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MATEMÁTICAS II – GRADO EN INGENIERÍA DE QUÍMICA

(4 de junio de 2012)

Como en problemas hubo dificultades con dos ejercicios, los resolvemos con mayor detalle.

1. Ejercicio 6

Enunciado: Se considera la ecuación no lineal

ex + senx− 2 = 0. (1)

(a) Prueba que admite una (única) raíz real en el intervalo [0, π2 ].
(b) Usando el método de Newton-Raphson, da un valor aproximado de la raíz con un error menor

que 0.001.

Resolución: Consideramos la función f : R→ R dada por la expresión

f(x) = ex + senx− 2.

(a) La función f(x) es, al menos, dos veces derivable. En particular es continua en el intervalo
[0, π2 ]. Además,
• f(0) = 1 + 0− 2 = −1 < 0,
• f(π2 ) = eπ/2 + 1− 2 = eπ/2 − 1 > 0.

Por tanto, el Teorema de Bolzano asegura la existencia de una solución de la ecuación (1) en
el intervalo [0, π2 ].

Por otra parte, f ′(x) = ex + cosx. Ahora bien, como la exponencial es una función estric-
tamente positiva en el intervalo [0, π2 ] y el coseno es una función positiva en dicho intervalo,
podemos asegurar que f ′(x) es estrictamente positiva. Por consiguiente, f(x) es estrictamente
creciente en [0, π2 ] y concluimos que existe una única solución de la ecuación (1) en [0, π2 ]. (En
realidad el ejercicio no pedía probar la unicidad pero, como no ha sido un razonamiento muy
difícil, hemos decidido incluirlo).

(b) Para realizar este apartado hay que tener cuidado pues la calculadora tiene que operar
en radianes. Dicho esto, y aprovechando que f ′′(x) = ex − senx ≥ 0 en [0, π2 ], escogemos
x0 =

π
2 como aproximación inicial para la aplicación del método de Newton-Raphson (ya que

f(π2 )f
′′(π2 ) > 0). Recordemos que este método sigue la recurrencia

xn+1 = xn −
f(xn)

f ′(xn)
, n = 0, 1, 2, . . . .

Así,
• x0 =

π
2 = 1.570796327;

• x1 = 1.570796327− f(1.570796327)
f ′(1.570796327) = 0.778675903, |x1 − x0| > 0.001;

• x2 = 0.778675903− f(0.778675903)
f ′(0.778675903) = 0.473903521, |x2 − x1| > 0.001;

• x3 = 0.473903521− f(0.473903521)
f ′(0.473903521) = 0.448817805, |x3 − x2| > 0.001;

• x4 = 0.448817805− f(0.448817805)
f ′(0.448817805) = 0.448671921, |x4 − x3| < 0.001.
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Una vez que la diferencia entre dos iteraciones sucesivas es menor que el error dado, consi-
deramos que la aproximación de la solución es 0.448671921. (La solución exacta con quince
decimales es 0.448671916351273).

2. Ejercicio 7

Enunciado: Determina el número de raíces de la ecuación

3x+ cosx− 2ex + 1 = 0. (2)

Prueba que hay una única (raíz) en el intervalo [12 , 1]. Estudia si es aplicable el teorema global de
convergencia del método de Newton-Raphson para estimarla. Aproxímala realizando iteraciones hasta
que el valor absoluto de la diferencia entre dos (iteraciones) consecutivas sea menor o igual que 10−3.

Resolución: Consideramos la función f : R→ R dada por la expresión

f(x) = 3x+ cosx− 2ex + 1.

Para tener una primera idea sobre el enfoque que debemos dar al problema, veamos la gráfica de f :

 

Según esta gráfica x = 0 es una solución de (2), lo cual es fácil de comprobar por un cáluclo
directo. Además, parece haber sólamente otra solución cerca de 0.6. Intentaremos probar que f es
estrictamente creciente en ]−∞, 0[ y estrictamente decreciente en ] ln 2,+∞[. Estudiamos la derivada
de f , esto es f ′(x) = 3− senx− 2ex (observemos que f(x) es, al menos, dos veces derivable).

Es claro que
3− senx− 2ex < 0⇔ 3− senx < 2ex.

Como la función seno esta acotada entre -1 y 1, entonces 2 ≤ 3 − senx ≤ 4 en todo R. Por
otra parte,

4 < 2ex ⇔ 2 < ex ⇔ ln 2 < x.

De esta forma, si x > ln 2 tenemos que

2ex > 4 ≥ 3− senx

y podemos concluir que f ′(x) < 0 si x > ln 2, o sea, que f(x) es estrictamente decrecien-
te en ] ln 2,+∞[. Por cierto, como f(ln 2) = −0.151319557, podemos asegurar que f(x) es
estrictamente negativa en ] ln 2,+∞[.
De nuevo es claro que

3− senx− 2ex > 0⇔ 3− senx > 2ex.

Como
2 > 2ex ⇔ 1 > ex ⇔ 0 > x,

tenemos que, si x < 0,
2ex < 2 ≤ 3− senx
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y podemos concluir que f ′(x) > 0 si x < 0, o sea, que f(x) es estrictamente creciente en
]−∞, 0[. Por cierto, como f(0) = 0, podemos asegurar que f(x) es estrictamente negativa en
]−∞, 0[.

Nos queda por estudiar el intervalo ]0, ln 2[. En este caso vamos a examinar la segunda derivada
de f , esto es, f ′′(x) = − cosx− 2ex. No es difícil comprobar que las funciones coseno y exponencial
son estrictamente positivas en ]0, ln 2[ y, por tanto, f ′′(x) es estrictamente negativa, con lo que f(x)
será ∩-convexa (es decir, convexa hacia abajo). Finalmente, como f(0) = 0, f(0.2) > 0 y f(ln 2) < 0,
podemos concluir que existe una única solución en el intervalo ]0, ln 2[ (distinta de x = 0).

Por todo lo dicho anteriormente, es claro que f(x) tiene una única solución en el intervalo [12 , 1].
(Otra forma de probar este hecho sería ver que f(12) > 0, f(1) < 0 y que f(x) es convexa hacia abajo
en [12 , 1]).

Para poder aplicar el teorema global de convergencia del método de Newton-Raphson para estimar
la solución, necesitamos ver que f ′(x) no se anula en [12 , 1]. Para ello, puesto que f ′′(x) es negativa
en dicho intervalo (ya se hizo antes en el intervalo ]0, ln 2[), se verifica que f ′(x) es estrictamente
decreciente. Ahora bien, como f ′(12) = −0.77686808, podemos asegurar que f ′(x) es estrictamente
negativa y, por tanto, no se anula.

Para aplicar el método de Newton-Raphson tomaremos x0 = 1 como aproximación inicial puesto
que f(1)f ′′(1) > 0. Así,

x0 = 1;
x1 = 1− f(1)

f ′(1) = 0.726585760, |x1 − x0| > 10−3;

x2 = 0.726585760− f(0.726585760)
f ′(0.726585760) = 0.610601080, |x2 − x1| > 10−3;

x3 = 0.610601080− f(0.610601080)
f ′(0.610601080) = 0.585156740, |x3 − x2| > 10−3;

x4 = 0.585156740− f(0.585156740)
f ′(0.585156740) = 0.583888915, |x4 − x3| > 10−3;

x5 = 0.583888915− f(0.583888915)
f ′(0.583888915) = 0.583885789, |x5 − x4| < 10−3.

Una vez que la diferencia entre dos iteraciones sucesivas es menor que el error dado, consideramos
que la aproximación de la solución es 0.583885789. (La solución exacta con quince decimales es
0.583885789353804).


