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La intención de este complemento (a los apuntes del curso) es comprender por qué el método de
eliminación gaussiana permite realizar factorizaciones LU . De paso se justifica un método (quizás
conocido) para el cálculo de la inversa de una matriz dada.

En todo lo que sigue se entiende que

las matrices son del orden adecuado para que los productos tengan sentido;
si hablamos de la inversa de una matriz es porque sabemos que la inversa existe;
I es la matriz identidad y será siempre del orden adecuado para que las operaciones tengan
sentido.

1. Expresión matricial de la eliminación gaussiana y de la factorización LU

Consideremos la matriz

A =

 2 1 2
−1 −2 −3
3 −4 1

 .

Para hacer ceros por debajo de la diagonal aplicamos el método de eliminación gaussiana (en lo que
sigue Fi indicará la fila i-ésima):

1. Restando (en A) −12 F1 a F2 y 3
2F1 a F3, obtenemos la matriz

U1 =

 2 1 2

0 −3
2 −2

0 −11
2 −2

 .

2. Restando (en U1)
−11
2
−3
2

F2 (es decir, 11
3 F2) a F3, obtenemos la matriz

U2 =

 2 1 2

0 −3
2 −2

0 0 16
3

 ,

que ya es triangular superior.

En este ejemplo hemos dado dos pasos que pueden ser expresados mediante el producto de matrices.

1. Restar −12 F1 a F2 y 3
2F1 a F3 equivale a multiplicar (por la izquierda) por la matriz

L1 =

 1 0 0

−−12 1 0

−3
2 0 1

 =

 1 0 0
1
2 1 0

−3
2 0 1

 .

Ejercicio 1: Comprueba que L1 ·A = U1.
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2. Restar 11
3 F2 a F3 equivale a multiplicar (por la izquierda) por la matriz

L2 =

 1 0 0

0 1 0

0 −11
3 1

 .

Ejercicio 2: Comprueba que L2 · U1 = U2.
Es interesante observar que las matrices L1 y L2 se obtienen aplicando, a la matriz identidad, las
operaciones por filas indicadas en cada caso.

De las igualdades L1 ·A = U1 y L2 · U1 = U2, deducimos que

L2 · U1 = L2 · (L1 ·A) = (L2 · L1) ·A = U2.

Pero, teniendo en cuenta que el producto de matrices triangulares inferiores da lugar a otra matriz
triangular inferior, lo que hemos conseguido es la expresión

L∗ ·A = U,

donde L∗ = L2 · L1 es triangular inferior y U = U2 es triangular superior. Finalmente, puesto que la
inversa de una matriz triangular inferior es otra matriz triangular inferior,

A = (L∗)−1 · U.

Por tanto, si consideramos L = (L∗)−1, tenemos una descomposición LU para A. Además, si revisa-
mos los cálculos, vemos que U es fácil de obtener, pero ¿qué ocurre con L? Veamos que tampoco es
muy difícil de calcular.

Si recordamos que la inversa del producto de dos matrices es el producto de las inversas “cambiadas
de orden”, tenemos que

L = (L∗)−1 = (L2 · L1)
−1 = (L1)

−1 · (L2)
−1.

Para justificar las expresiones de (L1)
−1 y (L2)

−1 debemos tener en cuenta qué significa que una
matriz sea la inversa de otra. Veamos, si M y N son matrices inversas una de la otra, entonces

(M ·N) ·B = M · (N ·B) = B

para cualquier matriz B. Es decir, tras multiplicar sucesivamente B por N y M tenemos de nuevo
B, o sea, se puede decir que no hemos “hecho” nada.

Con tal interpretación de las matrices inversas, parece claro que la inversa de L1 ha de ser una
matriz que haga lo contrario que ella misma, esto es, una matriz que nos permita pasar de U1 a A:
hacemos desaparecer los ceros de la primera columna de U1 para recuperar la primera columna de A.
Para ello, necesitamos sumar −12 F1 a F2 y 3

2F1 a F3, lo cual equivale a multiplicar (por la izquierda)
por la matriz

(L1)
−1 =

 1 0 0
−1
2 1 0
3
2 0 1

 .

Ejercicio 3: Comprueba que (L1)
−1 · L1 = L1 · (L1)

−1 = I y que (L1)
−1 · U1 = A.

