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Specht’s Theorem
The approximate absolute value condition

Definitions and background
The good
The bad, and the ugly

H - a complex Hilbert space, separable.

B(H) - bounded linear operators on H. If H ' Cn, then
B(H) 'Mn(C).

The two most important notions of equivalence of operators are

unitary equivalence: A ' B if there exists a unitary operator
U ∈ B(H) such that A = U∗BU.

similarity: A ∼ B if there exists an invertible operator
S ∈ B(H) such that A = S−1BS .

Both notions make sense inside of any C ∗-algebra.
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In Mn(C), A ∼ B if and only if A and B admit a common Jordan
canonical form. There is no analogue of this for operators acting
on an infinite-dimensional space.

Open Question. If A⊕ A ∼ B ⊕ B, is A ∼ B?

Specht’s Theorem. Let A,B ∈Mn(C). The following are
equivalent:

(a) A ' B;

(b) for every word w(x , y) in two non-commuting variables,

tr(w(A,A∗)) = tr(w(B,B∗)).
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Question. To what extent can we extend Specht’s Theorem
beyond the matrix setting?

In the case of infinite-dimensional, unital C ∗-algebras A (including
B(H) if dim H =∞), unitary orbits are typically not closed.
A natural extension of unitary equivalence is approximate unitary
equivalence: given a, b ∈ A, we write a 'a b if there exists a
sequence (un)n of unitary elements of A such that

b = lim
n

u∗naun.

If A admits a tracial state (i.e. 0 ≤ τ ∈ A∗, ‖τ‖ = 1 and
τ(xy) = τ(yx)), then a 'a b implies that

τ(w(a, a∗)) = τ(w(b, b∗)) for all words w(x , y).
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Thus, even if A admits a tracial state, the best we can hope for
might be:

a 'a b if and only if τ(w(a, a∗)) = τ(w(b, b∗)) for all words w(x , y).

This fails. Spectacularly. Rørdam, Larsen and Laustsen showed
that there exists a simple, unital AF algebra A with

a unique, faithful tracial state τ , and

a pair of projections p, q ∈ A such that τ(p) = τ(q),

but p is not approximately unitarily equivalent to q.

Note that τ(p) = τ(q) implies that τ(w(p, p∗)) = τ(w(q, q∗)) for
all words w(x , y).
Another obvious obstacle: many interesting C ∗-algebras fail to
have a notion of a “trace”!
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Recall that a UHF algebra A is an inductive limit of
finite-dimensional, unital, simple C ∗-algebras: in other words,
An 'Mkn(C) for all n ≥ 1,

CI ⊆ A1 ⊆ A2 ⊆ · · · ⊆ B(H)

and
A = ∪nAn.

They are classified (Glimm’s Theorem) up to ∗-isomorphism by
their supernatural number:

α(A) := 2µ13µ25µ37µ4 · · · ,

where µj = sup{m : (pj)
m divides some kn, n ≥ 1}, and where pj

denotes the j th prime.
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The universal UHF algebra Q is the UHF algebra whose
supernatural number is

α(Q) = 2∞ 3∞ 5∞ 7∞ · · · .

It contains a copy of every other UHF C ∗-algebra.

The CAR algebra M2∞ is the UHF C ∗-algebra whose supernatural
number is

α(M2∞) = 2∞.
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Two elements a, b in a C ∗-algebra A are said to be algebraically
equivalent if there exists a ∗-isomorphism Φ : C ∗(a)→ C ∗(b)
such that Φ(a) = b.

For example, given A ∈ B(H), A and A⊕ A ∈ B(H⊕H) ' B(H)
are algebraically equivalent.
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Theorem. Let A be a unital C ∗-algebra with a faithful tracial
state τ , and a, b ∈ A. Suppose that τ(w(a, a∗)) = τ(w(b, b∗)) for
all words w(x , y). For each polynomial p(x , y) in two
non-commuting variables, define Φ(p(a, a∗)) = p(b, b∗). Then:

(a) ‖p(a, a∗)‖ = ‖p(b, b∗)‖ for all polynomials p(x , y).

