$ ,  $1 \le p < \infty$  (1960's)
- Kitano generalized the previous results to the case where A was a normal operator with spectrum on a  $C^2$  Jordan curve (1968).

### Theorem (Radjabalipour and Radjavi, 1975)

Let T = N + K be a bounded linear operator in a complex Hilbert space, where N is a normal operator with spectrum on a  $C^2$  Jordan curve  $\gamma$  and K a compact operator belonging to a Schatten class  $C_p$  for  $1 \le p < \infty$ . Then T is **decomposable** if and only if  $\sigma(T)$  does not fill the interior of  $\gamma$ .

<□> <@> < E> < E> < E> E

- The study of the existence of nontrivial closed invariant subspaces for the perturbation of a Hermitian (self-adjoint) operator A by a compact operator of a Schatten class  $C_p$ ,  $1 \le p < \infty$  (1960's)
- Kitano generalized the previous results to the case where A was a normal operator with spectrum on a  $C^2$  Jordan curve (1968).

### Theorem (Radjabalipour and Radjavi, 1975)

Let T = N + K be a bounded linear operator in a complex Hilbert space, where N is a normal operator with spectrum on a  $C^2$  Jordan curve  $\gamma$  and K a compact operator belonging to a Schatten class  $C_p$  for  $1 \le p < \infty$ . Then T is **decomposable** if and only if  $\sigma(T)$  does not fill the interior of  $\gamma$ .

• The situation turns out to be drastically different if the assumption on the spectra being contained in a curve is dropped off since, in such a case, it is still an open question if every compact perturbation of a normal operator has non-trivial closed invariant subspaces.

- The study of the existence of nontrivial closed invariant subspaces for the perturbation of a Hermitian (self-adjoint) operator A by a compact operator of a Schatten class  $C_p$ ,  $1 \le p < \infty$  (1960's)
- Kitano generalized the previous results to the case where A was a normal operator with spectrum on a  $C^2$  Jordan curve (1968).

### Theorem (Radjabalipour and Radjavi, 1975)

Let T = N + K be a bounded linear operator in a complex Hilbert space, where N is a normal operator with spectrum on a  $C^2$  Jordan curve  $\gamma$  and K a compact operator belonging to a Schatten class  $C_p$  for  $1 \le p < \infty$ . Then T is **decomposable** if and only if  $\sigma(T)$  does not fill the interior of  $\gamma$ .

• The situation turns out to be drastically different if the assumption on the spectra being contained in a curve is dropped off since, in such a case, it is still an open question if every compact perturbation of a normal operator has non-trivial closed invariant subspaces.

# An old problem

- The study of the existence of nontrivial closed invariant subspaces for the perturbation of a Hermitian (self-adjoint) operator A by a compact operator of a Schatten class  $C_p$ ,  $1 \le p < \infty$  (1960's)
- Kitano generalized the previous results to the case where A was a normal operator with spectrum on a  $C^2$  Jordan curve (1968).

### Theorem (Radjabalipour and Radjavi, 1975)

Let T = N + K be a bounded linear operator in a complex Hilbert space, where N is a normal operator with spectrum on a  $C^2$  Jordan curve  $\gamma$  and K a compact operator belonging to a Schatten class  $C_p$  for  $1 \le p < \infty$ . Then T is **decomposable** if and only if  $\sigma(T)$  does not fill the interior of  $\gamma$ .

• The situation turns out to be drastically different if the assumption on the spectra being contained in a curve is dropped off since, in such a case, it is still an open question if every compact perturbation of a normal operator has non-trivial closed invariant subspaces. Even, in particular, it is still open if every rank-one perturbation of a normal operator whose eigenvectors span the Hilbert space *H* has non-trivial closed invariant subspaces.

### Question

It is still unknown if every rank-one perturbation of a diagonal operator  $(T = D + u \otimes v)$ , has non-trivial invariant subspaces (problem explicitly posed by Pearcy in 1979).

・ロト ・四ト ・モト ・ モト - 王

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで

If  $D_{\Lambda} \in \mathcal{L}(H)$  is a diagonal operator, that is, there exists an orthonormal basis  $(e_n)_{n\geq 1}$  of H and a bounded sequence of complex numbers  $\Lambda = (\lambda_n)_{n\geq 1} \subset \mathbb{C}$  such that

$$D_{\Lambda}e_n = \lambda_n e_n,$$

a rank-one perturbations of  $D_{\Lambda}$  can be written as

$$T = D_{\Lambda} + u \otimes v, \qquad (1)$$

・ロト < 団ト < 三ト < 三 ・ つへで</li>

where u, and v are non-zero vectors in H and  $u \otimes v(x) = \langle x, v \rangle u$  for every  $x \in H$ .

If  $D_{\Lambda} \in \mathcal{L}(H)$  is a diagonal operator, that is, there exists an orthonormal basis  $(e_n)_{n\geq 1}$  of H and a bounded sequence of complex numbers  $\Lambda = (\lambda_n)_{n\geq 1} \subset \mathbb{C}$  such that

$$D_{\Lambda}e_n = \lambda_n e_n,$$

a rank-one perturbations of  $D_{\Lambda}$  can be written as

$$T = D_{\Lambda} + u \otimes v, \tag{1}$$

where u, and v are non-zero vectors in H and  $u \otimes v(x) = \langle x, v \rangle u$  for every  $x \in H$ .

#### Remark

Rank-one perturbations of normal operators whose eigenvectors span H belongs are unitarily equivalent to those expressed by (1).

### Theorem (Foias, Ko, Jung and Pearcy, JFA 2007)

Let  $T = D_{\Lambda} + u \otimes v$  in  $\mathcal{L}(H) \setminus \mathbb{C}I$  where  $u = \sum_{n=1}^{\infty} \alpha_n e_n$ ,  $v = \sum_{n=1}^{\infty} \beta_n e_n$  and

$$\sum_{n=1}^{\infty} |\alpha_n|^{2/3} + |\beta_n|^{2/3} < \infty.$$

《口》 《聞》 《臣》 《臣》 三臣

996

Then, T has non-trivial hyperinvariant subspaces.

