Compact perturbations of operator semigroups

Tomasz Kochanek

Faculty of Mathematics, Informatics and Mechanics
University of Warsaw

Banach Algebras and Applications
Granada, Spain
July 18-23, 2022
Work supported by the NCN grant no. 2020/37/B/ST1/01052

Formulation of the problem

Notation:

- \mathcal{H} inf. dim. separable Hilbert space
- $\mathcal{B}(\mathcal{H})$ bounded linear operators on \mathcal{H}
- $\mathcal{K}(\mathcal{H})$ compact operators on \mathcal{H}
- $\mathcal{Q}(\mathcal{H})$ Calkin algebra, i.e. $\mathcal{B}(\mathcal{H}) / \mathcal{K}(\mathcal{H})$
- $\pi: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{Q}(\mathcal{H})$ quotient map
- \mathbb{H} Hilbert space of density \mathfrak{c}, so that there is an isometric *-isomorphism from $\mathcal{Q}(\mathcal{H})$ into $\mathcal{B}(\mathbb{H})$ (Calkin, 1941)

Formulation of the problem

Notation:

- \mathcal{H} inf. dim. separable Hilbert space
- $\mathcal{B}(\mathcal{H})$ bounded linear operators on \mathcal{H}
- $\mathcal{K}(\mathcal{H})$ compact operators on \mathcal{H}
- $\mathcal{Q}(\mathcal{H})$ Calkin algebra, i.e. $\mathcal{B}(\mathcal{H}) / \mathcal{K}(\mathcal{H})$
- $\pi: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{Q}(\mathcal{H})$ quotient map
- \mathbb{H} Hilbert space of density \mathfrak{c}, so that there is an isometric *-isomorphism from $\mathcal{Q}(\mathcal{H})$ into $\mathcal{B}(\mathbb{H})$ (Calkin, 1941)

Problem (general formulation)

Assume $(Q(t))_{t \geqslant 0} \subset \mathcal{B}(\mathcal{H})$ is a family of (normal) operators such that

$$
Q(s+t)-Q(s) Q(t) \in \mathcal{K}(\mathcal{H}) \quad \text { for all } s, t \geqslant 0
$$

Can it be, under natural circumstances, lifted to an operator semigroup? In other words, does there exist an operator semigroup $(T(t))_{t \geqslant 0} \subset \mathcal{B}(\mathcal{H})$ such that $Q(t)-T(t) \in \mathcal{K}(\mathcal{H})$ for $t \geqslant 0$?

Possible motivations

I. Farah, Combinatorial set theory of C^{*}-algebras, Springer Monographs in Mathematics, Springer 2019.

Possible motivations

I. Farah, Combinatorial set theory of C^{*}-algebras, Springer Monographs in Mathematics, Springer 2019.

- In recent years, the problem of lifting subalgebras of $\mathcal{Q}(\mathcal{H})$ was quite fashionable. Chapter 12 in Farah's book is devoted to various aspects of this problem.

Possible motivations

I. Farah, Combinatorial set theory of C^{*}-algebras, Springer Monographs in Mathematics, Springer 2019.

- In recent years, the problem of lifting subalgebras of $\mathcal{Q}(\mathcal{H})$ was quite fashionable. Chapter 12 in Farah's book is devoted to various aspects of this problem. E.g., there is a characterization of separable abelian C^{*}-subalgebras of $\mathcal{Q}(\mathcal{H})$ which admit an abelian lift (they should be included in an abelian C^{*}-subalgebra of $\mathcal{Q}(\mathcal{H})$ of real rank zero).

Possible motivations

I. Farah, Combinatorial set theory of C^{*}-algebras, Springer Monographs in Mathematics, Springer 2019.

- In recent years, the problem of lifting subalgebras of $\mathcal{Q}(\mathcal{H})$ was quite fashionable. Chapter 12 in Farah's book is devoted to various aspects of this problem. E.g., there is a characterization of separable abelian C^{*}-subalgebras of $\mathcal{Q}(\mathcal{H})$ which admit an abelian lift (they should be included in an abelian C^{*}-subalgebra of $\mathcal{Q}(\mathcal{H})$ of real rank zero).
- The problem of preserving the semigroup property while lifting leads to some modifications of the Brown-Douglas-Fillmore theory. Recall that the BDF theory provided the famous characterization of essentially normal operators that admit a normal lift.

Possible motivations

I. Farah, Combinatorial set theory of C^{*}-algebras, Springer Monographs in Mathematics, Springer 2019.

- In recent years, the problem of lifting subalgebras of $\mathcal{Q}(\mathcal{H})$ was quite fashionable. Chapter 12 in Farah's book is devoted to various aspects of this problem. E.g., there is a characterization of separable abelian C^{*}-subalgebras of $\mathcal{Q}(\mathcal{H})$ which admit an abelian lift (they should be included in an abelian C^{*}-subalgebra of $\mathcal{Q}(\mathcal{H})$ of real rank zero).
- The problem of preserving the semigroup property while lifting leads to some modifications of the Brown-Douglas-Fillmore theory. Recall that the BDF theory provided the famous characterization of essentially normal operators that admit a normal lift.
- Our hypothesis 'semigroup modulo compacts' occurs for Toeplitz operators. Recall that for $\varphi \in L^{\infty}(\mathbb{T}), T_{\varphi}$ is defined on the Hardy space H^{2} by $T_{\varphi} f=P(\varphi f)$, where P is the orthogonal projection of $L^{2}(\mathbb{T})$ onto H^{2}. We have that $T_{\varphi} T_{\psi}-T_{\varphi \psi}$ is compact for $\varphi \in C(\mathbb{T})$ and $\psi \in L^{\infty}(\mathbb{T})$.

Basic definitions

Definition

A family $(T(t))_{t \geqslant 0} \subset \mathcal{B}(\mathcal{H})$ is called an operator semigroup, provided that (a) $T(0)=I_{\mathcal{H}}$ (the identity operator) and
(b) $T(s+t)=T(s) T(t)$ for all $s, t \geqslant 0$.

Basic definitions

Definition

A family $(T(t))_{t \geqslant 0} \subset \mathcal{B}(\mathcal{H})$ is called an operator semigroup, provided that (a) $T(0)=I_{\mathcal{H}}$ (the identity operator) and
(b) $T(s+t)=T(s) T(t)$ for all $s, t \geqslant 0$.

If additionally

$$
\lim _{\varepsilon \rightarrow 0+}\|T(\varepsilon) x-x\|=0 \quad \text { for every } x \in \mathcal{H}
$$

then $(T(t))_{t \geqslant 0}$ is called a strongly continuous operator semigroup or, briefly, a C_{0}-semigroup.

Basic definitions

Definition

A family $(T(t))_{t \geqslant 0} \subset \mathcal{B}(\mathcal{H})$ is called an operator semigroup, provided that
(a) $T(0)=I_{\mathcal{H}}$ (the identity operator) and
(b) $T(s+t)=T(s) T(t)$ for all $s, t \geqslant 0$.

If additionally

$$
\lim _{\varepsilon \rightarrow 0+}\|T(\varepsilon) x-x\|=0 \quad \text { for every } x \in \mathcal{H}
$$

then $(T(t))_{t \geqslant 0}$ is called a strongly continuous operator semigroup or, briefly, a \boldsymbol{C}_{0}-semigroup. If $(T(t))_{t \geqslant 0}$ satisfies the stronger condition $\lim _{\varepsilon \rightarrow 0+}\left\|T(\varepsilon)-I_{\mathcal{H}}\right\|=0$, then it is called uniformly continuous.

Basic definitions

Definition

A family $(T(t))_{t \geqslant 0} \subset \mathcal{B}(\mathcal{H})$ is called an operator semigroup, provided that
(a) $T(0)=I_{\mathcal{H}}$ (the identity operator) and
(b) $T(s+t)=T(s) T(t)$ for all $s, t \geqslant 0$.

If additionally

$$
\lim _{\varepsilon \rightarrow 0+}\|T(\varepsilon) x-x\|=0 \quad \text { for every } x \in \mathcal{H}
$$

then $(T(t))_{t \geqslant 0}$ is called a strongly continuous operator semigroup or, briefly, a \boldsymbol{C}_{0}-semigroup. If $(T(t))_{t \geqslant 0}$ satisfies the stronger condition $\lim _{\varepsilon \rightarrow 0+}\left\|T(\varepsilon)-I_{\mathcal{H}}\right\|=0$, then it is called uniformly continuous.

The infinitesimal generator of a C_{0}-semigroup $(T(t))_{t \geqslant 0}$ is defined by

$$
A(x)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}(T(\varepsilon) x-x)
$$

Basic definitions

Definition

A family $(T(t))_{t \geqslant 0} \subset \mathcal{B}(\mathcal{H})$ is called an operator semigroup, provided that
(a) $T(0)=I_{\mathcal{H}}$ (the identity operator) and
(b) $T(s+t)=T(s) T(t)$ for all $s, t \geqslant 0$.

If additionally

$$
\lim _{\varepsilon \rightarrow 0+}\|T(\varepsilon) x-x\|=0 \quad \text { for every } x \in \mathcal{H}
$$

then $(T(t))_{t \geqslant 0}$ is called a strongly continuous operator semigroup or, briefly, a \boldsymbol{C}_{0}-semigroup. If $(T(t))_{t \geqslant 0}$ satisfies the stronger condition $\lim _{\varepsilon \rightarrow 0+}\left\|T(\varepsilon)-I_{\mathcal{H}}\right\|=0$, then it is called uniformly continuous.

The infinitesimal generator of a C_{0}-semigroup $(T(t))_{t \geqslant 0}$ is defined by

$$
A(x)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}(T(\varepsilon) x-x)
$$

In general, it is an unbounded, densely defined operator,

Lifting problems

Considering the operators $q(t)=\pi Q(t) \in \mathcal{Q}(\mathcal{H})$, we may formulate our problem as follows:

Problem (precise formulation)

Assume that $(q(t))_{t \geqslant 0} \subset \mathcal{Q}(\mathcal{H})$ is a C_{0}-semigroup of normal elements of the Calkin algebra. Under what conditions there exists a C_{0}-semigroup $(T(t))_{t \geqslant 0}$ of normal operators in $\mathcal{B}(\mathcal{H})$ such that $\pi T(t)=q(t)$ for every $t \geqslant 0$?

Lifting problems

Considering the operators $q(t)=\pi Q(t) \in \mathcal{Q}(\mathcal{H})$, we may formulate our problem as follows:

Problem (precise formulation)

Assume that $(q(t))_{t \geqslant 0} \subset \mathcal{Q}(\mathcal{H})$ is a C_{0}-semigroup of normal elements of the Calkin algebra. Under what conditions there exists a C_{0}-semigroup $(T(t))_{t \geqslant 0}$ of normal operators in $\mathcal{B}(\mathcal{H})$ such that $\pi T(t)=q(t)$ for every $t \geqslant 0$?

In a sense, we seek for a 'semigroup variant' of the famous BDF result from
L.G. Brown, R.G. Douglas, P.A. Fillmore, Extensions of C*-algebras and K-homology, Ann. Math. 105 (1977), 265-324.

Lifting problems

Considering the operators $q(t)=\pi Q(t) \in \mathcal{Q}(\mathcal{H})$, we may formulate our problem as follows:

Problem (precise formulation)

Assume that $(q(t))_{t \geqslant 0} \subset \mathcal{Q}(\mathcal{H})$ is a C_{0}-semigroup of normal elements of the Calkin algebra. Under what conditions there exists a C_{0}-semigroup $(T(t))_{t \geqslant 0}$ of normal operators in $\mathcal{B}(\mathcal{H})$ such that $\pi T(t)=q(t)$ for every $t \geqslant 0$?

In a sense, we seek for a 'semigroup variant' of the famous BDF result from
L.G. Brown, R.G. Douglas, P.A. Fillmore, Extensions of C*-algebras and K-homology, Ann. Math. 105 (1977), 265-324.
which says that an operator $T \in \mathcal{B}(\mathcal{H})$ is of the form 'normal plus compact' if and only if it is essentially normal and $\operatorname{ind}(\lambda I-T)=0$ for every $\lambda \notin \sigma_{\text {ess }}(T)$.

A counterexample

Fredholm operators

Recall that an operator $T \in \mathcal{B}(\mathcal{H})$ is called a Fredholm operator, provided that both $\alpha(T):=\operatorname{dim} \operatorname{Ker}(T)$ and $\beta(T):=\operatorname{codim} \operatorname{Ran}(T)$ are finite.

A counterexample

Fredholm operators

Recall that an operator $T \in \mathcal{B}(\mathcal{H})$ is called a Fredholm operator, provided that both $\alpha(T):=\operatorname{dim} \operatorname{Ker}(T)$ and $\beta(T):=\operatorname{codim} \operatorname{Ran}(T)$ are finite. In such a case the difference $\operatorname{ind}(T)=\alpha(T)-\beta(T) \in \mathbb{Z}$ is called the Fredholm index of T.

A counterexample

Fredholm operators

Recall that an operator $T \in \mathcal{B}(\mathcal{H})$ is called a Fredholm operator, provided that both $\alpha(T):=\operatorname{dim} \operatorname{Ker}(T)$ and $\beta(T):=\operatorname{codim} \operatorname{Ran}(T)$ are finite. In such a case the difference $\operatorname{ind}(T)=\alpha(T)-\beta(T) \in \mathbb{Z}$ is called the Fredholm index of T.

Basic facts on Fredholm operators:

- $T \in \mathcal{B}(\mathcal{H})$ is Fredholm if and only if $\pi(T)$ is invertible in the Calkin algebra $\mathcal{Q}(\mathcal{H})$.

