

Lancaster University m.celorrioramirez@lancaster.ac.uk M.Eugenia Celorrio

Arens Regularity of Weighted Semigroup Algebras of Totally Ordered Semigroups

Banach Algebras and Applications Universidad de Granada 18-06-2022 Notation and motivation

Introduction to Arens products

Topological centres Arens regularity

Weighted semigroup algebras $S = \mathbb{N}_{\wedge}$ Generalization

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Given *E* a Banach space. We shall denote as *E'* its dual space and as *E''* the bidual.
- Given a set *S*, βS is the Stone-Čech compactification of *S* and $S^* = \beta S \setminus S$.
- Given a set S and $s \in S$, δ_s is the characteristic function of $\{s\}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Given E a Banach space. We shall denote as E' its dual space and as E'' the bidual.
- Given a set *S*, βS is the Stone-Čech compactification of *S* and $S^* = \beta S \setminus S$.
- Given a set S and $s \in S$, δ_s is the characteristic function of $\{s\}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Given *E* a Banach space. We shall denote as *E'* its dual space and as *E''* the bidual.
- Given a set S, βS is the Stone-Čech compactification of S and $S^* = \beta S \setminus S$.
- Given a set S and $s \in S$, δ_s is the characteristic function of $\{s\}$.

- Given *E* a Banach space. We shall denote as *E'* its dual space and as *E''* the bidual.
- Given a set *S*, βS is the Stone-Čech compactification of *S* and $S^* = \beta S \setminus S$.
- Given a set S and $s \in S$, δ_s is the characteristic function of $\{s\}$.

- Given *E* a Banach space. We shall denote as *E'* its dual space and as *E''* the bidual.
- Given a set *S*, βS is the Stone-Čech compactification of *S* and $S^* = \beta S \setminus S$.
- Given a set S and $s \in S$, δ_s is the characteristic function of $\{s\}$.

- Given *E* a Banach space. We shall denote as *E'* its dual space and as *E''* the bidual.
- Given a set *S*, βS is the Stone-Čech compactification of *S* and $S^* = \beta S \setminus S$.
- Given a set S and $s \in S$, δ_s is the characteristic function of $\{s\}$.

Essential property of Banach spaces is that the canonical embedding $\kappa_E: E \longrightarrow E''$ is an isometric isomorphism.

Given a Banach algebra A. Question: Is there any product in A'' such that $\kappa_A : A \longrightarrow A''$ is also an algebra homomorphism?

Two products in A'' give an affirmative answer to that question: the first and second Arens products.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Essential property of Banach spaces is that the canonical embedding $\kappa_E : E \longrightarrow E''$ is an isometric isomorphism.

Given a Banach algebra A. Question: Is there any product in A'' such that $\kappa_A : A \longrightarrow A''$ is also an algebra homomorphism?

Two products in A'' give an affirmative answer to that question: the first and second Arens products.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Essential property of Banach spaces is that the canonical embedding $\kappa_E: E \longrightarrow E''$ is an isometric isomorphism.

Given a Banach algebra A. Question: Is there any product in A'' such that $\kappa_A : A \longrightarrow A''$ is also an algebra homomorphism?

Two products in A'' give an affirmative answer to that question: the first and second Arens products.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Essential property of Banach spaces is that the canonical embedding $\kappa_E: E \longrightarrow E''$ is an isometric isomorphism.

Given a Banach algebra A. Question: Is there any product in A'' such that $\kappa_A : A \longrightarrow A''$ is also an algebra homomorphism?

Two products in A'' give an affirmative answer to that question: the first and second Arens products.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let $M, N \in A''$. Take (a_{α}) , (b_{β}) in A, such that $M = \lim_{\alpha} a_{\alpha}$ and $N = \lim_{\beta} b_{\beta}$ with respect to the weak-* topology. Then the *first and second Arens products* are

$$M\Box N = \lim_{\alpha} \lim_{\beta} a_{\alpha} b_{\beta}, \quad M \Diamond N = \lim_{\beta} \lim_{\alpha} a_{\alpha} b_{\beta},$$

where the limits are again in the weak-* topology on A''.

It follows that both \Box and \Diamond are associative and so (A'', \Box) and (A'', \Diamond) are Banach algebras containing A as a closed subalgebra. [Arens,1951]

Let $M, N \in A''$. Take (a_{α}) , (b_{β}) in A, such that $M = \lim_{\alpha} a_{\alpha}$ and $N = \lim_{\beta} b_{\beta}$ with respect to the weak-* topology. Then the first and second Arens products are

$$M\Box N = \lim_{\alpha} \lim_{\beta} a_{\alpha} b_{\beta}, \quad M\Diamond N = \lim_{\beta} \lim_{\alpha} a_{\alpha} b_{\beta},$$

where the limits are again in the weak-* topology on A''.

It follows that both \Box and \Diamond are associative and so (A'', \Box) and (A'', \Diamond) are Banach algebras containing A as a closed subalgebra. [Arens,1951]

◆□▶ ◆冊▶ ◆臣▶ ◆臣▶ ─ 臣 ─

Let $M, N \in A''$. Take (a_{α}) , (b_{β}) in A, such that $M = \lim_{\alpha} a_{\alpha}$ and $N = \lim_{\beta} b_{\beta}$ with respect to the weak-* topology. Then the *first and second Arens products* are

$$M\Box N = \lim_{\alpha} \lim_{\beta} a_{\alpha} b_{\beta}, \quad M\Diamond N = \lim_{\beta} \lim_{\alpha} a_{\alpha} b_{\beta},$$

where the limits are again in the weak-* topology on A''.

It follows that both \Box and \Diamond are associative and so (A'', \Box) and (A'', \Diamond) are Banach algebras containing A as a closed subalgebra. [Arens,1951]

Let $M, N \in A''$. Take (a_{α}) , (b_{β}) in A, such that $M = \lim_{\alpha} a_{\alpha}$ and $N = \lim_{\beta} b_{\beta}$ with respect to the weak-* topology. Then the *first and second Arens products* are

$$M\Box N = \lim_{\alpha} \lim_{\beta} a_{\alpha} b_{\beta}, \quad M \Diamond N = \lim_{\beta} \lim_{\alpha} a_{\alpha} b_{\beta},$$

where the limits are again in the weak-* topology on A''.

It follows that both \Box and \Diamond are associative and so (A'', \Box) and (A'', \Diamond) are Banach algebras containing A as a closed subalgebra. [Arens,1951]

Let $M, N \in A''$. Take (a_{α}) , (b_{β}) in A, such that $M = \lim_{\alpha} a_{\alpha}$ and $N = \lim_{\beta} b_{\beta}$ with respect to the weak-* topology. Then the *first and second Arens products* are

$$M\Box N = \lim_{\alpha} \lim_{\beta} a_{\alpha} b_{\beta}, \quad M \Diamond N = \lim_{\beta} \lim_{\alpha} a_{\alpha} b_{\beta},$$

where the limits are again in the weak-* topology on A''.

It follows that both \Box and \Diamond are associative and so (A'', \Box) and (A'', \Diamond) are Banach algebras containing A as a closed subalgebra. [Arens,1951]

Definition

Let A be a Banach algebra.