Note that if  $\{\alpha_n\} \in \ell^p$  and  $\{\beta_n\} \in \ell^q$ , Foias, Jung, Ko and Pearcy Theorem can be "seen":



 $T = D + u \otimes v$ 

・ロト < 団ト < 三ト < 三 ・ つへで</li>

## • Foias, Ko, Jung and Pearcy's insight:

A Riesz functional calculus **unconventional** because it involves integration over contours that may intersect the spectrum.

## • Foias, Ko, Jung and Pearcy's insight:

A Riesz functional calculus **unconventional** because it involves integration over contours that may intersect the spectrum.



Figure: Spectrum of T.

(日) (四) (三) (三) (三)

### Theorem (Fang and Xia, JFA 2012)

Let  $T = D_{\Lambda} + u \otimes v$  in  $\mathcal{L}(H) \setminus \mathbb{C}I$  where  $u = \sum_{n=1}^{\infty} \alpha_n e_n$ ,  $v = \sum_{n=1}^{\infty} \beta_n e_n$  and

$$\sum_{n=1}^{\infty} |\alpha_n| + |\beta_n| < \infty.$$

《口》 《圖》 《臣》 《臣》

900

Then, T has non-trivial closed hyperinvariant subspaces.

### Theorem (Fang and Xia, JFA 2012)

Let  $T = D_{\Lambda} + u \otimes v$  in  $\mathcal{L}(H) \setminus \mathbb{C}I$  where  $u = \sum_{n=1}^{\infty} \alpha_n e_n$ ,  $v = \sum_{n=1}^{\infty} \beta_n e_n$  and

$$\sum_{n=1}^{\infty} |\alpha_n| + |\beta_n| < \infty.$$

Then, T has non-trivial closed hyperinvariant subspaces.



- The authors show the decomposability for a subclass of the rank-one perturbations that satisfy the summability assumption.
- An operator  $T \in \mathcal{L}(H)$  is **decomposable** if for every open cover  $U_1, U_2 \subset \mathbb{C}$  such that  $\sigma(T) \subset U_1 \cup U_2$  there exists invariant subspaces M, N for T such that H = M + N and  $\sigma(T \mid_M) \subset U_1$  and  $\sigma(T \mid_N) \subset U_2$ .

・ロト < 団ト < 三ト < 三 ・ つへで</li>

• The authors show the decomposability for a subclass of the rank-one perturbations that satisfy the summability assumption.

• An operator  $T \in \mathcal{L}(H)$  is **decomposable** if for every open cover  $U_1, U_2 \subset \mathbb{C}$  such that  $\sigma(T) \subset U_1 \cup U_2$  there exists invariant subspaces M, N for T such that H = M + N and  $\sigma(T \mid_M) \subset U_1$  and  $\sigma(T \mid_N) \subset U_2$ .



《曰》 《國》 《臣》 《臣》

• The authors show the decomposability for a subclass of the rank-one perturbations that satisfy the summability assumption.

• An operator  $T \in \mathcal{L}(H)$  is **decomposable** if for every open cover  $U_1, U_2 \subset \mathbb{C}$  such that  $\sigma(T) \subset U_1 \cup U_2$  there exists invariant subspaces M, N for T such that H = M + N and  $\sigma(T \mid_M) \subset U_1$  and  $\sigma(T \mid_N) \subset U_2$ .



Figure: A decomposable operator.

《日》 《圖》 《臣》 《臣》

• The authors show the decomposability for a subclass of the rank-one perturbations that satisfy the summability assumption.

• An operator  $T \in \mathcal{L}(H)$  is **decomposable** if for every open cover  $U_1, U_2 \subset \mathbb{C}$  such that  $\sigma(T) \subset U_1 \cup U_2$  there exists invariant subspaces M, N for T such that H = M + N and  $\sigma(T \mid_M) \subset U_1$  and  $\sigma(T \mid_N) \subset U_2$ .



Figure: A decomposable operator.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ のへで

#### Theorem (GG,González-Doña, 2021)

Let  $T = D_{\Lambda} + u \otimes v \in \mathcal{L}(H) \setminus \mathbb{C} Id_{H}$  be any rank-one perturbation of a diagonal normal operator respect to an orthonormal basis  $(e_{n})_{n\geq 1}$  where  $u = \sum_{n=1}^{\infty} \alpha_{n} e_{n}$  and  $v = \sum_{n=1}^{\infty} \beta_{n} e_{n}$ . If either

$$\sum_{n=1}^{\infty} |\alpha_n| < \infty \quad or \quad \sum_{n=1}^{\infty} |\beta_n| < \infty,$$

《口》 《圖》 《臣》 《臣》

900

then T has non-trivial closed hyperinvariant subspaces.

#### Theorem (GG,González-Doña, 2021)

Let  $T = D_{\Lambda} + u \otimes v \in \mathcal{L}(H) \setminus \mathbb{C} Id_{H}$  be any rank-one perturbation of a diagonal normal operator respect to an orthonormal basis  $(e_{n})_{n\geq 1}$  where  $u = \sum_{n=1}^{\infty} \alpha_{n} e_{n}$  and  $v = \sum_{n=1}^{\infty} \beta_{n} e_{n}$ . If either

$$\sum_{n=1}^{\infty} |\alpha_n| < \infty \quad or \quad \sum_{n=1}^{\infty} |\beta_n| < \infty,$$

then T has non-trivial closed hyperinvariant subspaces.



◆□ > ◆□ > ◆三 > ◆三 > 三 のへで

## Theorem (Ionascu, 2001)

Suppose  $T = D_{\Lambda} + u \otimes v \in \mathcal{L}(H)$  where  $\Lambda = (\lambda_n)_{n \geq 1} \subset \mathbb{C}$ ,  $u = \sum_{n=1}^{\infty} \alpha_n e_n$  and  $v = \sum_{n=1}^{\infty} \beta_n e_n$  are nonzero vectors in H.

