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Practica 1

SERIES DE FOURIER

El objetivo de esta factica es estudiar funciones gElicas mediante series trigonétricas y

exponenciales de Fourier. Esto seéheon la ayuda del software MatLab.

1.1. Andalisis del tren periddico de pulsos rectangulares

1.

Preparar una rutina de MatLab que proporcione un trerogien de pulsos rectangulares. La
rutina tenda el formato:
X = pulso(t,T  _O,tau,A)

Obtener los coeficientes, a,, Y b, de la serie trigonogtrica de Fourier para menor o igual
a 20, para unos valores fijos @g, 7 y A, a partir de las expresiones integrales:

1 to+To
ag = — x(t)dt
TO to ( )
2 to+To
ap = — x(t) cos(nwot)dt
TQ to
2) to+To
b = — x(t) sin(nwot)dt
TO to

Obtener los coeficientes,, y 6,, correspondientes:

Co = ag Cp=+/a2 +b2 0, = — arctan <bn>

Gnp

Representar @ficamente el espectro de Fourier.

Representar, a partir de los coeficientes, las aproximaciones a larfuriginal obtenidas para
distintos valores d&V al truncar la serie de Fourier:

N
z(t) = ag + Z ay, cos(nwot) + by, sin(nwot) = xy(t)

n=1
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Calcular la SNR resultante de aproximar la funmci:(¢) por su aproximaéin hasta el coefi-
ciente N-ésimox y (t):

g

SNR= SNR(dB)= 101log;,(SNR) e(t) =z(t) —xn(t)

Q
AN[R N

y representar @gificamente la SNR en furim deN.

Calcular los coeficientes,, de la serie exponencial de Fourier, a partir de la expnasitegral:

1 to+To )
G, = / x(t)e ot gy
TO tO

Verificar la relacbn entre los coeficientes,, b, ¥ Gy,:

an = (Gp+G_p)  bp=j(Gn—G_p)

1 . 1 )
Gn—§(a’n_]bn) G—n—§(an +]bn)

Repetir los apartados 2, 3, 4, 5y 6 para trenes de pulsos rectangularesamavez menor y
con A cada vez mayor, manteniendo constante el proddcto

Linealidad del desarrollo en serie

Preparar una $&al que sea combindwi lineal de dos swles de tipo tren pédrdico de pulsos
rectangulares con un mismo periodo:

:L’(t) =k pUlSO (t,To,Tl,Al) + ko pUlSO (t,To,TQ,AQ)

Calcular los coeficientas, a,, y b, para ambos trenes de pulsos y para la combamdaieal.
Verificar que los coeficientes son tarabicombinadn lineal (con los mismos coeficientes
y k2) ¥ que los espectros tan#éli son combinadh lineal.

Representar los espectros de las trésles involucradas.

Representar las aproximaciones hastémhino NV-ésimo de la sal combinadn lineal.

Andlisis de otras s@ales peribdicas

Repetir los apartados 1 a 6 de la primera setpara las gwles siguientes:

= Una sdial triangular pefdica.
= Una sdal rampa.
= Una séal generada a partir de un polinomio de grado 3 en el intefvaly/2, Ty /2].
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Apéndice: Ejemplo de rutina para implementar una funcion periddica

con MatLab

% function X = pulso(t,TO,tau,A)
% Sintaxis: x = pulso(t,TO,tau,A)

% Devuelve en x(t) un tren peri odico de pulsos,
% de periodo TO,

% de anchura tau,

% de amplitud A

% EI vector x tiene la misma estructura que el vector t
function x = pulso(t,TO,tau,A)

% llevamos t al intervalo [-T0/2,T0/2]:
k = floor(abs(t)/TO); t1 = sign(t).*(abs(t)-k*T0O); t1 = t1 -
TOX(t1>T0/2); t1 = t1 + TO*(t1<=-T0/2);

% definimos la funci on en el intervalo [-T0/2,T0/2] y la aplicamos
% sobre t1:
X = (abs(tl)<=tau/2)*A;
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Practica 2

TRANSFORMADA DE FOURIER

El objetivo de esta jctica es construir una aproximasinunerica de la transformada de Fourier
y la transformada inversa de Fourier. Tagtbise van a estudiar las principales propiedades de la
transformada de Fourier sobre distintas funciones.

