Specht's Theorem in UHF C*-algebras

Laurent W. Marcoux

Department of Pure Mathematics University of Waterloo

> Granada, España July 21, 2022

A⊒ ▶ ∢ ∃ ▶

This talk is based on joint work with:

Yuanhang Zhang (Jilin University, China)

伺 ト イヨト イヨト

- \mathcal{H} a complex Hilbert space, separable.
- $\mathcal{B}(\mathcal{H})$ bounded linear operators on \mathcal{H} . If $\mathcal{H} \simeq \mathbb{C}^n$, then $\mathcal{B}(\mathcal{H}) \simeq \mathbb{M}_n(\mathbb{C})$.

- unitary equivalence: A ≃ B if there exists a unitary operator U ∈ B(H) such that A = U*BU.
- similarity: $A \sim B$ if there exists an invertible operator $S \in \mathcal{B}(\mathcal{H})$ such that $A = S^{-1}BS$.

Both notions make sense inside of any C^* -algebra.

- \mathcal{H} a complex Hilbert space, separable.
- $\mathcal{B}(\mathcal{H})$ bounded linear operators on \mathcal{H} . If $\mathcal{H} \simeq \mathbb{C}^n$, then $\mathcal{B}(\mathcal{H}) \simeq \mathbb{M}_n(\mathbb{C})$.

- unitary equivalence: A ≃ B if there exists a unitary operator U ∈ B(H) such that A = U*BU.
- similarity: $A \sim B$ if there exists an invertible operator $S \in \mathcal{B}(\mathcal{H})$ such that $A = S^{-1}BS$.

Both notions make sense inside of any C^* -algebra.

- \mathcal{H} a complex Hilbert space, separable.
- $\mathcal{B}(\mathcal{H})$ bounded linear operators on \mathcal{H} . If $\mathcal{H} \simeq \mathbb{C}^n$, then $\mathcal{B}(\mathcal{H}) \simeq \mathbb{M}_n(\mathbb{C})$.

- unitary equivalence: A ≃ B if there exists a unitary operator U ∈ B(H) such that A = U*BU.
- similarity: $A \sim B$ if there exists an invertible operator $S \in \mathcal{B}(\mathcal{H})$ such that $A = S^{-1}BS$.

Both notions make sense inside of any C^* -algebra.

- 4 同 ト 4 ヨ ト 4 ヨ ト

- \mathcal{H} a complex Hilbert space, separable.
- $\mathcal{B}(\mathcal{H})$ bounded linear operators on \mathcal{H} . If $\mathcal{H} \simeq \mathbb{C}^n$, then $\mathcal{B}(\mathcal{H}) \simeq \mathbb{M}_n(\mathbb{C})$.

- unitary equivalence: A ≃ B if there exists a unitary operator U ∈ B(H) such that A = U*BU.
- similarity: $A \sim B$ if there exists an invertible operator $S \in \mathcal{B}(\mathcal{H})$ such that $A = S^{-1}BS$.

Both notions make sense inside of any C^* -algebra.

- 4 同 1 4 三 1 4 三 1

Open Question. If $A \oplus A \sim B \oplus B$, is $A \sim B$?

Specht's Theorem. Let $A, B \in M_n(\mathbb{C})$. The following are equivalent:

(a) $A \simeq B$;

(b) for every word w(x, y) in two non-commuting variables,

 $\operatorname{tr}(w(A,A^*)) = \operatorname{tr}(w(B,B^*)).$

Open Question. If $A \oplus A \sim B \oplus B$, is $A \sim B$?

Specht's Theorem. Let $A, B \in M_n(\mathbb{C})$. The following are equivalent:

(a) $A \simeq B$;

(b) for every word w(x, y) in two non-commuting variables,

 $\operatorname{tr}(w(A,A^*)) = \operatorname{tr}(w(B,B^*)).$

< ロ > < 同 > < 回 > < 回 > .

Open Question. If $A \oplus A \sim B \oplus B$, is $A \sim B$?

Specht's Theorem. Let $A, B \in M_n(\mathbb{C})$. The following are equivalent:

(a) $A \simeq B$;

(b) for every word w(x, y) in two non-commuting variables,

$$\operatorname{tr}(w(A,A^*)) = \operatorname{tr}(w(B,B^*)).$$

< ロ > < 同 > < 回 > < 回 > .

Open Question. If $A \oplus A \sim B \oplus B$, is $A \sim B$?

Specht's Theorem. Let $A, B \in M_n(\mathbb{C})$. The following are equivalent:

(a) A ≃ B;
(b) for every word w(x, y) in two non-commuting variables,

 $\operatorname{tr}(w(A,A^*)) = \operatorname{tr}(w(B,B^*)).$

Open Question. If $A \oplus A \sim B \oplus B$, is $A \sim B$?

Specht's Theorem. Let $A, B \in M_n(\mathbb{C})$. The following are equivalent:

(a) $A \simeq B$; (b) for every word w(x, y) in two non-commuting variables,

$$\operatorname{tr}(w(A,A^*)) = \operatorname{tr}(w(B,B^*)).$$

くロト く得ト くほト くほとう

Question. To what extent can we extend Specht's Theorem beyond the matrix setting?

In the case of infinite-dimensional, unital C^* -algebras \mathbb{A} (including $\mathcal{B}(\mathcal{H})$ if dim $\mathcal{H} = \infty$), unitary orbits are typically not closed. A natural extension of unitary equivalence is **approximate unitary equivalence**: given $a, b \in \mathbb{A}$, we write $a \simeq_a b$ if there exists a sequence $(u_n)_n$ of unitary elements of \mathbb{A} such that

$$b = \lim_n u_n^* a u_n.$$

If A admits a tracial state (i.e. $0 \le \tau \in \mathbb{A}^*$, $||\tau|| = 1$ and $\tau(xy) = \tau(yx)$), then $a \simeq_a b$ implies that

 $au(w(a,a^*)) = au(w(b,b^*))$ for all words w(x,y).

Question. To what extent can we extend Specht's Theorem beyond the matrix setting?

In the case of infinite-dimensional, unital C^* -algebras \mathbb{A} (including $\mathcal{B}(\mathcal{H})$ if dim $\mathcal{H} = \infty$), unitary orbits are typically not closed. A natural extension of unitary equivalence is **approximate unitary equivalence**: given $a, b \in \mathbb{A}$, we write $a \simeq_a b$ if there exists a sequence $(u_n)_n$ of unitary elements of \mathbb{A} such that

 $b = \lim_{n} u_n^* a u_n.$

If A admits a tracial state (i.e. $0 \le \tau \in \mathbb{A}^*$, $\|\tau\| = 1$ and $\tau(xy) = \tau(yx)$), then $a \simeq_a b$ implies that

 $\tau(w(a,a^*)) = \tau(w(b,b^*)) \text{ for all words } w(x,y).$

くロ と く 同 と く ヨ と 一

Question. To what extent can we extend Specht's Theorem beyond the matrix setting?

