Relative cohomology for operator modules over operator algebras

> Martin Mathieu (Queen's University Belfast)

> Banach Algebras in Granada

21 July 2022

joint work with Michael Rosbotham (now at Univ Maine)

Exact structures for operator modules, Canadian Journal of Mathematics, 2022.

Let A be a unital algebra and let Mod_A be the category of all unital right A-modules.

 $I \in Mod_A$ is *injective* if any morphism whose codomain is I can be extended along every monomorphism μ

 $P \in Mod_A$ is *projective* if any morphism whose domain is P can be lifted over every epimorphism π

A complex algebra is said to be classically semisimple if it is a direct sum of minimal right ideals and if it is finitely generated, finitely many minimal right ideals suffice.

A unital complex Banach algebra

classically semisimple
$$\iff A \cong \bigoplus_{i=1}^k M_{n_i}(\mathbb{C})$$

by Artin–Wedderburn together with Gelfand–Mazur; in particular, it is finite dimensional.

A complex algebra is said to be classically semisimple if it is a direct sum of minimal right ideals and if it is finitely generated, finitely many minimal right ideals suffice.

A unital complex Banach algebra

classically semisimple
$$\iff A \cong \bigoplus_{i=1}^k M_{n_i}(\mathbb{C})$$

by Artin–Wedderburn together with Gelfand–Mazur; in particular, it is finite dimensional.

equivalently, every $E \in Mod_A$ is injective; equivalently, every $E \in Mod_A$ is projective. key concept: exact sequences

short exact sequence

$$E \xrightarrow{\mu} F \xrightarrow{\pi} G$$

means: μ is mono, π is epi and ker $\pi = \operatorname{im} \mu$ (so $G \cong F/\operatorname{im} \mu$)

long exact sequence

means: im $f_1 = \operatorname{im} \mu_1 = \ker \pi_2 = \ker f_2$

Enough injectives and injective resolutions

"every module can be embedded into an injective one"

Enough injectives and injective resolutions

"every module can be embedded into an injective one"

Enough injectives and injective resolutions

"every module can be embedded into an injective one"

injective resolution

$$E \xrightarrow{} I^0 \xrightarrow{d^0} I^1 \xrightarrow{d^1} I^2 \xrightarrow{d^2} \cdots$$

Our kind of categories

A, unital complex algebra, operator algebra if it is a Banach algebra, an operator space and completely isometric to a closed subalgebra of some B(H);

equivalently, the multiplication on A is (multiplicatively) completely contractive, that is, is linearisation

 $A \otimes_h A \to A$ is completely contractive.

e.g., every C^* -algebra; the disk algebra $A(\mathbb{D})$; ...

E, unital right A-module, operator module (over A) if it is an operator space and the linearisation of the module multiplication

 $E \otimes_h A \to E$ is completely contractive.

 \mathcal{OMod}_A^∞ is the category of all such modules together with completely bounded *A*-module maps.

Our kind of categories

 $\mathcal{OMod}_A^{\infty}$ is a full subcategory of $mn\mathcal{Mod}_A^{\infty}$ whose objects are the matrix normed A-modules:

the linearisation of the module multiplication

 $E \widehat{\otimes} A \rightarrow E$ is completely contractive.

e.g., CB(A, F), the completely bounded maps from A into an operator space F is a matrix normed module but not necessarily an operator module.

both categories are additive but not abelian: monomorphism: injective cb *A*-module maps epimorphism: cb *A*-module maps with dense range isomorphism: bijective cb *A*-module maps with cb inverse what to do?

what to do? exact categories!

key concept: kernel-cokernel pairs

short exact sequence = kernel-cokernel pair

$$\mathsf{E} \xrightarrow{\mu} \mathsf{F} \xrightarrow{\pi} \mathsf{G}$$

means: μ is a kernel of π and π is a cokernel of μ

long exact sequence

means: (μ_1, π_2) is a kernel-cokernel pair (a.s.o.)

where we assume that each f_i is admissible, i.e., can be factorised as $f_i = \mu_i \pi_i$. in both \mathcal{OMod}_A^∞ and $mn\mathcal{Mod}_A^\infty$,

kernel: cb *A*-module isomorphism onto its image cokernel: completely open cb *A*-module map

Exact categories

Let \mathscr{A} be an additive category and let $(\mathscr{M}, \mathscr{P})$ be a class of kernel-cokernel pairs which is closed under isomorphisms.

