The centre of the bidual of Fourier algebras

Viktor Losert

 \mathcal{A} Banach algebra \mathcal{A}'' second dual (first) Arens product: $a'' = w^* - \lim a_{\alpha}, \ b'' = w^* - \lim b_{\beta} \ (bounded nets, \ a_{\alpha}, b_{\beta} \in \mathcal{A})$ $a'' \square b'' = w^* - \lim_{\alpha} (w^* - \lim_{\beta} a_{\alpha} b_{\beta})$ $a'' \mapsto a'' \square b'' \quad w^*$ -continuous $Z_t(\mathcal{A}'') = \{a'': b'' \mapsto a'' \square b'' \text{ is } w^*-\text{continuous}\}$ (left) topological centre of \mathcal{A}'' \mathcal{A} (left) strongly Arens irregular if $Z_t(\mathcal{A}'') = \mathcal{A}$ For \mathcal{A} commutative, $Z_t(\mathcal{A}'')$ coincides with the algebraic centre of $(\mathcal{A}'', \Box).$

G locally compact group A(G) Fourier algebra of G (coefficients of the left regular representation on $L^2(G)$; $x \mapsto (\delta_x * f | g)$) Banach algebra of functions on G pointwise multiplication for G abelian Lau, L. 1988 $A(G) \cong L^1(\widehat{G})$ always strongly Arens irregular for G solvable, connected, second countable Lau, L. 1993 A(G) strongly Arens irregular

for G discrete with $G \supseteq F_2$ (free group) L. 2016 $Z_t(A(G)'') \neq A(G)$

Semisimple Lie groups, finite centre

spherical functions:

Iwasawa decomposition G = KS, K compact, S solvable $A_{\#}(G)$ radial (zonal, bi-invariant) functions in A(G) $u(k_1xk_2) = u(x)$ for $k_1, k_2 \in K$, $x \in G$ $L^1_{\#}(G)$ commutative subalgebra of $L^1(G)$

characters of $L^1_{\#}(G)$: spherical functions

Example:
$$G = SL(2, \mathbb{R})$$

 $K = \left\{ \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \right\} \quad S = \left\{ \begin{pmatrix} a & 0 \\ b & \frac{1}{a} \end{pmatrix} : a > 0, \ b \in \mathbb{R} \right\}$

 $\varphi_t \ (t \ge 0)$ positive definite spherical functions (coefficients of the spherical (zonal, first) principal series of representations of G) $M(A(G)) \text{ multipliers of } A(G) \qquad \varphi \cdot A \subseteq A \\ \|\varphi\|_M \text{ operator norm} \\ \|\varphi_s - \varphi_t\|_M = O(|s - t|) \quad (\text{Haagerup: } \|\varphi\|_M = \|\varphi|S\|_B \\ \text{ for radial functions})$

 $B_{\rho}(G)$ reduced Fourier-Stieltjes algebra (coefficients of representations that are weakly contained in the left regular representation) $C^*_{\rho}(G)$ reduced group C*-algebra (norm closure of the image of $L^1(G)$ in $\mathcal{B}(L^2(G))$) $B_{\rho}(G) \cong C^*_{\rho}(G)'$ (but $\|\varphi_s - \varphi_t\|_B = 2$ for $s \neq t$) for fixed N > 0 { φ_t : $0 \leq t \leq N$ } is compact in the multiplier topology, the same for its w*-closed convex hull P ($\subseteq B_{\rho}(G)$) on P w*-topology coincides with the multiplier topology multiplication defines a left action of \mathcal{A} on \mathcal{A}' (using the dual operators) extending to an action of $\mathcal{A}'' \qquad a'' \cdot a'$ (multipliers on \mathcal{A}') $a'' \in Z_t(\mathcal{A}'')$ holds iff there exists a net $(a_\alpha) \subseteq \mathcal{A}$ such that $a'' = w^* - \lim a_\alpha$ and $a_\alpha \cdot a' \xrightarrow[\| \|]{} a'' \cdot a'$ for each $a' \in \mathcal{A}'$ (i.e., the multipliers defined by a_α are converging in the *strong* topology of operators on \mathcal{A}')

