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Formulation of the problem

Notation:

H inf. dim. separable Hilbert space
B(H) bounded linear operators on H
K(H) compact operators on H
Q(H) Calkin algebra, i.e. B(H)/K(H)
π : B(H)→ Q(H) quotient map
H Hilbert space of density c, so that there is an isometric
∗-isomorphism from Q(H) into B(H) (Calkin, 1941)

Problem (general formulation)

Assume (Q(t))t>0 ⊂ B(H) is a family of (normal) operators such that

Q(s + t)− Q(s)Q(t) ∈ K(H) for all s, t > 0.

Can it be, under natural circumstances, lifted to an operator semigroup?
In other words, does there exist an operator semigroup (T (t))t>0 ⊂ B(H)
such that Q(t)− T (t) ∈ K(H) for t > 0?
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Possible motivations

I. Farah, Combinatorial set theory of C∗-algebras, Springer Monographs in
Mathematics, Springer 2019.

In recent years, the problem of lifting subalgebras of Q(H) was quite
fashionable. Chapter 12 in Farah’s book is devoted to various aspects
of this problem. E.g., there is a characterization of separable abelian
C∗-subalgebras of Q(H) which admit an abelian lift (they should be
included in an abelian C∗-subalgebra of Q(H) of real rank zero).
The problem of preserving the semigroup property while lifting leads
to some modifications of the Brown–Douglas–Fillmore theory. Recall
that the BDF theory provided the famous characterization of
essentially normal operators that admit a normal lift.
Our hypothesis ‘semigroup modulo compacts’ occurs for Toeplitz
operators. Recall that for ϕ ∈ L∞(T), Tϕ is defined on the Hardy
space H2 by Tϕf = P(ϕf ), where P is the orthogonal projection of
L2(T) onto H2. We have that TϕTψ − Tϕψ is compact for ϕ ∈ C (T)
and ψ ∈ L∞(T).
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Basic definitions

Definition

A family (T (t))t>0 ⊂ B(H) is called an operator semigroup, provided that

(a) T (0) = IH (the identity operator) and
(b) T (s + t) = T (s)T (t) for all s, t > 0.

If additionally

lim
ε→0+

‖T (ε)x − x‖ = 0 for every x ∈ H,

then (T (t))t>0 is called a strongly continuous operator semigroup or,
briefly, a C0-semigroup. If (T (t))t>0 satisfies the stronger condition
limε→0+ ‖T (ε)− IH‖ = 0, then it is called uniformly continuous.

The infinitesimal generator of a C0-semigroup (T (t))t>0 is defined by

A(x) = lim
ε→0

1

ε
(T (ε)x − x).

In general, it is an unbounded, densely defined operator.
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Lifting problems

Considering the operators q(t) = πQ(t) ∈ Q(H), we may formulate our
problem as follows:

Problem (precise formulation)

Assume that (q(t))t>0 ⊂ Q(H) is a C0-semigroup of normal elements of
the Calkin algebra. Under what conditions there exists a C0-semigroup
(T (t))t>0 of normal operators in B(H) such that πT (t) = q(t) for every
t > 0?

In a sense, we seek for a ‘semigroup variant’ of the famous BDF result from

L.G. Brown, R.G. Douglas, P.A. Fillmore, Extensions of C∗-algebras and
K -homology, Ann. Math. 105 (1977), 265–324.

which says that an operator T ∈ B(H) is of the form ‘normal plus
compact’ if and only if it is essentially normal and ind(λI − T ) = 0 for
every λ 6∈ σess(T ).
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A counterexample
Fredholm operators

Recall that an operator T ∈ B(H) is called a Fredholm operator,
provided that both α(T ) := dimKer(T ) and β(T ) := codimRan(T ) are
finite.

In such a case the difference ind(T ) = α(T )− β(T ) ∈ Z is called
the Fredholm index of T .

