A new inequality for Schur multipliers

Javier Parcet
Instituto de Ciencias Matemáticas
Consejo Superior de Investigaciones Científicas

Banach Algebras and Applications
Granada - July 2022
—Joint with JM Conde-Alonso, AM González-Pérez and E Tablate-

Introduction
 Fourier and Schur multipliers

Hörmander-Mikhlin multipliers

Given $m: \mathbf{R}^{n} \rightarrow \mathbf{C}$, let

$$
T_{m} f=(m \widehat{f})^{\vee}=m^{\vee} * f .
$$

Hörmander-Mikhlin multipliers

Given $m: \mathbf{R}^{n} \rightarrow \mathbf{C}$, let

$$
T_{m} f=(m \widehat{f})^{\vee}=m^{\vee} * f
$$

A central problem in harmonic analysis:
Given $1 \leq p \leq \infty$, for which m 's is $T_{m} L_{p}$-bounded?
(Well-understood: $p=1,2, \infty /$ The general problem is out of reach)

Hörmander-Mikhlin multipliers

Given $m: \mathbf{R}^{n} \rightarrow \mathbf{C}$, let

$$
T_{m} f=(m \widehat{f})^{\vee}=m^{\vee} * f .
$$

A central problem in harmonic analysis:

Given $1 \leq p \leq \infty$, for which m 's is $T_{m} L_{p}$-bounded?
(Well-understood: $p=1,2, \infty /$ The general problem is out of reach)

Hörmander-Mikhlin theorem (1956/1960)

$$
\begin{aligned}
& \text { If } 1<p<\infty \\
& \qquad\left\|T_{m}: L_{p}\left(\mathbf{R}^{n}\right) \rightarrow L_{p}\left(\mathbf{R}^{n}\right)\right\| \leq C_{p} \sum_{|\gamma| \leq\left[\frac{n}{2}\right]+1}\left\||\xi|^{|\gamma|}\left|\partial_{\xi}^{\gamma} m(\xi)\right|\right\|_{\infty} .
\end{aligned}
$$

\star Locally: Key/optimal singularity at $0 \rightsquigarrow$ Asymptotic behavior. \star HM up to order $(n-1) / 2$: Necessary for radial multipliers and $p<\infty$!

Fourier multipliers: Group algebras

Let (G, μ) be a unimodular group with

$$
\lambda: \mathrm{G} \rightarrow \mathcal{U}\left(L_{2}(\mathrm{G}, \mu)\right) \quad \text { given by } \quad[\lambda(g) \varphi](h)=\varphi\left(g^{-1} h\right) .
$$

Fourier multipliers: Group algebras

Let (G, μ) be a unimodular group with

$$
\lambda: \mathrm{G} \rightarrow \mathcal{U}\left(L_{2}(\mathrm{G}, \mu)\right) \quad \text { given by } \quad[\lambda(g) \varphi](h)=\varphi\left(g^{-1} h\right) .
$$

Define its group von Neumann algebra as follows
$v N(\mathrm{G}):=\overline{\operatorname{span}\left\{f=\int_{\mathrm{G}} \widehat{f}(g) \lambda(g) d \mu(g): \widehat{f} \in \mathcal{C}_{\mathrm{c}}(\mathrm{G})\right\}}{ }^{\mathrm{w}} \subset \mathcal{B}\left(L_{2}(\mathrm{G}, \mu)\right)$.
If e is the unit in G, the Haar trace τ is then determined by $\tau(f)=\widehat{f}(e)$.

Fourier multipliers: Group algebras

Let (G, μ) be a unimodular group with

$$
\lambda: \mathrm{G} \rightarrow \mathcal{U}\left(L_{2}(\mathrm{G}, \mu)\right) \quad \text { given by } \quad[\lambda(g) \varphi](h)=\varphi\left(g^{-1} h\right) .
$$

Define its group von Neumann algebra as follows
$v N(\mathrm{G}):=\overline{\operatorname{span}\left\{f=\int_{\mathrm{G}} \widehat{f}(g) \lambda(g) d \mu(g): \widehat{f} \in \mathcal{C}_{\mathrm{c}}(\mathrm{G})\right\}}{ }^{\mathrm{w}} \subset \mathcal{B}\left(L_{2}(\mathrm{G}, \mu)\right)$.
If e is the unit in G, the Haar trace τ is then determined by $\tau(f)=\widehat{f}(e)$.
Given $m: \mathrm{G} \rightarrow \mathbf{C}$, its Fourier multiplier is the map

$$
\widehat{T_{m} f}(g)=\tau\left(T_{m} f \lambda(g)^{*}\right)=m(g) \tau\left(f \lambda(g)^{*}\right)=m(g) \widehat{f}(g) .
$$

Fourier multipliers: Group algebras

Let (G, μ) be a unimodular group with

$$
\lambda: \mathrm{G} \rightarrow \mathcal{U}\left(L_{2}(\mathrm{G}, \mu)\right) \quad \text { given by } \quad[\lambda(g) \varphi](h)=\varphi\left(g^{-1} h\right) .
$$

Define its group von Neumann algebra as follows
$v N(\mathrm{G}):=\overline{\operatorname{span}\left\{f=\int_{\mathrm{G}} \widehat{f}(g) \lambda(g) d \mu(g): \widehat{f} \in \mathcal{C}_{\mathrm{c}}(\mathrm{G})\right\}}{ }^{\mathrm{w}} \subset \mathcal{B}\left(L_{2}(\mathrm{G}, \mu)\right)$.
If e is the unit in G, the Haar trace τ is then determined by $\tau(f)=\widehat{f}(e)$.
Given $m: \mathrm{G} \rightarrow \mathbf{C}$, its Fourier multiplier is the map

$$
\widehat{T_{m}} f(g)=\tau\left(T_{m} f \lambda(g)^{*}\right)=m(g) \tau\left(f \lambda(g)^{*}\right)=m(g) \widehat{f}(g)
$$

