Quantum Hypergraph Homomorphisms and Operator Algebras

Gage Hoefer
with I.G. Todorov
University of Delaware

Banach Algebras and Applications

July 2022

Outline

(1) Setup

Motivating questions
Hypergraphs and channels
Simulation paradigm
(2) Hypergraph homomorphisms

Homomorphisms and bicorrelations
Operator algebraic tools
Strategy separation
(3) Applications to non-local games

SNS correlations
Homomorphisms of non-local games

Motivation

$$
\text { Functional analytic methods } \rightsquigarrow \text { study combinatorial structures }
$$

Motivation

$$
\text { Functional analytic methods } \rightsquigarrow \text { study combinatorial structures }
$$

- Non-local game: discrete object we study using operator algebraic techniques

Motivation

Functional analytic methods \rightsquigarrow study combinatorial structures

- Non-local game: discrete object we study using operator algebraic techniques
- Similarity between non-local games? Strategy transport? Allow comparison for chance of "winning"?

Motivation

Functional analytic methods \rightsquigarrow study combinatorial structures

- Non-local game: discrete object we study using operator algebraic techniques
- Similarity between non-local games? Strategy transport? Allow comparison for chance of "winning"?
- Quantum homomorphisms of discrete structures \rightsquigarrow studied for graphs, but few others

Functional analytic methods \rightsquigarrow study combinatorial structures

- Non-local game: discrete object we study using operator algebraic techniques
- Similarity between non-local games? Strategy transport? Allow comparison for chance of "winning"?
- Quantum homomorphisms of discrete structures \rightsquigarrow studied for graphs, but few others
- Can we do the same for non-local games?

Non-local games

- The (classical) definition of a non-local game is a tuple (X, Y, A, B, λ) where X, Y, A, B are finite sets and $\lambda: X \times Y \times A \times B \rightarrow\{0,1\}$ is a "verifier" function which encodes the rules of the game.

Hypergraphs

A hypergraph is a subset $E \subseteq V \times W$, where V and W are finite sets.

Hypergraphs

A hypergraph is a subset $E \subseteq V \times W$, where V and W are finite sets.

- For $w \in W, E(w)=\{v \in V:(v, w) \in E\}$ is an edge, and V are the vertices of a hypergraph.

Hypergraphs

A hypergraph is a subset $E \subseteq V \times W$, where V and W are finite sets.

- For $w \in W, E(w)=\{v \in V:(v, w) \in E\}$ is an edge, and V are the vertices of a hypergraph.
- The dual E^{*} is

$$
E^{*}:=\{(w, v):(v, w) \in E\} .
$$

Hypergraphs

A hypergraph is a subset $E \subseteq V \times W$, where V and W are finite sets.

- For $w \in W, E(w)=\{v \in V:(v, w) \in E\}$ is an edge, and V are the vertices of a hypergraph.
- The dual E^{*} is

$$
E^{*}:=\{(w, v):(v, w) \in E\} .
$$

- Reformulate non-local games: a non-local game on ($V_{2}, W_{1}, V_{1}, W_{2}$) is a hypergraph $\Lambda \subseteq V_{2} W_{1} \times V_{1} W_{2}$.
- So Λ corresponds to the support of λ in classical definition.

Channels

When V, W are finite sets, a classical information channel from V to W is a positive trace preserving linear map $\mathcal{E}: \mathcal{D}_{V} \rightarrow \mathcal{D}_{W}$.

Channels

When V, W are finite sets, a classical information channel from V to W is a positive trace preserving linear map $\mathcal{E}: \mathcal{D}_{V} \rightarrow \mathcal{D}_{W}$.

- A channel $\mathcal{E}: \mathcal{D}_{V} \rightarrow \mathcal{D}_{W}$ defines a hypergraph

$$
E_{\mathcal{E}}(w)=\{(v, w) \in V \times W: \mathcal{E}(w \mid v)>0\} .
$$

(Here $\mathcal{E}(w \mid v)=\left\langle\mathcal{E}\left(\epsilon_{v, v}\right), \epsilon_{w, w}\right\rangle$ where $\langle\cdot, \cdot\rangle$ is the trace of the matrix product and $\epsilon_{v, v}$ are the basis elements for \mathcal{D}_{V}.)

Channels

When V, W are finite sets, a classical information channel from V to W is a positive trace preserving linear map $\mathcal{E}: \mathcal{D}_{V} \rightarrow \mathcal{D}_{W}$.

- A channel $\mathcal{E}: \mathcal{D}_{V} \rightarrow \mathcal{D}_{W}$ defines a hypergraph

$$
E_{\mathcal{E}}(w)=\{(v, w) \in V \times W: \mathcal{E}(w \mid v)>0\} .
$$

(Here $\mathcal{E}(w \mid v)=\left\langle\mathcal{E}\left(\epsilon_{v, v}\right), \epsilon_{w, w}\right\rangle$ where $\langle\cdot, \cdot\rangle$ is the trace of the matrix product and $\epsilon_{v, v}$ are the basis elements for \mathcal{D}_{V}.)

- For a given hypergraph $E \subseteq V \times W$, we form the collection

$$
\mathcal{C}(E)=\left\{\mathcal{E}: \mathcal{D}_{V} \rightarrow \mathcal{D}_{W}, \text { a channel with } E_{\mathcal{E}} \subseteq E\right\} .
$$

Channels

When V, W are finite sets, a classical information channel from V to W is a positive trace preserving linear map $\mathcal{E}: \mathcal{D}_{V} \rightarrow \mathcal{D}_{W}$.

- A channel $\mathcal{E}: \mathcal{D}_{V} \rightarrow \mathcal{D}_{W}$ defines a hypergraph

$$
E_{\mathcal{E}}(w)=\{(v, w) \in V \times W: \mathcal{E}(w \mid v)>0\} .
$$

(Here $\mathcal{E}(w \mid v)=\left\langle\mathcal{E}\left(\epsilon_{v, v}\right), \epsilon_{w, w}\right\rangle$ where $\langle\cdot, \cdot\rangle$ is the trace of the matrix product and $\epsilon_{v, v}$ are the basis elements for \mathcal{D}_{V}.)

- For a given hypergraph $E \subseteq V \times W$, we form the collection

$$
\mathcal{C}(E)=\left\{\mathcal{E}: \mathcal{D}_{V} \rightarrow \mathcal{D}_{W}, \text { a channel with } E_{\mathcal{E}} \subseteq E\right\}
$$

$-\mathcal{E}$ is unital if $\mathcal{E}\left(I_{V}\right)=I_{W}$; in this case, \mathcal{E}^{*} is also a channel.

Channels

When V, W are finite sets, a classical information channel from V to W is a positive trace preserving linear map $\mathcal{E}: \mathcal{D}_{V} \rightarrow \mathcal{D}_{W}$.

- A channel $\mathcal{E}: \mathcal{D}_{V} \rightarrow \mathcal{D}_{W}$ defines a hypergraph

$$
E_{\mathcal{E}}(w)=\{(v, w) \in V \times W: \mathcal{E}(w \mid v)>0\} .
$$

(Here $\mathcal{E}(w \mid v)=\left\langle\mathcal{E}\left(\epsilon_{v, v}\right), \epsilon_{w, w}\right\rangle$ where $\langle\cdot, \cdot\rangle$ is the trace of the matrix product and $\epsilon_{v, v}$ are the basis elements for \mathcal{D}_{V}.)

- For a given hypergraph $E \subseteq V \times W$, we form the collection

$$
\mathcal{C}(E)=\left\{\mathcal{E}: \mathcal{D}_{V} \rightarrow \mathcal{D}_{W}, \text { a channel with } E_{\mathcal{E}} \subseteq E\right\}
$$

- \mathcal{E} is unital if $\mathcal{E}\left(I_{V}\right)=I_{W}$; in this case, \mathcal{E}^{*} is also a channel.
- Channel \mathcal{E}, hypergraph $E_{\mathcal{E}} \Longleftrightarrow$ channel \mathcal{E}^{*}, hypergraph $E_{\mathcal{E}^{*}}=\left(E_{\mathcal{E}}\right)^{*}$

Correlations

Let V_{i}, W_{i} be finite sets with $i=1,2$. A no-signalling (NS) correlation on the quadruple $\left(V_{2}, W_{1}, V_{1}, W_{2}\right)$ is an information channel $\Gamma: \mathcal{D}_{V_{2} W_{1}} \rightarrow \mathcal{D}_{V_{1} W_{2}}$ for which marginal channels

$$
\begin{gathered}
\Gamma_{V_{2} \rightarrow V_{1}}: \mathcal{D}_{V_{2}} \rightarrow \mathcal{D}_{V_{1}}, \Gamma_{V_{2} \rightarrow V_{1}}\left(v_{1} \mid v_{2}\right):=\sum_{W_{2} \in W_{2}} \Gamma\left(v_{1}, w_{2} \mid v_{2}, w_{1}\right), \\
\Gamma^{W_{1} \rightarrow W_{2}}: \mathcal{D}_{W_{1}} \rightarrow \mathcal{D}_{W_{2}}, \Gamma^{W_{1} \rightarrow W_{2}}\left(w_{2} \mid w_{1}\right):=\sum_{v_{1} \in V_{1}} \Gamma\left(v_{1}, w_{2} \mid V_{2}, w_{1}\right)
\end{gathered}
$$

are well-defined.

Correlations

Let V_{i}, W_{i} be finite sets with $i=1,2$. A no-signalling (NS) correlation on the quadruple $\left(V_{2}, W_{1}, V_{1}, W_{2}\right)$ is an information channel $\Gamma: \mathcal{D}_{V_{2} W_{1}} \rightarrow \mathcal{D}_{V_{1} W_{2}}$ for which marginal channels

$$
\begin{gathered}
\Gamma_{V_{2} \rightarrow V_{1}}: \mathcal{D}_{V_{2}} \rightarrow \mathcal{D}_{V_{1}}, \Gamma_{V_{2} \rightarrow V_{1}}\left(v_{1} \mid v_{2}\right):=\sum_{w_{2} \in W_{2}} \Gamma\left(v_{1}, w_{2} \mid v_{2}, w_{1}\right), \\
\Gamma^{W_{1} \rightarrow W_{2}}: \mathcal{D}_{W_{1}} \rightarrow \mathcal{D}_{W_{2}}, \Gamma^{W_{1} \rightarrow W_{2}}\left(w_{2} \mid w_{1}\right):=\sum_{v_{1} \in V_{1}} \Gamma\left(v_{1}, w_{2} \mid V_{2}, w_{1}\right)
\end{gathered}
$$

are well-defined.
The collection of no-signalling correlations is denoted by $\mathcal{C}_{\text {ns }}$; other classes of correlations $\left(\mathcal{C}_{\text {loc }}, \mathcal{C}_{\mathrm{q}}, \mathcal{C}_{\mathrm{qa}}, \mathcal{C}_{\mathrm{qc}}\right)$ are defined by additional restrictions we place on $\Gamma \in \mathcal{C}_{\mathrm{ns}}$.