In the case of infinite-dimensional, unital C^* -algebras \mathbb{A} (including $\mathcal{B}(\mathcal{H})$ if dim $\mathcal{H} = \infty$), unitary orbits are typically not closed. A natural extension of unitary equivalence is **approximate unitary equivalence**: given $a, b \in \mathbb{A}$, we write $a \simeq_a b$ if there exists a sequence $(u_n)_n$ of unitary elements of \mathbb{A} such that

$$b = \lim_n u_n^* a u_n.$$

If A admits a tracial state (i.e. $0 \le \tau \in \mathbb{A}^*$, $\|\tau\| = 1$ and $\tau(xy) = \tau(yx)$), then $a \simeq_a b$ implies that

 $\tau(w(a, a^*)) = \tau(w(b, b^*))$ for all words w(x, y).

くロト く得ト くほト くほとう

 $a \simeq_a b$ if and only if $\tau(w(a, a^*)) = \tau(w(b, b^*))$ for all words w(x, y).

This fails. Spectacularly. Rørdam, Larsen and Laustsen showed that there exists a simple, unital AF algebra $\mathbb A$ with

- a unique, faithful tracial state τ , and
- a pair of projections $p,q\in\mathbb{A}$ such that au(p)= au(q),
- but *p* is not approximately unitarily equivalent to *q*.

Note that $\tau(p) = \tau(q)$ implies that $\tau(w(p, p^*)) = \tau(w(q, q^*))$ for all words w(x, y).

Another obvious obstacle: many interesting C^* -algebras fail to have a notion of a "trace"!

 $a \simeq_a b$ if and only if $\tau(w(a, a^*)) = \tau(w(b, b^*))$ for all words w(x, y).

This fails. Spectacularly. Rørdam, Larsen and Laustsen showed that there exists a simple, unital AF algebra \mathbb{A} with

- a unique, faithful tracial state τ , and
- a pair of projections $p,q\in\mathbb{A}$ such that au(p)= au(q),
- but *p* is not approximately unitarily equivalent to *q*.

Note that $\tau(p) = \tau(q)$ implies that $\tau(w(p, p^*)) = \tau(w(q, q^*))$ for all words w(x, y).

Another obvious obstacle: many interesting C^* -algebras fail to have a notion of a "trace"!

 $a \simeq_a b$ if and only if $\tau(w(a, a^*)) = \tau(w(b, b^*))$ for all words w(x, y).

This fails. Spectacularly. Rørdam, Larsen and Laustsen showed that there exists a simple, unital AF algebra A with

- a unique, faithful tracial state τ , and
- a pair of projections $p,q\in\mathbb{A}$ such that au(p)= au(q),
- but *p* is not approximately unitarily equivalent to *q*.

Note that $\tau(p) = \tau(q)$ implies that $\tau(w(p, p^*)) = \tau(w(q, q^*))$ for all words w(x, y).

Another obvious obstacle: many interesting C^* -algebras fail to have a notion of a "trace"!

 $a \simeq_a b$ if and only if $\tau(w(a, a^*)) = \tau(w(b, b^*))$ for all words w(x, y).

This fails. Spectacularly. Rørdam, Larsen and Laustsen showed that there exists a simple, unital AF algebra $\mathbb A$ with

- a unique, faithful tracial state τ , and
- a pair of projections $p,q\in\mathbb{A}$ such that au(p)= au(q),
- but p is not approximately unitarily equivalent to q.

Note that $\tau(p) = \tau(q)$ implies that $\tau(w(p, p^*)) = \tau(w(q, q^*))$ for all words w(x, y).

Another obvious obstacle: many interesting C^* -algebras fail to have a notion of a "trace"!

 $a \simeq_a b$ if and only if $\tau(w(a, a^*)) = \tau(w(b, b^*))$ for all words w(x, y).

This fails. Spectacularly. Rørdam, Larsen and Laustsen showed that there exists a simple, unital AF algebra $\mathbb A$ with

 $\bullet\,$ a unique, faithful tracial state $\tau,$ and

• a pair of projections $p,q\in\mathbb{A}$ such that au(p)= au(q),

• but p is not approximately unitarily equivalent to q.

Note that $\tau(p) = \tau(q)$ implies that $\tau(w(p, p^*)) = \tau(w(q, q^*))$ for all words w(x, y).

Another obvious obstacle: many interesting C^* -algebras fail to have a notion of a "trace"!

 $a \simeq_a b$ if and only if $\tau(w(a, a^*)) = \tau(w(b, b^*))$ for all words w(x, y).

This fails. Spectacularly. Rørdam, Larsen and Laustsen showed that there exists a simple, unital AF algebra $\mathbb A$ with

- a unique, faithful tracial state τ , and
- a pair of projections $p,q\in\mathbb{A}$ such that au(p)= au(q),

• but p is not approximately unitarily equivalent to q.

Note that $\tau(p) = \tau(q)$ implies that $\tau(w(p, p^*)) = \tau(w(q, q^*))$ for all words w(x, y).

Another obvious obstacle: many interesting *C**-algebras fail to have a notion of a "trace"!

 $a \simeq_a b$ if and only if $\tau(w(a, a^*)) = \tau(w(b, b^*))$ for all words w(x, y).

This fails. Spectacularly. Rørdam, Larsen and Laustsen showed that there exists a simple, unital AF algebra $\mathbb A$ with

- a unique, faithful tracial state τ , and
- a pair of projections $p,q\in\mathbb{A}$ such that au(p)= au(q),
- but p is not approximately unitarily equivalent to q.

Note that $\tau(p) = \tau(q)$ implies that $\tau(w(p, p^*)) = \tau(w(q, q^*))$ for all words w(x, y). Another obvious obstacle: many interesting *C**-algebras fail to have a notion of a "trace".

 $a \simeq_a b$ if and only if $\tau(w(a, a^*)) = \tau(w(b, b^*))$ for all words w(x, y).

This fails. Spectacularly. Rørdam, Larsen and Laustsen showed that there exists a simple, unital AF algebra $\mathbb A$ with

- a unique, faithful tracial state τ , and
- a pair of projections $p,q\in\mathbb{A}$ such that au(p)= au(q),
- but p is not approximately unitarily equivalent to q.

Note that $\tau(p) = \tau(q)$ implies that $\tau(w(p, p^*)) = \tau(w(q, q^*))$ for all words w(x, y).

Another obvious obstacle: many interesting *C**-algebras fail to have a notion of a "trace"!

イロト イヨト イヨト

 $a \simeq_a b$ if and only if $\tau(w(a, a^*)) = \tau(w(b, b^*))$ for all words w(x, y).

This fails. Spectacularly. Rørdam, Larsen and Laustsen showed that there exists a simple, unital AF algebra $\mathbb A$ with

- a unique, faithful tracial state τ , and
- a pair of projections $p,q\in\mathbb{A}$ such that au(p)= au(q),
- but p is not approximately unitarily equivalent to q.

Note that $\tau(p) = \tau(q)$ implies that $\tau(w(p, p^*)) = \tau(w(q, q^*))$ for all words w(x, y).

Another obvious obstacle: many interesting C^* -algebras fail to have a notion of a "trace"!