 $\mathscr{E}x = (\mathscr{M}, \mathscr{P})$ is an exact structure on \mathscr{A} (in the sense of Quillen) if:

- $[\mathsf{E}_0] \quad \text{ For all } E \in \mathscr{A}, \, \mathrm{id}_E \in \mathscr{M}.$
- $[\mathsf{E}_0^{\mathsf{op}}]$ For all $E \in \mathscr{A}$, $\mathsf{id}_E \in \mathscr{P}$.
- $[E_1]$ \mathcal{M} is closed under composition.
- $[E_1^{op}] \mathscr{P}$ is closed under composition.
- $\begin{bmatrix} \mathsf{E}_2 \end{bmatrix} \quad \text{The pushout of a morphism in } \mathscr{M} \text{ along an arbitrary} \\ \text{morphism exists and yields a morphism in } \mathscr{M}.$
- $\begin{bmatrix} \mathsf{E}_2^{\mathsf{op}} \end{bmatrix} \text{ The pullback of a morphism in } \mathscr{P} \text{ along an arbitrary} \\ \text{morphism exists and yields a morphism in } \mathscr{P}.$

In this case we say $(\mathscr{A}, \mathscr{E}x)$ is an exact category.

T. Bühler. Exact categories. Expo. Math., 28(1) 1-69, 2010.

Theorem

Let A be an operator algebra. The class $\mathscr{E}x_{\max}$ of **all** kernel-cokernel pairs forms an exact structure on \mathcal{OMod}_A^∞ and on $mn\mathcal{Mod}_A^\infty$.

Exact categories

Theorem

Let A be an operator algebra. The class $\mathscr{E}x_{\max}$ of all kernel-cokernel pairs forms an exact structure on $\mathscr{OMod}^{\infty}_A$ and on $mn\mathcal{Mod}^{\infty}_A$.

this is the largest exact structure any additive category can be endowed with;

at the opposite end, the minimal exact structure $\mathscr{C}x_{\min}$ always consists of the split kernel-cokernel pairs

Split:
$$E \xrightarrow{\mu} F \xrightarrow{\pi} G$$

such that $\nu \mu = id_E$, $\pi \theta = id_G$ and $\mu \nu + \theta \pi = id_F$.

Let \mathscr{A} be a category, \mathscr{M} a class of monomorphisms, and \mathscr{P} a class of epimorphisms.

 $I \in \mathcal{A}$ is \mathcal{M} -injective if any morphism whose codomain is I can be extended along morphisms in \mathcal{M}

 $P \in \mathscr{A}$ is \mathscr{P} -projective if any morphism whose domain is P can be lifted over morphisms in \mathscr{P}

Cohomological dimension in an exact category

Let $(\mathscr{A}, \mathscr{E}x)$ be an exact category with $\mathscr{E}x = (\mathscr{M}, \mathscr{P})$. "dimension" of $E \in \mathscr{A}$ = shortest length of an injective resolution cohomological dimension of $(\mathscr{A}, \mathscr{E}x)$:

 $\operatorname{cohomdim}(\mathscr{A},\mathscr{E}x) := \sup \{\operatorname{Inj}_{\mathscr{M}}\operatorname{-dim}(E) \mid E \in \mathscr{A}\}$

Theorem (Rosbotham 2021) Let A be a unital C*-algebra. Let

 $dg_{C^*}(A) = \operatorname{cohomdim}(\mathcal{OMod}_A^{\infty}, \mathscr{E}x_{\max})$

be the global C*-dimension of A. Then $dg_{C*}(A) \ge 2$.

Exact functors

Definition

An additive functor $F: (\mathscr{A}, \mathscr{E}x_1) \to (\mathscr{B}, \mathscr{E}x_2)$ between two exact categories is *exact* if $F(\mathscr{E}x_1) \subseteq \mathscr{E}x_2$.

Proposition

Let $F: (\mathscr{A}, \mathscr{E}x_1) \to (\mathscr{B}, \mathscr{E}x_2)$ be an exact functor between exact categories. If there is another exact structure $\mathscr{E}x'_2$ on \mathscr{B} then

$$\mathscr{E}x_1' = ig \{(\mu,\pi)\in \mathscr{E}x_1\,|\,(\mathsf{F}\mu,\mathsf{F}\pi)\in \mathscr{E}x_2'ig \}$$

forms an exact structure on \mathscr{A} .

Applied to our categories

Let F: $(mn\mathcal{M}od_A^{\infty}, \mathscr{E}x_{\max}) \longrightarrow (\mathscr{O}p^{\infty}, \mathscr{E}x_{\max})$ be the forgetful functor (where $\mathscr{O}p^{\infty} = \mathscr{O}\mathcal{M}od_{\mathbb{C}}^{\infty}$). Then

$$\mathscr{E}x_{\mathsf{rel}} := \{(\mu, \pi) \in \mathscr{E}x \,|\, (\mathsf{F}\mu, \mathsf{F}\pi) \in \mathscr{E}x_{\mathsf{min}}\}$$

forms the relative exact structure on $mnMod_A^{\infty}$.

