Ideals in the algebra of operators on Baernstein's space

James Smith

Lancaster University, UK

Lancaster University

1 Introduction

2 Some classical operator ideal results

3 Schreier and Tsirelson spaces + 2019 theorem

4 Baernstein's space

5 Some context

Introduction

Introduction

- (i) Let X be a Banach space over \mathbb{R} or \mathbb{C} . A sequence $(b_n)_{n \in \mathbb{N}}$ is a *basis* if, for each $x \in X$, there exist unique constants $\alpha_n \in \mathbb{R}$ (or \mathbb{C}) such that $x = \sum_{n \in \mathbb{N}} \alpha_n b_n$.
- (ii) A basis is *unconditional* if $x = \sum_{n \in \mathbb{N}} \alpha_{\pi(n)} b_{\pi(n)}$ where π is any permutation of \mathbb{N} .
- (iii) Two bases $(b_n), (d_n)$ are *equivalent* if convergence of $\sum_n \alpha_n b_n$ is equivalent to convergence of $\sum_n \alpha_n d_n$.

Consider the Banach algebra:

 $\mathscr{B}(X) = \{T : X \to X, T \text{ is bounded and linear}\}$

Objective: to understand the lattice of closed, (two-sided) ideals of $\mathscr{B}(X)$.

General Ideal Structure

If $X \neq \{0\}$, $\mathscr{F}(X) = \{T \in \mathscr{B}(X) : \dim(TX) < \infty\}$ is the smallest non-zero ideal of $\mathscr{B}(X)$.

 $\mathscr{F}(X) \subseteq \mathscr{K}(X) = \{T \in \mathscr{B}(X) : T(B_1(0)) \text{ is relatively compact}\}, \text{ which is also an ideal.}$

If X has a basis, then $\overline{\mathscr{F}(X)} = \mathscr{K}(X)$.

Some classical operator ideal results

Theorem

(Calkin, Ann. of Math. 1941). Let H be a separable Hilbert space with $\dim(H) = \infty$. Then $\mathscr{B}(H)$ has a single non-trivial closed ideal:

 $(0) \subsetneq \mathscr{K}(H) \subsetneq \mathscr{B}(H).$

Theorem

(Gohberg-Markus-Feldman, Bul. Akad. Štiince RSS Moldoven 1960). Let $X = c_0$ or $X = l_p$, where $1 \le p < \infty$. Then $\mathscr{B}(X)$ has a single non-trivial closed ideal:

$$(0) \subsetneq \mathscr{K}(X) \subsetneq \mathscr{B}(X).$$

Schreier space

Schreier space origin: Banach and Saks proved that every weakly convergent sequence in $L_p([0,1])$, there exists a subsequence whose arithmetic means converge in norm. Schreier proved in 1930, this property fails to hold in C[0,1]. A product of this investigation was the Schreier space.

We say a finite subset $M \subset \mathbb{N}$ is admissible if $|M| \leq \min M$. Let S_1 be the collection of admissible sets. For $(x_n) \in c_{00}$:

$$||(x_n)||_{S_1} := \sup_{M \in S_1} \sum_{m \in M} |x_m|.$$

Then the Schreier space $X[S_1]$ is the completion of c_{00} with respect to this norm.

properties of $X[S_1]$

Proofs of the following can be found in Casazza and Shura's book 'Tsirelson's Space':

Lemma

The standard unit vector basis is an unconditional basis for $X[S_1]$. c_0 embeds into $X[S_1]$; in fact, every infinite dimensional subspace of $X[S_1]$ contains a complemented copy of c_0 . in particular, $X[S_1]$ is not reflexive.

 l_1 does not embed into $X[S_1]$.

higher order Schreier spaces

Definition: (Alspach and Argyros, Diss. Math. 1992). Let:

 $S_0 := \{\{k\} : k \in \mathbb{N}\}.$

We say E < F when $\max E < \min F$. For $n \in \mathbb{N}_0$ recursively define the (n+1)th Schreier family by:

$$S_{n+1} := \left\{ \bigcup_{j=1}^{m} E_j : m \in \mathbb{N}, E_1, \dots, E_m \in S_n, m \le \min E_1, E_1 < \dots < E_m \right\}$$

For $(x_n) \in c_{00}$:

$$||(x_n)||_{S_n} := \sup_{M \in S_n} \sum_{m \in M} |x_m|.$$

Then the Schreier space $X[S_n]$ is the completion of c_{00} with respect to this norm.

