LITTLE GROTHENDIECK'S THEOREM FOR REAL JB*-TRIPLES

ANTONIO M. PERALTA*

Abstract

We prove that given a real JB*-triple E, and a real Hilbert space H, then the set of those bounded linear operators T from E to H, such that there exists a norm one functional $\varphi \in E^*$ and corresponding pre-Hilbertian semi-norm $\|.\|_{\varphi}$ on E such that

$$||T(x)|| \le 4\sqrt{2}||T|| ||x||_{\varphi}$$

for all $x \in E$, is norm dense in the set of all bounded linear operators from E to H.

As a tool for the above result, we show that if A is a JB-algebra and $T:A\to H$ is a bounded linear operator then there exists a state $\varphi\in A^*$ such that

$$||T(x)|| \le 2\sqrt{2}||T||\varphi(x^2)|$$

for all $x \in A$.

Mathematics Subject Classification: 17C65, 46K70, 46L05, 46L10 and 46L70.

1 Introduction.

It is well known [Gro] that there is a universal constant K such that if Ω is a compact Hausdorff space and T is a bounded linear operator from $C(\Omega)$ to

 $^{^*}$ Supported by Programa Nacional F.P.I., Ministry of Education and Science grant and the Bilateral Spanish-Hungarian Research Cooperation grant No. TET E-3/97

Introduction. 2

a complex Hilbert space H, then there exists a probability measure μ on Ω such that

$$||T(f)||^2 \le K^2 ||T||^2 \left(\int_{\Omega} |f|^2 d\mu \right)$$

for all $f \in C(\Omega)$. This result is called "Little Grothendieck's inequality" or "Little Grothendieck's Theorem" for commutative C*-álgebras. In the non-commutative case, Pisier ([P1], [P2]) and Haagerup ([H1],[H2]) proved a "Little Grothendieck Theorem" for C*-algebras. That is, if $T: C \to \mathcal{H}$ is a bounded linear operator from a C*-algebra, C, to a complex Hilbert space, \mathcal{H} , we can find a state ψ of C such that

$$||T(x)|| \le 2||T||\psi(\frac{1}{2}(xx^* + x^*x))^{\frac{1}{2}} \quad (x \in C).$$

As is pointed out in [CIL], Pisier's proof of the "Little Grothendieck's theorem" for C*-algebras [P2, Theorem 9.4] can be verbatim extended for JB*-algebras in the following setting. For every bounded linear operator T from a JB*-algebra \mathcal{A} , to a complex Hilbert space \mathcal{H} , there exists a state $\varphi \in \mathcal{A}^*$ such that

$$||T(z)|| \le 2||T|| (\varphi(z \circ z^*))^{\frac{1}{2}}$$

for all $z \in \mathcal{A}$. For the most general class of complex Banach spaces called JB*-triples (which includes C*-algebras and JB*-algebras) a "Little Grothendieck's Theorem" is established by Barton and Friedman [BF, Theorem 1.3]. According to the formulation of that Theorem in [BF], for every bounded linear operator T from a complex JB*-triple \mathcal{E} to a complex Hilbert space \mathcal{H} there is a normalized functional $\varphi \in \mathcal{E}^*$ such that

$$||T(x)|| \le \sqrt{2}||T|| ||x||_{\varphi}$$

for every $x \in \mathcal{E}$, where $||x||_{\varphi}^2 = \varphi\{x,x,e\}$ for some tripotent $e \in \mathcal{E}^{**}$ with $\varphi(e) = 1$. However, the Barton-Friedman proof contains a gap. Indeed, they assert, that for T as above, T^{**} attains its norm (at a complete tripotent), a fact that is not always true. Indeed, consider the operator S from the

Introduction. 3

complex ℓ_2 space to itself, whose associated matrix is

$$\begin{pmatrix} \frac{1}{2} & 0 & \cdots & 0 & \cdots \\ 0 & \frac{2}{3} & \cdots & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \frac{n}{n+1} & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ \end{pmatrix}$$

It is worth mentioning that, although the operator S above does not attain its norm, it satisfies

$$||S(x)|| \le \sqrt{2} ||S|| ||x||_{\varphi}$$

for every $x \in \ell_2$ and every normalized functional $\varphi \in \ell_2^*$. Therefore it does not become a counterexample to the Barton-Friedman "Little Grothendieck's Theorem". In fact we do not know if Theorem 1.3 of [BF] is true.

From the proof of [BF, Theorem 1.3], it may be concluded that if T is a bounded linear operator from a complex JB*-triple \mathcal{E} to a complex Hilbert space \mathcal{H} whose second transpose T^{**} attains its norm at a complete tripotent, then there exists a norm one functional $\varphi \in \mathcal{E}^*$ such that

$$||T(x)|| \le \sqrt{2}||T|| ||x||_{\varphi}$$

for all $x \in \mathcal{E}$, where $||x||_{\varphi}^2 = \varphi\{x, x, e\}$ and $e \in \mathcal{E}^{**}$ is a tripotent with $\varphi(e) = 1$.

If T^{**} attains its norm, the norm is attained at a complete tripotent (see the proof of Theorem 4.3). Finally, since the set of all operators $T \in BL(\mathcal{E}, \mathcal{H})$ such that T^{**} attains its norm is norm dense in $BL(\mathcal{E}, \mathcal{H})$, (see [L, Theorem 1]), the result of Barton and Friedman can be formulated as follows.

