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Práctica 1

SERIES DE FOURIER

El objetivo de esta práctica es estudiar funciones periódicas mediante series trigonométricas y
exponenciales de Fourier. Esto se hará con la ayuda del software MatLab.

1.1. Análisis del tren periódico de pulsos rectangulares

1. Preparar una rutina de MatLab que proporcione un tren periódico de pulsos rectangulares. La
rutina tendŕa el formato:

x = pulso(t,T 0,tau,A)

2. Obtener los coeficientesa0, an y bn de la serie trigonoḿetrica de Fourier paran menor o igual
a 20, para unos valores fijos deT0, τ y A, a partir de las expresiones integrales:

a0 =
1
T0

∫ t0+T0

t0

x(t)dt

an =
2
T0

∫ t0+T0

t0

x(t) cos(nω0t)dt

bn =
2
T0

∫ t0+T0

t0

x(t) sin(nω0t)dt

3. Obtener los coeficientesCn y θn correspondientes:

C0 = a0 Cn =
√

a2
n + b2

n θn = − arctan
(

bn

an

)

4. Representar gráficamente el espectro de Fourier.

5. Representar, a partir de los coeficientes, las aproximaciones a la función original obtenidas para
distintos valores deN al truncar la serie de Fourier:

x(t) ≈ a0 +
N∑

n=1

an cos(nω0t) + bn sin(nω0t) ≡ xN (t)
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2 PRÁCTICA 1. SERIES DE FOURIER

6. Calcular la SNR resultante de aproximar la función x(t) por su aproximación hasta el coefi-
cienteN -ésimoxN (t):

SNR=
σ2

x

σ2
e

SNR(dB)= 10 log10(SNR) e(t) = x(t)− xN (t)

y representar gráficamente la SNR en función deN .

7. Calcular los coeficientesGn de la serie exponencial de Fourier, a partir de la expresión integral:

Gn =
1
T0

∫ t0+T0

t0

x(t)e−jnω0tdt

8. Verificar la relacíon entre los coeficientesan, bn y Gn:

an = (Gn + G−n) bn = j(Gn −G−n)

Gn =
1
2
(an − jbn) G−n =

1
2
(an + jbn)

9. Repetir los apartados 2, 3, 4, 5 y 6 para trenes de pulsos rectangulares conτ cada vez menor y
conA cada vez mayor, manteniendo constante el productoAτ .

1.2. Linealidad del desarrollo en serie

1. Preparar una señal que sea combinación lineal de dos sẽnales de tipo tren periódico de pulsos
rectangulares con un mismo periodo:

x(t) = k1 pulso (t, T0, τ1, A1) + k2 pulso (t, T0, τ2, A2)

2. Calcular los coeficientesa0, an y bn para ambos trenes de pulsos y para la combinación lineal.
Verificar que los coeficientes son también combinacíon lineal (con los mismos coeficientesk1

y k2) y que los espectros también son combinación lineal.

3. Representar los espectros de las tres señales involucradas.

4. Representar las aproximaciones hasta el términoN -ésimo de la sẽnal combinacíon lineal.

1.3. Análisis de otras sẽnales períodicas

1. Repetir los apartados 1 a 6 de la primera sección para las sẽnales siguientes:

Una sẽnal triangular períodica.

Una sẽnal rampa.

Una sẽnal generada a partir de un polinomio de grado 3 en el intervalo[−T0/2, T0/2].
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Apéndice: Ejemplo de rutina para implementar una funcíon periódica
con MatLab

% function x = pulso(t,T0,tau,A)
% Sintaxis: x = pulso(t,T0,tau,A)
% Devuelve en x(t) un tren peri ódico de pulsos,
% de periodo T0,
% de anchura tau,
% de amplitud A
% El vector x tiene la misma estructura que el vector t

function x = pulso(t,T0,tau,A)

% llevamos t al intervalo [-T0/2,T0/2]:
k = floor(abs(t)/T0); t1 = sign(t).*(abs(t)-k*T0); t1 = t1 -
T0*(t1>T0/2); t1 = t1 + T0*(t1<=-T0/2);

% definimos la funci ón en el intervalo [-T0/2,T0/2] y la aplicamos
% sobre t1:
x = (abs(t1)<=tau/2)*A;
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Práctica 2

TRANSFORMADA DE FOURIER

El objetivo de esta práctica es construir una aproximación nuḿerica de la transformada de Fourier
y la transformada inversa de Fourier. También se van a estudiar las principales propiedades de la
transformada de Fourier sobre distintas funciones.

