A $C(K)$-space with few operators

Niels Laustsen
Lancaster University, UK
Banach Algebras and Applications
Granada
$18^{\text {th }}$ July 2022
Joint work with Piotr Koszmider (IMPAN, Warsaw)

- Almost disjoint families: What are they, and why are they useful in the study of Banach spaces and algebras?
- Almost disjoint families: What are they, and why are they useful in the study of Banach spaces and algebras?
- $C(K)$-spaces: Some background.
- Almost disjoint families: What are they, and why are they useful in the study of Banach spaces and algebras?
- $C(K)$-spaces: Some background.
- $C(K)$-spaces with few operators.
- Almost disjoint families: What are they, and why are they useful in the study of Banach spaces and algebras?
- $C(K)$-spaces: Some background.
- $C(K)$-spaces with few operators.
- Some consequences and applications of the main result.
- Almost disjoint families: What are they, and why are they useful in the study of Banach spaces and algebras?
- $C(K)$-spaces: Some background.
- $C(K)$-spaces with few operators.
- Some consequences and applications of the main result.
- The complemented subspace problem for $C(K)$-spaces.
- Almost disjoint families: What are they, and why are they useful in the study of Banach spaces and algebras?
- $C(K)$-spaces: Some background.
- $C(K)$-spaces with few operators.
- Some consequences and applications of the main result.
- The complemented subspace problem for $C(K)$-spaces.

Almost disjoint families

Let $[\mathbb{N}]^{\omega}$ denote the set of infinite subsets of \mathbb{N}.

Almost disjoint families

Let $[\mathbb{N}]^{\omega}$ denote the set of infinite subsets of \mathbb{N}.
Definition. A family $\mathcal{A} \subset[\mathbb{N}]^{\omega}$ is almost disjoint if

$$
|A \cap B|<\infty \quad(A, B \in \mathcal{A}, A \neq B)
$$

Almost disjoint families

Let $[\mathbb{N}]^{\omega}$ denote the set of infinite subsets of \mathbb{N}.
Definition. A family $\mathcal{A} \subset[\mathbb{N}]^{\omega}$ is almost disjoint if

$$
|A \cap B|<\infty \quad(A, B \in \mathcal{A}, A \neq B) .
$$

Key result. (Sierpiński, 1928.) Uncountable almost disjoint families exist!

Almost disjoint families

Let $[\mathbb{N}]^{\omega}$ denote the set of infinite subsets of \mathbb{N}.
Definition. A family $\mathcal{A} \subset[\mathbb{N}]^{\omega}$ is almost disjoint if

$$
|A \cap B|<\infty \quad(A, B \in \mathcal{A}, A \neq B)
$$

Key result. (Sierpiński, 1928.) Uncountable almost disjoint families exist! In fact, there are almost disjoint families of cardinality \mathfrak{c}.

Almost disjoint families

Let $[\mathbb{N}]^{\omega}$ denote the set of infinite subsets of \mathbb{N}.
Definition. A family $\mathcal{A} \subset[\mathbb{N}]^{\omega}$ is almost disjoint if

$$
|A \cap B|<\infty \quad(A, B \in \mathcal{A}, A \neq B)
$$

Key result. (Sierpiński, 1928.) Uncountable almost disjoint families exist! In fact, there are almost disjoint families of cardinality \mathfrak{c}.

Moreover, they are "easy" to construct - once you know the trick!

Almost disjoint families

Let $[\mathbb{N}]^{\omega}$ denote the set of infinite subsets of \mathbb{N}.
Definition. A family $\mathcal{A} \subset[\mathbb{N}]^{\omega}$ is almost disjoint if

$$
|A \cap B|<\infty \quad(A, B \in \mathcal{A}, A \neq B)
$$

Key result. (Sierpiński, 1928.) Uncountable almost disjoint families exist! In fact, there are almost disjoint families of cardinality c .

Moreover, they are "easy" to construct - once you know the trick!

Construction.

Starting point: We may replace \mathbb{N} with any countably infinite set. We use \mathbb{Q}.

Almost disjoint families

Let $[\mathbb{N}]^{\omega}$ denote the set of infinite subsets of \mathbb{N}.
Definition. A family $\mathcal{A} \subset[\mathbb{N}]^{\omega}$ is almost disjoint if

$$
|A \cap B|<\infty \quad(A, B \in \mathcal{A}, A \neq B)
$$

Key result. (Sierpiński, 1928.) Uncountable almost disjoint families exist! In fact, there are almost disjoint families of cardinality c .

Moreover, they are "easy" to construct - once you know the trick!

Construction.

Starting point: We may replace \mathbb{N} with any countably infinite set. We use \mathbb{Q}.
For every $r \in \mathbb{R} \backslash \mathbb{Q}$, choose a sequence $\left(q_{n}^{(r)}\right)_{n \in \mathbb{N}}$ in \mathbb{Q} which converges to r.

Almost disjoint families

Let $[\mathbb{N}]^{\omega}$ denote the set of infinite subsets of \mathbb{N}.
Definition. A family $\mathcal{A} \subset[\mathbb{N}]^{\omega}$ is almost disjoint if

$$
|A \cap B|<\infty \quad(A, B \in \mathcal{A}, A \neq B)
$$

Key result. (Sierpiński, 1928.) Uncountable almost disjoint families exist! In fact, there are almost disjoint families of cardinality \mathfrak{c}.

Moreover, they are "easy" to construct - once you know the trick!

Construction.

Starting point: We may replace \mathbb{N} with any countably infinite set. We use \mathbb{Q}. For every $r \in \mathbb{R} \backslash \mathbb{Q}$, choose a sequence $\left(q_{n}^{(r)}\right)_{n \in \mathbb{N}}$ in \mathbb{Q} which converges to r. Define $A_{r}=\left\{q_{n}^{(r)}: n \in \mathbb{N}\right\} \in[\mathbb{Q}]^{\omega}$.

Almost disjoint families

Let $[\mathbb{N}]^{\omega}$ denote the set of infinite subsets of \mathbb{N}.
Definition. A family $\mathcal{A} \subset[\mathbb{N}]^{\omega}$ is almost disjoint if

$$
|A \cap B|<\infty \quad(A, B \in \mathcal{A}, A \neq B)
$$

Key result. (Sierpiński, 1928.) Uncountable almost disjoint families exist! In fact, there are almost disjoint families of cardinality \mathfrak{c}.

Moreover, they are "easy" to construct - once you know the trick!

Construction.

Starting point: We may replace \mathbb{N} with any countably infinite set. We use \mathbb{Q}.
For every $r \in \mathbb{R} \backslash \mathbb{Q}$, choose a sequence $\left(q_{n}^{(r)}\right)_{n \in \mathbb{N}}$ in \mathbb{Q} which converges to r.
Define $A_{r}=\left\{q_{n}^{(r)}: n \in \mathbb{N}\right\} \in[\mathbb{Q}]^{\omega}$.
Suppose that $\left|A_{r} \cap A_{s}\right|=\infty$ for some $r, s \in \mathbb{R} \backslash \mathbb{Q}$.

Almost disjoint families

Let $[\mathbb{N}]^{\omega}$ denote the set of infinite subsets of \mathbb{N}.
Definition. A family $\mathcal{A} \subset[\mathbb{N}]^{\omega}$ is almost disjoint if

$$
|A \cap B|<\infty \quad(A, B \in \mathcal{A}, A \neq B) .
$$

Key result. (Sierpiński, 1928.) Uncountable almost disjoint families exist! In fact, there are almost disjoint families of cardinality \mathfrak{c}.

Moreover, they are "easy" to construct - once you know the trick!

Construction.

Starting point: We may replace \mathbb{N} with any countably infinite set. We use \mathbb{Q}.
For every $r \in \mathbb{R} \backslash \mathbb{Q}$, choose a sequence $\left(q_{n}^{(r)}\right)_{n \in \mathbb{N}}$ in \mathbb{Q} which converges to r.
Define $A_{r}=\left\{q_{n}^{(r)}: n \in \mathbb{N}\right\} \in[\mathbb{Q}]^{\omega}$.
Suppose that $\left|A_{r} \cap A_{s}\right|=\infty$ for some $r, s \in \mathbb{R} \backslash \mathbb{Q}$.
Then $\left(q_{n}^{(r)}\right)_{n \in \mathbb{N}}$ and $\left(q_{n}^{(s)}\right)_{n \in \mathbb{N}}$ have an infinite subsequence in common, so $r=s$.

Almost disjoint families

Let $[\mathbb{N}]^{\omega}$ denote the set of infinite subsets of \mathbb{N}.
Definition. A family $\mathcal{A} \subset[\mathbb{N}]^{\omega}$ is almost disjoint if

$$
|A \cap B|<\infty \quad(A, B \in \mathcal{A}, A \neq B) .
$$

Key result. (Sierpiński, 1928.) Uncountable almost disjoint families exist! In fact, there are almost disjoint families of cardinality \mathfrak{c}.

Moreover, they are "easy" to construct - once you know the trick!

Construction.