《曰》 《圖》 《臣》 《臣》

### Theorem (Ionascu, 2001)

Suppose  $T = D_{\Lambda} + u \otimes v \in \mathcal{L}(H)$  where  $\Lambda = (\lambda_n)_{n \ge 1} \subset \mathbb{C}$ ,  $u = \sum_{n=1}^{\infty} \alpha_n e_n$  and  $v = \sum_{n=1}^{\infty} \beta_n e_n$  are nonzero vectors in H.

• If there exists  $n \in \mathbb{N}$  such that  $\alpha_n \beta_n = 0$ , then either  $\lambda_n$  is an eigenvalue of T or  $\overline{\lambda_n}$  is an eigenvalue of the adjoint  $T^*$ .

《曰》 《圖》 《臣》 《臣》

### Theorem (Ionascu, 2001)

Suppose  $T = D_{\Lambda} + u \otimes v \in \mathcal{L}(H)$  where  $\Lambda = (\lambda_n)_{n \ge 1} \subset \mathbb{C}$ ,  $u = \sum_{n=1}^{\infty} \alpha_n e_n$  and  $v = \sum_{n=1}^{\infty} \beta_n e_n$  are nonzero vectors in H.

• If there exists  $n \in \mathbb{N}$  such that  $\alpha_n \beta_n = 0$ , then either  $\lambda_n$  is an eigenvalue of T or  $\overline{\lambda_n}$  is an eigenvalue of the adjoint  $T^*$ .

《口》 《圖》 《臣》 《臣》

900

**9** If there exists  $m \neq n \in \mathbb{N}$  such that  $\lambda_m = \lambda_n$ , then  $\lambda_n$  is an eigenvalue of T.

### Theorem (Ionascu, 2001)

Suppose  $T = D_{\Lambda} + u \otimes v \in \mathcal{L}(H)$  where  $\Lambda = (\lambda_n)_{n \ge 1} \subset \mathbb{C}$ ,  $u = \sum_{n=1}^{\infty} \alpha_n e_n$  and  $v = \sum_{n=1}^{\infty} \beta_n e_n$  are nonzero vectors in H.

- If there exists  $n \in \mathbb{N}$  such that  $\alpha_n \beta_n = 0$ , then either  $\lambda_n$  is an eigenvalue of T or  $\overline{\lambda_n}$  is an eigenvalue of the adjoint  $T^*$ .
- **9** If there exists  $m \neq n \in \mathbb{N}$  such that  $\lambda_m = \lambda_n$ , then  $\lambda_n$  is an eigenvalue of T.
- If the derived set of (λ<sub>n</sub>)<sub>n≥1</sub> reduces to a single point, then the commutant of T contains a non-zero compact operator.

《口》 《圖》 《臣》 《臣》

DQC

## Theorem (Ionascu, 2001)

Suppose  $T = D_{\Lambda} + u \otimes v \in \mathcal{L}(H)$  where  $\Lambda = (\lambda_n)_{n \ge 1} \subset \mathbb{C}$ ,  $u = \sum_{n=1}^{\infty} \alpha_n e_n$  and  $v = \sum_{n=1}^{\infty} \beta_n e_n$  are nonzero vectors in H.

- If there exists  $n \in \mathbb{N}$  such that  $\alpha_n \beta_n = 0$ , then either  $\lambda_n$  is an eigenvalue of T or  $\overline{\lambda_n}$  is an eigenvalue of the adjoint  $T^*$ .
- **9** If there exists  $m \neq n \in \mathbb{N}$  such that  $\lambda_m = \lambda_n$ , then  $\lambda_n$  is an eigenvalue of T.
- If the derived set of (λ<sub>n</sub>)<sub>n≥1</sub> reduces to a single point, then the commutant of T contains a non-zero compact operator.

If T satisfies any of the previous conditions, T has a non-trivial closed hyperinvariant subspace.

◆□▶ ◆舂▶ ◆逹▶ ◆逹▶ 三喜.

~ ~ ~ ~

## Definition (Class $(\mathcal{RO})$ )

Fixed an orthonormal basis  $\mathcal{E} = (e_n)_{n\geq 1}$  of H and consider a bounded sequence of complex numbers  $\Lambda = (\lambda_n)_{n\geq 1} \subset \mathbb{C}$ . If  $D_{\Lambda}$  denotes the diagonal operator associated to  $\Lambda$  respect to  $\mathcal{E}$ , the rank-one perturbation of  $D_{\Lambda}$ 

 $T = D_{\Lambda} + u \otimes v$ 

《口》 《聞》 《臣》 《臣》 三臣

900

with  $u = \sum_{n=1}^{\infty} \alpha_n e_n$ ,  $v = \sum_{n=1}^{\infty} \beta_n e_n$  nonzero vectors in *H*, belongs to the class (*RO*) if:

- (i)  $\alpha_n \beta_n \neq 0$  for every  $n \in \mathbb{N}$ ;
- (ii) the map  $n \in \mathbb{N} \mapsto \lambda_n \in \Lambda$  is injective;
- (iii) the derived set  $\Lambda'$  is not a singleton.

# Spectrum $\sigma(T)$ and point spectrum $\sigma_p(T)$ of operators $T \in (\mathcal{RO})$

# Spectrum $\sigma(T)$ and point spectrum $\sigma_p(T)$ of operators $T \in (\mathcal{RO})$

Let  $T \in (\mathcal{RO})$  and denote by  $f_T$  the **Borel series (or Denjoy series)** associated to T:

$$f_T(z) = \sum_{n=1}^{\infty} \frac{\alpha_n \overline{\beta_n}}{\lambda_n - z},$$

for those  $z \in \mathbb{C}$  such that the series converges.