J.Smith

Lancaster University

Tsirelson's space and properties

Tsirelson's space origin: T was the first example (1974) of a Banach space lacking copies of c_0 or any ℓ_p .

Lemma

The standard unit vector basis is an unconditional basis for T. T is reflexive.

Introducing spatial ideals

If X has an unconditional basis (b_n) : Define $P_E(\sum_{n \in \mathbb{N}} \alpha_n b_n) = \sum_{n \in E} \alpha_n b_n$. An ideal \mathscr{I} of $\mathscr{B}(X)$ is *spatial* if $\mathscr{I} = \overline{\langle P_E \rangle}$ (two-sided) for some $E \subseteq \mathbb{N}$. If $E \subset \mathbb{N}$ is finite and X has a basis, $\mathscr{K}(X) = \overline{\langle P_E \rangle}$. We call a spatial ideal \mathscr{I} non-trivial if $\mathscr{K}(X) \subseteq \mathscr{I}$.

Ideals in $\mathscr{B}(X[S_n])$ and $\mathscr{B}(T)$

The following classication is due to Beanland, Kania and Laustsen (2019):

Theorem

Let X denote either Tsirelson's space T or the Schreier space $X[S_n]$. (i) The family of non-trivial spatial ideals in $\mathscr{B}(X)$ is non-empty and contains no minimal or maximal elements. (ii) Let $\mathscr{I}_1 \subsetneq \mathscr{I}_2$ be spatial ideals in $\mathscr{B}(X)$. There is a family $\{\Gamma_{\lambda} : \lambda \in \Lambda\}$ of uncountably large chains of spatial ideals, such that: The indexing set Λ has cardinality of the continuum; for each $\lambda \in \Lambda$, $\mathscr{I}_1 \subsetneq \mathscr{I} \subsetneq \mathscr{I}_2 \ \forall \mathscr{I} \in \Gamma_{\lambda}$; For distinct $\lambda, \mu \in \Lambda, \mathscr{L} \in \Gamma_{\lambda}$ and $\mathscr{M} \in \Gamma_{\mu} \implies \overline{\mathscr{L} + \mathscr{M}} = \mathscr{I}_2$. (iii) The algebra $\mathscr{B}(X)$ contains at least continuum many maximal ideals.

Approach for $X[S_n]$ and T

A central property enabling this classification is the following result. For a Banach space X with basis (b_n) , define $X_M := \overline{span}(b_m : m \in M)$ where $M \subseteq \mathbb{N}$.

Theorem

In $X = X[S_n]$ or T, the spaces $X_M \cong X_L$ if and only if $(e_l)_{l \in L}$ is equivalent to $(e_m)_{m \in M}$.

For $X[S_n]$ this is due to Gasparis and Leung (1999), and for T is due to Casazza, Johnson and Tzafriri.

Lemma

In $X[S_n]$ and T, the ideals $\langle P_M \rangle = \langle P_L \rangle$ iff $X_M \cong X_L$.

Question: How do we determine when (e_l) is equivalent to (e_m) ?

The Gasparis-Leung Index

Let $L, M \subseteq \mathbb{N}$ be infinite and $\varphi(l_n) = m_n$. First we have the **pre-index** on finite subsets $A \subset \mathbb{N}$:

$$\tau(A) := \min \left\{ n \in \mathbb{N} : A \subseteq \bigcup_{j=1}^{n} E_j, \ E_1 < \dots < E_n \text{ are in } S_1 \right\}.$$

This leads to the full Gasparis-Leung index:

$$d(L,M) := \sup\{\tau(\varphi^{-1}A) : A \in S_1 \text{ and } A \subset M\}.$$

Intuition: d measures the extent to which admissibility is lost when passing through φ^{-1} . Then:

Theorem

In $X[S_1]$, the subsequences $(e_l)_{l \in L}$ and $(e_m)_{m \in M}$ are equivalent iff d(L, M), d(M, L) are finite.