Starting point: We may replace \mathbb{N} with any countably infinite set. We use \mathbb{Q}.
For every $r \in \mathbb{R} \backslash \mathbb{Q}$, choose a sequence $\left(q_{n}^{(r)}\right)_{n \in \mathbb{N}}$ in \mathbb{Q} which converges to r.
Define $A_{r}=\left\{q_{n}^{(r)}: n \in \mathbb{N}\right\} \in[\mathbb{Q}]^{\omega}$.
Suppose that $\left|A_{r} \cap A_{s}\right|=\infty$ for some $r, s \in \mathbb{R} \backslash \mathbb{Q}$.
Then $\left(q_{n}^{(r)}\right)_{n \in \mathbb{N}}$ and $\left(q_{n}^{(s)}\right)_{n \in \mathbb{N}}$ have an infinite subsequence in common, so $r=s$.
Hence $\left|A_{r} \cap A_{s}\right|<\infty$ for $r \neq s$.

Almost disjoint families

Let $[\mathbb{N}]^{\omega}$ denote the set of infinite subsets of \mathbb{N}.
Definition. A family $\mathcal{A} \subset[\mathbb{N}]^{\omega}$ is almost disjoint if

$$
|A \cap B|<\infty \quad(A, B \in \mathcal{A}, A \neq B)
$$

Key result. (Sierpiński, 1928.) Uncountable almost disjoint families exist! In fact, there are almost disjoint families of cardinality \mathfrak{c}.

Moreover, they are "easy" to construct - once you know the trick!

Construction.

Starting point: We may replace \mathbb{N} with any countably infinite set. We use \mathbb{Q}.
For every $r \in \mathbb{R} \backslash \mathbb{Q}$, choose a sequence $\left(q_{n}^{(r)}\right)_{n \in \mathbb{N}}$ in \mathbb{Q} which converges to r.
Define $A_{r}=\left\{q_{n}^{(r)}: n \in \mathbb{N}\right\} \in[\mathbb{Q}]^{\omega}$.
Suppose that $\left|A_{r} \cap A_{s}\right|=\infty$ for some $r, s \in \mathbb{R} \backslash \mathbb{Q}$.
Then $\left(q_{n}^{(r)}\right)_{n \in \mathbb{N}}$ and $\left(q_{n}^{(s)}\right)_{n \in \mathbb{N}}$ have an infinite subsequence in common, so $r=s$.
Hence $\left|A_{r} \cap A_{s}\right|<\infty$ for $r \neq s$.
Thus $\left\{A_{r}: r \in \mathbb{R} \backslash \mathbb{Q}\right\}$ is an almost disjoint family of cardinality \mathfrak{c} in $[\mathbb{Q}]^{\omega}$.

Almost disjoint families

Let $[\mathbb{N}]^{\omega}$ denote the set of infinite subsets of \mathbb{N}.
Definition. A family $\mathcal{A} \subset[\mathbb{N}]^{\omega}$ is almost disjoint if

$$
|A \cap B|<\infty \quad(A, B \in \mathcal{A}, A \neq B)
$$

Key result. (Sierpiński, 1928.) Uncountable almost disjoint families exist! In fact, there are almost disjoint families of cardinality \mathfrak{c}.

Moreover, they are "easy" to construct - once you know the trick!

Construction.

Starting point: We may replace \mathbb{N} with any countably infinite set. We use \mathbb{Q}.
For every $r \in \mathbb{R} \backslash \mathbb{Q}$, choose a sequence $\left(q_{n}^{(r)}\right)_{n \in \mathbb{N}}$ in \mathbb{Q} which converges to r.
Define $A_{r}=\left\{q_{n}^{(r)}: n \in \mathbb{N}\right\} \in[\mathbb{Q}]^{\omega}$.
Suppose that $\left|A_{r} \cap A_{s}\right|=\infty$ for some $r, s \in \mathbb{R} \backslash \mathbb{Q}$.
Then $\left(q_{n}^{(r)}\right)_{n \in \mathbb{N}}$ and $\left(q_{n}^{(s)}\right)_{n \in \mathbb{N}}$ have an infinite subsequence in common, so $r=s$.
Hence $\left|A_{r} \cap A_{s}\right|<\infty$ for $r \neq s$.
Thus $\left\{A_{r}: r \in \mathbb{R} \backslash \mathbb{Q}\right\}$ is an almost disjoint family of cardinality \mathfrak{c} in $[\mathbb{Q}]^{\omega}$.

Almost disjoint families - applications

Almost disjoint families appear in many different branches of mathematics:

Almost disjoint families - applications

Almost disjoint families appear in many different branches of mathematics:

- Perhaps their most natural home is infinite combinatorics.

Almost disjoint families - applications

Almost disjoint families appear in many different branches of mathematics:

- Perhaps their most natural home is infinite combinatorics.
- They are closely connected with foundations/set theory because often, the construction of an almost disjoint family with particular properties relies on additional axioms (outside ZFC).

Almost disjoint families - applications

Almost disjoint families appear in many different branches of mathematics:

- Perhaps their most natural home is infinite combinatorics.
- They are closely connected with foundations/set theory because often, the construction of an almost disjoint family with particular properties relies on additional axioms (outside ZFC).
The continuum hypothesis (CH) - or its negation - are the most "obvious" examples.

Almost disjoint families - applications

Almost disjoint families appear in many different branches of mathematics:

- Perhaps their most natural home is infinite combinatorics.
- They are closely connected with foundations/set theory because often, the construction of an almost disjoint family with particular properties relies on additional axioms (outside ZFC).
The continuum hypothesis (CH) - or its negation - are the most "obvious" examples.
- Almost disjoint families also play a role in topology because every almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ induces a locally compact Hausdorff space $K_{\mathcal{A}}$.

Almost disjoint families - applications

Almost disjoint families appear in many different branches of mathematics:

- Perhaps their most natural home is infinite combinatorics.
- They are closely connected with foundations/set theory because often, the construction of an almost disjoint family with particular properties relies on additional axioms (outside ZFC).
The continuum hypothesis (CH) - or its negation - are the most "obvious" examples.
- Almost disjoint families also play a role in topology because every almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ induces a locally compact Hausdorff space $K_{\mathcal{A}}$. This connection goes back to Alexandroff and Urysohn (1920's), who essentially gave the construction I showed you earlier.

Almost disjoint families - applications

Almost disjoint families appear in many different branches of mathematics:

- Perhaps their most natural home is infinite combinatorics.
- They are closely connected with foundations/set theory because often, the construction of an almost disjoint family with particular properties relies on additional axioms (outside ZFC).
The continuum hypothesis (CH) - or its negation - are the most "obvious" examples.
- Almost disjoint families also play a role in topology because every almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ induces a locally compact Hausdorff space $K_{\mathcal{A}}$. This connection goes back to Alexandroff and Urysohn (1920's), who essentially gave the construction I showed you earlier.
- This links almost disjoint families to functional analysis: Let $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$, and let K be a locally compact Hausdorff space. Then

$$
\begin{aligned}
C_{0}(K)=\{f: K \rightarrow \mathbb{K}: & f \text { is continuous and } \\
& \{t \in K:|f(t)| \geqslant \varepsilon\} \text { is compact for every } \varepsilon>0\}
\end{aligned}
$$

is a Banach space

Almost disjoint families - applications

Almost disjoint families appear in many different branches of mathematics:

- Perhaps their most natural home is infinite combinatorics.
- They are closely connected with foundations/set theory because often, the construction of an almost disjoint family with particular properties relies on additional axioms (outside ZFC).
The continuum hypothesis (CH) - or its negation - are the most "obvious" examples.
- Almost disjoint families also play a role in topology because every almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ induces a locally compact Hausdorff space $K_{\mathcal{A}}$. This connection goes back to Alexandroff and Urysohn (1920's), who essentially gave the construction I showed you earlier.
- This links almost disjoint families to functional analysis: Let $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$, and let K be a locally compact Hausdorff space. Then

$$
\begin{aligned}
C_{0}(K)=\{f: K \rightarrow \mathbb{K}: & f \text { is continuous and } \\
& \{t \in K:|f(t)| \geqslant \varepsilon\} \text { is compact for every } \varepsilon>0\}
\end{aligned}
$$

is a Banach space/Banach algebra

Almost disjoint families - applications

Almost disjoint families appear in many different branches of mathematics:

- Perhaps their most natural home is infinite combinatorics.
- They are closely connected with foundations/set theory because often, the construction of an almost disjoint family with particular properties relies on additional axioms (outside ZFC).
The continuum hypothesis (CH) - or its negation - are the most "obvious" examples.
- Almost disjoint families also play a role in topology because every almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ induces a locally compact Hausdorff space $K_{\mathcal{A}}$. This connection goes back to Alexandroff and Urysohn (1920's), who essentially gave the construction I showed you earlier.
- This links almost disjoint families to functional analysis: Let $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$, and let K be a locally compact Hausdorff space. Then

$$
\begin{aligned}
C_{0}(K)=\{f: K \rightarrow \mathbb{K}: & f \text { is continuous and } \\
& \{t \in K:|f(t)| \geqslant \varepsilon\} \text { is compact for every } \varepsilon>0\}
\end{aligned}
$$

is a Banach space/Banach algebra/ C^{*}-algebra.