Theorem 1.1 Let \mathcal{E} be a complex JB^* -triple and let \mathcal{H} be a complex Hilbert space. Then the set of those bounded linear operators T from \mathcal{E} to \mathcal{H} such that there exists a norm one functional $\varphi \in \mathcal{E}^*$ satisfying

$$||T(x)|| \le \sqrt{2}||T|| ||x||_{\varphi}$$

for all $x \in \mathcal{E}$, is norm dense in the set of all bounded linear operators from \mathcal{E} to \mathcal{H} .

In this paper we prove a similar result for the most general class of Banach spaces called real JB*-triples.

Complex JB*-triples were introduced by Kaup [K1] in the study of bounded symmetric domains in complex Banach spaces. He shows that every bounded symmetric domain in a complex Banach space is biholomorphically equivalent to the open unit ball of a complex JB*-triple [K2]. Every C*-algebra and every JB*-algebra are JB*-triples with triple product $\{x,y,x\} := xy^*x$ and $\{a,b,c\} := (a \circ b^*) \circ c + (c \circ b^*) \circ a - (a \circ c) \circ b^*$ respectively. See [U], [R], [Ru] and [CM] for the general theory of JB*-triples.

Definitions of real JB*-triples have been introduced in ([U],[IKR],[DR]) and we adopt the definition of [IKR] in this paper. Real JB*-triples are defined as closed real subtriples of complex JB*-triples. The class of real JB*-triples is bigger than the class of complex JB*-triples. Every complex JB*-triple, JB-algebra, real C*-algebra and J*B-algebra is a real JB*-triple (see [IKR], [HS], [G] and [A]). Recently real JB*-triples have been the object of intensive investigations (see for example [D], [CDRV], [IKR], [K3], [CGR], [MP] and [PS]).

The aim of this paper is to obtain a "Little Grothendieck's Theorem" for real JB*-triples. Section 2 presents some preliminary results. In section 3 we proceed with the study of the "Little Grothendieck Theorem" in the particular case of a JB-algebra. This result will be very useful in the proof of the main result. Finally section 4 provides a detailed proof of the "Little Grothendieck Theorem" for real JB*-triples. In the complex case the proof of the Little Grothendieck Theorem is based in the fact that it(L(a,b)+L(b,a)) is a derivation for all $t \in \mathbb{R}$ and $a,b \in \mathcal{E}$ where \mathcal{E} is a complex JB*-triple and so $\exp(it(L(a,b)+L(b,a)))$ is an isometric bijection for every t in \mathbb{R} , $a,b \in \mathcal{E}$. In the real case it(L(a,b)+L(b,a)) does not make sense but we can use that $\delta(a,b) := L(a,b) - L(b,a)$ is a derivation for all a,b in a real JB*-triple E and then $\exp(t(L(a,b)-L(b,a)))$ is an isometric bijection for every t in \mathbb{R} , $a,b \in E$ (see [IKR, Proposition 2.5]). This fact will be the basic idea in the proof of the main result.

2 Background.

We recall that a complex JB*-triple is a complex Banach space \mathcal{E} with a continuous triple product $\{.,.,.\}$: $\mathcal{E} \times \mathcal{E} \times \mathcal{E} \to \mathcal{E}$ which is bilinear and

symmetric in the outer variables and conjugate linear in the middle variable, and satisfies:

- 1. (Jordan Identity) $L(a,b)\{x,y,z\} = \{L(a,b)x,y,z\} \{x,L(b,a)y,z\} + \{x,y,L(a,b)z\}$ for all a,b,c,x,y,z in \mathcal{E} , where $L(a,b)x := \{a,b,x\}$;
- 2. The map L(a, a) from \mathcal{E} to \mathcal{E} is an hermitian operator with spectrum ≥ 0 for all a in \mathcal{E} ;
- 3. $\|\{a, a, a\}\| = \|a\|^3$ for all a in \mathcal{E} .

Following [IKR], a real Banach space E together with a trilinear map $\{.,.,.\}: E \times E \times E \to E$ is called a real JB*-triple if there is a complex JB*-triple \mathcal{E} and an \mathbb{R} -linear isometry λ from E to \mathcal{E} such that $\lambda\{x,y,z\} = \{\lambda x, \lambda y, \lambda z\}$ for all x, y, z in E.

Real JB*-triples are essentially the closed real subtriples of complex JB*-triples and, by [IKR, Proposition 2.2], given a real JB*-triple E there exists a unique complex JB*-triple \widehat{E} and a unique conjugation (conjugate linear and isometric mapping of period 2) τ on \widehat{E} such that $E = \widehat{E}^{\tau} := \{x \in \widehat{E} : \tau(x) = x\}$. In fact, \widehat{E} is the complexification of the vector space E, with triple product extending in a natural way the triple product of E and a suitable norm. For the rest of the paper, given a real JB*-triple E, we will denote by \widehat{E} its complexification and by τ the canonical conjugation on \widehat{E} such that $E = \widehat{E}^{\tau}$.

JBW*-triples (real JBW*-triples resp.) are JB*-triples (real JB*-triples resp.) which are Banach dual spaces [BT] ([MP] resp).