Let  $\{z_n\}_{n\geq 1}$  be a **bounded sequence** of distinct points in  $\mathbb{C}$  and  $A = \overline{\{z_n\}_{n\geq 1}}$ . If  $\{c_n\}_{n\geq 1} \in \ell^1$  the Borel series is the function defined by

$$\sum_{n=1}^{\infty} \frac{c_n}{z_n - z}$$

《口》 《聞》 《臣》 《臣》 三臣

Let  $\{z_n\}_{n\geq 1}$  be a **bounded sequence** of distinct points in  $\mathbb{C}$  and  $A = \overline{\{z_n\}_{n\geq 1}}$ . If  $\{c_n\}_{n\geq 1} \in \ell^1$  the Borel series is the function defined by

$$\sum_{n=1}^{\infty} \frac{c_n}{z_n - z}$$

Note that the above series converges uniformly on compact subsets of  $A^c$  to an analytic function which extends meromorphically to a neighborhood of each isolated point of  $\{z_n\}$ .

Let  $\{z_n\}_{n\geq 1}$  be a **bounded sequence** of distinct points in  $\mathbb{C}$  and  $A = \overline{\{z_n\}_{n\geq 1}}$ . If  $\{c_n\}_{n\geq 1} \in \ell^1$  the Borel series is the function defined by

$$\sum_{n=1}^{\infty} \frac{c_n}{z_n - z}$$

Note that the above series converges uniformly on compact subsets of  $A^c$  to an analytic function which extends meromorphically to a neighborhood of each isolated point of  $\{z_n\}$ .

The study of Borel series has a rich history. Of particular interest has been conditions for a function analytic on a region to be representable as a Borel series, and conditions for such a representation, if one exists, to be unique.

《口》 《聞》 《臣》 《臣》 三臣

Let  $\{z_n\}_{n\geq 1}$  be a **bounded sequence** of distinct points in  $\mathbb{C}$  and  $A = \overline{\{z_n\}_{n\geq 1}}$ . If  $\{c_n\}_{n\geq 1} \in \ell^1$  the Borel series is the function defined by

$$\sum_{n=1}^{\infty} \frac{c_n}{z_n - z}$$

Note that the above series converges uniformly on compact subsets of  $A^c$  to an analytic function which extends meromorphically to a neighborhood of each isolated point of  $\{z_n\}$ .

The study of Borel series has a rich history. Of particular interest has been conditions for a function analytic on a region to be representable as a Borel series, and conditions for such a representation, if one exists, to be unique.

In the interesting case where A disconnects the plane, it is not clear what, if any, relations will exist between the restrictions of  $\sum_{n=1}^{\infty} \frac{c_n}{z_n-z}$  to the various components of  $A^c$ .

Let  $\{z_n\}_{n\geq 1}$  be a **bounded sequence** of distinct points in  $\mathbb{C}$  and  $A = \overline{\{z_n\}_{n\geq 1}}$ . If  $\{c_n\}_{n\geq 1} \in \ell^1$  the Borel series is the function defined by

$$\sum_{n=1}^{\infty} \frac{c_n}{z_n - z}$$

Note that the above series converges uniformly on compact subsets of  $A^c$  to an analytic function which extends meromorphically to a neighborhood of each isolated point of  $\{z_n\}$ .

The study of Borel series has a rich history. Of particular interest has been conditions for a function analytic on a region to be representable as a Borel series, and conditions for such a representation, if one exists, to be unique.

In the interesting case where A disconnects the plane, it is not clear what, if any, relations will exist between the restrictions of  $\sum_{n=1}^{\infty} \frac{c_n}{z_n-z}$  to the various components of  $A^c$ .

Indeed, it was long an open question, raised by Borel, whether one of these restrictions could be zero without all the remaining ones vanishing.

Let  $\{z_n\}_{n\geq 1}$  be a **bounded sequence** of distinct points in  $\mathbb{C}$  and  $A = \overline{\{z_n\}_{n\geq 1}}$ . If  $\{c_n\}_{n\geq 1} \in \ell^1$  the Borel series is the function defined by

$$\sum_{n=1}^{\infty} \frac{c_n}{z_n - z}$$

Note that the above series converges uniformly on compact subsets of  $A^c$  to an analytic function which extends meromorphically to a neighborhood of each isolated point of  $\{z_n\}$ .

The study of Borel series has a rich history. Of particular interest has been conditions for a function analytic on a region to be representable as a Borel series, and conditions for such a representation, if one exists, to be unique.

In the interesting case where A disconnects the plane, it is not clear what, if any, relations will exist between the restrictions of  $\sum_{n=1}^{\infty} \frac{c_n}{z_n-z}$  to the various components of  $A^c$ .

Indeed, it was long an open question, raised by Borel, whether one of these restrictions could be zero without all the remaining ones vanishing. If  $\lim |c_n|^{1/n} = 0$ , a theorem of Walsh implies this is impossible.

Let  $\{z_n\}_{n\geq 1}$  be a **bounded sequence** of distinct points in  $\mathbb{C}$  and  $A = \overline{\{z_n\}_{n\geq 1}}$ . If  $\{c_n\}_{n\geq 1} \in \ell^1$  the Borel series is the function defined by

$$\sum_{n=1}^{\infty} \frac{c_n}{z_n - z}$$

《口》 《聞》 《臣》 《臣》 三臣

Let  $\{z_n\}_{n\geq 1}$  be a **bounded sequence** of distinct points in  $\mathbb{C}$  and  $A = \overline{\{z_n\}_{n\geq 1}}$ . If  $\{c_n\}_{n\geq 1} \in \ell^1$  the Borel series is the function defined by

$$\sum_{n=1}^{\infty} \frac{c_n}{z_n - z}$$

《口》 《聞》 《臣》 《臣》 三臣

996

• J. Wolff, 1921 Construction of an example of a (not identically zero) Borel series vanishing in the unit disc.

Let  $\{z_n\}_{n\geq 1}$  be a **bounded sequence** of distinct points in  $\mathbb{C}$  and  $A = \overline{\{z_n\}_{n\geq 1}}$ . If  $\{c_n\}_{n\geq 1} \in \ell^1$  the Borel series is the function defined by

$$\sum_{n=1}^{\infty} \frac{c_n}{z_n - z}$$

• J. Wolff, 1921 Construction of an example of a (not identically zero) Borel series vanishing in the unit disc.