Basic facts on Fredholm operators:

T ∈ B(H) is Fredholm if and only if π(T ) is invertible in the Calkin
algebra Q(H).
The Fredholm index is invariant under compact perturbations, that is,
ind(T + K ) = ind(T ) for every K ∈ K(H).
For any S ∈ B(H), the essential spectrum σess(S) is defined as the
set of those λ ∈ C for which λI − S is not Fredholm, and we have
σess(S) = σ(π(S)).
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A counterexample: non-liftable semigroups

Pick any essentially normal Fredholm operator T ∈ B(H) with a non-zero
index.

Then π(T ) is a normal, invertible element of the Calkin algebra,
hence it corresponds to a normal, invertible operator on the Hilbert space
H. According to a result from

T. Eisner, Embedding operators into strongly continuous semigroups,
Arch. Math. (Basel) 92 (2009), 451–460,

every such operator is embeddable into a C0-semigroup, say
(τ(t))t>0 ⊂ Q(H), where τ(1) = π(T ). Now, let (Q(t))t>0 ⊂ B(H) be
any sequence with πQ(t) = τ(t) for all t > 0, so that (πQ(t))t>0 is
a C0-semigroup. We claim there is no C0-semigroup (S(t))t>0 ⊂ B(H)
satisfying Q(t)− S(t) ∈ K(H) for all t > 0. Indeed, if this was true, then
some compact perturbation of T would be embeddable into
a C0-semigroup. However, by another Eisner’s result, non-bijective
Fredholm operators are not embeddable into C0-semigroups and so neither
is any compact perturbation K of T because ind(T + K ) = ind(T ) 6= 0.
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The BDF theory
Brief overview 1

Let X be a compact metric space. By an extension of C (X ) (by K(H)) we
mean any pair (A, ϕ), where A is a C∗-subalgebra of B(H) containing the
compact operators and ϕ : A → C (X ) is a ∗-homomorphism such that

0 −→ K(H)
ι−→ A ϕ−→ C (X ) −→ 0

is an exact sequence, where ι is the inclusion map.

To any extension one can associate a ∗-monomorphism τ : C (X )→ Q(H)
defined as τ = πϕ−1. Conversely, any such ∗-monomorphism gives rise to
an extension (π−1τ(C (X )), τ−1π). In this setting, two extensions of C (X )
are equivalent if the associated ∗-monomorphisms τ1 and τ2 satisfy
τ2 = π(U)∗τ1π(U) for some unitary U ∈ B(H).
The collection Ext(X ) of all equivalence classes of extensions of C (X )
forms a group (nontrivial!) when equipped with an operation + defined in
terms of ∗-monomorphisms C (X )→ Q(H) as [τ1] + [τ2] = [τ1 ⊕ τ2].

We identify H⊕H ∼= H and M2(Q(H)) ∼= Q(H), as M2(K(H)) is mapped onto K(H).
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The BDF theory
Brief overview 2

Given two compact metric spaces X and Y , and a continuous map
f : X → Y , there is an induced map f∗ : Ext(X )→ Ext(Y ) defined as

f∗(τ)(g) = τ(g ◦ f )⊕ σ(g) (g ∈ C (Y )),

where σ is any ∗-monomorphism corresponding to the trivial extension of
C (Y ). We add that second direct sum summand in order to guarantee
that the resulting map f∗(τ) is injective.

The zero element of Ext(X ) can be constructed as follows: Take any
infinite direct sum decomposition H =

⊕∞
i=1Hi , where each Hi is

infinite-dimensional, pick a countable dense subset {ξi : i ∈ N} of X and
define σ : C (X )→ B(H) by

σ(g) =
∞⊕
i=1

g(ξi )Ii ,

where Ii is the identity operator on Hi .
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The BDF theory
Crucial isomorphism

In C (X ) consider the relation of homotopy equivalence and let G0(C (X ))
be the equivalence class of the constant one function. By π1(X ) we denote
the group G(C (X ))/G0(C (X )) of homotopy classes of invertible functions.

Theorem (Brown, Douglas, Fillmore, 1977)

For any compact set X ⊂ C, there is a well-defined map

γ : Ext(X ) −→ Hom(π1(X ),Z), γ[τ ]([f ]) = ind τ(f )

which is a group isomorphism.

