The doubles of a numerical semigroup

A.M. Robles-Pérez, J.C. Rosales, and P. Vasco

VIJMDA

Lleida, July 22, 2008

First definitions

Definition

A numerical semigroup is a subset of \mathbb{N} (nonnegative integers) that is closed under addition, contains the zero element, and has finite complement in \mathbb{N}.

Definition
$\frac{S}{p}=\{x \in \mathbb{N} \mid p x \in S\}$ is the quotient of S by p.

- $\frac{S}{2}$ is the half of S
- $\frac{S}{4}$ is the quarter of S
- S is a double of $\frac{S}{2}$

Sets of doubles

Definition

Set of doubles of a numerical semigroup.

$$
\mathrm{D}(S)=\left\{\bar{S} \left\lvert\, \frac{\bar{S}}{2}=S\right.\right\}
$$

Definition

Set of doubles of a numerical semigroup with fixed smallest odd integer.

$$
\mathrm{D}_{\mathrm{m}}(S)=\{\bar{S} \in \mathrm{D}(S) \mid m \text { is the smallest odd integer of } \bar{S}\}
$$

More notation

- $G(S)$ is the set of element of $\mathbb{N} \backslash S$: set of gaps of S.
- $\mathrm{g}(S)$ is the cardinality of $\mathrm{G}(S)$: genus of S or singularity degree of S.
- $\mathrm{F}(\mathrm{S})$ is the greatest integer that does not belong to S : Frobenius number of S.
- $A+B=\{a+b \mid a \in A$ and $b \in B\}$
- $2 A=\{2 a \mid a \in A\}$ (not to be confused with $A+A$)

Example

$$
S=\{0,3,5,6,8, \rightarrow\}=\{0,3,5,6\} \cup\{z \in \mathbb{Z} \mid z \geq 8\}
$$

$$
\begin{gathered}
\frac{S}{2}=\left\{\frac{0}{2}, \frac{6}{2}, \frac{8}{2}, \rightarrow\right\}=\{0,3, \rightarrow\} \\
\frac{S}{4}=\left\{\frac{0}{4}, \frac{8}{4}, \rightarrow\right\}=\{0,2, \rightarrow\}
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{G}(S)=\{1,2,4,7\} \\
\mathrm{g}(S)=4 \\
\mathrm{~F}(S)=7
\end{gathered}
$$

"Basic" double

Definition

Let S be a numerical semigroup and let m be an odd integer of S.

$$
S(m)=2 S \cup(2 S+\{m\})
$$

Lemma

Let S be a numerical semigroup and let m be an odd integer of S.
(1) $S(m) \in \mathrm{D}_{m}(S)$.
(2) $S(m) \subseteq \bar{S}$ if $\bar{S} \in \mathrm{D}_{m}(S)$.

Gaps of the "basic" double

Lemma

Let $\mathrm{G}(\mathrm{S})=\left\{h_{1}<h_{2}<\ldots<h_{g(S)}\right\}$. Then

$$
\mathrm{G}(S(m))=\mathrm{G}_{0}(S(m)) \cup \mathrm{G}_{m-}(S(m)) \cup \mathrm{G}_{m+}(S(m))
$$

where
(1) $\mathrm{G}_{0}(S(m))=2 \mathrm{G}(S)=\left\{2 h_{1}<2 h_{2}<\ldots<2 h_{g(S)}\right\}$;
(2) $\mathrm{G}_{m-}(S(m))=\{1,3, \ldots, m-2\}$;
(3) $\mathrm{G}_{m+}(S(m))=2 \mathrm{G}(S)+\{m\}=\left\{2 h_{1}+m<\ldots<2 h_{g(S)}+m\right\}$.

Example

$$
\begin{gathered}
S=\{0,3,5,6,8, \rightarrow\}, \quad \mathrm{G}(S)=\{1,2,4,7\} \\
S(5)=2 S \cup(2 S+\{5\})=\{0,6,10,12,16, \ldots\} \cup\{5,11,15,17,21, \ldots\}= \\
\{0,5,6,10,11,12,15,16,17,18,20, \rightarrow\} \\
\mathrm{G}(S(5))=\{2,4,8,14\} \cup\{1,3\} \cup\{7,9,13,19\}= \\
\{1,2,3,4,7,8,9,13,14,19\}
\end{gathered}
$$

Question

What can we remove in $\{7,9,13,19\}$?

