The centre of the bidual of Fourier algebras

Viktor Losert
\mathcal{A} Banach algebra $\quad \mathcal{A}^{\prime \prime}$ second dual (first) Arens product:
$a^{\prime \prime}=\mathrm{w}^{*}-\lim a_{\alpha}, b^{\prime \prime}=\mathrm{w}^{*}-\lim b_{\beta} \quad\left(\right.$ bounded nets, $\left.a_{\alpha}, b_{\beta} \in \mathcal{A}\right)$
$a^{\prime \prime} \square b^{\prime \prime}=\mathrm{w}^{*}-\lim _{\alpha}\left(\mathrm{w}^{*}-\lim _{\beta} a_{\alpha} b_{\beta}\right)$
$a^{\prime \prime} \mapsto a^{\prime \prime} \square b^{\prime \prime} \quad \mathrm{w}^{*}$-continuous
$Z_{t}\left(\mathcal{A}^{\prime \prime}\right)=\left\{a^{\prime \prime}: \quad b^{\prime \prime} \mapsto a^{\prime \prime} \square b^{\prime \prime}\right.$ is $\mathrm{w}^{*}-$ continuous $\}$
(left) topological centre of $\mathcal{A}^{\prime \prime}$
\mathcal{A} (left) strongly Arens irregular if $Z_{t}\left(\mathcal{A}^{\prime \prime}\right)=\mathcal{A}$
For \mathcal{A} commutative, $Z_{t}\left(\mathcal{A}^{\prime \prime}\right)$ coincides with the algebraic centre of $\left(\mathcal{A}^{\prime \prime}, \square\right)$.
G locally compact group
$A(G)$ Fourier algebra of $G \quad$ (coefficients of the left regular representation on $\left.L^{2}(G) ; x \mapsto\left(\delta_{x} * f \mid g\right)\right)$
Banach algebra of functions on G pointwise multiplication for G abelian Lau, L. $1988 A(G)\left(\cong L^{1}(\widehat{G})\right)$ always strongly Arens irregular
for G solvable, connected, second countable Lau, L. 1993
$A(G)$ strongly Arens irregular
for G discrete with $G \supseteq F_{2}$ (free group) L. $2016 Z_{t}\left(A(G)^{\prime \prime}\right) \neq A(G)$

Semisimple Lie groups, finite centre
spherical functions:
Iwasawa decomposition $G=K S, K$ compact, S solvable
$A_{\#}(G)$ radial (zonal, bi-invariant) functions in $A(G)$

$$
u\left(k_{1} x k_{2}\right)=u(x) \text { for } k_{1}, k_{2} \in K, x \in G
$$

$L_{\#}^{1}(G)$ commutative subalgebra of $L^{1}(G)$ characters of $L_{\#}^{1}(G)$: spherical functions

Example: $G=S L(2, \mathbb{R})$

$$
K=\left\{\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)\right\} S=\left\{\left(\begin{array}{cc}
a & 0 \\
b & \frac{1}{a}
\end{array}\right): a>0, b \in \mathbb{R}\right\}
$$

$\varphi_{t}(t \geq 0)$ positive definite spherical functions
(coefficients of the spherical (zonal, first) principal series of representations of G)
$M(A(G))$ multipliers of $A(G) \quad \varphi \cdot A \subseteq A$
$\|\varphi\|_{M}$ operator norm

$$
\left\|\varphi_{s}-\varphi_{t}\right\|_{M}=O(|s-t|) \quad \text { (Haagerup: }\|\varphi\|_{M}=\|\varphi \mid S\|_{B}
$$

for radial functions)
$B_{\rho}(G)$ reduced Fourier-Stieltjes algebra (coefficients of representations that are weakly contained in the left regular representation) $C_{\rho}^{*}(G)$ reduced group C^{*}-algebra (norm closure of the image

$$
\text { of } \left.L^{1}(G) \text { in } \mathcal{B}\left(L^{2}(G)\right)\right) \quad B_{\rho}(G) \cong C_{\rho}^{*}(G)^{\prime}
$$

