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Ergodicity of random walks and Markov operators

I Let G be a locally compact group. A measure µ ∈ M(G) defines a random walk

on G . An initial distribution, a probability measure θ is given. At each step, the

probability of moving from a set A ⊆ G to a subset B ⊆ G , is given by the

transition probability µ(B−1A). The distribution of probabilities then changes

after each step.

I The random walk produces Markov operators (unity preserving positive

contractions): P : L1(G)→ L1(G) and P∗ : L∞(G)→ L∞(G).

I These operators turn to be particular examples of convolution operators:

P = λ1(µ), P∗ = λ∞(µ), where λp(µ)f (s) = (µ ∗ f )(s) =
∫
f (t−1s) dµ(t),

s ∈ G , f ∈ Lp(G), 1 ≤ p ≤ ∞.

I Vaguely speaking, random walks are ergodic when, regardless of the initial

distribution, every subset is visited, with probability one, as often as its size would

predict.

I More precisely, the random walk is ergodic if its corresponding Markov operator P

is ergodic, i.e., if P∗f = f , f ∈ L∞(G), implies f constant a.e..
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Ergodicity of random walks and Markov operators

G a locally compact group with Haar measure mG , µ ∈ P(G), a probability measure.

Definition 1

µ is said to be ergodic if the random walk it defines is ergodic. Equivalently, if λ1(µ) is ergodic.

µ is said to be completely mixing if the random walk it defines is mixing.

Theorem 1 (Rosenblatt, 1981)

TFAE.

1 µ is ergodic.

2 λ∞(µ)f = f implies that f ∈ L∞(G) is constant.

3 If f ∈ L1(G) and
∫
f (x)dmG (x) = 0, then lim

n

∥∥∥ 1

n

n∑
k=1

λ1(µk )f
∥∥∥

1
= 0.

Theorem 2 (Rosenblatt, 1981)

TFAE.

1 µ is completely mixing.

2 If f ∈ L1(G) and
∫
f (x)dmG (x) = 0, then lim

n
‖µn ∗ f ‖1 = 0.
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Ergodicity of measures and mean ergodicity of operators

Definition 3

Let T : E → E a bounded operator, E a Banach space. Put T[n] =
1

n

n−1∑
k=0

T k . We say

that T is mean ergodic (ME) if the sequence (T[n])n is convergent in the sot

topology. If (T[n])n converges in the operator norm, we say that T is uniformly mean

ergodic (UME).

I Notation: Let L0
1(G) =

{
f ∈ L1(G) :

∫
f (x)dmG (x) = 0

}
denote the

augmentation ideal of L1(G). For µ ∈ M(G), denote λ0
1(µ) = λ1

∣∣
L0

1(G)
. Thus λ0

1

is just the convolution operator f 7→ µ ∗ f restricted to L0
1(G).

I Rewording: A measure µ ∈ M(G) is ergodic iff λ0
1(µ) is mean ergodic and

limn λ0
1(µ)[n] = 0.
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Some context

G a locally compact group, µ ∈ P(G), Sµ = suppµ, Hµ = 〈Sµ 〉.

Definition 2

I We say that µ is adapted if Hµ = G (supp(µ) not contained in a proper closed

subgroup). If G is Abelian this amounts to µ̂(χ) = 1 ⇐⇒ χ = 1.

I We say that µ is strictly aperiodic if supp(µ) is not contained in a translate of a

proper, closed normal subgroup. If G is Abelian, this amounts to

|µ̂(χ)| = 1 ⇐⇒ χ = 1.

1 µ ergodic =⇒ µ adapted. | µ completely mixing =⇒ µ strictly aperiodic.

Conversely:

2 (Choquet-Dény, Kawada-Itô) If G is Abelian or compact, µ is ergodic if and only

if µ is adapted.

3 (Rosenblatt, 1981) G is amenable if and only if there is some µ ∈ M(G) such

that µ is ergodic.

4 (Jaworski, 2004) If G is an SIN group, µ is completely mixing if and only if µ is

ergodic and strictly aperiodic.

5 (The complete mixing problem, Lin) Is it true that ergodic + strictly aperiodic

=completely mixing?
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The operators λ1(µ) and λ0
1(µ)

G a locally compact group, µ ∈ P(G), Sµ = suppµ, Hµ = 〈Sµ 〉.

Theorem 4 (G.-Jordá 2021)

λ1(µ) is mean ergodic if and only if Hµ is a compact group. If µ∗ ∗ µ = µ ∗ µ∗, then

λ1(µ) is uniformly mean ergodic if and only if 1 is isolated in σ(λ1(µ)).