This leads to the famous characterization of ‘liftable’ essentially normal
operators. More generally: two essentially normal operators T1 and T2 are
unitarily equivalent modulo compacts iff σess(T1) = σess(T2) and
ind(λI − T1) = ind(λI − T2) for every λ 6∈ σess(T1).
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What kind of result we expect?

Assume that (q(t))t>0 ⊂ Q(H) is a C0-semigroup of normal elements of the Calkin
algebra, and let A be its generator.

We want to find a geometric condition on σ(A)
which is sufficient for the existence of a C0-semigroup (T (t))t>0 of normal operators in
B(H) such that πT (t) = q(t) for t > 0.

General strategy

Step 1: With every such (q(t))t>0 we associate an extension of C (Ω),
where Ω is a certain compact metric space defined exclusively in
terms of σ(A).

Step 2: We show that BDF conditions imposed ‘separately’ on q(t)’s
imply that our extension is in the kernel of a certain induced map.

Step 3: Our extension is in the middle of Milnor’s exact sequence and to
show that it is trivial we need to guarantee that certain connecting
maps are surjective (here we find a condition on σ(A)).

Step 4: Once having a section witnessing the triviality of our extension,
we use a lifting procedure, similar as in the classical BDF case, to
produce an operator semigroup lift; sometimes we can even obtain
a C0-semigroup.
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Building an extension

(a) Since there exists γ <∞ such that Reλ 6 γ for each λ ∈ σ(A), all
the sets

Ωn := exp(2−nσ(A)) (n = 0, 1, 2, . . .)

are compact subsets of C.

Moreover, A is normal and if EA is the spectral
decomposition of A, then each q(t) can be calculated via the functional
calculus in L∞(EA) by

q(t) =

∫
σ(A)

etλ dEA(λ) (t > 0).

Plainly, q(s), q(t), q(t)∗ commute for all s, t > 0, thus

A0 := C∗
(
{q(2−n) : n =∞, 0, 1, 2, . . .}

)
is commutative. Let ∆ be its maximal ideal space.
The joint spectrum of the set {q(2−n) : n = 0, 1, . . .} is a compact subset
of C∞ defined by

σA0(q(2−n) : n = 0, 1, . . .) =
{

(ϕ(q(2−n)))∞n=0 : ϕ ∈ ∆
}
.
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Building an extension

Then, the map
∆ 3 ϕ 7−−→ (ϕ(q(2−n)))∞n=0

is a homeomorphism between ∆ and σA0(q(2−n) : n = 0, 1, . . .).

A sequence λ = (λ)∞n=1 ∈ C∞ belongs to σA0(q(2−n) : n ∈ N) if and only
if

q(λ) :=
∞∑
n=0

2−n
(λnI − q(2−n))∗(λnI − q(2−n))

‖λnI − q(2−n)‖2
(1)

is not invertible in Q(H).

Indeed, as each summand is a positive operator, we infer that for every
linear multiplicative functional ϕ ∈ ∆ we have ϕ(q(λ)) = 0 iff
ϕ(q(2−n)) = λn for each n = 0, 1, . . . Hence, if q(λ) is not invertible we
pick ϕ ∈ ∆ so that ϕ(q(λ)) = 0 to see that λ belongs to the joint
spectrum. Conversely, if q(λ) is invertible, then we have ϕ(q(λ)) 6= 0 for
every ϕ ∈ ∆, thus λ is not in the joint spectrum.
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Building an extension

Fix λ = (λn)∞n=0 ∈ C∞. The operator (λnI − q(2−n))∗(λnI − q(2−n))
corresponds via functional calculus to the map φn ∈ L∞(EA) given by

φn(z) = |λn − exp(2−nz)|2.

For every z ∈ σ(A), we have Re z 6 γ and hence

‖φn‖∞ 6
(
e2

−nγ + |λn|
)2

which implies that each denominator in formula (1) is majorized by a constant (cannot
become arbitrarily large after applying functional calculus and varying z over σ(A)).

