
Lancaster University
m.celorrioramirez@lancaster.ac.uk

M.Eugenia Celorrio

Arens Regularity of Weighted
Semigroup Algebras of Totally

Ordered Semigroups

Banach Algebras and Applications
Universidad de Granada

18-06-2022



Notation and motivation

Introduction to Arens products
Topological centres
Arens regularity

Weighted semigroup algebras
S = N∧
Generalization



Notation and motivation

• Given E a Banach space. We shall denote as E ′ its dual space and
as E ′′ the bidual.

• Given a set S , βS is the Stone-C̆ech compactification of S and
S∗ = βS \ S .

• Given a set S and s ∈ S , δs is the characteristic function of {s}.
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Essential property of Banach spaces is that the canonical embedding
κE : E −→ E ′′ is an isometric isomorphism.

Given a Banach algebra A.
Question:Is there any product in A′′ such that κA : A −→ A′′ is also an
algebra homomorphism?

Two products in A′′ give an affirmative answer to that question: the first
and second Arens products.
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First and second Arens products

Definition

Let M,N ∈ A′′. Take (aα), (bβ) in A, such that M = lim
α

aα and

N = lim
β

bβ with respect to the weak-∗ topology.

Then the first and second Arens products are

M□N = lim
α

lim
β

aαbβ , M♢N = lim
β

lim
α

aαbβ ,

where the limits are again in the weak-∗ topology on A′′.

It follows that both □ and ♢ are associative and so (A′′,□) and (A′′,♢)
are Banach algebras containing A as a closed subalgebra. [Arens,1951]
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Topological centres

Definition

Let A be a Banach algebra.

• Left topological centre of A′′

Z(ℓ)(A′′) = {M ∈ A′′ : M□N = M♢N (N ∈ A′′)}.

• Right topological centre of A′′

Z(r)(A′′) = {M ∈ A′′ : N□M = N♢M (N ∈ A′′)}.

Remark

When A is commutative, M□N = N♢M (M,N ∈ A′′).

• Topological centre of A′′

Z(A′′) = {M ∈ A′′ : M□N = M♢N (N ∈ A′′)}.
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Arens regularity

How big can these sets be?

• A ⊂ Z(ℓ)(A′′), (repectively A ⊂ Z(r)(A′′)).

• Z(ℓ)(A′′) ⊂ A′′, (repectively Z(r)(A′′) ⊂ A′′).

Definition

Let A be a Banach algebra.

• A is Arens regular (AR) if Z(ℓ)(A′′) = Z(r)(A′′) = A′′;

• A is strongly Arens irregular (SAI) if Z(ℓ)(A′′) = Z(r)(A′′) = A. [Dales-
Lau, 2005]

Remark

When A is commutative

M□N = M♢N = N□M (M,N ∈ A′′).

• A is Arens regular if and only if (A′′,□) is commutative.
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Other characterization of Arens regularity

Theorem

Let A be a Banach algebra. Then A is Arens regular if and only if
WAP(A) = A′.

This characterization leads to a different ”measurement” of Arens
irregularity, known as extremely non-Arens regularity , [Granirer, 1996].
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Weighted semigroup algebras

Definitions

• Let S be a semigroup. A function ω : S −→ (0,∞) is a weight on S
if

ω(st) ≤ ω(s)ω(t) (s, t ∈ S).

• Given a semigroup S and ω : S −→ (0,∞) a weight on S . The
weighted semigroup algebra of S is the Banach space

Aω := ℓ1(S , ω) =

{
α =

∑
s∈S

α(s)δs : ||α||ω =
∑
s∈S

|α(s)|ω(s) < ∞

}
,

with convolution product:

δs ⋆ δt = δst (s, t ∈ S).
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Weighted semigroup algebras

Known facts

• These Banach algebras are semi-simple and they give Banach Function
Algebras.

• A′
ω := ℓ∞(S , 1/ω) =

{
λ ∈ CS : sup{|λ(s)|/ω(s) : s ∈ S} < ∞

}
,

∥λ∥ω = sup{|λ(s)|/ω(s) : s ∈ S} (λ ∈ ℓ∞(S , 1/ω)).