Local correlations: $\Gamma \in \mathcal{C}_{\text {loc }}$ is a convex combination of correlations

$$
\Gamma\left(v_{1} w_{2} \mid v_{2} w_{1}\right)=\Gamma_{1}\left(v_{1} \mid v_{2}\right) \Gamma_{2}\left(w_{2} \mid w_{1}\right),
$$

for probability distributions $\Gamma_{1}\left(\cdot \mid v_{2}\right), \Gamma_{2}\left(\cdot \mid w_{1}\right)$.

Local correlations: $\Gamma \in \mathcal{C}_{\text {loc }}$ is a convex combination of correlations

$$
\Gamma\left(v_{1} w_{2} \mid v_{2} w_{1}\right)=\Gamma_{1}\left(v_{1} \mid v_{2}\right) \Gamma_{2}\left(w_{2} \mid w_{1}\right),
$$

for probability distributions $\Gamma_{1}\left(\cdot \mid v_{2}\right), \Gamma_{2}\left(\cdot \mid w_{1}\right)$.

Quantum commuting: $\Gamma \in \mathcal{C}_{\mathrm{qc}}$ if

$$
\Gamma\left(v_{1} w_{2} \mid v_{2} w_{1}\right)=\left\langle E_{v_{2} v_{1}} F_{w_{1} w_{2}} \xi, \xi\right\rangle
$$

for mutually commuting POVM's $\left(E_{v_{2} v_{1}}\right)_{v_{1} \in V_{1}},\left(F_{w_{1} w_{2}}\right)_{w_{2} \in W_{2}}$ acting on \mathcal{H} and $\xi \in \mathcal{H}$ is a unit vector.

- POVM: (finite) family of positive operators $\left(E_{i}\right)_{i}$ with $\sum_{i \in I} E_{i}=I$.

Local correlations: $\Gamma \in \mathcal{C}_{\text {loc }}$ is a convex combination of correlations

$$
\Gamma\left(v_{1} w_{2} \mid v_{2} w_{1}\right)=\Gamma_{1}\left(v_{1} \mid v_{2}\right) \Gamma_{2}\left(w_{2} \mid w_{1}\right),
$$

for probability distributions $\Gamma_{1}\left(\cdot \mid v_{2}\right), \Gamma_{2}\left(\cdot \mid w_{1}\right)$.

Quantum commuting: $\Gamma \in \mathcal{C}_{q c}$ if

$$
\Gamma\left(v_{1} w_{2} \mid v_{2} w_{1}\right)=\left\langle E_{v_{2} v_{1}} F_{w_{1} w_{2}} \xi, \xi\right\rangle
$$

for mutually commuting POVM's $\left(E_{v_{2} v_{1}}\right)_{v_{1} \in V_{1}},\left(F_{w_{1} w_{2}}\right)_{w_{2} \in W_{2}}$ acting on \mathcal{H} and $\xi \in \mathcal{H}$ is a unit vector.

- POVM: (finite) family of positive operators $\left(E_{i}\right)_{i}$ with $\sum_{i \in I} E_{i}=I$.

Quantum correlations: $\Gamma \in \mathcal{C}_{\mathrm{q}}$ if Γ is quantum commuting, but we replace operator product $E_{v_{2} v_{1}} F_{w_{1} w_{2}}$ with tensor product $E_{v_{2} v_{1}} \otimes F_{w_{1} w_{2}}$, where our operators act on $\mathcal{H}=\mathcal{H}_{V} \otimes \mathcal{H}_{w}$ with $\mathcal{H}_{V}, \mathcal{H}_{w}$ finite-dimensional.

Local correlations: $\Gamma \in \mathcal{C}_{\text {loc }}$ is a convex combination of correlations

$$
\Gamma\left(v_{1} w_{2} \mid v_{2} w_{1}\right)=\Gamma_{1}\left(v_{1} \mid v_{2}\right) \Gamma_{2}\left(w_{2} \mid w_{1}\right),
$$

for probability distributions $\Gamma_{1}\left(\cdot \mid v_{2}\right), \Gamma_{2}\left(\cdot \mid w_{1}\right)$.

Quantum commuting: $\Gamma \in \mathcal{C}_{q c}$ if

$$
\Gamma\left(v_{1} w_{2} \mid v_{2} w_{1}\right)=\left\langle E_{v_{2} v_{1}} F_{w_{1} w_{2}} \xi, \xi\right\rangle
$$

for mutually commuting POVM's $\left(E_{v_{2} v_{1}}\right)_{v_{1} \in V_{1}},\left(F_{w_{1} w_{2}}\right)_{w_{2} \in W_{2}}$ acting on \mathcal{H} and $\xi \in \mathcal{H}$ is a unit vector.

- POVM: (finite) family of positive operators $\left(E_{i}\right)_{i}$ with $\sum_{i \in I} E_{i}=I$.

Quantum correlations: $\Gamma \in \mathcal{C}_{\mathrm{q}}$ if Γ is quantum commuting, but we replace operator product $E_{v_{2} v_{1}} F_{w_{1} w_{2}}$ with tensor product $E_{v_{2} v_{1}} \otimes F_{w_{1} w_{2}}$, where our operators act on $\mathcal{H}=\mathcal{H}_{V} \otimes \mathcal{H}_{w}$ with $\mathcal{H}_{V}, \mathcal{H}_{w}$ finite-dimensional.

Approximately quantum: $\Gamma \in \mathcal{C}_{\mathrm{qa}}$ if it is a limit of quantum strategies.

Local correlations: $\Gamma \in \mathcal{C}_{\text {loc }}$ is a convex combination of correlations

$$
\Gamma\left(v_{1} w_{2} \mid v_{2} w_{1}\right)=\Gamma_{1}\left(v_{1} \mid v_{2}\right) \Gamma_{2}\left(w_{2} \mid w_{1}\right)
$$

for probability distributions $\Gamma_{1}\left(\cdot \mid v_{2}\right), \Gamma_{2}\left(\cdot \mid w_{1}\right)$.
Quantum commuting: $\Gamma \in \mathcal{C}_{\text {qc }}$ if

$$
\Gamma\left(v_{1} w_{2} \mid v_{2} w_{1}\right)=\left\langle E_{v_{2} v_{1}} F_{w_{1} w_{2}} \xi, \xi\right\rangle
$$

for mutually commuting POVM's $\left(E_{v_{2} v_{1}}\right)_{v_{1} \in V_{1}},\left(F_{w_{1} w_{2}}\right)_{w_{2} \in W_{2}}$ acting on \mathcal{H} and $\xi \in \mathcal{H}$ is a unit vector.

- POVM: (finite) family of positive operators $\left(E_{i}\right)_{i}$ with $\sum_{i \in I} E_{i}=I$.

Quantum correlations: $\Gamma \in \mathcal{C}_{q}$ if Γ is quantum commuting, but we replace operator product $E_{v_{2} v_{1}} F_{w_{1} w_{2}}$ with tensor product $E_{v_{2} v_{1}} \otimes F_{w_{1} w_{2}}$, where our operators act on $\mathcal{H}=\mathcal{H}_{v} \otimes \mathcal{H}_{w}$ with $\mathcal{H}_{v}, \mathcal{H}_{w}$ finite-dimensional.

Approximately quantum: $\Gamma \in \mathcal{C}_{\text {qa }}$ if it is a limit of quantum strategies.

$$
\mathcal{C}_{\mathrm{loc}} \subset \mathcal{C}_{\mathrm{q}} \subset \mathcal{C}_{\mathrm{qa}} \subset \mathcal{C}_{\mathrm{qc}} \subset \mathcal{C}_{\mathrm{ns}}
$$

Simulation paradigm

For an NS correlation Γ on $\left(V_{2}, W_{1}, V_{1}, W_{2}\right)$ and a channel $\mathcal{E}: \mathcal{D}_{V_{1}} \rightarrow \mathcal{D}_{W_{1}}$, the map $\Gamma[\mathcal{E}]: \mathcal{D}_{V_{2}} \rightarrow \mathcal{D}_{W_{2}}$ defined by

$$
\Gamma[\mathcal{E}]\left(w_{2} \mid v_{2}\right)=\sum_{v_{1} \in v_{1}} \sum_{w_{1} \in W_{1}} \Gamma\left(v_{1}, w_{2} \mid v_{2}, w_{1}\right) \mathcal{E}\left(w_{1} \mid v_{1}\right)
$$

is another channel.

Simulation paradigm

For an NS correlation Γ on $\left(V_{2}, W_{1}, V_{1}, W_{2}\right)$ and a channel $\mathcal{E}: \mathcal{D}_{V_{1}} \rightarrow \mathcal{D}_{W_{1}}$, the map $\Gamma[\mathcal{E}]: \mathcal{D}_{V_{2}} \rightarrow \mathcal{D}_{W_{2}}$ defined by

$$
\Gamma[\mathcal{E}]\left(w_{2} \mid v_{2}\right)=\sum_{v_{1} \in v_{1}} \sum_{w_{1} \in W_{1}} \Gamma\left(v_{1}, w_{2} \mid v_{2}, w_{1}\right) \mathcal{E}\left(w_{1} \mid v_{1}\right)
$$

is another channel.

- We "wire" the output for the marginal channel $\Gamma_{V_{2} \rightarrow V_{1}}$ to the input for \mathcal{E}, and the output of \mathcal{E} back into Γ.

When $\Gamma[\mathcal{E}] \in \mathcal{C}\left(V_{2} \times W_{2}\right)$ where Γ is the simulator, we write $\left(V_{1} \mapsto W_{1}\right) \xrightarrow{\Gamma}\left(V_{2} \mapsto W_{2}\right)$.

Hypergraph homomorphisms

Fix finite sets V_{i}, W_{i} and hypergraphs $E_{i} \subseteq V_{i} \times W_{i}$, for $i=1,2$.

Hypergraph homomorphisms

Fix finite sets V_{i}, W_{i} and hypergraphs $E_{i} \subseteq V_{i} \times W_{i}$, for $i=1,2$.

- Let

$$
E_{1} \leftrightarrow E_{2}=\left\{\left(v_{2}, w_{1}, v_{1}, w_{2}\right):\left(v_{1}, w_{1}\right) \in E_{1} \Longleftrightarrow\left(v_{2}, w_{2}\right) \in E_{2}\right\} .
$$

Hypergraph homomorphisms

Fix finite sets V_{i}, W_{i} and hypergraphs $E_{i} \subseteq V_{i} \times W_{i}$, for $i=1,2$.

- Let

$$
E_{1} \leftrightarrow E_{2}=\left\{\left(v_{2}, w_{1}, v_{1}, w_{2}\right):\left(v_{1}, w_{1}\right) \in E_{1} \Longleftrightarrow\left(v_{2}, w_{2}\right) \in E_{2}\right\} .
$$

- If $V_{1}=V_{2}=V, W_{1}=W_{2}=W$, the class of no-signalling bicorrelations is the collection of channels

$$
\mathcal{C}_{\mathrm{ns}}^{\mathrm{bi}}=\left\{\Gamma \in \mathcal{C}_{\mathrm{ns}}(V W \times V W): \Gamma \text { is unital and } \Gamma^{*} \in \mathcal{C}_{\mathrm{ns}}\right\} .
$$

Hypergraph homomorphisms

Fix finite sets V_{i}, W_{i} and hypergraphs $E_{i} \subseteq V_{i} \times W_{i}$, for $i=1,2$.