Sketch of proof.

If Hµ is compact, λ1 is vague-SOT seq. continuous (and the sequence µ[n] is weak∗ convergent).If

Hµ is not compact then (Dérrienic, 1976) λ2(µ)[n] SOT-converges to 0, but ‖λ1(µ)[n]f ‖1 = ‖f ‖1,

if f ≥ 0. This leads to a contradiction.

(UME part) The operator λp(µ), 1 ≤ p ≤ ∞ is UME iff 1 is a pole of order 1 of the resolvent.

For p = 2 this latter property is equivalent to 1 being isolated in σ(λ1(µ)) (λ2(µ) is normal). One

can then show that 1 is again a pole of order 1 of λ1(µ).

Question 1

What about λ0
1(µ)?
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Uniform mean ergodicity of λ1(µ) vs uniform mean ergodicity of

λ0
1(µ)

G a locally compact group, µ ∈ P(G), Sµ = suppµ, Hµ = 〈 Sµ 〉.
Obvious: λ1(µ) is UME =⇒ λ0

1(µ) is UME

Lemma 5

Let A be a Banach algebra and let I be an ideal of A. Let M : A→ A be a multiplier of A.

Assume that for every a ∈ A, ‖M
∣∣
I
‖ ≥ α > 0. Then σap (M) = σap

(
M
∣∣
I

)
.

Lemma 6

‖λ0
1(µ)‖ ≥

1

2
sup
x∈G
‖µ− µ ∗ δx‖ =⇒ ‖λ0

1(µ)‖ = 1 whenever G is not compact.

Theorem 7

TFAE:

1 λ1(µ) is UME.

2 Hµ is compact and 1 is isolated in σ (λ1(µ)).

3 λ0
1(µ) is UME.

Lemma 6 tells us Lemma 5 can be applied to A = L1(G), I = L0
1(G) and M = λ1(µ).
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Uniformly ergodic measures

G a locally compact group, µ ∈ P(G), Sµ = suppµ, Hµ = 〈Sµ 〉.
Some necessary conditions:

I (Lin and Witmann, 1994) If µ is ergodic, then G =
⋃

j

⋃
k S
−j
µ Sk

µ.

I (Lin and Witmann, 1994) If µ is completely mixing, then G =
⋃

j S
−j
µ S j

µ.

I If µ is uniformly ergodic, then there is n such that G =
⋃n

j=1

⋃n
k=1 S

−j
µ Sk

µ (a

consequence of ‖λ0
1(µ)‖ ≥ 1

2
supx∈G‖µ− µ ∗ δx‖).

I If µ is uniformly ergodic, then G is compact.

Spectrum in M(G): σ(λ1(µ)) = σ(µ), hence µ is uniformly ergodic if and only if µ is

adapted, G is compact and 1 is isolated in σ(µ).

Example: If µ = f dmG with f ∈ L1(G), then λ1(µ) is uniformly ergodic.

Definition 8

µ is said to be spread-out if for some n, µn is not singular (w.r.t. dmG ).

Lemma 9

If µ is spread-out, then µ is uniformly ergodic.

This is a Corollary of a Theorem of Dunford because, in this case, λ1(µ) is then a

quasi-compact operator.
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A characterization of uniformly ergodic measures

G a locally compact Abelian group, µ ∈ P(G), Sµ = suppµ, Hµ = 〈Sµ 〉.

Lemma 10 (Essential)

If 1 is isolated in σ(µ) then µ is spread-out.

Sketch of proof.

If µ is not spread-out, r
M(G)/L1(G)

(
µ
)

= 1. Pick χ ∈ ∆(M(G)/L1(G)) with
∣∣〈χ, µ 〉∣∣ = 1.

S̆rĕıder’s theory of generalized characters is then used to find χ̃ with 〈 χ̃, µ 〉 = 1.

If 1 is isolated in

σ(µ), there is θ ∈ M(G), idempotent, with θ̂ = 1µ̂−1({1}). This implies θ = dmG which implies

θ̂(χ̃) = 0, against 〈 χ̃, µ 〉 = 1.

Theorem 11

Let Hµ = G (i.e., µ is adapted). TFAE:

1 µ is uniformly ergodic.

2 G is compact and 1 is isolated in σ(µ).

3 G is compact, and µ is spread-out.
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Stronger properties

G a compact Abelian group, µ ∈ P(G), Sµ = suppµ, Hµ = 〈 Sµ 〉.
µ is uniformly completely mixing when limn‖λ0

1(µn)‖ = 0.