イロト イボト イヨト イヨト

3

Specht's Theorem The approximate absolute value condition Definitions and background The good The bad, and the ugly

Recall that a **UHF algebra** \mathbb{A} is an inductive limit of finite-dimensional, unital, simple C^* -algebras: in other words, $\mathbb{A}_n \simeq \mathbb{M}_{k_n}(\mathbb{C})$ for all $n \ge 1$,

$$\mathbb{C}I \subseteq \mathbb{A}_1 \subseteq \mathbb{A}_2 \subseteq \cdots \subseteq \mathcal{B}(\mathcal{H})$$

and

$$\mathbb{A}=\overline{\cup_n\mathbb{A}_n}.$$

They are classified (**Glimm's Theorem**) up to *-isomorphism by their **supernatural number**:

$$\alpha(\mathbb{A}) := 2^{\mu_1} 3^{\mu_2} 5^{\mu_3} 7^{\mu_4} \cdots,$$

where $\mu_j = \sup\{m : (p_j)^m \text{ divides some } k_n, n \ge 1\}$, and where p_j denotes the j^{th} prime.

Definitions and background The good The bad, and the ugly

Recall that a **UHF algebra** \mathbb{A} is an inductive limit of finite-dimensional, unital, simple C^* -algebras: in other words, $\mathbb{A}_n \simeq \mathbb{M}_{k_n}(\mathbb{C})$ for all $n \ge 1$,

$$\mathbb{C}I\subseteq\mathbb{A}_1\subseteq\mathbb{A}_2\subseteq\cdots\subseteq\mathcal{B}(\mathcal{H})$$

and

$$\mathbb{A}=\overline{\cup_n\mathbb{A}_n}.$$

They are classified (**Glimm's Theorem**) up to *-isomorphism by their **supernatural number**:

$$\alpha(\mathbb{A}) := 2^{\mu_1} 3^{\mu_2} 5^{\mu_3} 7^{\mu_4} \cdots,$$

where $\mu_j = \sup\{m : (p_j)^m \text{ divides some } k_n, n \ge 1\}$, and where p_j denotes the j^{th} prime.

Definitions and background The good The bad, and the ugly

Recall that a **UHF algebra** \mathbb{A} is an inductive limit of finite-dimensional, unital, simple C^* -algebras: in other words, $\mathbb{A}_n \simeq \mathbb{M}_{k_n}(\mathbb{C})$ for all $n \ge 1$,

$$\mathbb{C}I \subseteq \mathbb{A}_1 \subseteq \mathbb{A}_2 \subseteq \cdots \subseteq \mathcal{B}(\mathcal{H})$$

and

$$\mathbb{A}=\overline{\cup_n\mathbb{A}_n}.$$

They are classified (**Glimm's Theorem**) up to *-isomorphism by their **supernatural number**:

$$\alpha(\mathbb{A}) := 2^{\mu_1} 3^{\mu_2} 5^{\mu_3} 7^{\mu_4} \cdots,$$

where $\mu_j = \sup\{m : (p_j)^m \text{ divides some } k_n, n \ge 1\}$, and where p_j denotes the j^{th} prime.

くロ と く 同 と く ヨ と 一

The **universal** UHF algebra \mathcal{Q} is the UHF algebra whose supernatural number is

$$\alpha(\mathcal{Q})=2^{\infty}\,3^{\infty}\,5^{\infty}\,7^{\infty}\,\cdots$$

It contains a copy of every other UHF C^* -algebra.

The **CAR** algebra $\mathbb{M}_{2^{\infty}}$ is the UHF C^* -algebra whose supernatural number is

$$\alpha(\mathbb{M}_{2^{\infty}})=2^{\infty}.$$

The **universal** UHF algebra \mathcal{Q} is the UHF algebra whose supernatural number is

$$\alpha(\mathcal{Q}) = 2^{\infty} \, 3^{\infty} \, 5^{\infty} \, 7^{\infty} \, \cdots \, .$$

It contains a copy of every other UHF C^* -algebra.

The CAR algebra \mathbb{M}_{2^∞} is the UHF C*-algebra whose supernatural number is

 $\alpha(\mathbb{M}_{2^{\infty}})=2^{\infty}.$

The **universal** UHF algebra \mathcal{Q} is the UHF algebra whose supernatural number is

$$\alpha(\mathcal{Q}) = 2^{\infty} \, 3^{\infty} \, 5^{\infty} \, 7^{\infty} \, \cdots \, .$$

It contains a copy of every other UHF C^* -algebra.

The CAR algebra \mathbb{M}_{2^∞} is the UHF $C^*\mbox{-algebra}$ whose supernatural number is

$$\alpha(\mathbb{M}_{2^{\infty}})=2^{\infty}.$$

< ロ > < 同 > < 回 > < 回 > .

Two elements a, b in a C^* -algebra \mathbb{A} are said to be **algebraically** equivalent if there exists a *-isomorphism $\Phi : C^*(a) \to C^*(b)$ such that $\Phi(a) = b$.

For example, given $A \in \mathcal{B}(\mathcal{H})$, A and $A \oplus A \in \mathcal{B}(\mathcal{H} \oplus \mathcal{H}) \simeq \mathcal{B}(\mathcal{H})$ are algebraically equivalent.

Two elements a, b in a C^* -algebra \mathbb{A} are said to be **algebraically** equivalent if there exists a *-isomorphism $\Phi : C^*(a) \to C^*(b)$ such that $\Phi(a) = b$.

For example, given $A \in \mathcal{B}(\mathcal{H})$, A and $A \oplus A \in \mathcal{B}(\mathcal{H} \oplus \mathcal{H}) \simeq \mathcal{B}(\mathcal{H})$ are algebraically equivalent.

(4 回) (4 回) (4 回)

Theorem. Let \mathbb{A} be a unital C^* -algebra with a faithful tracial state τ , and $a, b \in \mathbb{A}$. Suppose that $\tau(w(a, a^*)) = \tau(w(b, b^*))$ for all words w(x, y). For each polynomial p(x, y) in two non-commuting variables, define $\Phi(p(a, a^*)) = p(b, b^*)$. Then: (a) $\|p(a, a^*)\| = \|p(b, b^*)\|$ for all polynomials p(x, y).

(b) Φ is well-defined and extends in a unique way to an isomorphism from C*(a) onto C*(b) which implements the algebraic equivalence of a and b.

(c) $\sigma(a) = \sigma(b)$.

・ 同 ト ・ ヨ ト ・ ヨ

Theorem. Let A be a unital C*-algebra with a faithful tracial state τ, and a, b ∈ A. Suppose that τ(w(a, a*)) = τ(w(b, b*)) for all words w(x, y). For each polynomial p(x, y) in two non-commuting variables, define Φ(p(a, a*)) = p(b, b*). Then:
(a) ||p(a, a*)|| = ||p(b, b*)|| for all polynomials p(x, y).
(b) Φ is well-defined and extends in a unique way to an isomorphism from C*(a) onto C*(b) which implements the algebraic equivalence of a and b.

(c) $\sigma(a) = \sigma(b)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem. Let \mathbb{A} be a unital C^* -algebra with a faithful tracial state τ , and $a, b \in \mathbb{A}$. Suppose that $\tau(w(a, a^*)) = \tau(w(b, b^*))$ for all words w(x, y). For each polynomial p(x, y) in two non-commuting variables, define $\Phi(p(a, a^*)) = p(b, b^*)$. Then:

(a) $||p(a, a^*)|| = ||p(b, b^*)||$ for all polynomials p(x, y).

(b) Φ is well-defined and extends in a unique way to an isomorphism from C*(a) onto C*(b) which implements the algebraic equivalence of a and b.

(c) $\sigma(a) = \sigma(b)$.