A counterexample

Fredholm operators

Recall that an operator $T \in \mathcal{B}(\mathcal{H})$ is called a Fredholm operator, provided that both $\alpha(T):=\operatorname{dim} \operatorname{Ker}(T)$ and $\beta(T):=\operatorname{codim} \operatorname{Ran}(T)$ are finite. In such a case the difference $\operatorname{ind}(T)=\alpha(T)-\beta(T) \in \mathbb{Z}$ is called the Fredholm index of T.

Basic facts on Fredholm operators:

- $T \in \mathcal{B}(\mathcal{H})$ is Fredholm if and only if $\pi(T)$ is invertible in the Calkin algebra $\mathcal{Q}(\mathcal{H})$.
- The Fredholm index is invariant under compact perturbations, that is, $\operatorname{ind}(T+K)=\operatorname{ind}(T)$ for every $K \in \mathcal{K}(\mathcal{H})$.

A counterexample

Fredholm operators

Recall that an operator $T \in \mathcal{B}(\mathcal{H})$ is called a Fredholm operator, provided that both $\alpha(T):=\operatorname{dim} \operatorname{Ker}(T)$ and $\beta(T):=\operatorname{codim} \operatorname{Ran}(T)$ are finite. In such a case the difference $\operatorname{ind}(T)=\alpha(T)-\beta(T) \in \mathbb{Z}$ is called the Fredholm index of T.

Basic facts on Fredholm operators:

- $T \in \mathcal{B}(\mathcal{H})$ is Fredholm if and only if $\pi(T)$ is invertible in the Calkin algebra $\mathcal{Q}(\mathcal{H})$.
- The Fredholm index is invariant under compact perturbations, that is, $\operatorname{ind}(T+K)=\operatorname{ind}(T)$ for every $K \in \mathcal{K}(\mathcal{H})$.
- For any $S \in \mathcal{B}(\mathcal{H})$, the essential spectrum $\sigma_{\text {ess }}(S)$ is defined as the set of those $\lambda \in \mathbb{C}$ for which $\lambda I-S$ is not Fredholm, and we have $\sigma_{\text {ess }}(S)=\sigma(\pi(S))$.

A counterexample: non-liftable semigroups

Pick any essentially normal Fredholm operator $T \in \mathcal{B}(\mathcal{H})$ with a non-zero index.

A counterexample: non-liftable semigroups

Pick any essentially normal Fredholm operator $T \in \mathcal{B}(\mathcal{H})$ with a non-zero index. Then $\pi(T)$ is a normal, invertible element of the Calkin algebra, hence it corresponds to a normal, invertible operator on the Hilbert space \mathbb{H}.

A counterexample: non-liftable semigroups

Pick any essentially normal Fredholm operator $T \in \mathcal{B}(\mathcal{H})$ with a non-zero index. Then $\pi(T)$ is a normal, invertible element of the Calkin algebra, hence it corresponds to a normal, invertible operator on the Hilbert space \mathbb{H}. According to a result from
T. Eisner, Embedding operators into strongly continuous semigroups, Arch. Math. (Basel) 92 (2009), 451-460,
every such operator is embeddable into a C_{0}-semigroup, say $(\tau(t))_{t \geqslant 0} \subset \mathcal{Q}(\mathcal{H})$, where $\tau(1)=\pi(T)$.

A counterexample: non-liftable semigroups

Pick any essentially normal Fredholm operator $T \in \mathcal{B}(\mathcal{H})$ with a non-zero index. Then $\pi(T)$ is a normal, invertible element of the Calkin algebra, hence it corresponds to a normal, invertible operator on the Hilbert space \mathbb{H}. According to a result from
T. Eisner, Embedding operators into strongly continuous semigroups, Arch. Math. (Basel) 92 (2009), 451-460,
every such operator is embeddable into a C_{0}-semigroup, say $(\tau(t))_{t \geqslant 0} \subset \mathcal{Q}(\mathcal{H})$, where $\tau(1)=\pi(T)$. Now, let $(Q(t))_{t \geqslant 0} \subset \mathcal{B}(\mathcal{H})$ be any sequence with $\pi Q(t)=\tau(t)$ for all $t \geqslant 0$, so that $(\pi Q(t))_{t \geqslant 0}$ is a C_{0}-semigroup.

A counterexample: non-liftable semigroups

Pick any essentially normal Fredholm operator $T \in \mathcal{B}(\mathcal{H})$ with a non-zero index. Then $\pi(T)$ is a normal, invertible element of the Calkin algebra, hence it corresponds to a normal, invertible operator on the Hilbert space \mathbb{H}. According to a result from
T. Eisner, Embedding operators into strongly continuous semigroups, Arch. Math. (Basel) 92 (2009), 451-460,
every such operator is embeddable into a C_{0}-semigroup, say $(\tau(t))_{t \geqslant 0} \subset \mathcal{Q}(\mathcal{H})$, where $\tau(1)=\pi(T)$. Now, let $(Q(t))_{t \geqslant 0} \subset \mathcal{B}(\mathcal{H})$ be any sequence with $\pi Q(t)=\tau(t)$ for all $t \geqslant 0$, so that $(\pi Q(t))_{t \geqslant 0}$ is a C_{0}-semigroup. We claim there is no C_{0}-semigroup $(S(t))_{t \geqslant 0} \subset \mathcal{B}(\mathcal{H})$ satisfying $Q(t)-S(t) \in \mathcal{K}(\mathcal{H})$ for all $t \geqslant 0$. Indeed, if this was true, then some compact perturbation of T would be embeddable into a C_{0}-semigroup.

A counterexample: non-liftable semigroups

Pick any essentially normal Fredholm operator $T \in \mathcal{B}(\mathcal{H})$ with a non-zero index. Then $\pi(T)$ is a normal, invertible element of the Calkin algebra, hence it corresponds to a normal, invertible operator on the Hilbert space \mathbb{H}. According to a result from
T. Eisner, Embedding operators into strongly continuous semigroups, Arch. Math. (Basel) 92 (2009), 451-460,
every such operator is embeddable into a C_{0}-semigroup, say $(\tau(t))_{t \geqslant 0} \subset \mathcal{Q}(\mathcal{H})$, where $\tau(1)=\pi(T)$. Now, let $(Q(t))_{t \geqslant 0} \subset \mathcal{B}(\mathcal{H})$ be any sequence with $\pi Q(t)=\tau(t)$ for all $t \geqslant 0$, so that $(\pi Q(t))_{t \geqslant 0}$ is a C_{0}-semigroup. We claim there is no C_{0}-semigroup $(S(t))_{t \geqslant 0} \subset \mathcal{B}(\mathcal{H})$ satisfying $Q(t)-S(t) \in \mathcal{K}(\mathcal{H})$ for all $t \geqslant 0$. Indeed, if this was true, then some compact perturbation of T would be embeddable into a C_{0}-semigroup. However, by another Eisner's result, non-bijective Fredholm operators are not embeddable into C_{0}-semigroups and so neither is any compact perturbation K of T because

A counterexample: non-liftable semigroups

Pick any essentially normal Fredholm operator $T \in \mathcal{B}(\mathcal{H})$ with a non-zero index. Then $\pi(T)$ is a normal, invertible element of the Calkin algebra, hence it corresponds to a normal, invertible operator on the Hilbert space \mathbb{H}. According to a result from
T. Eisner, Embedding operators into strongly continuous semigroups, Arch. Math. (Basel) 92 (2009), 451-460,
every such operator is embeddable into a C_{0}-semigroup, say $(\tau(t))_{t \geqslant 0} \subset \mathcal{Q}(\mathcal{H})$, where $\tau(1)=\pi(T)$. Now, let $(Q(t))_{t \geqslant 0} \subset \mathcal{B}(\mathcal{H})$ be any sequence with $\pi Q(t)=\tau(t)$ for all $t \geqslant 0$, so that $(\pi Q(t))_{t \geqslant 0}$ is a C_{0}-semigroup. We claim there is no C_{0}-semigroup $(S(t))_{t \geqslant 0} \subset \mathcal{B}(\mathcal{H})$ satisfying $Q(t)-S(t) \in \mathcal{K}(\mathcal{H})$ for all $t \geqslant 0$. Indeed, if this was true, then some compact perturbation of T would be embeddable into a C_{0}-semigroup. However, by another Eisner's result, non-bijective Fredholm operators are not embeddable into C_{0}-semigroups and so neither is any compact perturbation K of T because $\operatorname{ind}(T+K)=\operatorname{ind}(T) \neq 0$.

The BDF theory

Brief overview 1

Let X be a compact metric space. By an extension of $C(X)$ (by $\mathcal{K}(\mathcal{H}))$ we mean any pair (\mathcal{A}, φ), where \mathcal{A} is a C^{*}-subalgebra of $\mathcal{B}(\mathcal{H})$ containing the compact operators and $\varphi: \mathcal{A} \rightarrow C(X)$ is a *-homomorphism such that

$$
0 \longrightarrow \mathcal{K}(\mathcal{H}) \xrightarrow{\iota} \mathcal{A} \xrightarrow{\varphi} C(X) \longrightarrow 0
$$

is an exact sequence, where ι is the inclusion map.

The BDF theory

Brief overview 1

Let X be a compact metric space. By an extension of $C(X)$ (by $\mathcal{K}(\mathcal{H}))$ we mean any pair (\mathcal{A}, φ), where \mathcal{A} is a C^{*}-subalgebra of $\mathcal{B}(\mathcal{H})$ containing the compact operators and $\varphi: \mathcal{A} \rightarrow C(X)$ is a *-homomorphism such that

$$
0 \longrightarrow \mathcal{K}(\mathcal{H}) \xrightarrow{\iota} \mathcal{A} \xrightarrow{\varphi} C(X) \longrightarrow 0
$$

is an exact sequence, where ι is the inclusion map.
To any extension one can associate a ${ }^{*}$-monomorphism $\tau: C(X) \rightarrow \mathcal{Q}(\mathcal{H})$ defined as $\tau=\pi \varphi^{-1}$.

The BDF theory

Brief overview 1

Let X be a compact metric space. By an extension of $C(X)$ (by $\mathcal{K}(\mathcal{H}))$ we mean any pair (\mathcal{A}, φ), where \mathcal{A} is a C^{*}-subalgebra of $\mathcal{B}(\mathcal{H})$ containing the compact operators and $\varphi: \mathcal{A} \rightarrow C(X)$ is a *-homomorphism such that

$$
0 \longrightarrow \mathcal{K}(\mathcal{H}) \xrightarrow{\iota} \mathcal{A} \xrightarrow{\varphi} C(X) \longrightarrow 0
$$

is an exact sequence, where ι is the inclusion map.
To any extension one can associate a ${ }^{*}$-monomorphism $\tau: C(X) \rightarrow \mathcal{Q}(\mathcal{H})$ defined as $\tau=\pi \varphi^{-1}$. Conversely, any such ${ }^{*}$-monomorphism gives rise to an extension $\left(\pi^{-1} \tau(C(X)), \tau^{-1} \pi\right)$. In this setting, two extensions of $C(X)$ are equivalent if the associated ${ }^{*}$-monomorphisms τ_{1} and τ_{2} satisfy $\tau_{2}=\pi(U)^{*} \tau_{1} \pi(U)$ for some unitary $U \in \mathcal{B}(\mathcal{H})$.

The BDF theory

Brief overview 1

Let X be a compact metric space. By an extension of $C(X)$ (by $\mathcal{K}(\mathcal{H}))$ we mean any pair (\mathcal{A}, φ), where \mathcal{A} is a C^{*}-subalgebra of $\mathcal{B}(\mathcal{H})$ containing the compact operators and $\varphi: \mathcal{A} \rightarrow C(X)$ is a *-homomorphism such that

$$
0 \longrightarrow \mathcal{K}(\mathcal{H}) \xrightarrow{\iota} \mathcal{A} \xrightarrow{\varphi} C(X) \longrightarrow 0
$$

is an exact sequence, where ι is the inclusion map.
To any extension one can associate a ${ }^{*}$-monomorphism $\tau: C(X) \rightarrow \mathcal{Q}(\mathcal{H})$ defined as $\tau=\pi \varphi^{-1}$. Conversely, any such ${ }^{*}$-monomorphism gives rise to an extension $\left(\pi^{-1} \tau(C(X)), \tau^{-1} \pi\right)$. In this setting, two extensions of $C(X)$ are equivalent if the associated ${ }^{*}$-monomorphisms τ_{1} and τ_{2} satisfy $\tau_{2}=\pi(U)^{*} \tau_{1} \pi(U)$ for some unitary $U \in \mathcal{B}(\mathcal{H})$.
The collection $\operatorname{Ext}(X)$ of all equivalence classes of extensions of $C(X)$ forms a group (nontrivial!) when equipped with an operation + defined in terms of ${ }^{*}$-monomorphisms $C(X) \rightarrow \mathcal{Q}(\mathcal{H})$ as $\left[\tau_{1}\right]+\left[\tau_{2}\right]=\left[\tau_{1} \oplus \tau_{2}\right]$.