• Further constructions: Denjoy, Beurling, Leontéva constructed (non-trivial) Borel series which sum to zero on a disk for which the coefficients  $\{c_n\}$  are of certain exponential decay.

《口》 《聞》 《臣》 《臣》 三臣

Let  $\{z_n\}_{n\geq 1}$  be a **bounded sequence** of distinct points in  $\mathbb{C}$  and  $A = \overline{\{z_n\}_{n\geq 1}}$ . If  $\{c_n\}_{n\geq 1} \in \ell^1$  the Borel series is the function defined by

$$\sum_{n=1}^{\infty} \frac{c_n}{z_n - z}$$

• J. Wolff, 1921 Construction of an example of a (not identically zero) Borel series vanishing in the unit disc.

• Further constructions: Denjoy, Beurling, Leontéva constructed (non-trivial) Borel series which sum to zero on a disk for which the coefficients  $\{c_n\}$  are of certain exponential decay.

• Uniqueness results: Borel, Carleman, Gonchar and Poincaré all determined decay rates in the unicity problem. Results by Makarov, Nikolskii and definitive ones by Sibilev (1995).

《口》 《聞》 《臣》 《臣》 三臣

Let  $\{z_n\}_{n\geq 1}$  be a **bounded sequence** of distinct points in  $\mathbb{C}$  and  $A = \overline{\{z_n\}_{n\geq 1}}$ . If  $\{c_n\}_{n\geq 1} \in \ell^1$  the Borel series is the function defined by

$$\sum_{n=1}^{\infty} \frac{c_n}{z_n - z}$$

• J. Wolff, 1921 Construction of an example of a (not identically zero) Borel series vanishing in the unit disc.

• Further constructions: Denjoy, Beurling, Leontéva constructed (non-trivial) Borel series which sum to zero on a disk for which the coefficients  $\{c_n\}$  are of certain exponential decay.

• Uniqueness results: Borel, Carleman, Gonchar and Poincaré all determined decay rates in the unicity problem. Results by Makarov, Nikolskii and definitive ones by Sibilev (1995).

<□> <@> < E> < E> < E> E

900

• Connections to operator theory: Sarason.

Let  $\{z_n\}_{n\geq 1}$  be a **bounded sequence** of distinct points in  $\mathbb{C}$  and  $A = \overline{\{z_n\}_{n\geq 1}}$ . If  $\{c_n\}_{n\geq 1} \in \ell^1$  the Borel series is the function defined by

$$\sum_{n=1}^{\infty} \frac{c_n}{z_n - z}$$

• J. Wolff, 1921 Construction of an example of a (not identically zero) Borel series vanishing in the unit disc.

• Further constructions: Denjoy, Beurling, Leontéva constructed (non-trivial) Borel series which sum to zero on a disk for which the coefficients  $\{c_n\}$  are of certain exponential decay.

• Uniqueness results: Borel, Carleman, Gonchar and Poincaré all determined decay rates in the unicity problem. Results by Makarov, Nikolskii and definitive ones by Sibilev (1995).

• Connections to operator theory: Sarason. The Borel series

$$\sum_{n=1}^{\infty} \frac{c_n}{z_n - z} \equiv 0$$

whenever  $|z| > \sup |z_n|$  for some non-trivial  $\{c_n\} \in \ell^1$  if and only if there exists a closed invariant subspace for the diagonal operator D having eigenvalues  $\{z_n\}$  which is not invariant for the adjoint  $D^*$ .

# Spectrum $\sigma(T)$ and point spectrum $\sigma_p(T)$ of operators $T \in (\mathcal{RO})$

Let  $T \in (\mathcal{RO})$  and denote by  $f_T$  the **Borel series (or Denjoy series)** associated to T:

$$f_T(z) = \sum_{n=1}^{\infty} \frac{\alpha_n \overline{\beta_n}}{\lambda_n - z},$$

◆ロト ◆母ト ◆臣ト ◆臣ト 三臣 - のへで

for those  $z \in \mathbb{C}$  such that the series converges.

# Spectrum $\sigma(T)$ and point spectrum $\sigma_p(T)$ of operators $T \in (\mathcal{RO})$

Let  $T \in (\mathcal{RO})$  and denote by  $f_T$  the **Borel series (or Denjoy series)** associated to T:

$$f_T(z) = \sum_{n=1}^{\infty} \frac{\alpha_n \overline{\beta_n}}{\lambda_n - z},$$

for those  $z \in \mathbb{C}$  such that the series converges.

## Theorem (Ionascu, 2001)

Let  $T = D_{\Lambda} + u \otimes v \in (\mathcal{RO})$ . Then  $z \in \mathbb{C}$  belongs to  $\sigma_p(T)$  if and only if (i)  $z \notin \Lambda$ , (ii)  $\sum_{n=1}^{\infty} \frac{|\alpha_n|^2}{|z - \lambda_n|^2} < \infty$ , (iii)  $f_T(z) + 1 = 0$ . Moreover,  $\sigma(T) = \Lambda' \cup \{z \in \mathbb{C} \setminus \overline{\Lambda} : f_T(z) + 1 = 0\}$ ,

and the essential spectrum  $% \left( f_{i} \right) = \int f_{i} \left( f_{i} \right) \left$ 

$$\sigma_{ess}(T) = \Lambda'.$$

### Theorem (GG,González-Doña, 2021)

Let  $T = D_{\Lambda} + u \otimes v \in \mathcal{L}(H) \setminus \mathbb{C} Id_{H}$  be any rank-one perturbation of a diagonal normal operator respect to an orthonormal basis  $(e_{n})_{n\geq 1}$  where  $u = \sum_{n=1}^{\infty} \alpha_{n} e_{n}$  and  $v = \sum_{n=1}^{\infty} \beta_{n} e_{n}$ . If either

$$\sum_{n=1}^{\infty} |\alpha_n| < \infty \quad or \quad \sum_{n=1}^{\infty} |\beta_n| < \infty,$$

・ロト ・合ト ・主ト ・ 主

900

then T has non-trivial closed hyperinvariant subspaces.