• Left topological centre of A"

 $\mathfrak{Z}^{(\ell)}(A'') = \{ M \in A'' : M \Box N = M \Diamond N \quad (N \in A'') \}.$

• Right topological centre of A"

$$\mathfrak{Z}^{(r)}(\mathcal{A}'') = \{ M \in \mathcal{A}'' : N \Box M = N \Diamond M \quad (N \in \mathcal{A}'') \}.$$

Remark

When A is commutative, $M \Box N = N \Diamond M$ $(M, N \in A'')$.

• Topological centre of A"

 $\mathfrak{Z}(A'') = \{ M \in A'' : M \Box N = M \Diamond N \quad (N \in A'') \}$

Definition

Let A be a Banach algebra.

• Left topological centre of A"

$$\mathfrak{Z}^{(\ell)}(A'') = \{ M \in A'' : M \Box N = M \Diamond N \quad (N \in A'') \}.$$

• Right topological centre of A"

$$\mathfrak{Z}^{(r)}(\mathcal{A}'') = \{ M \in \mathcal{A}'' : N \Box M = N \Diamond M \quad (N \in \mathcal{A}'') \}.$$

Remark

When A is commutative, $M \Box N = N \Diamond M$ $(M, N \in A'')$.

• Topological centre of A"

 $\mathfrak{Z}(A'') = \{ M \in A'' : M \Box N = M \Diamond N \quad (N \in A'') \}$

イロン イロン イモン イモン

Definition

Let A be a Banach algebra.

• Left topological centre of A"

$$\mathfrak{Z}^{(\ell)}(\mathcal{A}'') = \{ M \in \mathcal{A}'' : M \Box N = M \Diamond N \quad (N \in \mathcal{A}'') \}.$$

• Right topological centre of A"

$$\mathfrak{Z}^{(r)}(\mathcal{A}'') = \{ M \in \mathcal{A}'' : N \Box M = N \Diamond M \quad (N \in \mathcal{A}'') \}.$$

Remark

When A is commutative, $M \Box N = N \Diamond M$ $(M, N \in A'')$.

• Topological centre of A"

 $\mathfrak{Z}(A'') = \{ M \in A'' : M \Box N = M \Diamond N \quad (N \in A'') \}$

Definition

Let A be a Banach algebra.

• Left topological centre of A"

$$\mathfrak{Z}^{(\ell)}(A'') = \{ M \in A'' : M \Box N = M \Diamond N \quad (N \in A'') \}.$$

• Right topological centre of A"

$$\mathfrak{Z}^{(r)}(A'') = \{ M \in A'' : N \Box M = N \Diamond M \quad (N \in A'') \}.$$

Remark

When A is commutative, $M \Box N = N \Diamond M$ $(M, N \in A'')$.

• Topological centre of A"

$$\mathfrak{Z}(A'') = \{ M \in A'' : M \Box N = M \Diamond N \quad (N \in A'') \}.$$

-2

Definition

Let A be a Banach algebra.

• Left topological centre of A"

$$\mathfrak{Z}^{(\ell)}(A'') = \{ M \in A'' : M \Box N = M \Diamond N \quad (N \in A'') \}.$$

• Right topological centre of A"

$$\mathfrak{Z}^{(r)}(A'') = \{ M \in A'' : N \Box M = N \Diamond M \quad (N \in A'') \}.$$

Remark

When A is commutative, $M \Box N = N \Diamond M$ $(M, N \in A'')$.

• Topological centre of A"

$$\mathfrak{Z}(A'') = \{ M \in A'' : M \Box N = M \Diamond N \quad (N \in A'') \}.$$

-2

How big can these sets be?

- $A \subset \mathfrak{Z}^{(\ell)}(A'')$, (repectively $A \subset \mathfrak{Z}^{(r)}(A'')$).
- $\mathfrak{Z}^{(\ell)}(A'') \subset A''$, (repectively $\mathfrak{Z}^{(r)}(A'') \subset A''$).

Definition

Let A be a Banach algebra.

- A is Arens regular (AR) if $\mathfrak{Z}^{(\ell)}(A'') = \mathfrak{Z}^{(r)}(A'') = A'';$
- A is strongly Arens irregular (SAI) if $\mathfrak{Z}^{(\ell)}(A'') = \mathfrak{Z}^{(r)}(A'') = A$. [Dales-Lau, 2005]

Remark

When A is commutative

$$M \Box N = M \Diamond N = N \Box M \quad (M, N \in A'').$$

How big can these sets be?

- $A \subset \mathfrak{Z}^{(\ell)}(A'')$, (repectively $A \subset \mathfrak{Z}^{(r)}(A'')$).
- $\mathfrak{Z}^{(\ell)}(A'') \subset A''$, (repectively $\mathfrak{Z}^{(r)}(A'') \subset A''$).

Definition

Let A be a Banach algebra.

- A is Arens regular (AR) if $\mathfrak{Z}^{(\ell)}(A'') = \mathfrak{Z}^{(r)}(A'') = A'';$
- A is strongly Arens irregular (SAI) if $\mathfrak{Z}^{(\ell)}(A'') = \mathfrak{Z}^{(r)}(A'') = A$. [Dales-Lau, 2005]

Remark

When A is commutative

$$M \Box N = M \Diamond N = N \Box M \quad (M, N \in A'').$$

How big can these sets be?

- $A \subset \mathfrak{Z}^{(\ell)}(A'')$, (repectively $A \subset \mathfrak{Z}^{(r)}(A'')$).
- $\mathfrak{Z}^{(\ell)}(A'') \subset A''$, (repectively $\mathfrak{Z}^{(r)}(A'') \subset A''$).

Definition

Let A be a Banach algebra.

- A is Arens regular (AR) if $\mathfrak{Z}^{(\ell)}(A'') = \mathfrak{Z}^{(r)}(A'') = A'';$
- A is strongly Arens irregular (SAI) if $\mathfrak{Z}^{(\ell)}(A'') = \mathfrak{Z}^{(r)}(A'') = A$. [Dales-Lau, 2005]

Remark

When A is commutative

$$M \Box N = M \Diamond N = N \Box M \quad (M, N \in A'').$$

How big can these sets be?

- $A \subset \mathfrak{Z}^{(\ell)}(A'')$, (repectively $A \subset \mathfrak{Z}^{(r)}(A'')$).
- $\mathfrak{Z}^{(\ell)}(A'') \subset A''$, (repectively $\mathfrak{Z}^{(r)}(A'') \subset A''$).

Definition

Let A be a Banach algebra.

- A is Arens regular (AR) if $\mathfrak{Z}^{(\ell)}(A'') = \mathfrak{Z}^{(r)}(A'') = A'';$
- A is strongly Arens irregular (SAI) if $\mathfrak{Z}^{(\ell)}(A'') = \mathfrak{Z}^{(r)}(A'') = A$. [Dales-Lau, 2005]

Remark

When A is commutative

$$M \Box N = M \Diamond N = N \Box M \quad (M, N \in A'').$$

ALPADPREPAER E 9900

How big can these sets be?