2.1. Transformada y transformada inversa de Fourier

1. Preparar una funén z(t) Gaussiana:

1 (z — p)?
z(t) = Nz, pu,0) = e -
( ) ( y s ) Gy Xp< 202
para unos valores determinados;dg o, tomando valores dedesde la media menos varias
desviaciones eahdar hasta la mediaan varias desviaciones astar.

2. Preparar unarutina de MatLab que calcule la transformada de Fourier déiahasgecificada
mediante los vectoresy = para la frecuencia (o para un vector de frecuencias):

X = tr four(t,x,w)

dondeX (w) se aproxima del modo siguiente:

X(w) = / z(t)e I¥tdt ~ Z% exp(—jwt;)At;

—00

3. Calcular la transformada de Fourier para la Gaussidhapreparada en el apartado 1, para
un conjunto de adecuado de frecuencia@un conjunto de valores suficientemente denso y
suficientemente extenso). Representar la transformada de Foubdul(ny fase deX (w) en
funcion dew).

4. Preparar una rutina de MatLab que calcule la transformada inversa de Fourier de un espectro
especificado mediante los vectotey X, para un instante de tiemggo para un vector de
tiempost):

x = tr _inv _four(w,X,t)

5
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dondez(t) se aproxima del modo siguiente:
1 [ ;
x(t) = o /_OO X(w)e!tdw =~ ZXZ- exp(—jwit) Aw;
5. Calcular la transformada inversa del espectrav) obtenido en el apartado 3, y compararla

conx(t).

6. Repetir los puntos anteriores para una fonet(¢) de tipo pulso rectangular de amplitudy
duracbn .

2.2. Propiedades de la transformada de Fourier

En esta parte de lafctica se estudian las propiedades de la transformada de Fourier con algu-
nos ejemplos.

2.2.1. Linealidad

Preparar dos $lesz;(t) y z2(t) de tipo Gaussiano, con diferentes valoresudg o, y una
combinacdn linealx(t) = kyx1(t) 4+ koz2(t). Calcular las transformadas de Fourierndét), xo(t)
y z(t) y verificar queX (w) = k1 X1 (w) + k2 Xo(w).

2.2.2. Dualidad o simetta

Preparar una $al z(t) de tipo Gaussiano, con media distinta de cero y una varianza distinta de
1. Calcular su transformada de Fouri€fw) para un conjunto adecuado de valozesCalcular la
transformada de Fourier d€(w) (para ello, asignar; = X y t; = w y calcular la transformada de
x1(t1), ala que llamaremaoX; (w)). CompararX; (w) con27x(—t) mediante:

plot(w,abs(X1),-t,2*pi*x)

2.2.3. Escalado

A partir de una fundn z(t) Gaussiana, calcular la transformada de Fouriet (@), multipli-
cando la variable de tiempo por una constantes decirXa=tr _four(a*t,x,w) ). Verificar que:

Xo(w) = — X (f)

ol \a
Hacerlo para valores demayores y menores que la unidad. Repetirlo para valores negativos de

2.2.4. Desplazamiento en el tiempo

Calcular las transformadas de Fourier de funciong$ Gaussianas con distintos valores de la
media. Comparar tanto losddulos como las fases de las transformadas de Fourier.
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2.2.5. Desplazamiento en frecuencia (modulam)
Preparar una funén z(t) que sea el producto de una Gaussiana por una exponencial compleja:
x(t) = N(t, p, o)el*0t
y calcular su transformada de Fourier. Analizar el resultado. Repetirlo para el caso en que la Gaussiana

se multiplica por una funéin cos(wot + 6y).

2.2.6. Derivada con respecto al tiempo

A partir dez(t) Gaussiana, obtener la derivada con respecto al tiempo:

d l’(t) Ty — Tj—1 Ty — Tj—1
t) = ~ —
y(t) = —

Tt —ti At

CalcularY (w) (la transformada de Fourier @ét)) y compararla cofjw X (w).