## Theorem (GG,González-Doña, 2021)

Let  $T = D_{\Lambda} + u \otimes v \in \mathcal{L}(H) \setminus \mathbb{C} Id_{H}$  be any rank-one perturbation of a diagonal normal operator respect to an orthonormal basis  $(e_{n})_{n\geq 1}$  where  $u = \sum_{n=1}^{\infty} \alpha_{n} e_{n}$  and  $v = \sum_{n=1}^{\infty} \beta_{n} e_{n}$ . If either

$$\sum_{n=1}^{\infty} |\alpha_n| < \infty \quad or \quad \sum_{n=1}^{\infty} |\beta_n| < \infty,$$

then T has non-trivial closed hyperinvariant subspaces. Moreover, for those  $T \in (\mathcal{RO})$  with  $\sigma(T)$  connected and  $\sigma_p(T) \cup \sigma_p(T^*) = \emptyset$ , it follows that they do have non-zero spectral subspaces which are no longer dense.

《曰》 《圖》 《臣》 《臣》 三臣

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで



Recall that a linear bounded operator T on a Banach space X has the **single-valued** extension property (SVEP) if for every connected open set  $G \subset \mathbb{C}$  and every analytic function  $f: G \to X$  such that

$$(T - \lambda I)f(\lambda) \equiv 0$$

・ロト < 団ト < 三ト < 三 ・ つへで</li>

on G, one has  $f \equiv 0$  on G.

Recall that a linear bounded operator T on a Banach space X has the **single-valued** extension property (SVEP) if for every connected open set  $G \subset \mathbb{C}$  and every analytic function  $f: G \to X$  such that

$$(T - \lambda I)f(\lambda) \equiv 0$$

on G, one has  $f \equiv 0$  on G.

The **local spectrum** of T at the vector  $x \in X$ , denoted by  $\sigma_T(x)$ , is the complement of the set of all  $\lambda \in \mathbb{C}$  for which there exists an open neighbourhood  $U_{\lambda} \ni \lambda$  and an analytic function  $f: U_{\lambda} \to X$  such that

$$(T-zI)f(z) = x$$
 for every  $z \in U_{\lambda}$ .

・ロト < 団ト < 三ト < 三 ・ つへで</li>

Recall that a linear bounded operator T on a Banach space X has the **single-valued** extension property (SVEP) if for every connected open set  $G \subset \mathbb{C}$  and every analytic function  $f: G \to X$  such that

$$(T - \lambda I)f(\lambda) \equiv 0$$

on G, one has  $f \equiv 0$  on G.

The **local spectrum** of T at the vector  $x \in X$ , denoted by  $\sigma_T(x)$ , is the complement of the set of all  $\lambda \in \mathbb{C}$  for which there exists an open neighbourhood  $U_{\lambda} \ni \lambda$  and an analytic function  $f: U_{\lambda} \to X$  such that

$$(T-zI)f(z) = x$$
 for every  $z \in U_{\lambda}$ .

• For every operator  $T \in \mathcal{L}(X)$  and  $x \in X$ , the local spectrum  $\sigma_T(x)$  is a compact subset of  $\sigma(T)$ .

## Definition (Local spectral manifold)

Given an operator  $T \in \mathcal{L}(X)$  and any subset  $\Omega \subseteq \mathbb{C}$ , the **local spectral manifold** is defined by

 $X_T(\Omega) := \{ x \in X : \sigma_T(x) \subseteq \Omega \}.$ 

《口》 《聞》 《臣》 《臣》 三臣

## Definition (Local spectral manifold)

Given an operator  $T \in \mathcal{L}(X)$  and any subset  $\Omega \subseteq \mathbb{C}$ , the **local spectral manifold** is defined by

$$X_T(\Omega) := \{ x \in X : \sigma_T(x) \subseteq \Omega \}.$$

•  $X_T(\Omega)$  is always a (non-necessarily closed...) *T*-hyperinvariant linear manifold!!

## Definition (Local spectral manifold)

Given an operator  $T \in \mathcal{L}(X)$  and any subset  $\Omega \subseteq \mathbb{C}$ , the **local spectral manifold** is defined by

$$X_T(\Omega) := \{ x \in X : \sigma_T(x) \subseteq \Omega \}.$$

•  $X_T(\Omega)$  is always a (non-necessarily closed...) *T*-hyperinvariant linear manifold!!

《口》 《聞》 《臣》 《臣》 三臣

200

• Those operators  $T \in \mathcal{B}(X)$  such that  $X_T(\Omega)$  is norm-closed for every closed subset  $\Omega \subseteq \mathbb{C}$  are said to satisfy **Dunford property** (**C**).

### Proposition (GG, González-Doña, 2021)

Let  $T = D_{\Lambda} + u \otimes v \in (\mathcal{RO})$ , where  $u = \sum_{n=1}^{\infty} \alpha_n e_n$ ,  $v = \sum_{n=1}^{\infty} \beta_n e_n \in H$ . The following conditions are equivalent:

《口》 《聞》 《臣》 《臣》 三臣

- (i) T has the SVEP.
- (ii)  $\sigma_p(T)$  does not fill any hole of  $\overline{\Lambda}$ .
- (iii)  $f_T + 1$  is not constantly 0 on any hole of  $\Lambda$ .