(b) Φ is well-defined and extends in a unique way to an
isomorphism from C ∗(a) onto C ∗(b) which implements the
algebraic equivalence of a and b.

(c) σ(a) = σ(b).
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(d) If 1 ≤ k ∈ N and [ai ,j ] ∈Mk(C ∗(a)), then

τk([ai ,j ]) = τk(Φ(k)([ai ,j ])).

(e) Suppose furthermore that a and b are normal and denote
X := σ(a) = σ(b). If F ∈Mk(C(X )) then

τk(ϕ(k)(F )) = τk(ψ(k)(F )),

where ϕ,ψ : C(X )→ A are defined via ϕ(f ) := f (a) and
ψ(f ) = f (b) for all f ∈ C(X ).
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Proposition. Let A be a UHF algebra, m, n ∈ A and suppose that
m is normal. The following are equivalent:

(a) m 'a n.

(b) τ(w(m,m∗)) = τ(w(n, n∗)) for all words w(x , y).

Proof. You don’t want to know.

2

Theorem. [Schafhauser 2020]
If A is a separable, unital, exact C ∗-algebra satisfying the UCT and
having a faithful, amenable trace, and if B is a simple, unital AF
algebra with a unique trace and divisible K0-group, then the unital,
trace-preserving ∗−homomorphisms A→ B are classified up to
unitary equivalence by their behaviour on the K0 group.
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Theorem. [LWM and Zhang 2020]
Let a, b ∈ Q and suppose that C ∗(a) satisfies the UCT. Then

a 'a b

if and only if

τ(w(a, a∗)) = τ(w(b, b∗)) for all words w(x , y).

The idea behind the proof is to compare the inclusion map
ι : C ∗(a)→ A and the algebraic equivalence map
Φ : C ∗(a)→ C ∗(b) ⊆ A. By part (d) of the key theorem,
ι∗ : K0(C ∗(a))→ K0(Q) equals Φ∗, so

a = ι(a) 'a Φ(a) = b.
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The bad, and the ugly. One can find a, b ∈M2∞ such that
both C ∗(a) and C ∗(b) satisfy the UCT, τ(w(a, a∗)) = τ(w(b, b∗))
for all words w(x , y), but a and b are not unitarily equivalent.

This means that our generalised Specht’s Theorem does not extend
to more general UHF C*-algebras, let alone other C*-algebras.

Question. What can we say about Specht’s Theorem in
C ∗-algebras without a trace functional?
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Specht’s Theorem
The approximate absolute value condition

Definition
Results
An unexpected consequence

Definition. Let A be a C ∗ algebra and a, b ∈ A. We shall say a, b
satisfy the approximate absolute value condition (AAVC) if for
any polynomial p(x , y),

|p(a, a∗)| 'a |p(b, b∗)| in A.

Note: the sequence (un)n of unitary elements implementing the
approximate unitary equivalence of a given pair |p(a, a∗)| and
|p(b, b∗)| depends upon the polynomial p(x , y).

Theorem. [LWM, Mastnak and Radjavi]
Two matrices A,B ∈Mn(C) are unitarily equivalent if and only if
they satisfy the AAVC.
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Specht’s Theorem
The approximate absolute value condition

Definition
Results
An unexpected consequence

Theorem. Let A be a C ∗-algebra, and suppose that a, b ∈ A
satisfy the AAVC. Then

(a) a and b are algebraically equivalent; i.e. there exists an
isomorphism Φ : C ∗(a)→ C ∗(b) with Φ(a) = b; and

(b) if A admits a tracial state τ , then a, b satisfy Specht’s trace
condition, i.e.,

τ(w(a, a∗)) = τ(w(b, b∗)) for all words w(x , y).
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Specht’s Theorem
The approximate absolute value condition

Definition
Results
An unexpected consequence

Corollary.