2.1. Transformada y transformada inversa de Fourier

1. Preparar una funciónx(t) Gaussiana:

x(t) = N (x, µ, σ) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)

para unos valores determinados deµ y σ, tomando valores det desde la media menos varias
desviaciones estándar hasta la media más varias desviaciones estándar.

2. Preparar una rutina de MatLab que calcule la transformada de Fourier de una señal especificada
mediante los vectorest y x para la frecuenciaω (o para un vector de frecuencias):

X = tr four(t,x,w)

dondeX(ω) se aproxima del modo siguiente:

X(ω) =
∫ ∞

−∞
x(t)e−jωtdt ≈

∑

i

xi exp(−jωti)∆ti

3. Calcular la transformada de Fourier para la Gaussianax(t) preparada en el apartado 1, para
un conjunto de adecuado de frecuenciasω (un conjunto de valores suficientemente denso y
suficientemente extenso). Representar la transformada de Fourier (módulo y fase deX(ω) en
función deω).

4. Preparar una rutina de MatLab que calcule la transformada inversa de Fourier de un espectro
especificado mediante los vectoresω y X, para un instante de tiempot (o para un vector de
tiempost):

x = tr inv four(w,X,t)

5



6 PRÁCTICA 2. TRANSFORMADA DE FOURIER

dondex(t) se aproxima del modo siguiente:

x(t) =
1
2π

∫ ∞

−∞
X(ω)ejωtdω ≈

∑

i

Xi exp(−jωit)∆ωi

5. Calcular la transformada inversa del espectroX(ω) obtenido en el apartado 3, y compararla
conx(t).

6. Repetir los puntos anteriores para una función x(t) de tipo pulso rectangular de amplitudA y
duracíon τ .

2.2. Propiedades de la transformada de Fourier

En esta parte de la práctica se estudiarán las propiedades de la transformada de Fourier con algu-
nos ejemplos.

2.2.1. Linealidad

Preparar dos señalesx1(t) y x2(t) de tipo Gaussiano, con diferentes valores deµ y σ, y una
combinacíon linealx(t) = k1x1(t) + k2x2(t). Calcular las transformadas de Fourier dex1(t), x2(t)
y x(t) y verificar queX(ω) = k1X1(ω) + k2X2(ω).

2.2.2. Dualidad o simetŕıa

Preparar una señal x(t) de tipo Gaussiano, con media distinta de cero y una varianza distinta de
1. Calcular su transformada de FourierX(ω) para un conjunto adecuado de valoresω. Calcular la
transformada de Fourier deX(ω) (para ello, asignarx1 = X y t1 = ω y calcular la transformada de
x1(t1), a la que llamaremosX1(ω)). CompararX1(ω) con2πx(−t) mediante:

plot(w,abs(X1),-t,2*pi*x)

2.2.3. Escalado

A partir de una funcíon x(t) Gaussiana, calcular la transformada de Fourier dex(at), multipli-
cando la variable de tiempo por una constantea (es decir,Xa=tr four(a*t,x,w) ). Verificar que:

Xa(ω) =
1
|a|X

(ω

a

)

Hacerlo para valores dea mayores y menores que la unidad. Repetirlo para valores negativos dea.

2.2.4. Desplazamiento en el tiempo

Calcular las transformadas de Fourier de funcionesx(t) Gaussianas con distintos valores de la
media. Comparar tanto los módulos como las fases de las transformadas de Fourier.
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2.2.5. Desplazamiento en frecuencia (modulación)

Preparar una funciónx(t) que sea el producto de una Gaussiana por una exponencial compleja:

x(t) = N (t, µ, σ)ejω0t

y calcular su transformada de Fourier. Analizar el resultado. Repetirlo para el caso en que la Gaussiana
se multiplica por una función cos(ω0t + θ0).

2.2.6. Derivada con respecto al tiempo

A partir dex(t) Gaussiana, obtener la derivada con respecto al tiempo:

y(t) =
d x(t)

dt
≈ xi − xi−1

ti − ti−1
=

xi − xi−1

∆t

CalcularY (ω) (la transformada de Fourier dey(t)) y compararla conjωX(ω).