Razonando de la misma forma, para la inversa de L2 necesitamos sumar 11
3 F2 a F3, lo que equivale

a multiplicar (por la izquierda) por la matriz

(L2)
−1 =

 1 0 0

0 1 0

0 11
3 1

 .

Ejercicio 4: Comprueba que (L2)
−1 · L2 = L2 · (L2)

−1 = I y que (L2)
−1 · U2 = U1.
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Ahora veamos cuál es el resultado de multiplicar las inversas de L1 y L2 (quizás la cuenta más
sorprendente de este desarrollo):

(L1)
−1 · (L2)

−1 =

 1 0 0
−1
2 1 0
3
2 0 1

 ·
 1 0 0

0 1 0

0 11
3 1

 =

 1 0 0
−1
2 1 0
3
2

11
3 1

 .

Parece que basta con agrupar en una matriz la primera columna de (L1)
−1 y la segunda columna de

(L2)
−1 (y añadir la última columna de cualquiera de ellas por ser la misma). En realidad, el producto

anterior no tiene nada de sorprendente si se piensa que, al estar (L1)
−1 a la izquierda de (L2)

−1, lo
que estamos haciendo es llevar a cabo en (L2)

−1 las operaciones por filas indicadas por (L1)
−1 (que,

recordemos, son sumar −12 F1 a F2 y sumar 3
2F1 a F3).

Tenemos, pues, una manera bastante fácil de construir la factorización LU de Doolittle de una
matriz dada. En el caso de la matriz A considerada,

A =

 2 1 2
−1 −2 −3
3 −4 1

 = (L∗)−1 · U = (L1)
−1 · (L2)

−1 · U2 =

 1 0 0
−1
2 1 0
3
2

11
3 1

 ·
 2 1 2

0 −3
2 −2

0 0 16
3

 .

Conviene señalar que el número de cuentas para realizar la factorización de Doolittle de esta
manera es el mismo que el número de cuentas que son necesarias cuando se aplica el algoritmo visto
para implementar en un ordenador. Sin embargo, esta forma de proceder es más inestable que la del
algoritmo cuando se usan cálculos aproximados, esto es, es más susceptible a los errores de redondeo.

Para acabar esta sección, realicemos un ejemplo con matrices de orden 4× 4. Sea la matriz

B =


2 −1 1 −1
1 −2 1 −2
0 −1 1 −1
2 1 −1 3

 .

1. Hacemos ceros en la primera columna de B restando 1
2F1 a F2, 0

2F1 a F3 y 2
2F1 a F4, quedando

la matriz U1 =


2 −1 1 −1
0 −3

2
1
2 −3

2
0 −1 1 −1
0 2 −2 4

.

Observemos que L1 ·B = U1 si tomamos L1 =


1 0 0 0

−1
2 1 0 0
0 0 1 0
−1 0 0 1

.

2. Hacemos ceros en la segunda columna de U1 restando −1− 3
2

F2

(
= 2

3F2

)
a F3 y 2

− 3
2

F2

(
= −4

3F2

)

a F4, quedando la matriz U2 =


2 −1 1 −1
0 −3

2
1
2 −3

2

0 0 2
3 0

0 0 −4
3 2

.

Observemos que L2 · U1 = U2 si tomamos L2 =


1 0 0 0
0 1 0 0

0 −2
3 1 0

0 4
3 0 1

.
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3. Por último, hacemos ceros en la tercera columna de U2 restando −
4
3

2
3

F3 (= −2F3) a F4, que-

dando la matriz U3 =


2 −1 1 −1
0 −3

2
1
2 −3

2

0 0 2
3 0

0 0 0 2

, que ya es triangular superior.

Observemos que L3 · U2 = U3 si tomamos L3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 2 1

.

Concluimos que la factorización LU de Doolittle para la matriz B es la siguiente,

B =


2 −1 1 −1
1 −2 1 −2
0 −1 1 −1
2 1 −1 3

 = L · U =


1 0 0 0
1
2 1 0 0

0 2
3 1 0

1 −4
3 −2 1

 ·


2 −1 1 −1
0 −3

2
1
2 −3

2

0 0 2
3 0

0 0 0 2

 .

Observemos que, para construir L, hemos tomado las tres entradas de la primera columna de L1

que están debajo de la diagonal principal, las dos entradas de la segunda columna L2 que también
están debajo de la diagonal principal y la única entrada de la tercera columna de L3 que está, de
nuevo, debajo de la diagonal principal pero, y esto es muy importante, con signo cambiado.

