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Let A be a unital algebra and let ModA be the category of all
unital right A-modules.

I ∈ ModA is injective if any morphism whose codomain is I can be

extended along every monomorphism µ

E F

I

∀µ

∀ f
∃ f̃

P ∈ ModA is projective if any morphism whose domain is P can be

lifted over every epimorphism π

P

E F
∀π

∀ f
∃ f̃



A complex algebra is said to be classically semisimple if it is a
direct sum of minimal right ideals and if it is finitely generated,
finitely many minimal right ideals suffice.

A unital complex Banach algebra

classically semisimple ⇐⇒ A ∼=
k⊕

i=1

Mni (C)

by Artin–Wedderburn together with Gelfand–Mazur;
in particular, it is finite dimensional.
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finitely many minimal right ideals suffice.

A unital complex Banach algebra

classically semisimple ⇐⇒ A ∼=
k⊕

i=1

Mni (C)

by Artin–Wedderburn together with Gelfand–Mazur;
in particular, it is finite dimensional.

equivalently, every E ∈ ModA is injective;
equivalently, every E ∈ ModA is projective.



key concept: exact sequences

short exact sequence

E F G
µ π

means: µ is mono, π is epi and ker π = imµ (so G ∼= F/imµ)

long exact sequence

· · · // E1
f1 //

π1 $$ $$

E2
f2 //

π2 $$ $$

E3
// · · ·

G1

:: µ1

::

G2

:: µ2

::

means: im f1 = imµ1 = ker π2 = ker f2



Enough injectives and injective resolutions

“every module can be embedded into an injective one”
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E // µ // I 0
π0

%% %%
C 1 // µ0

// I 1
π1

%% %%
C 2 // µ1

// I 2

%% %%



Enough injectives and injective resolutions

“every module can be embedded into an injective one”

E // µ // I 0
π0

%% %%
C 1 // µ0

// I 1
π1

%% %%
C 2 // µ1

// I 2

%% %%

injective resolution

E // // I 0
d0
// I 1

d1
// I 2

d2
// . . .



Our kind of categories

A , unital complex algebra, operator algebra if it is a Banach
algebra, an operator space and completely isometric to a closed
subalgebra of some B(H);

equivalently, the multiplication on A is (multiplicatively)
completely contractive, that is, is linearisation

A⊗h A → A is completely contractive.

e.g., every C*-algebra; the disk algebra A(D); . . .

E , unital right A-module, operator module (over A) if it is an
operator space and the linearisation of the module multiplication

E ⊗h A → E is completely contractive.

OMod∞
A is the category of all such modules together with

completely bounded A-module maps.



Our kind of categories

OMod∞
A is a full subcategory of mnMod∞

A whose objects are the
matrix normed A-modules:
the linearisation of the module multiplication

E ⊗⌢ A → E is completely contractive.

e.g., CB(A,F ), the completely bounded maps from A into an
operator space F is a matrix normed module but not necessarily an
operator module.

both categories are additive but not abelian:

monomorphism: injective cb A-module maps
epimorphism: cb A-module maps with dense range
isomorphism: bijective cb A-module maps with cb inverse



what to do?



what to do? exact categories!



key concept: kernel-cokernel pairs

short exact sequence = kernel-cokernel pair

E F G
µ π

means: µ is a kernel of π and π is a cokernel of µ

long exact sequence

· · · // E1
f1 //

π1 $$ $$

E2
f2 //

π2 $$ $$

E3
// · · ·

G1

:: µ1

::

G2

:: µ2

::

means: (µ1, π2) is a kernel-cokernel pair (a.s.o.)

where we assume that each fi is admissible, i.e., can be factorised
as fi = µi πi .



Our kind of categories

in both OMod∞
A and mnMod∞

A ,

kernel: cb A-module isomorphism onto its image

cokernel: completely open cb A-module map



Exact categories

Let A be an additive category and let (M,P) be a class of
kernel-cokernel pairs which is closed under isomorphisms.

Ex = (M,P) is an exact structure on A (in the sense of Quillen) if:

[E0] For all E ∈ A, idE ∈ M.

[E0
op] For all E ∈ A, idE ∈ P.

[E1] M is closed under composition.

[E1
op] P is closed under composition.

[E2] The pushout of a morphism in M along an arbitrary
morphism exists and yields a morphism in M.

[E2
op] The pullback of a morphism in P along an arbitrary

morphism exists and yields a morphism in P.

In this case we say (A,Ex) is an exact category.