Real and complex JB*-triples are Jordan triples. Therefore, given a tripotent e ($\{e,e,e\}=e$) in a real or complex JB*-triple U, there exist two decompositions of U

$$U = U_0(e) \oplus U_1(e) \oplus U_2(e) = U^1(e) \oplus U^{-1}(e) \oplus U^0(e)$$

where $U_k(e) = \{x \in U : L(e,e)x = \frac{k}{2}x\}$ for k = 0, 1, 2 and $U^k(e)$ is the k-eigenspace of the operator $Q(e)x := \{e, x, e\}$ for k = 1, -1, 0. It is well known that if \mathcal{E} is a complex JB*-triple and $e \in \mathcal{E}$ is a tripotent then $\mathcal{E}_2(e)$ is a JB*-algebra with product $x \circ y := \{x, e, y\}$ and involution $x^* := \{e, x, e\}$. In the case that E is a real JB*-triple and $e \in E$ is a tripotent, $E^1(e)$ is a JB-algebra with product $x \circ y := \{x, e, y\}$. $E_k(e)$ is called the Peirce k-space of e. For a real or complex JB*-triple U the following rules are satisfied:

- 1. $U_2(e) = U^1(e) \oplus U^{-1}(e)$ and $U^0(e) = U_1(e) \oplus U_0(e)$
- 2. $\{U^i(e), U^j(e), U^k(e)\} \subseteq U^{ijk}(e)$ if $ijk \neq 0$
- 3. $\{U_i(e), U_j(e), U_k(e)\} \subseteq U_{i-j+k}(e)$, where i, j, k = 0, 1, 2 and $U_l(e) = 0$ for $l \neq 0, 1, 2$.
- 4. $\{U_0(e), U_2(e), U\} = \{U_2(e), U_0(e), U\} = 0.$

The last two rules are known as Peirce arithmetic. In particular, Peirce k-spaces are subtriples.

The projection $P_k(e)$ of U onto $U_k(e)$ is called the Peirce k-projection of e. These projections are given by

$$P_2(e) = Q(e)^2;$$

 $P_1(e) = 2(L(e,e) - Q(e)^2);$
 $P_0(e) = Id_U - 2L(e,e) + Q(e)^2.$

Throughout this paper we will denote by $P^k(e)$ the natural projection $P^k(e)$: $U \to U^k(e)$ (k:1,0,-1).

Remark 2.1 Let E be a real JB^* -triple, we write \widehat{E} for its complexification and τ for the canonical conjugation on \widehat{E} with $\widehat{E}^{\tau} = E$. Let us consider

$$\phi: \widehat{E}^* \to \widehat{E}^*$$

by

$$\phi(f)(z) = \overline{f(\tau(z))}.$$

From [IKR] we can assure that ϕ is a conjugation (conjugate-linear isometry of period 2) on \widehat{E}^* . Furthermore the map

$$(\widehat{E}^*)^{\phi} := \{ f \in \widehat{E}^* : \phi(f) = f \} \to (\widehat{E}^{\tau})^*$$
$$f \mapsto f|_{E}$$

is an isometric bijection. In the same way if E is a real JBW*-triple and we write \widehat{E} for its complexification (which is a complex JBW*-triple) the predual of E, E_* can be regarded as $(\widehat{E}_*)^{\phi} := \{ f \in \widehat{E}_* : \phi(f) = f \}$.

The construction can be realized one more time to get a conjugation $\widehat{\phi}$ on \widehat{E}^{**} such that

$$E^{**} \cong (\widehat{E}^{**})^{\widehat{\phi}}.$$

It is well known that the surjective linear (resp. conjugate linear) isometries between two complex JB*-triples are exactly the triple linear (resp. conjugate linear) isomorphisms [K2, Proposition 5.5]. Moreover if $\mathcal E$ is a JBW*-triple then every surjective linear or conjugate linear isometry on $\mathcal E$ is weak* continuous [BT], in particular if we have a JBW*-triple with a conjugation τ then τ is automatically weak* continuous.

We recall [FR, Proposition 2] that if \mathcal{E} is a complex JBW*-triple and $f \in \mathcal{E}_*$ then there exists a unique tripotent e(f) in \mathcal{E} such that $f = fP_2(e)$ and $f|_{\mathcal{E}_2(e)}$ is a faithful normal positive functional on the JBW*-algebra $\mathcal{E}_2(e)$. This tripotent is called the support tripotent of f.

Since the concept of support tripotent is preserved by weak* continuous automorphisms, given a complex JBW*-triple \mathcal{E} with a conjugation τ , we can find a relationship between the support tripotents of f and $\phi(f)$ for every $f \in \mathcal{E}_*$ (Where ϕ is the conjugation constructed from τ like in Remark 2.1).

Lemma 2.2 Let \mathcal{E} be a complex JBW*-triple, let τ be a conjugation on \mathcal{E} , $f \in \mathcal{E}_*$ and let e be the support tripotent of f. Then $\tau(e)$ is the support tripotent of $\phi(f)$. In particular if $\phi(f) = f$ and e is its support tripotent then $\tau(e) = e$ (by the uniqueness of the support tripotent).

Proof

The proof is immediate from the previous comments. \Box

Let E be a real JB*-triple and let f be a norm one functional on E. f can be regarded as a norm one functional on the complexification of E, \widehat{E} , such that $\phi(f) = f$ (see Remark 2.1). From [FR, Proposition 2] there exists the support tripotent of f in \widehat{E}^{**} . By the previous Lemma, this support tripotent of f in \widehat{E}^{**} is in fact in E^{**} and we call it the support tripotent of f in E^{**} .

The following Lemma is contained in [PS] and we include here by completeness reasons. It will play a very important role in the proof of the main Theorem.

Lemma 2.3 Let E be a real JB*-triple, let e be a tripotent of E and $f \in E^*$ such that $||f|_{E_2(e)}|| = ||f|| = 1$. Then $f = f \circ P_2(e)$. Moreover if f(e) = 1 then $f = f \circ P^1(e)$.