2. Cómo obtener otras factorizaciones

Supongamos que deseamos obtener la factorización LU de Crout. ¿Podemos aprovechar el trabajo
realizado en la sección anterior? La respuesta es sí, como veremos a continuación.

Recordemos que, en la factorización de Crout, es la matriz triangular superior la que tiene unos en
la diagonal principal. Por tanto, si volvemos al caso de la matriz A vista anteriormente, necesitaríamos
pasar de la matriz

U2 =

 2 1 2

0 −3
2 −2

0 0 16
3


a otra matriz con unos en la diagonal. Para ello, bastará con multiplicar F1 por 1

2 , F2 por -23 y F3

por 3
16 , quedando la matriz

U3 =

 1 1
2 1

0 1 4
3

0 0 1

 .

Ejercicio 5: Comprueba que U3 = D · U2, siendo D =


1
2 0 0

0 −2
3 0

0 0 3
16

.

Ejercicio 6: Sea D la matriz del ejercicio 5. Comprueba que D−1 =

 2 0 0

0 −3
2 0

0 0 16
3

.
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Teniendo en cuenta que D ·D−1 = D−1 ·D = I (y que la matriz identidad I actúa en el producto
de matrices como el 1 en el producto de números),

A =

 2 1 2
−1 −2 −3
3 −4 1

 = L · U = L · I · U = L ·D−1 ·D · U = LC · UC

y, así, LC · UC es la factorización de Crout al tomar LC = L ·D−1 y UC = D · U . Por tanto,

LC =

 1 0 0
−1
2 1 0
3
2

11
3 1

 ·
 2 0 0

0 −3
2 0

0 0 16
3

 =

 2 0 0

−1 −3
2 0

3 −11
2

16
3

 ,

UC =


1
2 0 0

0 −2
3 0

0 0 3
16

 ·
 2 1 2

0 −3
2 −2

0 0 16
3

 =

 1 1
2 1

0 1 4
3

0 0 1

 .

Ejercicio 7: Comprueba que A = LC · UC .

Para la matriz B de orden 4×4 que consideramos en la sección anterior, puesto que la factorización
de Doolittle es

B =


2 −1 1 −1
1 −2 1 −2
0 −1 1 −1
2 1 −1 3

 = L · U =


1 0 0 0
1
2 1 0 0

0 2
3 1 0

1 −4
3 −2 1

 ·


2 −1 1 −1
0 −3

2
1
2 −3

2

0 0 2
3 0

0 0 0 2

 ,

tomando la matriz D =


1
2 0 0 0
0 −2

3 0 0
0 0 3

2 0
0 0 0 1

2

, la descomposición de Crout será B = LC · UC con

LC = L ·D−1 =


1 0 0 0
1
2 1 0 0

0 2
3 1 0

1 −4
3 −2 1

 ·


2 0 0 0

0 −3
2 0 0

0 0 2
3 0

0 0 0 2

 =


2 0 0 0

1 −3
2 0 0

0 −1 2
3 0

2 2 −4
3 2

 ,

UC = D · U =


1
2 0 0 0

0 −2
3 0 0

0 0 3
2 0

0 0 0 1
2

 ·


2 −1 1 −1
0 −3

2
1
2 −3

2

0 0 2
3 0

0 0 0 2

 =


1 −1

2
1
2 −1

2

0 1 −1
3 1

0 0 1 0

0 0 0 1

 .

Ejercicio 8: Comprueba que B = LC · UC .

A la vista de lo realizado con las matrices A y B para obtener la factorización de Crout, es claro
que podríamos haber escogido otras matrices diagonales y, de esta manera, obtendríamos diferentes

factorizaciones. Por ejemplo, con D =

 1 0 0
0 2 0
0 0 3

, a partir de la factorización de Doolittle de A,

A =

 2 1 2
−1 −2 −3
3 −4 1

 =

 1 0 0
−1
2 1 0
3
2

11
3 1

 ·
 2 1 2

0 −3
2 −2

0 0 16
3

 =
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−1
2 1 0
3
2

11
3 1

 ·
 1 0 0

0 1
2 0

0 0 1
3

 ·
 1 0 0

0 2 0

0 0 3


 2 1 2

0 −3
2 −2

0 0 16
3

 =

 1 0 0
−1
2

1
2 0

3
2

11
6

1
3

 ·
 2 1 2

0 −3 −4
0 0 16


y conseguimos una factorización en la que la matriz triangular superior no contiene fracciones.