m-upper subset

Definition

Let H be a subset of $\mathrm{G}(S)$.
We say that H is an m-upper subset of $\mathrm{G}(S)$ if it verifies the following conditions
(H1) $\mathrm{H}+\{m\} \subset S(\Leftrightarrow(\mathrm{H}+\{m\}) \cap \mathrm{G}(S)=\emptyset)$;
(H2) $\mathrm{H}+\mathrm{H}+\{m\} \subset S(\Leftrightarrow(\mathrm{H}+\mathrm{H}+\{m\}) \cap \mathrm{G}(S)=\emptyset)$;
(H3) if $h \in \mathrm{H}$, then $\{g \in \mathrm{G}(S) \mid h \leq s g\} \subseteq \mathrm{H}$.
(Order relation in $\mathrm{G}(S): \quad g_{1} \leq s g_{2} \Leftrightarrow g_{2}-g_{1} \in S$)

Independence of the conditions

Example

$$
\begin{gathered}
S=\{0,3,5,6,8, \rightarrow\}, \quad \mathrm{G}(S)=\{1,2,4,7\} \\
m=5
\end{gathered}
$$

(1) $H=\{2,7\}$ satisfies $(\mathrm{H} 2)$ and $(\mathrm{H} 3)$ but not $(\mathrm{H} 1)$.
(2) $\mathrm{H}=\{1,4,7\}$ satisfies $(\mathrm{H} 1)$ and $(\mathrm{H} 3)$ but not $(\mathrm{H} 2)$.
(3) $H=\{4\}$ satisfies $(H 1)$ and $(H 2)$ but not $(H 3)$.

In these cases $S(5) \cup(2 \mathrm{H}+\{5\})$ is not a numerical semigroup.

Central lemma

Lemma

Let S be a numerical semigroup, let m be an odd integer of S, and let H be a subset of $\mathrm{G}(\mathrm{S})$. The following conditions are equivalent

- $\bar{S}=S(m) \cup(2 \mathrm{H}+\{m\}) \in \mathrm{D}_{m}(S)$.
(2) H is an m-upper subset of $\mathrm{G}(S)$.

Definition

$$
\begin{gathered}
S(m, \mathrm{H})=S(m) \cup(2 \mathrm{H}+\{m\})=S \cup(S+\{m\}) \cup(2 \mathrm{H}+\{m\}) \\
S(m)=S(m, \emptyset)
\end{gathered}
$$

Example

$$
\begin{gathered}
S=\{0,3,5,6,8, \rightarrow\}, \quad \mathrm{G}(S)=\{1,2,4,7\} \\
m=5
\end{gathered}
$$

(1) $S(5, \emptyset)=S(5)=\{0,5,6,10,11,12,15,16,17,18,20, \rightarrow\}$.
(2) $S(5,\{7\})=S(5) \cup(2\{7\}+\{5\})=\{0,5,6,10,11,12,15, \rightarrow\}$.
(3) $S(5,\{4,7\})=S(5) \cup(2\{4,7\}+\{5\})$

$$
=\{0,5,6,10,11,12,13,15, \rightarrow\} .
$$

These are all the elements of $\mathrm{D}_{5}(S)$.

Description of $\mathrm{D}_{m}(S)$

Theorem

Let S be a numerical semigroup and $m \in S$ an odd integer. Then

$$
\mathrm{D}_{m}(\mathrm{~S})=\{S(m, \mathrm{H}) \mid \mathrm{H} \text { is } m \text {-upper subset of } \mathrm{G}(S)\} .
$$

Moreover, $S\left(m_{i}, \mathrm{H}_{i}\right)=S\left(m_{j}, \mathrm{H}_{j}\right)$ if and only if $m_{i}=m_{j}$ and $\mathrm{H}_{i}=\mathrm{H}_{j}$.

Remark

(1) Each double \bar{S} has a unique smallest odd integer, m.
(2) \bar{S} can be in only one set $\mathrm{D}_{m}(S)$.
(3) $\left\{\mathrm{D}_{m}(S) \mid m \in S\right.$ is odd $\}$ is a partition of $\mathrm{D}(S)$.

$¿ \mathrm{H}=\mathrm{G}(\mathrm{S})$?

Proposition

$\mathrm{G}(S)$ is an m-subset of $\mathrm{G}(S)$ if and only if $m>\mathrm{F}(S)$.

Remark

- If $\bar{S} \in \mathrm{D}_{m}(S)$ and $\mathrm{G}(S)$ is an m-upper subset of $\mathrm{G}(S)$ then $\bar{S} \subseteq S(m, G(S))$.
(2) $\mathrm{G}_{m+}(S(m, \mathrm{G}(S)))=\emptyset$.
(0) $S(m, \mathrm{G}(S))=2 S \cup(2 \mathbb{N}+\{m\})$.