* Pioneering work of Haagerup '79 + coauthors.
$\star L_{p}$-theory: Very strong efforts in the last 10 years Lafforgue-de la Salle, Junge-Mei-P, Mei-Ricard, P-Ricard-de la Salle...
\star Approximation properties \approx Fourier L_{p}-summability Geometric group theory + Group vNa classification theory

Herz-Schur multipliers: Matrix algebras

The relation between Fourier and Schur multipliers plays a key role...
Given $m: \mathrm{G} \rightarrow \mathbf{C}$, its Herz-Schur multiplier is

$$
S_{m}(A)=\left(m\left(g h^{-1}\right) A_{g h}\right)
$$

Herz-Schur multipliers: Matrix algebras

The relation between Fourier and Schur multipliers plays a key role...
Given $m: \mathrm{G} \rightarrow \mathbf{C}$, its Herz-Schur multiplier is

$$
S_{m}(A)=\left(m\left(g h^{-1}\right) A_{g h}\right)
$$

Let

$$
\begin{gathered}
S_{p}(\mathrm{G})=\text { Schatten } p \text {-class over } L_{2}(\mathrm{G}) \rightsquigarrow\|A\|_{p}=\operatorname{tr}\left(|A|^{p}\right)^{\frac{1}{p}} \\
L_{p}(v N(\mathrm{G}))=\text { NC } L_{p} \text {-space over }(v N(\mathrm{G}), \tau) \rightsquigarrow\|f\|_{p}=\tau\left(|f|^{p}\right)^{\frac{1}{p}}
\end{gathered}
$$

Fourier-Schur transference [Neuwirth/Ricard + Caspers/de la Salle]

If $1 \leq p \leq \infty$ and G is amenable

$$
\left\|S_{m}: S_{p}(\mathrm{G}) \rightarrow S_{p}(\mathrm{G})\right\|_{\mathbf{c b}}=\left\|T_{m}: L_{p}(v N(\mathrm{G})) \rightarrow L_{p}(v N(\mathrm{G}))\right\|_{\mathbf{c b}}
$$

Moreover, the upper bound holds for nonamenable I.c. groups as well.

A reformulation of the HM Theorem

Combining FS transference with HM theorem

$$
\left\|S_{m}: S_{p}\left(\mathbf{R}^{n}\right) \rightarrow S_{p}\left(\mathbf{R}^{n}\right)\right\|_{\mathrm{cb}} \lesssim \frac{p^{2}}{p-1} \sum_{|\gamma| \leq\left[\frac{n}{2}\right]+1}\left\||\xi|^{|\gamma|}\left|\partial_{\xi}^{\gamma} m(\xi)\right|\right\|_{\infty}
$$

(HMS)
m is constant on secondary diagonals and admits a singularity in the main diagonal

NonToeplitz Schur multipliers

Arbitrary Schur multipliers in $\mathbf{R}^{n} \rightsquigarrow M(x, y) \neq m(x-y) \ldots$

NonToeplitz Schur multipliers

Arbitrary Schur multipliers in $\mathbf{R}^{n} \rightsquigarrow M(x, y) \neq m(x-y) \ldots$

The Grothendieck-Haagerup characterization

S_{M} is bounded on $\mathcal{B}\left(L_{2}(\mathrm{X})\right)$ iff S_{M} is cb-bounded iff there exists a Hilbert space \mathcal{K} and uniformly bounded families $\left(u_{x}\right)$ and $\left(w_{y}\right)$ in \mathcal{K} satisfying the identity

$$
M(x, y)=\left\langle u_{x}, w_{y}\right\rangle_{\mathcal{K}} \quad \text { for all } \quad x, y \in \mathbf{X}
$$

NonToeplitz Schur multipliers

Arbitrary Schur multipliers in $\mathbf{R}^{n} \rightsquigarrow M(x, y) \neq m(x-y) \ldots$

The Grothendieck-Haagerup characterization

S_{M} is bounded on $\mathcal{B}\left(L_{2}(\mathrm{X})\right)$ iff S_{M} is cb-bounded iff there exists a Hilbert space \mathcal{K} and uniformly bounded families $\left(u_{x}\right)$ and $\left(w_{y}\right)$ in \mathcal{K} satisfying the identity

$$
M(x, y)=\left\langle u_{x}, w_{y}\right\rangle_{\mathcal{K}} \quad \text { for all } \quad x, y \in \mathrm{X}
$$

Rather limited literature regarding L_{p}-boundedness $(1<p<\infty)$:
\star The Arazy conjecture $=$ Submatrices of

$$
M(x, y)=\frac{f(x)-f(y)}{x-y} \quad \text { for } f \in \operatorname{Lip}(\mathbf{R})
$$

Conjectured by Arazy '82 and solved by Potapov/Sukochev '11.

* Marcinkiewicz type conditions: Bded variation columns/rows.
* Unconditionality in S_{p} and matrix $\Lambda(p)$-sets: Harcharras ' 99 .

Mikael de la Salle's problem

During the École d'automne "Fourier Multipliers on Group Algebras" at Besançon (2019), Mikael de la Salle formulated the problem below (also at UCLA Functional Analysis Seminar in 2020):
M. de la Salle's question. Let $M: \mathbf{R}^{n} \times \mathbf{R}^{n} \rightarrow \mathbf{C}$ be smooth outside the diagonal, with compact support for simplicity. Is there a controlled explosion on the diagonal which gives $S_{M}: S_{p} \rightarrow S_{p}$ for $1<p<\infty$?

