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1. Introduction

At the regional conference held at the University of California, Irvine in 1985
[24], Harald Upmeier posed three basic questions regarding derivations on JB*-
triples:

Q1: Are derivations automatically bounded?
Q2: When are all bounded derivations inner?
Q3: Can bounded derivations be approximated by inner derivations?

These three questions had all been answered in the binary cases. Q1 was an-
swered affirmatively by Sakai [17] for C*-algebras and by Upmeier [23] for JB-
algebras. Q2 was answered by Sakai [18] and Kadison [12] for von Neumann alge-
bras and by Upmeier [23] for JWW-algebras. Q3 was answered by Upmeier [23] for
J B-algebras and follows trivially from the Kadison-Sakai answer to Q2 in the case
of C'*-algebras.

In the ternary case, both Q1 and Q3 were answered by Barton and Friedman
in [3] for complex .JB*-triples. In this paper we consider Q2 for real and complex
JBW*-triples and Q1 and Q3 for real JB*-triples. A real or complex JB*-triple
is said to have the inner derivation property if every derivation on it is inner. By
pure algebra, every finite dimensional JB*-triple has the inner derivation property.
Our main results, Theorems 2, 3, and 4 and Corollaries 2 and 3 determine which
of the infinite dimensional real or complex Cartan factors have the inner derivation

property.

2. Background

We recall that a JB*-algebra is a complete normed Jordan complex algebra (say
A) endowed with a conjugate-linear algebra involution * satisfying ||U, (z*)|| = ||=|]?
for every = € A. Here, for every Jordan algebra A, and every = € A, U, denotes
the operator on A defined by U,(y) := 2z o (zoy) —x? oy, for all y € A.

A JB-algebra is a complete normed Jordan real algebra (say A) satisfying the
following two additional conditions for a,b € A
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(i) lla?] = llal
(i) [la2] < [la® + 82|

It is due to Wright (see [25]) that the complexification of a JB-algebra is a
JB*-algebra under a unique norm extending the given norm on the JB-algebra.
Conversely, the self-adjoint part of a JB*-algebra is a JB-algebra under the re-
stricted norm.

If H is a complex Hilbert space then the real Banach space H(H) of all bounded
hermitian operators on H is a JB-algebra with respect to the Jordan product

oy + ).

A uniformly (respectively, weakly) closed unital real subalgebra of H(H) is
called a JC-algebra (respectively, JW-algebra) on H. A norm (respectively, weakly)
closed (complex) Jordan*-subalgebra of a C*-algebra (respectively, von Neumann
algebra) is called a JC*-algebra (respectively, JW*-algebra). For more details on
JB- and JB*-algebras we refer the reader to [9].

roy =

We recall that a (complex) JB*-triple is a complex Banach space J with a
continuous triple product {.,.,.} : 7 x J x J — J which is bilinear and symmetric
in the outer variables and conjugate linear in the middle variable, and satisfies:

(i) (Jordan Identity) L(a, b){z,y, 2} = {L(a,b)z,y, 2} — {z, L(b, )y, =}
+ {z,y, L(a,b)z} for all a,b,z,y,z in J, where L(a,b)z := {a,b,z};

(ii) For all a € J, the map L(a,a) from J to J is an hermitian operator with
non-negative Bpectrum

(iii) ||{a,a,a}|| = ||a||” for all @ in J.

It is worth mentlomng that every C*-algebra is a (complex) JB*-triple with
respect to {a,b,c} = %(ab*c + cb*a). Also, every JB*-algebra is a JB*-triple with
respect to {a,b,c} = (aOb*) oc+ (cob*)oa— (aoc)ob*. Conversely, every JB*-triple
with a unitary element u (that is, {u,u,z} = z for every z) is a unital JB*-algebra
with product a o b = {a,u,b}, involution a* = {u,a,u}, and unit u. We refer to
[15], [16] and [5] for recent surveys on the theory of JB*-triples.

Following [11], we recall that a real JB*-triple is a norm-closed real subtriple
of a complex JB*-triple. Given a real JB*-triple J there exists a unique complex
JB*-triple structure on the complexification J=J @1 J, and a unique conjugation
(i.e., conjugate-linear isometry of period 2) 7 on J such that J = J7 := ={z € J:
T(.CL‘) = z}. From this point of view, the real JB*-triples are real forms of complex
JB*-triples.

The class of real JB*-triples includes all JB-algebras [9], all real C*-algebras [8],
and all J*B-algebras [2].