J.Smith

pth Baernstein space

Baernstein Space origin: A Banach space purpose-built to be reflexive and fail the Banach-Saks property: fix $1 . Let <math>x \in c_{00}$. Given some S_1 sets $E_1 < \cdots < E_m$, we define:

$$\mu_p(x, (E_j)_{j=1}^m) = \left(\sum_{j=1}^m \left(\sum_{i \in E_j} |x_i|\right)^p\right)^{\frac{1}{p}}$$

Then $||x||_{B_p} = \sup\{\mu_p(x, (E_j)_{j=1}^m) : E_1 < \cdots < E_m \text{ are } S_1 \text{ sets}\}$. The completion of c_{00} with repsect to this norm is B_p . The original space was where p = 2.

Properties of B_p

Theorem

(Seifert. 1977.) In the pth Baernstein space:

Each B_p is reflexive, but fails the Banach-Saks property. But B_p^* has the Banach-Saks property.

Every infinite-dimensional subspace of B_p contains a complemented copy of l_p .

$$\mathscr{B}(B_p, B_q) = \mathscr{K}(B_p, B_q)$$
 whenever $p > q$.

The main Theorem on B_p

New result (Joint work with Niels Laustsen): the same classification of $X[S_n]$ and T holds for B_p :

Theorem

(i) The family of non-trivial spatial ideals in ℬ(B_p) is non-empty and contains no minimal or maximal elements.
(ii) Let 𝒯₁ ⊆ 𝒯₂ be spatial ideals in ℬ(B_p). There is a family {Γ_λ : λ ∈ Λ} of uncountably large chains of spatial ideals, such that: The indexing set Λ has cardinality of the continuum; for each λ ∈ Λ, 𝒯₁ ⊆ 𝒯 ⊆ 𝒯₂ ∀𝒴 ∈ Γ_λ; For distinct λ, μ ∈ Λ, ℒ ∈ Γ_λ and 𝔐 ∈ Γ_μ ⇒ 𝒯 + 𝔐 = 𝒯₂.
(iii) The algebra ℬ(B_p) contains at least continuum many maximal ideals.

Approach for B_p

Surprisingly, the **Gasparis-Leung index** also characterises when subsequences of (e_n) are equivalent:

Theorem

In B_p , the subsequences $(e_l)_{l\in L}$ and $(e_m)_{m\in M}$ are equivalent iff d(L,M), d(M,L) are finite.

And we can draw the same conclusion:

Theorem

If $X = B_p$, the spaces $X_M \cong X_L$ if and only if $(e_l)_{l \in L}$ is equivalent to $(e_m)_{m \in M}$.

Then, the algebraic machinery of Beanland, Kania and Laustsen can be applied to produce the main theorem.

context

(i) $X[S_n]$ and T were not the first examples of separable spaces with infinitely many closed operator ideals. The following is a special case of Porta's example (Bull. Amer. Math. Soc.1969): let $2 < p_1 < p_2 < \ldots$

$$X = \left(\bigoplus_{n \in \mathbb{N}} \ell_{p_n}\right)_{\ell_2}$$

(ii) Mankiewicz and Dales–Loy-Willis have independently constructed separable Banach spaces X such that $\mathscr{B}(X)$ admits a bounded, surjective algebra homomorphism φ onto ℓ_{∞} and therefore $\{\varphi^{-1}(\mathscr{M}) : \mathscr{M} \text{ is a maximal ideal of } \ell_{\infty}\}$ is a family of cardinality 2^c of maximal ideals of $\mathscr{B}(X)$.

The End