(a) In any UHF algebra A, two elements a, b ∈ A satisfy Specht’s
condition if and only if they satisfy the AAVC.

(b) If Q is the universal UHF algebra, a, b ∈ Q, and C ∗(a)
satisfies the UCT, then a 'a b if and only if a and b satisfy
the AAVC.

(c) There exists a pair a, b ∈M2∞ such that both C ∗(a) and
C ∗(b) satisfy the UCT, a and b satisfy the AAVC, but a is
not approximately unitarily equivalent to b.
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Specht’s Theorem
The approximate absolute value condition

Definition
Results
An unexpected consequence

The AAVC applies to B(H)!

Theorem. Let A,B ∈ B(H). Then A and B are approximately
unitarily equivalent if A and B satisfy the AAVC.

The proof depends upon Hadwin’s formulation of Voiculescu’s
Weyl-von Neumann Theorem:

Proposition. [Hadwin]
Suppose A,B ∈ B(H). Then A 'a B if and only if there is a
representation π : C ∗(A)→ C ∗(B) such that π(A) = B and
rank(T ) = rank(π(T )) for every T ∈ C ∗(A).
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Specht’s Theorem
The approximate absolute value condition

Definition
Results
An unexpected consequence

This does not, however, extend to the Calkin algebra B(H)/K(H):

Let S ∈ B(H) denote the unilateral forward shift
(Sen = en+1, n ≥ 1, where {en}n is an onb for H).

Then s := π(S) and t := s ⊕ s satisfy the AAVC, since all
self-adjoint operators with the same spectrum in the Calkin algebra
are unitarily equivalent (BDF). They fail to be (approximately)
unitarily equivalent because of semi-Fredholm index.

The existence of Fredholm index in the Calkin algebra reflects the
fact that the K1-group of B(H)/K(H) is non-trivial (i.e. it is
isomorphic to Z). For the Cuntz algebra O2,

K0(O2) = K1(O2) = 0,

removing the “index” obstruction. In fact - a, b ∈ O2 satisfy the
AAVC if and only if a 'a b.
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An unexpected consequence.

Given A ∈Mn(C) and k ≥ 1, we set

A(k) := A⊕ A⊕ A⊕ · · · ⊕ A k times.

We saw that there exist a, b ∈M2∞ such that

τ(w(a, a∗)) = τ(w(b, b∗)) for all words w(x , y),

but a 6'a b in M2∞ . On the other hand, M2∞ ⊆ Q, and a 'a b in
Q.

Using this, one can prove the following.
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An unexpected consequence

Theorem. There exist positive integers n and k , and a pair
A,B ∈Mn(C) such that

d(U(A(k)),U(B(k))) < d(U(A),U(B)).

With H. Radjavi, we have shown that if M,N ∈M2(C) are normal
matrices, then

d(U(M(k)),U(N(k))) = d(U(M),U(N)).

Open Question. Does this hold for all normal matrices in Mn(C),
n ≥ 3?
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Thank you for your attention.
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An unexpected consequence

Proposition. Let A be a UHF algebra, m, n ∈ A and suppose that
m is normal. The following are equivalent:

(a) m 'a n.

(b) τ(w(m,m∗)) = τ(w(n, n∗)) for all words w(x , y).

Proof. Because you do want to know: K0(C(σ(m))) is a free
abelian group, so the UCT applies; K1(A) = 0, so

KK (C(σ(m)),A) = Hom(K0(C(σ(m)),K0(A)).

If ϕ(f ) := f (m), ψ(f ) = f (n), f ∈ C(σ(m)), then by (e) above,
K0(ϕ) = K0(ψ) in Hom(K0(C(σ(m)),K0(A)). Thus
KK (ϕ) = KK (ψ), and KL(C(σ(m)),A) is a quotient of
KK (C(σ(X ),A), so KL(ϕ) = KL(ψ). Since traces are preserved, a
result of Gong and Lin implies that ϕ 'a ψ, whence m 'a n.
Really, you didn’t want to know.

2
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