Proof

By [MP, Lemma 2.9] we have $f = f \circ P_2(e)$. Let $y \in E^{-1}(e)$. We may assume without loss of generality $f(y) \geq 0$. Therefore $\{e, e, y\} = y$, $\{e, y, e\} = -y$ and we have the order estimate

$$\{e+ty, e+ty, e+ty\} = \{e, e, e\} + 2t\{e, e, y\} + \{e, y, e\} + O(|t|^2) = e+ty + O(|t|^2)$$

for t > 0 in \mathbb{R} . Hence by induction we get

$$(e+ty)^{3^n} = e+ty+O(|t|^2)$$
 $(n=1,2,...)$.

Therefore, for t > 0,

$$||e + ty|| \ge f(e + ty) = 1 + tf(y)$$

$$(1 + tf(y))^{3^{n}} \le ||e + ty||^{3^{n}} = ||(e + ty)^{3^{n}}|| = ||e + ty + O(|t|^{2})|| \le 1 + t||y|| + O(|t|^{2})$$

$$1 + 3^{n}tf(y) + O(|t|^{2}) \le 1 + t||y|| + O(|t|^{2})$$

$$3^{n}f(y) + O(|t|) \le ||y|| + O(|t|).$$

Thus, for $t \downarrow 0$, we obtain

$$f(y) \le \frac{1}{3^n} ||y|| \qquad (n = 1, 2, \dots) .$$

It follows f(y) = 0 for every $y \in E^{-1}(e)$. Since $E_2(e) = E^1(e) \oplus E^{-1}(e)$ and $f = fP_2(e)$, we conclude $f = f \circ P^1(e)$. \square

The next Lemma extends [BF, Proposition 1.2] to real JB*-triples.

Lemma 2.4 Let E be a real JB*-triple, $f \in E^*$ with ||f|| = 1 and let $e \in E$ such that f(e) = ||e|| = 1. Then

$$f\{x, y, e\} = f\{y, x, e\}$$
$$f\{x, x, e\} \ge 0$$

for all $x, y \in E$, and the Cauchy-Schwartz inequality holds:

$$|f\{x,y,e\}|^2 \le f\{x,x,e\} \ f\{y,y,e\}$$

Moreover if $z \in E$ with f(z) = ||z|| = 1 = then

$$f\{x, x, e\} = f\{x, x, z\}$$

for all $x \in E$ and if we define $||x||_f := (f\{x, x, e\})^{\frac{1}{2}} \ \forall x \in E$ then $||x|| = Sup\{||x||_f : ||f|| = 1\}.$

JB-Algebras 9

Proof

Let \widehat{E} denote the complexification of E. By Remark 2.1 we can see f as an element of \widehat{E}^* with ||f|| = f(e) = 1 and $\phi(f) = f$. From [BF, Proposition 1.2]

$$f\{a, b, e\} = \overline{f\{b, a, e\}},$$

$$f\{a, a, e\} \ge 0,$$

$$|f\{a, b, e\}|^2 \le f\{a, a, e\} |f\{b, b, e\}$$

 $\forall a, b \in \widehat{E}$. Moreover if $z \in \widehat{E}$ with f(z) = ||z|| = 1 =then

$$f\{a, a, e\} = f\{a, a, z\}$$

for all $a \in \widehat{E}$. Now applying that $\phi(f) = f$ $(f \in E^*)$ we have that $f(E) \subseteq \mathbb{R}$ and then we obtain the first three statements.

For the last affirmation we proceed as follows. Let $x \in E$ with ||x|| = 1, by the Hahn-Banach Theorem there exists $f \in E^*$ with ||f|| = f(x) = 1. We consider $f \in \widehat{E}^*$ with $\phi(f) = f$. Let $u \in \widehat{E}^{**}$ the support tripotent of f. Again by [BF, Proof of Proposition 1.2] $||x|| = f\{x, x, u\} = ||x||_f$ in \widehat{E} . Since $\phi(f) = f$, Remark 2.1 and Lemma 2.2, assure that the support tripotent u of f is in the bidual of E, i. e. $u \in E^{**}$. Therefore we obtain the last statement. \square

From this Lemma, as in the complex case [BF], given a real JB*-triple E and a norm one functional f we can build a pre-Hilbertian seminorm $\|.\|_f$ on E, a real Hilbert space H_f and a natural map $J_f: E \to H_f$ with $\|J_f(x)\| \leq \|x\|$ for all $x \in E$. The real Hilbert space H_f is the completion of E/N_f where $N_f:=\{x \in E: \|x\|_f=0\}$ and J_f is the natural projection.

$$||J_f x||_f = ||x||_f = (f\{x, x, e\})^{\frac{1}{2}} \le ||x||$$

where e is the support tripotent of f in E^{**} .

3 JB-Algebras

One of the most important examples of real JB*-triples are JB-algebras. We recall that every JB-algebra is a real JB*-triple with triple product given by

JB-Algebras 10

 $\{x,y,z\} := (x \circ y) \circ z + (z \circ y) \circ x - (x \circ z) \circ y$. This section is devoted to prove a "little Grothendieck's Theorem" in the case of a JB-algebra.

If \mathcal{A} is a (complex) JB*-algebra, \mathcal{A} can be regarded as (complex) JB*-triple under the triple product $\{x,y,z\} := (x \circ y^*) \circ z + (z \circ y^*) \circ x - (x \circ z) \circ y^*$. The "Grothendieck's Theorem" for (complex) JB*-algebras (which is a verbatim extension of Haagerup's proof for C*-algebras [H2]), is stated by Chu, Iochum and Loupias in [CIL, Theorem 2.].