The BDF theory

Brief overview 1

Let X be a compact metric space. By an extension of $C(X)$ (by $\mathcal{K}(\mathcal{H}))$ we mean any pair (\mathcal{A}, φ), where \mathcal{A} is a C^{*}-subalgebra of $\mathcal{B}(\mathcal{H})$ containing the compact operators and $\varphi: \mathcal{A} \rightarrow C(X)$ is a *-homomorphism such that

$$
0 \longrightarrow \mathcal{K}(\mathcal{H}) \xrightarrow{\iota} \mathcal{A} \xrightarrow{\varphi} C(X) \longrightarrow 0
$$

is an exact sequence, where ι is the inclusion map.
To any extension one can associate a ${ }^{*}$-monomorphism $\tau: C(X) \rightarrow \mathcal{Q}(\mathcal{H})$ defined as $\tau=\pi \varphi^{-1}$. Conversely, any such ${ }^{*}$-monomorphism gives rise to an extension $\left(\pi^{-1} \tau(C(X)), \tau^{-1} \pi\right)$. In this setting, two extensions of $C(X)$ are equivalent if the associated ${ }^{*}$-monomorphisms τ_{1} and τ_{2} satisfy $\tau_{2}=\pi(U)^{*} \tau_{1} \pi(U)$ for some unitary $U \in \mathcal{B}(\mathcal{H})$.
The collection $\operatorname{Ext}(X)$ of all equivalence classes of extensions of $C(X)$ forms a group (nontrivial!) when equipped with an operation + defined in terms of ${ }^{*}$-monomorphisms $C(X) \rightarrow \mathcal{Q}(\mathcal{H})$ as $\left[\tau_{1}\right]+\left[\tau_{2}\right]=\left[\tau_{1} \oplus \tau_{2}\right]$. We identify $\mathcal{H} \oplus \mathcal{H} \cong \mathcal{H}$ and $\mathbb{M}_{2}(\mathcal{Q}(\mathcal{H})) \cong \mathcal{Q}(\mathcal{H})$, as $\mathbb{M}_{2}(\mathcal{K}(\mathcal{H}))$ is mapped onto $\mathcal{K}(\mathcal{H})$.

The BDF theory

Brief overview 2
Given two compact metric spaces X and Y, and a continuous map $f: X \rightarrow Y$, there is an induced map $f_{*}: \operatorname{Ext}(X) \rightarrow \operatorname{Ext}(Y)$ defined as

$$
f_{*}(\tau)(g)=\tau(g \circ f) \oplus \sigma(g) \quad(g \in C(Y)),
$$

where σ is any *-monomorphism corresponding to the trivial extension of $C(Y)$. We add that second direct sum summand in order to guarantee that the resulting map $f_{*}(\tau)$ is injective.

The BDF theory

Brief overview 2
Given two compact metric spaces X and Y, and a continuous map $f: X \rightarrow Y$, there is an induced map $f_{*}: \operatorname{Ext}(X) \rightarrow \operatorname{Ext}(Y)$ defined as

$$
f_{*}(\tau)(g)=\tau(g \circ f) \oplus \sigma(g) \quad(g \in C(Y)),
$$

where σ is any ${ }^{*}$-monomorphism corresponding to the trivial extension of $C(Y)$. We add that second direct sum summand in order to guarantee that the resulting map $f_{*}(\tau)$ is injective.

The zero element of $\operatorname{Ext}(X)$ can be constructed as follows: Take any infinite direct sum decomposition $\mathcal{H}=\bigoplus_{i=1}^{\infty} \mathcal{H}_{i}$, where each \mathcal{H}_{i} is infinite-dimensional, pick a countable dense subset $\left\{\xi_{i}: i \in \mathbb{N}\right\}$ of X and define $\sigma: C(X) \rightarrow \mathcal{B}(\mathcal{H})$ by

$$
\sigma(g)=\bigoplus_{i=1}^{\infty} g\left(\xi_{i}\right) I_{i}
$$

where I_{i} is the identity operator on \mathcal{H}_{i}.

The BDF theory

Crucial isomorphism

In $C(X)$ consider the relation of homotopy equivalence and let $\mathcal{G}_{0}(C(X))$ be the equivalence class of the constant one function. By $\pi^{1}(X)$ we denote the group $\mathcal{G}(C(X)) / \mathcal{G}_{0}(C(X))$ of homotopy classes of invertible functions.

The BDF theory

Crucial isomorphism

In $C(X)$ consider the relation of homotopy equivalence and let $\mathcal{G}_{0}(C(X))$ be the equivalence class of the constant one function. By $\pi^{1}(X)$ we denote the group $\mathcal{G}(C(X)) / \mathcal{G}_{0}(C(X))$ of homotopy classes of invertible functions.

Theorem (Brown, Douglas, Fillmore, 1977)

For any compact set $X \subset \mathbb{C}$, there is a well-defined map

$$
\gamma: \operatorname{Ext}(X) \longrightarrow \operatorname{Hom}\left(\pi^{1}(X), \mathbb{Z}\right), \quad \gamma[\tau]([f])=\operatorname{ind} \tau(f)
$$

which is a group isomorphism.

The BDF theory

Crucial isomorphism

In $C(X)$ consider the relation of homotopy equivalence and let $\mathcal{G}_{0}(C(X))$ be the equivalence class of the constant one function. By $\pi^{1}(X)$ we denote the group $\mathcal{G}(C(X)) / \mathcal{G}_{0}(C(X))$ of homotopy classes of invertible functions.

Theorem (Brown, Douglas, Fillmore, 1977)

For any compact set $X \subset \mathbb{C}$, there is a well-defined map

$$
\gamma: \operatorname{Ext}(X) \longrightarrow \operatorname{Hom}\left(\pi^{1}(X), \mathbb{Z}\right), \quad \gamma[\tau]([f])=\operatorname{ind} \tau(f)
$$

which is a group isomorphism.
This leads to the famous characterization of 'liftable' essentially normal operators. More generally: two essentially normal operators T_{1} and T_{2} are unitarily equivalent modulo compacts iff $\sigma_{\text {ess }}\left(T_{1}\right)=\sigma_{\text {ess }}\left(T_{2}\right)$ and $\operatorname{ind}\left(\lambda I-T_{1}\right)=\operatorname{ind}\left(\lambda I-T_{2}\right)$ for every $\lambda \notin \sigma_{\text {ess }}\left(T_{1}\right)$.

What kind of result we expect?

Assume that $(q(t))_{t \geqslant 0} \subset \mathcal{Q}(\mathcal{H})$ is a C_{0}-semigroup of normal elements of the Calkin algebra, and let A be its generator.

What kind of result we expect?

Assume that $(q(t))_{t \geqslant 0} \subset \mathcal{Q}(\mathcal{H})$ is a C_{0}-semigroup of normal elements of the Calkin algebra, and let A be its generator. We want to find a geometric condition on $\sigma(A)$ which is sufficient for the existence of a C_{0}-semigroup $(T(t))_{t \geqslant 0}$ of normal operators in $\mathcal{B}(\mathcal{H})$ such that $\pi T(t)=q(t)$ for $t \geqslant 0$.

What kind of result we expect?

Assume that $(q(t))_{t \geqslant 0} \subset \mathcal{Q}(\mathcal{H})$ is a C_{0}-semigroup of normal elements of the Calkin algebra, and let A be its generator. We want to find a geometric condition on $\sigma(A)$ which is sufficient for the existence of a C_{0}-semigroup $(T(t))_{t \geqslant 0}$ of normal operators in $\mathcal{B}(\mathcal{H})$ such that $\pi T(t)=q(t)$ for $t \geqslant 0$.

General strategy

What kind of result we expect?

Assume that $(q(t))_{t \geqslant 0} \subset \mathcal{Q}(\mathcal{H})$ is a C_{0}-semigroup of normal elements of the Calkin algebra, and let A be its generator. We want to find a geometric condition on $\sigma(A)$ which is sufficient for the existence of a C_{0}-semigroup $(T(t))_{t \geqslant 0}$ of normal operators in $\mathcal{B}(\mathcal{H})$ such that $\pi T(t)=q(t)$ for $t \geqslant 0$.

General strategy

STEP 1: With every such $(q(t))_{t \geqslant 0}$ we associate an extension of $C(\Omega)$, where Ω is a certain compact metric space defined exclusively in terms of $\sigma(A)$.

What kind of result we expect?

Assume that $(q(t))_{t \geqslant 0} \subset \mathcal{Q}(\mathcal{H})$ is a C_{0}-semigroup of normal elements of the Calkin algebra, and let A be its generator. We want to find a geometric condition on $\sigma(A)$ which is sufficient for the existence of a C_{0}-semigroup $(T(t))_{t \geqslant 0}$ of normal operators in $\mathcal{B}(\mathcal{H})$ such that $\pi T(t)=q(t)$ for $t \geqslant 0$.

General strategy

STEP 1: With every such $(q(t))_{t \geqslant 0}$ we associate an extension of $C(\Omega)$, where Ω is a certain compact metric space defined exclusively in terms of $\sigma(A)$.
Step 2: We show that BDF conditions imposed 'separately' on $q(t)$'s imply that our extension is in the kernel of a certain induced map.

What kind of result we expect?

Assume that $(q(t))_{t \geqslant 0} \subset \mathcal{Q}(\mathcal{H})$ is a C_{0}-semigroup of normal elements of the Calkin algebra, and let A be its generator. We want to find a geometric condition on $\sigma(A)$ which is sufficient for the existence of a C_{0}-semigroup $(T(t))_{t \geqslant 0}$ of normal operators in $\mathcal{B}(\mathcal{H})$ such that $\pi T(t)=q(t)$ for $t \geqslant 0$.

General strategy

STEP 1: With every such $(q(t))_{t \geqslant 0}$ we associate an extension of $C(\Omega)$, where Ω is a certain compact metric space defined exclusively in terms of $\sigma(A)$.
Step 2: We show that BDF conditions imposed 'separately' on $q(t)$'s imply that our extension is in the kernel of a certain induced map.
Step 3: Our extension is in the middle of Milnor's exact sequence and to show that it is trivial we need to guarantee that certain connecting maps are surjective (here we find a condition on $\sigma(A)$).

What kind of result we expect?

Assume that $(q(t))_{t \geqslant 0} \subset \mathcal{Q}(\mathcal{H})$ is a C_{0}-semigroup of normal elements of the Calkin algebra, and let A be its generator. We want to find a geometric condition on $\sigma(A)$ which is sufficient for the existence of a C_{0}-semigroup $(T(t))_{t \geqslant 0}$ of normal operators in $\mathcal{B}(\mathcal{H})$ such that $\pi T(t)=q(t)$ for $t \geqslant 0$.

General strategy

STEP 1: With every such $(q(t))_{t \geqslant 0}$ we associate an extension of $C(\Omega)$, where Ω is a certain compact metric space defined exclusively in terms of $\sigma(A)$.
Step 2: We show that BDF conditions imposed 'separately' on $q(t)$'s imply that our extension is in the kernel of a certain induced map.
Step 3: Our extension is in the middle of Milnor's exact sequence and to show that it is trivial we need to guarantee that certain connecting maps are surjective (here we find a condition on $\sigma(A)$).
Step 4: Once having a section witnessing the triviality of our extension, we use a lifting procedure, similar as in the classical BDF case, to produce an operator semigroup lift; sometimes we can even obtain a C_{0}-semigroup.

Building an extension

(a) Since there exists $\gamma<\infty$ such that $\operatorname{Re} \lambda \leqslant \gamma$ for each $\lambda \in \sigma(A)$, all the sets

$$
\Omega_{n}:=\overline{\exp \left(2^{-n} \sigma(A)\right)} \quad(n=0,1,2, \ldots)
$$

are compact subsets of \mathbb{C}.

Building an extension

(a) Since there exists $\gamma<\infty$ such that $\operatorname{Re} \lambda \leqslant \gamma$ for each $\lambda \in \sigma(A)$, all the sets

$$
\Omega_{n}:=\overline{\exp \left(2^{-n} \sigma(A)\right)} \quad(n=0,1,2, \ldots)
$$

are compact subsets of \mathbb{C}. Moreover, A is normal and if E^{A} is the spectral decomposition of A, then each $q(t)$ can be calculated via the functional calculus in $L_{\infty}\left(E^{A}\right)$ by

$$
q(t)=\int_{\sigma(A)} e^{t \lambda} \mathrm{~d} E^{A}(\lambda) \quad(t \geqslant 0)
$$

Building an extension

(a) Since there exists $\gamma<\infty$ such that $\operatorname{Re} \lambda \leqslant \gamma$ for each $\lambda \in \sigma(A)$, all the sets

$$
\Omega_{n}:=\overline{\exp \left(2^{-n} \sigma(A)\right)} \quad(n=0,1,2, \ldots)
$$

are compact subsets of \mathbb{C}. Moreover, A is normal and if E^{A} is the spectral decomposition of A, then each $q(t)$ can be calculated via the functional calculus in $L_{\infty}\left(E^{A}\right)$ by

$$
q(t)=\int_{\sigma(A)} e^{t \lambda} \mathrm{~d} E^{A}(\lambda) \quad(t \geqslant 0)
$$

Plainly, $q(s), q(t), q(t)^{*}$ commute for all $s, t \geqslant 0$, thus

$$
\mathcal{A}_{0}:=\mathrm{C}^{*}\left(\left\{q\left(2^{-n}\right): n=\infty, 0,1,2, \ldots\right\}\right)
$$

is commutative. Let Δ be its maximal ideal space.