This conjecture for (nonToeplitz) multipliers is beyond FS transference.

The main result
 Hörmander-Mikhlin-Schur multipliers

An easy remark

In Z, every Toeplitz symbol $M(j, k)=m(j-k)$ is identified with the Fourier multiplier T_{m} on the torus T. Moreover, setting $M_{\alpha}(j, k)=\alpha(j)$ and $M_{\beta}(j, k)=\beta(k)$ we note that

$$
S_{M_{\alpha}}(A)=\operatorname{diag}(\alpha) \cdot A \quad \text { and } \quad S_{M_{\beta}}(A)=A \cdot \operatorname{diag}(\beta)
$$

An easy remark

In Z, every Toeplitz symbol $M(j, k)=m(j-k)$ is identified with the Fourier multiplier T_{m} on the torus \mathbf{T}. Moreover, setting $M_{\alpha}(j, k)=\alpha(j)$ and $M_{\beta}(j, k)=\beta(k)$ we note that

$$
S_{M_{\alpha}}(A)=\operatorname{diag}(\alpha) \cdot A \quad \text { and } \quad S_{M_{\beta}}(A)=A \cdot \operatorname{diag}(\beta)
$$

Then, recalling that M can be rewritten as

$$
\begin{aligned}
& M(j, k)=M_{r}(k-j, k)=\sum_{\ell} m_{r \ell}(j-k) \beta_{\ell}(k), \\
& M(j, k)=M_{c}(j, j-k)=\sum_{\ell} \alpha_{\ell}(j) m_{c \ell}(j-k),
\end{aligned}
$$

S_{M} is a combination of Fourier and left/right pointwise multipliers...

An easy remark

In Z, every Toeplitz symbol $M(j, k)=m(j-k)$ is identified with the Fourier multiplier T_{m} on the torus \mathbf{T}. Moreover, setting $M_{\alpha}(j, k)=\alpha(j)$ and $M_{\beta}(j, k)=\beta(k)$ we note that

$$
S_{M_{\alpha}}(A)=\operatorname{diag}(\alpha) \cdot A \quad \text { and } \quad S_{M_{\beta}}(A)=A \cdot \operatorname{diag}(\beta)
$$

Then, recalling that M can be rewritten as

$$
\begin{aligned}
& M(j, k)=M_{r}(k-j, k)=\sum_{\ell} m_{r \ell}(j-k) \beta_{\ell}(k), \\
& M(j, k)=M_{c}(j, j-k)=\sum_{\ell} \alpha_{\ell}(j) m_{c \ell}(j-k),
\end{aligned}
$$

S_{M} is a combination of Fourier and left/right pointwise multipliers...
Schur multipliers are conceivably matrix pseudodifferential operators.

An easy remark

In Z, every Toeplitz symbol $M(j, k)=m(j-k)$ is identified with the Fourier multiplier T_{m} on the torus T. Moreover, setting $M_{\alpha}(j, k)=\alpha(j)$ and $M_{\beta}(j, k)=\beta(k)$ we note that

$$
S_{M_{\alpha}}(A)=\operatorname{diag}(\alpha) \cdot A \quad \text { and } \quad S_{M_{\beta}}(A)=A \cdot \operatorname{diag}(\beta)
$$

Then, recalling that M can be rewritten as

$$
\begin{aligned}
& M(j, k)=M_{r}(k-j, k)=\sum_{\ell} m_{r \ell}(j-k) \beta_{\ell}(k), \\
& M(j, k)=M_{c}(j, j-k)=\sum_{\ell} \alpha_{\ell}(j) m_{c \ell}(j-k),
\end{aligned}
$$

S_{M} is a combination of Fourier and left/right pointwise multipliers...
Schur multipliers are conceivably matrix pseudodifferential operators.
Expected: Regularity conditions in terms of infinitely many mixed $\partial_{x} \partial_{y}$. Main result: Finite many unmixed $\partial_{x}, \partial_{y}+$ Diagonal singularity (Mikael).

Euclidean HMS multipliers

Theorem A

If $1<p<\infty$

$$
\left\|S_{M}: S_{p}\left(\mathbf{R}^{n}\right) \rightarrow S_{p}\left(\mathbf{R}^{n}\right)\right\|_{\mathrm{cb}} \lesssim \frac{p^{2}}{p-1}\|M\|_{\mathrm{HMS}}
$$

$\left||M|\left\|_{\text {HMS }}:=\sum_{|\gamma| \leq\left[\frac{n}{2}\right]+1}\right\|\right| x-\left.y\right|^{|\gamma|}\left\{\left|\partial_{x}^{\gamma} M(x, y)\right|+\left|\partial_{y}^{\gamma} M(x, y)\right|\right\} \|_{\infty}$.

Euclidean HMS multipliers

Theorem A

If $1<p<\infty$

$$
\left\|S_{M}: S_{p}\left(\mathbf{R}^{n}\right) \rightarrow S_{p}\left(\mathbf{R}^{n}\right)\right\|_{\mathrm{cb}} \lesssim \frac{p^{2}}{p-1}\|M\|_{\mathrm{HMS}}
$$

$\left||M|\left\|_{\text {HMS }}:=\sum_{|\gamma| \leq\left[\frac{n}{2}\right]+1}\right\|\right| x-\left.y\right|^{|\gamma|}\left\{\left|\partial_{x}^{\gamma} M(x, y)\right|+\left|\partial_{y}^{\gamma} M(x, y)\right|\right\} \|_{\infty}$.