3. Un método para calcular la inversa de una matriz

En esta sección vamos a justificar el funcionamiento de un método (quizás conocido) que está
basado en la eliminación gaussiana y que permite calcular matrices inversas. La idea de este método
es aplicar eliminación gaussiana para hacer ceros tanto por debajo como por encima de la diagonal
y, además, conseguir que todos los elementos de la diagonal sean igual a uno.

Consideremos la matriz A vista en las secciones anteriores para describir dicho método. Además,
para ser más prácticos, las operaciones que se vayan realizando sobre A también se aplican a la
matriz identidad I. Para simplificar el proceso, se yuxtaponen la matriz A y la matriz identidad de
la siguiente forma,

(A | I) =

 2 1 2
−1 −2 −3
3 −4 1

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1


Empezamos haciendo ceros en A por debajo de la diagonal. Para ello, primero restamos −12 F1 a F2

y 3
2F1 a F3, operando sobre las filas de A e I conjuntamente, y tenemos

(M1 | N1) =

 2 1 2

0 −3
2 −2

0 −11
2 −2

∣∣∣∣∣∣∣
1 0 0
1
2 1 0

−3
2 0 1

 .

A continuación, restamos 11
3 F2 a F3 para obtener la matriz

(M2 | N2) =

 2 1 2

0 −3
2 −2

0 0 16
3

∣∣∣∣∣∣∣
1 0 0
1
2 1 0

−10
3 −11

3 1

 .

Ejercicio 9: Comprueba que estas mismas operaciones ya las hicimos antes (aunque sólo sobre A y
con los nombres de las matrices cambiados).

Ejercicio 10: Tomando L1 =

 1 0 0
1
2 1 0

−3
2 0 1

 y L2 =

 1 0 0

0 1 0

0 −11
3 1

, comprueba que M1 = L1 ·A,

V1 = L1 · I, M2 = L2 ·M1 y N2 = L2 ·N1.

Ahora vamos a hacer ceros en M2 por encima de la diagonal. Primero en la tercera columna y
después en la segunda. Por tanto, empezamos restando 3

8F3 a F1 y −3
8F3 a F2 y obtenemos

(M3 | N3) =

 2 1 0

0 −3
2 0

0 0 16
3

∣∣∣∣∣∣∣
9
4

11
8 −3

8

−3
4 −3

8
3
8

−10
3 −11

3 1

 .
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Y restando −2
3F2 a F1 queda

(M4 | N4) =

 2 0 0

0 −3
2 0

0 0 16
3

∣∣∣∣∣∣∣
7
4

9
8 −1

8

−3
4 −3

8
3
8

−10
3 −11

3 1

 .

Ejercicio 11: Tomando U1 =

 1 0 −3
8

0 1 3
8

0 0 1

 y U2 =

 1 2
3 0

0 1 0

0 0 1

, comprueba que M3 = U1 ·M2,

N3 = U1 ·N2, M4 = U2 ·M3 y N4 = U2 ·N3.

Para acabar tenemos que hacer unos en la diagonal de M4. Para ello, hacemos 1
2F1, −2

3F2 y 3
16F3,

(M5 | N5) =

 1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣
7
8

9
16 − 1

16
1
2

1
4 −1

4

−5
8 −11

16
3
16

 .

Hemos alcanzado nuestro objetivo pues M5 es la matriz identidad.

Ejercicio 12: Tomando D =


1
2 0 0

0 −2
3 0

0 0 3
16

, comprueba que M5 = I = D ·M4, N5 = D ·N4.

Ejercicio 13: Comprueba que A ·N5 = N5 ·A = I.

Vamos a justificar por qué este método nos proporciona la matriz inversa de A. Por una lado,

I = M5 = D ·M4 = D · U2 ·M3 = D · U2 · U1 ·M2 = D · U2 · U1 · L2 ·M1 = D · U2 · U1 · L2 · L1 ·A.
Por tanto, D · U2 · U1 · L2 · L1 es la inversa de A. Pero, por otro lado,

N5 = D ·N4 = D · U2 ·N3 = D · U2 · U1 ·N2 = D · U2 · U1 · L2 ·N1 = D · U2 · U1 · L2 · L1 · I,
es decir, N5 = D · U2 · U1 · L2 · L1 es la inversa de A.