- Let

$$
E_{1} \leftrightarrow E_{2}=\left\{\left(v_{2}, w_{1}, v_{1}, w_{2}\right):\left(v_{1}, w_{1}\right) \in E_{1} \Longleftrightarrow\left(v_{2}, w_{2}\right) \in E_{2}\right\} .
$$

- If $V_{1}=V_{2}=V, W_{1}=W_{2}=W$, the class of no-signalling bicorrelations is the collection of channels

$$
\mathcal{C}_{\mathrm{ns}}^{\mathrm{bi}}=\left\{\Gamma \in \mathcal{C}_{\mathrm{ns}}(V W \times V W): \Gamma \text { is unital and } \Gamma^{*} \in \mathcal{C}_{\mathrm{ns}}\right\} .
$$

- For $\mathrm{t} \neq \mathrm{ns}, \Gamma \in \mathcal{C}_{\mathrm{t}}^{\text {bi }}$ now has slight additional restriction: $\operatorname{POVM}{ }^{\prime}\left(E_{v_{2}, v_{1}}\right)_{v_{1}, v_{2}} \in V$ and $\left(F_{w_{1}, w_{2}}\right)_{w_{1}, w_{2} \in W}$ are magic squares.

Hypergraph homomorphisms

Fix finite sets V_{i}, W_{i} and hypergraphs $E_{i} \subseteq V_{i} \times W_{i}$, for $i=1,2$.

- Let

$$
E_{1} \leftrightarrow E_{2}=\left\{\left(v_{2}, w_{1}, v_{1}, w_{2}\right):\left(v_{1}, w_{1}\right) \in E_{1} \Longleftrightarrow\left(v_{2}, w_{2}\right) \in E_{2}\right\} .
$$

- If $V_{1}=V_{2}=V, W_{1}=W_{2}=W$, the class of no-signalling bicorrelations is the collection of channels

$$
\mathcal{C}_{\mathrm{ns}}^{\mathrm{bi}}=\left\{\Gamma \in \mathcal{C}_{\mathrm{ns}}(V W \times V W): \Gamma \text { is unital and } \Gamma^{*} \in \mathcal{C}_{\mathrm{ns}}\right\} .
$$

- For $\mathrm{t} \neq \mathrm{ns}, \Gamma \in \mathcal{C}_{\mathrm{t}}^{\text {bi }}$ now has slight additional restriction: $\operatorname{POVM}{ }^{\prime}\left(E_{v_{2}, v_{1}}\right)_{v_{1}, v_{2}} \in V$ and $\left(F_{w_{1}, w_{2}}\right)_{w_{1}, w_{2} \in W}$ are magic squares.
- Note: $\mathcal{C}_{\mathrm{t}}(\Lambda)=\mathcal{C}(\Lambda) \cap \mathcal{C}_{\mathrm{t}}, \mathcal{C}_{\mathrm{t}}^{\text {bi }}(\Lambda)=\mathcal{C}(\Lambda) \cap \mathcal{C}_{\mathrm{t}}^{\text {bi }}$.

Definition

We say that

- E_{1} is t-homomorphic to E_{2} (denoted $E_{1} \rightarrow_{\mathrm{t}} E_{2}$) if $\mathcal{C}_{\mathrm{t}}\left(E_{1} \leftrightarrow E_{2}\right) \neq \emptyset$.
- E_{1} is t-isomorphic to E_{2} (denoted $E_{1} \simeq_{\mathrm{t}} E_{2}$) if $V_{1}=V_{2}, W_{1}=W_{2}$ with $\mathcal{C}_{\mathrm{t}}^{\text {bi }}\left(E_{1} \leftrightarrow E_{2}\right) \neq \emptyset$.

Local homomorphisms

A map $f: V_{2} \rightarrow V_{1}$ is a (classical) homomorphism between hypergraphs E_{1} and E_{2} if pre-images under f preserve edge relations; that is, f is a homomorphism if there exists a map $g: W_{1} \rightarrow W_{2}$ so that

$$
f^{-1}\left(E_{1}\left(w_{1}\right)\right)=E_{2}\left(g\left(w_{1}\right)\right), \text { for every } w_{1} \in W_{1} .
$$

Local homomorphisms

A map $f: V_{2} \rightarrow V_{1}$ is a (classical) homomorphism between hypergraphs E_{1} and E_{2} if pre-images under f preserve edge relations; that is, f is a homomorphism if there exists a map $g: W_{1} \rightarrow W_{2}$ so that

$$
f^{-1}\left(E_{1}\left(w_{1}\right)\right)=E_{2}\left(g\left(w_{1}\right)\right), \text { for every } w_{1} \in W_{1} .
$$

- If $V_{1}=V_{2}, W_{1}=W_{2}$ then f is an isomorphism when it is a bijective homomorphism, with g bijective as well.

Local homomorphisms

A map $f: V_{2} \rightarrow V_{1}$ is a (classical) homomorphism between hypergraphs E_{1} and E_{2} if pre-images under f preserve edge relations; that is, f is a homomorphism if there exists a map $g: W_{1} \rightarrow W_{2}$ so that

$$
f^{-1}\left(E_{1}\left(w_{1}\right)\right)=E_{2}\left(g\left(w_{1}\right)\right), \text { for every } w_{1} \in W_{1} .
$$

- If $V_{1}=V_{2}, W_{1}=W_{2}$ then f is an isomorphism when it is a bijective homomorphism, with g bijective as well.
- Perfect local strategies for hypergraph homomorphism (resp. isomorphism) $E_{1} \rightarrow E_{2}$ (resp. $E_{1} \simeq E_{2}$) correspond precisely with classical homo/isomorphisms f between E_{1} and E_{2}.

Local homomorphisms

A map $f: V_{2} \rightarrow V_{1}$ is a (classical) homomorphism between hypergraphs E_{1} and E_{2} if pre-images under f preserve edge relations; that is, f is a homomorphism if there exists a map $g: W_{1} \rightarrow W_{2}$ so that

$$
f^{-1}\left(E_{1}\left(w_{1}\right)\right)=E_{2}\left(g\left(w_{1}\right)\right), \text { for every } w_{1} \in W_{1} .
$$

- If $V_{1}=V_{2}, W_{1}=W_{2}$ then f is an isomorphism when it is a bijective homomorphism, with g bijective as well.
- Perfect local strategies for hypergraph homomorphism (resp. isomorphism) $E_{1} \rightarrow E_{2}$ (resp. $E_{1} \simeq E_{2}$) correspond precisely with classical homo/isomorphisms f between E_{1} and E_{2}.
- If Γ is perfect for $E_{1} \rightarrow E_{2}$, assume Γ is an extreme point in $\mathcal{C}_{\text {loc }}+$ no-signalling \rightsquigarrow homomorphism (f, g).

Local homomorphisms

A map $f: V_{2} \rightarrow V_{1}$ is a (classical) homomorphism between hypergraphs E_{1} and E_{2} if pre-images under f preserve edge relations; that is, f is a homomorphism if there exists a map $g: W_{1} \rightarrow W_{2}$ so that

$$
f^{-1}\left(E_{1}\left(w_{1}\right)\right)=E_{2}\left(g\left(w_{1}\right)\right), \text { for every } w_{1} \in W_{1} .
$$

- If $V_{1}=V_{2}, W_{1}=W_{2}$ then f is an isomorphism when it is a bijective homomorphism, with g bijective as well.
- Perfect local strategies for hypergraph homomorphism (resp. isomorphism) $E_{1} \rightarrow E_{2}$ (resp. $E_{1} \simeq E_{2}$) correspond precisely with classical homo/isomorphisms f between E_{1} and E_{2}.
- If Γ is perfect for $E_{1} \rightarrow E_{2}$, assume Γ is an extreme point in $\mathcal{C}_{\text {loc }}+$ no-signalling \rightsquigarrow homomorphism (f, g).
- If (f, g) a homomorphism between hypergraphs, let $\Phi: \mathcal{D}_{V_{2}} \rightarrow \mathcal{D}_{V_{1}}, \Psi: \mathcal{D}_{W_{1}} \rightarrow \mathcal{D}_{W_{2}}$ where $\Phi\left(v_{1} \mid v_{2}\right)=\delta_{v_{1}, f\left(v_{2}\right)}$ and $\Psi\left(w_{2} \mid w_{1}\right)=\delta_{w_{2}, g\left(w_{1}\right)}$. Then $\Gamma=\Phi \otimes \Psi \in \mathcal{C}_{\text {loc }}\left(E_{1} \leftrightarrow E_{2}\right)$.

An operator system approach

Start with a finite set V, and a block operator matrix $U=\left(u_{v, v^{\prime}}\right)_{V, v^{\prime} \in V}$ such that U and U^{t} are isometries. Let \mathcal{V}_{V} be the (universal) ternary ring of operators generated by $u_{v, v^{\prime}}$ for $v, V \in V$ and the relations

$$
\sum_{a \in V}\left[u_{a^{\prime \prime}, x^{\prime \prime}}, u_{a, x}, u_{a, x^{\prime}}\right]=\delta_{x, x^{\prime}} u_{a^{\prime \prime}, x^{\prime \prime}}, \quad \sum_{x \in V}\left[u_{a^{\prime \prime}, x^{\prime \prime}}, u_{a, x}, u_{a^{\prime}, x}\right]=\delta_{a, a^{\prime}} u_{a^{\prime \prime}, x^{\prime \prime}}
$$

An operator system approach

Start with a finite set V, and a block operator matrix $U=\left(u_{V, v^{\prime}}\right)_{V, v^{\prime} \in V}$ such that U and U^{t} are isometries. Let \mathcal{V}_{V} be the (universal) ternary ring of operators generated by $u_{v, v^{\prime}}$ for $v, V \in V$ and the relations

$$
\sum_{a \in V}\left[u_{a^{\prime \prime}, x^{\prime \prime}}, u_{a, x}, u_{a, x^{\prime}}\right]=\delta_{x, x^{\prime}} u_{a^{\prime \prime}, x^{\prime \prime}}, \quad \sum_{x \in V}\left[u_{a^{\prime \prime}, x^{\prime \prime}}, u_{a, x}, u_{a^{\prime}, x}\right]=\delta_{a, a^{\prime}} u_{a^{\prime \prime}, x^{\prime \prime}}
$$

- For a faithful ternary representation $\theta: \mathcal{V}_{V} \rightarrow \mathcal{B}(\mathcal{H}, \mathcal{K})$ (where \mathcal{H}, \mathcal{K} are Hilbert spaces), for the right C^{*}-algebra \mathcal{C}_{V} we have $\mathcal{C}_{V} \simeq \overline{\operatorname{span}}\left(\theta\left(\mathcal{V}_{V}\right)^{*} \theta\left(\mathcal{V}_{V}\right)\right)$.
- Write $e_{v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}}:=u_{v_{2}, v_{1}}^{*} u_{v_{2}^{\prime}}, v_{1}^{\prime}, \quad v_{1}, v_{2}, v_{1}^{\prime}, v_{2} \in V$.
- The C^{*}-algebra \mathcal{C}_{V} is generated by elements $e_{v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}}$ for $v_{i}, v_{i}^{\prime} \in V, i=1,2$.