くロト く得ト くほト くほとう

Theorem. Let \mathbb{A} be a unital C^* -algebra with a faithful tracial state τ , and $a, b \in \mathbb{A}$. Suppose that $\tau(w(a, a^*)) = \tau(w(b, b^*))$ for all words w(x, y). For each polynomial p(x, y) in two non-commuting variables, define $\Phi(p(a, a^*)) = p(b, b^*)$. Then:

(a)
$$\|p(a, a^*)\| = \|p(b, b^*)\|$$
 for all polynomials $p(x, y)$.

(b) Φ is well-defined and extends in a unique way to an isomorphism from C*(a) onto C*(b) which implements the algebraic equivalence of a and b.

(c) $\sigma(a) = \sigma(b)$.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Theorem. Let \mathbb{A} be a unital C^* -algebra with a faithful tracial state τ , and $a, b \in \mathbb{A}$. Suppose that $\tau(w(a, a^*)) = \tau(w(b, b^*))$ for all words w(x, y). For each polynomial p(x, y) in two non-commuting variables, define $\Phi(p(a, a^*)) = p(b, b^*)$. Then:

(a)
$$||p(a, a^*)|| = ||p(b, b^*)||$$
 for all polynomials $p(x, y)$.

(b) Φ is well-defined and extends in a unique way to an isomorphism from C*(a) onto C*(b) which implements the algebraic equivalence of a and b.

(c) $\sigma(a) = \sigma(b)$.

くロ と く 同 と く ヨ と 一
Theorem. Let \mathbb{A} be a unital C^* -algebra with a faithful tracial state τ , and $a, b \in \mathbb{A}$. Suppose that $\tau(w(a, a^*)) = \tau(w(b, b^*))$ for all words w(x, y). For each polynomial p(x, y) in two non-commuting variables, define $\Phi(p(a, a^*)) = p(b, b^*)$. Then:

(a)
$$||p(a, a^*)|| = ||p(b, b^*)||$$
 for all polynomials $p(x, y)$.

(b) Φ is well-defined and extends in a unique way to an isomorphism from C*(a) onto C*(b) which implements the algebraic equivalence of a and b.

(c) $\sigma(a) = \sigma(b)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

(d) If $1 \le k \in \mathbb{N}$ and $[a_{i,j}] \in \mathbb{M}_k(C^*(a))$, then

$$\tau_k([a_{i,j}]) = \tau_k(\Phi^{(k)}([a_{i,j}])).$$

(e) Suppose furthermore that *a* and *b* are normal and denote $X := \sigma(a) = \sigma(b)$. If $F \in \mathbb{M}_k(\mathcal{C}(X))$ then

$$\tau_k(\varphi^{(k)}(F)) = \tau_k(\psi^{(k)}(F)),$$

where $\varphi, \psi : \mathcal{C}(X) \to \mathbb{A}$ are defined via $\varphi(f) := f(a)$ and $\psi(f) = f(b)$ for all $f \in \mathcal{C}(X)$.

(d) If
$$1 \le k \in \mathbb{N}$$
 and $[a_{i,j}] \in \mathbb{M}_k(C^*(a))$, then
 $au_k([a_{i,j}]) = au_k(\Phi^{(k)}([a_{i,j}])).$

(e) Suppose furthermore that *a* and *b* are normal and denote $X := \sigma(a) = \sigma(b)$. If $F \in \mathbb{M}_k(\mathcal{C}(X))$ then

$$\tau_k(\varphi^{(k)}(F)) = \tau_k(\psi^{(k)}(F)),$$

where $\varphi, \psi : \mathcal{C}(X) \to \mathbb{A}$ are defined via $\varphi(f) := f(a)$ and $\psi(f) = f(b)$ for all $f \in \mathcal{C}(X)$.

くロ と く 同 と く ヨ と 一

(d) If
$$1 \leq k \in \mathbb{N}$$
 and $[a_{i,j}] \in \mathbb{M}_k(C^*(a))$, then

$$\tau_k([a_{i,j}]) = \tau_k(\Phi^{(k)}([a_{i,j}])).$$

(e) Suppose furthermore that a and b are normal and denote $X := \sigma(a) = \sigma(b)$. If $F \in \mathbb{M}_k(\mathcal{C}(X))$ then

$$\tau_k(\varphi^{(k)}(F)) = \tau_k(\psi^{(k)}(F)),$$

where $\varphi, \psi : \mathcal{C}(X) \to \mathbb{A}$ are defined via $\varphi(f) := f(a)$ and $\psi(f) = f(b)$ for all $f \in \mathcal{C}(X)$.

э

(a) $m \simeq_a n$. (b) $\tau(w(m, m^*)) = \tau(w(n, n^*))$ for all words w(x, y). **Proof.** You don't want to know.

Theorem. [Schafhauser 2020]

If \mathbb{A} is a separable, unital, exact C^* -algebra satisfying the UCT and having a faithful, amenable trace, and if \mathbb{B} is a simple, unital AF algebra with a unique trace and divisible K_0 -group, then the unital, trace-preserving *-homomorphisms $\mathbb{A} \to \mathbb{B}$ are classified up to unitary equivalence by their behaviour on the K_0 group.

4日 > 4 回 > 4 回 > 4

(a) $m \simeq_a n$.

(b) $\tau(w(m, m^*)) = \tau(w(n, n^*))$ for all words w(x, y).

Proof. You don't want to know.

Theorem. [Schafhauser 2020]

If \mathbb{A} is a separable, unital, exact C^* -algebra satisfying the UCT and having a faithful, amenable trace, and if \mathbb{B} is a simple, unital AF algebra with a unique trace and divisible K_0 -group, then the unital, trace-preserving *-homomorphisms $\mathbb{A} \to \mathbb{B}$ are classified up to unitary equivalence by their behaviour on the K_0 group.

4日 > 4 回 > 4 回 > 4

(a)
$$m \simeq_a n$$
.

(b) $\tau(w(m, m^*)) = \tau(w(n, n^*))$ for all words w(x, y).

Proof. You don't want to know.

Theorem. [Schafhauser 2020]

If \mathbb{A} is a separable, unital, exact C^* -algebra satisfying the UCT and having a faithful, amenable trace, and if \mathbb{B} is a simple, unital AF algebra with a unique trace and divisible K_0 -group, then the unital, trace-preserving *-homomorphisms $\mathbb{A} \to \mathbb{B}$ are classified up to unitary equivalence by their behaviour on the K_0 group.

4日 > 4 回 > 4 回 > 4

(a)
$$m \simeq_a n$$
.
(b) $\tau(w(m, m^*)) = \tau(w(n, n^*))$ for all words $w(x, y)$.
Proof. You don't want to know.

Theorem. [Schafhauser 2020]

If \mathbb{A} is a separable, unital, exact C^* -algebra satisfying the UCT and having a faithful, amenable trace, and if \mathbb{B} is a simple, unital AF algebra with a unique trace and divisible K_0 -group, then the unital, trace-preserving *-homomorphisms $\mathbb{A} \to \mathbb{B}$ are classified up to unitary equivalence by their behaviour on the K_0 group.

(a)
$$m \simeq_a n$$
.
(b) $\tau(w(m, m^*)) = \tau(w(n, n^*))$ for all words $w(x, y)$.
Proof. You don't want to know.