Almost disjoint families - applications

Almost disjoint families appear in many different branches of mathematics:

- Perhaps their most natural home is infinite combinatorics.
- They are closely connected with foundations/set theory because often, the construction of an almost disjoint family with particular properties relies on additional axioms (outside ZFC).
The continuum hypothesis (CH) - or its negation - are the most "obvious" examples.
- Almost disjoint families also play a role in topology because every almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ induces a locally compact Hausdorff space $K_{\mathcal{A}}$. This connection goes back to Alexandroff and Urysohn (1920's), who essentially gave the construction I showed you earlier.
- This links almost disjoint families to functional analysis: Let $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$, and let K be a locally compact Hausdorff space. Then

$$
\begin{aligned}
C_{0}(K)=\{f: K \rightarrow \mathbb{K}: & f \text { is continuous and } \\
& \{t \in K:|f(t)| \geqslant \varepsilon\} \text { is compact for every } \varepsilon>0\}
\end{aligned}
$$

is a Banach space/Banach algebra/ C^{*}-algebra.

The locally compact space induced by an almost disjoint family (functional analytic approach)

Definition. Given an almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$, define

$$
X_{\mathcal{A}}=\overline{\operatorname{span}}\left\{1_{A}: A \in \mathcal{A} \cup[\mathbb{N}]^{<\omega}\right\} \subseteq \ell_{\infty},
$$

where 1_{A} is the indicator function of A and $[\mathbb{N}]^{<\omega}$ the set of finite subsets of \mathbb{N}.

The locally compact space induced by an almost disjoint family (functional analytic approach)

Definition. Given an almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$, define

$$
X_{\mathcal{A}}=\overline{\operatorname{span}}\left\{1_{A}: A \in \mathcal{A} \cup[\mathbb{N}]^{<\omega}\right\} \subseteq \ell_{\infty},
$$

where 1_{A} is the indicator function of A and $[\mathbb{N}]^{<\omega}$ the set of finite subsets of \mathbb{N}. Check: $X_{\mathcal{A}}$ is a self-adjoint subalgebra of ℓ_{∞}.

The locally compact space induced by an almost disjoint family (functional analytic approach)

Definition. Given an almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$, define

$$
X_{\mathcal{A}}=\overline{\operatorname{span}}\left\{1_{A}: A \in \mathcal{A} \cup[\mathbb{N}]^{<\omega}\right\} \subseteq \ell_{\infty},
$$

where 1_{A} is the indicator function of A and $[\mathbb{N}]^{<\omega}$ the set of finite subsets of \mathbb{N}. Check: $X_{\mathcal{A}}$ is a self-adjoint subalgebra of ℓ_{∞}.

Gelfand-Naimark Theorem: $X_{\mathcal{A}} \cong C_{0}\left(K_{\mathcal{A}}\right)$ for some locally compact Hausdorff space $K_{\mathcal{A}}$.

The locally compact space induced by an almost disjoint family (functional analytic approach)

Definition. Given an almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$, define

$$
X_{\mathcal{A}}=\overline{\operatorname{span}}\left\{1_{A}: A \in \mathcal{A} \cup[\mathbb{N}]^{<\omega}\right\} \subseteq \ell_{\infty},
$$

where 1_{A} is the indicator function of A and $[\mathbb{N}]^{<\omega}$ the set of finite subsets of \mathbb{N}.
Check: $X_{\mathcal{A}}$ is a self-adjoint subalgebra of ℓ_{∞}.
Gelfand-Naimark Theorem: $X_{\mathcal{A}} \cong C_{0}\left(K_{\mathcal{A}}\right)$ for some locally compact Hausdorff space $K_{\mathcal{A}}$.

Origins:

- Banach spaces of the form $X_{\mathcal{A}}$ were first studied by Johnson and Lindenstrauss (Israel J. Math. 1974).

The locally compact space induced by an almost disjoint family (functional analytic approach)

Definition. Given an almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$, define

$$
X_{\mathcal{A}}=\overline{\operatorname{span}}\left\{1_{A}: A \in \mathcal{A} \cup[\mathbb{N}]^{<\omega}\right\} \subseteq \ell_{\infty},
$$

where 1_{A} is the indicator function of A and $[\mathbb{N}]^{<\omega}$ the set of finite subsets of \mathbb{N}.
Check: $X_{\mathcal{A}}$ is a self-adjoint subalgebra of ℓ_{∞}.
Gelfand-Naimark Theorem: $X_{\mathcal{A}} \cong C_{0}\left(K_{\mathcal{A}}\right)$ for some locally compact Hausdorff space $K_{\mathcal{A}}$.

Origins:

- Banach spaces of the form $X_{\mathcal{A}}$ were first studied by Johnson and Lindenstrauss (Israel J. Math. 1974).
- Locally compact Hausdorff spaces of the form $K_{\mathcal{A}}$ were first studied by Alexandroff and Urysohn (1920's).

The locally compact space induced by an almost disjoint family (functional analytic approach)

Definition. Given an almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$, define

$$
X_{\mathcal{A}}=\overline{\operatorname{span}}\left\{1_{A}: A \in \mathcal{A} \cup[\mathbb{N}]^{<\omega}\right\} \subseteq \ell_{\infty},
$$

where 1_{A} is the indicator function of A and $[\mathbb{N}]^{<\omega}$ the set of finite subsets of \mathbb{N}.
Check: $X_{\mathcal{A}}$ is a self-adjoint subalgebra of ℓ_{∞}.
Gelfand-Naimark Theorem: $X_{\mathcal{A}} \cong C_{0}\left(K_{\mathcal{A}}\right)$ for some locally compact Hausdorff space $K_{\mathcal{A}}$.

Origins:

- Banach spaces of the form $X_{\mathcal{A}}$ were first studied by Johnson and Lindenstrauss (Israel J. Math. 1974).
- Locally compact Hausdorff spaces of the form $K_{\mathcal{A}}$ were first studied by Alexandroff and Urysohn (1920's).
Terminology: AU-compactum,

The locally compact space induced by an almost disjoint family (functional analytic approach)

Definition. Given an almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$, define

$$
X_{\mathcal{A}}=\overline{\operatorname{span}}\left\{1_{A}: A \in \mathcal{A} \cup[\mathbb{N}]^{<\omega}\right\} \subseteq \ell_{\infty},
$$

where 1_{A} is the indicator function of A and $[\mathbb{N}]^{<\omega}$ the set of finite subsets of \mathbb{N}.
Check: $X_{\mathcal{A}}$ is a self-adjoint subalgebra of ℓ_{∞}.
Gelfand-Naimark Theorem: $X_{\mathcal{A}} \cong C_{0}\left(K_{\mathcal{A}}\right)$ for some locally compact Hausdorff space $K_{\mathcal{A}}$.

Origins:

- Banach spaces of the form $X_{\mathcal{A}}$ were first studied by Johnson and Lindenstrauss (Israel J. Math. 1974).
- Locally compact Hausdorff spaces of the form $K_{\mathcal{A}}$ were first studied by Alexandroff and Urysohn (1920's).
Terminology: AU-compactum, Mrówka space,

The locally compact space induced by an almost disjoint family (functional analytic approach)

Definition. Given an almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$, define

$$
X_{\mathcal{A}}=\overline{\operatorname{span}}\left\{1_{A}: A \in \mathcal{A} \cup[\mathbb{N}]^{<\omega}\right\} \subseteq \ell_{\infty},
$$

where 1_{A} is the indicator function of A and $[\mathbb{N}]^{<\omega}$ the set of finite subsets of \mathbb{N}.
Check: $X_{\mathcal{A}}$ is a self-adjoint subalgebra of ℓ_{∞}.
Gelfand-Naimark Theorem: $X_{\mathcal{A}} \cong C_{0}\left(K_{\mathcal{A}}\right)$ for some locally compact Hausdorff space $K_{\mathcal{A}}$.

Origins:

- Banach spaces of the form $X_{\mathcal{A}}$ were first studied by Johnson and Lindenstrauss (Israel J. Math. 1974).
- Locally compact Hausdorff spaces of the form $K_{\mathcal{A}}$ were first studied by Alexandroff and Urysohn (1920's).
Terminology: AU-compactum, (Isbell-)Mrówka space,

The locally compact space induced by an almost disjoint family (functional analytic approach)

Definition. Given an almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$, define

$$
X_{\mathcal{A}}=\overline{\operatorname{span}}\left\{1_{A}: A \in \mathcal{A} \cup[\mathbb{N}]^{<\omega}\right\} \subseteq \ell_{\infty},
$$

where 1_{A} is the indicator function of A and $[\mathbb{N}]^{<\omega}$ the set of finite subsets of \mathbb{N}.
Check: $X_{\mathcal{A}}$ is a self-adjoint subalgebra of ℓ_{∞}.
Gelfand-Naimark Theorem: $X_{\mathcal{A}} \cong C_{0}\left(K_{\mathcal{A}}\right)$ for some locally compact Hausdorff space $K_{\mathcal{A}}$.