- $A \subset \mathfrak{Z}^{(\ell)}(A'')$, (repectively $A \subset \mathfrak{Z}^{(r)}(A'')$).
- $\mathfrak{Z}^{(\ell)}(A'') \subset A''$, (repectively $\mathfrak{Z}^{(r)}(A'') \subset A''$).

Definition

Let A be a Banach algebra.

- A is Arens regular (AR) if $\mathfrak{Z}^{(\ell)}(A'') = \mathfrak{Z}^{(r)}(A'') = A'';$
- A is strongly Arens irregular (SAI) if $\mathfrak{Z}^{(\ell)}(A'') = \mathfrak{Z}^{(r)}(A'') = A$. [Dales-Lau, 2005]

Remark

When A is commutative

$$M \Box N = M \Diamond N = N \Box M \quad (M, N \in A'').$$

How big can these sets be?

- $A \subset \mathfrak{Z}^{(\ell)}(A'')$, (repectively $A \subset \mathfrak{Z}^{(r)}(A'')$).
- $\mathfrak{Z}^{(\ell)}(A'') \subset A''$, (repectively $\mathfrak{Z}^{(r)}(A'') \subset A''$).

Definition

Let A be a Banach algebra.

- A is Arens regular (AR) if $\mathfrak{Z}^{(\ell)}(A'') = \mathfrak{Z}^{(r)}(A'') = A'';$
- A is strongly Arens irregular (SAI) if $\mathfrak{Z}^{(\ell)}(A'') = \mathfrak{Z}^{(r)}(A'') = A$. [Dales-Lau, 2005]

Remark

When A is commutative

$$M\Box N = M\Diamond N = N\Box M \quad (M, N \in A'').$$

ALMADINA ENAEN E 9990

How big can these sets be?

- $A \subset \mathfrak{Z}^{(\ell)}(A'')$, (repectively $A \subset \mathfrak{Z}^{(r)}(A'')$).
- $\mathfrak{Z}^{(\ell)}(A'') \subset A''$, (repectively $\mathfrak{Z}^{(r)}(A'') \subset A''$).

Definition

Let A be a Banach algebra.

- A is Arens regular (AR) if $\mathfrak{Z}^{(\ell)}(A'') = \mathfrak{Z}^{(r)}(A'') = A'';$
- A is strongly Arens irregular (SAI) if $\mathfrak{Z}^{(\ell)}(A'') = \mathfrak{Z}^{(r)}(A'') = A$. [Dales-Lau, 2005]

Remark

When A is commutative

$$M\Box N = M\Diamond N = N\Box M \quad (M, N \in A'').$$

ALMADINA ENAEN E 9990

Let A be a Banach algebra. Then A is Arens regular if and only if $\mathcal{WAP}(A) = A'$.

This characterization leads to a different "measurement" of Arens irregularity, known as *extremely non-Arens regularity*, [Granirer, 1996].

Let A be a Banach algebra. Then A is Arens regular if and only if $\mathcal{WAP}(A) = A'$.

This characterization leads to a different "measurement" of Arens irregularity, known as *extremely non-Arens regularity*, [Granirer, 1996].

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Let A be a Banach algebra. Then A is Arens regular if and only if $\mathcal{WAP}(A) = A'$.

This characterization leads to a different "measurement" of Arens irregularity, known as *extremely non-Arens regularity*, [Granirer, 1996].

Let A be a Banach algebra. Then A is Arens regular if and only if $\mathcal{WAP}(A) = A'$.

This characterization leads to a different "measurement" of Arens irregularity, known as *extremely non-Arens regularity*, [Granirer, 1996].

• Let S be a semigroup. A function $\omega: S \longrightarrow (0,\infty)$ is a *weight* on S if

$$\omega(st) \leq \omega(s)\omega(t) \quad (s,t\in S).$$

• Given a semigroup S and $\omega : S \longrightarrow (0, \infty)$ a weight on S. The weighted semigroup algebra of S is the Banach space

$$\mathcal{A}_{\omega} := \ell^1(S, \omega) = \left\{ \alpha = \sum_{s \in S} \alpha(s) \delta_s : ||\alpha||_{\omega} = \sum_{s \in S} |\alpha(s)|\omega(s) < \infty \right\},$$

with convolution product:

$$\delta_s \star \delta_t = \delta_{st} \quad (s, t \in S).$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 ● ④ ●

Weighted semigroup algebras

Definitions

- Let S be a semigroup. A function ω : S → (0,∞) is a weight on S if
 ω(st) ≤ ω(s)ω(t) (s, t ∈ S).
- Given a semigroup S and $\omega : S \longrightarrow (0, \infty)$ a weight on S. The weighted semigroup algebra of S is the Banach space

$$\mathcal{A}_{\omega} := \ell^1(S, \omega) = \left\{ \alpha = \sum_{s \in S} \alpha(s) \delta_s : ||\alpha||_{\omega} = \sum_{s \in S} |\alpha(s)|\omega(s) < \infty \right\},$$

with convolution product:

$$\delta_s \star \delta_t = \delta_{st} \quad (s, t \in S).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Weighted semigroup algebras

Definitions

• Let S be a semigroup. A function $\omega: S \longrightarrow (0,\infty)$ is a *weight* on S if

$$\omega(st) \leq \omega(s)\omega(t) \quad (s,t\in S).$$

• Given a semigroup S and $\omega : S \longrightarrow (0, \infty)$ a weight on S. The weighted semigroup algebra of S is the Banach space

$$\mathcal{A}_{\omega} := \ell^1(\mathcal{S}, \omega) = \left\{ \alpha = \sum_{s \in \mathcal{S}} \alpha(s) \delta_s : ||\alpha||_{\omega} = \sum_{s \in \mathcal{S}} |\alpha(s)|\omega(s) < \infty \right\},$$

with convolution product:

$$\delta_s \star \delta_t = \delta_{st} \quad (s, t \in S).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Weighted semigroup algebras

Definitions

• Let S be a semigroup. A function $\omega: S \longrightarrow (0,\infty)$ is a *weight* on S if

$$\omega(st) \leq \omega(s)\omega(t) \quad (s,t\in S).$$

• Given a semigroup S and $\omega : S \longrightarrow (0, \infty)$ a weight on S. The weighted semigroup algebra of S is the Banach space

$$\mathcal{A}_{\omega} := \ell^1(\mathcal{S}, \omega) = \left\{ \alpha = \sum_{s \in \mathcal{S}} \alpha(s) \delta_s : ||\alpha||_{\omega} = \sum_{s \in \mathcal{S}} |\alpha(s)|\omega(s) < \infty \right\},$$

with convolution product:

$$\delta_s \star \delta_t = \delta_{st} \quad (s, t \in S).$$

• These Banach algebras are semi-simple and they give Banach Function Algebras.

•
$$\mathcal{A}'_{\omega} := \ell^{\infty}(S, 1/\omega) = \left\{ \lambda \in \mathbb{C}^{S} : \sup\{|\lambda(s)|/\omega(s) : s \in S\} < \infty \right\},$$

 $\|\lambda\|_{\omega} = \sup\{|\lambda(s)|/\omega(s): s \in S\} \quad (\lambda \in \ell^{\infty}(S, 1/\omega)).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $E_{\omega} = c_0(S, 1/\omega)$ is a Banach-space predual.
- When $\omega = 1$ we can identify $\ell^1(S)''$ with $M(\beta S)$.