2.2.7. Derivada con respecto a la frecuencia

A partir deX(ω) del apartado anterior, calcular la derivada con respecto a la frecuencia:

Z(ω) =
d X(ω)

dω
≈ Xi −Xi−1

ωi − ωi−1
=

Xi −Xi−1

∆ω

Calcularz(t) (transformada inversa deZ(ω)) y compararla con−jtx(t).

2.2.8. Convolucíon en el dominio del tiempo

Preparar una funciónx1(t) Gaussiana multiplicada porcos(ω0t+θ0). Preparar una funciónx2(t)
Gaussiana. Calcular la convoluciónx(t) = x1(t)∗x2(t). Calcular las transformadas de FourierX1(ω)
y X2(ω) y calcular la convolucíon x(t) como la transformada inversa del producto de los espectros.
Comparar ambas aproximaciones a la convolución.

2.2.9. Producto en el dominio del tiempo (ventanas temporales)

Considerarx1(t) una funcíon Gaussiana yx2(t) una funcíon senoidal. Calcular el producto de
ambas,x(t) y su transformada de FourierX(ω). Comparar estáultima con la convolucíon de los
espectrosX1(ω) ∗X2(ω).

2.2.10. Transformadas de las partes par/impar y real/imaginaria

Preparar la función siguiente:

x(t) = N (t, µ1, σ1) cos(ω1t + θ1) + jN (t, µ2, σ2) cos(ω2t + θ2)

y a partir dex(t) preparar las siguientes funciones:



8 PRÁCTICA 2. TRANSFORMADA DE FOURIER

xp(t) = (x(t) + x(−t))/2 (parte par dex(t))

xi(t) = (x(t)− x(−t))/2 (parte impar dex(t))

xre(t) = real(x(t)) (parte real dex(t))

xim(t) = imag(x(t)) (parte imaginaria dex(t))

xre−p(t) (parte real-par dex(t))

xre−i(t) (parte real-impar dex(t))

xim−p(t) (parte imaginaria-par dex(t))

xim−i(t) (parte imaginaria-impar dex(t))

Obtener la transformada de Fourier de cada una de estas funciones y estudiar la paridad/imparidad de
sus partes reales e imaginarias para cada una de ellas.

2.2.11. Teorema de Parseval

Preparar la función (real) siguiente:

x(t) = N (t, µ1, σ1) cos(ω1t + θ1)

Calcular su energı́a en el dominio del tiempo:

Ex =
∫ ∞

−∞
x2(t)dt ≈

∑

i

x2
i ∆ti

Compararla con la energı́a calculada en el dominio de la frecuencia:

EX =
1
2π

∫ ∞

−∞
|X(ω)|2d(ω) ≈ 1

2π

∑

i

(abs(Xi))2∆ωi
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Apéndice 1: Ejemplo de rutina para generar funciones Gaussianas

% function x = gaussiana(t,mu,sig)

function x = gaussiana(t,mu,sig)

lim=log(1e100); % (es importante poner este limite)
var=sigˆ2;
E=-(t-mu).ˆ2/(2*var);
norma=sqrt(2*pi*var);
E0=max(E); umbral=E0-lim;
E=E.*(E>umbral)+umbral.*(E<umbral);
x=exp(E)/norma;

Apéndice 2: Rutina para obtener la transformada de Fourier

% function X = tr_four(t,x,w)
% presupone que t, x y w son vectores fila
% presupone muestreo uniforme de t (no necesariamente de w)

function X = tr_four(t,x,w)

deltat=t(2)-t(1);
A=(-j*w’*t);
B=exp(A);
X=deltat*(x*B’);

Apéndice 3: Rutina para obtener la transformada inversa de Fourier

% function x = tr_inv_four(t,X,w)
% presupone que t, X y w son vectores fila
% presupone muestreo uniforme de w (no necesariamente de t)

function x = tr_inv_four(w,X,t)

deltaw=w(2)-w(1);
A=(j*t’*w);
B=exp(A);
X=2*pi*deltat*(X*B’);
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Apéndice 4: Rutina para calcular la convolucíon de dos funciones