An operator system approach

Start with a finite set V, and a block operator matrix $U=\left(u_{v, v^{\prime}}\right)_{V, v^{\prime} \in V}$ such that U and U^{t} are isometries. Let \mathcal{V}_{V} be the (universal) ternary ring of operators generated by $u_{v, v^{\prime}}$ for $v, V \in V$ and the relations

$$
\sum_{a \in V}\left[u_{a^{\prime \prime}, x^{\prime \prime}}, u_{a, x}, u_{a, x^{\prime}}\right]=\delta_{x, x^{\prime}} u_{a^{\prime \prime}, x^{\prime \prime}}, \quad \sum_{x \in V}\left[u_{a^{\prime \prime}, x^{\prime \prime}}, u_{a, x}, u_{a^{\prime}, x}\right]=\delta_{a, a^{\prime}} u_{a^{\prime \prime}, x^{\prime \prime}}
$$

- For a faithful ternary representation $\theta: \mathcal{V}_{V} \rightarrow \mathcal{B}(\mathcal{H}, \mathcal{K})$ (where \mathcal{H}, \mathcal{K} are Hilbert spaces), for the right C^{*}-algebra \mathcal{C}_{V} we have $\mathcal{C}_{V} \simeq \overline{\operatorname{span}}\left(\theta\left(\mathcal{V}_{V}\right)^{*} \theta\left(\mathcal{V}_{V}\right)\right)$.
- Write $e_{v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}}:=u_{v_{2}, v_{1}}^{*} u_{v_{2}^{\prime}}, v_{1}^{\prime}, \quad v_{1}, v_{2}, v_{1}^{\prime}, v_{2} \in V$.
- The C^{*}-algebra \mathcal{C}_{V} is generated by elements $e_{v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}}$ for $v_{i}, v_{i}^{\prime} \in V, i=1,2$.
- Set $e_{v_{2}, v_{1}}:=e_{v_{1}, v_{1}, v_{2}, v_{2}}$ for $v_{1}, v_{2} \in V$ and generate operator system $\mathcal{S}_{V}=\operatorname{span}\left\{e_{v_{1}, v_{2}}: v_{1}, v_{2} \in V\right\}$.

An operator system approach

Start with a finite set V, and a block operator matrix $U=\left(u_{v, v^{\prime}}\right)_{V, v^{\prime} \in V}$ such that U and U^{t} are isometries. Let \mathcal{V}_{V} be the (universal) ternary ring of operators generated by $u_{v, v^{\prime}}$ for $v, V \in V$ and the relations

$$
\sum_{a \in V}\left[u_{a^{\prime \prime}, x^{\prime \prime}}, u_{a, x}, u_{a, x^{\prime}}\right]=\delta_{x, x^{\prime}} u_{a^{\prime \prime}, x^{\prime \prime}}, \quad \sum_{x \in V}\left[u_{a^{\prime \prime}, x^{\prime \prime}}, u_{a, x}, u_{a^{\prime}, x}\right]=\delta_{a, a^{\prime}} u_{a^{\prime \prime}, x^{\prime \prime}}
$$

- For a faithful ternary representation $\theta: \mathcal{V}_{V} \rightarrow \mathcal{B}(\mathcal{H}, \mathcal{K})$ (where \mathcal{H}, \mathcal{K} are Hilbert spaces), for the right C^{*}-algebra \mathcal{C}_{V} we have $\mathcal{C}_{V} \simeq \overline{\operatorname{span}}\left(\theta\left(\mathcal{V}_{V}\right)^{*} \theta\left(\mathcal{V}_{V}\right)\right)$.
- Write $e_{v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}}:=u_{v_{2}, v_{1}}^{*} u_{v_{2}^{\prime}}, v_{1}^{\prime}, \quad v_{1}, v_{2}, v_{1}^{\prime}, v_{2} \in V$.
- The C^{*}-algebra \mathcal{C}_{V} is generated by elements $e_{v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}}$ for $v_{i}, v_{i}^{\prime} \in V, i=1,2$.
- Set $e_{v_{2}, v_{1}}:=e_{v_{1}, v_{1}, v_{2}, v_{2}}$ for $v_{1}, v_{2} \in V$ and generate operator system $\mathcal{S}_{V}=\operatorname{span}\left\{e_{v_{1}, v_{2}}: v_{1}, v_{2} \in V\right\}$.
- Consider $\mathcal{J}=\operatorname{span}\left\{e_{v_{2}, v_{1}} \otimes f_{w_{1}, w_{2}}:\left(v_{2}, w_{1}, v_{1}, w_{2}\right) \notin E_{1} \leftrightarrow E_{2}\right\}$ as a subspace in $\mathcal{S}_{V} \otimes \mathcal{S}_{W}$.

An operator system approach

Start with a finite set V, and a block operator matrix $U=\left(u_{v, v^{\prime}}\right)_{V, v^{\prime} \in V}$ such that U and U^{t} are isometries. Let \mathcal{V}_{V} be the (universal) ternary ring of operators generated by $u_{v, v^{\prime}}$ for $v, V \in V$ and the relations

$$
\sum_{a \in V}\left[u_{a^{\prime \prime}, x^{\prime \prime}}, u_{a, x}, u_{a, x^{\prime}}\right]=\delta_{x, x^{\prime}} u_{a^{\prime \prime}, x^{\prime \prime}}, \quad \sum_{x \in V}\left[u_{a^{\prime \prime}, x^{\prime \prime}}, u_{a, x}, u_{a^{\prime}, x}\right]=\delta_{a, a^{\prime}} u_{a^{\prime \prime}, x^{\prime \prime}}
$$

- For a faithful ternary representation $\theta: \mathcal{V}_{V} \rightarrow \mathcal{B}(\mathcal{H}, \mathcal{K})$ (where \mathcal{H}, \mathcal{K} are Hilbert spaces), for the right C^{*}-algebra \mathcal{C}_{V} we have $\mathcal{C}_{V} \simeq \overline{\operatorname{span}}\left(\theta\left(\mathcal{V}_{V}\right)^{*} \theta\left(\mathcal{V}_{V}\right)\right)$.
- Write $e_{v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}}:=u_{v_{2}, v_{1}}^{*} u_{v_{2}^{\prime}}, v_{1}^{\prime}, \quad v_{1}, v_{2}, v_{1}, v_{2} \in V$.
- The C^{*}-algebra \mathcal{C}_{V} is generated by elements $e_{v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}}$ for $v_{i}, v_{i}^{\prime} \in V, i=1,2$.
- Set $e_{v_{2}, v_{1}}:=e_{v_{1}, v_{1}, v_{2}, v_{2}}$ for $v_{1}, v_{2} \in V$ and generate operator system $\mathcal{S}_{V}=\operatorname{span}\left\{e_{v_{1}, v_{2}}: v_{1}, v_{2} \in V\right\}$.
- Consider $\mathcal{J}=\operatorname{span}\left\{e_{v_{2}, v_{1}} \otimes f_{w_{1}, w_{2}}:\left(v_{2}, w_{1}, v_{1}, w_{2}\right) \notin E_{1} \leftrightarrow E_{2}\right\}$ as a subspace in $\mathcal{S}_{V} \otimes \mathcal{S}_{W}$.

Theorem (H.-Todorov, in prep. 2022)

The map $s \mapsto \Gamma_{s}$ is an affine surjective correspondence between

- the states of $\mathcal{S}_{V} \otimes_{\max } \mathcal{S}_{W}$ which annihilate \mathcal{J} and the perfect ns-strategies of $E_{1} \leftrightarrow E_{2}$.
- the states of $\mathcal{S}_{V} \otimes_{c} \mathcal{S}_{W}$ which annihilate \mathcal{J} and the perfect qc-strategies of $E_{1} \leftrightarrow E_{2}$.
- the states of $\mathcal{S}_{V} \otimes_{\min } \mathcal{S}_{W}$ which annihilate \mathcal{J} and the perfect qa-strategies of $E_{1} \leftrightarrow E_{2}$.

Note: Proof of previous theorem extends ideas of proof ([4] Lupini et. al. 2020) for correlations to bicorrelations.

Note: Proof of previous theorem extends ideas of proof ([4] Lupini et. al. 2020) for correlations to bicorrelations. For $\tau \in\{\min , \mathrm{c}, \max \}$ and state s on $\mathcal{S}_{V} \otimes_{\tau} \mathcal{S}_{W}$ which annihilates \mathcal{J}, map

$$
\Gamma_{s}\left(v_{1}, w_{2} \mid v_{2}, w_{1}\right)=s\left(e_{v_{2}, v_{1}} \otimes f_{w_{1}, w_{2}}\right)
$$

gives us the correspondence with perfect t-strategies on $E_{1} \leftrightarrow E_{2}$ (for $\mathrm{t} \in\{\mathrm{qa}, \mathrm{qc}, \mathrm{ns}\}$).

Note: Proof of previous theorem extends ideas of proof ([4] Lupini et. al. 2020) for correlations to bicorrelations. For $\tau \in\{\min , \mathrm{c}, \max \}$ and state s on $\mathcal{S}_{V} \otimes_{\tau} \mathcal{S}_{W}$ which annihilates \mathcal{J}, map

$$
\Gamma_{s}\left(v_{1}, w_{2} \mid v_{2}, w_{1}\right)=s\left(e_{v_{2}, v_{1}} \otimes f_{w_{1}, w_{2}}\right)
$$

gives us the correspondence with perfect t -strategies on $E_{1} \leftrightarrow E_{2}$ (for $\mathrm{t} \in\{\mathrm{qa}, \mathrm{qc}, \mathrm{ns}\}$).
Remark: When \mathcal{H} is a Hilbert space, a quantum magic square over V on \mathcal{H} is a block operator matrix $\left(E_{v_{2}, v_{1}}\right)_{v_{1}, v_{2} \in V}$ with positive entries, and

$$
\sum_{v_{2}^{\prime} \in V} E_{v_{1}, v_{2}^{\prime}}=\sum_{v_{1}^{\prime} \in V} E_{v_{1}^{\prime}, v_{2}}=I, \quad v_{1}, v_{2} \in V
$$

Note: Proof of previous theorem extends ideas of proof ([4] Lupini et. al. 2020) for correlations to bicorrelations. For $\tau \in\{\min , \mathrm{c}, \max \}$ and state s on $\mathcal{S}_{V} \otimes_{\tau} \mathcal{S}_{W}$ which annihilates \mathcal{J}, map

$$
\Gamma_{s}\left(v_{1}, w_{2} \mid v_{2}, w_{1}\right)=s\left(e_{v_{2}, v_{1}} \otimes f_{w_{1}, w_{2}}\right)
$$

gives us the correspondence with perfect t -strategies on $E_{1} \leftrightarrow E_{2}$ (for $\mathrm{t} \in\{\mathrm{qa}, \mathrm{qc}, \mathrm{ns}\}$).
Remark: When \mathcal{H} is a Hilbert space, a quantum magic square over V on \mathcal{H} is a block operator matrix $\left(E_{v_{2}, v_{1}}\right)_{v_{1}, v_{2} \in V}$ with positive entries, and

$$
\sum_{v_{2}^{\prime} \in V} E_{v_{1}, v_{2}^{\prime}}=\sum_{v_{1}^{\prime} \in V} E_{v_{1}^{\prime}, v_{2}}=I, \quad v_{1}, v_{2} \in V
$$