Theorem 3.1 (Little Grothendieck's Theorem for JB*-algebras) Let \mathcal{A} be a (complex) JB*-algebra, let \mathcal{H} be a complex Hilbert space and $T: \mathcal{A} \to \mathcal{H}$ a bounded linear operator. Then there is a state $\varphi \in \mathcal{A}^*$ such that

$$||T(z)|| \le 2||T|| \left(\varphi(z \circ z^*)\right)^{\frac{1}{2}}$$

for all $z \in \mathcal{A}$.

We can now state the analogue of "Little Grothendieck's Theorem" for (real) JB-algebras.

Theorem 3.2 (Little Grothendieck's Theorem for JB-algebras) Let A be a JB-algebra, let A be a real Hilbert space and let A: $A \to A$ be a bounded linear operator. Then there is a state $\varphi \in A^*$ such that

$$||T(x)|| \le 2\sqrt{2}||T|| (\varphi(x^2))^{\frac{1}{2}}$$

for all $x \in A$.

Proof

We denote by \widehat{A} and \mathcal{H} the complexifications of A and H respectively. \widehat{A} is a JB*-algebra whose self-adjoint part is A and \mathcal{H} is a complex Hilbert space. Consider $\widehat{T}: \widehat{A} \to \mathcal{H}$ the complex linear extension of T. It is easy to check that $\|\widehat{T}\|^2 \leq 2\|T\|^2$. From Theorem 3.1 there exists a state $\psi \in \widehat{A}^*$ such that

$$\|\widehat{T}(z)\|^2 \le 4\|\widehat{T}\|^2 \psi(z \circ z^*) \le 8\|T\|^2 \psi(z \circ z^*)$$

for all $z \in \widehat{A}$.

In particular if $x \in A$

$$||T(x)||^2 \le 8||T||^2\psi(x \circ x).$$

Since ψ is a state of \widehat{A} , $\psi|_A$ is a state of A, and the proof is concluded. \square

4 Main Result

This section will be devoted to the proof of the "Little Grothendieck's Theorem for real JB*-triples". We start introducing some terminology.

Definition 4.1 If E is a real JB*-triple and H is a real Hilbert space, we will say that a bounded linear operator T from E to H satisfies the "Little Grothendieck's inequality" if there exists a norm one functional $\varphi \in E^*$ with

$$||T(x)|| \le 4\sqrt{2} ||T|| ||x||_{\varphi}$$

for all $x \in E$. Let LG(E, H) denote the set of all operators $T \in BL(E, H)$ satisfying the "Little Grothendieck's inequality".

We have seen (Lemma 2.4) that if E is a real JB*-triple, and f is a norm one functional on E, we can define a pre-Hilbertian seminorm $\|.\|_f$ on E given by $\|x\|_f^2 = f\{x, x, e\}$ where e is the support tripotent of f in E^{**} . Suppose that e is a complete tripotent $(E_0(e) = 0)$ of E such that f(e) = 1. The following Lemma states that the projections associated with e, $P_k(e)$ (k:0,1,2) and $P^k(e)$ (k:1,-1,0) are $\|.\|_f$ -contractive.

Lemma 4.2 Let E be a real JB^* -triple, and let e be a complete tripotent of E. Suppose that f is a norm one functional on E such that f(e) = 1 then

- 1. $||x||_f^2 = ||P_1(e)x||_f^2 + ||P_2(e)x||_f^2 \quad (x \in E).$
- 2. $||P_2(e)x||_f^2 = ||P^1(e)x||_f^2 + ||P^{-1}(e)x||_f^2 \quad (x \in E).$

In particular $P_k(e)$ (k:0,1,2) and $P^k(e)$ (k:1,-1,0) are $||.||_f$ -contractive.

Proof

Let $x \in E$ and let us denote by $x^k := P^k(e)x$ and $x_k := P_k(e)x$. Since e is complete $P_0(e) = 0$ ($x = x_1 + x_2 \ \forall x \in E$). Using Lemma 2.4, Peirce Arithmetic and Lemma 2.3 we can check that

$$||x||_f^2 = ||x_1 + x_2||_f^2 = f\{x_1 + x_2, x_1 + x_2, e\} =$$

$$= f\{x_1, x_1, e\} + f\{x_2, x_2, e\} + 2f\{x_1, x_2, e\} =$$

$$= f\{x_1, x_1, e\} + f\{x_2, x_2, e\} = ||x_1||_f^2 + ||x_2||_f^2.$$

Similar considerations show that $\{x^1, x^{-1}, e\} \in E^{1(-1)1}(e) = E^{-1}(e)$ hence applying Lemma 2.3 again

$$\|P_2(e)x\|_f^2 = \|x^1 + x^{-1}\|_f^2 = \|x^1\|_f^2 + \|x^{-1}\|_f^2 + 2f\left\{x^1, x^{-1}, e\right\} = \|x^1\|_f^2 + \|x^{-1}\|_f^2.$$

This completes the proof. \Box

We can now state the analogue of [BF, Theorem 1.3] for real JB*-triples. As we have mentioned in the introduction this is a "Little Grothendieck's Theorem" with an additional hypothesis for T^{**} . Concretely we are going to prove that if T is a bounded linear operator from a real JB*-triple E to a real Hilbert space H such that T^{**} attains its norm, then $T \in LG(E, H)$.