% function x = convolucion(t,x1,x2)
% calcula la integral de convolucion de x1(t)*x2(t) para cada valor (t)
% presupone que x1, x2 estan muestreados para los mismos valores de t
% presupone muestreo uniforme

function x = convolucion(t,x1,x2)

deltat=t(2)-t(1);
K=length(t);
i0=-round(t(1)/deltat); % porque i(t)=round((t-t(1))/deltat)+1

% t(i)=t(1)-deltat+i*deltat
for k=1:K % indice para t

i1=1:K; % indice para tau tau=t(i1)
i2=k-i1+1+i0; % indice para (t-tau) t-tau=t(i2)

% donde i2=i(t-tau)=i(t(k)-t(i1))
i_ini=k-K+1+i0; % nos limitamos a las muestras para las que tenemos
if i_ini<1 % definidas las funciones

i_ini=1;
end
i_fin=k+i0;
if i_fin>K

i_fin=K;
end

x(k)=deltat*sum(x1(i1(i_ini:i_fin)).*x2(i2(i_ini:i_fin)));
end



Práctica 3

ESTUDIO DE LOS EFECTOS DE
CANAL

En esta pŕactica estudiaremos los efectos del canal sobre los sistemas de comunicación en banda
base. En concreto simularemos los efectos de distorsión lineal y no-lineal y el efecto multi-path.

3.1. Distorsíon lineal

El primer sistema que simularemos es un canal paso-baja. Estudiaremos su comportamiento cuan-
do la entrada es una señal rectangular periódica. El diagrama de bloques es como el de la figura
siguiente.

3.1.1. Creacíon Del modelo

Para crear un nuevo modelo utilice la opción File/New/Model de la ventana de comando de Mat-
lab. Una vez creado el modelo, añada y conecte los bloques entre si en la forma que muestra la figura
3.1.

Figura 3.1:Modelo de canal paso-baja.

11



12 PRÁCTICA 3. ESTUDIO DE LOS EFECTOS DE CANAL

3.1.2. Bloques de disẽno

Pulse Generator Este bloque genera un tren de pulsos de periodo y ancho variables. Los paráme-
tros se fijan en la forma:

Periodo(secs): 1e-3 Ancho(secs): 0.5e-3

Transfer Fcn Este bloque implementa una función de transferencia arbitraria H(s). Los parámetros
del modelo son los coeficientes de los polinomios en s del numerador y denominador de la
función de transferencia (recuerde ques = jω). Por ejemplo, la función de transferencia:

H(s) =
as2 + bs + c

ds3 + es2 + f

se describiŕıa en la forma:

Numerator: [a b c] Denominator: [d e 0 f]

Nótese que los coeficientes se introducen en orden descendente de potencias de s, y que también
hay que especificar los nulos. En el ejemplo que nos ocupa, consideraremos la función de
transferencia

H(s) =
1

1 + j ω
ωo

⇒ H(s) =
1

1 + s
ωo

Para el ejemplo considere un valorω0 = 4000, para este caso, los parámetros deberı́an ser:

Numerator: [1] Denominator: [0.25e-3 1]

Mux Este bloque multiplexa las diferentes entradas generando un vector de salida. Los parámetros
son:

Number of inputs: 2

Este bloque se utiliza para multiplexar dos o más sẽnales. La salida es un vector (bus) en lugar
de una ĺınea escalar. En este caso se utiliza para insertar dos señales (entrada y salida de H(s))
al osciloscopio de forma que se visualicen simultáneamente.

Scope Este bloque simula un osciloscopio. Es decir, visualiza las señales que se aplican a su entrada
frente al tiempo de simulación del sistema.

Horizontal range: 0.004 Vertical range: 2

To Workspace Este bloque muestrea la señal que se aplica a su entrada y almacena las muestras en
una variable que es accesible a Matlab al terminar la simulación.
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Variable name: salida Save Format: array Maximum number of rows
(time steps): [4000,1,1/20000]

Estos paŕametros especifican que la variable salida almacenará valores en instantes temporales
muestreados al Periodo 1/20000 (frecuencia 20KHz), de uno en uno, con un máximo de 4000.
Al finalizar la simulacíon, la variable aparecerá Matlab, y se podrá utilizar para ulterior ańalisis
de los datos.