A triple derivation or simply a derivation ¢ on a real or complex JB*-triple U
is a linear operator satisfying
0{a,b,c} = {da,b,c} + {a,db,c} + {a,b,dc}

for all a,b,c € U.

If U is a real or complex JB*-triple, we can conclude from the Jordan identity
that d(a,b) := L(a,b) — L(b,a) is a derivation, for every a,b € U. An inner triple
derivation ¢ on U is a finite sum of derivations of the form d(a,b) (a,b € U), i.e

(5:2”:(5(0,]',[)3'). (21)
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The degree of an inner derivation is the least number of terms in a representation
of the form (2.1). Any derivation which is not inner is called outer.

REMARK 1. Let E be a real JB*-triple and § a derivation on E. Then § can
be extended to a derivation 0, on the complexification of F, defined by é(z + iy) :=
0(z) +1i0(y).

It is due to T. Barton and Y. Friedman [3], that every derivation on a com-
plex JB*-triple is automatically continuous, so, by the previous comment, every
derivation on a real JB*-triple is also continuous.

3. Inner Derivation Property

We say that a real or complex JB*-triple U has the inner derivation property
(IDP for short) if every derivation on U is inner.

By [14, Chapter 8] every finite dimensional real or complex JB*-triple has the
IDP. The next proposition shows that a real JB*-triple has the IDP whenever its
complexification satisfies this property.

__ ProposiTION 1. Let E be a real JB*-triple. Suppose that the complexification
E of E has the IDP. Then E has the IDP. Moreover, if M is a bound of the degree of
all inner derivations of E, then 2M is a bound of the degree of all inner derivations
of E.

Proof. Suppose that E is a real JB*-triple such that E has the IDP. Let § be
a derivation of E. We denote by d the derivation on E, extending ¢ to E. Since E
has the IDP, then 4 is an inner derivation of degree n, i.e.,

n

= dlax,br)

k=1

)

where ay, b, € E. Since E=Ea iE, it follows that a = ag,; + iag2 and by =
bi,1 + tbg 2 for suitable ay;,by; € E,l=1,2and k=1,...,n.
Consider now € E. We can compute

d(ak, br)x = 0(ak1 + iak,2,bp1 + iby2)x =
{ag1 +iak2,bp1 +ibg o, x} — {bg1 + ibg o, ap1 +iag 2, x} =
{ak1,bk,1,2} + {ag2,bp 2,2} +i({ar2,bk1,2} — {ak1,br2,2})—
—{bk1, a1, 2} — {b2,ar 2,2} — i({bk,2, ar,1, 2} — {bg,1,ar2,2}) =
= 0(ag,1,bk,1)(x) + 0(ak,2, br2)(z)+

+i({ak,2,bk,1, 7} — {ar1,bk2, 2} — {bk2,ar1, 2} + {bk1, ak2, 7}).

Therefore,

n

E 5 6(z) = 6(z) = 25(ak,1 +iag,2, b1 +ibg o) =
k=1
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n

= () (8(ar1,br1) + 0(ar2, be2))+

k=1

+i Z (ak,2,br,1) — L(ag,1,bk,2) — L(bk,2,a,1) + L(bg,1, ak,2)) ()

Since the elements ar,br; € E, we have

n

() (a1, bra) + 6(ar2, be2))(E) C E

k=1

and
(i Z (@k,2,br,1) — Lag,1,bk,2) — L(bg,2, ak,1) + L(bg1, 1)) (E) CIE.
k=1

Therefore,

M=

(> (L(ag,2,bk,1) — L(ak,1,bk,2) — L(bg,2,ar,1) + L(bg1,ar,1))(x) =0

>~
Il

1
for all z € E. Thus,

n
§(z) =6(z) = 2(5(ak,1,bk,1) + d(ag,2, by 2))(x)
k=1
for all € E, proving that § is an inner derivation with degree < 2n.

From the above proposition, it is easy to see that if F is a real JB*-triple which
does not satisfy the IDP, then its complexification also does not satisfy the IDP.