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ のへで

Given  $T = D_{\Lambda} + u \otimes v \in (\mathcal{RO})$  where  $\Lambda = (\lambda_n) \subset \mathbb{C}$  and provided any set  $A \subset \mathbb{C}$ , we will denote by  $N_A$  the set of positive integers:

 $N_A = \{ n \in \mathbb{N} : \lambda_n \in \Lambda \cap A \}.$ 

Given  $T = D_{\Lambda} + u \otimes v \in (\mathcal{RO})$  where  $\Lambda = (\lambda_n) \subset \mathbb{C}$  and provided any set  $A \subset \mathbb{C}$ , we will denote by  $N_A$  the set of positive integers:

$$N_A = \{ n \in \mathbb{N} : \lambda_n \in \Lambda \cap A \}.$$

Given an open set U, a holomorphic map g on U and  $w \in U$ , we define

$$\Gamma(g)(z,w) = \begin{cases} \frac{g(z)-g(w)}{z-w} & z \neq w\\ g'(w) & z = w \end{cases}$$

・ロト < 団ト < 三ト < 三 ・ つへで</li>

Given  $T = D_{\Lambda} + u \otimes v \in (\mathcal{RO})$  where  $\Lambda = (\lambda_n) \subset \mathbb{C}$  and provided any set  $A \subset \mathbb{C}$ , we will denote by  $N_A$  the set of positive integers:

$$N_A = \{ n \in \mathbb{N} : \lambda_n \in \Lambda \cap A \}.$$

Given an open set U, a holomorphic map g on U and  $w \in U$ , we define

$$\Gamma(g)(z,w) = \begin{cases} \frac{g(z)-g(w)}{z-w} & z \neq w\\ g'(w) & z = w \end{cases}$$

 $\Gamma(g)(z,w)$  is continuous in  $U \times U$  and for every  $w \in U$ , the map  $z \mapsto \Gamma(g)(z,w)$  is, indeed, holomorphic in U.

・ロト < 団ト < 三ト < 三 ・ つへで</li>

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ ∽へぐ

# Strategy: characterizing *particular* spectral subspaces

#### Theorem (GG, González-Doña, 2021)

Let  $T = D_{\Lambda} + u \otimes v \in (\mathcal{RO})$  with  $u = \sum_{n=1}^{\infty} \alpha_n e_n$  and  $v = \sum_{n=1}^{\infty} \beta_n e_n$  nonzero vectors in H. Assume T has the SVEP and the spectrum  $\sigma(T)$  is connected. Let F be a non-empty closed set such that  $F \cap \sigma(T) \neq \emptyset$ . A vector  $x \in H$  belongs to the spectral subspace  $H_T(F)$  if and only if there exists a holomorphic map  $g_x$  in  $F^c$  such that:

(i) If 
$$x = \sum_n x_n e_n$$
, then

$$x_n = g_x(\lambda_n)\alpha_n$$

for every  $n \in N_{F^c}$ .

(ii) The function

$$z \in F^c \mapsto \sum_{n \in N_{F^c}} \Gamma(g_x)(z, \lambda_n) \alpha_n e_n$$

is a vector-valued holomorphic function on  $F^c$ . (iii) The identity

$$\sum_{n \in N_F} \frac{x_n \overline{\beta_n}}{\lambda_n - z} = g_x(z) \left( \sum_{n \in N_F} \frac{\alpha_n \overline{\beta_n}}{\lambda_n - z} + 1 \right) - \sum_{n \in N_F^c} \Gamma(g_x)(z, \lambda_n) \alpha_n \overline{\beta_n},$$

3

holds for every  $z \in F^c$ .

# A few remarks

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで

### Example

Observe that for  $u = \sum_{n=1}^{\infty} \alpha_n e_n$  and  $v = \sum_{n=1}^{\infty} \beta_n e_n$ ,

$$g_u(z) = \frac{f_T(z)}{f_T(z) + 1}$$
 and  $g_v(z) = \frac{1}{f_T(z) + 1} \sum_{n=1}^{\infty} \frac{|\beta_n|^2}{\lambda_n - z}$ 

for every  $z \in \rho(T)$ .

◆ロト ◆母ト ◆臣ト ◆臣ト 三臣 - のへで

### Example

Observe that for  $u = \sum_{n=1}^{\infty} \alpha_n e_n$  and  $v = \sum_{n=1}^{\infty} \beta_n e_n$ ,

$$g_u(z) = \frac{f_T(z)}{f_T(z) + 1}$$
 and  $g_v(z) = \frac{1}{f_T(z) + 1} \sum_{n=1}^{\infty} \frac{|\beta_n|^2}{\lambda_n - z}$ 

for every  $z \in \rho(T)$ .

### Theorem

Let  $T = D_{\Lambda} + u \otimes v \in (\mathcal{RO})$  with  $u = \sum_{n=1}^{\infty} \alpha_n e_n$  and  $v = \sum_{n=1}^{\infty} \beta_n e_n$  nonzero vectors in H. Assume  $\sigma(T)$  is connected and both  $\sigma_p(T)$  and  $\sigma_p(T^*)$  are empty. Let F be a non-empty closed set contained in  $\sigma(T)$ . Then the vector  $u \in H_T(F)$  if and only if  $F = \sigma(T)$ .

### Corollary

Let  $T = D_{\Lambda} + u \otimes v \in (\mathcal{RO})$  with  $u = \sum_{n=1}^{\infty} \alpha_n e_n$  and  $v = \sum_{n=1}^{\infty} \beta_n e_n$  nonzero vectors in H. Assume  $\sigma(T)$  is connected and both  $\sigma_p(T)$  and  $\sigma_p(T^*)$  are empty. Then

$$\limsup_{n \to \infty} ||(D_{\Lambda} + u \otimes v)^n u||^{1/n} = \max\{|z| : z \in \Lambda'\} = r(T),$$
(2)

and, analogously,

$$\limsup_{n \to \infty} ||(D_{\Lambda^*} + v \otimes u)^n v||^{1/n} = \max\{|z| : z \in \Lambda'\} = r(T^*).$$
(3)

《口》 《聞》 《臣》 《臣》 三臣

900

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ ∽へぐ

### Theorem (GG, González-Doña, 2021)

Let  $T = D_{\Lambda} + u \otimes v \in (\mathcal{RO})$  with  $u = \sum_{n=1}^{\infty} \alpha_n e_n$  and  $v = \sum_{n=1}^{\infty} \beta_n e_n$  nonzero vectors in H. Assume  $\sigma(T)$  is connected and both  $\sigma_p(T)$  and  $\sigma_p(T^*)$  are empty. Assume that there exists a closed, simple, piecewise differentiable curve  $\gamma$  in  $\mathbb{C}$  not intersecting  $\Lambda$  such that

- (i)  $\sigma(T) \cap \operatorname{int}(\gamma) \neq \emptyset$ .
- (ii) The map

$$\xi \in \gamma \to \frac{1}{1 + f_T(\xi)}$$

is well defined and continuous on  $\gamma$ .