3.1.3. Simulacíon

Para iniciar la simulación, primero elegiremos los parámetros. Para esta simulación fijaremos los
paŕametros:

Simulation algorithm: Runge Kutta 5
Start Time: 0
Stop Time: 0.004
Min Step Size: 1e-9
Max Step Size: 10
Tolerance: 1e-5
Return Variables:

Una vez insertados los bloques y fijados los parámetros de la simulación, ya pude simular el
modelo, pero antes sálvelo conFile/Save... con el nombrecpbaja.m . Simule ahora el modelo
eligiendoSimulation/Start . Seǵun va avanzando la simulación, en el osciloscopio de puede ver
la evolucíon temporal de la entrada y salida al sistema.

Análisis temporal

Una vez la simulación ha finalizado, en la ventana de comandos de Matlab puede ejecutarwhosy
encontraŕa que se ha creado una variable denominada salida que debe contener 81 elementos reales,
correspondientes a las muestras de la salida. Visualı́cela conplottime (salida,20000) . El
primer argumento es la variable y el segundo la frecuencia con que fue muestreada (20KHz en nuestro
caso). Debeŕa obtener una gráfica de la sẽnal de salida. Si ejecuta ahorazoomtool (no disponible
en versiones nuevas de Matlab, en este caso use soloplot(salida) ), a la gŕafica se le superponen
una serie de botones y campos de texto más dos cursores. Su significado es el siguiente:

> Desplazar el cursor una muestra a la derecha
< Ídem a la izquierda
>> Desplazar al siguiente m áximo/m ı́nimo a la derecha del cursor
<< Ídem a la izquierda
>< Ampliar la se ñal entre los dos cursores
<> Restaurar la se ñal a su tama ño original [] Retrazar la se ñal S
Crear una nueva figura con la vista actual Q Terminar zoomtool
dejando la figura con su aspecto actual

Tambíen se pueden desplazar los cursores arrastrándolos con el ratón (haga clic sobre la lı́nea del
cursor y desplace el ratón; luego suelte el botón del rat́on). Adeḿas, en la parte inferior izquierda se
muestran los valores X e Y de cada cursor ası́ como la diferencia entre estos valores (en el centro).



14 PRÁCTICA 3. ESTUDIO DE LOS EFECTOS DE CANAL

Cuestiones

Con ayuda dezoomtool , mida los valores ḿaximo (A1) y ḿınimo (A2) de la sẽnal y calcule
la relacíon (A1-A2)/A1, que es la separación relativa entre niveles (una medida de la interferencia
inter-simb́olica introducida por el canal), para valores de ancho de pulsos de 0.25e-3, 0.5e-3 y 0.75e-
3. Compruebe que los resultados concuerdan con los previstos en teorı́a. Para una mayor precisión en
las medidas, realice estas sobre losúltimos periodos de la señal. De esta forma evitará los efectos del
transitorio inicial.

3.2. Distorsíon no-lineal

En esta segunda parte estudiaremos los efectos de la caracterı́stica no lineal de transferencia del
canal. Consideraremos un modelo como el de la figura.

Figura 3.2:Modelo de canal no-lineal.

Este modelo genera una señal de la forma

x(t) = a1 sin(ω1t) + a2 sin(ω2t)

que es transmitida a través del canal cuya función de transferencia en amplitud es de la forma:

y(t) = g1x(t) + g2x
2(t) + g3x

3(t)

3.2.1. Bloques de disẽno

Los nuevos bloques de diseño son:

Sin Wave Genera una señal seno de amplitud, frecuencia y fase constantes.

Fcn Aplica una transformación arbitraria a la entrada.

Gain Amplificador de ganancia constante.
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3.2.2. Simulacíon

Ajuste los paŕametros del modelo para conseguir una entrada:

x(t) = sin(1000πt) + sin(4000πt)

y las ganancias para conseguir una caracterı́stica lineal del canal y una frecuencia de muestreo para
la salida de 25600 Hz. Simule el sistema durante 0.05 segundos. Al terminar la simulación, puede
visualizar la sẽnal de salida conplottime(salida,25600) y ampliar una parte conzoomtool
para ver los detalles (o cualquier otra herramienta de Matlab).