Operator system \mathcal{S}_{V} is universal for quantum magic squares:

$$
\text { ucp maps } \phi: \mathcal{S}_{V} \rightarrow \mathcal{B}(\mathcal{H}) \leftrightarrow \text { quantum magic square }\left(E_{v_{1}, v_{2}}\right)_{v_{1}, v_{2} \in V} \text { via } E_{v_{1}, v_{2}}=\phi\left(e_{v_{1}, v_{2}}\right)
$$

Assume $V_{i}=W_{i}=V, i=1,2$. A bicorrelation $\Gamma \in \mathcal{C}_{\mathrm{t}}^{\mathrm{bi}}$ is faithful if

$$
\Gamma\left(v_{1} w_{2} \mid v_{2} w_{1}\right)=0 \text { if }\left(v_{1}=w_{1} \& v_{2} \neq w_{2}\right) \text { or }\left(v_{1} \neq w_{1} \& v_{2}=w_{2}\right)
$$

Assume $V_{i}=W_{i}=V, i=1,2$. A bicorrelation $\Gamma \in \mathcal{C}_{\mathrm{t}}^{\text {bi }}$ is faithful if

$$
\Gamma\left(v_{1} w_{2} \mid v_{2} w_{1}\right)=0 \text { if }\left(v_{1}=w_{1} \& v_{2} \neq w_{2}\right) \text { or }\left(v_{1} \neq w_{1} \& v_{2}=w_{2}\right) .
$$

- Faithful isomorphism Γ between E_{1} and $E_{2} \rightsquigarrow$ we can mutually simulate noiseless channels id : $V_{i} \rightarrow W_{i}, i=1,2$ by each other.

Assume $V_{i}=W_{i}=V, i=1,2$. A bicorrelation $\Gamma \in \mathcal{C}_{\mathrm{t}}^{\text {bi }}$ is faithful if

$$
\Gamma\left(v_{1} w_{2} \mid v_{2} w_{1}\right)=0 \text { if }\left(v_{1}=w_{1} \& v_{2} \neq w_{2}\right) \text { or }\left(v_{1} \neq w_{1} \& v_{2}=w_{2}\right) .
$$

- Faithful isomorphism Γ between E_{1} and $E_{2} \rightsquigarrow$ we can mutually simulate noiseless channels id : $V_{i} \rightarrow W_{i}, i=1,2$ by each other.

Theorem (H.-Todorov, in prep. 2022)

Let $t \in\{\mathrm{loc}, \mathrm{q}, \mathrm{qc}\}$. TFAE:

- E_{1} is faithfully t-isomorphic to E_{2};
- there exists a unitary matrix $P=\left(P_{v, v^{\prime}}\right)_{v, v^{\prime} \in V}$ where entries $P_{v, v^{\prime}} \in \mathcal{B}(\mathcal{H})$ are projections, such that

$$
P\left(\mathrm{~A}_{E_{1}} \otimes I_{\mathcal{H}}\right)=\left(\mathrm{A}_{E_{2}} \otimes I_{\mathcal{H}}\right) P
$$

where $A_{E_{i}}$ is the incidence matrix for $E_{i}, i=1,2$.

Assume $V_{i}=W_{i}=V, i=1,2$. A bicorrelation $\Gamma \in \mathcal{C}_{\mathrm{t}}^{\text {bi }}$ is faithful if

$$
\Gamma\left(v_{1} w_{2} \mid v_{2} w_{1}\right)=0 \text { if }\left(v_{1}=w_{1} \& v_{2} \neq w_{2}\right) \text { or }\left(v_{1} \neq w_{1} \& v_{2}=w_{2}\right) .
$$

- Faithful isomorphism Γ between E_{1} and $E_{2} \rightsquigarrow$ we can mutually simulate noiseless channels id : $V_{i} \rightarrow W_{i}, i=1,2$ by each other.

Theorem (H.-Todorov, in prep. 2022)

Let $t \in\{\mathrm{loc}, \mathrm{q}, \mathrm{qc}\}$. TFAE:

- E_{1} is faithfully t-isomorphic to E_{2};
- there exists a unitary matrix $P=\left(P_{v, v^{\prime}}\right)_{v, v^{\prime} \in V}$ where entries $P_{v, v^{\prime}} \in \mathcal{B}(\mathcal{H})$ are projections, such that

$$
P\left(\mathrm{~A}_{E_{1}} \otimes \boldsymbol{I}_{\mathcal{H}}\right)=\left(\mathrm{A}_{E_{2}} \otimes \mathcal{I}_{\mathcal{H}}\right) P
$$

where $\mathrm{A}_{E_{i}}$ is the incidence matrix for $E_{i}, i=1,2$.
Note: The ideas for this proof were adapted from Atserias et. al ([5] 2019), where a similar result was shown for graphs only.

Local vs. quantum strategies

For a given finite graph G with vertex set X, we can form hypergraphs

$$
E_{G}=\left\{\left(x, x^{\prime}\right): x \sim x^{\prime}\right\}, \quad F_{G}=\left\{((x, y), y): x \sim_{G} y\right\}
$$

in $X \times X$ and $X X \times X$, respectively.

Local vs. quantum strategies

For a given finite graph G with vertex set X, we can form hypergraphs

$$
E_{G}=\left\{\left(x, x^{\prime}\right): x \sim x^{\prime}\right\}, \quad F_{G}=\left\{((x, y), y): x \sim_{G} y\right\}
$$

in $X \times X$ and $X X \times X$, respectively.

- There exists graphs G_{1}, G_{2} which are not locally isomorphic, but quantum isomorphic ([5] Atserias et. al, 2019).

Local vs. quantum strategies

For a given finite graph G with vertex set X, we can form hypergraphs

$$
E_{G}=\left\{\left(x, x^{\prime}\right): x \sim x^{\prime}\right\}, \quad F_{G}=\left\{((x, y), y): x \sim_{G} y\right\}
$$

in $X \times X$ and $X X \times X$, respectively.

- There exists graphs G_{1}, G_{2} which are not locally isomorphic, but quantum isomorphic ([5] Atserias et. al, 2019).
- Local: classical graph isomorphism between G_{1} and G_{2}.
- Quantum: we can interwine the adjacency matrices $\mathrm{A}_{G_{1}}, \mathrm{~A}_{G_{2}}$ by some unitary block permutation matrix P whose entries act on finite-dimensional space \mathcal{H}.

Local vs. quantum strategies

For a given finite graph G with vertex set X, we can form hypergraphs

$$
E_{G}=\left\{\left(x, x^{\prime}\right): x \sim x^{\prime}\right\}, \quad F_{G}=\left\{((x, y), y): x \sim_{G} y\right\}
$$

in $X \times X$ and $X X \times X$, respectively.

- There exists graphs G_{1}, G_{2} which are not locally isomorphic, but quantum isomorphic ([5] Atserias et. al, 2019).
- Local: classical graph isomorphism between G_{1} and G_{2}.
- Quantum: we can interwine the adjacency matrices $\mathrm{A}_{G_{1}}, \mathrm{~A}_{G_{2}}$ by some unitary block permutation matrix P whose entries act on finite-dimensional space \mathcal{H}.

Theorem (H.-Todorov, in prep. 2022)

Let G_{1}, G_{2} be graphs with vertex set X such that $G_{1} \cong_{q} G_{2}$ (quantum) but $G_{1} \neq G_{2}$. Then:

Local vs. quantum strategies

For a given finite graph G with vertex set X, we can form hypergraphs

$$
E_{G}=\left\{\left(x, x^{\prime}\right): x \sim x^{\prime}\right\}, \quad F_{G}=\left\{((x, y), y): x \sim_{G} y\right\}
$$

in $X \times X$ and $X X \times X$, respectively.

- There exists graphs G_{1}, G_{2} which are not locally isomorphic, but quantum isomorphic ([5] Atserias et. al, 2019).
- Local: classical graph isomorphism between G_{1} and G_{2}.
- Quantum: we can interwine the adjacency matrices $\mathrm{A}_{G_{1}}, \mathrm{~A}_{G_{2}}$ by some unitary block permutation matrix P whose entries act on finite-dimensional space \mathcal{H}.

Theorem (H.-Todorov, in prep. 2022)

Let G_{1}, G_{2} be graphs with vertex set X such that $G_{1} \cong_{q} G_{2}$ (quantum) but $G_{1} \neq G_{2}$. Then:

- $E_{G_{1}} \cong_{q} E_{G_{2}}$, but $E_{G_{1}} \not \models_{\text {loc }} E_{G_{2}}$;
- $F_{G_{1}} \cong{ }_{\text {qa }} F_{G_{2}}$, but $F_{G_{1}} \not ⿻_{\text {loc }} F_{G_{2}}$.

Local vs. quantum strategies

Proof: (Sketch)
(i) As $G_{1} \cong{ }_{\mathrm{q}} G_{2}$, find permutation $P \in M_{X} \otimes M_{d}$ intertwining $A_{G_{1}} \otimes I_{d}$ and $A_{G_{2}} \otimes I_{d}$; this implies $E_{G_{1}} \cong{ }_{\mathrm{q}} E_{G_{2}}$.

Local vs. quantum strategies

Proof: (Sketch)
(i) As $G_{1} \cong_{q} G_{2}$, find permutation $P \in M_{X} \otimes M_{d}$ intertwining $A_{G_{1}} \otimes I_{d}$ and $A_{G_{2}} \otimes I_{d}$; this implies $E_{G_{1}} \cong{ }_{\mathrm{q}} E_{G_{2}}$. To show local separation, assume towards contradiction we have an isomorphism (f, g) on $X(f, g$ bijections preserving edge relations). These induce an isomorphism from $L\left(G_{1}\right)$ to $L\left(G_{2}\right)$ (by considering the confusability graphs of $E_{G_{i}}$). Use Whitney's Isomorphism Theorem to show $G_{1} \cong G_{2}$ - a contradiction.
(ii) Using permutation $P=\left(P_{x, y}\right)_{x, y}$ as before, we know

$$
P_{x, x^{\prime}} P_{y, y^{\prime}}=0 \text { if } \operatorname{rel}(x, y) \neq \operatorname{rel}\left(x^{\prime}, y^{\prime}\right)
$$

For pairs $(x, y),(a, b) \in X \times X$, let $Q_{x y, a b}=P_{y, b} P_{x, a} P_{y, b}$. We can show:

Local vs. quantum strategies

Proof: (Sketch)
(i) As $G_{1} \cong{ }_{\mathrm{q}} G_{2}$, find permutation $P \in M_{X} \otimes M_{d}$ intertwining $A_{G_{1}} \otimes I_{d}$ and $A_{G_{2}} \otimes I_{d}$; this implies $E_{G_{1}} \cong{ }_{\mathrm{q}} E_{G_{2}}$. To show local separation, assume towards contradiction we have an isomorphism (f, g) on $X(f, g$ bijections preserving edge relations). These induce an isomorphism from $L\left(G_{1}\right)$ to $L\left(G_{2}\right)$ (by considering the confusability graphs of $E_{G_{i}}$). Use Whitney's Isomorphism Theorem to show $G_{1} \cong G_{2}$ - a contradiction.
(ii) Using permutation $P=\left(P_{x, y}\right)_{x, y}$ as before, we know

$$
P_{x, x^{\prime}} P_{y, y^{\prime}}=0 \text { if } \operatorname{rel}(x, y) \neq \operatorname{rel}\left(x^{\prime}, y^{\prime}\right)
$$

For pairs $(x, y),(a, b) \in X \times X$, let $Q_{x y, a b}=P_{y, b} P_{x, a} P_{y, b}$. We can show:

- $\left(Q_{x y, a b}\right)_{a b \in X X}$ is a POVM for every $x y \in X X$.