Theorem. [Schafhauser 2020]

If \mathbb{A} is a separable, unital, exact C^* -algebra satisfying the UCT and having a faithful, amenable trace, and if \mathbb{B} is a simple, unital AF algebra with a unique trace and divisible K_0 -group, then the unital, trace-preserving *-homomorphisms $\mathbb{A} \to \mathbb{B}$ are classified up to unitary equivalence by their behaviour on the K_0 group.

П

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Definitions and background The good The bad, and the ugly

Theorem. [LWM and Zhang 2020] Let $a, b \in Q$ and suppose that $C^*(a)$ satisfies the UCT. Then

 $a \simeq_a b$

if and only if

 $\tau(w(a, a^*)) = \tau(w(b, b^*))$ for all words w(x, y).

The idea behind the proof is to compare the inclusion map $\iota : C^*(a) \to \mathbb{A}$ and the algebraic equivalence map $\Phi : C^*(a) \to C^*(b) \subseteq \mathbb{A}$. By part (d) of the key theorem, $\iota_* : K_0(C^*(a)) \to K_0(\mathcal{Q})$ equals Φ_* , so

 $a = \iota(a) \simeq_a \Phi(a) = b.$

Definitions and background The good The bad, and the ugly

Theorem. [LWM and Zhang 2020] Let $a, b \in Q$ and suppose that $C^*(a)$ satisfies the UCT. Then

 $a \simeq_a b$

if and only if

$\tau(w(a, a^*)) = \tau(w(b, b^*))$ for all words w(x, y).

The idea behind the proof is to compare the inclusion map $\iota : C^*(a) \to \mathbb{A}$ and the algebraic equivalence map $\Phi : C^*(a) \to C^*(b) \subseteq \mathbb{A}$. By part (d) of the key theorem, $\iota_* : K_0(C^*(a)) \to K_0(\mathcal{Q})$ equals Φ_* , so

 $a = \iota(a) \simeq_a \Phi(a) = b.$

Definitions and background The good The bad, and the ugly

Theorem. [LWM and Zhang 2020] Let $a, b \in Q$ and suppose that $C^*(a)$ satisfies the UCT. Then

 $a \simeq_a b$

if and only if

$$\tau(w(a, a^*)) = \tau(w(b, b^*))$$
 for all words $w(x, y)$.

The idea behind the proof is to compare the inclusion map $\iota : C^*(a) \to \mathbb{A}$ and the algebraic equivalence map $\Phi : C^*(a) \to C^*(b) \subseteq \mathbb{A}$. By part (d) of the key theorem, $\iota_* : K_0(C^*(a)) \to K_0(\mathcal{Q})$ equals Φ_* , so

 $a = \iota(a) \simeq_a \Phi(a) = b.$

Definitions and background The good The bad, and the ugly

Theorem. [LWM and Zhang 2020] Let $a, b \in Q$ and suppose that $C^*(a)$ satisfies the UCT. Then

 $a \simeq_a b$

if and only if

$$\tau(w(a, a^*)) = \tau(w(b, b^*))$$
 for all words $w(x, y)$.

The idea behind the proof is to compare the inclusion map $\iota : C^*(a) \to \mathbb{A}$ and the algebraic equivalence map $\Phi : C^*(a) \to C^*(b) \subseteq \mathbb{A}$. By part (d) of the key theorem, $\iota_* : K_0(C^*(a)) \to K_0(\mathcal{Q})$ equals Φ_* , so

$$a = \iota(a) \simeq_a \Phi(a) = b.$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The bad, and the ugly. One can find $a, b \in \mathbb{M}_{2^{\infty}}$ such that both $C^*(a)$ and $C^*(b)$ satisfy the UCT, $\tau(w(a, a^*)) = \tau(w(b, b^*))$ for all words w(x, y), but a and b are not unitarily equivalent.

This means that our generalised Specht's Theorem does not extend to more general UHF C*-algebras, let alone other C*-algebras.

Question. What can we say about Specht's Theorem in *C**-algebras without a trace functional?

(4 同) 4 ヨ) 4 ヨ)

The bad, and the ugly. One can find $a, b \in \mathbb{M}_{2^{\infty}}$ such that both $C^*(a)$ and $C^*(b)$ satisfy the UCT, $\tau(w(a, a^*)) = \tau(w(b, b^*))$ for all words w(x, y), but a and b are not unitarily equivalent.

This means that our generalised Specht's Theorem does not extend to more general UHF C*-algebras, let alone other C*-algebras.

Question. What can we say about Specht's Theorem in *C**-algebras without a trace functional?

- (同) - (目) - (目)

The bad, and the ugly. One can find $a, b \in \mathbb{M}_{2^{\infty}}$ such that both $C^*(a)$ and $C^*(b)$ satisfy the UCT, $\tau(w(a, a^*)) = \tau(w(b, b^*))$ for all words w(x, y), but a and b are not unitarily equivalent.

This means that our generalised Specht's Theorem does not extend to more general UHF C*-algebras, let alone other C*-algebras.

Question. What can we say about Specht's Theorem in C^* -algebras without a trace functional?

| 4 同 ト 4 ヨ ト 4 ヨ ト

$$|p(a,a^*)| \simeq_a |p(b,b^*)|$$
 in A.

Note: the sequence $(u_n)_n$ of unitary elements implementing the approximate unitary equivalence of a given pair $|p(a, a^*)|$ and $|p(b, b^*)|$ depends upon the polynomial p(x, y).

Theorem. [LWM, Mastnak and Radjavi] *Two matrices* $A, B \in M_n(\mathbb{C})$ *are unitarily equivalent if and only if they satisfy the* **AAVC**.

$$|p(a,a^*)| \simeq_a |p(b,b^*)|$$
 in \mathbb{A} .

Note: the sequence $(u_n)_n$ of unitary elements implementing the approximate unitary equivalence of a given pair $|p(a, a^*)|$ and $|p(b, b^*)|$ depends upon the polynomial p(x, y).

Theorem. [LWM, Mastnak and Radjavi] *Two matrices* $A, B \in M_n(\mathbb{C})$ *are unitarily equivalent if and only if they satisfy the* **AAVC**.

$$|p(a,a^*)| \simeq_a |p(b,b^*)|$$
 in \mathbb{A} .

Note: the sequence $(u_n)_n$ of unitary elements implementing the approximate unitary equivalence of a given pair $|p(a, a^*)|$ and $|p(b, b^*)|$ depends upon the polynomial p(x, y).

Theorem. [LWM, Mastnak and Radjavi] *Two matrices* $A, B \in M_n(\mathbb{C})$ *are unitarily equivalent if and only if they satisfy the* **AAVC**.

$$|p(a,a^*)| \simeq_a |p(b,b^*)|$$
 in \mathbb{A} .

Note: the sequence $(u_n)_n$ of unitary elements implementing the approximate unitary equivalence of a given pair $|p(a, a^*)|$ and $|p(b, b^*)|$ depends upon the polynomial p(x, y).

Theorem. [LWM, Mastnak and Radjavi]

Two matrices $A, B \in \mathbb{M}_n(\mathbb{C})$ are unitarily equivalent if and only if they satisfy the **AAVC**.