3.1 Reversible unital JB*-algebras We recall that the (complex) type 1 Cartan
factor can be defined as the complex Banach space BL(H, K), of all bounded linear
operators between two complex Hilbert spaces H and K, with triple product given
by

{a,b,c} = (ab*c-l-cb* )-

Next we give a brief description of the (complex) Cartan factors of type 2 and
3. Let H be a complex Hilbert space equipped with a conjugation (conjugate-linear
isometry of period 2) j : H — H; then for any z € B(H) we can define its transpose
as 2zt 1= j z* j. The type 2 Cartan factor coincides with the Banach space of all
t-skew symmetric elements in B(H) (2! = —z), and the type 8 Cartan factor is
defined as the Banach space of all t-symmetric elements of B(H) (2 = 2). The

triple product of these Cartan factors is the restriction of the triple product in

B(H).
We recall that a JC-algebra (or a JC*-algebra) A is said to be reversible if
T1T2 ... Ty +TpTp_1...21 € A, foralln € N and z4q,...,z, € A.

ProPoOSITION 2.  Cartan factors of type 1 with dim H = dim K, Cartan factors
of type 2 with dim H even, or infinite, and all Cartan factors of type 3 are reversible
JW*-algebras.
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Proof. Let C? be a type 3 Cartan factor. Since 2t = z for all z € C2, we have
(1.0Tp + Tpew1)t = 2wy + 210wy, € C3

Let C? be a type 2 Cartan factor with dim H even or infinite. Then C? contains
a distinguished unitary

0 10 00
-1 0 0 0O
0 0 0 1 0
v=)|0 0 -1 0 O
0 00 00

In this case we can provide a new C*-algebra structure to B(H) with product
a-b = au*b and involution a* = ua*u in which C? becomes a JC*-subalgebra under
aob=(a-b+b-a)/2. With this Jordan product, C? is reversible since

(Tru*zy - - u T, + Tput - ruts)) =
(—1)"+("_1)(a:nu*a:n_1 o Ty U Ty T U Ty) =
—(r1u*zs - - - Ut T, + Tpu’ - Toutxy).

We recall that if A is an algebra, then a derivation D of A is a linear mapping
D : A — A satisfying D(ab) = D(a)b + aD(b), for all a,b € A. If A is a Jordan
algebra, an inner algebra derivation of A is a finite sum of commutators of the form
[Lq, Lp) for some a,b € A, where L,z := a o z. For an inner algebra derivation D,
the degree of D is the least natural number n satisfying D = Y7, [Lq,, Ly,

LEMMA 1. Let Z be a JB*-algebra, with unit u, regarded as a complex JB*-
triple. If 0 is a triple derivation of Z, then Ls(,) is an inner triple derivation of Z
of degree 1.

Proof. Simply note that for every triple derivation § of Z, we have
ou = 6{u,u,u} = {ou,u,u} + {u,du,u} + {u,u,du} =
= 2{0u,u,u} + {u,éu,u} = 26u o u + (du)”

and hence,
(0u)* = —6u.

Now considering

(buoz—(—0u)oz) =

Lsyuz =0uoz =

DN | =

(buoz— (du)*oz) = %({5’11,11,, z} — {u,du, z}),

DN | =

it follows that Ls, is an inner triple derivation of degree one.
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LEMMA 2. [3, p. 263] Let Z be a unital JB*-algebra and D an algebra deriva-
tion of Z which commutes with the involution of Z. Then D is a triple derivation
of Z.

Conversely, if 7 is a JB*-triple with a unitary element u and 0 is a triple
derivation of Z, then 6 — Lg, is an algebra derivation of Z which commutes with
the involution on Z. In particular if § is an inner derivation of degree one, i. e.,
0 =6(z,y), then

1
d— L(S(u) = 5([Lz+z*aLy+y*] + [L—i(m—z*)aL—i(y—y*)])-

Proof. The first statement is clear. To prove the second one, let § be a triple
derivation of Z. It is easy to check that

(0 = Low)(x 0 y) = 0{z,u,y} — {du,u,{z,u,y}} =
= {dz,u,y} + {z,ou,y} + {z,u, 0y} — {ou,u, {z,u,y}} =
= {0x,u,y} + {z,du,y} + {x,u,dy}—
—{{ou,u,z},u,y} + {z, {u,du,u},y} — {z,u, {ou,u,y}} =
=dzxoy+ {z,0u,y} + x o dy—
—(buox)oy+{x, (6u)" ,y} —x o0 (fuoy) =
(applying (du)* = —du)
= (6 = Lou)() oy + {2, 0u,y} + 2 0 (6 = Lsu) (y) — {2, 0u,y} =
= (0 — Lsu)(z) oy + 70 (0 — Lou) (y)-
Thus 6 — Lg, is an algebra derivation.
The verification of the last formula is left to the reader.
By [22, Theorem 13] (see also [1, p. 255]), each JW-algebra A admits a decom-
position into weakly closed ideals of the form
A=Tpin ® Lo @I @ T, @ IT1.