Local vs. quantum strategies

Proof: (Sketch)
(i) As $G_{1} \cong{ }_{\mathrm{q}} G_{2}$, find permutation $P \in M_{X} \otimes M_{d}$ intertwining $A_{G_{1}} \otimes I_{d}$ and $A_{G_{2}} \otimes I_{d}$; this implies $E_{G_{1}} \cong{ }_{\mathrm{q}} E_{G_{2}}$. To show local separation, assume towards contradiction we have an isomorphism (f, g) on $X(f, g$ bijections preserving edge relations). These induce an isomorphism from $L\left(G_{1}\right)$ to $L\left(G_{2}\right)$ (by considering the confusability graphs of $E_{G_{i}}$). Use Whitney's Isomorphism Theorem to show $G_{1} \cong G_{2}$ - a contradiction.
(ii) Using permutation $P=\left(P_{x, y}\right)_{x, y}$ as before, we know

$$
P_{x, x^{\prime}} P_{y, y^{\prime}}=0 \text { if } \operatorname{rel}(x, y) \neq \operatorname{rel}\left(x^{\prime}, y^{\prime}\right)
$$

For pairs $(x, y),(a, b) \in X \times X$, let $Q_{x y, a b}=P_{y, b} P_{x, a} P_{y, b}$. We can show:

- $\left(Q_{x y, a b}\right)_{a b \in X X}$ is a POVM for every $x y \in X X$.
- $Q_{x y, a b} P_{y, c}=0$ for $(x y, y) \in E_{G_{1}},(a b, c) \notin E_{G_{2}}$.

Local vs. quantum strategies

Proof: (Sketch)
(i) As $G_{1} \cong_{q} G_{2}$, find permutation $P \in M_{X} \otimes M_{d}$ intertwining $A_{G_{1}} \otimes I_{d}$ and $A_{G_{2}} \otimes I_{d}$; this implies $E_{G_{1}} \cong{ }_{\mathrm{q}} E_{G_{2}}$. To show local separation, assume towards contradiction we have an isomorphism (f, g) on $X(f, g$ bijections preserving edge relations). These induce an isomorphism from $L\left(G_{1}\right)$ to $L\left(G_{2}\right)$ (by considering the confusability graphs of $E_{G_{i}}$). Use Whitney's Isomorphism Theorem to show $G_{1} \cong G_{2}$ - a contradiction.
(ii) Using permutation $P=\left(P_{x, y}\right)_{x, y}$ as before, we know

$$
P_{x, x^{\prime}} P_{y, y^{\prime}}=0 \text { if } \operatorname{rel}(x, y) \neq \operatorname{rel}\left(x^{\prime}, y^{\prime}\right)
$$

For pairs $(x, y),(a, b) \in X \times X$, let $Q_{x y, a b}=P_{y, b} P_{x, a} P_{y, b}$. We can show:

- $\left(Q_{x y, a b}\right)_{a b \in X X}$ is a POVM for every $x y \in X X$.
- $Q_{x y, a b} P_{y, c}=0$ for $(x y, y) \in E_{G_{1}},(a b, c) \notin E_{G_{2}}$.

If $\xi \in \mathcal{H} \otimes \mathcal{H}$ is maximally entangled, set

$$
p(a b, c \mid x y, z)=\left\langle\left(Q_{x y, a b} \otimes P_{y, c}^{\mathrm{t}}\right) \xi, \xi\right\rangle, \quad x, y, z, a, b, c \in X
$$

Local vs. quantum strategies

Proof: (Sketch)
(i) As $G_{1} \cong{ }_{\mathrm{q}} G_{2}$, find permutation $P \in M_{X} \otimes M_{d}$ intertwining $A_{G_{1}} \otimes I_{d}$ and $A_{G_{2}} \otimes I_{d}$; this implies $E_{G_{1}} \cong{ }_{\mathrm{q}} E_{G_{2}}$. To show local separation, assume towards contradiction we have an isomorphism (f, g) on $X(f, g$ bijections preserving edge relations). These induce an isomorphism from $L\left(G_{1}\right)$ to $L\left(G_{2}\right)$ (by considering the confusability graphs of $E_{G_{i}}$). Use Whitney's Isomorphism Theorem to show $G_{1} \cong G_{2}$ - a contradiction.
(ii) Using permutation $P=\left(P_{x, y}\right)_{x, y}$ as before, we know

$$
P_{x, x^{\prime}} P_{y, y^{\prime}}=0 \text { if } \operatorname{rel}(x, y) \neq \operatorname{rel}\left(x^{\prime}, y^{\prime}\right)
$$

For pairs $(x, y),(a, b) \in X \times X$, let $Q_{x y, a b}=P_{y, b} P_{x, a} P_{y, b}$. We can show:

- $\left(Q_{x y, a b}\right)_{a b \in X X}$ is a POVM for every $x y \in X X$.
- $Q_{x y, a b} P_{y, c}=0$ for $(x y, y) \in E_{G_{1}},(a b, c) \notin E_{G_{2}}$.

If $\xi \in \mathcal{H} \otimes \mathcal{H}$ is maximally entangled, set

$$
p(a b, c \mid x y, z)=\left\langle\left(Q_{x y, a b} \otimes P_{y, c}^{\mathrm{t}}\right) \xi, \xi\right\rangle, \quad x, y, z, a, b, c \in X .
$$

Then p gives us a perfect approximately quantum strategy for $F_{G_{1}} \cong F_{G_{2}}$.

Strong no-signalling correlations

We restrict ourselves to considering non-local games as hypergraphs. We assume:

- $X_{i}, Y_{i}, A_{i}, B_{i}$ are finite sets, $E_{i} \subseteq X_{i} Y_{i} \times A_{i} B_{i}, i=1,2$ are non-local games.
- Ordered pairs $(x, y) \in X \times Y$ are abbreviated as $x y$.

Strong no-signalling correlations

We restrict ourselves to considering non-local games as hypergraphs. We assume:

- $X_{i}, Y_{i}, A_{i}, B_{i}$ are finite sets, $E_{i} \subseteq X_{i} Y_{i} \times A_{i} B_{i}, i=1,2$ are non-local games.
- Ordered pairs $(x, y) \in X \times Y$ are abbreviated as $x y$.

A channel $\Gamma: \mathcal{D}_{X_{2} Y_{2} \times A_{1} B_{1}} \rightarrow \mathcal{D}_{X_{1} Y_{1} \times A_{2} B_{2}}$ is strongly no-signalling (SNS) if

$$
\begin{array}{ll}
\sum_{b_{2} \in B_{2}} \Gamma\left(x_{1} y_{1}, a_{2} b_{2} \mid x_{2} y_{2}, a_{1} b_{1}\right)=\sum_{b_{2} \in B_{2}} \Gamma\left(x_{1} y_{1}, a_{2} b_{2} \mid x_{2} y_{2}, a_{1} b_{1}^{\prime}\right), & b_{1}, b_{1}^{\prime} \in B_{1}, \\
\sum_{a_{2} \in A_{2}} \Gamma\left(x_{1} y_{1}, a_{2} b_{2} \mid x_{2} y_{2}, a_{1} b_{1}\right)=\sum_{a_{2} \in A_{2}} \Gamma\left(x_{1} y_{1}, a_{2} b_{2} \mid x_{2} y_{2}, a_{1}^{\prime} b_{1}\right), & a_{1}, a_{1}^{\prime} \in A_{1}, \\
\sum_{y_{1} \in Y_{1}} \Gamma\left(x_{1} y_{1}, a_{2} b_{2} \mid x_{2} y_{2}, a_{1} b_{1}\right)=\sum_{y_{1} \in Y_{1}} \Gamma\left(x_{1} y_{1}, a_{2} b_{2} \mid x_{2} y_{2}^{\prime}, a_{1} b_{1}\right), & y_{2}, y_{2}^{\prime} \in Y_{2}, \\
\sum_{x_{1} \in X_{1}} \Gamma\left(x_{1} y_{1}, a_{2} b_{2} \mid x_{2} y_{2}, a_{1} b_{1}\right)=\sum_{x_{1} \in X_{1}} \Gamma\left(x_{1} y_{1}, a_{2} b_{2} \mid x_{2}^{\prime} y_{2}, a_{1} b_{1}\right), & x_{2}, x_{2}^{\prime} \in X_{2} .
\end{array}
$$

Strong no-signalling correlations

We restrict ourselves to considering non-local games as hypergraphs. We assume:

- $X_{i}, Y_{i}, A_{i}, B_{i}$ are finite sets, $E_{i} \subseteq X_{i} Y_{i} \times A_{i} B_{i}, i=1,2$ are non-local games.
- Ordered pairs $(x, y) \in X \times Y$ are abbreviated as $x y$.

A channel $\Gamma: \mathcal{D}_{X_{2} Y_{2} \times A_{1} B_{1}} \rightarrow \mathcal{D}_{X_{1} Y_{1} \times A_{2} B_{2}}$ is strongly no-signalling (SNS) if

$$
\begin{aligned}
& \sum_{b_{2} \in B_{2}} \Gamma\left(x_{1} y_{1}, a_{2} b_{2} \mid x_{2} y_{2}, a_{1} b_{1}\right)=\sum_{b_{2} \in B_{2}} \Gamma\left(x_{1} y_{1}, a_{2} b_{2} \mid x_{2} y_{2}, a_{1} b_{1}^{\prime}\right), \\
& \sum_{a_{2} \in A_{2}} \Gamma\left(x_{1} y_{1}, a_{2} b_{2} \mid x_{2}^{\prime} y_{2}, a_{1} b_{1}\right)=\sum_{a_{2}, A_{2}} \Gamma\left(x_{1} y_{1}, a_{2} b_{2} \mid x_{2} y_{2}, a_{1}^{\prime} b_{1}\right), \\
& \sum_{y_{1} \in Y_{1}} \Gamma\left(x_{1} y_{1}, a_{1}^{\prime} \in a_{1} b_{2} \mid x_{2} y_{2}, a_{1} b_{1}\right)=\sum_{y_{1} \in Y_{1}} \Gamma\left(x_{1} y_{1}, a_{2} b_{2} \mid x_{2} y_{2}^{\prime}, a_{1} b_{1}\right), \\
& \sum_{2}, y_{2}^{\prime} \in Y_{2}, \\
& \sum_{x_{1} \in X_{1}} \Gamma\left(x_{1} y_{1}, a_{2} b_{2} \mid x_{2} y_{2}, a_{1} b_{1}\right)=\sum_{x_{1} \in X_{1}} \Gamma\left(x_{1} y_{1}, a_{2} b_{2} \mid x_{2}^{\prime} y_{2}, a_{1} b_{1}\right), \\
& x_{2}, x_{2}^{\prime} \in X_{2} .
\end{aligned}
$$

- Operator matrix $P=\left(P_{x y, a b}\right)$ is NS if marginal operators $P_{x a}=\sum_{b} P_{x y, a b}$ and $P^{y b}=\sum_{a} P_{x y, a b}$ are well-defined.