- These Banach algebras are semi-simple and they give Banach Function Algebras.
- $\mathcal{A}'_{\omega} := \ell^{\infty}(S, 1/\omega) = \left\{ \lambda \in \mathbb{C}^{S} : \sup\{ |\lambda(s)|/\omega(s) : s \in S \} < \infty \right\},$

 $\|\lambda\|_{\omega} = \sup\{|\lambda(s)|/\omega(s): s \in S\} \quad (\lambda \in \ell^{\infty}(S, 1/\omega)).$

A D N A 目 N A E N A E N A B N A C N

- $E_{\omega} = c_0(S, 1/\omega)$ is a Banach-space predual.
- When $\omega = 1$ we can identify $\ell^1(S)''$ with $M(\beta S)$.

• These Banach algebras are semi-simple and they give Banach Function Algebras.

•
$$\mathcal{A}'_{\omega} := \ell^{\infty}(S, 1/\omega) = \left\{\lambda \in \mathbb{C}^{S} : \sup\{|\lambda(s)|/\omega(s) : s \in S\} < \infty\right\},$$

$$\|\lambda\|_{\omega} = \sup\{|\lambda(s)|/\omega(s):s\in S\} \quad (\lambda\in\ell^\infty(S,1/\omega)).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $E_{\omega} = c_0(S, 1/\omega)$ is a Banach-space predual.
- When $\omega = 1$ we can identify $\ell^1(S)''$ with $M(\beta S)$.

• These Banach algebras are semi-simple and they give Banach Function Algebras.

•
$$\mathcal{A}'_{\omega} := \ell^{\infty}(S, 1/\omega) = \left\{\lambda \in \mathbb{C}^{S} : \sup\{|\lambda(s)|/\omega(s) : s \in S\} < \infty\right\},$$

$$\|\lambda\|_{\omega} = \sup\{|\lambda(s)|/\omega(s): s \in S\} \quad (\lambda \in \ell^{\infty}(S, 1/\omega)).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $E_{\omega} = c_0(S, 1/\omega)$ is a Banach-space predual.
- When $\omega = 1$ we can identify $\ell^1(S)''$ with $M(\beta S)$.

• These Banach algebras are semi-simple and they give Banach Function Algebras.

•
$$\mathcal{A}'_{\omega} := \ell^{\infty}(S, 1/\omega) = \left\{\lambda \in \mathbb{C}^{S} : \sup\{|\lambda(s)|/\omega(s) : s \in S\} < \infty\right\},$$

$$\|\lambda\|_{\omega} = \sup\{|\lambda(s)|/\omega(s): s \in S\} \quad (\lambda \in \ell^{\infty}(S, 1/\omega)).$$

- $E_{\omega} = c_0(S, 1/\omega)$ is a Banach-space predual.
- When $\omega = 1$ we can identify $\ell^1(S)''$ with $M(\beta S)$.

• These Banach algebras are semi-simple and they give Banach Function Algebras.

•
$$\mathcal{A}'_{\omega} := \ell^{\infty}(S, 1/\omega) = \left\{\lambda \in \mathbb{C}^{S} : \sup\{|\lambda(s)|/\omega(s) : s \in S\} < \infty\right\},$$

$$\|\lambda\|_{\omega} = \sup\{|\lambda(s)|/\omega(s): s \in S\} \quad (\lambda \in \ell^{\infty}(S, 1/\omega)).$$

- $E_{\omega} = c_0(S, 1/\omega)$ is a Banach-space predual.
- When $\omega = 1$ we can identify $\ell^1(S)''$ with $M(\beta S)$.

Let S be a semigroup and $\omega: S \to (0,\infty)$. We define

$$\Omega: S \times S \longrightarrow \mathbb{R}, \quad (s,t) \mapsto \frac{\omega(st)}{\omega(s)\omega(t)}.$$

We say that Ω 0-clusters on $S \times S$ if, for $(x_n), (y_m)$ sequences of distinct elements of S then

$$\lim_{n\to\infty}\lim_{m\to\infty}\Omega(x_n,y_m)=\lim_{m\to\infty}\lim_{n\to\infty}\Omega(x_n,y_m)=0$$

whenever both iterated limits exist.

Theorem (Craw-Young,1973)

Let S be a semigroup and ω a weight on S. If Ω 0-clusters on S × S then $\ell^1(S, \omega)$ is (AR). If S is a [weakly] cancellative semigroup then $\ell^1(S, \omega)$ (AR) implies that Ω 0-clusters.

Let S be a semigroup and $\omega: S \to (0,\infty)$. We define

$$\Omega: S \times S \longrightarrow \mathbb{R}, \quad (s,t) \mapsto rac{\omega(st)}{\omega(s)\omega(t)}.$$

We say that Ω 0-clusters on $S \times S$ if, for $(x_n), (y_m)$ sequences of distinct elements of S then

$$\lim_{n\to\infty}\lim_{m\to\infty}\Omega(x_n,y_m)=\lim_{m\to\infty}\lim_{n\to\infty}\Omega(x_n,y_m)=0$$

whenever both iterated limits exist.

Theorem (Craw-Young,1973)

Let S be a semigroup and ω a weight on S. If Ω 0-clusters on $S \times S$ then $\ell^1(S, \omega)$ is (AR). If S is a [weakly] cancellative semigroup then $\ell^1(S, \omega)$ (AR) implies that Ω 0-clusters.

イロト 不得 トイヨト イヨト ニヨー

Let S be a semigroup and $\omega: S \to (0,\infty)$. We define

$$\Omega: S \times S \longrightarrow \mathbb{R}, \quad (s,t) \mapsto rac{\omega(st)}{\omega(s)\omega(t)}.$$

We say that Ω 0-clusters on $S \times S$ if, for $(x_n), (y_m)$ sequences of distinct elements of S then

$$\lim_{n\to\infty}\lim_{m\to\infty}\Omega(x_n,y_m)=\lim_{m\to\infty}\lim_{n\to\infty}\Omega(x_n,y_m)=0$$

whenever both iterated limits exist.

Theorem (Craw-Young,1973)

Let S be a semigroup and ω a weight on S. If Ω 0-clusters on S × S then $\ell^1(S, \omega)$ is (AR). If S is a [weakly] cancellative semigroup then $\ell^1(S, \omega)$ (AR) implies that Ω 0-clusters.

Let S be a semigroup and $\omega: S \to (0,\infty)$. We define

$$\Omega: S \times S \longrightarrow \mathbb{R}, \quad (s,t) \mapsto rac{\omega(st)}{\omega(s)\omega(t)}.$$

We say that Ω 0-clusters on $S \times S$ if, for $(x_n), (y_m)$ sequences of distinct elements of S then

$$\lim_{n\to\infty}\lim_{m\to\infty}\Omega(x_n,y_m)=\lim_{m\to\infty}\lim_{n\to\infty}\Omega(x_n,y_m)=0$$

whenever both iterated limits exist.