2.2.7. Derivada con respecto a la frecuencia

A partir de X (w) del apartado anterior, calcular la derivada con respecto a la frecuencia:

Z(w) _ dX(w) ~ Xi_Xi—l . Xi_Xi—l

dw Wi — Wi—1 Aw

Calcularz(t) (transformada inversa dé(w)) y compararla con-jtx(t).

2.2.8. Convolucbn en el dominio del tiempo

Preparar una funén 1 (¢) Gaussiana multiplicada poos(wot 4 6p). Preparar una funén xs ()
Gaussiana. Calcular la convol@oiz(t) = x;(t)*x2(t). Calcular las transformadas de Foutér(w)
y X2(w) y calcular la convoludn z(t) como la transformada inversa del producto de los espectros.
Comparar ambas aproximaciones a la convelci

2.2.9. Producto en el dominio del tiempo (ventanas temporales)

Considerarr; (t) una funcon Gaussiana y2(t) una funcon senoidal. Calcular el producto de
ambas,z(t) y su transformada de Fouriéf (w). Comparar estéltima con la convoludn de los
espectros\; (w) * Xa(w).

2.2.10. Transformadas de las partes par/impar y real/imaginaria
Preparar la funéin siguiente:
x(t) = N(t, p1, 01) cos(wit + 01) + jN(t, 2, 02) cos(wat + 62)

y a partir dex(t) preparar las siguientes funciones:
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= 2p(t) = (x(t) + x(—t))/2 (parte par de:(t))

» z;(t) = (z(t) — x(—t))/2 (parte impar de:(t))

» 2,..(t) = real(z(t)) (parte real de:(t))

= i (t) = imag(x(t)) (parte imaginaria de(t))

" Z,.—p(t) (parte real-par de(t))

s z,.;(t) (parte real-impar de(t))

" Zim—p(t) (parte imaginaria-par de(t))

= 2;m—i(t) (parte imaginaria-impar de(t))

Obtener la transformada de Fourier de cada una de estas funciones y estudiar la paridad/imparidad de
sus partes reales e imaginarias para cada una de ellas.

2.2.11. Teorema de Parseval
Preparar la funéin (real) siguiente:
z(t) = N(t, p1,01) cos(wit + 61)

Calcular su eneiig en el dominio del tiempo:

E, = / 22 (t)dt ~ Z I AL

Compararla con la endycalculada en el dominio de la frecuencia:

R T 200\ o L N2 A,
Ex = o » X (@)Pd(w) = o ;(abs(Xz)) Aw;
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Apéndice 1: Ejemplo de rutina para generar funciones Gaussianas

% function x = gaussiana(t,mu,sig)
function x = gaussiana(t,mu,sig)

lim=log(1e100); % (es importante poner este limite)
var=sig 2;

E=-(t-mu)."2/(2*var);

norma=sqrt(2*pi*var);

EO=max(E); umbral=EO-lim;
E=E.*(E>umbral)+umbral.*(E<umbral);
x=exp(E)/norma;

Apéndice 2: Rutina para obtener la transformada de Fourier

% function X = tr_four(t,x,w)
% presupone que t, X y w son vectores fila
% presupone muestreo uniforme de t (no necesariamente de w)

function X = tr_four(t,x,w)

deltat=t(2)-t(1);
A=(wH0);
B=exp(A);
X=deltat*(x*B’);

Apéndice 3: Rutina para obtener la transformada inversa de Fourier

% function x = tr_inv_four(t,X,w)
% presupone que t, X y w son vectores fila
% presupone muestreo uniforme de w (no necesariamente de t)

function x = tr_inv_four(w,X,t)

deltaw=w(2)-w(1);
A=(j*t"*w);

B=exp(A);
X=2*pi*deltat*(X*B’);



10 PRACTICA 2. TRANSFORMADA DE FOURIER

Apéndice 4: Rutina para calcular la convolucon de dos funciones

% function x = convolucion(t,x1,x2)

% calcula la integral de convolucion de x1(t)*x2(t) para cada valor (t)

% presupone que x1, x2 estan muestreados para los mismos valores de t
% presupone muestreo uniforme

function x = convolucion(t,x1,x2)

deltat=t(2)-t(1);