Building an extension

(a) Since there exists $\gamma<\infty$ such that $\operatorname{Re} \lambda \leqslant \gamma$ for each $\lambda \in \sigma(A)$, all the sets

$$
\Omega_{n}:=\overline{\exp \left(2^{-n} \sigma(A)\right)} \quad(n=0,1,2, \ldots)
$$

are compact subsets of \mathbb{C}. Moreover, A is normal and if E^{A} is the spectral decomposition of A, then each $q(t)$ can be calculated via the functional calculus in $L_{\infty}\left(E^{A}\right)$ by

$$
q(t)=\int_{\sigma(A)} e^{t \lambda} \mathrm{~d} E^{A}(\lambda) \quad(t \geqslant 0)
$$

Plainly, $q(s), q(t), q(t)^{*}$ commute for all $s, t \geqslant 0$, thus

$$
\mathcal{A}_{0}:=\mathrm{C}^{*}\left(\left\{q\left(2^{-n}\right): n=\infty, 0,1,2, \ldots\right\}\right)
$$

is commutative. Let Δ be its maximal ideal space.
The joint spectrum of the set $\left\{q\left(2^{-n}\right): n=0,1, \ldots\right\}$ is a compact subset of \mathbb{C}^{∞} defined by

$$
\sigma_{\mathcal{A}_{0}}\left(q\left(2^{-n}\right): n=0,1, \ldots\right)=\left\{\left(\varphi\left(q\left(2^{-n}\right)\right)\right)_{n=0}^{\infty}: \varphi \in \Delta\right\} .
$$

Building an extension

Then, the map

$$
\Delta \ni \varphi \longmapsto\left(\varphi\left(q\left(2^{-n}\right)\right)\right)_{n=0}^{\infty}
$$

is a homeomorphism between Δ and $\sigma_{\mathcal{A}_{0}}\left(q\left(2^{-n}\right): n=0,1, \ldots\right)$.

Building an extension

Then, the map

$$
\Delta \ni \varphi \longmapsto\left(\varphi\left(q\left(2^{-n}\right)\right)\right)_{n=0}^{\infty}
$$

is a homeomorphism between Δ and $\sigma_{\mathcal{A}_{0}}\left(q\left(2^{-n}\right): n=0,1, \ldots\right)$.
A sequence $\boldsymbol{\lambda}=(\lambda)_{n=1}^{\infty} \in \mathbb{C}^{\infty}$ belongs to $\sigma_{\mathcal{A}_{0}}\left(q\left(2^{-n}\right): n \in \mathbb{N}\right)$ if and only if

$$
\begin{equation*}
q(\boldsymbol{\lambda}):=\sum_{n=0}^{\infty} 2^{-n} \frac{\left(\lambda_{n} I-q\left(2^{-n}\right)\right)^{*}\left(\lambda_{n} I-q\left(2^{-n}\right)\right)}{\left\|\lambda_{n} I-q\left(2^{-n}\right)\right\|^{2}} \tag{1}
\end{equation*}
$$

is not invertible in $\mathcal{Q}(\mathcal{H})$.

Building an extension

Then, the map

$$
\Delta \ni \varphi \longmapsto\left(\varphi\left(q\left(2^{-n}\right)\right)\right)_{n=0}^{\infty}
$$

is a homeomorphism between Δ and $\sigma_{\mathcal{A}_{0}}\left(q\left(2^{-n}\right): n=0,1, \ldots\right)$.
A sequence $\boldsymbol{\lambda}=(\lambda)_{n=1}^{\infty} \in \mathbb{C}^{\infty}$ belongs to $\sigma_{\mathcal{A}_{0}}\left(q\left(2^{-n}\right): n \in \mathbb{N}\right)$ if and only if

$$
\begin{equation*}
q(\boldsymbol{\lambda}):=\sum_{n=0}^{\infty} 2^{-n} \frac{\left(\lambda_{n} I-q\left(2^{-n}\right)\right)^{*}\left(\lambda_{n} I-q\left(2^{-n}\right)\right)}{\left\|\lambda_{n} I-q\left(2^{-n}\right)\right\|^{2}} \tag{1}
\end{equation*}
$$

is not invertible in $\mathcal{Q}(\mathcal{H})$.
Indeed, as each summand is a positive operator, we infer that for every linear multiplicative functional $\varphi \in \Delta$ we have $\varphi(q(\boldsymbol{\lambda}))=0$ iff $\varphi\left(q\left(2^{-n}\right)\right)=\lambda_{n}$ for each $n=0,1, \ldots$. Hence, if $q(\boldsymbol{\lambda})$ is not invertible we pick $\varphi \in \Delta$ so that $\varphi(q(\boldsymbol{\lambda}))=0$ to see that $\boldsymbol{\lambda}$ belongs to the joint spectrum. Conversely, if $q(\boldsymbol{\lambda})$ is invertible, then we have $\varphi(q(\boldsymbol{\lambda})) \neq 0$ for every $\varphi \in \Delta$, thus $\boldsymbol{\lambda}$ is not in the joint spectrum.

Building an extension

Fix $\boldsymbol{\lambda}=\left(\lambda_{n}\right)_{n=0}^{\infty} \in \mathbb{C}^{\infty}$. The operator $\left(\lambda_{n} I-q\left(2^{-n}\right)\right)^{*}\left(\lambda_{n} I-q\left(2^{-n}\right)\right)$ corresponds via functional calculus to the map $\phi_{n} \in L_{\infty}\left(E^{A}\right)$ given by

$$
\phi_{n}(z)=\left|\lambda_{n}-\exp \left(2^{-n} z\right)\right|^{2}
$$

Building an extension

Fix $\boldsymbol{\lambda}=\left(\lambda_{n}\right)_{n=0}^{\infty} \in \mathbb{C}^{\infty}$. The operator $\left(\lambda_{n} I-q\left(2^{-n}\right)\right)^{*}\left(\lambda_{n} I-q\left(2^{-n}\right)\right)$ corresponds via functional calculus to the map $\phi_{n} \in L_{\infty}\left(E^{A}\right)$ given by

$$
\phi_{n}(z)=\left|\lambda_{n}-\exp \left(2^{-n} z\right)\right|^{2}
$$

For every $z \in \sigma(A)$, we have $\operatorname{Re} z \leqslant \gamma$ and hence

$$
\left\|\phi_{n}\right\|_{\infty} \leqslant\left(e^{2^{-n} \gamma}+\left|\lambda_{n}\right|\right)^{2}
$$

which implies that each denominator in formula (1) is majorized by a constant (cannot become arbitrarily large after applying functional calculus and varying z over $\sigma(A)$).

Building an extension

Fix $\boldsymbol{\lambda}=\left(\lambda_{n}\right)_{n=0}^{\infty} \in \mathbb{C}^{\infty}$. The operator $\left(\lambda_{n} I-q\left(2^{-n}\right)\right)^{*}\left(\lambda_{n} I-q\left(2^{-n}\right)\right)$ corresponds via functional calculus to the map $\phi_{n} \in L_{\infty}\left(E^{A}\right)$ given by

$$
\phi_{n}(z)=\left|\lambda_{n}-\exp \left(2^{-n} z\right)\right|^{2}
$$

For every $z \in \sigma(A)$, we have $\operatorname{Re} z \leqslant \gamma$ and hence

$$
\left\|\phi_{n}\right\|_{\infty} \leqslant\left(e^{2^{-n} \gamma}+\left|\lambda_{n}\right|\right)^{2}
$$

which implies that each denominator in formula (1) is majorized by a constant (cannot become arbitrarily large after applying functional calculus and varying z over $\sigma(A)$). Hence, $q(\boldsymbol{\lambda})$ is noninvertible if and only if 0 lies in the closure of the range of the map

$$
\sigma(A) \ni z \longmapsto \sum_{n=0}^{\infty} 2^{-n} \frac{\phi_{n}(z)}{\left\|\phi_{n}\right\|_{\infty}}
$$

which implies that each λ_{n} must belong to the closure of $\exp \left(2^{-n} \sigma(A)\right)$ which is denoted by Ω_{n}.

Building an extension

Moreover, for any $n=0,1,2, \ldots$ we pick $z \in \sigma(A)$ so that both $\phi_{n}(z)$ and $\phi_{n+1}(z)$ are arbitrarily close to zero. Since $\exp \left(2^{-n-1} z\right)^{2}=\exp \left(2^{-n} z\right)$, we infer that for $q(\boldsymbol{\lambda})$ being noninvertible we also must have $\lambda_{n+1}^{2}=\lambda_{n}$ $(n=0,1, \ldots)$.

Building an extension

Moreover, for any $n=0,1,2, \ldots$ we pick $z \in \sigma(A)$ so that both $\phi_{n}(z)$ and $\phi_{n+1}(z)$ are arbitrarily close to zero. Since $\exp \left(2^{-n-1} z\right)^{2}=\exp \left(2^{-n} z\right)$, we infer that for $q(\boldsymbol{\lambda})$ being noninvertible we also must have $\lambda_{n+1}^{2}=\lambda_{n}$ $(n=0,1, \ldots)$.
Conversely, any sequence $\boldsymbol{\lambda}=\left(\lambda_{n}\right)_{n=0}^{\infty} \in \mathbb{C}^{\infty}$ satisfying $\lambda_{n} \in \Omega_{n}$ and $\lambda_{n+1}^{2}=\lambda_{n}$ for $n=0,1, \ldots$ produces a noninvertible operator $q(\boldsymbol{\lambda})$.

Building an extension

Moreover, for any $n=0,1,2, \ldots$ we pick $z \in \sigma(A)$ so that both $\phi_{n}(z)$ and $\phi_{n+1}(z)$ are arbitrarily close to zero. Since $\exp \left(2^{-n-1} z\right)^{2}=\exp \left(2^{-n} z\right)$, we infer that for $q(\boldsymbol{\lambda})$ being noninvertible we also must have $\lambda_{n+1}^{2}=\lambda_{n}$ $(n=0,1, \ldots)$.
Conversely, any sequence $\boldsymbol{\lambda}=\left(\lambda_{n}\right)_{n=0}^{\infty} \in \mathbb{C}^{\infty}$ satisfying $\lambda_{n} \in \Omega_{n}$ and $\lambda_{n+1}^{2}=\lambda_{n}$ for $n=0,1, \ldots$ produces a noninvertible operator $q(\boldsymbol{\lambda})$.
Conclusion: The identity map

$$
\mathrm{id}: \sigma_{\mathcal{A}_{0}}\left(q\left(2^{-n}\right): n=0,1, \ldots\right) \longrightarrow \lim _{\leftrightarrows} \Omega_{n}
$$

is bijective and hence a homeomorphism, as both topologies are the product topology. Consequently, Δ is homeomorphic to the projective (inverse) limit $\left\{\Omega_{n}, p_{n}\right\}_{n \geqslant 0}$, where $p_{n}(z)=z^{2}$ for each $n=0,1,2, \ldots$

Building an extension

Recall that the projective (inverse) limit of an inverse system $\left\{X_{n}, f_{n}\right\}_{n \geqslant 0}$, that is, a sequence of topological spaces and continuous maps $f_{n}: X_{n+1} \rightarrow X_{n}$, is defined as

$$
\lim _{\longleftarrow} X_{n}=\left\{\mathbf{x}=\left(x_{n}\right)_{n=0}^{\infty} \in \prod_{n=0}^{\infty} X_{n}: f_{n}\left(x_{n+1}\right)=x_{n} \text { for } n \geqslant 0\right\} .
$$

Building an extension

Recall that the projective (inverse) limit of an inverse system $\left\{X_{n}, f_{n}\right\}_{n \geqslant 0}$, that is, a sequence of topological spaces and continuous maps $f_{n}: X_{n+1} \rightarrow X_{n}$, is defined as

$$
\lim _{\leftarrow} X_{n}=\left\{\mathbf{x}=\left(x_{n}\right)_{n=0}^{\infty} \in \prod_{n=0}^{\infty} X_{n}: f_{n}\left(x_{n+1}\right)=x_{n} \text { for } n \geqslant 0\right\} .
$$

(b) Define

$$
\mathcal{E}:=\pi^{-1}\left(\mathcal{A}_{0}\right)
$$

a C^{*}-subalgebra of $\mathcal{B}(\mathcal{H})$.

Building an extension

Recall that the projective (inverse) limit of an inverse system $\left\{X_{n}, f_{n}\right\}_{n \geqslant 0}$, that is, a sequence of topological spaces and continuous maps $f_{n}: X_{n+1} \rightarrow X_{n}$, is defined as

$$
\lim _{\longleftarrow} X_{n}=\left\{\mathbf{x}=\left(x_{n}\right)_{n=0}^{\infty} \in \prod_{n=0}^{\infty} X_{n}: f_{n}\left(x_{n+1}\right)=x_{n} \text { for } n \geqslant 0\right\} .
$$

(b) Define

$$
\mathcal{E}:=\pi^{-1}\left(\mathcal{A}_{0}\right)
$$

a C^{*}-subalgebra of $\mathcal{B}(\mathcal{H})$. Let

$$
\mathcal{A}_{0} \ni q \longmapsto \widehat{q} \in C(\Delta)
$$

be the Gelfand transform on \mathcal{A}_{0}.

Building an extension

Recall that the projective (inverse) limit of an inverse system $\left\{X_{n}, f_{n}\right\}_{n \geqslant 0}$, that is, a sequence of topological spaces and continuous maps $f_{n}: X_{n+1} \rightarrow X_{n}$, is defined as

$$
\lim _{\leftarrow} X_{n}=\left\{\mathbf{x}=\left(x_{n}\right)_{n=0}^{\infty} \in \prod_{n=0}^{\infty} X_{n}: f_{n}\left(x_{n+1}\right)=x_{n} \text { for } n \geqslant 0\right\} .
$$

(b) Define

$$
\mathcal{E}:=\pi^{-1}\left(\mathcal{A}_{0}\right)
$$

a C ${ }^{*}$-subalgebra of $\mathcal{B}(\mathcal{H})$. Let

$$
\mathcal{A}_{0} \ni q \longmapsto \widehat{q} \in C(\Delta)
$$

be the Gelfand transform on \mathcal{A}_{0}.
Of course, $\mathcal{K}(\mathcal{H})$ forms an ideal in \mathcal{E}. For every $T \in \mathcal{E}$, we have $\pi(T) \in \mathcal{A}_{0}$ and each element in \mathcal{A}_{0} is of this form.