Theorem (Craw-Young, 1973)

Let S be a semigroup and ω a weight on S. If Ω 0-clusters on $S \times S$ then $\ell^1(S, \omega)$ is (AR). If S is a [weakly] cancellative semigroup then $\ell^1(S, \omega)$ (AR) implies that Ω 0-clusters.

Let S be a semigroup and $\omega: S \to (0,\infty)$. We define

$$\Omega: S \times S \longrightarrow \mathbb{R}, \quad (s,t) \mapsto rac{\omega(st)}{\omega(s)\omega(t)}.$$

We say that Ω 0-clusters on $S \times S$ if, for $(x_n), (y_m)$ sequences of distinct elements of S then

$$\lim_{n\to\infty}\lim_{m\to\infty}\Omega(x_n,y_m)=\lim_{m\to\infty}\lim_{n\to\infty}\Omega(x_n,y_m)=0$$

whenever both iterated limits exist.

Theorem (Craw-Young, 1973)

Let S be a semigroup and ω a weight on S. If Ω 0-clusters on $S \times S$ then $\ell^1(S, \omega)$ is (AR). If S is a [weakly] cancellative semigroup then $\ell^1(S, \omega)$ (AR) implies that Ω 0-clusters.

$m \wedge n = \min\{m, n\} \quad (m, n \in \mathbb{N}).$

Every sequence $\omega : \mathbb{N} \longrightarrow [1, \infty)$ is a weight on \mathbb{N} .

Theorem (Dales-Dedania, 2009)

Consider the semigroup \mathbb{N}_{\wedge} and let $\omega : \mathbb{N} \to [1, \infty)$ such that $\lim_{n \to \infty} \omega(n) = \infty$. Then $\mathcal{A}_{\omega} = \ell^1(\mathbb{N}_{\wedge}, \omega)$ is Arens regular.

Proposition (Dales-Lau-Strauss, 2010)

Let consider the semigroup \mathbb{N}_{\wedge} . The Banach algebra $\ell^1(\mathbb{N}_{\wedge})$ is (SAI) and it has a 2 point DTC set.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$m \wedge n = \min\{m, n\} \quad (m, n \in \mathbb{N}).$$

Every sequence $\omega : \mathbb{N} \longrightarrow [1, \infty)$ is a weight on \mathbb{N} .

Theorem (Dales-Dedania, 2009)

Consider the semigroup \mathbb{N}_{\wedge} and let $\omega : \mathbb{N} \to [1, \infty)$ such that $\lim_{n \to \infty} \omega(n) = \infty$. Then $\mathcal{A}_{\omega} = \ell^1(\mathbb{N}_{\wedge}, \omega)$ is Arens regular.

Proposition (Dales-Lau-Strauss, 2010)

Let consider the semigroup \mathbb{N}_{\wedge} . The Banach algebra $\ell^1(\mathbb{N}_{\wedge})$ is (SAI) and it has a 2 point DTC set.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$m \wedge n = \min\{m, n\} \quad (m, n \in \mathbb{N}).$$

Every sequence $\omega : \mathbb{N} \longrightarrow [1, \infty)$ is a weight on \mathbb{N} .

Theorem (Dales-Dedania, 2009)

Consider the semigroup \mathbb{N}_{\wedge} and let $\omega : \mathbb{N} \to [1, \infty)$ such that $\lim_{n \to \infty} \omega(n) = \infty$. Then $\mathcal{A}_{\omega} = \ell^1(\mathbb{N}_{\wedge}, \omega)$ is Arens regular.

Proposition (Dales-Lau-Strauss, 2010)

Let consider the semigroup \mathbb{N}_{\wedge} . The Banach algebra $\ell^1(\mathbb{N}_{\wedge})$ is (SAI) and it has a 2 point DTC set.

$$m \wedge n = \min\{m, n\} \quad (m, n \in \mathbb{N}).$$

Every sequence $\omega : \mathbb{N} \longrightarrow [1, \infty)$ is a weight on \mathbb{N} .

Theorem (Dales-Dedania, 2009)

Consider the semigroup \mathbb{N}_{\wedge} and let $\omega : \mathbb{N} \to [1, \infty)$ such that $\lim_{n \to \infty} \omega(n) = \infty$. Then $\mathcal{A}_{\omega} = \ell^1(\mathbb{N}_{\wedge}, \omega)$ is Arens regular.

Proposition (Dales-Lau-Strauss, 2010)

Let consider the semigroup \mathbb{N}_{\wedge} . The Banach algebra $\ell^1(\mathbb{N}_{\wedge})$ is (SAI) and it has a 2 point DTC set.

$$m \wedge n = \min\{m, n\} \quad (m, n \in \mathbb{N}).$$

Every sequence $\omega : \mathbb{N} \longrightarrow [1, \infty)$ is a weight on \mathbb{N} .

Theorem (Dales-Dedania, 2009)

Consider the semigroup \mathbb{N}_{\wedge} and let $\omega : \mathbb{N} \to [1, \infty)$ such that $\lim_{n \to \infty} \omega(n) = \infty$. Then $\mathcal{A}_{\omega} = \ell^1(\mathbb{N}_{\wedge}, \omega)$ is Arens regular.

Proposition (Dales-Lau-Strauss, 2010)

Let consider the semigroup \mathbb{N}_{\wedge} . The Banach algebra $\ell^1(\mathbb{N}_{\wedge})$ is (SAI) and it has a 2 point DTC set.

Proposition (C.)

Let $\omega : \mathbb{N} \to [1,\infty)$ such that $\liminf_{n \to \infty} \omega(n) < \infty$. Then \mathcal{A}_{ω} is (SAI). It has a 2 point DTC set.

Proposition (C.)

Let $\omega : \mathbb{N} \to [1,\infty)$ such that $\liminf_{n \to \infty} \omega(n) < \infty$. Then \mathcal{A}_{ω} is (SAI). It has a 2 point DTC set.

- \mathcal{A}_{ω} is (AR) when $\lim \omega = \infty$.
- \mathcal{A}_{ω} is (SAI) when lim inf $\omega < \infty$.

When we are trying to generalise to a semigroup S, there are several questions.

- What does $\lim \omega = \infty$ mean?
- What properties of this semigroup are relevant in this dichotomy?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- \mathcal{A}_{ω} is (AR) when $\lim \omega = \infty$.
- \mathcal{A}_{ω} is (SAI) when $\liminf \omega < \infty$.

When we are trying to generalise to a semigroup S, there are several questions.

- What does $\lim \omega = \infty$ mean?
- What properties of this semigroup are relevant in this dichotomy?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- \mathcal{A}_{ω} is (AR) when $\lim \omega = \infty$.
- \mathcal{A}_{ω} is (SAI) when $\liminf \omega < \infty$.

When we are trying to generalise to a semigroup S, there are several questions.

- What does $\lim \omega = \infty$ mean?
- What properties of this semigroup are relevant in this dichotomy?

- \mathcal{A}_{ω} is (AR) when $\lim \omega = \infty$.
- \mathcal{A}_{ω} is (SAI) when $\liminf \omega < \infty$.