K=length(t);
i0=-round(t(1)/deltat); % porque i(t)=round((t-t(1))/deltat)+1
% t(i)=t(1)-deltat+i*deltat
for k=1:K % indice para t
i1=1:K; % indice para tau tau=t(i1)
i2=k-i1+1+i0; % indice para (t-tau) t-tau=t(i2)

% donde i2=i(t-tau)=i(t(k)-t(i1))
i_ini=k-K+1+i0; % nos limitamos a las muestras para las que tenemos
if i_ini<l % definidas las funciones

i_ini=1;
end
i fin=k+i0;
if i_fin>K
ifin=K;
end

x(k)=deltat*sum(x1(i1(i_ini:i_fin)).*x2(i2(i_ini:i_fin)));
end



Practica 3

ESTUDIO DE LOS EFECTOS DE
CANAL

En esta paictica estudiaremos los efectos del canal sobre los sistemas de confun@abianda
base. En concreto simularemos los efectos de diétotisieal y no-lineal y el efecto multi-path.

3.1. Distorsbn lineal

El primer sistema que simularemos es un canal paso-baja. Estudiaremos su comportamiento cuan-
do la entrada es unafsa rectangular pebdica. El diagrama de bloques es como el de la figura
siguiente.

3.1.1. Creacon Del modelo

Para crear un nuevo modelo utilice la dptiFile/New/Model de la ventana de comando de Mat-
lab. Una vez creado el modeldijada y conecte los bloques entre si en la forma que muestra la figura
3.1.

—| =alida

To Waokspace

1
JTUL >
0.25e-3z+1
Fulze Transfar Fon l:l
Genarator

Scope

r

Figura 3.1:Modelo de canal paso-baja.

11
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3.1.2. Bloques de dis&

] Pulse Generator\ Este blogue genera un tren de pulsos de periodo y ancho variables. bosepar
tros se fijan en la forma:

Periodo(secs): 1e-3 Ancho(secs): 0.5e-3

Transfer Fcn | Este bloque implementa una fuénide transferencia arbitraria H(s). Losfiaetros
del modelo son los coeficientes de los polinomios en s del numerador y denominador de la

funcién de transferencia (recuerde que jw). Por ejemplo, la funéin de transferencia:

as® +bs+c
H(s) = ——-+—
(5) ds® +es?+ f

se describia en la forma:
Numerator: [a b c¢] Denominator: [d e 0 f]

Notese que los coeficientes se introducen en orden descendente de potencias de s, y&que tambi
hay que especificar los nulos. En el ejemplo que nos ocupa, consideraremos ta fieci
transferencia

H(s) H(s) = ——

T
Para el ejemplo considere un valay = 4000, para este caso, los @danetros debén ser:

Numerator: [1] Denominator: [0.25e-3 1]

Este blogue multiplexa las diferentes entradas generando un vector de salida Anostpzs
son:

Number of inputs: 2

Este blogue se utiliza para multiplexar dos ass@ales. La salida es un vector (bus) en lugar
de unainea escalar. En este caso se utiliza para insertar atesgentrada y salida de H(s))
al osciloscopio de forma que se visualicen siddtamente.

Scope Este bloque simula un osciloscopio. Es decir, visualiza [dsles que se aplican a su entrada
rente al tiempo de simula@n del sistema.

Horizontal range: 0.004 Vertical range: 2

To Workspace| Este bloque muestrea laise que se aplica a su entrada y almacena las muestras en
una variable que es accesible a Matlab al terminar la sinfirlaci
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Variable name: salida Save Format: array Maximum number of rows
(time steps): [4000,1,1/20000]

Estos pametros especifican que la variable salida almaéevalores en instantes temporales
muestreados al Periodo 1/20000 (frecuencia 20KHz), de uno en uno, coaximarde 4000.
Al finalizar la simulacbn, la variable aparecaMatlab, y se podr utilizar para ulterior alisis

de los datos.

3.1.3. Simulacon

Para iniciar la simulaéin, primero elegiremos los @anetros. Para esta simulawcifijaremos los
pal@metros:

Simulation algorithm: Runge Kutta 5
Start Time: 0

Stop Time: 0.004

Min Step Size: 1e-9

Max Step Size: 10

Tolerance: 1le-5

Return Variables:

Una vez insertados los bloques y fijados losapagtros de la simula@n, ya pude simular el
modelo, pero antesbrelo conFile/Save... con el nombrepbaja.m . Simule ahora el modelo
eligiendoSimulation/Start . Sedin va avanzando la simul#&ei, en el osciloscopio de puede ver
la evolucbn temporal de la entrada y salida al sistema.