Análisis en frecuencia

Para analizar en frecuencia la señal de salida, utilizaremos la función cpsd . Esta funcíon ob-
tiene una estimación de la densidad de potencia de una señal aśı como la fase de la misma. En el
formato ḿas sencillo se invoca concpsd(x,fs,nfft) donde x es la sẽnal, fs la frecuencia de
muestreo y nfft el numero de puntos que se calculan deésta. La resolución espectral está dada por
fs/nfft. Con este formato,cpsd visualiza la psd de la señal en decibelios. Si se invoca con el for-
matocpsd(x,fs,nfft,1) visualiza adeḿas la fase de la señal. Se puede invocar también con
el formato[pxx,fxx,f]=psd(x,fs,nfft) para obtener los vectores de potencia pxx, fase fxx
y frecuencia f. De esta forma se puede trazar la psd en escala lineal conplot(f,pxx) . Utilizan-
do cpsd(salida,25600,256) y zoomtool obtenga el espectro de la salida del sistema. Este
debeŕıa contener dos picos centrados en frecuencias 500Hz y 2000Hz. Sus amplitudes deben ser de
-6dB. Esto es debido a que cada señal seno de amplitud 1 genera dos deltas de amplitud 1/2 centradas
en la frecuencia positiva y negativa de la sinusoide. Cada una de estas deltas contribuye a la densidad
de potencia espectral.

Cuestiones

Simule el sistema con funciones de transferencia en amplitud

a) y(t) = x(t) +
1
2
x2(t) b) y(t) = x(t) +

1
2
x2(t) +

1
4
x3(t)

Compruebe que los resultados concuerdan con las predicciones teóricas. ¿Cúal es el ancho de
banda de la sẽnal de salida en cada caso? ¿Qué arḿonicos aparecen a la salida?

3.3. Efectomulti-path

En estéultimo apartado consideraremos el efecto multi-path causado por la superposición de un
eco retardado y atenuado de la señal. Consideraremos un modelo como el de la figura.

3.3.1. Bloques de disẽno

Los nuevos bloques son los siguientes:

Transport Delay Implementa un retardo temporal fijo entre su entrada y salida.
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Figura 3.3:Modelo de canal multipath.

Band-Limited Wait Noise Genera un ruido blanco (densidad de potencia espectral uniforme) de
ancho de banda limitado. El ancho de banda se elige de forma que si el perı́odo de muestreo es
T , el ancho de banda resultante esB = 1/2T .

3.3.2. Simulacíon

Ajuste el generador de pulsos para un Periodo de 1ms y un ancho de 0.5ms. Simule el sistema
durante 0.1 segundos. Muestree la salida a una frecuencia de 25600Hz y fije un máximo ńumero de
muestras superior a 2561 (p.e. 3000). Con estos parámetros, observe en el osciloscopio la señal de
salida para diferentes valores de retardo y ganancia del eco.

Análisis en frecuencia

A continuacíon obtendremos una caracterización de la funcíon de transferencia del sistema. Des-
conecte el bloque que implementa la función de transferencia H(s) y alimente ahora el sistema con el
generador de ruido blanco. Ajuste sus parámetros para generar un ruido limitado en banda a 12800Hz
(Peŕıodo de muestreo de 1/25600) y una potencia de 1e-4 (para un rango de amplitudes aceptable en
el osciloscopio). Con valores de 0.25ms de retardo y 0.1 de ganancia, simule el sistema durante 0.1s.
Al terminar la simulacíon, visualice la funcíon de transferencia con

ctfe(entrada,salida,25600,256,1)

(el formato es muy similar al de la funcióncpsd salvo que tiene dos variables de entrada en lugar de
una). Observará el comportamiento oscilatorio tanto de la amplitud como de la fase del sistema. Si
ahora obtiene los vectores de amplitud y fase con:

[txx,fxx,f]=ctfe(entrada,salida,25600,256)
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podŕa visualizar el ḿodulo conplot(f,txx) y la fase conplot(f,fxx) , pudiendo utilizar
zoomtool para realizar medidas sobre ellos.

Cuestiones

Mediante el proceso descrito anteriormente, obtenga la función de transferencia del sistema mul-
tipath para ganancia 0.1 y valores de retardo de 0.5ms, 0.25ms y 0.125ms. Compruebe que los re-
sultados concuerdan con los predichos por la teorı́a. ¿Qúe ocurre si se aumenta la ganancia de 0.1 a
0.75? Explique el efecto que se produce.