Origins:

- Banach spaces of the form $X_{\mathcal{A}}$ were first studied by Johnson and Lindenstrauss (Israel J. Math. 1974).
- Locally compact Hausdorff spaces of the form $K_{\mathcal{A}}$ were first studied by Alexandroff and Urysohn (1920's).
Terminology: AU-compactum, (Isbell-)Mrówka space, Ψ-space.

The locally compact space induced by an almost disjoint family (functional analytic approach)

Definition. Given an almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$, define

$$
X_{\mathcal{A}}=\overline{\operatorname{span}}\left\{1_{A}: A \in \mathcal{A} \cup[\mathbb{N}]^{<\omega}\right\} \subseteq \ell_{\infty},
$$

where 1_{A} is the indicator function of A and $[\mathbb{N}]^{<\omega}$ the set of finite subsets of \mathbb{N}.
Check: $X_{\mathcal{A}}$ is a self-adjoint subalgebra of ℓ_{∞}.
Gelfand-Naimark Theorem: $X_{\mathcal{A}} \cong C_{0}\left(K_{\mathcal{A}}\right)$ for some locally compact Hausdorff space $K_{\mathcal{A}}$.

Origins:

- Banach spaces of the form $X_{\mathcal{A}}$ were first studied by Johnson and Lindenstrauss (Israel J. Math. 1974).
- Locally compact Hausdorff spaces of the form $K_{\mathcal{A}}$ were first studied by Alexandroff and Urysohn (1920's).
Terminology: AU-compactum, (Isbell-)Mrówka space, Ψ-space.

The locally compact space induced by an almost disjoint family (continued)

There are other ways of defining the Mrówka space $K_{\mathcal{A}}$:

The locally compact space induced by an almost disjoint family (continued)

There are other ways of defining the Mrówka space $K_{\mathcal{A}}$:

- You can give a "hands-on" definition:

$$
K_{\mathcal{A}}=\left\{x_{n}: n \in \mathbb{N}\right\} \cup\left\{y_{A}: A \in \mathcal{A}\right\},
$$

The locally compact space induced by an almost disjoint family (continued)

There are other ways of defining the Mrówka space $K_{\mathcal{A}}$:

- You can give a "hands-on" definition:

$$
K_{\mathcal{A}}=\left\{x_{n}: n \in \mathbb{N}\right\} \cup\left\{y_{A}: A \in \mathcal{A}\right\},
$$

where x_{n} is isolated for every $n \in \mathbb{N}$,

The locally compact space induced by an almost disjoint family (continued)

There are other ways of defining the Mrówka space $K_{\mathcal{A}}$:

- You can give a "hands-on" definition:

$$
K_{\mathcal{A}}=\left\{x_{n}: n \in \mathbb{N}\right\} \cup\left\{y_{A}: A \in \mathcal{A}\right\}
$$

where x_{n} is isolated for every $n \in \mathbb{N}$, and $x_{n} \xrightarrow[A \ni n \rightarrow \infty]{\longrightarrow} y_{A}$ for every $A \in \mathcal{A}$.

The locally compact space induced by an almost disjoint family (continued)

There are other ways of defining the Mrówka space $K_{\mathcal{A}}$:

- You can give a "hands-on" definition:

$$
K_{\mathcal{A}}=\left\{x_{n}: n \in \mathbb{N}\right\} \cup\left\{y_{A}: A \in \mathcal{A}\right\}
$$

where x_{n} is isolated for every $n \in \mathbb{N}$, and $x_{n} \xrightarrow[A \ni n \rightarrow \infty]{\longrightarrow} y_{A}$ for every $A \in \mathcal{A}$. More precisely, the sets

$$
U(A, F)=\left\{x_{n}: n \in A \backslash F\right\} \cup\left\{y_{A}\right\}, \quad \text { where } \quad F \in[\mathbb{N}]^{<\omega}
$$

form a neighbourhood basis at y_{A}.

The locally compact space induced by an almost disjoint family (continued)

There are other ways of defining the Mrówka space $K_{\mathcal{A}}$:

- You can give a "hands-on" definition:

$$
K_{\mathcal{A}}=\left\{x_{n}: n \in \mathbb{N}\right\} \cup\left\{y_{A}: A \in \mathcal{A}\right\}
$$

where x_{n} is isolated for every $n \in \mathbb{N}$, and $x_{n} \xrightarrow[A \ni n \rightarrow \infty]{\longrightarrow} y_{A}$ for every $A \in \mathcal{A}$.
More precisely, the sets

$$
U(A, F)=\left\{x_{n}: n \in A \backslash F\right\} \cup\left\{y_{A}\right\}, \quad \text { where } \quad F \in[\mathbb{N}]^{<\omega}
$$

form a neighbourhood basis at y_{A}.

- If you prefer abstract methods, you can view $K_{\mathcal{A}}$ as the Stone space of the Boolean subalgebra of $\mathscr{P}(\mathbb{N})$ generated by $\mathcal{A} \cup[\mathbb{N}]^{<\omega}$.

There are other ways of defining the Mrówka space $K_{\mathcal{A}}$:

- You can give a "hands-on" definition:

$$
K_{\mathcal{A}}=\left\{x_{n}: n \in \mathbb{N}\right\} \cup\left\{y_{A}: A \in \mathcal{A}\right\}
$$

where x_{n} is isolated for every $n \in \mathbb{N}$, and $x_{n} \xrightarrow[A \ni n \rightarrow \infty]{\longrightarrow} y_{A}$ for every $A \in \mathcal{A}$.
More precisely, the sets

$$
U(A, F)=\left\{x_{n}: n \in A \backslash F\right\} \cup\left\{y_{A}\right\}, \quad \text { where } \quad F \in[\mathbb{N}]^{<\omega}
$$

form a neighbourhood basis at y_{A}.

- If you prefer abstract methods, you can view $K_{\mathcal{A}}$ as the Stone space of the Boolean subalgebra of $\mathscr{P}(\mathbb{N})$ generated by $\mathcal{A} \cup[\mathbb{N}]^{<\omega}$.

Remark. $\left\|1_{A}-1_{B}\right\|_{\infty}=1$ for distinct $A, B \subseteq \mathbb{N}$.

There are other ways of defining the Mrówka space $K_{\mathcal{A}}$:

- You can give a "hands-on" definition:

$$
K_{\mathcal{A}}=\left\{x_{n}: n \in \mathbb{N}\right\} \cup\left\{y_{A}: A \in \mathcal{A}\right\},
$$

where x_{n} is isolated for every $n \in \mathbb{N}$, and $x_{n} \xrightarrow[A \ni n \rightarrow \infty]{\longrightarrow} y_{A}$ for every $A \in \mathcal{A}$.
More precisely, the sets

$$
U(A, F)=\left\{x_{n}: n \in A \backslash F\right\} \cup\left\{y_{A}\right\}, \quad \text { where } \quad F \in[\mathbb{N}]^{<\omega}
$$

form a neighbourhood basis at y_{A}.

- If you prefer abstract methods, you can view $K_{\mathcal{A}}$ as the Stone space of the Boolean subalgebra of $\mathscr{P}(\mathbb{N})$ generated by $\mathcal{A} \cup[\mathbb{N}]^{<\omega}$.

Remark. $\left\|1_{A}-1_{B}\right\|_{\infty}=1$ for distinct $A, B \subseteq \mathbb{N}$.
Hence, for an almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$,
$X_{\mathcal{A}}$ is separable $\Longleftrightarrow \mathcal{A}$ is countable.

There are other ways of defining the Mrówka space $K_{\mathcal{A}}$:

- You can give a "hands-on" definition:

$$
K_{\mathcal{A}}=\left\{x_{n}: n \in \mathbb{N}\right\} \cup\left\{y_{A}: A \in \mathcal{A}\right\},
$$

where x_{n} is isolated for every $n \in \mathbb{N}$, and $x_{n} \xrightarrow[A \ni n \rightarrow \infty]{\longrightarrow} y_{A}$ for every $A \in \mathcal{A}$.
More precisely, the sets

$$
U(A, F)=\left\{x_{n}: n \in A \backslash F\right\} \cup\left\{y_{A}\right\}, \quad \text { where } \quad F \in[\mathbb{N}]^{<\omega}
$$

form a neighbourhood basis at y_{A}.

- If you prefer abstract methods, you can view $K_{\mathcal{A}}$ as the Stone space of the Boolean subalgebra of $\mathscr{P}(\mathbb{N})$ generated by $\mathcal{A} \cup[\mathbb{N}]^{<\omega}$.

Remark. $\left\|1_{A}-1_{B}\right\|_{\infty}=1$ for distinct $A, B \subseteq \mathbb{N}$.
Hence, for an almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$,
$X_{\mathcal{A}}$ is separable $\Longleftrightarrow \mathcal{A}$ is countable.
Conclusion: In the "interesting" cases, $C_{0}\left(K_{\mathcal{A}}\right)$ is non-separable.

There are other ways of defining the Mrówka space $K_{\mathcal{A}}$:

- You can give a "hands-on" definition:

$$
K_{\mathcal{A}}=\left\{x_{n}: n \in \mathbb{N}\right\} \cup\left\{y_{A}: A \in \mathcal{A}\right\},
$$

where x_{n} is isolated for every $n \in \mathbb{N}$, and $x_{n} \xrightarrow[A \ni n \rightarrow \infty]{\longrightarrow} y_{A}$ for every $A \in \mathcal{A}$.
More precisely, the sets

$$
U(A, F)=\left\{x_{n}: n \in A \backslash F\right\} \cup\left\{y_{A}\right\}, \quad \text { where } \quad F \in[\mathbb{N}]^{<\omega}
$$

form a neighbourhood basis at y_{A}.