Hence, q(λ) is noninvertible if and only if 0 lies in the closure of the range
of the map

σ(A) 3 z 7−−→
∞∑
n=0

2−n
φn(z)

‖φn‖∞

which implies that each λn must belong to the closure of exp(2−nσ(A))
which is denoted by Ωn.
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Building an extension

Moreover, for any n = 0, 1, 2, . . . we pick z ∈ σ(A) so that both φn(z) and
φn+1(z) are arbitrarily close to zero. Since exp(2−n−1z)2 = exp(2−nz), we
infer that for q(λ) being noninvertible we also must have λ2n+1 = λn
(n = 0, 1, . . .).

Conversely, any sequence λ = (λn)∞n=0 ∈ C∞ satisfying λn ∈ Ωn and
λ2n+1 = λn for n = 0, 1, . . . produces a noninvertible operator q(λ).

Conclusion: The identity map

id : σA0(q(2−n) : n = 0, 1, . . .) −−→ lim←−Ωn

is bijective and hence a homeomorphism, as both topologies are the
product topology. Consequently, ∆ is homeomorphic to the projective
(inverse) limit {Ωn, pn}n>0, where pn(z) = z2 for each n = 0, 1, 2, . . .
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Building an extension

Recall that the projective (inverse) limit of an inverse system {Xn, fn}n>0, that is,
a sequence of topological spaces and continuous maps fn : Xn+1 → Xn, is defined as

lim←−Xn =
{

x = (xn)∞n=0 ∈
∞∏
n=0

Xn : fn(xn+1) = xn for n > 0
}
.

(b) Define
E := π−1(A0),

a C∗-subalgebra of B(H). Let

A0 3 q 7−→ q̂ ∈ C (∆)

be the Gelfand transform on A0.

Of course, K(H) forms an ideal in E . For every T ∈ E , we have
π(T ) ∈ A0 and each element in A0 is of this form. Hence, the formula
θ(T ) = π̂(T ) yields a ∗-homomorphism onto C (∆). Obviously, T ∈ ker θ
iff π(T ) = 0, i.e. T ∈ K(H).
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Building an extension

Summarizing, what we have proved is the following:

Proposition

Let (q(t))t>0 ⊂ Q(H) be a C0-semigroup of normal operators in the
Calkin algebra. Let A0 = C∗

(
{q(2−n) : n =∞, 0, 1, 2, . . .}

)
be the

C∗-subalgebra of Q(H) generated by the identity and all q(2−n) for
n ∈ N, and let E = π−1(A0).

(a) Let A be the generator of (q(t))t>0 and define

Ωn = exp(2−nσ(A)) (n = 0, 1, 2, . . .)

Then, A0 is a commutative C∗-algebra and its maximal ideal space ∆
is homeomorphic to the projective limit of the inverse system
{Ωn, pn}n>0, where pn(z) = z2 for each n = 0, 1, 2, . . .
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Building an extension

Proposition (continued)

(b) The C∗-algebra E contains K(H) as an ideal and there is an exact
sequence

0 −→ K(H)
ι−→ E θ−→ C (∆) −→ 0,

where θ(T ) = π̂(T ) and A0 3 q 7−→ q̂ ∈ C (∆) is the Gelfand

transform.

This accomplishes Step 1 of our strategy: With every (q(t))t>0 as before
we associate an extension of C (Ω), where Ω is a certain compact metric
space defined exclusively in terms of σ(A).
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Proceeding to Step 2

We know that every normal C0-semigroup (q(t))t>0 in Q(H) generates
an extension of C (∆) by K(H), where ∆ is a compact metric space
depending only on the generator A of (q(t))t>0. Recall that

∆ ≈ lim←−(Ωn, pn) and Ωn = exp(2−nσ(A)).

Suppose {Xn, pn}∞n=0 is an inverse system of compact metric spaces. Let
X = lim←−Xn and qn : X → Xn stand for the coordinate maps, for n ∈ N0, so
that pnqn+1 = qn. Hence, we have another inverse system of groups
{Ext(Xn), pn∗}∞n=0. Since pn∗q(n+1)∗ = qn∗, we can define an induced map
P : Ext(X )→ lim←−Ext(Xn) by the formula

P(τ) = (qn∗τ)∞n=0.

