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Introduction
Fourier and Schur multipliers



Hörmander-Mikhlin multipliers

Given m : Rn → C, let

Tmf =
(
mf̂

)∨
= m∨ ∗ f.

A central problem in harmonic analysis:

Given 1 ≤ p ≤ ∞, for which m’s is Tm Lp-bounded?

(Well-understood: p = 1, 2,∞ / The general problem is out of reach)

Hörmander-Mikhlin theorem (1956/1960)

If 1 < p <∞∥∥Tm : Lp(R
n)→ Lp(R

n)
∥∥ ≤ Cp

∑
|γ|≤[n

2
]+1

∥∥∥|ξ||γ|∣∣∂γξm(ξ)
∣∣∥∥∥
∞
.

? Locally: Key/optimal singularity at 0  Asymptotic behavior.
? HM up to order (n−1)/2: Necessary for radial multipliers and p <∞!
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Fourier multipliers: Group algebras

Let (G, µ) be a unimodular group with

λ : G→ U(L2(G, µ)) given by
[
λ(g)ϕ

]
(h) = ϕ(g−1h).

Define its group von Neumann algebra as follows

vN(G) := span
{
f =

∫
G
f̂(g)λ(g) dµ(g) : f̂ ∈ Cc(G)

}w

⊂ B(L2(G, µ)).

If e is the unit in G, the Haar trace τ is then determined by τ(f) = f̂(e).

Given m : G→ C, its Fourier multiplier is the map

T̂mf(g) = τ(Tmfλ(g)∗) = m(g)τ(fλ(g)∗) = m(g)f̂(g).

? Pioneering work of Haagerup ’79 + coauthors.

? Lp-theory: Very strong efforts in the last 10 years
Lafforgue-de la Salle, Junge-Mei-P, Mei-Ricard, P-Ricard-de la Salle...

? Approximation properties ≈ Fourier Lp-summability
Geometric group theory + Group vNa classification theory
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Herz-Schur multipliers: Matrix algebras

The relation between Fourier and Schur multipliers plays a key role...

Given m : G→ C, its Herz-Schur multiplier is

Sm(A) =
(
m(gh−1)Agh

)
.

Let
Sp(G) = Schatten p-class over L2(G) ‖A‖p = tr(|A|p)

1
p ,

Lp(vN(G)) = NC Lp-space over (vN(G), τ) ‖f‖p = τ(|f |p)
1
p .

Fourier-Schur transference [Neuwirth/Ricard + Caspers/de la Salle]

If 1 ≤ p ≤ ∞ and G is amenable∥∥Sm : Sp(G)→ Sp(G)
∥∥

cb
=
∥∥Tm : Lp(vN(G))→ Lp(vN(G))

∥∥
cb
.

Moreover, the upper bound holds for nonamenable l.c. groups as well.
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A reformulation of the HM Theorem

Combining FS transference with HM theorem

∥∥Sm : Sp(R
n)→ Sp(R

n)
∥∥

cb
.

p2

p− 1

∑
|γ|≤[n

2
]+1

∥∥∥|ξ||γ|∣∣∂γξm(ξ)
∣∣∥∥∥
∞︸ ︷︷ ︸

(HMS)

.

m is constant on secondary diagonals
and admits a singularity in the main diagonal



NonToeplitz Schur multipliers

Arbitrary Schur multipliers in Rn  M(x, y) 6= m(x− y)...

The Grothendieck-Haagerup characterization

SM is bounded on B(L2(X)) iff SM is cb-bounded iff there exists a
Hilbert space K and uniformly bounded families (ux) and (wy) in K
satisfying the identity

M(x, y) = 〈ux, wy〉K for all x, y ∈ X.

Rather limited literature regarding Lp-boundedness (1< p <∞):

? The Arazy conjecture = Submatrices of

M(x, y) =
f(x)− f(y)

x− y
for f ∈ Lip(R).

Conjectured by Arazy ’82 and solved by Potapov/Sukochev ’11.

? Marcinkiewicz type conditions: Bded variation columns/rows.

? Unconditionality in Sp and matrix Λ(p)-sets: Harcharras ’99.
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Mikael de la Salle’s problem

During the École d’automne “Fourier Multipliers on Group Algebras” at
Besançon (2019), Mikael de la Salle formulated the problem below (also
at UCLA Functional Analysis Seminar in 2020):

M. de la Salle’s question. Let M : Rn×Rn → C be smooth outside
the diagonal, with compact support for simplicity. Is there a controlled
explosion on the diagonal which gives SM : Sp → Sp for 1 < p <∞?

This conjecture for (nonToeplitz) multipliers is beyond FS transference.



The main result
Hörmander-Mikhlin-Schur multipliers



An easy remark

In Z, every Toeplitz symbol M(j, k) = m(j − k) is identified with the
Fourier multiplier Tm on the torus T. Moreover, setting Mα(j, k)=α(j)
and Mβ(j, k) = β(k) we note that

SMα(A) = diag(α) ·A and SMβ
(A) = A · diag(β).