Building an extension

Recall that the projective (inverse) limit of an inverse system $\left\{X_{n}, f_{n}\right\}_{n \geqslant 0}$, that is, a sequence of topological spaces and continuous maps $f_{n}: X_{n+1} \rightarrow X_{n}$, is defined as

$$
\lim _{\longleftarrow} X_{n}=\left\{\mathbf{x}=\left(x_{n}\right)_{n=0}^{\infty} \in \prod_{n=0}^{\infty} X_{n}: f_{n}\left(x_{n+1}\right)=x_{n} \text { for } n \geqslant 0\right\} .
$$

(b) Define

$$
\mathcal{E}:=\pi^{-1}\left(\mathcal{A}_{0}\right)
$$

a C^{*}-subalgebra of $\mathcal{B}(\mathcal{H})$. Let

$$
\mathcal{A}_{0} \ni q \longmapsto \widehat{q} \in C(\Delta)
$$

be the Gelfand transform on \mathcal{A}_{0}.
Of course, $\mathcal{K}(\mathcal{H})$ forms an ideal in \mathcal{E}. For every $T \in \mathcal{E}$, we have $\pi(T) \in \mathcal{A}_{0}$ and each element in \mathcal{A}_{0} is of this form. Hence, the formula $\theta(T)=\widehat{\pi(T)}$ yields a *-homomorphism onto $C(\Delta)$. Obviously, $T \in \operatorname{ker} \theta$ iff $\pi(T)=0$, i.e. $T \in \mathcal{K}(\mathcal{H})$.

Building an extension

Summarizing, what we have proved is the following:

Building an extension

Summarizing, what we have proved is the following:

Proposition

Let $(q(t))_{t \geqslant 0} \subset \mathcal{Q}(\mathcal{H})$ be a C_{0}-semigroup of normal operators in the Calkin algebra. Let $\mathcal{A}_{0}=\mathrm{C}^{*}\left(\left\{q\left(2^{-n}\right): n=\infty, 0,1,2, \ldots\right\}\right)$ be the C^{*}-subalgebra of $\mathcal{Q}(\mathcal{H})$ generated by the identity and all $q\left(2^{-n}\right)$ for $n \in \mathbb{N}$, and let $\mathcal{E}=\pi^{-1}\left(\mathcal{A}_{0}\right)$.
(a) Let A be the generator of $(q(t))_{t \geqslant 0}$ and define

$$
\Omega_{n}=\overline{\exp \left(2^{-n} \sigma(A)\right)} \quad(n=0,1,2, \ldots)
$$

Then, \mathcal{A}_{0} is a commutative C^{*}-algebra and its maximal ideal space Δ is homeomorphic to the projective limit of the inverse system $\left\{\Omega_{n}, p_{n}\right\}_{n \geqslant 0}$, where $p_{n}(z)=z^{2}$ for each $n=0,1,2, \ldots$

Building an extension

Proposition (continued)

(b) The C^{*}-algebra \mathcal{E} contains $\mathcal{K}(\mathcal{H})$ as an ideal and there is an exact sequence

$$
0 \longrightarrow \mathcal{K}(\mathcal{H}) \stackrel{\iota}{\longrightarrow} \mathcal{E} \xrightarrow{\theta} C(\Delta) \longrightarrow 0,
$$

where $\theta(T)=\widehat{\pi(T)}$ and $\mathcal{A}_{0} \ni q \longmapsto \widehat{q} \in C(\Delta)$ is the Gelfand transform.

Building an extension

Proposition (continued)

(b) The C^{*}-algebra \mathcal{E} contains $\mathcal{K}(\mathcal{H})$ as an ideal and there is an exact sequence

$$
0 \longrightarrow \mathcal{K}(\mathcal{H}) \xrightarrow{\iota} \mathcal{E} \xrightarrow{\theta} C(\Delta) \longrightarrow 0
$$

where $\theta(T)=\widehat{\pi(T)}$ and $\mathcal{A}_{0} \ni q \longmapsto \widehat{q} \in C(\Delta)$ is the Gelfand transform.

This accomplishes Step 1 of our strategy: With every $(q(t))_{t \geqslant 0}$ as before we associate an extension of $C(\Omega)$, where Ω is a certain compact metric space defined exclusively in terms of $\sigma(A)$.

Proceeding to Step 2

We know that every normal C_{0}-semigroup $(q(t))_{t \geqslant 0}$ in $\mathcal{Q}(\mathcal{H})$ generates an extension of $C(\Delta)$ by $\mathcal{K}(\mathcal{H})$, where Δ is a compact metric space depending only on the generator A of $(q(t))_{t \geqslant 0}$. Recall that

$$
\Delta \approx \lim _{\curvearrowleft}\left(\Omega_{n}, p_{n}\right) \quad \text { and } \quad \Omega_{n}=\overline{\exp \left(2^{-n} \sigma(A)\right)} .
$$

Proceeding to Step 2

We know that every normal C_{0}-semigroup $(q(t))_{t \geqslant 0}$ in $\mathcal{Q}(\mathcal{H})$ generates an extension of $C(\Delta)$ by $\mathcal{K}(\mathcal{H})$, where Δ is a compact metric space depending only on the generator A of $(q(t))_{t \geqslant 0}$. Recall that

$$
\Delta \approx \lim _{\curvearrowleft}\left(\Omega_{n}, p_{n}\right) \quad \text { and } \quad \Omega_{n}=\overline{\exp \left(2^{-n} \sigma(A)\right)}
$$

Suppose $\left\{X_{n}, p_{n}\right\}_{n=0}^{\infty}$ is an inverse system of compact metric spaces. Let $X=\lim _{\leftrightarrows} X_{n}$ and $q_{n}: X \rightarrow X_{n}$ stand for the coordinate maps, for $n \in \mathbb{N}_{0}$, so that $p_{n} q_{n+1}=q_{n}$. Hence, we have another inverse system of groups $\left\{\operatorname{Ext}\left(X_{n}\right), p_{n *}\right\}_{n=0}^{\infty}$. Since $p_{n *} q_{(n+1) *}=q_{n *}$, we can define an induced map $P: \operatorname{Ext}(X) \rightarrow \lim _{\leftrightarrows}^{\operatorname{Ext}}\left(X_{n}\right)$ by the formula

$$
P(\tau)=\left(q_{n *} \tau\right)_{n=0}^{\infty}
$$

The induced map is always surjective, but in general not injective.

Milnor's exact sequence

J. Milnor, On the Steenrod homology theory (first distributed 1961), in: S. Ferry, A. Ranicki, J. Rosenberg (Eds.), Novikov Conjectures, Index Theorems, and Rigidity: Oberwolfach 1993, London Mathematical Society Lecture Note Series, pp. 79-96, Cambridge University Press, Cambridge 1995.

For any homology theory satisfying certain general Steenrod's axioms, Milnor proved what follows:

Milnor's exact sequence

J. Milnor, On the Steenrod homology theory (first distributed 1961), in: S. Ferry, A. Ranicki, J. Rosenberg (Eds.), Novikov Conjectures, Index Theorems, and Rigidity: Oberwolfach 1993, London Mathematical Society Lecture Note Series, pp. 79-96, Cambridge University Press, Cambridge 1995.

For any homology theory satisfying certain general Steenrod's axioms, Milnor proved what follows:

Theorem (Milnor, 1961)

For any inverse system $\left\{X_{n}\right\}$ of compact metric spaces, and any $k \in \mathbb{Z}$, there exists an exact sequence

$$
0 \longrightarrow \lim _{\longleftarrow}^{(1)} \operatorname{Ext}_{k+1}\left(X_{n}\right) \longrightarrow \operatorname{Ext}_{k}\left(\lim X_{n}\right) \xrightarrow{P} \lim _{\leftrightarrows}^{\operatorname{Ext}_{k}\left(X_{n}\right) \longrightarrow 0, ~}
$$

where $\lim _{\leftarrow}{ }^{(1)}$ is the first derived functor of inverse limit.

Conditions on the kernel

Therefore, we can ask: Given a C_{0}-semigroup in the Calkin algebra, when does the resulting extension of Ω actually land in the kernel from the Milnor's exact sequence?

Conditions on the kernel

Therefore, we can ask: Given a C_{0}-semigroup in the Calkin algebra, when does the resulting extension of Ω actually land in the kernel from the Milnor's exact sequence?

Proposition

Let $(q(t))_{t \geqslant 0} \subset \mathcal{Q}(\mathcal{H})$ be a C_{0}-semigroup of normal operators and let

$$
P: \operatorname{Ext}(\Omega) \longrightarrow \underset{\longleftrightarrow}{\lim } \operatorname{Ext}\left(\Omega_{n}\right), \quad \text { where } \Omega=\underset{\swarrow}{\lim } \Omega_{n} \approx \Delta,
$$

be the induced surjective map. Then, $(\mathcal{E}, \theta) \in$ ker P if and only if

$$
\operatorname{ind}\left(\lambda I-q\left(2^{-n}\right)\right)=0 \quad \text { for all } n \in \mathbb{N}_{0}, \lambda \notin \Omega_{n}
$$

Conditions on the kernel

Therefore, we can ask: Given a C_{0}-semigroup in the Calkin algebra, when does the resulting extension of Ω actually land in the kernel from the Milnor's exact sequence?

Proposition

Let $(q(t))_{t \geqslant 0} \subset \mathcal{Q}(\mathcal{H})$ be a C_{0}-semigroup of normal operators and let

$$
P: \operatorname{Ext}(\Omega) \longrightarrow \underset{\leftrightarrows}{\lim } \operatorname{Ext}\left(\Omega_{n}\right), \quad \text { where } \Omega=\underset{\leftrightarrows}{\lim } \Omega_{n} \approx \Delta,
$$

be the induced surjective map. Then, $(\mathcal{E}, \theta) \in \operatorname{ker} P$ if and only if

$$
\operatorname{ind}\left(\lambda I-q\left(2^{-n}\right)\right)=0 \quad \text { for all } n \in \mathbb{N}_{0}, \lambda \notin \Omega_{n}
$$

Consequently, if we start with a collection of normal operators $(T(t))_{t \geqslant 0} \subset \mathcal{B}(\mathcal{H})$ and consider the C_{0}-semigroup $(\pi T(t))_{t \geqslant 0}$, we automatically have an extension from the Milnor kernel.

Conditions on the kernel

Therefore, we can ask: Given a C_{0}-semigroup in the Calkin algebra, when does the resulting extension of Ω actually land in the kernel from the Milnor's exact sequence?

Proposition

Let $(q(t))_{t \geqslant 0} \subset \mathcal{Q}(\mathcal{H})$ be a C_{0}-semigroup of normal operators and let

$$
P: \operatorname{Ext}(\Omega) \longrightarrow \underset{\leftrightarrows}{\lim } \operatorname{Ext}\left(\Omega_{n}\right), \quad \text { where } \Omega=\underset{\leftrightarrows}{\lim } \Omega_{n} \approx \Delta,
$$

be the induced surjective map. Then, $(\mathcal{E}, \theta) \in \operatorname{ker} P$ if and only if

$$
\operatorname{ind}\left(\lambda I-q\left(2^{-n}\right)\right)=0 \quad \text { for all } n \in \mathbb{N}_{0}, \lambda \notin \Omega_{n}
$$

Consequently, if we start with a collection of normal operators $(T(t))_{t \geqslant 0} \subset \mathcal{B}(\mathcal{H})$ and consider the C_{0}-semigroup $(\pi T(t))_{t \geqslant 0}$, we automatically have an extension from the Milnor kernel.
This accomplishes Step 2: We show that BDF conditions imposed 'separately' on $q(t)$'s imply that we land in Milnor's kernel.

Suspensions

Recall that for any compact metric space X, the cone $C X$ over X is obtained from $X \times I$ by collapsing $X \times\{0\}$ to a single point, where $I=[0,1]$. The suspension $S X$ is obtained from $X \times I$ by collapsing $X \times\{0\}$ and $X \times\{1\}$ to two distinct points.

Suspensions

Recall that for any compact metric space X, the cone $C X$ over X is obtained from $X \times I$ by collapsing $X \times\{0\}$ to a single point, where $I=[0,1]$. The suspension $S X$ is obtained from $X \times I$ by collapsing $X \times\{0\}$ and $X \times\{1\}$ to two distinct points.