Analisis temporal

Una vez la simulaéin ha finalizado, en la ventana de comandos de Matlab puede ejebaisr
encontrad que se ha creado una variable denominada salida que debe contener 81 elementos reales,
correspondientes a las muestras de la salida. \fe®lalconplottime (salida,20000) . El
primer argumento es la variable y el segundo la frecuencia con que fue muestreada (20KHz en nuestro
caso). Debéx obtener una @fica de la sial de salida. Si ejecuta aharaomtool (no disponible
en versiones nuevas de Matlab, en este caso uselst(salida) ), a la géfica se le superponen
una serie de botones y campos de texésmios cursores. Su significado es el siguiente:

> Desplazar el cursor una muestra a la derecha

< [dem a la izquierda

>> Desplazar al siguiente m aximo/m inimo a la derecha del cursor

<< ldem a la izquierda

>< Ampliar la se hal entre los dos cursores

<> Restaurar la se hal a su tama ho original [] Retrazar la se hal S
Crear una nueva figura con la vista actual Q Terminar zoomtool

dejando la figura con su aspecto actual

También se pueden desplazar los cursores aaadtiios con el réi (haga clic sobre lariea del
cursor y desplace el i@a; luego suelte el bonh del rabn). Adends, en la parte inferior izquierda se
muestran los valores X e Y de cada cursdrcasno la diferencia entre estos valores (en el centro).
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Cuestiones

Con ayuda deoomtool , mida los valores @ximo (A1) y ninimo (A2) de la sBal y calcule
la relacbn (A1-A2)/Al, que es la separaci relativa entre niveles (una medida de la interferencia
inter-simiblica introducida por el canal), para valores de ancho de pulsos de 0.25e-3, 0.5e-3 y 0.75e-
3. Compruebe que los resultados concuerdan con los previstos ien Bsoa una mayor predsi en
las medidas, realice estas sobreiltisnos periodos de la 8al. De esta forma evitarlos efectos del
transitorio inicial.

3.2. Distorsbn no-lineal

En esta segunda parte estudiaremos los efectos de la cestazdaro lineal de transferencia del
canal. Consideraremos un modelo como el de la figura.

B
".lel.f -
Sine Wave '-:_H Py
.HI\. +.f -
Zain
e i g ——a
7\ -.. : [
W — Uz 1 “}—l_.’
y e n
Sine Wrave] Een % 3in Sumd Scope
| w3 1
— zalida
Feni Gainz2
To WMiokspace

Figura 3.2:.Modelo de canal no-lineal.

Este modelo genera unaise de la forma

x(t) = a sin(wit) + ag sin(wat)

gue es transmitida a trés del canal cuya fun@n de transferencia en amplitud es de la forma:
y(t) = gra(t) + g2a(t) + gsa® (1)

3.2.1. Bloques de dis&
Los nuevos bloques de diseson:

Sin Wave| Genera una $&l seno de amplitud, frecuencia y fase constantes.

Aplica una transformadn arbitraria a la entrada.

Amplificador de ganancia constante.
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3.2.2. Simulacon

Ajuste los paametros del modelo para conseguir una entrada:

x(t) = sin(10007t) + sin(40007t)

y las ganancias para conseguir una caratiea lineal del canal y una frecuencia de muestreo para
la salida de 25600 Hz. Simule el sistema durante 0.05 segundos. Al terminar la simufagde
visualizar la sal de salida coplottime(salida,25600) y ampliar una parte carnomtool

para ver los detalles (o cualquier otra herramienta de Matlab).