• Eω = c0(S , 1/ω) is a Banach-space predual.

• When ω = 1 we can identify ℓ1(S)′′ with M(βS).
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Definition

Let S be a semigroup and ω : S → (0,∞). We define

Ω : S × S −→ R, (s, t) 7→ ω(st)

ω(s)ω(t)
.

We say that Ω 0−clusters on S × S if, for (xn), (ym) sequences of distinct
elements of S then

lim
n→∞

lim
m→∞

Ω(xn, ym) = lim
m→∞

lim
n→∞

Ω(xn, ym) = 0

whenever both iterated limits exist.

Theorem (Craw-Young,1973)

Let S be a semigroup and ω a weight on S. If Ω 0−clusters on S × S
then ℓ1(S , ω) is (AR). If S is a [weakly] cancellative semigroup then
ℓ1(S , ω) (AR) implies that Ω 0−clusters.
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Closer look at S = N∧

Consider the semigroup S := N with the semigroup operation

m ∧ n = min{m, n} (m, n ∈ N).

Every sequence ω : N −→ [1,∞) is a weight on N.

Theorem (Dales-Dedania, 2009)

Consider the semigroup N∧ and let ω : N → [1,∞) such that
lim

n→∞
ω(n) = ∞. Then Aω = ℓ1(N∧, ω) is Arens regular.

Proposition (Dales-Lau-Strauss,2010)

Let consider the semigroup N∧. The Banach algebra ℓ1(N∧) is (SAI) and
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What does limω = ∞ mean?

Definitions

Let S be an infinite set. Let ω : S −→ R.
• Lim ω = C (C ∈ R): ∀ε > 0, there is a finite set F of S such that

|ω(s)− C | < ε (s ∈ S \ F ).

• Lim ω = ∞ : ∀M > 0, there is a finite set F of S such that

ω(s) > M (s ∈ S \ F ).

• Lim inf ω < ∞ iff it is not true that Lim ω = ∞, i.e. there exists
M > 0 such that the set {s ∈ S : ω(s) < M} is inifinite.
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Do they work in N?
When S = N these definitions are equivalent the classical limits.

Are they different in any other set S?

Let S = Q+• = {s ∈ Q : s > 0}
• ω : Q+• → [1,∞) such that ω(s) = 1 (s ∈ [1, 2]), lims→∞ ω(s) = ∞.
Then Lim inf ω < ∞.

• ω(p/q) = p + q (p, q ∈ N are coprime). Hence Lim ω = ∞.
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Totally ordered semigroups

Definitions

• Let S be an infinite, semi-lattice and consider the semigroup operation

s ∧ t = min{s, t} (s, t ∈ S).

• A completion of S is a set T ⊃ S s.t.

◦ T is a totally ordered set that preserves the order in S ;
◦ T has a minimum and a maximum,
◦ T is complete (every non-empty subset of T has a supremum

and an infimum)
◦ We consider the interval topology on T (T is a compact topo-

logical semigroup)
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Main result

Theorem (C.)

Let (S ,∧) be an infinite semi-lattice. Let ω a weight on S . Then the
following conditions are equivalent:

(a) the algebra Aω is Arens regular;

(b) Lims→∞ ω(s) = ∞;

(c) M□N = M♢N = 0 (M,N ∈ E⊥
ω ).

Sketch of the proof

(b) ⇒(c) ⇐⇒(a) follows from Eω Banach algebra predual
(a) ⇒ (b) When Lim inf ω < ∞ we can find p, q ∈ Aω

′′ \Aω such that
p□q ̸= p♢q.
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Example 1

Let S = Z, and T = {−∞} ∪ R ∪ {∞}
Consider ω a weight on S such that

lim
n→∞

ω(n) = ∞, sup
n<0

ω(n) ≤ M < ∞,

for M ≥ 1. Then Aω is neither Arens regular nor strongly Arens irregular.

Example 2

Let S = Q+• = {p ∈ Q : p > 0}.
Consider ω : Q → [1,∞) such that ω(p) = 1 (p ∈ [0, 1] ∩ S) and such
that lim

p→∞
ω(p) = ∞. Then Aω is not strongly Arens irregular.
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