(iii)

$$\sum_{n=1}^{\infty} \left( \int_{\gamma} \frac{d|\xi|}{|\lambda_n - \xi|} \right)^2 |\alpha_n|^2 < \infty.$$

《口》 《聞》 《臣》 《臣》 三臣

200

Then,  $H_T(\overline{\operatorname{int}(\gamma)})$  is a non-zero spectral subspace.

# Strategy: constructing spectral subspaces



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ のへで

## Strategy: constructing spectral subspaces



**Final step:** If both T and  $T^*$  enjoy the SVEP, and  $F_1, F_2 \subset \mathbb{C}$  are disjoint closed sets, then

$$H_T(F_1) \subseteq H_{T^*}(F_2^*)^{\perp},$$

# Question



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ のへで

### Theorem (GG,González-Doña, 2022)

With the notation as introduced above, the linear bounded operator  $T = D_{\Lambda} + u \otimes v$ has non trivial closed invariant subspaces provided that either u or v have a Fourier coefficient which is zero or u and v have non zero Fourier coefficients and

$$\sum_{n=1}^{\infty} |\alpha_n|^2 \log \frac{1}{|\alpha_n|} + |\beta_n|^2 \log \frac{1}{|\beta_n|} < \infty.$$

$$\tag{4}$$

《曰》 《圖》 《臣》 《臣》

900

Moreover, if T is not a scalar multiple of the identity, it has non trivial closed hyperinvariant subspaces.

# Rank-One Perturbations Of Diagonal Operators: a step further



 Let  $(e_n)_{n\geq 1}$  be an orthonormal basis in H and  $u_1, \dots, u_N, v_1, \dots, v_N$  non-zero vectors in H. Let us we denote their Fourier coefficients by

$$u_k = \sum_{n=1}^{\infty} \alpha_n^{(k)} e_n, \qquad v_k = \sum_{n=1}^{\infty} \beta_n^{(k)} e_n$$

for each  $1 \leq k \leq N$ .

Let  $(e_n)_{n\geq 1}$  be an orthonormal basis in H and  $u_1, \dots, u_N, v_1, \dots, v_N$  non-zero vectors in H. Let us we denote their Fourier coefficients by

$$u_k = \sum_{n=1}^{\infty} \alpha_n^{(k)} e_n, \qquad v_k = \sum_{n=1}^{\infty} \beta_n^{(k)} e_n$$

for each  $1 \leq k \leq N$ .

We consider operators that can be expressed by

$$T = D_{\Lambda} + \sum_{k=1}^{N} u_k \otimes v_k \in \mathcal{L}(H),$$

where  $D_{\Lambda}$  is a diagonal operator with respect to  $(e_n)_{n\geq 1}$  with eigenvalues  $\Lambda = (\lambda_n)_n$ and  $N \in \mathbb{N}$  fixed.

・ロト < 団ト < 三ト < 三 ・ つへで</li>

### Theorem (GG, González-Doña, 2022)

Let  $T = D_{\Lambda} + \sum_{k=1}^{\infty} u_k \otimes v_k \in \mathcal{L}(H) \setminus \mathbb{C} Id_H$  be any finite rank perturbation of a diagonal normal operator  $D_{\Lambda}$  with respect to an orthonormal basis  $\mathcal{E} = \{e_n\}_{n \geq 1}$  where  $u_k = \sum_{n=1}^{\infty} \alpha_n^{(k)} e_n$  and  $v_k = \sum_{n=1}^{\infty} \beta_n^{(k)} e_n$  are non zero vectors in H. Then T has non trivial closed hyperinvariant subspaces provided that

$$\sum_{n \in \mathcal{N}} \left| \alpha_n^{(k)} \right|^2 \log \frac{1}{\left| \alpha_n^{(k)} \right|} + \left| \beta_n^{(k)} \right|^2 \log \frac{1}{\left| \beta_n^{(k)} \right|} < \infty.$$

where

$$\mathcal{N} = \{ n \in \mathbb{N} : \ \alpha_n^{(k)} \neq 0, \beta_n^{(k)} \neq 0 \ \text{for} \ 1 \le k \le N \}.$$

《口》 《聞》 《臣》 《臣》 三臣

900

### Question

Given any linear bounded operator T acting on a separable infinite-dimensional Hilbert space (or reflexive Banach space), does there exist a non-trivial closed invariant subspace?

<□> <@> < E> < E> < E><</p>

200

• An intrinsic difficulty: The lack of well-known examples

# Thank you for your attention

◆ロト ◆母ト ◆臣ト ◆臣ト 三臣 - のへで

### References

- Q. Fang, J. Xia, Invariant subspaces for certain finite-rank perturbations of diagonal operators J. Funct. Anal. 263 (2012), no. 5, 1356–1377.
- C. Foias, I. B. Jung, E. Ko and C. Pearcy, On rank-one perturbations of normal operators I, J. Funct. Anal. 253 (2007), no. 2, 628–646.
- C. Foias, I. B. Jung, E. Ko and C. Pearcy, On rank-one perturbations of normal operators II, Indiana Univ. Math. J. 57 (2008), no. 6, 2745–2760.
- E. A. Gallardo-Gutiérrez, F.J. González-Doña, Finite rank perturbations of normal operators: Spectral subspaces and Borel series, Journal de Mathématiques Pures et Appliquées, 162 (2022), 23-75.
  - E. A. Gallardo-Gutiérrez and F. J. González-Doña, Finite rank perturbations of normal operators: hyperinvariant subspaces and a problem of Pearcy, submitted, 23 pps (2022).
  - E. J. Ionascu, *Rank-one perturbations of diagonal operators*, Integral Equations Operator Theory 39 (2001), no. 4, 421–440.

# Thank you for your attention

◆ロト ◆母ト ◆臣ト ◆臣ト 三臣 - のへで