Remark. Theorem A is a strict generalisation of Mikhlin's theorem.

Euclidean HMS multipliers

Theorem A

If $1<p<\infty$

$$
\left\|S_{M}: S_{p}\left(\mathbf{R}^{n}\right) \rightarrow S_{p}\left(\mathbf{R}^{n}\right)\right\|_{\mathrm{cb}} \lesssim \frac{p^{2}}{p-1}\|M\|_{\mathrm{HMS}}
$$

$\left||M|\left\|_{\text {HMS }}:=\sum_{|\gamma| \leq\left[\frac{n}{2}\right]+1}\right\|\right| x-\left.y\right|^{|\gamma|}\left\{\left|\partial_{x}^{\gamma} M(x, y)\right|+\left|\partial_{y}^{\gamma} M(x, y)\right|\right\} \|_{\infty}$.

Remark. Theorem A is a strict generalisation of Mikhlin's theorem.

More general statements:

\star Replace \mathbf{R}^{n} by G.
\star Replace $[n / 2]+1$ by $n / 2+\varepsilon$.
\star Replace $|\xi|$ by anisotropic metrics.

Euclidean HMS multipliers

NonToeplitz Hörmander-Mikhlin-Schur multipliers in $\mathbf{R} \times \mathbf{R}$
Any Toeplitz symbol would be forced to be constant at $x=y+\alpha$ for all $\alpha \in \mathbf{R}$, unlike above

Applications Matrix algebras

1. Less regularity near L_{2}

Define

$$
|M|_{q \sigma}:=\sup _{\substack{j \in \mathbf{Z} \\ x, y \in \mathbf{R}^{n}}}\left\|\psi(\cdot-y) M\left(2^{j} \cdot, 2^{j} y\right)\right\|_{W_{q \sigma}}+\left\|\psi(x-\cdot) M\left(2^{j} x, 2^{j} \cdot\right)\right\|_{W_{q \sigma}} .
$$

1. Less regularity near L_{2}

Define

$$
|M|_{q \sigma}:=\sup _{\substack{j \in \mathbf{Z} \\ x, y \in \mathbf{R}^{n}}}\left\|\psi(\cdot-y) M\left(2^{j} \cdot, 2^{j} y\right)\right\|_{W_{q \sigma}}+\left\|\psi(x-\cdot) M\left(2^{j} x, 2^{j} \cdot\right)\right\|_{W_{q \sigma}} .
$$

Corollary A1 (HMS p-conditions)

$$
\begin{aligned}
& \text { If }|1 / p-1 / 2|<\delta / n \text { and } n / q<\delta<n / 2 \\
& \qquad\left\|S_{M}: S_{p}\left(\mathbf{R}^{n}\right) \rightarrow S_{p}\left(\mathbf{R}^{n}\right)\right\|_{\mathrm{cb}} \leq C_{p}|M|_{q \delta}
\end{aligned}
$$

This is a Schur multiplier extension of the Calderón-Torchinsky theorem.

2. On α-divided differences

Corollary A2 (Arazy's conjecture)
If $M(x, y)=(f(x)-f(y)) /(x-y)$ for $x \neq y$, then

$$
\left\|S_{M}: S_{p}(\mathbf{R}) \rightarrow S_{p}(\mathbf{R})\right\|_{\mathrm{cb}} \leq C \frac{p^{2}}{p-1}\|f\|_{\mathrm{Lip}} \quad \text { for } \quad 1<p<\infty
$$

Immediate! Potapov/Sukochev confirmed it in 2011 (sophisticated).

2. On α-divided differences

Corollary A2 (Arazy's conjecture)
If $M(x, y)=(f(x)-f(y)) /(x-y)$ for $x \neq y$, then

$$
\left\|S_{M}: S_{p}(\mathbf{R}) \rightarrow S_{p}(\mathbf{R})\right\|_{\mathrm{cb}} \leq C \frac{p^{2}}{p-1}\|f\|_{\text {Lip }} \quad \text { for } \quad 1<p<\infty
$$

Immediate! Potapov/Sukochev confirmed it in 2011 (sophisticated).
If $0<\alpha<1$, set
$M_{\alpha f}(x, y)=\frac{f(x)-f(y)}{|x-y|^{\alpha}} \quad$ for $\quad f: \mathbf{R} \rightarrow \mathbf{C} \quad \alpha$-Hölder \quad and $\quad x \neq y$.

2. On α-divided differences

Corollary A2 (Arazy's conjecture)
If $M(x, y)=(f(x)-f(y)) /(x-y)$ for $x \neq y$, then

$$
\left\|S_{M}: S_{p}(\mathbf{R}) \rightarrow S_{p}(\mathbf{R})\right\|_{\mathrm{cb}} \leq C \frac{p^{2}}{p-1}\|f\|_{\mathrm{Lip}} \quad \text { for } \quad 1<p<\infty
$$

Immediate! Potapov/Sukochev confirmed it in 2011 (sophisticated).
If $0<\alpha<1$, set

$$
M_{\alpha f}(x, y)=\frac{f(x)-f(y)}{|x-y|^{\alpha}} \quad \text { for } \quad f: \mathbf{R} \rightarrow \mathbf{C} \quad \alpha \text {-Hölder } \quad \text { and } \quad x \neq y .
$$

Corollary A2+ (Beyond Arazy's conjecture)
If $|1 / p-1 / 2|<\min \{\alpha, 1 / 2\}$, then

$$
\left\|S_{M_{\alpha f}}: S_{p}(\mathbf{R}) \rightarrow S_{p}(\mathbf{R})\right\|_{\mathrm{cb}} \leq C_{p}\|f\|_{\Lambda_{\alpha}} .
$$

We get complete S_{p}-boundedness for $1<p<\infty$ as long as $\alpha \geq 1 / 2$.