When we are trying to generalise to a semigroup S, there are several questions.

- What does $\lim \omega = \infty$ mean?
- What properties of this semigroup are relevant in this dichotomy?

- \mathcal{A}_{ω} is (AR) when $\lim \omega = \infty$.
- \mathcal{A}_{ω} is (SAI) when $\liminf \omega < \infty$.

When we are trying to generalise to a semigroup S, there are several questions.

- What does $\lim \omega = \infty$ mean?
- What properties of this semigroup are relevant in this dichotomy?

- \mathcal{A}_{ω} is (AR) when $\lim \omega = \infty$.
- \mathcal{A}_{ω} is (SAI) when $\liminf \omega < \infty$.

When we are trying to generalise to a semigroup S, there are several questions.

- What does $\lim \omega = \infty$ mean?
- What properties of this semigroup are relevant in this dichotomy?

- \mathcal{A}_{ω} is (AR) when $\lim \omega = \infty$.
- \mathcal{A}_{ω} is (SAI) when $\liminf \omega < \infty$.

When we are trying to generalise to a semigroup S, there are several questions.

- What does $\lim \omega = \infty$ mean?
- What properties of this semigroup are relevant in this dichotomy?

Let S be an infinite set. Let $\omega : S \longrightarrow \mathbb{R}$.

• Lim $\omega = C$ ($C \in \mathbb{R}$): $\forall \varepsilon > 0$, there is a finite set F of S such that

$$|\omega(s) - C| < \varepsilon \quad (s \in S \setminus F).$$

• Lim $\omega = \infty$: $\forall M > 0$, there is a finite set F of S such that

$$\omega(s) > M \quad (s \in S \setminus F).$$

Lim inf ω < ∞ iff it is not true that Lim ω = ∞, i.e. there exists M > 0 such that the set {s ∈ S : ω(s) < M} is inifinite.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let S be an infinite set. Let $\omega : S \longrightarrow \mathbb{R}$.

• Lim $\omega = C$ $(C \in \mathbb{R})$: $\forall \varepsilon > 0$, there is a finite set F of S such that

$|\omega(s) - C| < \varepsilon \quad (s \in S \setminus F).$

• Lim $\omega = \infty$: $\forall M > 0$, there is a finite set F of S such that

 $\omega(s) > M \quad (s \in S \setminus F).$

Lim inf ω < ∞ iff it is not true that Lim ω = ∞, i.e. there exists M > 0 such that the set {s ∈ S : ω(s) < M} is inifinite.

Let S be an infinite set. Let $\omega : S \longrightarrow \mathbb{R}$.

• Lim $\omega = C$ $(C \in \mathbb{R})$: $\forall \varepsilon > 0$, there is a finite set F of S such that

$$|\omega(s) - C| < \varepsilon \quad (s \in S \setminus F).$$

• Lim $\omega = \infty$: $\forall M > 0$, there is a finite set F of S such that

$$\omega(s) > M \quad (s \in S \setminus F).$$

Lim inf ω < ∞ iff it is not true that Lim ω = ∞, i.e. there exists M > 0 such that the set {s ∈ S : ω(s) < M} is inifinite.

Let S be an infinite set. Let $\omega : S \longrightarrow \mathbb{R}$.

• Lim $\omega = C$ $(C \in \mathbb{R})$: $\forall \varepsilon > 0$, there is a finite set F of S such that

$$|\omega(s) - C| < \varepsilon \quad (s \in S \setminus F).$$

• Lim $\omega = \infty$: $\forall M > 0$, there is a finite set F of S such that

$$\omega(s) > M \quad (s \in S \setminus F).$$

Lim inf ω < ∞ iff it is not true that Lim ω = ∞, i.e. there exists M > 0 such that the set {s ∈ S : ω(s) < M} is inifinite.

Let S be an infinite set. Let $\omega : S \longrightarrow \mathbb{R}$.

• Lim $\omega = C$ $(C \in \mathbb{R})$: $\forall \varepsilon > 0$, there is a finite set F of S such that

$$|\omega(s) - C| < \varepsilon \quad (s \in S \setminus F).$$

• Lim $\omega = \infty$: $\forall M > 0$, there is a finite set F of S such that

$$\omega(s) > M \quad (s \in S \setminus F).$$

Lim inf ω < ∞ iff it is not true that Lim ω = ∞, i.e. there exists M > 0 such that the set {s ∈ S : ω(s) < M} is inifinite.

When $S = \mathbb{N}$ these definitions are equivalent the classical limits.

Are they different in any other set S?

Let $S = \mathbb{Q}^{+\bullet} = \{s \in \mathbb{Q} : s > 0\}$

• $\omega : \mathbb{Q}^{+\bullet} \to [1, \infty)$ such that $\omega(s) = 1$ ($s \in [1, 2]$), $\lim_{s \to \infty} \omega(s) = \infty$. Then Lim inf $\omega < \infty$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

When $S = \mathbb{N}$ these definitions are equivalent the classical limits.

Are they different in any other set S?

Let $S = \mathbb{Q}^{+\bullet} = \{s \in \mathbb{Q} : s > 0\}$

• $\omega : \mathbb{Q}^{+\bullet} \to [1, \infty)$ such that $\omega(s) = 1$ $(s \in [1, 2])$, $\lim_{s \to \infty} \omega(s) = \infty$. Then Lim inf $\omega < \infty$.

When $S = \mathbb{N}$ these definitions are equivalent the classical limits.

Are they different in any other set S?

Let $S = \mathbb{Q}^{+\bullet} = \{s \in \mathbb{Q} : s > 0\}$

• $\omega : \mathbb{Q}^{+\bullet} \to [1, \infty)$ such that $\omega(s) = 1$ ($s \in [1, 2]$), $\lim_{s \to \infty} \omega(s) = \infty$. Then Lim inf $\omega < \infty$.

When $S = \mathbb{N}$ these definitions are equivalent the classical limits.

Are they different in any other set S?

Let $S = \mathbb{Q}^{+\bullet} = \{s \in \mathbb{Q} : s > 0\}$

• $\omega : \mathbb{Q}^{+\bullet} \to [1, \infty)$ such that $\omega(s) = 1$ ($s \in [1, 2]$), $\lim_{s \to \infty} \omega(s) = \infty$. Then Lim inf $\omega < \infty$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

When $S = \mathbb{N}$ these definitions are equivalent the classical limits.

Are they different in any other set S?

Let $S = \mathbb{Q}^{+\bullet} = \{s \in \mathbb{Q} : s > 0\}$

• $\omega : \mathbb{Q}^{+\bullet} \to [1, \infty)$ such that $\omega(s) = 1$ ($s \in [1, 2]$), $\lim_{s \to \infty} \omega(s) = \infty$. Then Lim inf $\omega < \infty$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Do they work in \mathbb{N} ?

When $S = \mathbb{N}$ these definitions are equivalent the classical limits.

Are they different in any other set S?