Nota 3.1. Con respecto a lo hecho para la matriz A, debemos tener en cuenta una serie de conside-
raciones

1. En algunos textos, antes de hacer los ceros por encima de la diagonal principal, se convierten los
elementos de la diagonal principal en unos. Como se puede ver en el Ejemplo 3.2, el resultado
final es el mismo y la justificación de la validez del proceso es análoga a la realizada en el
párrafo precedente.

2. En algunas matrices hay que realizar cambios de filas para poder conseguir elementos distintos
de cero en la diagonal principal. El método de obtención de la inversa sigue siendo válido y en
la justificación del proceso se emplean las llamadas “matrices de transposición”. Se verá esta
situación en el Ejemplo 3.3.

Ejemplo 3.2. Recordemos los dos primeros pasos dados en el cálculo de la inversa de A,

(A | I) =

 2 1 2
−1 −2 −3
3 −4 1

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1


Primero restamos −12 F1 a F2 y 3

2F1 a F3,

(M1 | N1) =

 2 1 2

0 −3
2 −2

0 −11
2 −2

∣∣∣∣∣∣∣
1 0 0
1
2 1 0

−3
2 0 1

 .
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A continuación, restamos 11
3 F2 a F3,

(M2 | N2) =

 2 1 2

0 −3
2 −2

0 0 16
3

∣∣∣∣∣∣∣
1 0 0
1
2 1 0

−10
3 −11

3 1

 .

Ahora, en lugar de hacer ceros por encima de la diagonal principal (de M2), vamos a hacer unos en
esta diagonal. Para ello, consideramos 1

2F1, −2
3F2 y 3

16F3,

(
M ′3 | N ′3

)
=

 1 1
2 1

0 1 4
3

0 0 1

∣∣∣∣∣∣∣
1
2 0 0

−1
3 −2

3 0

−5
8 −11

16
3
16

 .

Hacemos ceros en la tercera columna tomando F1 − F3 y F2 − 4
3F3,

(
M ′4 | N ′4

)
=

 1 1
2 0

0 1 0

0 0 1

∣∣∣∣∣∣∣
9
8

11
16 − 3

16
1
2

1
4 −1

4

−5
8 −11

16
3
16

 .

Acabamos haciendo ceros en la segunda columna mediante la operación F1 − 1
2F2,

(
M ′5 | N ′5

)
=

 1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣
7
8

9
16 − 1

16
1
2

1
4 −1

4

−5
8 −11

16
3
16

 .

Por consiguiente, la inversa de A es la matriz N ′5 que, como no puede ser de otra manera, coincide
con la obtenida anteriormente.

Ejemplo 3.3. Veamos un ejemplo en el que, para calcular la inversa, es necesario realizar un cambio
de filas. Para ello, consideramos la matriz

C =

 2 3 2
2 3 −3
1 2 3

 .

Para empezar escribimos

(C | I) =

 2 3 2
2 3 −3
1 2 3

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

 .

Hacemos ceros en la primera columna con F2 − F1 y F3 − 1
2F1,

(M1 | N1) =

 2 3 2
0 0 −5
0 1

2 2

∣∣∣∣∣∣
1 0 0
−1 1 0

−1
2 0 1

 .

En este momento necesitamos hacer un cambio de filas para poder seguir operando. Concretamente
tenemos que intercambiar la segunda y tercera filas, lo que expresaremos de la forma F2 ↔ F3.

(M2 | N2) =

 2 3 2

0 1
2 2

0 0 −5

∣∣∣∣∣∣∣
1 0 0

−1
2 0 1

−1 1 0

 .
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Hacemos ceros en la tercera columna con F1 +
2
5F3 y F2 +

2
5F3,

(M3 | N3) =

 2 3 0

0 1
2 0

0 0 −5

∣∣∣∣∣∣∣
3
5

2
5 0

− 9
10

2
5 1

−1 1 0

 .

Hacemos ceros en la segunda columna con F1 − 6F2,

(M4 | N4) =

 2 0 0

0 1
2 0

0 0 −5

∣∣∣∣∣∣∣
6 −2 −6
− 9

10
2
5 1

−1 1 0

 .

Finalmente, hacemos unos en la diagonal con 1
2F1, 2F2 y −1

5F3,

(M5 | N5) =

 1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣
3 −1 −3
−9

5
4
5 2

1
5 −1

5 0

 .