くロ と く 同 と く ヨ と 一

Theorem. Let \mathbb{A} be a C^* -algebra, and suppose that $a, b \in \mathbb{A}$ satisfy the **AAVC**. Then

- (a) a and b are algebraically equivalent; i.e. there exists an isomorphism $\Phi : C^*(a) \to C^*(b)$ with $\Phi(a) = b$; and
- (b) if A admits a tracial state τ , then a, b satisfy Specht's trace condition, i.e.,

 $\tau(w(a,a^*)) = \tau(w(b,b^*)) \quad \text{ for all words } w(x,y).$

- 4 周 ト 4 戸 ト 4 戸 ト

Theorem. Let \mathbb{A} be a C^* -algebra, and suppose that $a, b \in \mathbb{A}$ satisfy the **AAVC**. Then

(a) a and b are algebraically equivalent; i.e. there exists an isomorphism $\Phi : C^*(a) \to C^*(b)$ with $\Phi(a) = b$; and

(b) if A admits a tracial state τ , then a, b satisfy Specht's trace condition, i.e.,

 $\tau(w(a, a^*)) = \tau(w(b, b^*)) \quad \text{for all words } w(x, y).$

イロト イポト イヨト イヨト

Theorem. Let \mathbb{A} be a C^* -algebra, and suppose that $a, b \in \mathbb{A}$ satisfy the **AAVC**. Then

(a) a and b are algebraically equivalent; i.e. there exists an isomorphism $\Phi : C^*(a) \to C^*(b)$ with $\Phi(a) = b$; and

(b) if \mathbb{A} admits a tracial state τ , then a, b satisfy Specht's trace condition, i.e.,

 $\tau(w(a, a^*)) = \tau(w(b, b^*))$ for all words w(x, y).

- 4 周 ト 4 ヨ ト 4 ヨ ト

- (a) In any UHF algebra \mathbb{A} , two elements $a, b \in \mathbb{A}$ satisfy Specht's condition if and only if they satisfy the **AAVC**.
- (b) If Q is the universal UHF algebra, a, b ∈ Q, and C*(a) satisfies the UCT, then a ≃_a b if and only if a and b satisfy the AAVC.
- (c) There exists a pair $a, b \in \mathbb{M}_{2^{\infty}}$ such that both $C^*(a)$ and $C^*(b)$ satisfy the UCT, a and b satisfy the **AAVC**, but a is not approximately unitarily equivalent to b.

A (1) < (1) < (1) </p>

- (a) In any UHF algebra \mathbb{A} , two elements $a, b \in \mathbb{A}$ satisfy Specht's condition if and only if they satisfy the **AAVC**.
- (b) If Q is the universal UHF algebra, a, b ∈ Q, and C*(a) satisfies the UCT, then a ≃_a b if and only if a and b satisfy the AAVC.
- (c) There exists a pair $a, b \in \mathbb{M}_{2^{\infty}}$ such that both $C^*(a)$ and $C^*(b)$ satisfy the UCT, a and b satisfy the **AAVC**, but a is not approximately unitarily equivalent to b.

A (1) > A (2) > A

- (a) In any UHF algebra \mathbb{A} , two elements $a, b \in \mathbb{A}$ satisfy Specht's condition if and only if they satisfy the **AAVC**.
- (b) If Q is the universal UHF algebra, a, b ∈ Q, and C*(a) satisfies the UCT, then a ≃_a b if and only if a and b satisfy the AAVC.
- (c) There exists a pair $a, b \in \mathbb{M}_{2^{\infty}}$ such that both $C^*(a)$ and $C^*(b)$ satisfy the UCT, a and b satisfy the **AAVC**, but a is not approximately unitarily equivalent to b.

• (1) • (1) • (1)

- (a) In any UHF algebra \mathbb{A} , two elements $a, b \in \mathbb{A}$ satisfy Specht's condition if and only if they satisfy the **AAVC**.
- (b) If Q is the universal UHF algebra, a, b ∈ Q, and C*(a) satisfies the UCT, then a ≃_a b if and only if a and b satisfy the AAVC.
- (c) There exists a pair $a, b \in \mathbb{M}_{2^{\infty}}$ such that both $C^*(a)$ and $C^*(b)$ satisfy the UCT, a and b satisfy the **AAVC**, but a is not approximately unitarily equivalent to b.

A (1) < A (2) < A (1)</p>

The **AAVC** applies to $\mathcal{B}(\mathcal{H})$!

Theorem. Let $A, B \in \mathcal{B}(\mathcal{H})$. Then A and B are approximately unitarily equivalent if A and B satisfy the **AAVC**.

The proof depends upon Hadwin's formulation of Voiculescu's Weyl-von Neumann Theorem:

Proposition. [Hadwin]

Suppose $A, B \in \mathcal{B}(\mathcal{H})$. Then $A \simeq_a B$ if and only if there is a representation $\pi : C^*(A) \to C^*(B)$ such that $\pi(A) = B$ and rank $(T) = \operatorname{rank}(\pi(T))$ for every $T \in C^*(A)$.

The **AAVC** applies to $\mathcal{B}(\mathcal{H})$!

Theorem. Let $A, B \in \mathcal{B}(\mathcal{H})$. Then A and B are approximately unitarily equivalent if A and B satisfy the **AAVC**.

The proof depends upon Hadwin's formulation of Voiculescu's Weyl-von Neumann Theorem:

Proposition. [Hadwin]

Suppose $A, B \in \mathcal{B}(\mathcal{H})$. Then $A \simeq_a B$ if and only if there is a representation $\pi : C^*(A) \to C^*(B)$ such that $\pi(A) = B$ and rank $(T) = \operatorname{rank}(\pi(T))$ for every $T \in C^*(A)$.

イロト イポト イラト イラト

The **AAVC** applies to $\mathcal{B}(\mathcal{H})$!

Theorem. Let $A, B \in \mathcal{B}(\mathcal{H})$. Then A and B are approximately unitarily equivalent if A and B satisfy the **AAVC**.

The proof depends upon Hadwin's formulation of Voiculescu's Weyl-von Neumann Theorem:

Proposition. [Hadwin]

Suppose $A, B \in \mathcal{B}(\mathcal{H})$. Then $A \simeq_a B$ if and only if there is a representation $\pi : C^*(A) \to C^*(B)$ such that $\pi(A) = B$ and rank $(T) = \operatorname{rank}(\pi(T))$ for every $T \in C^*(A)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $S \in \mathcal{B}(\mathcal{H})$ denote the unilateral forward shift $(Se_n = e_{n+1}, n \ge 1$, where $\{e_n\}_n$ is an **onb** for \mathcal{H}).

Then $s := \pi(S)$ and $t := s \oplus s$ satisfy the **AAVC**, since all self-adjoint operators with the same spectrum in the Calkin algebra are unitarily equivalent (**BDF**). They fail to be (approximately) unitarily equivalent because of semi-Fredholm index.

The existence of Fredholm index in the Calkin algebra reflects the fact that the K_1 -group of $\mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})$ is non-trivial (i.e. it is isomorphic to \mathbb{Z}). For the Cuntz algebra \mathcal{O}_2 ,

$$K_0(\mathcal{O}_2)=K_1(\mathcal{O}_2)=0,$$

Let $S \in \mathcal{B}(\mathcal{H})$ denote the unilateral forward shift $(Se_n = e_{n+1}, n \ge 1$, where $\{e_n\}_n$ is an **onb** for \mathcal{H}).