Let $S = \mathbb{Q}^{+\bullet} = \{s \in \mathbb{Q} : s > 0\}$

• $\omega : \mathbb{Q}^{+\bullet} \to [1, \infty)$ such that $\omega(s) = 1$ ($s \in [1, 2]$), $\lim_{s \to \infty} \omega(s) = \infty$. Then Lim inf $\omega < \infty$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• $\omega(p/q) = p + q$ ($p, q \in \mathbb{N}$ are coprime). Hence Lim $\omega = \infty$.

Do they work in \mathbb{N} ?

When $S = \mathbb{N}$ these definitions are equivalent the classical limits.

Are they different in any other set S?

Let $S = \mathbb{Q}^{+\bullet} = \{s \in \mathbb{Q} : s > 0\}$

• $\omega : \mathbb{Q}^{+\bullet} \to [1, \infty)$ such that $\omega(s) = 1$ ($s \in [1, 2]$), $\lim_{s \to \infty} \omega(s) = \infty$. Then Lim inf $\omega < \infty$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• $\omega(p/q) = p + q$ ($p, q \in \mathbb{N}$ are coprime). Hence Lim $\omega = \infty$.

• Let S be an infinite, semi-lattice and consider the semigroup operation

$$s \wedge t = \min\{s, t\} \quad (s, t \in S).$$

- A completion of S is a set $T \supset S$ s.t.
 - T is a totally ordered set that preserves the order in S;
 - T has a minimum and a maximum,
 - *T* is complete (every non-empty subset of *T* has a supremum and an infimum)
 - We consider the interval topology on T (T is a compact topological semigroup)

• Let S be an infinite, semi-lattice and consider the semigroup operation

$$s \wedge t = \min\{s, t\} \quad (s, t \in S).$$

- A completion of S is a set $T \supset S$ s.t.
 - T is a totally ordered set that preserves the order in S;
 - T has a minimum and a maximum,
 - *T* is complete (every non-empty subset of *T* has a supremum and an infimum)
 - We consider the interval topology on T (T is a compact topological semigroup)

• Let S be an infinite, semi-lattice and consider the semigroup operation

$s \wedge t = \min\{s, t\} \quad (s, t \in S).$

- A completion of S is a set $T \supset S$ s.t.
 - T is a totally ordered set that preserves the order in S;
 - T has a minimum and a maximum,
 - *T* is complete (every non-empty subset of *T* has a supremum and an infimum)
 - We consider the interval topology on T (T is a compact topological semigroup)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Let S be an infinite, semi-lattice and consider the semigroup operation

$$s \wedge t = \min\{s, t\} \quad (s, t \in S).$$

- A completion of S is a set $T \supset S$ s.t.
 - T is a totally ordered set that preserves the order in S;
 - T has a minimum and a maximum,
 - *T* is complete (every non-empty subset of *T* has a supremum and an infimum)
 - We consider the interval topology on *T* (*T* is a compact topological semigroup)

• Let S be an infinite, semi-lattice and consider the semigroup operation

$$s \wedge t = \min\{s, t\} \quad (s, t \in S).$$

- A completion of S is a set $T \supset S$ s.t.
 - T is a totally ordered set that preserves the order in S;
 - T has a minimum and a maximum,
 - *T* is complete (every non-empty subset of *T* has a supremum and an infimum)
 - We consider the interval topology on T (T is a compact topological semigroup)

• Let S be an infinite, semi-lattice and consider the semigroup operation

$$s \wedge t = \min\{s, t\} \quad (s, t \in S).$$

- A completion of S is a set $T \supset S$ s.t.
 - T is a totally ordered set that preserves the order in S;
 - T has a minimum and a maximum,
 - *T* is complete (every non-empty subset of *T* has a supremum and an infimum)
 - We consider the interval topology on *T* (*T* is a compact topological semigroup)

• Let S be an infinite, semi-lattice and consider the semigroup operation

$$s \wedge t = \min\{s, t\} \quad (s, t \in S).$$

- A completion of S is a set $T \supset S$ s.t.
 - T is a totally ordered set that preserves the order in S;
 - T has a minimum and a maximum,
 - T is complete (every non-empty subset of T has a supremum and an infimum)
 - We consider the interval topology on *T* (*T* is a compact topological semigroup)

• Let S be an infinite, semi-lattice and consider the semigroup operation

$$s \wedge t = \min\{s, t\} \quad (s, t \in S).$$

- A completion of S is a set $T \supset S$ s.t.
 - T is a totally ordered set that preserves the order in S;
 - T has a minimum and a maximum,
 - T is complete (every non-empty subset of T has a supremum and an infimum)
 - We consider the interval topology on T (T is a compact topological semigroup)

• Let S be an infinite, semi-lattice and consider the semigroup operation

$$s \wedge t = \min\{s, t\} \quad (s, t \in S).$$

- A completion of S is a set $T \supset S$ s.t.
 - T is a totally ordered set that preserves the order in S;
 - T has a minimum and a maximum,
 - T is complete (every non-empty subset of T has a supremum and an infimum)
 - We consider the interval topology on T (T is a compact topological semigroup)

Remark

• Let S be an infinite semi-lattice. Then there always exists T a completion of S.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

• The following results do not depend on the completion chosen.

Remark

• Let S be an infinite semi-lattice. Then there always exists T a completion of S.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

• The following results do not depend on the completion chosen.

As a point of reference

Theorem (Dales, Strauss, 2022)

The semigroup algebra $(\ell^1(S), \star)$ is strongly Arens irregular if and only if $\operatorname{cl}_T S$ is scattered.

As a point of reference

Theorem (Dales, Strauss, 2022)

The semigroup algebra $(\ell^1(S), \star)$ is strongly Arens irregular if and only if $cl_T S$ is scattered.

As a point of reference

Theorem (Dales, Strauss, 2022)

The semigroup algebra $(\ell^1(S), \star)$ is strongly Arens irregular if and only if $cl_T S$ is scattered.

Let (S, \wedge) be an infinite semi-lattice. Let ω a weight on S. Then the following conditions are equivalent:

(a) the algebra \mathcal{A}_{ω} is Arens regular;

(b)
$$\lim_{s \to \infty} \omega(s) = \infty;$$

(c) $M \Box N = M \Diamond N = 0 \ (M, N \in E_{\omega}^{\perp}).$

Sketch of the proof

(b) \Rightarrow (c) \iff (a) follows from E_{ω} Banach algebra predual (a) \Rightarrow (b) When Lim inf $\omega < \infty$ we can find $p, q \in A_{\omega}'' \setminus A_{\omega}$ such that $p \Box q \neq p \Diamond q$.

Let (S, \wedge) be an infinite semi-lattice. Let ω a weight on S. Then the following conditions are equivalent:

(a) the algebra \mathcal{A}_{ω} is Arens regular;

(b)
$$\lim_{s \to \infty} \omega(s) = \infty;$$

(c)
$$M \Box N = M \Diamond N = 0 \ (M, N \in E_{\omega}^{\perp}).$$

Sketch of the proof

(b) \Rightarrow (c) \iff (a) follows from E_{ω} Banach algebra predual (a) \Rightarrow (b) When Lim inf $\omega < \infty$ we can find $p, q \in A_{\omega}'' \setminus A_{\omega}$ such that $p \Box q \neq p \Diamond q$.