 $VN(G) (\supseteq C^*_{\rho}(G))$ group von Neumann algebra (generated by the left regular representation on $L^2(G)$) $VN(G) \cong A(G)'$

for a probability measure μ on [0, N] $\varphi = \int \varphi_t d\mu(t)$ (w*-integral) defines an element of P, for μ absolutely continuous (with respect to Lebesgue measure) one gets elements of $P \cap A(G)$ for an arbitrary probability measure μ : approximating μ by absolutely continuous measures gives a sequence $(\psi_n) \subseteq P \cap A(G)$ such that $\varphi = w^*$ -lim ψ_n , i.e. for $\sigma(B_\rho(G), C^*_\rho(G))$

Let $\Psi \in A(G)''$ (= VN(G)') be some accumulation point of the sequence (ψ_n) with respect to the w*-topology $\sigma(VN(G)', VN(G))$. Then $\Psi|C_{\rho}^*(G) = \varphi$

The multipliers on A(G) defined by (ψ_n) are convergent in the norm topology (for operators on A(G)). By duality, the same holds for the corresponding multipliers (dual operators) on VN(G) and it follows that $\Psi \in Z_t(A(G)'')$.

By approximation, it follows that

if $\varphi \in B_{\rho,\#}(G)$ is positive definite and $\Psi \in A(G)''$ is any extension with $\|\Psi\| = \|\varphi\|$ then $\Psi \in Z_t(A(G)'')$. Taking linear combinations, one gets that for any $\varphi \in B_{\rho,\#}(G)$ there exists $\Psi \in Z_t(A(G)'')$ with $\Psi|C_{\rho}^*(G) = \varphi$.

Using uniform continuity of $t \mapsto \varphi_t$, further (non-zero) $\Psi \in Z_t(A(G)'')$ can be obtained, by considering w*-accumulation points of $\psi_n = \int \varphi_t d\mu_n(t)$ for a sequence of absolutely continuous measures μ_n with $\|\mu_n\| = 1$, $\mu_n([0, \infty[) = 0$ and $\operatorname{supp} \mu_n \subseteq [t_n, t_n + \epsilon_n]$ where $t_n \to \infty$, $\epsilon_n \to 0$. These are "located at infinity" and satisfy

 $\Psi \square a'' = a'' \square \Psi = 0$ for all $a'' \in A(G)''$. annihilator of A(G)''

spherical Fourier transform

$$A_{\#}(G) \cong L^{1}(\mathbb{R}^{+}, t \tanh(\pi t) dt) \qquad \mathbb{R}^{+} = [0, \infty[$$
$$C^{*}_{\rho, \#}(G) \cong C_{0}(\mathbb{R}^{+})$$
$$B_{\rho, \#}(G) \cong M(\mathbb{R}^{+})$$

multiplication in $A_{\#}(G)$ (and $B_{\rho,\#}(G)$) transfers to a "dual convolution" on \mathbb{R}^+ $f \star_d g(t) = \int \int f(r) g(s) a(r, s, t) dr ds$ weak form of a hypergroup groups with infinite centre:

Example: $\widetilde{G} = \widetilde{SL}(2, \mathbb{R})$ universal covering group Iwasawa decomposition $\widetilde{G} = \widetilde{KS}$ where $\widetilde{K} \cong \mathbb{R}$

(universal covering group of K)

for $\varphi \in B_{\rho}(\widetilde{G})$ its restriction to cosets $x\widetilde{K}$ defines elements of $B(\widetilde{K})$. Extension to $Z_t(A(\widetilde{G})'')$ is possible only if these restrictions belong to $A(\widetilde{K})$. E.g., radial functions cannot be extended to $Z_t(A(\widetilde{G})'')$. Thus one has to consider also functions having similar invariance properties with respect to other characters of \widetilde{K} . general connected groups:

generalized Levi decomposition G = j(M) Qwith Q solvable normal closed (not necessarily connected) M semisimple, $j : M \to G$ continuous injective homomorphism (j(M) not necessarily closed) $G \cong (Q \rtimes M)/D$ with D discrete central Example: $\widetilde{G} = \mathbb{R}^2 \rtimes SL(2, \mathbb{R})$ again, not all functions can be extended and some modifications are

necessary to get elements of $Z_t(A(G)'')$ when M is not compact.

Theorem. If G is a connected locally compact group containing a non-compact semisimple group, then A(G) is not strongly Arens irregular.

Corollary. Let G be a connected locally compact group having no non-trivial compact quotients. Then A(G) is strongly Arens irregular iff G is solvable.

Institut für Mathematik, Universität Wien, Strudlhofg. 4, A 1090 Wien, Austria

E-mail address: Viktor.Losert@UNIVIE.AC.AT