Singularity degree

Lemma

- $\mathrm{G}_{0}(S(m, \mathrm{H}))=2 \mathrm{G}(S)=\left\{2 h_{1}<2 h_{2}<\ldots<2 h_{g(S)}\right\}$;
- $\mathrm{G}_{m-}(S(m, \mathrm{H}))=\{1,3, \ldots, m-2\}$;
- $\mathrm{G}_{m+}(S(m, \mathrm{H}))=2(\mathrm{G}(S) \backslash \mathrm{H})+\{m\}$.
$S(m, \mathrm{H})=S \cup(S+\{m\}) \cup(2 \mathrm{H}+\{m\})$

Proposition

 $\mathrm{g}(S(m, \mathrm{H}))=2 \mathrm{~g}(S)+\frac{m-1}{2}-\# \mathrm{H}$.
Frobenius number

Proposition

(1) $\mathrm{H} \neq \mathrm{G}(S)$,

$$
\mathrm{F}(S(m, \mathrm{H}))=\max \{2 \mathrm{~F}(S), 2(\max (\mathrm{G}(S) \backslash \mathrm{H}))+m\}
$$

(2) $\mathrm{H}=\mathrm{G}(S)$,

$$
\mathrm{F}(S(m, \mathrm{H}))=\max \{2 \mathrm{~F}(S), m-2\} .
$$

Corollary

$F(S) \notin \mathrm{H} \Rightarrow \mathrm{F}(S(m, \mathrm{H}))=2 \mathrm{~F}(S)+m$.

Example

$$
S=\{0,3,5,6,8, \rightarrow\}, \quad \mathrm{G}(S)=\{1,2,4,7\}, \quad m=5
$$

(1) $S(5, \emptyset)=\{0,5,6,10,11,12,15,16,17,18,20, \rightarrow\}$.
(0) $\mathrm{G}(S(5, \emptyset))=\{1,2,3,4,7,8,9,13,14,19\}, \mathrm{g}(S(5, \emptyset))=10$.
(2) $\mathrm{F}(S(5, \emptyset))=2 \times 7+5=19$.
(2) $S(5,\{7\})=\{0,5,6,10,11,12,15, \rightarrow\}$.
(1) $\mathrm{G}(S(5,\{7\}))=\{1,2,3,4,7,8,9,13,14\}, \mathrm{g}(S(5,\{7\}))=9$.
(2) $\mathrm{F}(S(5,\{7\}))=\max \{2 \times 7,2 \times 4+5\}=14$.
(3) $S(5,\{4,7\})=\{0,5,6,10,11,12,13,15 \rightarrow\}$.
(1) $\mathrm{G}(S(5,\{4,7\}))=\{1,2,3,4,7,8,9,14\}, \mathrm{g}(S(5,\{4,7\}))=8$.
(2) $\mathrm{F}(S(5,\{4,7\}))=\max \{2 \times 7,2 \times 2+5\}=14$.

Definitions

Definition

S is symmetric if

$$
x \in \mathbb{Z} \backslash S \Rightarrow \mathrm{~F}(S)-x \in S
$$

Definition

S is pseudo-symmetric if $\mathrm{F}(S)$ is even and

$$
x \in \mathbb{Z} \backslash S \Rightarrow \mathrm{~F}(S)-x \in S \text { or } 2 x=\mathrm{F}(S)
$$

Definition

S is equilibrated if $\mathrm{g}_{0}(S)=\mathrm{g}_{1}(S)$.
$\left(\mathrm{g}_{0}(S)=\#\{h \in \mathrm{G}(S) \mid h\right.$ is even $\} ; \mathrm{g}_{1}(S)=\#\{h \in \mathrm{G}(S) \mid h$ is odd $\left.\}\right)$

Half and quarter of numerical semigroups

Proposition

(1) Every numerical semigroup is one half of infinitely many symmetric ones.
(2) Every numerical semigroup is one half of an equilibrated one.
(3) Every symmetric numerical semigroup is one half of an equilibrated pseudo-symmetric one.
(4) Every numerical semigroup is one quarter of infinitely many equilibrated pseudo-symmetric ones.

Symmetric numerical semigroups

Definition

S is symmetric if

$$
x \in \mathbb{Z} \backslash S \Rightarrow \mathrm{~F}(S)-x \in S
$$

Lemma

(1) S symmetric $\Rightarrow \mathrm{F}(S)$ odd.
(2) S is symmetric $\Leftrightarrow \mathrm{g}(S)=\frac{\mathrm{F}(S)+1}{2}$.

Symmetric numerical semigroups

Definition

Set of gaps of second type.

$$
\mathrm{H}_{2}(S)=\{x \in \mathrm{G}(S) \mid \mathrm{F}(S)-x \in \mathrm{G}(S)\}
$$

Lemma

$\# \mathrm{H}_{2}(S)=2 \mathrm{~g}(S)-\mathrm{F}(S)-1$

Proposition

If $\mathrm{H}_{2}(\mathrm{~S})$ is an m-upper subset of $\mathrm{G}(\mathrm{S})$ then
$S\left(m, \mathrm{H}_{2}(\mathrm{~S})\right)$ is a symmetric numerical semigroup.