3. Matrix LP partitions

Let $\Psi: \mathbf{R}^{n} \times \mathbf{R}^{n} \rightarrow \mathbf{R}_{+}$be smooth st:
a) $\sum_{j \in \mathbf{Z}} \Psi_{j}=1$ a.e. with $\Psi_{j}(x, y)=\Psi\left(2^{j} x, 2^{j} y\right)$.
b) The supports of $\left\{\Psi_{j}: j \in \mathbf{Z}\right\}$ have finite overlapping.

3. Matrix LP partitions

Let $\Psi: \mathbf{R}^{n} \times \mathbf{R}^{n} \rightarrow \mathbf{R}_{+}$be smooth st:
a) $\sum_{j \in \mathbf{Z}} \Psi_{j}=1$ a.e. with $\Psi_{j}(x, y)=\Psi\left(2^{j} x, 2^{j} y\right)$.
b) The supports of $\left\{\Psi_{j}: j \in \mathbf{Z}\right\}$ have finite overlapping.

Corollary A3 (Matrix LP theorem)

Let $1<p<\infty$:
i) If $p \leq 2$

$$
\|A\|_{S_{p}} \asymp_{\mathrm{cb}} \inf _{S_{\Psi_{j}}(A)=A_{j}+B_{j}}\left\|\left(\sum_{j \in \mathbf{Z}} A_{j} A_{j}^{*}+B_{j}^{*} B_{j}\right)^{\frac{1}{2}}\right\|_{S_{p}}
$$

ii) If $p \geq 2$

$$
\|A\|_{S_{p}} \asymp \mathrm{cb}\left\|\left(\sum_{j \in \mathbf{Z}} S_{\Psi_{j}}(A) S_{\Psi_{j}}(A)^{*}+S_{\Psi_{j}}(A)^{*} S_{\Psi_{j}}(A)\right)^{\frac{1}{2}}\right\|_{S_{p}}
$$

NonToeplitz example - Pick radial $\Psi_{j}(x, y)=\psi_{j}\left[\left(|x|^{2}+|y|^{2}\right)^{\frac{1}{2}}\right]$.

4. Other applications

Corollary A4 (A discrete formulation)

If $\Delta \varphi(k):=\varphi(k+1)-\varphi(k)$ and $1<p<\infty$

$$
\left\|S_{M}: S_{p}(\mathbf{Z}) \rightarrow S_{p}(\mathbf{Z})\right\|_{\mathrm{cb}} \lesssim \frac{p^{2}}{p-1}\|M \mid\|_{\mathrm{HMS}_{\Delta}}
$$

$\left|\left||M| \|_{\mathrm{HMS}_{\Delta}}=\left(\|M\|_{\infty}+\sup _{j, k \in \mathbf{Z}}|j-k|\left\{\left|\Delta_{k} M(j, k)\right|+\left|\Delta_{j} M(j, k)\right|\right\}\right)\right.\right.$.

4. Other applications

Corollary A4 (A discrete formulation)

If $\Delta \varphi(k):=\varphi(k+1)-\varphi(k)$ and $1<p<\infty$

$$
\begin{gathered}
\left\|S_{M}: S_{p}(\mathbf{Z}) \rightarrow S_{p}(\mathbf{Z})\right\|_{\mathrm{cb}} \lesssim \frac{p^{2}}{p-1}\left|\|M \mid\|_{\mathrm{HMS}_{\Delta}}\right. \\
\mid\|M\| \|_{\mathrm{HMS}_{\Delta}}=\left(\|M\|_{\infty}+\sup _{j, k \in \mathbf{Z}}|j-k|\left\{\left|\Delta_{k} M(j, k)\right|+\left|\Delta_{j} M(j, k)\right|\right\}\right) .
\end{gathered}
$$

Corollary A5 (Herz-Schur multipliers)

$$
\begin{aligned}
& \text { If } m(g)=\widetilde{m}(\beta(g))=m^{\prime}\left(\beta\left(g^{-1}\right)\right) \text { and } M(g, h)=m\left(g h^{-1}\right) \\
& \qquad \begin{aligned}
\| S_{M}: & S_{p}(\mathrm{G}) \rightarrow S_{p}(\mathrm{G}) \|_{\mathrm{cb}} \\
& \lesssim_{p} \sup _{g \in \mathrm{G}} \sum_{|\gamma| \leq\left[\frac{n}{2}\right]+1}\left\||\xi|^{|\gamma|}\left\{\left|\partial_{\xi}^{\gamma}\left(\widetilde{m} \circ \alpha_{g}\right)(\xi)\right|+\left|\partial_{\xi}^{\gamma}\left(m^{\prime} \circ \alpha_{g}\right)(\xi)\right|\right\}\right\|_{\infty} .
\end{aligned}
\end{aligned}
$$

This mostly recovers the work of Junge/Mei/P in group vN algebras.

Back to Fourier multipliers Lie group algebras

A local HM theorem

Cocycle approach [JMP]:

* Finite-dimensional orthogonal cocycles.
\star Auxiliary differential structures less natural for Lie groups.

A local HM theorem

Cocycle approach [JMP]:

* Finite-dimensional orthogonal cocycles.
\star Auxiliary differential structures less natural for Lie groups.
A new approach for Lie groups [PRdIS]:
\star Local Mikhlin conditions for Lie derivatives in $S L_{n}(\mathbf{R})$.
\star Assymptotics apparently came dictated by rigidity phenomena.
\star These new techniques are not so efficient for other Lie groups.