- If you prefer abstract methods, you can view $K_{\mathcal{A}}$ as the Stone space of the Boolean subalgebra of $\mathscr{P}(\mathbb{N})$ generated by $\mathcal{A} \cup[\mathbb{N}]^{<\omega}$.

Remark. $\left\|1_{A}-1_{B}\right\|_{\infty}=1$ for distinct $A, B \subseteq \mathbb{N}$.
Hence, for an almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$,
$X_{\mathcal{A}}$ is separable $\Longleftrightarrow \mathcal{A}$ is countable.
Conclusion: In the "interesting" cases, $C_{0}\left(K_{\mathcal{A}}\right)$ is non-separable.

The isomorphic classification of separable $C(K)$-spaces
Terminology. A C(K)-space is a Banach space of the form $C(K)=\{f: K \rightarrow \mathbb{K}: f$ is continuous $\}$
for some compact Hausdorff space K.

The isomorphic classification of separable $C(K)$-spaces
Terminology. A C(K)-space is a Banach space of the form

$$
C(K)=\{f: K \rightarrow \mathbb{K}: f \text { is continuous }\}
$$

for some compact Hausdorff space K.
Fundamental fact. For a compact Hausdorff space K,
$C(K)$ is separable $\Longleftrightarrow K$ is metrizable.

The isomorphic classification of separable $C(K)$-spaces
Terminology. A $C(K)$-space is a Banach space of the form

$$
C(K)=\{f: K \rightarrow \mathbb{K}: f \text { is continuous }\}
$$

for some compact Hausdorff space K.
Fundamental fact. For a compact Hausdorff space K, $C(K)$ is separable $\Longleftrightarrow K$ is metrizable.
Theorem. Let K be a compact metric space.

The isomorphic classification of separable $C(K)$-spaces

Terminology. A $C(K)$-space is a Banach space of the form

$$
C(K)=\{f: K \rightarrow \mathbb{K}: f \text { is continuous }\}
$$

for some compact Hausdorff space K.
Fundamental fact. For a compact Hausdorff space K, $C(K)$ is separable $\Longleftrightarrow K$ is metrizable.
Theorem. Let K be a compact metric space.
(i) Suppose that K is finite. Then $C(K) \cong \ell_{\infty}^{n}$ for $n=|K|$.

The isomorphic classification of separable $C(K)$-spaces

Terminology. A $C(K)$-space is a Banach space of the form

$$
C(K)=\{f: K \rightarrow \mathbb{K}: f \text { is continuous }\}
$$

for some compact Hausdorff space K.
Fundamental fact. For a compact Hausdorff space K, $C(K)$ is separable $\Longleftrightarrow K$ is metrizable.
Theorem. Let K be a compact metric space.
(i) Suppose that K is finite. Then $C(K) \cong \ell_{\infty}^{n}$ for $n=|K|$. Note: \cong means "linearly homeomorphic".

The isomorphic classification of separable $C(K)$-spaces

Terminology. A $C(K)$-space is a Banach space of the form

$$
C(K)=\{f: K \rightarrow \mathbb{K}: f \text { is continuous }\}
$$

for some compact Hausdorff space K.
Fundamental fact. For a compact Hausdorff space K, $C(K)$ is separable $\Longleftrightarrow K$ is metrizable.
Theorem. Let K be a compact metric space.
(i) Suppose that K is finite. Then $C(K) \cong \ell_{\infty}^{n}$ for $n=|K|$. Note: \cong means "linearly homeomorphic".
(ii) (Milutin) Suppose that K is uncountable. Then $C(K) \cong C\left(\{0,1\}^{\mathbb{N}}\right)$.

The isomorphic classification of separable $C(K)$-spaces

Terminology. A $C(K)$-space is a Banach space of the form

$$
C(K)=\{f: K \rightarrow \mathbb{K}: f \text { is continuous }\}
$$

for some compact Hausdorff space K.
Fundamental fact. For a compact Hausdorff space K,
$C(K)$ is separable $\Longleftrightarrow K$ is metrizable.
Theorem. Let K be a compact metric space.
(i) Suppose that K is finite. Then $C(K) \cong \ell_{\infty}^{n}$ for $n=|K|$.

Note: \cong means "linearly homeomorphic".
(ii) (Milutin) Suppose that K is uncountable. Then $C(K) \cong C\left(\{0,1\}^{\mathbb{N}}\right)$.
(iii) (Bessaga-Pełczyński, Studia Math. 1960) Suppose that K is countably infinite. Then there is a unique countable ordinal α such that

$$
C(K) \cong C\left[0, \omega^{\omega^{\alpha}}\right],
$$

where $\left[0, \omega^{\omega^{\alpha}}\right]$ denotes set of all ordinals not exceeding $\omega^{\omega^{\alpha}}$, endowed with the order topology.

The isomorphic classification of separable $C(K)$-spaces

Terminology. A $C(K)$-space is a Banach space of the form

$$
C(K)=\{f: K \rightarrow \mathbb{K}: f \text { is continuous }\}
$$

for some compact Hausdorff space K.
Fundamental fact. For a compact Hausdorff space K,
$C(K)$ is separable $\Longleftrightarrow K$ is metrizable.
Theorem. Let K be a compact metric space.
(i) Suppose that K is finite. Then $C(K) \cong \ell_{\infty}^{n}$ for $n=|K|$.

Note: \cong means "linearly homeomorphic".
(ii) (Milutin) Suppose that K is uncountable. Then $C(K) \cong C\left(\{0,1\}^{\mathbb{N}}\right)$.
(iii) (Bessaga-Pełczyński, Studia Math. 1960) Suppose that K is countably infinite. Then there is a unique countable ordinal α such that

$$
C(K) \cong C\left[0, \omega^{\omega^{\alpha}}\right],
$$

where $\left[0, \omega^{\omega^{\alpha}}\right]$ denotes set of all ordinals not exceeding $\omega^{\omega^{\alpha}}$, endowed with the order topology. The "modern" way of determining the ordinal α is via the Szlenk index because

$$
\mathrm{Sz}\left(C\left[0, \omega^{\omega^{\alpha}}\right]\right)=\omega^{\alpha+1}
$$

The isomorphic classification of separable $C(K)$-spaces

Terminology. A $C(K)$-space is a Banach space of the form

$$
C(K)=\{f: K \rightarrow \mathbb{K}: f \text { is continuous }\}
$$

for some compact Hausdorff space K.
Fundamental fact. For a compact Hausdorff space K,
$C(K)$ is separable $\Longleftrightarrow K$ is metrizable.
Theorem. Let K be a compact metric space.
(i) Suppose that K is finite. Then $C(K) \cong \ell_{\infty}^{n}$ for $n=|K|$.

Note: \cong means "linearly homeomorphic".
(ii) (Milutin) Suppose that K is uncountable. Then $C(K) \cong C\left(\{0,1\}^{\mathbb{N}}\right)$.
(iii) (Bessaga-Pełczyński, Studia Math. 1960) Suppose that K is countably infinite. Then there is a unique countable ordinal α such that

$$
C(K) \cong C\left[0, \omega^{\omega^{\alpha}}\right],
$$

where $\left[0, \omega^{\omega^{\alpha}}\right]$ denotes set of all ordinals not exceeding $\omega^{\omega^{\alpha}}$, endowed with the order topology. The "modern" way of determining the ordinal α is via the Szlenk index because

$$
\operatorname{Sz}\left(C\left[0, \omega^{\omega^{\alpha}}\right]\right)=\omega^{\alpha+1}
$$

This result is due to Samuel (1983).

The isomorphic classification of separable $C(K)$-spaces

Terminology. A $C(K)$-space is a Banach space of the form

$$
C(K)=\{f: K \rightarrow \mathbb{K}: f \text { is continuous }\}
$$

for some compact Hausdorff space K.
Fundamental fact. For a compact Hausdorff space K,
$C(K)$ is separable $\Longleftrightarrow K$ is metrizable.
Theorem. Let K be a compact metric space.
(i) Suppose that K is finite. Then $C(K) \cong \ell_{\infty}^{n}$ for $n=|K|$.

Note: \cong means "linearly homeomorphic".
(ii) (Milutin) Suppose that K is uncountable. Then $C(K) \cong C\left(\{0,1\}^{\mathbb{N}}\right)$.
(iii) (Bessaga-Pełczyński, Studia Math. 1960) Suppose that K is countably infinite. Then there is a unique countable ordinal α such that

$$
C(K) \cong C\left[0, \omega^{\omega^{\alpha}}\right],
$$

where $\left[0, \omega^{\omega^{\alpha}}\right]$ denotes set of all ordinals not exceeding $\omega^{\omega^{\alpha}}$, endowed with the order topology. The "modern" way of determining the ordinal α is via the Szlenk index because

$$
\operatorname{Sz}\left(C\left[0, \omega^{\omega^{\alpha}}\right]\right)=\omega^{\alpha+1}
$$

This result is due to Samuel (1983).