Then $s := \pi(S)$ and $t := s \oplus s$ satisfy the **AAVC**, since all self-adjoint operators with the same spectrum in the Calkin algebra are unitarily equivalent (**BDF**). They fail to be (approximately) unitarily equivalent because of semi-Fredholm index.

The existence of Fredholm index in the Calkin algebra reflects the fact that the K_1 -group of $\mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})$ is non-trivial (i.e. it is isomorphic to \mathbb{Z}). For the Cuntz algebra \mathcal{O}_2 ,

$$K_0(\mathcal{O}_2)=K_1(\mathcal{O}_2)=0,$$

Let $S \in \mathcal{B}(\mathcal{H})$ denote the unilateral forward shift $(Se_n = e_{n+1}, n \ge 1$, where $\{e_n\}_n$ is an **onb** for \mathcal{H}).

Then $s := \pi(S)$ and $t := s \oplus s$ satisfy the **AAVC**, since all self-adjoint operators with the same spectrum in the Calkin algebra are unitarily equivalent (**BDF**). They fail to be (approximately) unitarily equivalent because of semi-Fredholm index.

The existence of Fredholm index in the Calkin algebra reflects the fact that the K_1 -group of $\mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})$ is non-trivial (i.e. it is isomorphic to \mathbb{Z}). For the Cuntz algebra \mathcal{O}_2 ,

$$K_0(\mathcal{O}_2)=K_1(\mathcal{O}_2)=0,$$

Let $S \in \mathcal{B}(\mathcal{H})$ denote the unilateral forward shift $(Se_n = e_{n+1}, n \ge 1$, where $\{e_n\}_n$ is an **onb** for \mathcal{H}).

Then $s := \pi(S)$ and $t := s \oplus s$ satisfy the **AAVC**, since all self-adjoint operators with the same spectrum in the Calkin algebra are unitarily equivalent (**BDF**). They fail to be (approximately) unitarily equivalent because of semi-Fredholm index.

The existence of Fredholm index in the Calkin algebra reflects the fact that the K_1 -group of $\mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})$ is non-trivial (i.e. it is isomorphic to \mathbb{Z}). For the Cuntz algebra \mathcal{O}_2 ,

$$K_0(\mathcal{O}_2)=K_1(\mathcal{O}_2)=0,$$

Let $S \in \mathcal{B}(\mathcal{H})$ denote the unilateral forward shift $(Se_n = e_{n+1}, n \ge 1$, where $\{e_n\}_n$ is an **onb** for \mathcal{H}).

Then $s := \pi(S)$ and $t := s \oplus s$ satisfy the **AAVC**, since all self-adjoint operators with the same spectrum in the Calkin algebra are unitarily equivalent (**BDF**). They fail to be (approximately) unitarily equivalent because of semi-Fredholm index.

The existence of Fredholm index in the Calkin algebra reflects the fact that the K_1 -group of $\mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})$ is non-trivial (i.e. it is isomorphic to \mathbb{Z}). For the Cuntz algebra \mathcal{O}_2 ,

$$K_0(\mathcal{O}_2)=K_1(\mathcal{O}_2)=0,$$

Let $S \in \mathcal{B}(\mathcal{H})$ denote the unilateral forward shift $(Se_n = e_{n+1}, n \ge 1$, where $\{e_n\}_n$ is an **onb** for \mathcal{H}).

Then $s := \pi(S)$ and $t := s \oplus s$ satisfy the **AAVC**, since all self-adjoint operators with the same spectrum in the Calkin algebra are unitarily equivalent (**BDF**). They fail to be (approximately) unitarily equivalent because of semi-Fredholm index.

The existence of Fredholm index in the Calkin algebra reflects the fact that the K_1 -group of $\mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})$ is non-trivial (i.e. it is isomorphic to \mathbb{Z}). For the Cuntz algebra \mathcal{O}_2 ,

$$K_0(\mathcal{O}_2)=K_1(\mathcal{O}_2)=0,$$
This does not, however, extend to the Calkin algebra $\mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})$:

Let $S \in \mathcal{B}(\mathcal{H})$ denote the unilateral forward shift $(Se_n = e_{n+1}, n \ge 1$, where $\{e_n\}_n$ is an **onb** for \mathcal{H}).

Then $s := \pi(S)$ and $t := s \oplus s$ satisfy the **AAVC**, since all self-adjoint operators with the same spectrum in the Calkin algebra are unitarily equivalent (**BDF**). They fail to be (approximately) unitarily equivalent because of semi-Fredholm index.

The existence of Fredholm index in the Calkin algebra reflects the fact that the K_1 -group of $\mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})$ is non-trivial (i.e. it is isomorphic to \mathbb{Z}). For the Cuntz algebra \mathcal{O}_2 ,

$$K_0(\mathcal{O}_2)=K_1(\mathcal{O}_2)=0,$$

removing the "index" obstruction. In fact - $a, b \in \mathcal{O}_2$ satisfy the **AAVC** if and only if $a \simeq_a b$.

Given $A \in \mathbb{M}_n(\mathbb{C})$ and $k \ge 1$, we set $A^{(k)} := A \oplus A \oplus A \oplus \cdots \oplus A$ k times.

We saw that there exist $a, b \in \mathbb{M}_{2^{\infty}}$ such that

 $\tau(w(a, a^*)) = \tau(w(b, b^*))$ for all words w(x, y),

but $a \not\simeq_a b$ in $\mathbb{M}_{2^{\infty}}$. On the other hand, $\mathbb{M}_{2^{\infty}} \subseteq \mathcal{Q}$, and $a \simeq_a b$ in \mathcal{Q} .

Using this, one can prove the following.

Given $A \in \mathbb{M}_n(\mathbb{C})$ and $k \ge 1$, we set

$$A^{(k)} := A \oplus A \oplus A \oplus \dots \oplus A$$
 k times.

We saw that there exist $a, b \in \mathbb{M}_{2^{\infty}}$ such that

 $\tau(w(a, a^*)) = \tau(w(b, b^*))$ for all words w(x, y),

but $a \not\simeq_a b$ in $\mathbb{M}_{2^{\infty}}$. On the other hand, $\mathbb{M}_{2^{\infty}} \subseteq \mathcal{Q}$, and $a \simeq_a b$ in \mathcal{Q} .

Using this, one can prove the following.

Given $A \in \mathbb{M}_n(\mathbb{C})$ and $k \ge 1$, we set

$$A^{(k)} := A \oplus A \oplus A \oplus \dots \oplus A$$
 k times.

We saw that there exist $a, b \in \mathbb{M}_{2^{\infty}}$ such that

 $\tau(w(a, a^*)) = \tau(w(b, b^*))$ for all words w(x, y),

but $a \not\simeq_a b$ in $\mathbb{M}_{2^{\infty}}$. On the other hand, $\mathbb{M}_{2^{\infty}} \subseteq \mathcal{Q}$, and $a \simeq_a b$ in \mathcal{Q} .

Using this, one can prove the following.

3

Given $A \in \mathbb{M}_n(\mathbb{C})$ and $k \geq 1$, we set

$$A^{(k)} := A \oplus A \oplus A \oplus \dots \oplus A$$
 k times.