The induced map is always surjective, but in general not injective.
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Milnor’s exact sequence

J. Milnor, On the Steenrod homology theory (first distributed 1961), in: S.
Ferry, A. Ranicki, J. Rosenberg (Eds.), Novikov Conjectures, Index
Theorems, and Rigidity: Oberwolfach 1993, London Mathematical Society
Lecture Note Series, pp. 79–96, Cambridge University Press, Cambridge
1995.

For any homology theory satisfying certain general Steenrod’s axioms,
Milnor proved what follows:

Theorem (Milnor, 1961)

For any inverse system {Xn} of compact metric spaces, and any k ∈ Z,
there exists an exact sequence

0 −→ lim←−
(1)Extk+1(Xn) −→ Extk(lim←−Xn)

P−→ lim←−Extk(Xn) −→ 0,

where lim←−
(1) is the first derived functor of inverse limit.
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Conditions on the kernel

Therefore, we can ask: Given a C0-semigroup in the Calkin algebra, when
does the resulting extension of Ω actually land in the kernel from the
Milnor’s exact sequence?

Proposition

Let (q(t))t>0 ⊂ Q(H) be a C0-semigroup of normal operators and let

P : Ext(Ω) −→ lim←−Ext(Ωn), where Ω = lim←−Ωn ≈ ∆,

be the induced surjective map. Then, (E , θ) ∈ ker P if and only if

ind(λI − q(2−n)) = 0 for all n ∈ N0, λ 6∈ Ωn.

Consequently, if we start with a collection of normal operators (T (t))t>0 ⊂ B(H) and
consider the C0-semigroup (πT (t))t>0, we automatically have an extension from the
Milnor kernel.

This accomplishes Step 2: We show that BDF conditions imposed
‘separately’ on q(t)’s imply that we land in Milnor’s kernel.
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Suspensions

Recall that for any compact metric space X , the cone CX over X is
obtained from X × I by collapsing X × {0} to a single point, where
I = [0, 1]. The suspension SX is obtained from X × I by collapsing
X × {0} and X × {1} to two distinct points.

The extension functor is defined for ranks q 6 1 by
Extq(X ) = Ext(S1−qX ). It was shown by BDF that, analogously to
Bott’s periodicity in K -theory, there exist isomorphisms

Per∗ : Extq−2(X ) −→ Extq(X ) (r 6 1).

This allows us to extend the definition of Ext to all integer dimensions:

Extq(X ) =

{
Ext(X ) if q is odd,
Ext(SX ) if q is even.
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The derived functor

By definition, the functor lim←−
(1) applied to an inverse system of groups

{Gn, pn}∞n=0 returns the cokernel of the map∏
Gn 3 (a0, a1, . . .)

d7−−→ (a0 − p0(a1), a1 − p1(a2), . . .)

defined on the full direct product of all the Gn. That is,

lim←−
(1)Gn =

∏
Gn/d(

∏
Gn).

Recall Milnor’s exact sequence in our context:

0 −→ lim←−
(1)Ext(SΩn) −→ Ext(Ω)

P−→ lim←−Ext(Ωn) −→ 0,

In Step 2 we have shown that under natural BDF conditions, our extension
(an element of Ext(Ω)) always lands up in the kernel of P. Hence, in order
to conclude its triviality it suffices to know that the first derived functor
above collapses (is trivial).
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Triviality of the derived functor

In general, in the category of groups, it is known that lim←−
(1) is trivial

provided that:

all the connecting maps are surjective;
more generally, if the inverse system satisfies the Mittag-Leffler
condition: for each m ∈ N there is km > m such that for every
j > km we have im f kmm = im f jm (where f jm : Gj → Gm are natural
compositions of the connecting maps).

In our case, it is enough to know that for n sufficiently large the
connecting homomorphism

(Spn)∗ : Ext2(Ωn+1)→ Ext2(Ωn)

is surjective.
We have (Spn)∗τ(g) = τ(g ◦ Spn) for g ∈ C(SΩn). Fix any λ ∈ Ext2(Ωn). Our goal is
to find a ∗-monomorphism τ : C(SΩn+1)→ Q(H) such that

τ(g ◦ Spn) = λ(g) for every g ∈ C(SΩn), (2)

where the equality is understood as unitary equivalence between the both sides regarded
as ∗-homomorphisms on C(SΩn).
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Twisting maneuver

Recall that we want: τ(g ◦ Spn) = λ(g) for every g ∈ C(SΩn). Functions of the form
g ◦ Spn preserve antipodal points, i.e.