Theorem 12 (The uniformly complete mixing problem)

Let G be a compact Abelian group and let µ be adapted. TFAE:

1 µ is uniformly completely mixing.

2 µ is strictly aperiodic and uniformly ergodic.

3 µ is strictly aperiodic and spread out .

4 µ is completely mixing and uniformly ergodic.

Corollary 13

If G is connected then, TFAE:

1 µ is uniformly completely mixing.

2 µ is uniformly ergodic.

3 µ is spread-out.

In this case µ uniformly ergodic implies that µ is strictly aperiodic.
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1(µn)‖ = 0.

Theorem 12 (The uniformly complete mixing problem)

Let G be a compact Abelian group and let µ be adapted. TFAE:

1 µ is uniformly completely mixing.

2 µ is strictly aperiodic and uniformly ergodic.

3 µ is strictly aperiodic and spread out .

4 µ is completely mixing and uniformly ergodic.

There are easy examples of sequences of UME operators T with SOT− limn T
n = 0 convergent

but ‖T n‖ is constant: Pick a sequence a := (an)n ∈ `1(Z) with limn→±∞ = −1 but |an| < 1 for

every n. Then the multiplication operator Ma : `1(Z)→ `1(Z) is UME and SOT- limn M
n
a = 0 but

‖Mn
a ‖ = 1.

Corollary 13

If G is connected then, TFAE:

1 µ is uniformly completely mixing.

2 µ is uniformly ergodic.

3 µ is spread-out.

In this case µ uniformly ergodic implies that µ is strictly aperiodic.

Jorge Galindo Uniform ergodicity of operators associated to random walks on locally compact groups



Stronger properties

G a compact Abelian group, µ ∈ P(G), Sµ = suppµ, Hµ = 〈 Sµ 〉.
µ is uniformly completely mixing when limn‖λ0

1(µn)‖ = 0.

Theorem 12 (The uniformly complete mixing problem)

Let G be a compact Abelian group and let µ be adapted. TFAE:

1 µ is uniformly completely mixing.

2 µ is strictly aperiodic and uniformly ergodic.

3 µ is strictly aperiodic and spread out .

4 µ is completely mixing and uniformly ergodic.

Corollary 13

If G is connected then, TFAE:

1 µ is uniformly completely mixing.

2 µ is uniformly ergodic.

3 µ is spread-out.

In this case µ uniformly ergodic implies that µ is strictly aperiodic.

Jorge Galindo Uniform ergodicity of operators associated to random walks on locally compact groups



Stronger properties

G a compact Abelian group, µ ∈ P(G), Sµ = suppµ, Hµ = 〈 Sµ 〉.
µ is uniformly completely mixing when limn‖λ0

1(µn)‖ = 0.

Theorem 12 (The uniformly complete mixing problem)

Let G be a compact Abelian group and let µ be adapted. TFAE:

1 µ is uniformly completely mixing.

2 µ is strictly aperiodic and uniformly ergodic.

3 µ is strictly aperiodic and spread out .

4 µ is completely mixing and uniformly ergodic.

Corollary 13

If G is connected then, TFAE:

1 µ is uniformly completely mixing.

2 µ is uniformly ergodic.

3 µ is spread-out.

In this case µ uniformly ergodic implies that µ is strictly aperiodic.

Jorge Galindo Uniform ergodicity of operators associated to random walks on locally compact groups



Stronger properties

G a compact Abelian group, µ ∈ P(G), Sµ = suppµ, Hµ = 〈 Sµ 〉.
µ is uniformly completely mixing when limn‖λ0

1(µn)‖ = 0.

Theorem 12 (The uniformly complete mixing problem)

Let G be a compact Abelian group and let µ be adapted. TFAE:

1 µ is uniformly completely mixing.

2 µ is strictly aperiodic and uniformly ergodic.

3 µ is strictly aperiodic and spread out .

4 µ is completely mixing and uniformly ergodic.

Corollary 13

If G is connected then, TFAE:

1 µ is uniformly completely mixing.

2 µ is uniformly ergodic.

3 µ is spread-out.

In this case µ uniformly ergodic implies that µ is strictly aperiodic.

Jorge Galindo Uniform ergodicity of operators associated to random walks on locally compact groups



Stronger properties

G a compact Abelian group, µ ∈ P(G), Sµ = suppµ, Hµ = 〈 Sµ 〉.
µ is uniformly completely mixing when limn‖λ0

1(µn)‖ = 0.