Let (S, \wedge) be an infinite semi-lattice. Let ω a weight on S. Then the following conditions are equivalent:

- (a) the algebra \mathcal{A}_{ω} is Arens regular;
- (b) $\lim_{s\to\infty} \omega(s) = \infty$;
- (c) $M \Box N = M \Diamond N = 0 \ (M, N \in E_{\omega}^{\perp}).$

Sketch of the proof

(b) \Rightarrow (c) \iff (a) follows from E_{ω} Banach algebra predual (a) \Rightarrow (b) When Lim inf $\omega < \infty$ we can find $p, q \in A_{\omega}'' \setminus A_{\omega}$ such that $p \Box q \neq p \Diamond q$.

Let (S, \wedge) be an infinite semi-lattice. Let ω a weight on S. Then the following conditions are equivalent:

- (a) the algebra \mathcal{A}_{ω} is Arens regular;
- (b) $\lim_{s\to\infty} \omega(s) = \infty$;
- (c) $M \Box N = M \Diamond N = 0 \ (M, N \in E_{\omega}^{\perp}).$

Sketch of the proof

(b) \Rightarrow (c) \iff (a) follows from E_{ω} Banach algebra predual (a) \Rightarrow (b) When Lim inf $\omega < \infty$ we can find $p, q \in A_{\omega}'' \setminus A_{\omega}$ such that $p \Box q \neq p \Diamond q$.

Let (S, \wedge) be an infinite semi-lattice. Let ω a weight on S. Then the following conditions are equivalent:

- (a) the algebra \mathcal{A}_{ω} is Arens regular;
- (b) $\lim_{s\to\infty} \omega(s) = \infty$;
- (c) $M \Box N = M \Diamond N = 0 \ (M, N \in E_{\omega}^{\perp}).$

Sketch of the proof

(b) \Rightarrow (c) \iff (a) follows from E_{ω} Banach algebra predual (a) \Rightarrow (b) When Lim inf $\omega < \infty$ we can find $p, q \in A_{\omega}'' \setminus A_{\omega}$ such that $p \Box q \neq p \Diamond q$.

Let (S, \wedge) be an infinite semi-lattice and let ω be a bounded weight on S. Then \mathcal{A}_{ω} is strongly Arens irregular if and only if $cl_T S$ is scattered.

Proposition (C.)

Let (S, \wedge) be an infinite semi-lattice and let ω be a weight on S. Suppose that for every $p \in F_{\infty}^*$ and every net (s_{α}) such that $s_{\alpha} \to p$, the set $\{\omega(s_{\alpha})\}$ is unbounded. Then \mathcal{A}_{ω} is not strongly Arens irregular.

Let (S, \wedge) be an infinite semi-lattice and let ω be a bounded weight on S. Then \mathcal{A}_{ω} is strongly Arens irregular if and only if $cl_T S$ is scattered.

Proposition (C.)

Let (S, \wedge) be an infinite semi-lattice and let ω be a weight on S. Suppose that for every $p \in F_{\infty}^*$ and every net (s_{α}) such that $s_{\alpha} \to p$, the set $\{\omega(s_{\alpha})\}$ is unbounded. Then \mathcal{A}_{ω} is not strongly Arens irregular.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let (S, \wedge) be an infinite semi-lattice and let ω be a bounded weight on S. Then \mathcal{A}_{ω} is strongly Arens irregular if and only if $cl_T S$ is scattered.

Proposition (C.)

Let (S, \wedge) be an infinite semi-lattice and let ω be a weight on S. Suppose that for every $p \in F_{\infty}^*$ and every net (s_{α}) such that $s_{\alpha} \to p$, the set $\{\omega(s_{\alpha})\}$ is unbounded. Then \mathcal{A}_{ω} is not strongly Arens irregular.

Let (S, \wedge) be an infinite semi-lattice and let ω be a bounded weight on S. Then \mathcal{A}_{ω} is strongly Arens irregular if and only if $cl_T S$ is scattered.

Proposition (C.)

Let (S, \wedge) be an infinite semi-lattice and let ω be a weight on S. Suppose that for every $p \in F_{\infty}^*$ and every net (s_{α}) such that $s_{\alpha} \to p$, the set $\{\omega(s_{\alpha})\}$ is unbounded. Then \mathcal{A}_{ω} is not strongly Arens irregular.

Example 1

Let $S = \mathbb{Z}$, and $T = \{-\infty\} \cup \mathbb{R} \cup \{\infty\}$ Consider ω a weight on S such that

$$\lim_{n\to\infty}\omega(n)=\infty,\quad \sup_{n<0}\omega(n)\leq M<\infty,$$

for $M \ge 1$. Then \mathcal{A}_{ω} is neither Arens regular nor strongly Arens irregular.

Example 2

Let $S = \mathbb{Q}^{+\bullet} = \{p \in \mathbb{Q} : p > 0\}$. Consider $\omega : \mathbb{Q} \to [1, \infty)$ such that $\omega(p) = 1$ $(p \in [0, 1] \cap S)$ and such that $\lim_{p \to \infty} \omega(p) = \infty$. Then \mathcal{A}_{ω} is not strongly Arens irregular.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example 1

Let $S = \mathbb{Z}$, and $T = \{-\infty\} \cup \mathbb{R} \cup \{\infty\}$ Consider ω a weight on S such that

$$\lim_{n\to\infty}\omega(n)=\infty,\quad \sup_{n<0}\omega(n)\leq M<\infty,$$

for $M \ge 1$. Then \mathcal{A}_{ω} is neither Arens regular nor strongly Arens irregular.

Example 2

Let
$$S = \mathbb{Q}^{+\bullet} = \{p \in \mathbb{Q} : p > 0\}$$
.
Consider $\omega : \mathbb{Q} \to [1, \infty)$ such that $\omega(p) = 1$ $(p \in [0, 1] \cap S)$ and such that $\lim_{p \to \infty} \omega(p) = \infty$. Then \mathcal{A}_{ω} is not strongly Arens irregular.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Example 1

Let $S = \mathbb{Z}$, and $T = \{-\infty\} \cup \mathbb{R} \cup \{\infty\}$ Consider ω a weight on S such that

$$\lim_{n\to\infty}\omega(n)=\infty,\quad \sup_{n<0}\omega(n)\leq M<\infty,$$

for $M \ge 1$. Then \mathcal{A}_{ω} is neither Arens regular nor strongly Arens irregular.

Example 2

Let
$$S = \mathbb{Q}^{+\bullet} = \{p \in \mathbb{Q} : p > 0\}$$
.
Consider $\omega : \mathbb{Q} \to [1, \infty)$ such that $\omega(p) = 1$ $(p \in [0, 1] \cap S)$ and such that $\lim_{p \to \infty} \omega(p) = \infty$. Then \mathcal{A}_{ω} is not strongly Arens irregular.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Final example

Given S such that $cl_T S$ is not scattered, and ω on S such that A_ω is strongly Arens irregular.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Final example

Given S such that $cl_T S$ is not scattered, and ω on S such that A_ω is strongly Arens irregular.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Thank you for your attention

M.Eugenia Celorrio m.celorrioramirez@lancaster.ac.uk Lancaster University