Symmetric numerical semigroups

Lemma

$\mathrm{H}_{2}(S)$ is an m-upper subset of $\mathrm{G}(S)$ if $m>\mathrm{F}(S)$.

Example

(1) $S=\{0,4,5,7, \rightarrow\}, \quad \mathrm{G}(S)=\{1,2,3,6\}, \quad \mathrm{F}(S)=6$ $\mathrm{H}_{2}(\mathrm{~S})=\{3\}$ is a 5 -upper subset of $\mathrm{G}(S)$.
(2) $S=\{0,4,5,8, \rightarrow\}, \quad \mathrm{G}(S)=\{1,2,3,6,7\}, \quad \mathrm{F}(S)=7$ $\mathrm{H}_{2}(\mathrm{~S})=\{1,6\}$ is not a 5 -upper subset of $\mathrm{G}(S)$.

Corollary

Every numerical semigroup is one half of infinitely many symmetric ones.

Equilibrated pseudo-symmetric numerical semigroups

Definition

S is pseudo-symmetric if $\mathrm{F}(S)$ is even and

$$
x \in \mathbb{Z} \backslash S \Rightarrow \mathrm{~F}(S)-x \in S \text { or } 2 x=\mathrm{F}(S)
$$

Definition
S is equilibrated if

$$
\mathrm{g}_{0}(S)=\mathrm{g}_{1}(S)
$$

$\left(\mathrm{g}_{0}(\mathrm{~S})=\#\{h \in \mathrm{G}(S) \mid h\right.$ is even $\} ; \mathrm{g}_{1}(S)=\#\{h \in \mathrm{G}(S) \mid h$ is odd $\left.\}\right)$

Equilibrated pseudo-symmetric numerical semigroups

Lemma

(1) S is pseudo-symmetric $\Leftrightarrow \mathrm{g}(S)=\frac{\mathrm{F}(S)+2}{2}$.
(2) S is equilibrated $\Leftrightarrow \mathrm{g}(S)=2 \mathrm{~g}\left(\frac{S}{2}\right)$.

Proposition

$\bar{S}=S(2 g(S)+1, G(S))$ is an equilibrated pseudo-symmetric numerical semigroup.
Moreover, $\mathrm{F}(\bar{S})=2 \mathrm{~F}(S)$ and $\mathrm{g}(\bar{S})=2 \mathrm{~g}(S)$.

Corollary

Every numerical semigroup is one half of an equilibrated one.

Equilibrated pseudo-symmetric numerical semigroups

Lemma

S is symmetric $\Leftrightarrow S(2 g(S)+1, G(S))$ is pseudo-symmetric.

Proposition

Every symmetric numerical semigroup is one half of an equilibrated pseudo-symmetric one.

Corollary

Every numerical semigroup is one quarter of infinitely many equilibrated pseudo-symmetric ones.

References

Q A.M. Robles-Pérez, J.C. Rosales and P. Vasco.
The doubles of a numerical semigroup.
Submitted to J. Pure Appl. Algebra.
Q J.C. Rosales.
One half of a pseudo-symmetric numerical semigroup.
Bull. London Math. Soc., 40: 347-352, 2008.
Q J.C. Rosales and P.A. García-Sánchez.
Every numerical semigroup is one half of a symmetric numerical semigroup. Proc. Amer. Math. Soc., 136:475-477, 2008.
Q J.C. Rosales and P.A. García-Sánchez.
Every numerical semigroup is one half of infinitely many symmetric numerical semigroups.
Communications in Algebra, (to appear).

References

Q V. Barucci, D.E. Dobbs and M. Fontana.
Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analytically Irreducible Local Domains.
Memoirs of the Amer. Math. Soc. 598, 1997.
R R. Fröberg, G. Gottlieb and R. Häggkvist.
On numerical semigroups.
Semigroup Forum, 35: 63-83, 1987.
Q J. Komeda.
Non-Weierstrass numerical semigroups.
Semigroup Forum, 57: 157-185, 1998.
© E. Kunz.
The value-semigroup of a one-dimensional Gorenstein ring. Proc. Amer. Math. Soc., 25: 748-751, 1970.

References

Q J.L. Ramírez Alfonsín.
The diophantine Frobenius problem.
Oxford Univ. Press, 2005.
Q J.C. Rosales and M.B. Branco.
Irreducible numerical semigroups.
Pacific J. Math., 209:131-143, 2003.
Q J.C. Rosales and P.A. García-Sánchez.
Finitely generated commutative monoids.
Nova Science Publishers, New York, 1999.
Q J.C. Rosales, P.A. García-Sánchez, J.I. García-García and
J.M. Urbano-Blanco.

Proportionally modular Diophantine inequalities.
J. Number Theory, 103:281-294, 2003.