Theorem 12 (The uniformly complete mixing problem)

Let G be a compact Abelian group and let µ be adapted. TFAE:

1 µ is uniformly completely mixing.

2 µ is strictly aperiodic and uniformly ergodic.

3 µ is strictly aperiodic and spread out .

4 µ is completely mixing and uniformly ergodic.

Corollary 13

If G is connected then, TFAE:

1 µ is uniformly completely mixing.

2 µ is uniformly ergodic.

3 µ is spread-out.

In this case µ uniformly ergodic implies that µ is strictly aperiodic.

Jorge Galindo Uniform ergodicity of operators associated to random walks on locally compact groups



Stronger properties

G a compact Abelian group, µ ∈ P(G), Sµ = suppµ, Hµ = 〈 Sµ 〉.
µ is uniformly completely mixing when limn‖λ0

1(µn)‖ = 0.

Theorem 12 (The uniformly complete mixing problem)

Let G be a compact Abelian group and let µ be adapted. TFAE:

1 µ is uniformly completely mixing.

2 µ is strictly aperiodic and uniformly ergodic.

3 µ is strictly aperiodic and spread out .

4 µ is completely mixing and uniformly ergodic.

Corollary 13

If G is connected then, TFAE:

1 µ is uniformly completely mixing.

2 µ is uniformly ergodic.

3 µ is spread-out.

In this case µ uniformly ergodic implies that µ is strictly aperiodic.

Jorge Galindo Uniform ergodicity of operators associated to random walks on locally compact groups



Stronger properties

G a compact Abelian group, µ ∈ P(G), Sµ = suppµ, Hµ = 〈 Sµ 〉.
µ is uniformly completely mixing when limn‖λ0

1(µn)‖ = 0.

Theorem 12 (The uniformly complete mixing problem)

Let G be a compact Abelian group and let µ be adapted. TFAE:

1 µ is uniformly completely mixing.

2 µ is strictly aperiodic and uniformly ergodic.

3 µ is strictly aperiodic and spread out .

4 µ is completely mixing and uniformly ergodic.

Corollary 13

If G is connected then, TFAE:

1 µ is uniformly completely mixing.

2 µ is uniformly ergodic.

3 µ is spread-out.

In this case µ uniformly ergodic implies that µ is strictly aperiodic.

Jorge Galindo Uniform ergodicity of operators associated to random walks on locally compact groups



Fourier and Fourier-Stieltjes algebras

Definition 14

If G is a locally compact Abelian group, the Fourier algebra, A(G), is defined as

A(G) =
{
f̂ : G → C : f ∈ L1(Ĝ)

}
f̂ is the Fourier transform of f .

Since f̂ ∗ g = f̂ · ĝ , pointwise multiplication and the norm ‖̂f‖A(G) = ‖f‖1, turn A(G)

into a Banach algebra naturally isomorphic to L1(Ĝ).

Definition 15

If G is a locally compact Abelian group the Fourier-Stieltjes algebra, B(G) is defined

as:

B(G) =
{
µ̂ : G → C : µ ∈ M(Ĝ)

}
µ̂ is the Fourier-Stieltjes transform of µ.

Since µ̂ ∗ ν = µ̂ · ν̂, pointwise multiplication and the norm ‖µ̂‖B(G) = ‖µ‖M(G), turn

B(G) into a Banach algebra naturally isomorphic to M(Ĝ).

I λ2(L1(G))
‖·‖op

is isometric to the C∗-algebra C0(σ(L1(G))) = C0(Ĝ).

I λ2(L1(G))
‖·‖SOT is isometric to the von Neumann algebra L∞(Ĝ) .

Definition 16

If G is a locally compact group, the Fourier algebra A(G) is the predual of the von

Neumann algebra VN(G).

The Fourier-Stieltjes algebra B(G) is the dual space of the

group C∗-algebra C∗(G).

Both can be seen as algebras of functions on G made of matrix coefficients of unitary

representations. All of them in the case of B(G) and those of the left regular

representation in the case of A(G). A(G) is a closed ideal in B(G).
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I λ2(L1(G))
‖·‖SOT is isometric to the von Neumann algebra L∞(Ĝ) .
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Back to ergodicity

Definition 16

Let G be a locally compact group. We define:

I The augmentation ideal: A0(G) = {u ∈ A(G) : u(e) = 0}.

I The multiplication operators: if φ ∈ B(G), M(φ) : A(G)→ A(G) is defined as

M(φ)u = φ · u. M0(φ) = M(φ)
∣∣
A0(G)

.

I We say that φ ∈ B(G) is ergodic when sot-limn→∞(M0
φ)[n] = 0.