Concluimos que N5 =

 3 −1 −3
−9

5
4
5 2

1
5 −1

5 0

 es la inversa de C.

Ejercicio 14: Comprueba que C ·N5 = N5 · C = I.

Ejercicio 15: Comprueba la operación F2 ↔ F3 se puede expresar mediante la matriz (de transpo-
sición)

T23 =

 1 0 0
0 0 1
0 1 0

 .

Comprueba que M2 = T23 ·M1 y N2 = T23 ·N1.

Ejercicio 16: Describe, por medio de matrices, todos los pasos dados para calcular la inversa de C.

Ejercicio 17: Repite el cálculo de la inversa de C pero haciendo unos en la diagonal principal antes
de hacer ceros por encima de dicha diagonal.

(Observa que tienes que hacer los cálculos de nuevo a partir de (M2 | N2)).

Ejemplo 3.4. Para acabar, calculemos la inversa de la matriz B de orden 4× 4 ya utilizada en las
secciones anteriores. Partimos de la expresión

(B | I) =


2 −1 1 −1
1 −2 1 −2
0 −1 1 −1
2 1 −1 3

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Hacemos ceros (por debajo) en la primera columna restando 1
2F1 a F2 y F1 a F4,

(M1 | N1) =


2 −1 1 −1
0 −3

2
1
2 −3

2

0 −1 1 −1
0 2 −2 4

∣∣∣∣∣∣∣∣∣
1 0 0 0

−1
2 1 0 0

0 0 1 0
−1 0 0 1

 .
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Hacemos ceros (por debajo) en la segunda columna restando 2
3F2 a F3 y −4

3F2 a F4,

(M2 | N2) =


2 −1 1 −1
0 −3

2
1
2 −3

2

0 0 2
3 0

0 0 −4
3 2

∣∣∣∣∣∣∣∣∣
1 0 0 0

−1
2 1 0 0

1
3 −2

3 1 0

−5
3

4
3 0 1

 .

Hacemos ceros (por debajo) en la tercera columna restando −2F3 a F4,

(M3 | N3) =


2 −1 1 −1
0 −3

2
1
2 −3

2

0 0 2
3 0

0 0 0 2

∣∣∣∣∣∣∣∣∣
1 0 0 0

−1
2 1 0 0

1
3 −2

3 1 0

−1 0 2 1

 .

Hacemos ceros (por encima) en la cuarta columna restando −1
2F4 a F1 y −3

4F4 a F2,

(M4 | N4) =


2 −1 1 0

0 −3
2

1
2 0

0 0 2
3 0

0 0 0 2

∣∣∣∣∣∣∣∣∣
1
2 0 1 1

2

−5
4 1 3

2
3
4

1
3 −2

3 1 0

−1 0 2 1

 .

Hacemos ceros (por encima) en la tercera columna restando 3
2F3 a F1 y 3

4F3 a F2,

(M5 | N5) =


2 −1 0 0

0 −3
2 0 0

0 0 2
3 0

0 0 0 2

∣∣∣∣∣∣∣∣∣
0 1 −1

2
1
2

−3
2

3
2

3
4

3
4

1
3 −2

3 1 0

−1 0 2 1

 .

Hacemos ceros (por encima) de la segunda columna restando 2
3F2 a F1,

(M6 | N6) =


2 0 0 0

0 −3
2 0 0

0 0 2
3 0

0 0 0 2

∣∣∣∣∣∣∣∣∣
1 0 −1 0

−3
2

3
2

3
4

3
4

1
3 −2

3 1 0

−1 0 2 1

 .

Finalmente, hacemos unos en la diagonal principal tomando 1
2F1, −2

3F2, 3
2F3 y 1

2F4,

(M7 | N7) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

∣∣∣∣∣∣∣∣∣
1
2 0 −1

2 0

1 −1 −1
2 −1

2
1
2 −1 3

2 0

−1
2 0 1 1

2

 .

Por tanto, N7 es la inversa de B.

Ejercicio 18: Comprueba que B ·N7 = N7 ·B = I.

Ejercicio 19: Describe, por medio de matrices, todos los pasos dados para calcular la inversa de B.

Ejercicio 20: Calcula, usando el método expuesto en esta sección, la inversa de la matriz

E =


0 1 2 3
3 0 1 2
2 3 0 1
1 2 3 0

 .