See [22] and [1] for the meaning of these symbols. A JW-algebra A is called properly
non-modular if its modular part Iy;, ® II; vanishes.

In 1980, H. Upmeier showed that each algebra derivation on a properly non-
modular JW-algebra is the sum of six commutators of the form [L,, Ly] ([23, The-
orem 3.8]), and each algebra derivation on a reversible JW-algebra of type Iy, is
the sum of five commutators ([23, Theorem 3.9]).

The proof of the following theorem is implicitly contained in [23], and we include
it here for completeness.

THEOREM 1. Let A be a reversible JW-algebra of type II,. Then each deriva-
tion of A is a sum of at most 140 commutators of the form [Lg, Ly).

Proof. Let A be a reversible JW-algebra of type IT;. We will denote by U(.A)
its complex enveloping von Neumann algebra (the smallest von Neumann algebra
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containing A). By [1, Theorem 8], U(A)™ (that is, U(A) with the Jordan product
wy 0wy = (wyws + wewy)/2) is also of type II;. So following the proof of [23,
Theorem 3.10], it follows that each derivation of A has the form D(z) = ad(w)(z) :=
[w,z] (xz € A), where w = —w* € U(A). Moreover since U(A)" is of type I, w is
the sum of ten commutators in 2/ (A) (see [7, Theorem 2.3]), so that, each derivation
of A has the form
10
D =" ad(fw,;,ws,;]).
j=1
Since A is the self-adjoint part of R(.A), [19], where R(A) is the real enveloping
algebra of A, we have, by [20, Lemma 6.1] and [21, Lemma 2.3,Theorem 2.4],
U(A) = R(A) +1R(A).
Hence, every element wy ; is the sum, w; ; = w;,; +iv;;, where u; j,v;; € R(A).
Since for every u;,v; € R(A), the equalities

(w1 + iv1, us + Gv2] = [u1, u2] — [v1, 2] + i([ur, v2] + [v1, us2]),
[ug + dug, z] = [u1, ] + i[us, 7]

hold for all z € A, and since D maps A in A, we have

10
> llua g v2,4] + [v1,,ua 5],2] = 0
j=1
for all x € A. Thus
10 20
D =ad(w) = ad([u1 j,us,] = [v15,v2,5]) = Y ad([z1,5,22,5])
=1 =1

where z; ; € R(A) and w = 2521[21,1522,3‘]-

Our next goal is to prove that every element [z1 ;, 22 ;] is a finite sum of com-
mutators of elements in A.

Let 215,225 € R(A), and | € {1,2}. We denote by z;; (respectively, z;';) the
symmetric part (respectively, the skew-symmetric part) of z; ;. Since for every j,

(21 j, 25 ;] and [27 ;, 25 ;] are symmetric elements and w* = —w, we deduce that
20
_ s s a a
w = E [21,]'7227]'] + [217]',?32,;']-
i=1

Again, since A is the self-adjoint part of R(A), we have 27 ;,25 ; € A. So it is
enough to show that every commutator [2f ;, 25 ;] is a finite sum of commutators of
elements in A.

By [4, p. 121], R(A) is isomorphic to the matrix algebra M,(B), where B is a
suitable real associative x-algebra.

Following the proof of Lemma 3.11 in [23], it follows that each commutator of

skew-symmetric elements in Ms(B) has the form ( Z —cb ), with

a+b = [al,ag] + [bl,bz] + [01,02] + [dl,dg],

where a;,b;, and c; are skew-symmetric elements in B while d; and d» are sym-
metric elements in B.
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On the other hand, since for a,b,c,a; and B; € B, with a* = —a, b* = —b,
aj = a; and 7 = —f;, the following identities hold:

(¢ 70)=a1)(e o)
(70 aea )=l o) (10
0

(72 g )=t %) (o 7% b ana

a —c*\ _ (0 —c* n 1/a-b 0 n 1(a+b 0
¢ b )] \ e 0 2 0 b—a 2 0 a+bd )’
it may be concluded that each commutator [z{ ;, 25 ;] is the sum of six commutators

of elements in A. Therefore, we have proved that
140

w= [11,j,22,]

i=1
where z; ; € A, for all [, j, which proves that

140 140
D= Zad([w17j7m2,j]) = Z[Lm,jv[fw,j]'
j=1 j=1

Recall that a derivation on a JB-algebra is automatically continuous and a JB-
algebra has an approximate unit [9, 3.5.4]. Thus a derivation leaves each closed
ideal invariant. By combining the above theorem with the comments preceding it,
we have the following corollary.