Analisis en frecuencia

Para analizar en frecuencia lahak de salida, utilizaremos la furdzi cpsd . Esta funobn ob-
tiene una estimadh de la densidad de potencia de undas@$ como la fase de la misma. En el
formato nmas sencillo se invoca corpsd(x,fs,nfft) donde x es la s&l, fs la frecuencia de
muestreo y nfft el numero de puntos que se calculagstie. La resoluén espectral eatdada por
fs/nfft. Con este formatogpsd visualiza la psd de la §al en decibelios. Si se invoca con el for-
mato cpsd(x,fs,nfft,1) visualiza aderas la fase de la 8al. Se puede invocar tan@n con
el formato[pxx,fxx,fl=psd(x,fs,nfft) para obtener los vectores de potencia pxx, fase fxx
y frecuencia f. De esta forma se puede trazar la psd en escala lineallot(pxx) . Utilizan-
do cpsd(salida,25600,256) y zoomtool obtenga el espectro de la salida del sistema. Este
debeta contener dos picos centrados en frecuencias 500Hz y 2000Hz. Sus amplitudes deben ser de
-6dB. Esto es debido a que cadaaleseno de amplitud 1 genera dos deltas de amplitud 1/2 centradas
en la frecuencia positiva y negativa de la sinusoide. Cada una de estas deltas contribuye a la densidad
de potencia espectral.

Cuestiones

Simule el sistema con funciones de transferencia en amplitud

@) y) = o)+ 5220 B yH) =) + 50 + )

Compruebe que los resultados concuerdan con las prediccianaase ¢ Céal es el ancho de
banda de la &l de salida en cada caso? g@unonicos aparecen a la salida?

3.3. Efectomulti-path

En esteliltimo apartado consideraremos el efecto multi-path causado por la supdmatain
eco retardado y atenuado de |l&ak Consideraremos un modelo como el de la figura.

3.3.1. Bloques de dis&

Los nuevos bloques son los siguientes:

Transport Delay | Implementa un retardo temporal fijo entre su entrada y salida.
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N (.
Scoped
=+
i ! P Y. - L]
- 1 = = L) .1.____,:—l-+
0.5e-ds+1 - wh o
R - Sum SCOPS
Fulse Transfar Fen Zain Tranzport aini
Genarator Lelay
To Miakspaced
L= entrada zalida
JJWL i To Watspace
Band-Limited
thite Moise

Figura 3.3:Modelo de canal multipath.

] Band-Limited Wait Noise\ Genera un ruido blanco (densidad de potencia espectral uniforme) de
ancho de banda limitado. El ancho de banda se elige de forma que sSoelqge muestreo es
T, el ancho de banda resultante/es= 1/2T.

3.3.2. Simulacon

Ajuste el generador de pulsos para un Periodo de 1ms y un ancho de 0.5ms. Simule el sistema
durante 0.1 segundos. Muestree la salida a una frecuencia de 25600Hz y figxiomomimero de
muestras superior a 2561 (p.e. 3000). Con estasnpetros, observe en el osciloscopio laaede
salida para diferentes valores de retardo y ganancia del eco.

Analisis en frecuencia

A continuacon obtendremos una caracterizacie la fundbn de transferencia del sistema. Des-
conecte el bloque que implementa la funcde transferencia H(s) y alimente ahora el sistema con el
generador de ruido blanco. Ajuste susgmetros para generar un ruido limitado en banda a 12800Hz
(Peiiodo de muestreo de 1/25600) y una potencia de 1e-4 (para un rango de amplitudes aceptable en
el osciloscopio). Con valores de 0.25ms de retardo y 0.1 de ganancia, simule el sistema durante 0.1s.
Al terminar la simuladn, visualice la fun@n de transferencia con

ctfe(entrada,salida,25600,256,1)

(el formato es muy similar al de la furizicpsd salvo que tiene dos variables de entrada en lugar de
una). Observar el comportamiento oscilatorio tanto de la amplitud como de la fase del sistema. Si
ahora obtiene los vectores de amplitud y fase con:

[txx,fxx,f]=ctfe(entrada,salida,25600,256)
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podr’ visualizar el mdulo conplot(f,txx) y la fase conplot(f,fxx) , pudiendo utilizar
zoomtool para realizar medidas sobre ellos.

Cuestiones

Mediante el proceso descrito anteriormente, obtenga laGomig transferencia del sistema mul-
tipath para ganancia 0.1 y valores de retardo de 0.5ms, 0.25ms y 0.125ms. Compruebe que los re-
sultados concuerdan con los predichos por laige@Q@ ocurre si se aumenta la ganancia de 0.1 a
0.757? Explique el efecto que se produce.