Apéndice 1: Rutina para obtener la PSD

function [pxx,fxx,f] = cpsd(x,fs,nfft,fasesw)
%function [pxx,fxx,f] = cpsd(x,fs,nfft,fasesw)
% Estima ’nfft’ puntos de la PSD de ’x’ muestreada a ’fs’ Hz
% cpsd(x,fs,nfft) Traza la PSD en escala logaritmica
% cpsd(x,fs,nfft,fasesw) Si fasesw==1 tambi én se traza la fase
% [pxx,fxx,f] = cpsd(x,fs,nfft) Devuelve la PSD en ’pxx’,
% la fase en ’fxx’ y el vector de frecuencias en ’f’

if nargin < 3
disp(’Formato: cpsd(x,fs,nfft)’);

else
if nargin == 3, fasesw = 0; end

% Ćalculo de la PSD y FASE
npts = length(x);
w=hanning(nfft);
h = fft(x(1:nfft).*w,nfft);
psd = abs(h).ˆ2;
fase = unwrap(angle(h));
n = nfft;
np = 1;
while n <= npts - nfft;

h = fft(x(n+1:n+nfft).*w,nfft);
psd = psd + abs(h).ˆ2;
fase = fase + unwrap(angle(h));
n = n + nfft/2;
np = np + 1;

end
psd = psd(1:nfft/2+1) / (norm(w)ˆ2 * np);
fase = fase(1:nfft/2+1) / np;
fvec = fs*(0:nfft/2)/nfft;

if nargout == 0
psd = 10*log10(psd*norm(w)ˆ2/sum(w)ˆ2);
fase = fase / pi;
if fasesw == 1



18 PRÁCTICA 3. ESTUDIO DE LOS EFECTOS DE CANAL

subplot(2,1,1)
plot(fvec,psd);
set(gca,’XLim’,[0,fs/2]);
xlabel(’Frecuencia (Hz)’);
ylabel(’PSD (dB)’);

subplot(2,1,2);
plot(fvec,fase);
set(gca,’XLim’,[0 fs/2]);
xlabel(’Frecuencia (Hz)’);
ylabel(’Fase (xPI)’);

else
plot(fvec,psd);
set(gca,’XLim’,[0,fs/2]);
xlabel(’Frecuencia (Hz)’);
ylabel(’PSD (dB)’);

end
else

pxx = psd / length(psd);
fxx = fase;
f = fvec;

end
end

end

Apéndice 2: Rutina para obtener la funcíon de transferencia

function [txx,fxx,f] = ctfe(x,y,fs,nfft,fasesw)
%function [txx,fxx,f] = ctfe(x,y,fs,nfft,fasesw)
% Estima ’nfft’ puntos de la TFE de ’x’ e ’y’ muestreada a ’fs’ Hz
% ctfe(x,y,fs,nfft) Traza la TFE en escala lienal
% ctfe(x,y,fs,nfft,fasesw) Si fasesw==1 tambi én se traza la fase
% [txx,fxx,f] = ctfe(x,y,fs,nfft) Devuelve la TFE en ’txx’,
% la fase en ’fxx’ y el vector de frecuencias en ’f’

if nargin < 4
disp(’Formato: ctfe(x,y,fs,nfft)’);

else
if nargin == 4, fasesw = 0; end

% Ćalculo de la TFE y FASE
w=hanning(nfft);
[p,fvec] = psd(x,nfft,fs,w,nfft/2,’none’);
c = csd(x,y,nfft,fs,w,nfft/2,’none’);
tfe = abs(c)./abs(p);
fase = unwrap(angle(c));
if nargout == 0

fase = fase / pi;
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if fasesw == 1
subplot(2,1,1)

plot(fvec,20*log10(tfe));
ylabel(’TFE (dB)’);
xlabel(’Frecuencia (Hz)’);

subplot(2,1,2);
plot(fvec,fase);
xlabel(’Frecuencia (Hz)’);
ylabel(’Fase (xPI)’);

else
plot(fvec,20*log10(tfe));
ylabel(’TFE (dB)’);
xlabel(’Frecuencia (Hz)’);

end
else

txx = tfe;
fxx = fase;
f = fvec;

end
end



20 PRÁCTICA 3. ESTUDIO DE LOS EFECTOS DE CANAL