SNS correlation classes

A NS operator matrix $P=\left(P_{x y, a b}\right)_{x y, a b}$ is dilatable if there is an isometry $V: \mathcal{H} \rightarrow \mathcal{K}$ between Hilbert spaces and mutually commuting POVM's $\left(E_{x a}\right)_{a \in A},\left(F_{y b}\right)_{b \in B}$ on \mathcal{K} with

$$
P_{x y, a b}:=V^{*} E_{x a} F_{y b} V, \quad x \in X, y \in Y, a \in A, b \in B .
$$

SNS correlation classes

A NS operator matrix $P=\left(P_{x y, a b}\right)_{x y, a b}$ is dilatable if there is an isometry $V: \mathcal{H} \rightarrow \mathcal{K}$ between Hilbert spaces and mutually commuting POVM's $\left(E_{x a}\right)_{a \in A},\left(F_{y b}\right)_{b \in B}$ on \mathcal{K} with

$$
P_{x y, a b}:=V^{*} E_{x a} F_{y b} V, \quad x \in X, y \in Y, a \in A, b \in B .
$$

We have corresponding classes for SNS correlations: SNS correlation $\Gamma \in \mathcal{C}_{\text {sns }}$ is

SNS correlation classes

A NS operator matrix $P=\left(P_{x y, a b}\right)_{x y, a b}$ is dilatable if there is an isometry $V: \mathcal{H} \rightarrow \mathcal{K}$ between Hilbert spaces and mutually commuting POVM's $\left(E_{x a}\right)_{a \in A},\left(F_{y b}\right)_{b \in B}$ on \mathcal{K} with

$$
P_{x y, a b}:=V^{*} E_{x a} F_{y b} V, \quad x \in X, y \in Y, a \in A, b \in B .
$$

We have corresponding classes for SNS correlations: SNS correlation $\Gamma \in \mathcal{C}_{\text {sns }}$ is

- quantum commuting if $\Gamma\left(x_{1} y_{1}, a_{2} b_{2} \mid x_{2} y_{2}, a_{1} b_{1}\right)=\left\langle P_{x_{2} y_{2}, x_{1} y_{1}} Q_{a_{1} b_{1}, a_{2} b_{2}} \xi, \xi\right\rangle$ for mutually commuting dilatable operator matrices P, Q and unit vector $\xi \in \mathcal{H}$.

SNS correlation classes

A NS operator matrix $P=\left(P_{x y, a b}\right)_{x y, a b}$ is dilatable if there is an isometry $V: \mathcal{H} \rightarrow \mathcal{K}$ between Hilbert spaces and mutually commuting POVM's $\left(E_{x a}\right)_{a \in A},\left(F_{y b}\right)_{b \in B}$ on \mathcal{K} with

$$
P_{x y, a b}:=V^{*} E_{x a} F_{y b} V, \quad x \in X, y \in Y, a \in A, b \in B .
$$

We have corresponding classes for SNS correlations: SNS correlation $\Gamma \in \mathcal{C}_{\text {sns }}$ is

- quantum commuting if $\Gamma\left(x_{1} y_{1}, a_{2} b_{2} \mid x_{2} y_{2}, a_{1} b_{1}\right)=\left\langle P_{x_{2} y_{2}, x_{1} y_{1}} Q_{a_{1} b_{1}, a_{2} b_{2}} \xi, \xi\right\rangle$ for mutually commuting dilatable operator matrices P, Q and unit vector $\xi \in \mathcal{H}$.
- quantum if we replace operator product by tensor product in quantum commuting case, with quantum dilatable matrices M, N acting on $\mathcal{H} \otimes \mathcal{K}$ (where both are finite-dimensional).

SNS correlation classes

A NS operator matrix $P=\left(P_{x y, a b}\right)_{x y, a b}$ is dilatable if there is an isometry $V: \mathcal{H} \rightarrow \mathcal{K}$ between Hilbert spaces and mutually commuting POVM's $\left(E_{x a}\right)_{a \in A},\left(F_{y b}\right)_{b \in B}$ on \mathcal{K} with

$$
P_{x y, a b}:=V^{*} E_{x a} F_{y b} V, \quad x \in X, y \in Y, a \in A, b \in B .
$$

We have corresponding classes for SNS correlations: SNS correlation $\Gamma \in \mathcal{C}_{\text {sns }}$ is

- quantum commuting if $\Gamma\left(x_{1} y_{1}, a_{2} b_{2} \mid x_{2} y_{2}, a_{1} b_{1}\right)=\left\langle P_{x_{2} y_{2}, x_{1} y_{1}} Q_{a_{1} b_{1}, a_{2} b_{2}} \xi, \xi\right\rangle$ for mutually commuting dilatable operator matrices P, Q and unit vector $\xi \in \mathcal{H}$.
- quantum if we replace operator product by tensor product in quantum commuting case, with quantum dilatable matrices M, N acting on $\mathcal{H} \otimes \mathcal{K}$ (where both are finite-dimensional).
- approximately quantum if Γ is a limit of quantum SNS correlations.

SNS correlation classes

A NS operator matrix $P=\left(P_{x y, a b}\right)_{x y, a b}$ is dilatable if there is an isometry $V: \mathcal{H} \rightarrow \mathcal{K}$ between Hilbert spaces and mutually commuting POVM's $\left(E_{x a}\right)_{a \in A},\left(F_{y b}\right)_{b \in B}$ on \mathcal{K} with

$$
P_{x y, a b}:=V^{*} E_{x a} F_{y b} V, \quad x \in X, y \in Y, a \in A, b \in B .
$$

We have corresponding classes for SNS correlations: SNS correlation $\Gamma \in \mathcal{C}_{\text {sns }}$ is

- quantum commuting if $\Gamma\left(x_{1} y_{1}, a_{2} b_{2} \mid x_{2} y_{2}, a_{1} b_{1}\right)=\left\langle P_{x_{2} y_{2}, x_{1} y_{1}} Q_{a_{1} b_{1}, a_{2} b_{2}} \xi, \xi\right\rangle$ for mutually commuting dilatable operator matrices P, Q and unit vector $\xi \in \mathcal{H}$.
- quantum if we replace operator product by tensor product in quantum commuting case, with quantum dilatable matrices M, N acting on $\mathcal{H} \otimes \mathcal{K}$ (where both are finite-dimensional).
- approximately quantum if Γ is a limit of quantum SNS correlations.
- local if Γ is quantum and individual entries in operator matrices P, Q commute with themselves as well.

Homomorphisms of non-local games

Theorem (H.-Todorov, in prep. 2022)
Let Γ be an SNS correlation over the quadruple ($X_{2} Y_{2}, A_{1} B_{1}, X_{1} Y_{1}, A_{2} B_{2}$) and \mathcal{E} be an NS correlation over ($X_{1}, Y_{1}, A_{1}, B_{1}$). Then

Homomorphisms of non-local games

Theorem (H.-Todorov, in prep. 2022)
Let Γ be an SNS correlation over the quadruple ($X_{2} Y_{2}, A_{1} B_{1}, X_{1} Y_{1}, A_{2} B_{2}$) and \mathcal{E} be an NS correlation over ($X_{1}, Y_{1}, A_{1}, B_{1}$). Then

- $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{ns}}$;

Homomorphisms of non-local games

Theorem (H.-Todorov, in prep. 2022)
Let Γ be an SNS correlation over the quadruple ($X_{2} Y_{2}, A_{1} B_{1}, X_{1} Y_{1}, A_{2} B_{2}$) and \mathcal{E} be an NS correlation over ($X_{1}, Y_{1}, A_{1}, B_{1}$). Then

- $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{ns}}$;
- if $\Gamma \in \mathcal{C}_{\mathrm{sqc}}, \mathcal{E} \in \mathcal{C}_{\mathrm{qc}}$ then $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{qc}}$;

Homomorphisms of non-local games

Theorem (H.-Todorov, in prep. 2022)
Let Γ be an SNS correlation over the quadruple ($X_{2} Y_{2}, A_{1} B_{1}, X_{1} Y_{1}, A_{2} B_{2}$) and \mathcal{E} be an NS correlation over ($X_{1}, Y_{1}, A_{1}, B_{1}$). Then

- $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{ns}}$;
- if $\Gamma \in \mathcal{C}_{\mathrm{sqc}}, \mathcal{E} \in \mathcal{C}_{\mathrm{qc}}$ then $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{qc}}$;
- if $\Gamma \in \mathcal{C}_{\mathrm{sqa}}, \mathcal{E} \in \mathcal{C}_{\mathrm{qa}}$ then $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{qa}}$;

Homomorphisms of non-local games

Theorem (H.-Todorov, in prep. 2022)
Let Γ be an SNS correlation over the quadruple ($X_{2} Y_{2}, A_{1} B_{1}, X_{1} Y_{1}, A_{2} B_{2}$) and \mathcal{E} be an NS correlation over ($X_{1}, Y_{1}, A_{1}, B_{1}$). Then

- $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{ns}}$;
- if $\Gamma \in \mathcal{C}_{\mathrm{sqc}}, \mathcal{E} \in \mathcal{C}_{\mathrm{qc}}$ then $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{qc}}$;
- if $\Gamma \in \mathcal{C}_{\mathrm{sqa}}, \mathcal{E} \in \mathcal{C}_{\mathrm{qa}}$ then $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{qa}}$;
- if $\Gamma \in \mathcal{C}_{\mathrm{sq}}, \mathcal{E} \in \mathcal{C}_{\mathrm{q}}$ then $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{q}}$;

Homomorphisms of non-local games

Theorem (H.-Todorov, in prep. 2022)
Let Γ be an SNS correlation over the quadruple ($X_{2} Y_{2}, A_{1} B_{1}, X_{1} Y_{1}, A_{2} B_{2}$) and \mathcal{E} be an NS correlation over ($X_{1}, Y_{1}, A_{1}, B_{1}$). Then

- $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{ns}}$;
- if $\Gamma \in \mathcal{C}_{\mathrm{sqc}}, \mathcal{E} \in \mathcal{C}_{\mathrm{qc}}$ then $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{qc}}$;
- if $\Gamma \in \mathcal{C}_{\mathrm{sqa}}, \mathcal{E} \in \mathcal{C}_{\mathrm{qa}}$ then $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{qa}}$;
- if $\Gamma \in \mathcal{C}_{\mathrm{sq}}, \mathcal{E} \in \mathcal{C}_{\mathrm{q}}$ then $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{q}}$;
- if $\Gamma \in \mathcal{C}_{\text {sloc }}, \mathcal{E} \in \mathcal{C}_{\text {loc }}$ then $\Gamma[\mathcal{E}] \in \mathcal{C}_{\text {loc }}$.