Theorem 4.3 Let E be a real JB^* -triple, let H be a real Hilbert space and let $T: E \to H$ be a bounded linear operator. Suppose that T^{**} attains its norm. Then there exists a norm one functional φ on E such that

$$||T(x)|| \le 4\sqrt{2}||T|| ||x||_{\varphi}$$

for all $x \in E$.

Proof

We can suppose that $\|T\|=1$. We first prove that, in fact, T^{**} attains its norm at a complete tripotent $e\in E^{**}$. By hypothesis, T^{**} attains its norm, so we know that $\|T^{**}\|=\|T^{**}(c)\|=\|T\|=1$ for $c\in E^{**}$. Let us consider $\rho(x)=< T^{**}(x)|T^{**}(c)>$. It is clear that ρ is a norm one and weak*-continuous functional on E^{**} , so by Alaoglu's Theorem, the Krein-Milman Theorem and the characterization of the complete tripotents, there exists a complete tripotent $e\in E^{**}$ such that

$$||T^{**}|| = \rho(e) = \langle T^{**}(e)|T^{**}(c) \rangle \leq ||T^{**}(e)|| ||T^{**}(c)|| = ||T^{**}(e)|| \leq ||T^{**}||,$$

thus

$$||T^{**}(e)|| = ||T^{**}||.$$

Now we suppose that E is a real JBW*-triple and T is norm one and w*-continuous (we can consider $T^{**}: E^{**} \to H$) and there is a complete tripotent $e \in E$ such that ||T|| = ||T(e)||. Let us define

$$\xi(x) := \langle T(x)/T(e) \rangle \quad (x \in E).$$

It is clear that $1 = ||\xi|| = \xi(e)$.

Let $a \in E$ and let us denote $a^k := P^k(e)a$ and $a_k := P_k(e)a$. It is well known [IKR, Proposition 2.5] that $\exp(t(L(a,e) - L(e,a)))$ is an isometric bijection for all $t \in \mathbb{R}$ and $a, e \in E$. Then

$$1 > ||T(\exp(t(L(a,e) - L(e,a)))e)||^2 =$$

$$= ||T(e) + tT((L(a,e) - L(e,a))e) + \frac{t^2}{2}T((L(a,e) - L(e,a))^2e)||^2 + O(|t|^3)$$

for all $t \in \mathbb{R}$. Therefore

$$||T(e) + tT((L(a,e) - L(e,a))e) + \frac{t^2}{2}T((L(a,e) - L(e,a))^2e)||^2 \le 1 + O(|t|^3)$$

$$||T(e) - tT((L(a,e) - L(e,a))e) + \frac{t^2}{2}T((L(a,e) - L(e,a))^2e)||^2 \le 1 + O(|t|^3)$$

Now from the parallelogram law we obtain that

$$||T(e) + \frac{t^2}{2}T((L(a,e) - L(e,a))^2 e)||^2 + ||tT((L(a,e) - L(e,a))e)||^2 \le 1 + O(|t|^3) \quad (t.1)$$

Since

$$||T(e) + \frac{t^2}{2}T((L(a,e) - L(e,a))^2 e)||^2 \ge \langle T(e) + \frac{t^2}{2}T((L(a,e) - L(e,a))^2 e)/T(e) \rangle^2 =$$

$$= (1 + \frac{t^2}{2}\xi((L(a,e) - L(e,a))^2 e))^2$$

(t.1) shows that

$$t^{2}||T((L(a,e)-L(e,a))e)||^{2} \le t^{2}\xi(-(L(a,e)-L(e,a))^{2}e) + O(|t|^{3})$$

and

$$||T((L(a,e) - L(e,a))e)||^2 \le \xi(-(L(a,e) - L(e,a))^2 e) + O(|t|) \quad (t \in \mathbb{R})$$

And letting $t \to 0$ we obtain that

$$||T((L(a,e) - L(e,a))e)||^2 \le \xi(-(L(a,e) - L(e,a))^2e) \quad (t.2)$$

Now we must compute $\xi(-(L(a,e)-L(e,a))^2e)$. In this part of the proof Lemma 2.4 and Peirce Arithmetic play a very important role. $-(L(a,e)-L(a,e))^2e$

 $L(e,a))^2 e = -\{a,e,\{a,e,e\}\} + \{a,e,\{e,a,e\}\} + \{e,a,\{a,e,e\}\} - \{e,a,\{e,a,e\}\}\}.$ By Peirce Arithmetic $\{\{e,a,e\},a,e\} = \{e,\{a,e,a\},e\}.$ Now using Peirce Arithmetic, Lemma 2.4 and Lemma 2.3

$$\xi(\{e, a, \{e, a, e\}\}) = \xi(\{e, \{a, e, a\}, e\}) = \xi(\{\{a, e, a\}, e, e\})$$

$$= \xi(\{\{a_1, e, a_1\}, e, e\}) + 2\xi(\{\{a_1, e, a_2\}, e, e\}) + \xi(\{\{a_2, e, a_2\}, e, e\})$$

$$= \xi(\{\{a_2, e, a_2\}, e, e\}) = \xi(\{a_2, e, a_2\}) = \xi(\{a, e, a\}) \quad (t.3)$$