(g ◦ Spn)([x , t]) = (g ◦ Spn)([−x , t]), whenever [x , t], [−x , t] ∈ SΩn+1.

We want to enlarge this subclass of functions from C(SΩn+1).

Fix n ∈ N0 and define:

Sα =
{

[re iα, t] ∈ SΩn : r > 0, 0 < t < 1
}

for α ∈ [0, 2π),

R± =
{

[±re iα/2, t] ∈ SΩn+1 : r > 0, 0 < t < 1
}

,

R′ =
{

[x , t] ∈ R+ ∪R− : [−x , t] ∈ SΩn+1

}
,

A0 =
{
f ∈ C (SΩn+1) : f ([x , t]) = f ([−x , t]) for every [x , t] ∈ R′

}
,

A0
∼= C (SΩ∼n+1), where SΩ∼n+1 = SΩn+1/∼ is the quotient space

defined by the relation [re iα/2, t] ∼ [−re iα/2, t].

By using a ‘twisting maneuver’ we can reduce the requirement of preserving antipodal
points to just those pairs which correspond to just one direction, namely, α/2.
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Twisting maneuver

Procedure:

Tr = {z ∈ Ωn+1 : |z | = r};

cut Tr at the two antipodal points ±re iα/2, twist both parts to circles
of radii r2 by identifying the cutting points, and glue them together
at the one point corresponding to ±re iα/2;
any function on Tr which preserves just one pair of antipodal points
can be now identified with a function on Tr2 ∨ Tr2 which preserves all
pairs of antipodal points. We can extend this procedure naturally to
the suspension SΩn+1;
let T± be the ‘upper’/‘lower’ semicircles of the unit circle T which are
determined by the antipodal points ±e iα/2, that is,
T+ = {e i(α/2+tπ) : 0 6 t < 1} and T− = T \ T+;
for x ∈ Ωn, let

√
x be the set of square roots of x , and let s0(x) ∈

√
x

be determined by the condition

s0(x) ∈
{ √

|x |T+ if
√
|x |T+ ∩ Ωn+1 6= ∅√

|x |T− otherwise.
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Twisting maneuver

We have defined

s0(x) ∈
{ √

|x |T+ if
√
|x |T+ ∩ Ωn+1 6= ∅√

|x |T− otherwise,

and we define s1(x) similarly by swapping T+ and T−.

Then, for j = 0, 1 and f ∈ A0, we set

∆j f ([x , t]) = f ([sj(x), t]) ([x , t] ∈ SΩn).

For any set E ⊆ C, we denote by A(E) the set of those z ∈ E for which −z ∈ E . That
is, A(E) consists of points z which belong to E together with their antipode.

Technical lemma

Suppose that for some n ∈ N0 we have

Ωn+1 \ A(Ωn+1) ∩ A(Ωn+1) = ∅. (3)

Then, for every f ∈ A0, ∆j f are continuous on SΩn (j = 0, 1).
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Geometric conditions
An empty direction

Fix Calkin’s ∗-representation γ : Q(H)→ B(H) and a unital
∗-monomorphism λ : C (SΩn)→ Q(H).

Consider % := γ ◦ λ, a ∗-representation of C (SΩn) on H.

% =
⊕

i∈I %i , where each %i : C (SΩn)→ B(Hi ) is a cyclic
representation on some Hi ⊆ H.

Each %i is unitarily equivalent to the representation given by
multiplication operators on L2(SΩn, µi ).

For any α ∈ [0, 2π) we have defined
Sα =

{
[re iα, t] ∈ SΩn : r > 0, 0 < t < 1

}
.