COROLLARY 1. Each derivation on a reversible JW-algebra is a sum of at most
151 commutators of the form [Lg, Ly).

The next theorem is the main result of this section.

THEOREM 2. Cartan factors of type 1 with dim H = dim K, Cartan factors of
type 2 with dim H even, or infinite, and all Cartan factors of type 3 have the IDP.
Moreover, every derivation of the above Cartan factors has degree at most 153.

Proof. By Proposition 2, such factors are unital reversible JW*-algebras. So it
is enough to prove the statement for a unital reversible JW*-algebra Z.

It is well known that Z decomposes in the form Z = X + iX, where X is the
symmetric part of Z, and hence X is a reversible JW-algebra.

If § is a triple derivation of Z, then by Lemma 2, § — L, is a derivation of the
JB*-algebra Z which commutes with the involution, hence its restriction to X is a
derivation of X. From the identity:

(0 = Lsu)(2) = (0 — Lsu) (x +iy) = (0 — Lsu) |x () +i(0 — Lou) |x (9),
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it follows that (6 — Lsy) |x determines (6 — Lg,). Now, Corollary 1 gives (except
summing the 0 commutator)

152 152
(6= Lo (2) = 3 [Luys Iny | (& +z§jL%,h
j=1
52 152
ZLa]aLb ] 'T+Zy) Z[Lﬂj7Lbj](z)‘
j=1 j=1

Now applying the identity:
[La, L] + [Le, La) = 2(6 - Lz, ),

for all a,b,c and d in X, where

~ a+ic b+id
5= 0“5, 5,
we obtain
152 76
(6 — Lou)(2) = Y _[Lay, Lo (2) =2 ) (8(cj, dj) = Li(e,a,00) (2)-
j=1 j=1

Finally applying Lemma 1 it follows that
6_22 CJ’ L(S(CJ dj)u )+L5“

is an inner derivation with degree at most 153.

Following [13], we define a real Cartan factor to be a real form of a complex
Cartan factor. Combining the above theorem and Proposition 1, we obtain the
following result for real Cartan factors.

COROLLARY 2. If E is either a real form of a type 1 Cartan factor with
dim H = dim K, or a real form of a Cartan factor of type 2 with dim H even,
or infinite, or a real form of a Cartan factor of type 3, then every derivation on E
1s inner with degree at most 306.

3.2 Real or Complex spin factors In this subsection we prove that no infinite
dimensional real spin factor satisfies the IDP. So by Proposition 1, it may be con-
cluded that no complex spin factor satisfies the IDP.

We recall that a complex spin Cartan factor is a JB*-triple which can be
equipped with a complete inner product (.|.) and a conjugation * such that the
triple product satisfies

{z,y,2} = (2ly)z + (zly)x — (x]z")y"

and the norm is given by

l2]]? := (alz) + ((]2)” = |(z|e™)]) 2.
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By a real spin factor we mean any real form of a complex spin factor. By [13,
Theorem 4.1], we know that every real spin factor E is an [;-sum,

E=X, " X,

where X; and X, are closed subspaces of a real Hilbert space X, satisfying X, =
Xi, and the triple product on E is given by

{z,y,2} = (zly)z + (2ly)z — (z[2)7,

where (.|.) is the inner product of X and the map z — T is given by T = (z1, —x2),
for all z = (x1,22) € E.

Our goal is to build a derivation which is not inner in the case of an infinite
dimensional real spin factor E = X; ®“ X,. Without loss of generality we can
assume that X is also infinite dimensional.

First we suppose that E is separable. Let {e,, : n € N} be a countable or-
thonormal basis of X;. Since €, = e,, it is easy to check that {e,,e,,e,} = e, and
[|6(e2k—1,€2¢)|| < 2, hence the operator

o0

1
8o = Z 2—k5(62k—1,€2k)

k=1

is a well-defined derivation on E. Our goal is to show that dy is not inner. Suppose
that dq is inner; then

P
do = d(a;,b;)
j=1

for suitable aj, b]’ € FE, with, aj = aj1+ aje2 and bj = bj71 + b]’72 where aj; and bjﬂ‘
arein X; (j=1,...,P,i =1,2). Hence

P
do =7 8(az,b;) =
j=1

P
:Zé(a] 1,bj,1) +0(aj,1,b52) + 6(aj2,bj1) + 6(aj2, bj2).