By the same method

$$\xi(\{a, e, \{e, a, e\}\}) = \xi(\{a_1, e, \{e, a_2, e\}\} + \{a_2, e, \{e, a_2, e\}\})) = \xi(\{a_2, e, \{e, a_2, e\}\})$$

$$= 2\xi(\{a_2, a_2, e\}) - \xi(\{e, \{a_2, a_2, e\}, e\})) = 2\xi(\{a_2, a_2, e\}) - \xi(\{\{a_2, a_2, e\}\}, e, e\})$$

$$= \xi(\{a_2, a_2, e\}) \quad (t.4)$$

$$\xi(\{e, a, \{a, e, e\}\}) = \xi(\{\{a, e, e\}, a, e\})) = \xi(\{a, \{a, e, e\}, e\})$$

$$= \xi(\{a_2, a_2, e\}) + \frac{1}{2}\xi(\{a_1, a_1, e\}) \quad (t.5)$$

and

$$\xi(\{a, e, \{a, e, e\}\}) = \xi(\{a, e, a\})$$
 (t.6)

We conclude from (t.3),(t.4),(t.5) y (t.6) that

$$\xi(-(L(a,e) - L(e,a))^2 e) = -2\xi \{a, e, a\} + 2\xi \{a_2, a_2, e\} + \frac{1}{2}\xi \{a_1, a_1, e\}$$
$$= 2\xi \{\{e, e, a\}, \{e, e, a\}, e\} - 2\xi \{a, e, a\}$$

Finally from (t.2) we have

$$||T(\{a,e,e\}-\{e,a,e\})||^2 \le 2\xi(\{\{e,e,a\},\{e,e,a\},e\}-\{a,e,a\}) \ (a \in E) \quad (t.7)$$

Since e is a complete tripotent, L(e,e) is a bijection. Hence if we denote $x = \{e, e, a\}$, Peirce Arithmetic and (t.7) show that

$$||T(x - \{e, x, e\})||^2 \le 2\xi(\{x, x, e\} - \{x, e, x\}) \ (x \in E) \quad (t.8)$$

In particular, as $x_1 \in E_1(e)$ by Peirce Arithmetic and Lemma 2.3 $\{e, x_1, e\} = \{x_1, e, x_1\} = 0$ then from (t.8)

$$||T(x_1)||^2 \le 2\xi \{x_1, x_1, e\} = 2||x_1||_{\mathcal{E}}^2 \quad (t.9)$$

Similarly as $x^{-1} \in E^{-1}(e)$ ($\{e, x^{-1}, e\} = -x^{-1}$) then

$$||T(x^{-1})||^2 \le \xi \{x^{-1}, x^{-1}, e\} = ||x^{-1}||_{\xi}^2 \quad (t.10)$$

The problem is that from (t.8) we are unable to estimate $||T(x^1)|| \le M||x^1||_{\xi}$ for all x^1 in the JBW-algebra $E^1(e)$ (with unit e), and some positive constant M, as we have made before for $x_1 \in E_1(e)$ and $x^{-1} \in E^{-1}(e)$. At this point we apply Theorem 3.2 to obtain a state ψ of $E^1(e)$ such that

$$||T(x^1)||^2 \le 8\psi(x^1 \circ x^1) = 8\psi\left\{x^1, x^1, e\right\} = 8||x^1||_{\psi}^2 \quad (x^1 \in E^1(e)) \quad (t.11)$$

We can see $\psi = \psi P^1(e)$ as a linear functional on E using Lemma 2.3.

Let $x \in E$ from (t.9), (t.10) and (t.11) $||T(x)|| \le ||T(x_1)|| + ||T(x^{-1})|| + ||T(x^1)|| \le \sqrt{8}||x^1||_{\psi} + ||x^{-1}||_{\xi} + \sqrt{2}||x_1||_{\xi}$. Hence Lemma 4.2 shows that

$$||T(x)|| \le \sqrt{8} ||x||_{\psi} + ||x||_{\xi} + \sqrt{2} ||x||_{\xi}$$

$$= \sqrt{8} ||x||_{\psi} + (1 + \sqrt{2}) ||x||_{\xi} \le \sqrt{8} (||x||_{\psi} + ||x||_{\xi})$$

$$||T(x)||^{2} \le 8 (||x||_{\psi}^{2} + ||x||_{\xi}^{2} + 2||x||_{\psi} ||x||_{\xi}) \le$$

$$\le 16 (||x||_{\psi}^{2} + ||x||_{\xi}^{2}) = 16 (\psi \{x, x, e\} + \xi \{x, x, e\}) =$$

$$= 32 \frac{\psi + \xi}{2} \{x, x, e\} = 32 \varphi \{x, x, e\} = 32 ||x||_{\varphi}^{2}$$

where $\varphi = \frac{\psi + \xi}{2}$ is a norm one functional on E and $\varphi(e) = 1$. \square

Remark 4.4 In the setting of the proof of the previous Theorem, we can see that if we can estimate $||T(x^1)||^2 \le M^2 ||x^1||_{\xi}^2$ for $x^1 \in E^1(e)$ (where $\xi(x) := < T(x)/T(e) >$) then it is easy to obtain that $||T(x)|| \le (1 + \sqrt{2} + M)||x||_{\xi}$. It is trivial to estimate $||T(x^1)||^2 = ||x^1||_{\xi}^2$ when e is a minimal tripotent $(E^1(e) = \mathbb{R}e)$.

So if E is a real JB*-triple and e is a minimal tripotent of E. From [PS] $E_2(e)$ is a real Hilbert space (with inner product $< a, b > := \frac{1}{4}(\{a+b, a+b, e\} - \{a-b, a-b, e\}))$). $Q(e): E \to E_2(e)$ is a bounded linear operator with ||Q(e)|| = 1 = ||Q(e)e|| so from the previous Remark

$$||Q(e)x|| \le (2 + \sqrt{2})(\xi \{x, x, e\})^{\frac{1}{2}} \quad (x \in E)$$

REFERENCES 16

where

$$\begin{split} \xi(x) = & < Q(e)x/e > \\ & = \frac{1}{4}(\{Q(e)x + e, Q(e)x + e, e\} - \{Q(e)x - e, Q(e)x - e, e\}). \end{split}$$

From the previous theorem 4.3 we can now prove the analogous of theorem 1.1 for real JB*-triples which is the main result of the paper.