T. Bühler. Exact categories. Expo. Math., 28(1) 1-69, 2010.



Exact categories

Theorem

Let A be an operator algebra. The class Exmax of all
kernel-cokernel pairs forms an exact structure on OMod∞

A and on
mnMod∞

A .



Exact categories

Theorem

Let A be an operator algebra. The class Exmax of all
kernel-cokernel pairs forms an exact structure on OMod∞

A and on
mnMod∞

A .

this is the largest exact structure any additive category can be
endowed with;

at the opposite end, the minimal exact structure Exmin always
consists of the split kernel-cokernel pairs

Split: E F G
µ π

∃ ν ∃ θ

such that νµ = idE , πθ = idG and µν + θπ = idF .



Let A be a category, M a class of monomorphisms, and P a class
of epimorphisms.

I ∈ A is M-injective if any morphism whose codomain is I can be

extended along morphisms in M

E F

I

∀µ ∈ M

∀ f
∃ f̃

P ∈ A is P-projective if any morphism whose domain is P can be lifted

over morphisms in P

P

E F
∀π ∈ P

∀ f
∃ f̃



Cohomological dimension in an exact category

Let (A,Ex) be an exact category with Ex = (M,P).

“dimension” of E ∈ A = shortest length of an injective resolution

cohomological dimension of (A,Ex):

cohomdim(A,Ex) := sup {InjM-dim(E ) |E ∈ A}

Theorem (Rosbotham 2021)

Let A be a unital C*-algebra. Let

dgC*(A) = cohomdim(OMod∞
A ,Exmax)

be the global C*-dimension of A. Then dgC*(A) ≥ 2.



Exact functors

Definition
An additive functor F: (A,Ex1) → (B,Ex2) between two exact
categories is exact if F(Ex1) ⊆Ex2.

Proposition

Let F: (A,Ex1) → (B,Ex2) be an exact functor between exact
categories. If there is another exact structure Ex′

2 on B then

Ex′
1 =

{
(µ, π) ∈Ex1 | (Fµ,Fπ) ∈Ex′

2

}
forms an exact structure on A.

Applied to our categories

Let F: (mnMod∞
A ,Exmax) −→ (Op∞,Exmax) be the forgetful

functor (where Op∞ = OMod∞
C ). Then

Exrel := {(µ, π) ∈Ex | (Fµ,Fπ) ∈Exmin}

forms the relative exact structure on mnMod∞
A .



Enough injectives

four exact categories:

(OMod∞
A ,Exmax); (OMod∞

A ,Exrel);

(mnMod∞
A ,Exmax); (mnMod∞

A ,Exrel) .

for instance, CB(A, I ) is injective in (mnMod∞
A ,Exmax) for every

I ∈ Op∞ injective

and CB(A,F ) is injective in (mnMod∞
A ,Exrel) for every

F ∈ Op∞;

since E ∼= CBA(A,E ) ↪→ CB(A,E ) ↪→ CB(A,B(H)) for every
E ∈ mnMod∞

A , where E ⊆ B(H) as an operator space,

mnMod∞
A has enough injectives.



Theorem

Let A be a unital operator algebra. The following are equivalent:

▶ A is classically semisimple;

▶ cohomdim(OMod∞
A ,Exrel) = 0;

▶ cohomdim(mnMod∞
A ,Exrel) = 0.

Proof:

A is classically semisimpleA ∼=cb

k⊕
i=1

Mni (C)

Every object
in mnMod∞

A

is relatively injective

Every object
in OMod∞

A

is relatively injective

Every object
in OMod∞

A

is relatively projective

(v)

(i)

(ii) (iii)

(iv)
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Outline of the proof

(i) we show that, for every E ∈ mnMod∞
A , there exist

r ∈ CBA(CB(A,E ), E ) and s ∈ CBA(E , CB(A,E )) such that
rs = idE . This is achieved by using the explicit structure of A
and systems of matrix units.

(ii) this follows from the fact that OMod∞
A is a full exact

subcategory of mnMod∞
A so the admissible monomorphisms

are the same and hence any object in OMod∞
A which is

injective in mnMod∞
A is injective in OMod∞

A .

(iii) this follows from the ‘Splitting Lemma’.

(iv) this is the main work in the theorem; it relies on the fact that,
for every operator space E , E ⊗h A is relatively projective in
OMod∞

A and that A is classically semisimple if and only if
each of its maximal submodules is a direct summand.

(v) this was already discussed.
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