The extension functor is defined for ranks $q \leqslant 1$ by
$\operatorname{Ext}_{q}(X)=\operatorname{Ext}\left(S^{1-q} X\right)$. It was shown by BDF that, analogously to Bott's periodicity in K-theory, there exist isomorphisms

$$
\operatorname{Per}_{*}: \operatorname{Ext}_{q-2}(X) \longrightarrow \operatorname{Ext}_{q}(X) \quad(r \leqslant 1)
$$

This allows us to extend the definition of Ext to all integer dimensions:

$$
\operatorname{Ext}_{q}(X)= \begin{cases}\operatorname{Ext}(X) & \text { if } q \text { is odd } \\ \operatorname{Ext}(S X) & \text { if } q \text { is even }\end{cases}
$$

The derived functor

By definition, the functor $\lim ^{(1)}$ applied to an inverse system of groups $\left\{G_{n}, p_{n}\right\}_{n=0}^{\infty}$ returns the cokernel of the map

$$
\prod G_{n} \ni\left(a_{0}, a_{1}, \ldots\right) \stackrel{d}{\longmapsto}\left(a_{0}-p_{0}\left(a_{1}\right), a_{1}-p_{1}\left(a_{2}\right), \ldots\right)
$$

defined on the full direct product of all the G_{n}. That is,

$$
\lim _{\leftarrow}^{(1)} G_{n}=\prod G_{n} / d\left(\prod G_{n}\right) .
$$

The derived functor

By definition, the functor $\lim ^{(1)}$ applied to an inverse system of groups $\left\{G_{n}, p_{n}\right\}_{n=0}^{\infty}$ returns the cokernel of the map

$$
\prod G_{n} \ni\left(a_{0}, a_{1}, \ldots\right) \stackrel{d}{\longmapsto}\left(a_{0}-p_{0}\left(a_{1}\right), a_{1}-p_{1}\left(a_{2}\right), \ldots\right)
$$

defined on the full direct product of all the G_{n}. That is,

$$
\lim _{\leftarrow}^{(1)} G_{n}=\prod G_{n} / d\left(\prod G_{n}\right) .
$$

Recall Milnor's exact sequence in our context:

$$
0 \longrightarrow \lim _{\leftarrow}^{(1)} \operatorname{Ext}\left(S \Omega_{n}\right) \longrightarrow \operatorname{Ext}(\Omega) \xrightarrow{P} \underset{\longleftrightarrow}{\lim } \operatorname{Ext}\left(\Omega_{n}\right) \longrightarrow 0,
$$

The derived functor

By definition, the functor $\lim { }^{(1)}$ applied to an inverse system of groups $\left\{G_{n}, p_{n}\right\}_{n=0}^{\infty}$ returns the cokernel of the map

$$
\prod G_{n} \ni\left(a_{0}, a_{1}, \ldots\right) \stackrel{d}{\longmapsto}\left(a_{0}-p_{0}\left(a_{1}\right), a_{1}-p_{1}\left(a_{2}\right), \ldots\right)
$$

defined on the full direct product of all the G_{n}. That is,

$$
\lim ^{(1)} G_{n}=\prod G_{n} / d\left(\prod G_{n}\right) .
$$

Recall Milnor's exact sequence in our context:

$$
0 \longrightarrow \lim ^{(1)} \operatorname{Ext}\left(S \Omega_{n}\right) \longrightarrow \operatorname{Ext}(\Omega) \xrightarrow{P} \underset{\longleftrightarrow}{\lim } \operatorname{Ext}\left(\Omega_{n}\right) \longrightarrow 0,
$$

In Step 2 we have shown that under natural BDF conditions, our extension (an element of $\operatorname{Ext}(\Omega)$) always lands up in the kernel of P.

The derived functor

By definition, the functor $\lim ^{(1)}$ applied to an inverse system of groups $\left\{G_{n}, p_{n}\right\}_{n=0}^{\infty}$ returns the cokernel of the map

$$
\prod G_{n} \ni\left(a_{0}, a_{1}, \ldots\right) \stackrel{d}{\longmapsto}\left(a_{0}-p_{0}\left(a_{1}\right), a_{1}-p_{1}\left(a_{2}\right), \ldots\right)
$$

defined on the full direct product of all the G_{n}. That is,

$$
\lim ^{(1)} G_{n}=\prod G_{n} / d\left(\prod G_{n}\right) .
$$

Recall Milnor's exact sequence in our context:

$$
0 \longrightarrow \lim _{\longleftrightarrow}^{(1)} \operatorname{Ext}\left(S \Omega_{n}\right) \longrightarrow \operatorname{Ext}(\Omega) \xrightarrow{P} \underset{\longleftrightarrow}{\lim } \operatorname{Ext}\left(\Omega_{n}\right) \longrightarrow 0,
$$

In Step 2 we have shown that under natural BDF conditions, our extension (an element of $\operatorname{Ext}(\Omega)$) always lands up in the kernel of P. Hence, in order to conclude its triviality it suffices to know that the first derived functor above collapses (is trivial).

Triviality of the derived functor

In general, in the category of groups, it is known that lim ${ }^{(1)}$ is trivial provided that:

Triviality of the derived functor

In general, in the category of groups, it is known that lim ${ }^{(1)}$ is trivial provided that:

- all the connecting maps are surjective;

Triviality of the derived functor

In general, in the category of groups, it is known that lim ${ }^{(1)}$ is trivial provided that:

- all the connecting maps are surjective;
- more generally, if the inverse system satisfies the Mittag-Leffler condition: for each $m \in \mathbb{N}$ there is $k_{m} \geqslant m$ such that for every $j \geqslant k_{m}$ we have $\operatorname{im} f_{m}^{k_{m}}=\operatorname{im} f_{m}^{j}$ (where $f_{m}^{j}: G_{j} \rightarrow G_{m}$ are natural compositions of the connecting maps).

Triviality of the derived functor

In general, in the category of groups, it is known that $\lim ^{(1)}$ is trivial provided that:

- all the connecting maps are surjective;
- more generally, if the inverse system satisfies the Mittag-Leffler condition: for each $m \in \mathbb{N}$ there is $k_{m} \geqslant m$ such that for every $j \geqslant k_{m}$ we have $\operatorname{im} f_{m}^{k_{m}}=\operatorname{im} f_{m}^{j}$ (where $f_{m}^{j}: G_{j} \rightarrow G_{m}$ are natural compositions of the connecting maps).
In our case, it is enough to know that for n sufficiently large the connecting homomorphism

$$
\left(S p_{n}\right)_{*}: \operatorname{Ext}_{2}\left(\Omega_{n+1}\right) \rightarrow \operatorname{Ext}_{2}\left(\Omega_{n}\right)
$$

is surjective.

Triviality of the derived functor

In general, in the category of groups, it is known that $\lim ^{(1)}$ is trivial provided that:

- all the connecting maps are surjective;
- more generally, if the inverse system satisfies the Mittag-Leffler condition: for each $m \in \mathbb{N}$ there is $k_{m} \geqslant m$ such that for every $j \geqslant k_{m}$ we have $\operatorname{im} f_{m}^{k_{m}}=\operatorname{im} f_{m}^{j}$ (where $f_{m}^{j}: G_{j} \rightarrow G_{m}$ are natural compositions of the connecting maps).
In our case, it is enough to know that for n sufficiently large the connecting homomorphism

$$
\left(S p_{n}\right)_{*}: \operatorname{Ext}_{2}\left(\Omega_{n+1}\right) \rightarrow \operatorname{Ext}_{2}\left(\Omega_{n}\right)
$$

is surjective.
We have $\left(S p_{n}\right)_{*} \tau(g)=\tau\left(g \circ S p_{n}\right)$ for $g \in C\left(S \Omega_{n}\right)$. Fix any $\lambda \in \operatorname{Ext}_{2}\left(\Omega_{n}\right)$. Our goal is to find a ${ }^{*}$-monomorphism $\tau: C\left(S \Omega_{n+1}\right) \rightarrow \mathcal{Q}(\mathcal{H})$ such that

$$
\begin{equation*}
\tau\left(g \circ S p_{n}\right)=\lambda(g) \quad \text { for every } g \in C\left(S \Omega_{n}\right), \tag{2}
\end{equation*}
$$

where the equality is understood as unitary equivalence between the both sides regarded as *-homomorphisms on $C\left(S \Omega_{n}\right)$.

Twisting maneuver

Recall that we want: $\tau\left(g \circ S p_{n}\right)=\lambda(g)$ for every $g \in C\left(S \Omega_{n}\right)$. Functions of the form $g \circ S p_{n}$ preserve antipodal points, i.e.

$$
\left(g \circ S p_{n}\right)([x, t])=\left(g \circ S p_{n}\right)([-x, t]), \quad \text { whenever }[x, t],[-x, t] \in S \Omega_{n+1}
$$

We want to enlarge this subclass of functions from $C\left(S \Omega_{n+1}\right)$.

Twisting maneuver

Recall that we want: $\tau\left(g \circ S p_{n}\right)=\lambda(g)$ for every $g \in C\left(S \Omega_{n}\right)$. Functions of the form $g \circ S p_{n}$ preserve antipodal points, i.e.

$$
\left(g \circ S p_{n}\right)([x, t])=\left(g \circ S p_{n}\right)([-x, t]), \quad \text { whenever }[x, t],[-x, t] \in S \Omega_{n+1}
$$

We want to enlarge this subclass of functions from $C\left(S \Omega_{n+1}\right)$.
Fix $n \in \mathbb{N}_{0}$ and define:

- $\mathcal{S}_{\alpha}=\left\{\left[r e^{\mathrm{i} \alpha}, t\right] \in S \Omega_{n}: r>0,0<t<1\right\}$ for $\alpha \in[0,2 \pi)$,

Twisting maneuver

Recall that we want: $\tau\left(g \circ S p_{n}\right)=\lambda(g)$ for every $g \in C\left(S \Omega_{n}\right)$. Functions of the form $g \circ S p_{n}$ preserve antipodal points, i.e.

$$
\left(g \circ S p_{n}\right)([x, t])=\left(g \circ S p_{n}\right)([-x, t]), \quad \text { whenever }[x, t],[-x, t] \in S \Omega_{n+1}
$$

We want to enlarge this subclass of functions from $C\left(S \Omega_{n+1}\right)$.
Fix $n \in \mathbb{N}_{0}$ and define:

- $\mathcal{S}_{\alpha}=\left\{\left[r e^{\mathrm{i} \alpha}, t\right] \in S \Omega_{n}: r>0,0<t<1\right\}$ for $\alpha \in[0,2 \pi)$,
- $\mathcal{R}_{ \pm}=\left\{\left[\pm r e^{\mathrm{i} \alpha / 2}, t\right] \in S \Omega_{n+1}: r>0,0<t<1\right\}$,

Twisting maneuver

Recall that we want: $\tau\left(g \circ S p_{n}\right)=\lambda(g)$ for every $g \in C\left(S \Omega_{n}\right)$. Functions of the form $g \circ S p_{n}$ preserve antipodal points, i.e.

$$
\left(g \circ S p_{n}\right)([x, t])=\left(g \circ S p_{n}\right)([-x, t]), \quad \text { whenever }[x, t],[-x, t] \in S \Omega_{n+1}
$$

We want to enlarge this subclass of functions from $C\left(S \Omega_{n+1}\right)$.
Fix $n \in \mathbb{N}_{0}$ and define:

- $\mathcal{S}_{\alpha}=\left\{\left[r e^{\mathrm{i} \alpha}, t\right] \in S \Omega_{n}: r>0,0<t<1\right\}$ for $\alpha \in[0,2 \pi)$,
- $\mathcal{R}_{ \pm}=\left\{\left[\pm r e^{\mathrm{i} \alpha / 2}, t\right] \in S \Omega_{n+1}: r>0,0<t<1\right\}$,
- $\mathcal{R}^{\prime}=\left\{[x, t] \in \mathcal{R}_{+} \cup \mathcal{R}_{-}:[-x, t] \in S \Omega_{n+1}\right\}$,

Twisting maneuver

Recall that we want: $\tau\left(g \circ S p_{n}\right)=\lambda(g)$ for every $g \in C\left(S \Omega_{n}\right)$. Functions of the form $g \circ S p_{n}$ preserve antipodal points, i.e.

$$
\left(g \circ S p_{n}\right)([x, t])=\left(g \circ S p_{n}\right)([-x, t]), \quad \text { whenever }[x, t],[-x, t] \in S \Omega_{n+1}
$$

We want to enlarge this subclass of functions from $C\left(S \Omega_{n+1}\right)$.
Fix $n \in \mathbb{N}_{0}$ and define:

- $\mathcal{S}_{\alpha}=\left\{\left[r e^{\mathrm{i} \alpha}, t\right] \in S \Omega_{n}: r>0,0<t<1\right\}$ for $\alpha \in[0,2 \pi)$,
- $\mathcal{R}_{ \pm}=\left\{\left[\pm r e^{\mathrm{i} \alpha / 2}, t\right] \in S \Omega_{n+1}: r>0,0<t<1\right\}$,
- $\mathcal{R}^{\prime}=\left\{[x, t] \in \mathcal{R}_{+} \cup \mathcal{R}_{-}:[-x, t] \in S \Omega_{n+1}\right\}$,
- $\mathcal{A}_{0}=\left\{f \in C\left(S \Omega_{n+1}\right): f([x, t])=f([-x, t])\right.$ for every $\left.[x, t] \in \mathcal{R}^{\prime}\right\}$,

Twisting maneuver

Recall that we want: $\tau\left(g \circ S p_{n}\right)=\lambda(g)$ for every $g \in C\left(S \Omega_{n}\right)$. Functions of the form $g \circ S p_{n}$ preserve antipodal points, i.e.

$$
\left(g \circ S p_{n}\right)([x, t])=\left(g \circ S p_{n}\right)([-x, t]), \quad \text { whenever }[x, t],[-x, t] \in S \Omega_{n+1}
$$

We want to enlarge this subclass of functions from $C\left(S \Omega_{n+1}\right)$.
Fix $n \in \mathbb{N}_{0}$ and define:

- $\mathcal{S}_{\alpha}=\left\{\left[r e^{\mathrm{i} \alpha}, t\right] \in S \Omega_{n}: r>0,0<t<1\right\}$ for $\alpha \in[0,2 \pi)$,
- $\mathcal{R}_{ \pm}=\left\{\left[\pm r e^{\mathrm{i} \alpha / 2}, t\right] \in S \Omega_{n+1}: r>0,0<t<1\right\}$,
- $\mathcal{R}^{\prime}=\left\{[x, t] \in \mathcal{R}_{+} \cup \mathcal{R}_{-}:[-x, t] \in S \Omega_{n+1}\right\}$,
- $\mathcal{A}_{0}=\left\{f \in C\left(S \Omega_{n+1}\right): f([x, t])=f([-x, t])\right.$ for every $\left.[x, t] \in \mathcal{R}^{\prime}\right\}$,
- $\mathcal{A}_{0} \cong C\left(S \Omega_{n+1}^{\sim}\right)$, where $S \Omega_{n+1}^{\sim}=S \Omega_{n+1} / \sim$ is the quotient space defined by the relation $\left[r e^{\mathrm{i} \alpha / 2}, t\right] \sim\left[-r e^{\mathrm{i} \alpha / 2}, t\right]$.