I We say that φ ∈ B(G) is uniformly ergodic when ‖·‖op- limn→∞(M0
φ)[n] = 0.

Question: under which conditions are φ and the operators M(φ)) and M0(φ) mean or

uniformly mean ergodic?
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The operators λ1(µ) and M(φ))

P1(G) := {φ ∈ B(G) : φ positive definite, φ(e) = 1}.

Definition 17

Let G be a locally compact group, µ ∈ M(G) and φ ∈ B(G). We define

Hµ : = 〈supp(µ)〉 smallest closed subgroup of G containing the support of µ.

Hφ : = {x ∈ G : φ(x) = 1}.

Theorem 18

Let G be a locally compact group and let µ ∈ M(G) be a probability measure. Then

λ1(µ) is mean ergodic ⇐⇒ Hµ is compact.

Theorem 19

Let G be a locally compact group and let φ ∈ P1(G). Then,

M(φ) is mean ergodic ⇐⇒ Hφ is open.

Relevant: φ[n] always converges pointwise to 1Hφ .
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Ergodicity and complete mixing of probabilities and positive definite functions

G a locally compact group. µ prob. measure, φ ∈ P1(G).

Definition 20

I We say that µ is adapted if Hµ = G (supp(µ) not contained in a proper closed

subgroup).

I We say that µ is strictly aperiodic if supp(µ) is not contained in a translate of a

closed normal subgroup. Or, equivalently, if |µ̂(χ)| = 1 ⇐⇒ χ = 1.

Definition 21

I We say that φ is adapted if Hφ = {x ∈ G : φ(e) = 1} = {e}.

I We say that φ is strictly aperiodic if Eφ = {x ∈ G : |φ(e)| = 1} = {e}.

Theorem 22

Let µ ∈ M(G) and φ ∈ B(G). Then:

I If µ is ergodic, then µ is adapted.
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Uniform mean ergodicity of probabilities and pos. definite functions

G a locally compact group, µ a probability measure and φ ∈ P1(G).

Theorem 23

If µ is uniformly ergodic, then G is compact.

Key fact: ‖λ0
1(µ)‖ ≥ 1

2
supx∈G‖µ− µ ∗ δx‖. It follows that if G is not compact, then

‖λ0
1(µ)‖ = 1 for every probability measure µ.

Theorem 24

Let G be amenable. If φ is uniformly ergodic, then G is discrete.

Key fact: ‖M0(φ)‖ ≥ M
2

supα‖φ− φ · fα‖, where (fα) ⊆ A(G) is a net such that

limα‖ufα − fα‖ = 0 and M is the amenability constant. It follows that, if G is

amenable and nondiscrete, there is C > 0 such that ‖M0(φ)‖ ≥ 1/C for every

φ ∈ P1(G).
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Uniform mean ergodicity of probabilities and pos. definite functions

G a locally compact group, µ a probability measure and φ ∈ P1(G).

σ
M(G)

(µ) = σ
(
λ

0
1(µ)

)
∪ {1} σ

B(G)
(φ) = σ

(
M0(φ)

)
∪ {1}

Theorem 25

µ is uniformly ergodic if and only if there is n0 s.t. µn0 is not singular (µ is

spread-out).

Key facts: if χ ∈ ∆(M(G)) and |Gelf(µ)(χ)| = 1, there is χ̃ ∈ ∆(M(G)) with

Gelf(µ)(χ̃) = 1. With this, 1 isolated in σ(µ) = σ(λ1(µ)) =⇒ µ spread out.

Theorem 26

G amenable. φ is uniformly ergodic if and only if there is n0 s.t. d (φn0 ,A(G)) < 1

(φ is spread-out).

Key here: if χ ∈ ∆(B(G)) and |Gelf(φ)(χ)| = 1, there is χ̃ ∈ ∆(B(G)) with

Gelf(µ)(χ̃) = 1. The map χ̃ is simply the operator χ̃ = |χ| = (χ∗χ)1/2 when χ is

seen as an element of W ∗(G). With this, 1 isolated in σ(φ) = σ(M(φ)) =⇒ µ

spread out.
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Some pending tasks

I Let G be a compact group and let µ ∈ M(G) be adapted. If G is not Abelian, is

it still true that µ is uniformly ergodic if and only if µ is spread-out?

I Let G be a discrete group and let φ ∈ B(G) be adapted, is it true that φ is

uniformly ergodic if and only if φ is spread-out?

I Is it true that σ(φ) = σ(M(φ)) when G is not amenable?
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