(but $\left\|\varphi_{s}-\varphi_{t}\right\|_{B}=2$ for $s \neq t$)
for fixed $N>0 \quad\left\{\varphi_{t}: 0 \leq t \leq N\right\}$ is compact in the multiplier topology, the same for its w*-closed convex hull $P \quad\left(\subseteq B_{\rho}(G)\right)$
on P w *-topology coincides with the multiplier topology
multiplication defines a left action of \mathcal{A} on \mathcal{A}^{\prime} (using the dual operators) extending to an action of $\mathcal{A}^{\prime \prime} \quad a^{\prime \prime} \cdot a^{\prime}$ (multipliers on \mathcal{A}^{\prime}) $a^{\prime \prime} \in Z_{t}\left(\mathcal{A}^{\prime \prime}\right)$ holds iff there exists a net $\left(a_{\alpha}\right) \subseteq \mathcal{A}$ such that $a^{\prime \prime}=\mathrm{w}^{*}-\lim a_{\alpha}$ and $a_{\alpha} \cdot a^{\prime} \xrightarrow[\| \|]{ } a^{\prime \prime} \cdot a^{\prime}$ for each $a^{\prime} \in \mathcal{A}^{\prime}$ (i.e., the multipliers defined by a_{α} are converging in the strong topology of operators on \mathcal{A}^{\prime})
$V N(G)\left(\supseteq C_{\rho}^{*}(G)\right)$ group von Neumann algebra (generated by the left regular representation on $\left.L^{2}(G)\right) \quad V N(G) \cong A(G)^{\prime}$ for a probability measure μ on $[0, N] \quad \varphi=\int \varphi_{t} d \mu(t)$ (w^{*}-integral) defines an element of P, for μ absolutely continuous (with respect to Lebesgue measure) one gets elements of $P \cap A(G)$
for an arbitrary probability measure μ : approximating μ by absolutely continuous measures gives a sequence $\left(\psi_{n}\right) \subseteq P \cap A(G)$ such that $\varphi=\mathrm{w}^{*}-\lim \psi_{n}$, i.e. for $\sigma\left(B_{\rho}(G), C_{\rho}^{*}(G)\right)$
Let $\Psi \in A(G)^{\prime \prime}\left(=V N(G)^{\prime}\right)$ be some accumulation point of the sequence $\left(\psi_{n}\right)$ with respect to the w*-topology $\sigma\left(V N(G)^{\prime}, V N(G)\right)$.
Then $\Psi \mid C_{\rho}^{*}(G)=\varphi$
The multipliers on $A(G)$ defined by $\left(\psi_{n}\right)$ are convergent in the norm topology (for operators on $A(G)$). By duality, the same holds for the corresponding multipliers (dual operators) on $V N(G)$ and it follows that $\Psi \in Z_{t}\left(A(G)^{\prime \prime}\right)$.
By approximation, it follows that
if $\varphi \in B_{\rho, \#}(G)$ is positive definite and $\Psi \in A(G)^{\prime \prime}$ is any extension with $\|\Psi\|=\|\varphi\|$ then $\Psi \in Z_{t}\left(A(G)^{\prime \prime}\right)$.

Taking linear combinations, one gets that for any $\varphi \in B_{\rho, \#}(G)$ there exists $\Psi \in Z_{t}\left(A(G)^{\prime \prime}\right)$ with $\Psi \mid C_{\rho}^{*}(G)=\varphi$.

Using uniform continuity of $t \mapsto \varphi_{t}$, further (non-zero)
$\Psi \in Z_{t}\left(A(G)^{\prime \prime}\right)$ can be obtained, by considering w^{*}-accumulation points of $\psi_{n}=\int \varphi_{t} d \mu_{n}(t)$ for a sequence of absolutely continuous measures μ_{n} with $\left\|\mu_{n}\right\|=1, \mu_{n}\left(\left[0, \infty[)=0\right.\right.$ and $\operatorname{supp} \mu_{n} \subseteq\left[t_{n}, t_{n}+\epsilon_{n}\right]$ where $t_{n} \rightarrow \infty, \epsilon_{n} \rightarrow 0$.
These are "located at infinity" and satisfy
$\Psi \square a^{\prime \prime}=a^{\prime \prime} \square \Psi=0$ for all $a^{\prime \prime} \in A(G)^{\prime \prime} . \quad$ annihilator of $A(G)^{\prime \prime}$
spherical Fourier transform

$$
\begin{aligned}
& A_{\#}(G) \cong L^{1}\left(\mathbb{R}^{+}, t \tanh (\pi t) d t\right) \quad \mathbb{R}^{+}=[0, \infty[\\
& C_{\rho, \#}^{*}(G) \cong C_{0}\left(\mathbb{R}^{+}\right) \\
& B_{\rho, \#}(G) \cong M\left(\mathbb{R}^{+}\right)
\end{aligned}
$$

multiplication in $A_{\#}(G)$ (and $\left.B_{\rho, \#}(G)\right)$ transfers to a
"dual convolution" on \mathbb{R}^{+}
$f \star_{d} g(t)=\iint f(r) g(s) a(r, s, t) d r d s$
weak form of a hypergroup
groups with infinite centre:
Example: $\widetilde{G}=\widetilde{S L}(2, \mathbb{R}) \quad$ universal covering group
Iwasawa decomposition $\widetilde{G}=\widetilde{K} S$ where $\widetilde{K} \cong \mathbb{R}$
(universal covering group of K)
for $\varphi \in B_{\rho}(\widetilde{G})$ its restriction to cosets $x \widetilde{K}$ defines elements of $B(\widetilde{K})$. Extension to $Z_{t}\left(A(\widetilde{G})^{\prime \prime}\right)$ is possible only if these restrictions belong to $A(\widetilde{K})$. E.g., radial functions cannot be extended to $Z_{t}\left(A(\widetilde{G})^{\prime \prime}\right)$.
Thus one has to consider also functions having similar invariance properties with respect to other characters of \widetilde{K}.
general connected groups:
generalized Levi decomposition $G=j(M) Q$
with Q solvable normal closed (not necessarily connected)
M semisimple, $j: M \rightarrow G$ continuous injective homomorphism
($j(M)$ not necessarily closed)
$G \cong(Q \rtimes M) / D$ with D discrete central
Example: $\quad \widetilde{G}=\mathbb{R}^{2} \rtimes S L(2, \mathbb{R})$
again, not all functions can be extended and some modifications are necessary to get elements of $Z_{t}\left(A(G)^{\prime \prime}\right)$ when M is not compact.

Theorem. If G is a connected locally compact group containing a non-compact semisimple group, then $A(G)$ is not strongly Arens irregular.

Corollary. Let G be a connected locally compact group having no non-trivial compact quotients. Then $A(G)$ is strongly Arens irregular iff G is solvable.

Institut für Mathematik, Universität Wien, Strudlhofg. 4, A 1090 Wien, AustRIA

E-mail address: Viktor.Losert@UNIVIE.AC.AT