$C(K)$-space with few operators: Koszmider's first example

Starting point. Every $C(K)$-space admits multiplication operators:

$$
M_{f}: g \mapsto f g, \quad C(K) \rightarrow C(K),
$$

where $f \in C(K)$.

$C(K)$-space with few operators: Koszmider's first example

Starting point. Every $C(K)$-space admits multiplication operators:

$$
M_{f}: g \mapsto f g, C(K) \rightarrow C(K),
$$

where $f \in C(K)$.
Theorem (Koszmider, Math. Ann. 2004, assuming CH; Plebanek, Top. Appl. 2004, within ZFC).
There is an infinite compact Hausdorff space K such that

$$
\mathscr{B}(C(K))=\left\{M_{f}: f \in C(K)\right\}+\mathscr{W}(C(K)),
$$

where $\mathscr{W}(C(K))$ is the ideal of weakly compact operators

$C(K)$-space with few operators: Koszmider's first example

Starting point. Every $C(K)$-space admits multiplication operators:

$$
M_{f}: g \mapsto f g, \quad C(K) \rightarrow C(K),
$$

where $f \in C(K)$.
Theorem (Koszmider, Math. Ann. 2004, assuming CH; Plebanek, Top. Appl. 2004, within ZFC).
There is an infinite compact Hausdorff space K such that

$$
\mathscr{B}(C(K))=\left\{M_{f}: f \in C(K)\right\}+\mathscr{W}(C(K)),
$$

where $\mathscr{W}(C(K))$ is the ideal of weakly compact operators (= strictly singular operators $=$ operators not fixing c_{0}).

$C(K)$-space with few operators: Koszmider's first example

Starting point. Every $C(K)$-space admits multiplication operators:

$$
M_{f}: g \mapsto f g, \quad C(K) \rightarrow C(K),
$$

where $f \in C(K)$.
Theorem (Koszmider, Math. Ann. 2004, assuming CH; Plebanek, Top. Appl. 2004, within ZFC).
There is an infinite compact Hausdorff space K such that

$$
\mathscr{B}(C(K))=\left\{M_{f}: f \in C(K)\right\}+\mathscr{W}(C(K)),
$$

where $\mathscr{W}(C(K))$ is the ideal of weakly compact operators (= strictly singular operators $=$ operators not fixing c_{0}).

Note: $C(K)$ is a Grothendieck space, that is, every weak*-convergent sequence in $C(K)^{*}$ converges weakly.

$C(K)$-space with few operators: Koszmider's first example

Starting point. Every $C(K)$-space admits multiplication operators:

$$
M_{f}: g \mapsto f g, \quad C(K) \rightarrow C(K),
$$

where $f \in C(K)$.
Theorem (Koszmider, Math. Ann. 2004, assuming CH; Plebanek, Top. Appl. 2004, within ZFC).
There is an infinite compact Hausdorff space K such that

$$
\mathscr{B}(C(K))=\left\{M_{f}: f \in C(K)\right\}+\mathscr{W}(C(K)),
$$

where $\mathscr{W}(C(K))$ is the ideal of weakly compact operators (= strictly singular operators $=$ operators not fixing c_{0}).

Note: $C(K)$ is a Grothendieck space, that is, every weak*-convergent sequence in $C(K)^{*}$ converges weakly.

Consequence: $C(K)$ does not contain any complemented subspaces isomorphic to c_{0}.

$C(K)$-space with few operators: Koszmider's first example

Starting point. Every $C(K)$-space admits multiplication operators:

$$
M_{f}: g \mapsto f g, \quad C(K) \rightarrow C(K),
$$

where $f \in C(K)$.
Theorem (Koszmider, Math. Ann. 2004, assuming CH; Plebanek, Top. Appl. 2004, within ZFC).
There is an infinite compact Hausdorff space K such that

$$
\mathscr{B}(C(K))=\left\{M_{f}: f \in C(K)\right\}+\mathscr{W}(C(K)),
$$

where $\mathscr{W}(C(K))$ is the ideal of weakly compact operators (= strictly singular operators $=$ operators not fixing c_{0}).

Note: $C(K)$ is a Grothendieck space, that is, every weak*-convergent sequence in $C(K)^{*}$ converges weakly.

Consequence: $C(K)$ does not contain any complemented subspaces isomorphic to c_{0}.

$C(K)$-space with few operators: Koszmider's second example

Theorem (Koszmider, PAMS 2005, assuming CH; Koszmider-L, Adv. Math. 2021, within ZFC).
There is an uncountable, almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ such that

$$
\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)=\mathbb{K} \operatorname{ld}+\mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right),
$$

where $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$ is the scalar field and

$$
\mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)=\left\{T \in \mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right): T \text { has separable range }\right\} .
$$

$C(K)$-space with few operators: Koszmider's second example

Theorem (Koszmider, PAMS 2005, assuming CH; Koszmider-L, Adv. Math. 2021, within ZFC).
There is an uncountable, almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ such that

$$
\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)=\mathbb{K} \operatorname{ld}+\mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right),
$$

where $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$ is the scalar field and

$$
\mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)=\left\{T \in \mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right): T \text { has separable range }\right\} .
$$

Remarks. Let $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ be an almost disjoint family. Then:

- $C_{0}\left(K_{\mathcal{A}}\right)$ contains a complemented copy of c_{0}, so it is not a Grothendieck space.

$C(K)$-space with few operators: Koszmider's second example

Theorem (Koszmider, PAMS 2005, assuming CH; Koszmider-L, Adv. Math. 2021, within ZFC).
There is an uncountable, almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ such that

$$
\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)=\mathbb{K} \mathrm{Id}+\mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right),
$$

where $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$ is the scalar field and

$$
\mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)=\left\{T \in \mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right): T \text { has separable range }\right\} .
$$

Remarks. Let $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ be an almost disjoint family. Then:

- $C_{0}\left(K_{\mathcal{A}}\right)$ contains a complemented copy of c_{0}, so it is not a Grothendieck space.
- $C_{0}\left(K_{\mathcal{A}}\right) \cong C\left(\alpha K_{\mathcal{A}}\right)$, where $\alpha K_{\mathcal{A}}$ is the one-point compactification of $K_{\mathcal{A}}$.

$C(K)$-space with few operators: Koszmider's second example

Theorem (Koszmider, PAMS 2005, assuming CH; Koszmider-L, Adv. Math. 2021, within ZFC).
There is an uncountable, almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ such that

$$
\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)=\mathbb{K} \operatorname{ld}+\mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right),
$$

where $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$ is the scalar field and

$$
\mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)=\left\{T \in \mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right): T \text { has separable range }\right\} .
$$

Remarks. Let $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ be an almost disjoint family. Then:

- $C_{0}\left(K_{\mathcal{A}}\right)$ contains a complemented copy of c_{0}, so it is not a Grothendieck space.
- $C_{0}\left(K_{\mathcal{A}}\right) \cong C\left(\alpha K_{\mathcal{A}}\right)$, where $\alpha K_{\mathcal{A}}$ is the one-point compactification of $K_{\mathcal{A}}$. In particular, $C_{0}\left(K_{\mathcal{A}}\right)$ is isomorphic to a $C(K)$-space.

$C(K)$-space with few operators: Koszmider's second example

Theorem (Koszmider, PAMS 2005, assuming CH; Koszmider-L, Adv. Math. 2021, within ZFC).
There is an uncountable, almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ such that

$$
\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)=\mathbb{K} \mathrm{Id}+\mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right),
$$

where $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$ is the scalar field and

$$
\mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)=\left\{T \in \mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right): T \text { has separable range }\right\} .
$$

Remarks. Let $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ be an almost disjoint family. Then:

- $C_{0}\left(K_{\mathcal{A}}\right)$ contains a complemented copy of c_{0}, so it is not a Grothendieck space.
- $C_{0}\left(K_{\mathcal{A}}\right) \cong C\left(\alpha K_{\mathcal{A}}\right)$, where $\alpha K_{\mathcal{A}}$ is the one-point compactification of $K_{\mathcal{A}}$. In particular, $C_{0}\left(K_{\mathcal{A}}\right)$ is isomorphic to a $C(K)$-space.
- Every separable subspace of $C_{0}\left(K_{\mathcal{A}}\right)$ is contained in a subspace isomorphic to c_{0}

$C(K)$-space with few operators: Koszmider's second example

Theorem (Koszmider, PAMS 2005, assuming CH; Koszmider-L, Adv. Math. 2021, within ZFC).
There is an uncountable, almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ such that

$$
\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)=\mathbb{K} \operatorname{ld}+\mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right),
$$

where $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$ is the scalar field and

$$
\mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)=\left\{T \in \mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right): T \text { has separable range }\right\} .
$$

Remarks. Let $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ be an almost disjoint family. Then:

- $C_{0}\left(K_{\mathcal{A}}\right)$ contains a complemented copy of c_{0}, so it is not a Grothendieck space.
- $C_{0}\left(K_{\mathcal{A}}\right) \cong C\left(\alpha K_{\mathcal{A}}\right)$, where $\alpha K_{\mathcal{A}}$ is the one-point compactification of $K_{\mathcal{A}}$. In particular, $C_{0}\left(K_{\mathcal{A}}\right)$ is isomorphic to a $C(K)$-space.
- Every separable subspace of $C_{0}\left(K_{\mathcal{A}}\right)$ is contained in a subspace isomorphic to c_{0}, so

$$
\begin{aligned}
\mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)=\left\{C_{0}\left(K_{\mathcal{A}}\right) \xrightarrow{S} c_{0} \xrightarrow{T} C_{0}\left(K_{\mathcal{A}}\right):\right. & S \in \mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right), c_{0}\right), \\
& \left.T \in \mathscr{B}\left(c_{0}, C_{0}\left(K_{\mathcal{A}}\right)\right)\right\} .
\end{aligned}
$$

$C(K)$-space with few operators: Koszmider's second example

Theorem (Koszmider, PAMS 2005, assuming CH; Koszmider-L, Adv. Math. 2021, within ZFC).
There is an uncountable, almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ such that

$$
\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)=\mathbb{K} \operatorname{ld}+\mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right),
$$

where $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$ is the scalar field and

$$
\mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)=\left\{T \in \mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right): T \text { has separable range }\right\} .
$$

Remarks. Let $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ be an almost disjoint family. Then:

- $C_{0}\left(K_{\mathcal{A}}\right)$ contains a complemented copy of c_{0}, so it is not a Grothendieck space.
- $C_{0}\left(K_{\mathcal{A}}\right) \cong C\left(\alpha K_{\mathcal{A}}\right)$, where $\alpha K_{\mathcal{A}}$ is the one-point compactification of $K_{\mathcal{A}}$. In particular, $C_{0}\left(K_{\mathcal{A}}\right)$ is isomorphic to a $C(K)$-space.
- Every separable subspace of $C_{0}\left(K_{\mathcal{A}}\right)$ is contained in a subspace isomorphic to c_{0}, so

$$
\begin{aligned}
\mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)=\left\{C_{0}\left(K_{\mathcal{A}}\right) \xrightarrow{S} c_{0} \xrightarrow{T} C_{0}\left(K_{\mathcal{A}}\right):\right. & S \in \mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right), c_{0}\right), \\
& \left.T \in \mathscr{B}\left(c_{0}, C_{0}\left(K_{\mathcal{A}}\right)\right)\right\} .
\end{aligned}
$$

Consequences of the main theorem: Self-maps and decompositions

Recall:
Theorem (Koszmider, PAMS 2005, assuming CH; Koszmider-L, Adv. Math. 2021, within ZFC).
There is an uncountable, almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ such that

$$
\begin{equation*}
\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)=\mathbb{K} \operatorname{ld}+\mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right) . \tag{*}
\end{equation*}
$$

Consequences of the main theorem: Self-maps and decompositions

Recall:
Theorem (Koszmider, PAMS 2005, assuming CH; Koszmider-L, Adv. Math. 2021, within ZFC).
There is an uncountable, almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ such that

$$
\begin{equation*}
\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)=\mathbb{K} \operatorname{ld}+\mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right) . \tag{*}
\end{equation*}
$$

In the next few results, we assume that $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ is an uncountable, almost disjoint family such that $(*)$ is satisfied. We say that " \mathcal{A} admits few operators".

Consequences of the main theorem: Self-maps and decompositions

Recall:
Theorem (Koszmider, PAMS 2005, assuming CH; Koszmider-L, Adv. Math. 2021, within ZFC).
There is an uncountable, almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ such that

$$
\begin{equation*}
\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)=\mathbb{K} \operatorname{ld}+\mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right) . \tag{*}
\end{equation*}
$$

In the next few results, we assume that $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ is an uncountable, almost disjoint family such that $(*)$ is satisfied. We say that " \mathcal{A} admits few operators".

Theorem (Koszmider-L). Let $\phi: K_{\mathcal{A}} \rightarrow K_{\mathcal{A}}$ be a continuous self-map. Then:

- either ϕ has countable range,

Consequences of the main theorem: Self-maps and decompositions

Recall:
Theorem (Koszmider, PAMS 2005, assuming CH; Koszmider-L, Adv. Math. 2021, within ZFC).
There is an uncountable, almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ such that

$$
\begin{equation*}
\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)=\mathbb{K} \operatorname{ld}+\mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right) . \tag{*}
\end{equation*}
$$

In the next few results, we assume that $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ is an uncountable, almost disjoint family such that $(*)$ is satisfied. We say that " \mathcal{A} admits few operators".

Theorem (Koszmider-L). Let $\phi: K_{\mathcal{A}} \rightarrow K_{\mathcal{A}}$ be a continuous self-map. Then:

- either ϕ has countable range,
- or ϕ fixes all but countably many points of $K_{\mathcal{A}}$.

Consequences of the main theorem: Self-maps and decompositions

Recall:
Theorem (Koszmider, PAMS 2005, assuming CH; Koszmider-L, Adv. Math. 2021, within ZFC).
There is an uncountable, almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ such that

$$
\begin{equation*}
\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)=\mathbb{K} \operatorname{ld}+\mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right) . \tag{*}
\end{equation*}
$$

In the next few results, we assume that $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ is an uncountable, almost disjoint family such that $(*)$ is satisfied. We say that " \mathcal{A} admits few operators".

Theorem (Koszmider-L). Let $\phi: K_{\mathcal{A}} \rightarrow K_{\mathcal{A}}$ be a continuous self-map. Then:

- either ϕ has countable range,
- or ϕ fixes all but countably many points of $K_{\mathcal{A}}$.

Theorem (Koszmider 2005). $C_{0}\left(K_{\mathcal{A}}\right)$ has no non-trivial decompositions.

Consequences of the main theorem: Self-maps and decompositions

Recall:
Theorem (Koszmider, PAMS 2005, assuming CH; Koszmider-L, Adv. Math. 2021, within ZFC).
There is an uncountable, almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ such that

$$
\begin{equation*}
\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)=\mathbb{K} \mathrm{Id}+\mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right) . \tag{*}
\end{equation*}
$$

In the next few results, we assume that $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ is an uncountable, almost disjoint family such that $(*)$ is satisfied. We say that " \mathcal{A} admits few operators".

Theorem (Koszmider-L). Let $\phi: K_{\mathcal{A}} \rightarrow K_{\mathcal{A}}$ be a continuous self-map. Then:

- either ϕ has countable range,
- or ϕ fixes all but countably many points of $K_{\mathcal{A}}$.

Theorem (Koszmider 2005). $C_{0}\left(K_{\mathcal{A}}\right)$ has no non-trivial decompositions. More precisely, suppose that $C_{0}\left(K_{\mathcal{A}}\right)=X \oplus Y$ for some closed, ∞-dimensional subspaces X and Y. Then $X \cong C_{0}\left(K_{\mathcal{A}}\right)$ and $Y \cong c_{0}$, or vice versa.

Consequences of the main theorem: Self-maps and decompositions

Recall:
Theorem (Koszmider, PAMS 2005, assuming CH; Koszmider-L, Adv. Math. 2021, within ZFC).
There is an uncountable, almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ such that

$$
\begin{equation*}
\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)=\mathbb{K} \mathrm{Id}+\mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right) . \tag{*}
\end{equation*}
$$

In the next few results, we assume that $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ is an uncountable, almost disjoint family such that $(*)$ is satisfied. We say that " \mathcal{A} admits few operators".

Theorem (Koszmider-L). Let $\phi: K_{\mathcal{A}} \rightarrow K_{\mathcal{A}}$ be a continuous self-map. Then:

- either ϕ has countable range,
- or ϕ fixes all but countably many points of $K_{\mathcal{A}}$.

Theorem (Koszmider 2005). $C_{0}\left(K_{\mathcal{A}}\right)$ has no non-trivial decompositions. More precisely, suppose that $C_{0}\left(K_{\mathcal{A}}\right)=X \oplus Y$ for some closed, ∞-dimensional subspaces X and Y. Then $X \cong C_{0}\left(K_{\mathcal{A}}\right)$ and $Y \cong c_{0}$, or vice versa.

Consequences of main theorem: Closed ideal structure, automatic continuity and uniqueness of norm

Theorem (Kania and Kochanek, J. Op. Th. 2014; Brooker, unpublished). Let $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ be an uncountable, almost disjoint family which admits few operators. Then $\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)$ contains exactly four closed ideals:

$$
\{0\} \subset \mathscr{K}\left(C_{0}\left(K_{\mathcal{A}}\right)\right) \subset \mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right) \subset \mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right) .
$$

Consequences of main theorem: Closed ideal structure, automatic continuity and uniqueness of norm

Theorem (Kania and Kochanek, J. Op. Th. 2014; Brooker, unpublished). Let $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ be an uncountable, almost disjoint family which admits few operators. Then $\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)$ contains exactly four closed ideals:

$$
\{0\} \subset \mathscr{K}\left(C_{0}\left(K_{\mathcal{A}}\right)\right) \subset \mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right) \subset \mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right) .
$$

Theorem (Koszmider-L). Let $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ be an uncountable, almost disjoint family which admits few operators. Then every homomorphism from $\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)$ into a Banach algebra is continuous.

