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Definition
Let S be a semigroup and w : S — (0,00). We define

Q:SxS—R, (s,t)— —te

We say that Q O—clusters on S x S if, for (x,), (¥m) sequences of distinct
elements of S then

lim lim Q(x, ym) = lim lim Q(x,,ym) =0

n—o0 m—oo m—00 N— o0

whenever both iterated limits exist.

Theorem (Craw-Young,1973)

Let S be a semigroup and w a weight on S. If Q 0—clusters on S x S
then (1(S,w) is (AR). If S is a [weakly] cancellative semigroup then
(1(S,w) (AR) implies that Q 0—clusters.
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When S = N these definitions are equivalent the classical limits.

Are they different in any other set S7
Let S=Q™ ={seQ:s>0}

o w: Q% —[1,00) such thatw(s) =1 (s € [1,2]), lims_ 0o w(s) = 0
Then Lim inf w < oc.
° wlp/q)=p+q

(p, g € N are coprime). Hence Lim w = oo
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Proposition (C.)
Let (S, A) be an infinite semi-lattice and let w be a bounded weight on
S. Then A, is strongly Arens irregular if and only if cl+ S is scattered.
Proposition (C.)

Let (S, A) be an infinite semi-lattice and let w be a weight on S.
Suppose that for every p € FX and every net (s,) such that s, — p, the
set {w(sy)} is unbounded. Then A, is not strongly Arens irregular.
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Example 1

Let S=Z,and T = {—oc0} URU {o0}
Consider w a weight on S such that

lim w(n) =00, supw(n) <M < o,

n—oo n<0

for M > 1. Then A, is neither Arens regular nor strongly Arens irregular.
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Final example

Given S such that cl+ S is not scattered, and w on S such that A, is
strongly Arens irregular.
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ank you for your attention
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