Twisting maneuver

Recall that we want: $\tau\left(g \circ S p_{n}\right)=\lambda(g)$ for every $g \in C\left(S \Omega_{n}\right)$. Functions of the form $g \circ S p_{n}$ preserve antipodal points, i.e.

$$
\left(g \circ S p_{n}\right)([x, t])=\left(g \circ S p_{n}\right)([-x, t]), \quad \text { whenever }[x, t],[-x, t] \in S \Omega_{n+1}
$$

We want to enlarge this subclass of functions from $C\left(S \Omega_{n+1}\right)$.
Fix $n \in \mathbb{N}_{0}$ and define:

- $\mathcal{S}_{\alpha}=\left\{\left[r e^{\mathrm{i} \alpha}, t\right] \in S \Omega_{n}: r>0,0<t<1\right\}$ for $\alpha \in[0,2 \pi)$,
- $\mathcal{R}_{ \pm}=\left\{\left[\pm r e^{\mathrm{i} \alpha / 2}, t\right] \in S \Omega_{n+1}: r>0,0<t<1\right\}$,
- $\mathcal{R}^{\prime}=\left\{[x, t] \in \mathcal{R}_{+} \cup \mathcal{R}_{-}:[-x, t] \in S \Omega_{n+1}\right\}$,
- $\mathcal{A}_{0}=\left\{f \in C\left(S \Omega_{n+1}\right): f([x, t])=f([-x, t])\right.$ for every $\left.[x, t] \in \mathcal{R}^{\prime}\right\}$,
- $\mathcal{A}_{0} \cong C\left(S \Omega_{n+1}^{\sim}\right)$, where $S \Omega_{n+1}^{\sim}=S \Omega_{n+1} / \sim$ is the quotient space defined by the relation $\left[r e^{\mathrm{i} \alpha / 2}, t\right] \sim\left[-r e^{\mathrm{i} \alpha / 2}, t\right]$.
By using a 'twisting maneuver' we can reduce the requirement of preserving antipodal points to just those pairs which correspond to just one direction, namely, $\alpha / 2$.

Twisting maneuver

Procedure:

- $\mathbb{T}_{r}=\left\{z \in \Omega_{n+1}:|z|=r\right\} ;$

Twisting maneuver

Procedure:

- $\mathbb{T}_{r}=\left\{z \in \Omega_{n+1}:|z|=r\right\} ;$
- cut \mathbb{T}_{r} at the two antipodal points $\pm r e^{\mathrm{i} \alpha / 2}$, twist both parts to circles of radii r^{2} by identifying the cutting points, and glue them together at the one point corresponding to $\pm r e^{\mathrm{i} \alpha / 2}$;

Twisting maneuver

Procedure:

- $\mathbb{T}_{r}=\left\{z \in \Omega_{n+1}:|z|=r\right\}$;
- cut \mathbb{T}_{r} at the two antipodal points $\pm r e^{\mathrm{i} \alpha / 2}$, twist both parts to circles of radii r^{2} by identifying the cutting points, and glue them together at the one point corresponding to $\pm r e^{\mathrm{i} \alpha / 2}$;
- any function on \mathbb{T}_{r} which preserves just one pair of antipodal points can be now identified with a function on $\mathbb{T}_{r^{2}} \vee \mathbb{T}_{r^{2}}$ which preserves all pairs of antipodal points. We can extend this procedure naturally to the suspension $S \Omega_{n+1}$;

Twisting maneuver

Procedure:

- $\mathbb{T}_{r}=\left\{z \in \Omega_{n+1}:|z|=r\right\}$;
- cut \mathbb{T}_{r} at the two antipodal points $\pm r e^{\mathrm{i} \alpha / 2}$, twist both parts to circles of radii r^{2} by identifying the cutting points, and glue them together at the one point corresponding to $\pm r e^{\mathrm{i} \alpha / 2}$;
- any function on \mathbb{T}_{r} which preserves just one pair of antipodal points can be now identified with a function on $\mathbb{T}_{r^{2}} \vee \mathbb{T}_{r^{2}}$ which preserves all pairs of antipodal points. We can extend this procedure naturally to the suspension $S \Omega_{n+1}$;
- let $T_{ \pm}$be the 'upper'/'lower' semicircles of the unit circle \mathbb{T} which are determined by the antipodal points $\pm e^{\mathrm{i} \alpha / 2}$, that is,

$$
T_{+}=\left\{e^{\mathrm{i}(\alpha / 2+t \pi)}: 0 \leqslant t<1\right\} \text { and } T_{-}=\mathbb{T} \backslash T_{+} ;
$$

Twisting maneuver

Procedure:

- $\mathbb{T}_{r}=\left\{z \in \Omega_{n+1}:|z|=r\right\} ;$
- cut \mathbb{T}_{r} at the two antipodal points $\pm r e^{\mathrm{i} \alpha / 2}$, twist both parts to circles of radii r^{2} by identifying the cutting points, and glue them together at the one point corresponding to $\pm r e^{\mathrm{i} \alpha / 2}$;
- any function on \mathbb{T}_{r} which preserves just one pair of antipodal points can be now identified with a function on $\mathbb{T}_{r^{2}} \vee \mathbb{T}_{r^{2}}$ which preserves all pairs of antipodal points. We can extend this procedure naturally to the suspension $S \Omega_{n+1}$;
- let $T_{ \pm}$be the 'upper'/'lower' semicircles of the unit circle \mathbb{T} which are determined by the antipodal points $\pm e^{\mathrm{i} \alpha / 2}$, that is,

$$
T_{+}=\left\{e^{\mathrm{i}(\alpha / 2+t \pi)}: 0 \leqslant t<1\right\} \text { and } T_{-}=\mathbb{T} \backslash T_{+}
$$

- for $x \in \Omega_{n}$, let \sqrt{x} be the set of square roots of x, and let $s_{0}(x) \in \sqrt{x}$ be determined by the condition

$$
s_{0}(x) \in \begin{cases}\sqrt{|x|} T_{+} & \text {if } \sqrt{|x|} T_{+} \cap \Omega_{n+1} \neq \varnothing \\ \sqrt{|x|} T_{-} & \text {otherwise }\end{cases}
$$

Twisting maneuver

- We have defined

$$
s_{0}(x) \in \begin{cases}\sqrt{|x|} T_{+} & \text {if } \sqrt{|x|} T_{+} \cap \Omega_{n+1} \neq \varnothing \\ \sqrt{|x|} T_{-} & \text {otherwise }\end{cases}
$$

Twisting maneuver

- We have defined

$$
s_{0}(x) \in \begin{cases}\sqrt{|x|} T_{+} & \text {if } \sqrt{|x|} T_{+} \cap \Omega_{n+1} \neq \varnothing \\ \sqrt{|x|} T_{-} & \text {otherwise }\end{cases}
$$

and we define $s_{1}(x)$ similarly by swapping T_{+}and T_{-}.

Twisting maneuver

- We have defined

$$
s_{0}(x) \in \begin{cases}\sqrt{|x|} T_{+} & \text {if } \sqrt{|x|} T_{+} \cap \Omega_{n+1} \neq \varnothing \\ \sqrt{|x|} T_{-} & \text {otherwise }\end{cases}
$$

and we define $s_{1}(x)$ similarly by swapping T_{+}and T_{-}.

- Then, for $j=0,1$ and $f \in \mathcal{A}_{0}$, we set

$$
\Delta_{j} f([x, t])=f\left(\left[s_{j}(x), t\right]\right) \quad\left([x, t] \in S \Omega_{n}\right)
$$

For any set $E \subseteq \mathbb{C}$, we denote by $\mathrm{A}(E)$ the set of those $z \in E$ for which $-z \in E$. That is, $\mathrm{A}(E)$ consists of points z which belong to E together with their antipode.

Twisting maneuver

- We have defined

$$
s_{0}(x) \in \begin{cases}\sqrt{|x|} T_{+} & \text {if } \sqrt{|x|} T_{+} \cap \Omega_{n+1} \neq \varnothing \\ \sqrt{|x|} T_{-} & \text {otherwise }\end{cases}
$$

and we define $s_{1}(x)$ similarly by swapping T_{+}and T_{-}.

- Then, for $j=0,1$ and $f \in \mathcal{A}_{0}$, we set

$$
\Delta_{j} f([x, t])=f\left(\left[s_{j}(x), t\right]\right) \quad\left([x, t] \in S \Omega_{n}\right)
$$

For any set $E \subseteq \mathbb{C}$, we denote by $\mathrm{A}(E)$ the set of those $z \in E$ for which $-z \in E$. That is, $\mathrm{A}(E)$ consists of points z which belong to E together with their antipode.

Technical lemma

Suppose that for some $n \in \mathbb{N}_{0}$ we have

$$
\begin{equation*}
\overline{\Omega_{n+1} \backslash \mathrm{~A}\left(\Omega_{n+1}\right)} \cap \mathrm{A}\left(\Omega_{n+1}\right)=\varnothing \tag{3}
\end{equation*}
$$

Then, for every $f \in \mathcal{A}_{0}, \Delta_{j} f$ are continuous on $S \Omega_{n}(j=0,1)$.

Geometric conditions

An empty direction

- Fix Calkin's *-representation $\gamma: \mathcal{Q}(\mathcal{H}) \rightarrow \mathcal{B}(\mathbb{H})$ and a unital ${ }^{*}$-monomorphism $\lambda: C\left(S \Omega_{n}\right) \rightarrow \mathcal{Q}(\mathcal{H})$.

Geometric conditions

An empty direction

- Fix Calkin's *-representation $\gamma: \mathcal{Q}(\mathcal{H}) \rightarrow \mathcal{B}(\mathbb{H})$ and a unital ${ }^{*}$-monomorphism $\lambda: C\left(S \Omega_{n}\right) \rightarrow \mathcal{Q}(\mathcal{H})$.
- Consider $\varrho:=\gamma \circ \lambda$, a *-representation of $C\left(S \Omega_{n}\right)$ on \mathbb{H}.

Geometric conditions

An empty direction

- Fix Calkin's *-representation $\gamma: \mathcal{Q}(\mathcal{H}) \rightarrow \mathcal{B}(\mathbb{H})$ and a unital *-monomorphism $\lambda: C\left(S \Omega_{n}\right) \rightarrow \mathcal{Q}(\mathcal{H})$.
- Consider $\varrho:=\gamma \circ \lambda$, a ${ }^{*}$-representation of $C\left(S \Omega_{n}\right)$ on \mathbb{H}.
- $\varrho=\bigoplus_{i \in I} \varrho_{i}$, where each $\varrho_{i}: C\left(S \Omega_{n}\right) \rightarrow \mathcal{B}\left(\mathbb{H}_{i}\right)$ is a cyclic representation on some $\mathbb{H}_{i} \subseteq \mathbb{H}$.

Geometric conditions

An empty direction

- Fix Calkin's *-representation $\gamma: \mathcal{Q}(\mathcal{H}) \rightarrow \mathcal{B}(\mathbb{H})$ and a unital *-monomorphism $\lambda: C\left(S \Omega_{n}\right) \rightarrow \mathcal{Q}(\mathcal{H})$.
- Consider $\varrho:=\gamma \circ \lambda$, a *-representation of $C\left(S \Omega_{n}\right)$ on \mathbb{H}.
- $\varrho=\bigoplus_{i \in l} \varrho_{i}$, where each $\varrho_{i}: C\left(S \Omega_{n}\right) \rightarrow \mathcal{B}\left(\mathbb{H}_{i}\right)$ is a cyclic representation on some $\mathbb{H}_{i} \subseteq \mathbb{H}$.
- Each ϱ_{i} is unitarily equivalent to the representation given by multiplication operators on $L^{2}\left(S \Omega_{n}, \mu_{i}\right)$.

Geometric conditions

An empty direction

- Fix Calkin's *-representation $\gamma: \mathcal{Q}(\mathcal{H}) \rightarrow \mathcal{B}(\mathbb{H})$ and a unital *-monomorphism $\lambda: C\left(S \Omega_{n}\right) \rightarrow \mathcal{Q}(\mathcal{H})$.
- Consider $\varrho:=\gamma \circ \lambda$, a ${ }^{*}$-representation of $C\left(S \Omega_{n}\right)$ on \mathbb{H}.
- $\varrho=\bigoplus_{i \in I} \varrho_{i}$, where each $\varrho_{i}: C\left(S \Omega_{n}\right) \rightarrow \mathcal{B}\left(\mathbb{H}_{i}\right)$ is a cyclic representation on some $\mathbb{H}_{i} \subseteq \mathbb{H}$.
- Each ϱ_{i} is unitarily equivalent to the representation given by multiplication operators on $L^{2}\left(S \Omega_{n}, \mu_{i}\right)$.
- For any $\alpha \in[0,2 \pi)$ we have defined $\mathcal{S}_{\alpha}=\left\{\left[r e^{\mathrm{i} \alpha}, t\right] \in S \Omega_{n}: r>0,0<t<1\right\}$.