Then, recalling that M can be rewritten as

M(j, k) = Mr(k − j, k) =
∑

`
mr`(j − k)β`(k),

M(j, k) = Mc (j, j − k) =
∑

`
α`(j)mc`(j − k),

SM is a combination of Fourier and left/right pointwise multipliers...

Schur multipliers are conceivably matrix pseudodifferential operators.

Expected: Regularity conditions in terms of infinitely many mixed ∂x∂y.

Main result: Finite many unmixed ∂x,∂y + Diagonal singularity (Mikael).
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Euclidean HMS multipliers

Theorem A

If 1 < p <∞∥∥SM : Sp(R
n)→ Sp(R

n)
∥∥

cb
.

p2

p− 1

∣∣∣∣∣∣M ∣∣∣∣∣∣
HMS

,

|||M |||HMS :=
∑

|γ|≤[n
2

]+1

∥∥∥|x− y||γ|{∣∣∂γxM(x, y)
∣∣+
∣∣∂γyM(x, y)

∣∣}∥∥∥
∞
.

Remark. Theorem A is a strict generalisation of Mikhlin’s theorem.

More general statements:

? Replace Rn by G.
? Replace [n/2] + 1 by n/2 + ε.
? Replace |ξ| by anisotropic metrics.
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Euclidean HMS multipliers

NonToeplitz Hörmander-Mikhlin-Schur multipliers in R×R

Any Toeplitz symbol would be forced to be constant at x = y+α for all α ∈ R, unlike above



Applications
Matrix algebras



1. Less regularity near L2

DefineMqσ := sup
j∈Z

x,y∈Rn

∥∥ψ(· − y)M(2j ·, 2jy)
∥∥
Wqσ

+
∥∥ψ(x− ·)M(2jx, 2j ·)

∥∥
Wqσ

.

Corollary A1 (HMS p-conditions)

If
∣∣1/p− 1/2

∣∣ < δ/n and n/q < δ < n/2∥∥SM : Sp(R
n)→ Sp(R

n)
∥∥

cb
≤ Cp

Mqδ.
This is a Schur multiplier extension of the Calderón-Torchinsky theorem.
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2. On α-divided differences

Corollary A2 (Arazy’s conjecture)

If M(x, y) =
(
f(x)− f(y)

)/
(x− y) for x 6= y, then∥∥SM : Sp(R)→ Sp(R)

∥∥
cb
≤ C

p2

p− 1
‖f‖Lip for 1 < p <∞.

Immediate! Potapov/Sukochev confirmed it in 2011 (sophisticated).

If 0 < α < 1, set

Mαf (x, y) =
f(x)− f(y)

|x− y|α
for f : R→ C α-Hölder and x 6= y.

Corollary A2+ (Beyond Arazy’s conjecture)

If |1/p− 1/2| < min{α, 1/2}, then∥∥SMαf
: Sp(R)→ Sp(R)

∥∥
cb
≤ Cp‖f‖Λα .

We get complete Sp-boundedness for 1 < p <∞ as long as α ≥ 1/2.
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3. Matrix LP partitions

Let Ψ : Rn ×Rn → R+ be smooth st:

a)
∑
j∈Z

Ψj = 1 a.e. with Ψj(x, y) = Ψ(2jx, 2jy).

b) The supports of
{

Ψj : j ∈ Z
}

have finite overlapping.

Corollary A3 (Matrix LP theorem)

Let 1 < p <∞ :

i) If p ≤ 2

‖A‖Sp �cb inf
SΨj

(A)=Aj+Bj

∥∥∥(∑
j∈Z

AjA
∗
j +B∗jBj

) 1
2
∥∥∥
Sp
.

ii) If p ≥ 2

‖A‖Sp �cb

∥∥∥(∑
j∈Z

SΨj (A)SΨj (A)∗ + SΨj (A)∗SΨj (A)
) 1

2
∥∥∥
Sp
.

NonToeplitz example — Pick radial Ψj(x, y) = ψj
[(
|x|2 + |y|2

) 1
2
]
.
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4. Other applications

Corollary A4 (A discrete formulation)

If ∆ϕ(k) := ϕ(k + 1)− ϕ(k) and 1 < p <∞∥∥SM : Sp(Z)→ Sp(Z)
∥∥

cb
.

p2

p− 1
|||M |||HMS∆

,

|||M |||HMS∆
=
(
‖M‖∞+ sup

j,k∈Z
|j−k|

{∣∣∆kM(j, k)
∣∣+ ∣∣∆jM(j, k)

∣∣}).

Corollary A5 (Herz-Schur multipliers)

If m(g) = m̃(β(g)) = m′(β(g−1)) and M(g, h) = m(gh−1)∥∥SM : Sp(G)→ Sp(G)
∥∥

cb

.p sup
g∈G

∑
|γ|≤[n

2
]+1

∥∥∥|ξ||γ|{∣∣∂γξ (m̃◦αg)(ξ)
∣∣+∣∣∂γξ (m′◦αg)(ξ)

∣∣}∥∥∥
∞
.