Homomorphisms of non-local games

Theorem (H.-Todorov, in prep. 2022)

Let Γ be an SNS correlation over the quadruple ($X_{2} Y_{2}, A_{1} B_{1}, X_{1} Y_{1}, A_{2} B_{2}$) and \mathcal{E} be an NS correlation over ($X_{1}, Y_{1}, A_{1}, B_{1}$). Then

- $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{ns}}$;
- if $\Gamma \in \mathcal{C}_{\mathrm{sqc}}, \mathcal{E} \in \mathcal{C}_{\mathrm{qc}}$ then $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{qc}}$;
- if $\Gamma \in \mathcal{C}_{\mathrm{sqa}}, \mathcal{E} \in \mathcal{C}_{\mathrm{qa}}$ then $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{qa}}$;
- if $\Gamma \in \mathcal{C}_{\mathrm{sq}}, \mathcal{E} \in \mathcal{C}_{\mathrm{q}}$ then $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{q}}$;
- if $\Gamma \in \mathcal{C}_{\text {sloc }}, \mathcal{E} \in \mathcal{C}_{\text {loc }}$ then $\Gamma[\mathcal{E}] \in \mathcal{C}_{\text {loc }}$.

Note: For $\Gamma \in \mathcal{C}_{\text {sqc }}, \mathcal{E} \in \mathcal{C}_{\text {qc }}$ case, say $\Gamma\left(x_{1} y_{1}, a_{2} b_{2} \mid x_{2} y_{2}, a_{1} b_{1}\right)=\left\langle P_{x_{2}, x_{1}} P^{y_{2}, y_{1}} Q_{a_{1}, a_{2}} Q^{b_{1}, b_{2}} \xi, \xi\right\rangle$, and $\mathcal{E}\left(a_{1}, b_{1} \mid x_{1}, y_{1}\right)=\left\langle E_{x_{1}, a_{1}} F_{y_{1}, b_{1}} \eta, \eta\right\rangle$ where $\xi \in \mathcal{H}, \eta \in \mathcal{K}$ are unit vectors, and families of operators are mutually commuting POVM's on resp. Hilbert spaces. Set

$$
\tilde{E}_{x_{2}, a_{2}}=\sum_{x_{1} \in X_{1}} \sum_{a_{1} \in A_{1}} P_{x_{2}, x_{1}} Q_{a_{1}, a_{2}} \otimes E_{x_{1}, a_{1}}, \quad \tilde{F}_{y_{2}, b_{2}}=\sum_{y_{1} \in Y_{1}} \sum_{b_{1} \in B_{1}} P^{y_{2}, y_{1}} Q^{b_{1}, b_{2}} \otimes F_{y_{1}, b_{1}} .
$$

Homomorphisms of non-local games

Theorem (H.-Todorov, in prep. 2022)

Let Γ be an SNS correlation over the quadruple ($X_{2} Y_{2}, A_{1} B_{1}, X_{1} Y_{1}, A_{2} B_{2}$) and \mathcal{E} be an NS correlation over ($X_{1}, Y_{1}, A_{1}, B_{1}$). Then

- $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{ns}}$;
- if $\Gamma \in \mathcal{C}_{\mathrm{sqc}}, \mathcal{E} \in \mathcal{C}_{\mathrm{qc}}$ then $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{qc}}$;
- if $\Gamma \in \mathcal{C}_{\mathrm{sqa}}, \mathcal{E} \in \mathcal{C}_{\mathrm{qa}}$ then $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{qa}}$;
- if $\Gamma \in \mathcal{C}_{\mathrm{sq}}, \mathcal{E} \in \mathcal{C}_{\mathrm{q}}$ then $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{q}}$;
- if $\Gamma \in \mathcal{C}_{\text {sloc }}, \mathcal{E} \in \mathcal{C}_{\text {loc }}$ then $\Gamma[\mathcal{E}] \in \mathcal{C}_{\text {loc }}$.

Note: For $\Gamma \in \mathcal{C}_{\text {sqc }}, \mathcal{E} \in \mathcal{C}_{\text {qc }}$ case, say $\Gamma\left(x_{1} y_{1}, a_{2} b_{2} \mid x_{2} y_{2}, a_{1} b_{1}\right)=\left\langle P_{x_{2}, x_{1}} P^{y_{2}, y_{1}} Q_{a_{1}, a_{2}} Q^{b_{1}, b_{2}} \xi, \xi\right\rangle$, and $\mathcal{E}\left(a_{1}, b_{1} \mid x_{1}, y_{1}\right)=\left\langle E_{x_{1}, a_{1}} F_{y_{1}, b_{1}} \eta, \eta\right\rangle$ where $\xi \in \mathcal{H}, \eta \in \mathcal{K}$ are unit vectors, and families of operators are mutually commuting POVM's on resp. Hilbert spaces. Set

$$
\tilde{E}_{x_{2}, a_{2}}=\sum_{x_{1} \in X_{1}} \sum_{a_{1} \in A_{1}} P_{x_{2}, x_{1}} Q_{a_{1}, a_{2}} \otimes E_{x_{1}, a_{1}}, \quad \tilde{F}_{y_{2}, b_{2}}=\sum_{y_{1} \in Y_{1}} \sum_{b_{1} \in B_{1}} P^{y_{2}, y_{1}} Q^{b_{1}, b_{2}} \otimes F_{y_{1}, b_{1}} .
$$

We then have qc-decomposition $\Gamma[\mathcal{E}]\left(a_{2}, b_{2} \mid x_{2}, y_{2}\right)=\left\langle\tilde{E}_{x_{2}, a_{2}} \tilde{F}_{y_{2}, b_{2}}(\xi \otimes \eta), \xi \otimes \eta\right\rangle$. (Others follow similarly).

Homomorphisms of non-local games

Theorem (H.-Todorov, in prep. 2022)
Let Γ be an SNS correlation over the quadruple ($X_{2} Y_{2}, A_{1} B_{1}, X_{1} Y_{1}, A_{2} B_{2}$) and \mathcal{E} be an NS correlation over $\left(X_{1}, Y_{1}, A_{1}, B_{1}\right)$. Then

- $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{ns}} ;$
- if $\Gamma \in \mathcal{C}_{\text {sqc }}, \mathcal{E} \in \mathcal{C}_{\text {qc }}$ then $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{qc}}$;
- if $\Gamma \in \mathcal{C}_{\mathrm{sqa}}, \mathcal{E} \in \mathcal{C}_{\mathrm{qa}}$ then $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{qa}}$;
- if $\Gamma \in \mathcal{C}_{\mathrm{sq}}, \mathcal{E} \in \mathcal{C}_{\mathrm{q}}$ then $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{q}}$;
- if $\Gamma \in \mathcal{C}_{\text {sloc }}, \mathcal{E} \in \mathcal{C}_{\text {loc }}$ then $\Gamma[\mathcal{E}] \in \mathcal{C}_{\text {loc }}$.
- Holds for SNS bicorrelations as well.

Homomorphisms of non-local games

Theorem (H.-Todorov, in prep. 2022)
Let Γ be an SNS correlation over the quadruple $\left(X_{2} Y_{2}, A_{1} B_{1}, X_{1} Y_{1}, A_{2} B_{2}\right)$ and \mathcal{E} be an NS correlation over $\left(X_{1}, Y_{1}, A_{1}, B_{1}\right)$. Then

- $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{ns}}$;
- if $\Gamma \in \mathcal{C}_{\mathrm{sqc}}, \mathcal{E} \in \mathcal{C}_{\mathrm{qc}}$ then $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{qc}}$;
- if $\Gamma \in \mathcal{C}_{\mathrm{sqa}}, \mathcal{E} \in \mathcal{C}_{\mathrm{qa}}$ then $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{qa}}$;
- if $\Gamma \in \mathcal{C}_{\mathrm{sq}}, \mathcal{E} \in \mathcal{C}_{\mathrm{q}}$ then $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{q}}$;
- if $\Gamma \in \mathcal{C}_{\text {sloc }}, \mathcal{E} \in \mathcal{C}_{\text {loc }}$ then $\Gamma[\mathcal{E}] \in \mathcal{C}_{\text {loc }}$.
- Holds for SNS bicorrelations as well.
- Non-local games are now t-isomorphic if we can find perfect SNS strategies $\Gamma \in \mathcal{C}_{\mathrm{t}}^{\text {bi }}\left(E_{1} \leftrightarrow E_{2}\right)$.

Homomorphisms of non-local games

Theorem (H.-Todorov, in prep. 2022)
Let Γ be an SNS correlation over the quadruple $\left(X_{2} Y_{2}, A_{1} B_{1}, X_{1} Y_{1}, A_{2} B_{2}\right)$ and \mathcal{E} be an NS correlation over $\left(X_{1}, Y_{1}, A_{1}, B_{1}\right)$. Then

- $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{ns}}$;
- if $\Gamma \in \mathcal{C}_{\mathrm{sqc}}, \mathcal{E} \in \mathcal{C}_{\mathrm{qc}}$ then $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{qc}}$;
- if $\Gamma \in \mathcal{C}_{\mathrm{sqa}}, \mathcal{E} \in \mathcal{C}_{\mathrm{qa}}$ then $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{qa}}$;
- if $\Gamma \in \mathcal{C}_{\mathrm{sq}}, \mathcal{E} \in \mathcal{C}_{\mathrm{q}}$ then $\Gamma[\mathcal{E}] \in \mathcal{C}_{\mathrm{q}}$;
- if $\Gamma \in \mathcal{C}_{\text {sloc }}, \mathcal{E} \in \mathcal{C}_{\text {loc }}$ then $\Gamma[\mathcal{E}] \in \mathcal{C}_{\text {loc }}$.
- Holds for SNS bicorrelations as well.
- Non-local games are now t-isomorphic if we can find perfect SNS strategies $\Gamma \in \mathcal{C}_{\mathrm{t}}^{\text {bi }}\left(E_{1} \leftrightarrow E_{2}\right)$.
- If $E_{1} \rightarrow_{\text {st }} E_{2}$ or $E_{1} \simeq_{\text {st }} E_{2}$, we simulate optimal strategies for E_{1} using SNS bicorrelation Γ and get strategies for E_{2}.

Thank you for listening!

Sources

庫 W．Slofstra，The set of quantum correlations is not closed，Forum Math．Pi 7 （2019）， E1

居 Z．Ji，A．Natarajan，T．Vidick，J．Wright，\＆H．Yuen，MIP＊＝RE，preprint （2020）arXiv：2001．04383

围 V．I．Paulsen \＆I．G．Todorov，Quantum chromatic numbers via operator systems，Q． J．Math． 66 （2015），no．2，677－692
－M．Lupini，L．Mančinska，V．I．Paulsen，D．E．Roberson，G．Scarpa，S． Severini，I．G．Todorov，\＆A．Winter，Perfect strategies for non－signalling games， Math．Phys．Anal．Geom． 23 （2020）， 7.

嗇 A．Atserias，L．Mančinska，D．Roberson，R．Šámal，S．Severini，\＆A． Varvitsiotis，Quantum and non－signalling graph isomorphisms，J．Combin．Theory Ser．B 136 （2019），289－328