four exact categories:

$$(\mathcal{OMod}_{A}^{\infty}, \mathcal{E}x_{\max}); \quad (\mathcal{OMod}_{A}^{\infty}, \mathcal{E}x_{\operatorname{rel}}); \\ (mn\mathcal{Mod}_{A}^{\infty}, \mathcal{E}x_{\max}); \quad (mn\mathcal{Mod}_{A}^{\infty}, \mathcal{E}x_{\operatorname{rel}}) \quad .$$

for instance, CB(A, I) is injective in $(mnMod_A^{\infty}, \mathscr{E}x_{\max})$ for every $I \in \mathcal{O}p^{\infty}$ injective

and CB(A, F) is injective in $(mnMod_A^{\infty}, \mathscr{E}x_{rel})$ for every $F \in \mathcal{O}p^{\infty}$;

since $E \cong CB_A(A, E) \hookrightarrow CB(A, E) \hookrightarrow CB(A, B(H))$ for every $E \in mnMod_A^{\infty}$, where $E \subseteq B(H)$ as an operator space, $mnMod_A^{\infty}$ has enough injectives.

Theorem

Let A be a unital operator algebra. The following are equivalent:

- A is classically semisimple;
- cohomdim($\mathcal{OMod}_A^{\infty}, \mathcal{E}x_{rel}$) = 0;

• cohomdim $(mn\mathcal{M}od_A^{\infty}, \mathcal{E}x_{rel}) = 0.$

Theorem

Let A be a unital operator algebra. The following are equivalent:

- A is classically semisimple;
- cohomdim($\mathcal{OMod}_A^{\infty}, \mathcal{E}x_{rel}$) = 0;
- cohomdim $(mn\mathcal{M}od_A^{\infty}, \mathcal{E}x_{rel}) = 0.$

Proof:

(i) we show that, for every E ∈ mnMod[∞]_A, there exist r ∈ CB_A(CB(A, E), E) and s ∈ CB_A(E, CB(A, E)) such that rs = id_E. This is achieved by using the explicit structure of A and systems of matrix units.

- (i) we show that, for every E ∈ mnMod[∞]_A, there exist r ∈ CB_A(CB(A, E), E) and s ∈ CB_A(E, CB(A, E)) such that rs = id_E. This is achieved by using the explicit structure of A and systems of matrix units.
- (ii) this follows from the fact that OMod[∞]_A is a full exact subcategory of mnMod[∞]_A so the admissible monomorphisms are the same and hence any object in OMod[∞]_A which is injective in mnMod[∞]_A is injective in OMod[∞]_A.

- (i) we show that, for every E ∈ mnMod[∞]_A, there exist r ∈ CB_A(CB(A, E), E) and s ∈ CB_A(E, CB(A, E)) such that rs = id_E. This is achieved by using the explicit structure of A and systems of matrix units.
- (ii) this follows from the fact that OMod[∞]_A is a full exact subcategory of mnMod[∞]_A so the admissible monomorphisms are the same and hence any object in OMod[∞]_A which is injective in mnMod[∞]_A is injective in OMod[∞]_A.
- (iii) this follows from the 'Splitting Lemma'.

- (i) we show that, for every E ∈ mnMod[∞]_A, there exist r ∈ CB_A(CB(A, E), E) and s ∈ CB_A(E, CB(A, E)) such that rs = id_E. This is achieved by using the explicit structure of A and systems of matrix units.
- (ii) this follows from the fact that OMod[∞] is a full exact subcategory of mnMod[∞] so the admissible monomorphisms are the same and hence any object in OMod[∞] which is injective in mnMod[∞] is injective in OMod[∞] A.
- (iii) this follows from the 'Splitting Lemma'.
- (iv) this is the main work in the theorem; it relies on the fact that, for every operator space E, $E \otimes_h A$ is relatively projective in \mathcal{OMod}_A^∞ and that A is classically semisimple if and only if each of its maximal submodules is a direct summand.

- (i) we show that, for every E ∈ mnMod[∞]_A, there exist r ∈ CB_A(CB(A, E), E) and s ∈ CB_A(E, CB(A, E)) such that rs = id_E. This is achieved by using the explicit structure of A and systems of matrix units.
- (ii) this follows from the fact that OMod[∞]_A is a full exact subcategory of mnMod[∞]_A so the admissible monomorphisms are the same and hence any object in OMod[∞]_A which is injective in mnMod[∞]_A is injective in OMod[∞]_A.
- (iii) this follows from the 'Splitting Lemma'.
- (iv) this is the main work in the theorem; it relies on the fact that, for every operator space E, $E \otimes_h A$ is relatively projective in \mathcal{OMod}_A^∞ and that A is classically semisimple if and only if each of its maximal submodules is a direct summand.
- (v) this was already discussed.