This mostly recovers the work of Junge/Mei/P in group vN algebras.
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If ∆ϕ(k) := ϕ(k + 1)− ϕ(k) and 1 < p <∞∥∥SM : Sp(Z)→ Sp(Z)
∥∥

cb
.

p2

p− 1
|||M |||HMS∆

,

|||M |||HMS∆
=
(
‖M‖∞+ sup

j,k∈Z
|j−k|

{∣∣∆kM(j, k)
∣∣+ ∣∣∆jM(j, k)

∣∣}).

Corollary A5 (Herz-Schur multipliers)

If m(g) = m̃(β(g)) = m′(β(g−1)) and M(g, h) = m(gh−1)∥∥SM : Sp(G)→ Sp(G)
∥∥

cb

.p sup
g∈G

∑
|γ|≤[n

2
]+1

∥∥∥|ξ||γ|{∣∣∂γξ (m̃◦αg)(ξ)
∣∣+∣∣∂γξ (m′◦αg)(ξ)

∣∣}∥∥∥
∞
.

This mostly recovers the work of Junge/Mei/P in group vN algebras.



Back to Fourier multipliers
Lie group algebras



A local HM theorem

Cocycle approach [JMP]:
? Finite-dimensional orthogonal cocycles.
? Auxiliary differential structures less natural for Lie groups.

A new approach for Lie groups [PRdlS]:
? Local Mikhlin conditions for Lie derivatives in SLn(R).
? Assymptotics apparently came dictated by rigidity phenomena.
? These new techniques are not so efficient for other Lie groups.

Theorem C1 (Local HM criterion)

Let G be a n-dimensional unimodular Lie group with its Riemannian
metric LR : G×G→ R+. Let 1 < p <∞ and let m : G→ C be a
Fourier symbol supported by a sufficiently small neighborhood of the
identity. Then, the following inequality holds∥∥Tm∥∥cb(Lp(vN(G)))

.
p2

p− 1

∑
|γ|≤[n

2
]+1

∥∥LR(g, e)|γ|dγgm(g)
∥∥
∞.
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Stratified Lie groups

Theorem C2 (HM for stratified Lie groups)

Let G be a n-dimensional stratified Lie group. Let LSR : G×G→ R+

be the subRiemannian metric wrt its homogeneous dilation. Then, the
following inequality holds for any m : G→ C and 1 < p <∞∥∥Tm∥∥cb(Lp(vN(G)))

.
p2

p− 1

∑
|γ|≤[n

2
]+1

∥∥LSR(g, e){γ}dγgm(g)
∥∥
∞.

? Christ, Cowling, Martini, Müller, Ricci, Stein...
Dual problem / Spectral multipliers = Functional calculus subLaplacian

? The canonical semigroup in the group vN algebra not even Markovian

Stratified Mikhlin condition for all Fourier multipliers:

{γ} =

n∑
k=1

`k|{s : js = k}| =
|γ|∑
s=1

`js .

(A derivative in the k-th stratum is dealt with as a k-th order derivative)
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? We use top-dimension ≤ hom-dimension of the group!

? Regularity: Not weaker nor stronger than dual/spectral approach.

? Thm C2 gives new forms of noncommutative Riesz transforms.
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High rank simple Lie groups

Theorem C3 (HM for high rank simple Lie groups)

Let G be a n-dimensional simple Lie group with n ≥ 2/τG.Then, the
following inequality holds for any m : G→ C and every 1 < p <∞∥∥Tm∥∥cb(Lp(vN(G)))

. Cp
∑

|γ|≤[n
2

]+1

∥∥LG(g)|γ|dγgm(g)
∥∥
∞.

? Volume growth of Ad-balls

Maucourant ′07 : µ
({
g ∈ G : ‖Adg‖ ≤ R

})
∼logR R

dG .

? We introduce the parameter τG := dG/[(n+ 1)/2] for n = dim G.

? Then, the weight LG is locally Euclidean and

LG(g) ≈ ‖Adg‖τG assymptotically.

? τSLn(R) =
1

2
⇒ Thm C3 improves and generalizes [PRS] for SLn(R).
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A new inequality for Schur multipliers

Thank you!!



Sketch of proof – Theorem A

? The case p = 2 is trivial.
? By duality and interpolation, it suffices to prove∥∥SM : S∞(Rn)→ Matrix−BMO

∥∥
cb
. |||M |||HMS.

Canonical BMO compared to [Junge-Mei] + Anisotropic extension.
? Key novelty: Define Mr and Mc by

Mr(x, y) = M(y − x, y) and Mc(x, y) = M(x, x− y).

Now consider the twisted Fourier multipliers

T̃Mr(f) =
(
TMr(·,y)(fxy)

)
and T̃Mc(f) =

(
TMc(x,·)(fxy)

)
.

We control SM by both (not just one) twisted multipliers∥∥SM : S∞ → BMOr

∥∥
cb
≤
∥∥T̃Mr : L∞(R)→ BMOr

R
∥∥

cb
,∥∥SM : S∞ → BMOc

∥∥
cb
≤
∥∥T̃Mc : L∞(R)→ BMOc

R
∥∥

cb
.

New NCCZ ideas: RHS ≤ |||M |||HMS (Noncommuting CZ kernels!).

bla bla bla
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