An ‘empty direction’ condition

Assume that condition (3) is satisfied, and there exists α ∈ [0, 2π) such
that µi (Sα) = 0 for all i ∈ I . Then, the homomorphism
(Spn)∗ : Ext(SΩn+1)→ Ext(SΩn) is surjective.
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Geometric conditions
A cross retract

Kasparov’s Technical Theorem

Let E be a σ-unital C∗-algebra and C (E ) = M (E )/E be the corona
algebra. Suppose that D is a separable subset of C (E ). If
x , y ∈ C (E ) ∩D ′ satisfy x , y > 0 and xy = 0, then there exists 0 6 z 6 1,
z ∈ C (E ) ∩ D ′ such that zx = 0 and zy = y .

A ‘cross retract’ condition

Assume that condition (3) is satisfied, and there exist α, θ ∈ [0, 2π),
α
2 6∈ {θ, θ − π} such that each of the sections

Sα/2 = Re iα/2 ∩ Ωn+1, Sθ = Re iθ ∩ Ωn+1

is a retract of both the corresponding left and the right part of Ωn+1.
Then, the homomorphism (Spn)∗ : Ext(SΩn+1)→ Ext(SΩn) is surjective.

Tomasz Kochanek Compact perturbations 29 / 31



Geometric conditions
A cross retract

Kasparov’s Technical Theorem

Let E be a σ-unital C∗-algebra and C (E ) = M (E )/E be the corona
algebra. Suppose that D is a separable subset of C (E ). If
x , y ∈ C (E ) ∩D ′ satisfy x , y > 0 and xy = 0, then there exists 0 6 z 6 1,
z ∈ C (E ) ∩ D ′ such that zx = 0 and zy = y .

A ‘cross retract’ condition

Assume that condition (3) is satisfied, and there exist α, θ ∈ [0, 2π),
α
2 6∈ {θ, θ − π} such that each of the sections

Sα/2 = Re iα/2 ∩ Ωn+1, Sθ = Re iθ ∩ Ωn+1

is a retract of both the corresponding left and the right part of Ωn+1.
Then, the homomorphism (Spn)∗ : Ext(SΩn+1)→ Ext(SΩn) is surjective.

Tomasz Kochanek Compact perturbations 29 / 31



Summary of the main results

Let (Q(t))t>0 be a collection of normal operators in B(H) satisfying

Q(s + t)− Q(s)Q(t) ∈ K(H) for all s, t > 0.

Assume that (q(t))t>0 ⊂ Q(H), defined by q(t) = πQ(t) for t > 0, is a C0-semigroup
with respect to some faithul ∗-representation γ : Q(H)→ B(H). Let also A be its
infinitesimal generator, densely defined on H. Then:

(A1) The spectrum of the C∗-algebra C∗(q(2−n), 1Q(H)) is homeomorphic
to the inverse limit ∆ = lim←−{Ωn, pn}, where pn(z) = z2 and

Ωn = exp(2−nσ(A)) for n ∈ N0.

(A2) There is an extension Γ ∈ Ext(∆) such that Γ = Θ implies that there
exists a semigroup (Q(t))t∈D ⊂ B(H), defined on positive dyadic
rationals, such that πQ(t) = q(t) for every t ∈ D.

(A3) We have the Milnor exact sequence with Γ ∈ kerP.
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Summary of the main results (cont.)

Let (Q(t))t>0 be a collection of normal operators in B(H) satisfying

Q(s + t)− Q(s)Q(t) ∈ K(H) for all s, t > 0.

Assume that (q(t))t>0 ⊂ Q(H), defined by q(t) = πQ(t) for t > 0, is a C0-semigroup
with respect to some faithul ∗-representation γ : Q(H)→ B(H). Let also A be its
infinitesimal generator, densely defined on H. Then:

(A4) Assuming that for each n ∈ N, Ωn \ A(Ωn)∩A(Ωn) = ∅, and that Ωn

satisfies either an ‘empty direction’ condition, or a ‘cross retract’
condition, we have Γ = Θ.

(A5) If ∆ is a perfect compact metric space, and γ is one of Calkin’s
representations of Q(H), then the obtained lifting (Q(t))t∈D is
sot-continuous and it extends to a C0-semigroup (Q(t))t>0 ⊂ B(H).

T.K., Compact perturbations of operator semigroups, arXiv:2203.05635
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