A local HM theorem

Cocycle approach [JMP]:

* Finite-dimensional orthogonal cocycles.
* Auxiliary differential structures less natural for Lie groups.

A new approach for Lie groups [PRdIS]:

\star Local Mikhlin conditions for Lie derivatives in $S L_{n}(\mathbf{R})$.
\star Assymptotics apparently came dictated by rigidity phenomena.
\star These new techniques are not so efficient for other Lie groups.

Theorem C1 (Local HM criterion)

Let G be a n-dimensional unimodular Lie group with its Riemannian metric $L_{\mathrm{R}}: \mathrm{G} \times \mathrm{G} \rightarrow \mathbf{R}_{+}$. Let $1<p<\infty$ and let $m: \mathrm{G} \rightarrow \mathbf{C}$ be a Fourier symbol supported by a sufficiently small neighborhood of the identity. Then, the following inequality holds

$$
\left\|T_{m}\right\|_{\operatorname{cb}\left(L_{p}(v N(\mathrm{G}))\right)} \lesssim \frac{p^{2}}{p-1} \sum_{|\gamma| \leq\left[\frac{n}{2}\right]+1}\left\|L_{\mathrm{R}}(g, e)^{|\gamma|} d_{g}^{\gamma} m(g)\right\|_{\infty}
$$

Stratified Lie groups

Theorem C2 (HM for stratified Lie groups)

Let G be a n-dimensional stratified Lie group. Let $L_{\mathrm{SR}}: \mathrm{G} \times \mathrm{G} \rightarrow \mathbf{R}_{+}$ be the subRiemannian metric wrt its homogeneous dilation. Then, the following inequality holds for any $m: \mathrm{G} \rightarrow \mathbf{C}$ and $1<p<\infty$

$$
\left\|T_{m}\right\|_{\mathrm{cb}\left(L_{p}(v N(\mathrm{G}))\right)} \lesssim \frac{p^{2}}{p-1} \sum_{|\gamma| \leq\left[\frac{n}{2}\right]+1}\left\|L_{\mathrm{SR}}(g, e)^{\{\gamma\}} d_{g}^{\gamma} m(g)\right\|_{\infty}
$$

Stratified Lie groups

Theorem C2 (HM for stratified Lie groups)

Let G be a n-dimensional stratified Lie group. Let $L_{\mathrm{SR}}: \mathrm{G} \times \mathrm{G} \rightarrow \mathbf{R}_{+}$ be the subRiemannian metric wrt its homogeneous dilation. Then, the following inequality holds for any $m: \mathrm{G} \rightarrow \mathbf{C}$ and $1<p<\infty$

$$
\left\|T_{m}\right\|_{\mathrm{cb}\left(L_{p}(v N(\mathrm{G}))\right)} \lesssim \frac{p^{2}}{p-1} \sum_{|\gamma| \leq\left[\frac{n}{2}\right]+1}\left\|L_{\mathrm{SR}}(g, e)^{\{\gamma\}} d_{g}^{\gamma} m(g)\right\|_{\infty}
$$

* Christ, Cowling, Martini, Müller, Ricci, Stein...

Dual problem / Spectral multipliers = Functional calculus subLaplacian \star The canonical semigroup in the group vN algebra not even Markovian

Stratified Lie groups

Theorem C2 (HM for stratified Lie groups)

Let G be a n-dimensional stratified Lie group. Let $L_{\mathrm{SR}}: \mathrm{G} \times \mathrm{G} \rightarrow \mathbf{R}_{+}$ be the subRiemannian metric wrt its homogeneous dilation. Then, the following inequality holds for any $m: \mathrm{G} \rightarrow \mathbf{C}$ and $1<p<\infty$

$$
\left\|T_{m}\right\|_{\mathrm{cb}\left(L_{p}(v N(\mathrm{G}))\right)} \lesssim \frac{p^{2}}{p-1} \sum_{|\gamma| \leq\left[\frac{n}{2}\right]+1}\left\|L_{\mathrm{SR}}(g, e)^{\{\gamma\}} d_{g}^{\gamma} m(g)\right\|_{\infty}
$$

^ Christ, Cowling, Martini, Müller, Ricci, Stein...
Dual problem / Spectral multipliers = Functional calculus subLaplacian \star The canonical semigroup in the group vN algebra not even Markovian Stratified Mikhlin condition for all Fourier multipliers:

$$
\{\gamma\}=\sum_{k=1}^{n} \ell_{k}\left|\left\{s: j_{s}=k\right\}\right|=\sum_{s=1}^{|\gamma|} \ell_{j_{s}} .
$$

(A derivative in the k-th stratum is dealt with as a k-th order derivative)

Stratified Lie groups

Theorem C2 (HM for stratified Lie groups)

Let G be a n-dimensional stratified Lie group. Let $L_{\mathrm{SR}}: \mathrm{G} \times \mathrm{G} \rightarrow \mathbf{R}_{+}$ be the subRiemannian metric wrt its homogeneous dilation. Then, the following inequality holds for any $m: \mathrm{G} \rightarrow \mathbf{C}$ and $1<p<\infty$

$$
\left\|T_{m}\right\|_{\mathrm{cb}\left(L_{p}(v N(\mathrm{G}))\right)} \lesssim \frac{p^{2}}{p-1} \sum_{|\gamma| \leq\left[\frac{n}{2}\right]+1}\left\|L_{\mathrm{SR}}(g, e)^{\{\gamma\}} d_{g}^{\gamma} m(g)\right\|_{\infty}
$$

\star We use top-dimension \leq hom-dimension of the group!