Consequences of main theorem: Closed ideal structure, automatic continuity and uniqueness of norm

Theorem (Kania and Kochanek, J. Op. Th. 2014; Brooker, unpublished). Let $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ be an uncountable, almost disjoint family which admits few operators. Then $\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)$ contains exactly four closed ideals:

$$
\{0\} \subset \mathscr{K}\left(C_{0}\left(K_{\mathcal{A}}\right)\right) \subset \mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right) \subset \mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right) .
$$

Theorem (Koszmider-L). Let $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ be an uncountable, almost disjoint family which admits few operators. Then every homomorphism from $\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)$ into a Banach algebra is continuous.

Theorem (Arnott-L, in preparation). Let $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ be an uncountable, almost disjoint family which admits few operators. Then every quotient of $\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)$ by a closed ideal has a unique algebra norm.

Consequences of main theorem: Closed ideal structure, automatic continuity and uniqueness of norm

Theorem (Kania and Kochanek, J. Op. Th. 2014; Brooker, unpublished). Let $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ be an uncountable, almost disjoint family which admits few operators. Then $\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)$ contains exactly four closed ideals:

$$
\{0\} \subset \mathscr{K}\left(C_{0}\left(K_{\mathcal{A}}\right)\right) \subset \mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right) \subset \mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right) .
$$

Theorem (Koszmider-L). Let $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ be an uncountable, almost disjoint family which admits few operators. Then every homomorphism from $\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)$ into a Banach algebra is continuous.

Theorem (Arnott-L, in preparation). Let $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ be an uncountable, almost disjoint family which admits few operators. Then every quotient of $\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)$ by a closed ideal has a unique algebra norm.

Complemented subspaces of $C(K)$-spaces

Long-standing conjecture: Every complemented subspace of a $C(K)$-space is isomorphic to a $C(K)$-space (not necessarily for the same K).

Complemented subspaces of $C(K)$-spaces

Long-standing conjecture: Every complemented subspace of a $C(K)$-space is isomorphic to a $C(K)$-space (not necessarily for the same K).
This conjecture has recently been disproved by Plebanek and Salguero Alarcón:

Complemented subspaces of $C(K)$-spaces

Long-standing conjecture: Every complemented subspace of a $C(K)$-space is isomorphic to a $C(K)$-space (not necessarily for the same K).
This conjecture has recently been disproved by Plebanek and Salguero Alarcón:
Theorem. (Plebanek and Salguero Alarcón, preprint 2021). There exists an uncountable, almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ such that $C_{0}\left(K_{\mathcal{A}}\right)$ contains a complemented subspace which is not isomorphic to any $C(K)$-space.

Complemented subspaces of $C(K)$-spaces

Long-standing conjecture: Every complemented subspace of a $C(K)$-space is isomorphic to a $C(K)$-space (not necessarily for the same K).
This conjecture has recently been disproved by Plebanek and Salguero Alarcón:
Theorem. (Plebanek and Salguero Alarcón, preprint 2021). There exists an uncountable, almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ such that $C_{0}\left(K_{\mathcal{A}}\right)$ contains a complemented subspace which is not isomorphic to any $C(K)$-space.

The conjecture is still open for separable $C(K)$-spaces.

Complemented subspaces of $C(K)$-spaces

Long-standing conjecture: Every complemented subspace of a $C(K)$-space is isomorphic to a $C(K)$-space (not necessarily for the same K).
This conjecture has recently been disproved by Plebanek and Salguero Alarcón:
Theorem. (Plebanek and Salguero Alarcón, preprint 2021). There exists an uncountable, almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ such that $C_{0}\left(K_{\mathcal{A}}\right)$ contains a complemented subspace which is not isomorphic to any $C(K)$-space.

The conjecture is still open for separable $C(K)$-spaces.
Evidence supporting it in the separable case:

- c_{0} is prime (Pełczyński, Studia Math. 1960), that is, every complemented, ∞-dimensional subspace of c_{0} is isomorphic to c_{0}.

Complemented subspaces of $C(K)$-spaces

Long-standing conjecture: Every complemented subspace of a $C(K)$-space is isomorphic to a $C(K)$-space (not necessarily for the same K).
This conjecture has recently been disproved by Plebanek and Salguero Alarcón:
Theorem. (Plebanek and Salguero Alarcón, preprint 2021). There exists an uncountable, almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ such that $C_{0}\left(K_{\mathcal{A}}\right)$ contains a complemented subspace which is not isomorphic to any $C(K)$-space.

The conjecture is still open for separable $C(K)$-spaces.
Evidence supporting it in the separable case:

- c_{0} is prime (Pełczyński, Studia Math. 1960), that is, every complemented, ∞-dimensional subspace of c_{0} is isomorphic to c_{0}.
- Every complemented, ∞-dimensional subspace of $C\left[0, \omega^{\omega}\right]$ is isomorphic to either c_{0} or $C\left[0, \omega^{\omega}\right]$ (Benyamini, Israel J. Math. 1978).

Complemented subspaces of $C(K)$-spaces

Long-standing conjecture: Every complemented subspace of a $C(K)$-space is isomorphic to a $C(K)$-space (not necessarily for the same K).
This conjecture has recently been disproved by Plebanek and Salguero Alarcón:
Theorem. (Plebanek and Salguero Alarcón, preprint 2021). There exists an uncountable, almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ such that $C_{0}\left(K_{\mathcal{A}}\right)$ contains a complemented subspace which is not isomorphic to any $C(K)$-space.

The conjecture is still open for separable $C(K)$-spaces.
Evidence supporting it in the separable case:

- c_{0} is prime (Pełczyński, Studia Math. 1960), that is, every complemented, ∞-dimensional subspace of c_{0} is isomorphic to c_{0}.
- Every complemented, ∞-dimensional subspace of $C\left[0, \omega^{\omega}\right]$ is isomorphic to either c_{0} or $C\left[0, \omega^{\omega}\right]$ (Benyamini, Israel J. Math. 1978).

Some questions

Question. Which unital Banach algebras of density at most \mathfrak{c} are isomorphic to

$$
\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right) / \mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)
$$

for some uncountable, almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$?

Some questions

Question. Which unital Banach algebras of density at most \mathfrak{c} are isomorphic to

$$
\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right) / \mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)
$$

for some uncountable, almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$?
We propose this as a counterpart for Mrówka spaces of the
Calkin algebra question: Which unital Banach algebras are isomorphic to the quotient $\mathscr{B}(X) / \mathscr{K}(X)$ for some Banach space X ?

Some questions

Question. Which unital Banach algebras of density at most \mathfrak{c} are isomorphic to

$$
\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right) / \mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)
$$

for some uncountable, almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$?
We propose this as a counterpart for Mrówka spaces of the
Calkin algebra question: Which unital Banach algebras are isomorphic to the quotient $\mathscr{B}(X) / \mathscr{K}(X)$ for some Banach space X ?

Question. Is there an uncountable, almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ such that $\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)$ admits a discontinuous homomorphism into a Banach algebra?

Some questions

Question. Which unital Banach algebras of density at most \mathfrak{c} are isomorphic to

$$
\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right) / \mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)
$$

for some uncountable, almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$?
We propose this as a counterpart for Mrówka spaces of the
Calkin algebra question: Which unital Banach algebras are isomorphic to the quotient $\mathscr{B}(X) / \mathscr{K}(X)$ for some Banach space X ?

Question. Is there an uncountable, almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ such that $\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)$ admits a discontinuous homomorphism into a Banach algebra?

Question. Within ZFC, is there a compact Hausdorff space K such that $\mathscr{B}(C(K))$ admits a discontinuous homomorphism into a Banach algebra?

Some questions

Question. Which unital Banach algebras of density at most \mathfrak{c} are isomorphic to

$$
\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right) / \mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)
$$

for some uncountable, almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$?
We propose this as a counterpart for Mrówka spaces of the
Calkin algebra question: Which unital Banach algebras are isomorphic to the quotient $\mathscr{B}(X) / \mathscr{K}(X)$ for some Banach space X ?

Question. Is there an uncountable, almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ such that $\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)$ admits a discontinuous homomorphism into a Banach algebra?

Question. Within ZFC, is there a compact Hausdorff space K such that $\mathscr{B}(C(K))$ admits a discontinuous homomorphism into a Banach algebra?

Thank you!

Some questions

Question. Which unital Banach algebras of density at most \mathfrak{c} are isomorphic to

$$
\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right) / \mathscr{X}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)
$$

for some uncountable, almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$?
We propose this as a counterpart for Mrówka spaces of the
Calkin algebra question: Which unital Banach algebras are isomorphic to the quotient $\mathscr{B}(X) / \mathscr{K}(X)$ for some Banach space X ?

Question. Is there an uncountable, almost disjoint family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ such that $\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)$ admits a discontinuous homomorphism into a Banach algebra?

Question. Within ZFC, is there a compact Hausdorff space K such that $\mathscr{B}(C(K))$ admits a discontinuous homomorphism into a Banach algebra?

Thank you!