Geometric conditions

An empty direction

- Fix Calkin's *-representation $\gamma: \mathcal{Q}(\mathcal{H}) \rightarrow \mathcal{B}(\mathbb{H})$ and a unital *-monomorphism $\lambda: C\left(S \Omega_{n}\right) \rightarrow \mathcal{Q}(\mathcal{H})$.
- Consider $\varrho:=\gamma \circ \lambda$, a ${ }^{*}$-representation of $C\left(S \Omega_{n}\right)$ on \mathbb{H}.
- $\varrho=\bigoplus_{i \in I} \varrho_{i}$, where each $\varrho_{i}: C\left(S \Omega_{n}\right) \rightarrow \mathcal{B}\left(\mathbb{H}_{i}\right)$ is a cyclic representation on some $\mathbb{H}_{i} \subseteq \mathbb{H}$.
- Each ϱ_{i} is unitarily equivalent to the representation given by multiplication operators on $L^{2}\left(S \Omega_{n}, \mu_{i}\right)$.
- For any $\alpha \in[0,2 \pi)$ we have defined $\mathcal{S}_{\alpha}=\left\{\left[r e^{\mathrm{i} \alpha}, t\right] \in S \Omega_{n}: r>0,0<t<1\right\}$.

An 'empty direction' condition

Assume that condition (3) is satisfied, and there exists $\alpha \in[0,2 \pi)$ such that $\mu_{i}\left(\mathcal{S}_{\alpha}\right)=0$ for all $i \in I$. Then, the homomorphism $\left(S p_{n}\right)_{*}: \operatorname{Ext}\left(S \Omega_{n+1}\right) \rightarrow \operatorname{Ext}\left(S \Omega_{n}\right)$ is surjective.

Geometric conditions

A cross retract

Kasparov's Technical Theorem

Let E be a σ-unital C^{*}-algebra and $\mathscr{C}(E)=\mathscr{M}(E) / E$ be the corona algebra. Suppose that D is a separable subset of $\mathscr{C}(E)$. If $x, y \in \mathscr{C}(E) \cap D^{\prime}$ satisfy $x, y \geqslant 0$ and $x y=0$, then there exists $0 \leqslant z \leqslant 1$, $z \in \mathscr{C}(E) \cap D^{\prime}$ such that $z x=0$ and $z y=y$.

Geometric conditions

A cross retract

Kasparov's Technical Theorem

Let E be a σ-unital C^{*}-algebra and $\mathscr{C}(E)=\mathscr{M}(E) / E$ be the corona algebra. Suppose that D is a separable subset of $\mathscr{C}(E)$. If $x, y \in \mathscr{C}(E) \cap D^{\prime}$ satisfy $x, y \geqslant 0$ and $x y=0$, then there exists $0 \leqslant z \leqslant 1$, $z \in \mathscr{C}(E) \cap D^{\prime}$ such that $z x=0$ and $z y=y$.

A 'cross retract' condition

Assume that condition (3) is satisfied, and there exist $\alpha, \theta \in[0,2 \pi)$, $\frac{\alpha}{2} \notin\{\theta, \theta-\pi\}$ such that each of the sections

$$
\mathrm{S}_{\alpha / 2}=\mathbb{R} e^{\mathrm{i} \alpha / 2} \cap \Omega_{n+1}, \quad \mathrm{~S}_{\theta}=\mathbb{R} e^{\mathrm{i} \theta} \cap \Omega_{n+1}
$$

is a retract of both the corresponding left and the right part of Ω_{n+1}. Then, the homomorphism $\left(S p_{n}\right)_{*}: \operatorname{Ext}\left(S \Omega_{n+1}\right) \rightarrow \operatorname{Ext}\left(S \Omega_{n}\right)$ is surjective.

Summary of the main results

Let $(Q(t))_{t \geqslant 0}$ be a collection of normal operators in $\mathcal{B}(\mathcal{H})$ satisfying

$$
Q(s+t)-Q(s) Q(t) \in \mathcal{K}(\mathcal{H}) \quad \text { for all } s, t \geqslant 0 .
$$

Assume that $(q(t))_{t \geqslant 0} \subset \mathcal{Q}(\mathcal{H})$, defined by $q(t)=\pi Q(t)$ for $t \geqslant 0$, is a C_{0}-semigroup with respect to some faithul ${ }^{*}$-representation $\gamma: \mathcal{Q}(\mathcal{H}) \rightarrow \mathcal{B}(\mathbb{H})$. Let also A be its infinitesimal generator, densely defined on \mathbb{H}. Then:

Summary of the main results

Let $(Q(t))_{t \geqslant 0}$ be a collection of normal operators in $\mathcal{B}(\mathcal{H})$ satisfying

$$
Q(s+t)-Q(s) Q(t) \in \mathcal{K}(\mathcal{H}) \quad \text { for all } s, t \geqslant 0 .
$$

Assume that $(q(t))_{t \geqslant 0} \subset \mathcal{Q}(\mathcal{H})$, defined by $q(t)=\pi Q(t)$ for $t \geqslant 0$, is a C_{0}-semigroup with respect to some faithul ${ }^{*}$-representation $\gamma: \mathcal{Q}(\mathcal{H}) \rightarrow \mathcal{B}(\mathbb{H})$. Let also A be its infinitesimal generator, densely defined on \mathbb{H}. Then:
(A1) The spectrum of the C^{*}-algebra $\mathrm{C}^{*}\left(q\left(2^{-n}\right), 1_{\mathcal{Q}(\mathcal{H})}\right)$ is homeomorphic to the inverse limit $\Delta=\lim \left\{\Omega_{n}, p_{n}\right\}$, where $p_{n}(z)=z^{2}$ and

$$
\Omega_{n}=\overline{\exp \left(2^{-n} \sigma(A)\right)} \quad \text { for } n \in \mathbb{N}_{0} .
$$

Summary of the main results

Let $(Q(t))_{t \geqslant 0}$ be a collection of normal operators in $\mathcal{B}(\mathcal{H})$ satisfying

$$
Q(s+t)-Q(s) Q(t) \in \mathcal{K}(\mathcal{H}) \quad \text { for all } s, t \geqslant 0
$$

Assume that $(q(t))_{t \geqslant 0} \subset \mathcal{Q}(\mathcal{H})$, defined by $q(t)=\pi Q(t)$ for $t \geqslant 0$, is a C_{0}-semigroup with respect to some faithul ${ }^{*}$-representation $\gamma: \mathcal{Q}(\mathcal{H}) \rightarrow \mathcal{B}(\mathbb{H})$. Let also A be its infinitesimal generator, densely defined on \mathbb{H}. Then:
(A1) The spectrum of the C^{*}-algebra $\mathrm{C}^{*}\left(q\left(2^{-n}\right), 1_{\mathcal{Q}(\mathcal{H})}\right)$ is homeomorphic to the inverse limit $\Delta=\lim \left\{\Omega_{n}, p_{n}\right\}$, where $p_{n}(z)=z^{2}$ and

$$
\Omega_{n}=\overline{\exp \left(2^{-n} \sigma(A)\right)} \quad \text { for } n \in \mathbb{N}_{0} .
$$

(A2) There is an extension $\Gamma \in \operatorname{Ext}(\Delta)$ such that $\Gamma=\Theta$ implies that there exists a semigroup $(Q(t))_{t \in \mathbb{D}} \subset \mathcal{B}(\mathcal{H})$, defined on positive dyadic rationals, such that $\pi Q(t)=q(t)$ for every $t \in \mathbb{D}$.

Summary of the main results

Let $(Q(t))_{t \geqslant 0}$ be a collection of normal operators in $\mathcal{B}(\mathcal{H})$ satisfying

$$
Q(s+t)-Q(s) Q(t) \in \mathcal{K}(\mathcal{H}) \quad \text { for all } s, t \geqslant 0 .
$$

Assume that $(q(t))_{t \geqslant 0} \subset \mathcal{Q}(\mathcal{H})$, defined by $q(t)=\pi Q(t)$ for $t \geqslant 0$, is a C_{0}-semigroup with respect to some faithul ${ }^{*}$-representation $\gamma: \mathcal{Q}(\mathcal{H}) \rightarrow \mathcal{B}(\mathbb{H})$. Let also A be its infinitesimal generator, densely defined on \mathbb{H}. Then:
(A1) The spectrum of the C^{*}-algebra $\mathrm{C}^{*}\left(q\left(2^{-n}\right), 1_{\mathcal{Q}(\mathcal{H})}\right)$ is homeomorphic to the inverse limit $\Delta=\lim \left\{\Omega_{n}, p_{n}\right\}$, where $p_{n}(z)=z^{2}$ and

$$
\Omega_{n}=\overline{\exp \left(2^{-n} \sigma(A)\right)} \quad \text { for } n \in \mathbb{N}_{0}
$$

(A2) There is an extension $\Gamma \in \operatorname{Ext}(\Delta)$ such that $\Gamma=\Theta$ implies that there exists a semigroup $(Q(t))_{t \in \mathbb{D}} \subset \mathcal{B}(\mathcal{H})$, defined on positive dyadic rationals, such that $\pi Q(t)=q(t)$ for every $t \in \mathbb{D}$.
(A3) We have the Milnor exact sequence with $\Gamma \in \operatorname{ker} P$.

Summary of the main results (cont.)

Let $(Q(t))_{t \geqslant 0}$ be a collection of normal operators in $\mathcal{B}(\mathcal{H})$ satisfying

$$
Q(s+t)-Q(s) Q(t) \in \mathcal{K}(\mathcal{H}) \quad \text { for all } s, t \geqslant 0
$$

Assume that $(q(t))_{t \geqslant 0} \subset \mathcal{Q}(\mathcal{H})$, defined by $q(t)=\pi Q(t)$ for $t \geqslant 0$, is a C_{0}-semigroup with respect to some faithul *-representation $\gamma: \mathcal{Q}(\mathcal{H}) \rightarrow \mathcal{B}(\mathbb{H})$. Let also A be its infinitesimal generator, densely defined on \mathbb{H}. Then:
(A4) Assuming that for each $n \in \mathbb{N}, \overline{\Omega_{n} \backslash \mathrm{~A}\left(\Omega_{n}\right)} \cap \mathrm{A}\left(\Omega_{n}\right)=\varnothing$, and that Ω_{n} satisfies either an 'empty direction' condition, or a 'cross retract' condition, we have $\Gamma=\Theta$.

Summary of the main results (cont.)

Let $(Q(t))_{t \geqslant 0}$ be a collection of normal operators in $\mathcal{B}(\mathcal{H})$ satisfying

$$
Q(s+t)-Q(s) Q(t) \in \mathcal{K}(\mathcal{H}) \quad \text { for all } s, t \geqslant 0
$$

Assume that $(q(t))_{t \geqslant 0} \subset \mathcal{Q}(\mathcal{H})$, defined by $q(t)=\pi Q(t)$ for $t \geqslant 0$, is a C_{0}-semigroup with respect to some faithul *-representation $\gamma: \mathcal{Q}(\mathcal{H}) \rightarrow \mathcal{B}(\mathbb{H})$. Let also A be its infinitesimal generator, densely defined on \mathbb{H}. Then:
(A4) Assuming that for each $n \in \mathbb{N}, \overline{\Omega_{n} \backslash \mathrm{~A}\left(\Omega_{n}\right)} \cap \mathrm{A}\left(\Omega_{n}\right)=\varnothing$, and that Ω_{n} satisfies either an 'empty direction' condition, or a 'cross retract' condition, we have $\Gamma=\Theta$.
(A5) If Δ is a perfect compact metric space, and γ is one of Calkin's representations of $\mathcal{Q}(\mathcal{H})$, then the obtained lifting $(Q(t))_{t \in \mathbb{D}}$ is sOT-continuous and it extends to a C_{0}-semigroup $(Q(t))_{t \geqslant 0} \subset \mathcal{B}(\mathcal{H})$.

Summary of the main results (cont.)

Let $(Q(t))_{t \geqslant 0}$ be a collection of normal operators in $\mathcal{B}(\mathcal{H})$ satisfying

$$
Q(s+t)-Q(s) Q(t) \in \mathcal{K}(\mathcal{H}) \quad \text { for all } s, t \geqslant 0
$$

Assume that $(q(t))_{t \geqslant 0} \subset \mathcal{Q}(\mathcal{H})$, defined by $q(t)=\pi Q(t)$ for $t \geqslant 0$, is a C_{0}-semigroup with respect to some faithul *-representation $\gamma: \mathcal{Q}(\mathcal{H}) \rightarrow \mathcal{B}(\mathbb{H})$. Let also A be its infinitesimal generator, densely defined on \mathbb{H}. Then:
(A4) Assuming that for each $n \in \mathbb{N}, \overline{\Omega_{n} \backslash \mathrm{~A}\left(\Omega_{n}\right)} \cap \mathrm{A}\left(\Omega_{n}\right)=\varnothing$, and that Ω_{n} satisfies either an 'empty direction' condition, or a 'cross retract' condition, we have $\Gamma=\Theta$.
(A5) If Δ is a perfect compact metric space, and γ is one of Calkin's representations of $\mathcal{Q}(\mathcal{H})$, then the obtained lifting $(Q(t))_{t \in \mathbb{D}}$ is sOT-continuous and it extends to a C_{0}-semigroup $(Q(t))_{t \geqslant 0} \subset \mathcal{B}(\mathcal{H})$.
T.K., Compact perturbations of operator semigroups, arXiv:2203. 05635