* Regularity: Not weaker nor stronger than dual/spectral approach.

Stratified Lie groups

Theorem C2 (HM for stratified Lie groups)

Let G be a n-dimensional stratified Lie group. Let $L_{\mathrm{SR}}: \mathrm{G} \times \mathrm{G} \rightarrow \mathbf{R}_{+}$ be the subRiemannian metric wrt its homogeneous dilation. Then, the following inequality holds for any $m: \mathrm{G} \rightarrow \mathbf{C}$ and $1<p<\infty$

$$
\left\|T_{m}\right\|_{\mathrm{cb}\left(L_{p}(v N(\mathrm{G}))\right)} \lesssim \frac{p^{2}}{p-1} \sum_{|\gamma| \leq\left[\frac{n}{2}\right]+1}\left\|L_{\mathrm{SR}}(g, e)^{\{\gamma\}} d_{g}^{\gamma} m(g)\right\|_{\infty}
$$

\star We use top-dimension \leq hom-dimension of the group!
\star Regularity: Not weaker nor stronger than dual/spectral approach.
\star Thm C2 gives new forms of noncommutative Riesz transforms.

High rank simple Lie groups

Theorem C3 (HM for high rank simple Lie groups)
Let G be a n-dimensional simple Lie group with $n \geq 2 / \tau_{\mathrm{G}}$. Then, the following inequality holds for any $m: \mathrm{G} \rightarrow \mathbf{C}$ and every $1<p<\infty$

$$
\left\|T_{m}\right\|_{\mathrm{cb}\left(L_{p}(v N(\mathrm{G}))\right)} \lesssim C_{p} \sum_{|\gamma| \leq\left[\frac{n}{2}\right]+1}\left\|L_{\mathrm{G}}(g)^{|\gamma|} d_{g}^{\gamma} m(g)\right\|_{\infty}
$$

High rank simple Lie groups

Theorem C3 (HM for high rank simple Lie groups)
Let G be a n-dimensional simple Lie group with $n \geq 2 / \tau_{\mathrm{G}}$. Then, the following inequality holds for any $m: \mathrm{G} \rightarrow \mathbf{C}$ and every $1<p<\infty$

$$
\left\|T_{m}\right\|_{\operatorname{cb}\left(L_{p}(v N(\mathrm{G}))\right)} \lesssim C_{p} \sum_{|\gamma| \leq\left[\frac{n}{2}\right]+1}\left\|L_{\mathrm{G}}(g)^{|\gamma|} d_{g}^{\gamma} m(g)\right\|_{\infty}
$$

* Volume growth of Ad-balls

$$
\text { Maucourant '07: } \quad \mu\left(\left\{g \in \mathrm{G}:\left\|\operatorname{Ad}_{g}\right\| \leq R\right\}\right) \sim_{\log R} R^{\mathrm{d}_{\mathrm{G}}}
$$

\star We introduce the parameter $\tau_{\mathrm{G}}:=\mathrm{d}_{\mathrm{G}} /[(n+1) / 2]$ for $n=\operatorname{dim} \mathrm{G}$.

High rank simple Lie groups

Theorem C3 (HM for high rank simple Lie groups)
Let G be a n-dimensional simple Lie group with $n \geq 2 / \tau_{\mathrm{G}}$. Then, the following inequality holds for any $m: \mathrm{G} \rightarrow \mathbf{C}$ and every $1<p<\infty$

$$
\left\|T_{m}\right\|_{\operatorname{cb}\left(L_{p}(v N(\mathrm{G}))\right)} \lesssim C_{p} \sum_{|\gamma| \leq\left[\frac{n}{2}\right]+1}\left\|L_{\mathrm{G}}(g)^{|\gamma|} d_{g}^{\gamma} m(g)\right\|_{\infty}
$$

* Volume growth of Ad-balls

$$
\text { Maucourant '07: } \quad \mu\left(\left\{g \in \mathrm{G}:\left\|\operatorname{Ad}_{g}\right\| \leq R\right\}\right) \sim_{\log R} R^{\mathrm{d}_{\mathrm{G}}}
$$

\star We introduce the parameter $\tau_{\mathrm{G}}:=\mathrm{d}_{\mathrm{G}} /[(n+1) / 2]$ for $n=\operatorname{dim} \mathrm{G}$.
\star Then, the weight L_{G} is locally Euclidean and

$$
L_{\mathrm{G}}(g) \approx\left\|\operatorname{Ad}_{g}\right\|^{\tau_{\mathrm{G}}} \quad \text { assymptotically }
$$

$\star \tau_{S L_{n}(\mathbf{R})}=\frac{1}{2} \Rightarrow$ Thm C3 improves and generalizes [PRS] for $S L_{n}(\mathbf{R})$.

A new inequality for Schur multipliers

Thank you!!

Sketch of proof - Theorem A

\star The case $p=2$ is trivial.

* By duality and interpolation, it suffices to prove

$$
\| S_{M}: S_{\infty}\left(\mathbf{R}^{n}\right) \rightarrow \text { Matrix- } \mathrm{BMO}\left\|_{\mathrm{cb}} \lesssim\right\|\|M\|_{\mathrm{HMS}}
$$

Sketch of proof - Theorem A

\star The case $p=2$ is trivial.

* By duality and interpolation, it suffices to prove

$$
\| S_{M}: S_{\infty}\left(\mathbf{R}^{n}\right) \rightarrow \text { Matrix- } \mathrm{BMO}\left\|_{\mathrm{cb}} \lesssim\right\|\|M \mid\|_{\mathrm{HMS}}
$$

Canonical BMO compared to [Junge-Mei] + Anisotropic extension.