We saw that there exist $a, b \in \mathbb{M}_{2^{\infty}}$ such that

$$\tau(w(a, a^*)) = \tau(w(b, b^*))$$
 for all words $w(x, y)$,

but $a \not\simeq_a b$ in $\mathbb{M}_{2^{\infty}}$. On the other hand, $\mathbb{M}_{2^{\infty}} \subseteq \mathcal{Q}$, and $a \simeq_a b$ in Q.

Using this, one can prove the following.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Theorem. There exist positive integers n and k, and a pair $A, B \in \mathbb{M}_n(\mathbb{C})$ such that

 $\mathsf{d}(\mathcal{U}(A^{(k)}),\mathcal{U}(B^{(k)})) < \mathsf{d}(\mathcal{U}(A),\mathcal{U}(B)).$

With H. Radjavi, we have shown that if $M, N \in \mathbb{M}_2(\mathbb{C})$ are **normal** matrices, then

$$d(\mathcal{U}(M^{(k)}),\mathcal{U}(N^{(k)})) = d(\mathcal{U}(M),\mathcal{U}(N)).$$

Open Question. Does this hold for all normal matrices in $\mathbb{M}_n(\mathbb{C})$, $n \geq 3$?

くロ と く 同 と く ヨ と 一

Theorem. There exist positive integers n and k, and a pair $A, B \in \mathbb{M}_n(\mathbb{C})$ such that

$$\mathsf{d}(\mathcal{U}(A^{(k)}),\mathcal{U}(B^{(k)})) < \mathsf{d}(\mathcal{U}(A),\mathcal{U}(B)).$$

With H. Radjavi, we have shown that if $M, N \in \mathbb{M}_2(\mathbb{C})$ are **normal** matrices, then

$$\mathsf{d}(\mathcal{U}(M^{(k)}),\mathcal{U}(N^{(k)}))=\mathsf{d}(\mathcal{U}(M),\mathcal{U}(N)).$$

Open Question. Does this hold for all normal matrices in $\mathbb{M}_n(\mathbb{C})$, $n \geq 3$?

イロト イポト イヨト イヨト

э

Theorem. There exist positive integers n and k, and a pair $A, B \in \mathbb{M}_n(\mathbb{C})$ such that

$$\mathsf{d}(\mathcal{U}(A^{(k)}),\mathcal{U}(B^{(k)})) < \mathsf{d}(\mathcal{U}(A),\mathcal{U}(B)).$$

With H. Radjavi, we have shown that if $M, N \in \mathbb{M}_2(\mathbb{C})$ are **normal** matrices, then

$$d(\mathcal{U}(M^{(k)}),\mathcal{U}(N^{(k)}))=d(\mathcal{U}(M),\mathcal{U}(N)).$$

Open Question. Does this hold for all normal matrices in $\mathbb{M}_n(\mathbb{C})$, $n \geq 3$?

イロト イポト イヨト イヨト

э

Definition Results An unexpected consequence

Thank you for your attention.

æ

Specht's Theorem The approximate absolute value condition

Proposition. Let \mathbb{A} be a UHF algebra, $m, n \in \mathbb{A}$ and suppose that *m* is normal. The following are equivalent:

(a) $m \simeq_a n$.

(b) $\tau(w(m, m^*)) = \tau(w(n, n^*))$ for all words w(x, y).

Proof. Because you do want to know: $K_0(\mathcal{C}(\sigma(m)))$ is a free abelian group, so the UCT applies; $K_1(\mathbb{A}) = 0$, so

 $KK(\mathcal{C}(\sigma(m)), \mathbb{A}) = Hom(K_0(\mathcal{C}(\sigma(m)), K_0(\mathbb{A})).$

If $\varphi(f) := f(m)$, $\psi(f) = f(n)$, $f \in \mathcal{C}(\sigma(m))$, then by (e) above, $K_0(\varphi) = K_0(\psi)$ in $Hom(K_0(\mathcal{C}(\sigma(m)), K_0(\mathbb{A}))$. Thus $KK(\varphi) = KK(\psi)$, and $KL(\mathcal{C}(\sigma(m)), \mathbb{A})$ is a quotient of $KK(\mathcal{C}(\sigma(X), \mathbb{A})$, so $KL(\varphi) = KL(\psi)$. Since traces are preserved, a result of Gong and Lin implies that $\varphi \simeq_a \psi$, whence $m \simeq_a n$. Really, you didn't want to know.

< ロ > < 同 > < 三 > < 三 >

Proposition. Let \mathbb{A} be a UHF algebra, $m, n \in \mathbb{A}$ and suppose that *m* is normal. The following are equivalent:

(a)
$$m \simeq_a n$$
.
(b) $\tau(w(m, m^*)) = \tau(w(n, n^*))$ for all words $w(x, y)$.

Proof. Because you do want to know: $K_0(\mathcal{C}(\sigma(m)))$ is a free abelian group, so the UCT applies; $K_1(\mathbb{A}) = 0$, so

$$\mathsf{KK}(\mathcal{C}(\sigma(m)),\mathbb{A})=\mathsf{Hom}(\mathsf{K}_0(\mathcal{C}(\sigma(m)),\mathsf{K}_0(\mathbb{A})).$$

If $\varphi(f) := f(m)$, $\psi(f) = f(n)$, $f \in C(\sigma(m))$, then by (e) above, $K_0(\varphi) = K_0(\psi)$ in $Hom(K_0(C(\sigma(m)), K_0(\mathbb{A}))$. Thus $KK(\varphi) = KK(\psi)$, and $KL(C(\sigma(m)), \mathbb{A})$ is a quotient of $KK(C(\sigma(X), \mathbb{A}))$, so $KL(\varphi) = KL(\psi)$. Since traces are preserved, a result of Gong and Lin implies that $\varphi \simeq_a \psi$, whence $m \simeq_a n$. Really, you didn't want to know.

< ロ > < 同 > < 回 > < 回 >

Proposition. Let \mathbb{A} be a UHF algebra, $m, n \in \mathbb{A}$ and suppose that *m* is normal. The following are equivalent:

(a)
$$m \simeq_a n$$
.
(b) $\tau(w(m, m^*)) = \tau(w(n, n^*))$ for all words $w(x, y)$.

Proof. Because you do want to know: $K_0(\mathcal{C}(\sigma(m)))$ is a free abelian group, so the UCT applies; $K_1(\mathbb{A}) = 0$, so

$$\mathsf{KK}(\mathcal{C}(\sigma(m)),\mathbb{A})=\mathsf{Hom}(\mathsf{K}_0(\mathcal{C}(\sigma(m)),\mathsf{K}_0(\mathbb{A})).$$

If $\varphi(f) := f(m)$, $\psi(f) = f(n)$, $f \in \mathcal{C}(\sigma(m))$, then by (e) above, $K_0(\varphi) = K_0(\psi)$ in $Hom(K_0(\mathcal{C}(\sigma(m)), K_0(\mathbb{A}))$. Thus $KK(\varphi) = KK(\psi)$, and $KL(\mathcal{C}(\sigma(m)), \mathbb{A})$ is a quotient of $KK(\mathcal{C}(\sigma(X), \mathbb{A}))$, so $KL(\varphi) = KL(\psi)$. Since traces are preserved, a result of Gong and Lin implies that $\varphi \simeq_a \psi$, whence $m \simeq_a n$. Really, you didn't want to know.

< ロ > < 同 > < 回 > < 回 >