Theorem 4.5 Let E be a real JB^* -triple and let H be a real Hilbert space. Then the set LG(E, H) is norm dense in the set of all bounded linear operator from E to H.

Proof

The proof straightforward from Theorem 4.3 and the norm denseness of the set of all bounded linear operators whose second transpose attains its norm [L]. \Box

Acknowledgements

The author wishes to express his thanks to J. M. Isidro, J. Martínez and A. Rodríguez for their helpful suggestions during the preparation of this paper.

References

- [A] Alvermann, K.: Real normed Jordan algebras with involution, Arch. Math. 47, 135-150 (1986).
- [BF] Barton, T. and Friedman Y.: Grothendieck's inequality for JB*-triples and applications, J. London Math. Soc. (2) **36** 513-523 (1987).
- [BT] Barton, T. and Timoney, R. M.: Weak*-continuity of Jordan triple products and its applications, Math. Scand. **59**, 177-191 (1986).
- [CDRV] Chu, C-H., Dang, T., Russo, B., and Ventura, B.: Surjective isometries of real C*-algebras, J. London Math. Soc. 47, 97-118 (1993).
- [CGR] Chu, C-H., Galindo, A. M., and Rodríguez, A.: On prime real JB*-triples, Contemporary Math. 232, 105-109 (1999).

REFERENCES 17

[CIL] Chu, C-H., Iochum, B., and Loupias, G.: Grothendieck's theorem and factorization of operators in Jordan triples, Math. Ann. **284**, 41-53 (1989).

- [CM] Chu, C-H., Mellon, P.: Jordan structures in Banach spaces and symmetric manifolds, Expo. Math. **16**, 157-180 (1998).
- [D] Dang, T.: Real isometries between JB*-triples, Proc. Amer. Math. Soc. 114, 971-980 (1992).
- [DR] Dang, T. and Russo, B.: Real Banach Jordan triples, Proc. Amer. Math. Soc. 122, 135-145 (1994).
- [FR] Friedman, Y. and Russo, B.: Structure of the predual of a JBW*-triple,J. Reine u. Angew. Math. 356, 67-89 (1985).
- [G] Goodearl, K. R.: Notes on real and complex C*-algebras, Shiva Publ. 1982.
- [Gro] Grothendieck, A.: Résumé de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Mat. Sao Paolo 8, 1-79 (1956).
- [H1] Haagerup, U.: Solution of the similarity problem for cyclic representations of C*-algebras, Ann. of Math. 118, 215-240 (1983).
- [H2] Haagerup, U.: The Grothendieck inequality for bilinear forms on C*-algebras, Avd. Math. **56** 93-116 (1985).
- [HS] Hanche-Olsen, H. and Størmer, E.: Jordan operator algebras, Monographs and Studies in Mathematics 21, Pitman, London-Boston-Melbourne 1984.
- [IKR] Isidro, J. M., Kaup, W. and Rodríguez, A.: On real forms of JB*-triples, Manuscripta Math. 86, 311-335 (1995).
- [K1] Kaup, W.: Algebraic characterization of symmetric complex Banach manifolds, Math. Ann. 228, 39-64 (1977).
- [K2] Kaup, W.: A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 183, 503-529 (1983).

REFERENCES 18

[K3] Kaup, W.: On real Cartan factors, Manuscripta Math. 92, 191-222 (1997).

- [KU] Kaup, W. and Upmeier, H.: Jordan algebras and symmetric Siegel domains in Banach spaces, Math. Z. **157**, 179-200, (1977).
- [L] Lindenstrauss, J.: On operators which attain their norm, Israel J. Math.
 1, 139-148 (1963).
- [MP] Martínez, J. and Peralta A.M.: Separate weak*-continuity of the triple product in dual real JB*-triples, Math. Z., to appear.
- [PS] Peralta, A. M. and Stachó, L.: Atomic decomposition of real JBW*-triples, submitted.
- [P1] Pisier, G.: Grothendieck's theorem for non commutative C*-algebras with an appendix on Grothendieck's constant, J. Funct. Anal. 29, 397-415 (1978).
- [P2] Pisier, G.: Factorization of linear operators and geometry of Banach spaces, Publ. Amer. Math. Soc. CBMS **60**, Am. Math. Soc. 1986.
- [R] Rodríguez A.: Jordan structures in Analysis. In Jordan algebras: Proc. Oberwolfach Conf., August 9-15, 1992 (ed. by W. Kaup, K. McCrimmon and H. Petersson), 97-186. Walter de Gruyter, Berlin, 1994.
- [Ru] Russo B.: Structure of JB*-triples. In Jordan algebras: Proc. Oberwolfach Conf., August 9-15, 1992 (ed. by W. Kaup, K. McCrimmon and H. Petersson), 209-280. Walter de Gruyter, Berlin, 1994.
- [U] Upmeier, H.: Symmetric Banach Manifolds and JC*-algebras, Mathematics Studies 104, (Notas de Matemática, ed. by L. Nachbin) North Holland 1985.

A. M. Peralta Dept. Análisis Matemático Ftad. de Ciencias Universidad de Granada 18071 Granada, Spain aperalta@goliat.ugr.es