Sketch of proof - Theorem A

\star The case $p=2$ is trivial.

* By duality and interpolation, it suffices to prove

$$
\| S_{M}: S_{\infty}\left(\mathbf{R}^{n}\right) \rightarrow \text { Matrix- } \mathrm{BMO}\left\|_{\mathrm{cb}} \lesssim\right\|\|M\|_{\mathrm{HMS}}
$$

Canonical BMO compared to [Junge-Mei] + Anisotropic extension.
\star Key novelty: Define M_{r} and M_{c} by

$$
M_{r}(x, y)=M(y-x, y) \quad \text { and } \quad M_{c}(x, y)=M(x, x-y)
$$

Sketch of proof - Theorem A

\star The case $p=2$ is trivial.

* By duality and interpolation, it suffices to prove

$$
\| S_{M}: S_{\infty}\left(\mathbf{R}^{n}\right) \rightarrow \text { Matrix- } \mathrm{BMO}\left\|_{\mathrm{cb}} \lesssim\right\|\|M\|_{\mathrm{HMS}}
$$

Canonical BMO compared to [Junge-Mei] + Anisotropic extension.
\star Key novelty: Define M_{r} and M_{c} by

$$
M_{r}(x, y)=M(y-x, y) \quad \text { and } \quad M_{c}(x, y)=M(x, x-y) .
$$

Now consider the twisted Fourier multipliers

$$
\widetilde{T}_{M_{r}}(f)=\left(T_{M_{r}(\cdot, y)}\left(f_{x y}\right)\right) \quad \text { and } \quad \widetilde{T}_{M_{c}}(f)=\left(T_{M_{c}(x, \cdot)}\left(f_{x y}\right)\right)
$$

Sketch of proof - Theorem A

\star The case $p=2$ is trivial.

* By duality and interpolation, it suffices to prove

$$
\| S_{M}: S_{\infty}\left(\mathbf{R}^{n}\right) \rightarrow \text { Matrix- } \mathrm{BMO}\left\|_{\mathrm{cb}} \lesssim\right\|\|M\|_{\mathrm{HMS}} .
$$

Canonical BMO compared to [Junge-Mei] + Anisotropic extension.
\star Key novelty: Define M_{r} and M_{c} by

$$
M_{r}(x, y)=M(y-x, y) \quad \text { and } \quad M_{c}(x, y)=M(x, x-y) .
$$

Now consider the twisted Fourier multipliers

$$
\widetilde{T}_{M_{r}}(f)=\left(T_{M_{r}(\cdot, y)}\left(f_{x y}\right)\right) \quad \text { and } \quad \widetilde{T}_{M_{c}}(f)=\left(T_{M_{c}(x, \cdot)}\left(f_{x y}\right)\right)
$$

We control S_{M} by both (not just one) twisted multipliers

$$
\begin{aligned}
&\left\|S_{M}: S_{\infty} \rightarrow \mathrm{BMO}_{r}\right\|_{\mathrm{cb}} \leq\left\|\widetilde{T}_{M_{r}}: L_{\infty}(\mathcal{R}) \rightarrow \mathrm{BMO}_{\mathcal{R}}^{r}\right\|_{\mathrm{cb}} \\
&\left\|S_{M}: S_{\infty} \rightarrow \mathrm{BMO}_{c}\right\|_{\mathrm{cb}} \leq\left\|\widetilde{T}_{M_{c}}: L_{\infty}(\mathcal{R}) \rightarrow \mathrm{BMO}_{\mathcal{R}}^{c}\right\|_{\mathrm{cb}}
\end{aligned}
$$

Sketch of proof - Theorem A

\star The case $p=2$ is trivial.

* By duality and interpolation, it suffices to prove

$$
\| S_{M}: S_{\infty}\left(\mathbf{R}^{n}\right) \rightarrow \text { Matrix- } \mathrm{BMO}\left\|_{\mathrm{cb}} \lesssim\right\|\|M\|_{\mathrm{HMS}}
$$

Canonical BMO compared to [Junge-Mei] + Anisotropic extension.
\star Key novelty: Define M_{r} and M_{c} by

$$
M_{r}(x, y)=M(y-x, y) \quad \text { and } \quad M_{c}(x, y)=M(x, x-y) .
$$

Now consider the twisted Fourier multipliers

$$
\widetilde{T}_{M_{r}}(f)=\left(T_{M_{r}(\cdot, y)}\left(f_{x y}\right)\right) \quad \text { and } \quad \widetilde{T}_{M_{c}}(f)=\left(T_{M_{c}(x, \cdot)}\left(f_{x y}\right)\right)
$$

We control S_{M} by both (not just one) twisted multipliers

$$
\begin{aligned}
\left\|S_{M}: S_{\infty} \rightarrow \mathrm{BMO}_{r}\right\|_{\mathrm{cb}} & \leq\left\|\widetilde{T}_{M_{r}}: L_{\infty}(\mathcal{R}) \rightarrow \mathrm{BMO}_{\mathcal{R}}^{r}\right\|_{\mathrm{cb}}, \\
\left\|S_{M}: S_{\infty} \rightarrow \mathrm{BMO}_{c}\right\|_{\mathrm{cb}} & \leq\left\|\widetilde{T}_{M_{c}}: L_{\infty}(\mathcal{R}) \rightarrow \mathrm{BMO}_{\mathcal{R}}^{c}\right\|_{\mathrm{cb}}
\end{aligned}
$$

New NCCZ ideas: RHS $\leq\left|\left||M| \|_{\text {HMS }}\right.\right.$ (Noncommuting CZ kernels!).