Apéndice 1: Rutina para obtener la PSD

function [pxx,fxx,f] = cpsd(x,fs,nfft,fasesw)
%function [pxx,fxx,f] = cpsd(x,fs,nfft,fasesw)
% Estima 'nfft’ puntos de la PSD de 'X’ muestreada a 'fs’ Hz
% cpsd(x,fs,nfft) Traza la PSD en escala logaritmica
% cpsd(x,fs,nfft,fasesw) Si fasesw==1 tambi en se traza la fase
% [pxx,fxx,f] = cpsd(x,fs,nfft) Devuelve la PSD en ’'pxx,
% la fase en 'fxx’ y el vector de frecuencias en 'f’
if nargin < 3
disp(Formato: cpsd(x,fs,nfft)");
else
if nargin == 3, fasesw = 0; end
% Glculo de la PSD y FASE
npts = length(x);
w=hanning(nfft);
h = fft(x(1:nfft).*w,nfft);
psd = abs(h)."2;
fase = unwrap(angle(h));
n = nfft;
np = 1;
while n <= npts - nfft;
h = fft(x(n+1:n+nfft).*w,nfft);
psd = psd + abs(h)."2;
fase = fase + unwrap(angle(h));

n = n + nfft/2;
np = np + 1;
end

psd = psd(1l:nfft/2+1) / (norm(w)2 * np);

fase = fase(1:nfft/2+1) / np;
fvec = fs*(0:nfft/2)/nfft;
if nargout ==

psd = 10*logl0(psd*norm(w) 2/sum(w)"2);
fase = fase / pi;
if fasesw ==
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subplot(2,1,1)
plot(fvec,psd);
set(gca,’XLim’,[0,fs/2]);
xlabel(’Frecuencia (Hz)');
ylabelCPSD (dB)’);

subplot(2,1,2);
plot(fvec,fase);
set(gca,’XLim’,[0 fs/2]);
xlabel(’Frecuencia (Hz)');
ylabel(Fase (xPl));

else

plot(fvec,psd);

set(gca,’XLim’,[0,fs/2]);

xlabel('Frecuencia (Hz)’);

ylabelCPSD (dB)’);

end

else
pxx = psd / length(psd);
fxx = fase;
f = fvec;

end

end
end
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Apéndice 2: Rutina para obtener la funcbn de transferencia

function [txx,fxx,f] = ctfe(x,y,fs,nfft,fasesw)

%function [txx,fxx,f] = ctfe(x,y,fs,nfft,fasesw)

% Estima 'nfft’ puntos de la TFE de X’ e 'y’ muestreada a 'fs’ Hz

% ctfe(x,y,fs,nfft) Traza la TFE en escala lienal

% ctfe(x,y,fs,nfft,fasesw) Si fasesw==1 tambi en se traza la fase
% [txx,fxx,f] = ctfe(x,y,fs,nfft) Devuelve la TFE en ’'txx’,

% la fase en 'fxx’ y el vector de frecuencias en 'f’

if nargin < 4
disp(Formato: ctfe(x,y,fs,nfft)’);
else
if nargin == 4, fasesw = 0; end
% Glculo de la TFE y FASE
w=hanning(nfft);

[p,fvec] = psd(x,nfft,fs,w,nfft/2,’none’);

¢ = csd(x,y,nfft,fs,w,nfft/2,’none’);
tfe = abs(c)./abs(p);
fase = unwrap(angle(c));
if nargout ==
fase = fase / pi;
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if fasesw ==
subplot(2,1,1)
plot(fvec,20*log10(tfe));
ylabel(TFE (dB)");
xlabel('Frecuencia (Hz)’);
subplot(2,1,2);
plot(fvec,fase);
xlabel('Frecuencia (Hz)’);
ylabel('Fase (xPI)");
else
plot(fvec,20*log10(tfe));
ylabel(TFE (dB));
xlabel(’Frecuencia (Hz)');

end
else
txx = tfe;
fxx = fase;
f = fvec;
end

end
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