j=1
It is easy to check that for all z; € X,
6(aj,2,bj2)(x1) = 6(aj,1,bj2)(21) = 6(aj2,b5,1)(x1) =0
and dp(X>2) = 0. Therefore

P

do(w1) =) 6(aj,b50) (1)

j=1

for all 1 € X;.
Now we define K as the linear span of {a;1,bj1:j =1...P}. Let 7y € K+NXjy;
then
p

o0
1
0—Z5ajla Jl)(l“l ) = do(w1 :ZQ_k (e2k—1,€21)(21) =
j=1 k=1
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= {€2k 1,€2k,$1} {62k,€2k 1,331})

—(earlear—1)x1 — (T1]e2r—1)ezr + (e2k]21)e2K—1) =

— 1
= Z ok—1 ((z1le2r)e2k—1 — (e2—1]71)e2k).
k=1

Thus (z1]ear) = (e2r—1|z1) = 0 for all £ € N, so x; = 0 since {e,} is a basis of
X;. Therefore K+ N X; = 0, and hence X; = K is finite dimensional, which is
impossible.

This proves that dp is not an inner derivation. Suppose now that dim X; > Ng
and let {e,}n be a countable set of orthonormal vectors in X;. Let us denote by
H the real separable Hilbert space generated by {e,}n, and by Jp the derivation
on E given by

o0

1
Z o d(e2k—1,€28).
k=1

Since do(H) C H, it follows that do|pr is a derivation of the real spin factor H,
which is not inner by the previous case. Actually we claim that dp is not an inner
derivation on E. Suppose, contrary to our claim, that dp is inner on E; then

P
do = d(a;,b;)
j=1

with a;,b; € E. Since
E=(Ha" H) 0" X,,

the elements, a; and b;, can be expressed as a; = hj +;3 and b; = k; +y;,3 where
hj and k]' are in H and Tj3,Yj53 € Ht @él Xo (] =1,.. .,P). Thus

P
So =Y d(ay,b;) =
j=1

P
25 +5 ]7yJ 3)-1-(5(1‘]3, ')+5('Tj73ayj,3)'

j=1
It is easy to check that
8(hj,yj3)h = —(hj|h)T55 — (hlhy)yjs € H' @ Xo,
3(xj,3,k;)h = (hlk;)zjs + (kj|W)T55 € H © Xy

and
d(xj3,vj5,3)(h) =0,
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for all h € H. From the last identity we have
P P
So(h) = 8(hy k) (h) + > (8(hy,yj.3) + 0(xjs, k;))(h),
j=1 j=1

for all h € H. Since dy(H) C H and ;" (8(h;,;3) +0(zj3, k1)) (H) C H- & X,
we have that
P

So(h) =" 6(hy, k;)(h)

Jj=1

for all h € H. Therefore dp| g is an inner derivation on H which is impossible, hence
0o 1s not an inner derivation on E.
We have thus proved the following theorem.

THEOREM 3. FEvery infinite dimensional real or complex spin factor has a
derivation which is not inner, i. e., none of infinite dimensional real or complex
spin factors has the IDP.

3.3 Non-square type 1 As in the case of a real or complex spin factor, we are
going to build an outer derivation in every real form of an infinite dimensional and
non-square (dim H # dim K) type 1 Cartan factor. Again using Proposition 1, we
will conclude that no complex infinite dimensional non-square type 1 Cartan factor
satisfies the IDP.

By [13, Theorem 4.1], we know that the real forms of a complex type 1 Cartan
factor are precisely the real Banach space BL(X,Y) of all bounded linear operators
between two real Hilbert spaces X and Y or the real Banach space BL(P,Q) of
all bounded linear operators between two Hilbert spaces P, @ over the quaternion
field. Thus it is enough to prove that BL(X,Y"), with +0c0 = dim(X) > dim(Y’),
possesses an outer derivation. We will divide the proof in several steps. In a first
step we suppose that Y = R. In this case BL(X,R) is isometrically isomorphic, as
a real JB*-triple, to X equipped with the triple product

f.0,7) = 5 ((ely)e + (ly)a)

for all z,y,z € X.
Let 0 a derivation on X, then

for all z,y,2z € X. Now from the expression of the triple product, we have

5 (2,1:2) = 5((oly)6= + (aly)ow),
{62,3,2} = 5((62ly)= + (=ly)o))
{2,69,2) = 5 (@ld)= + (=1oy)o)),
{2,302} = 5 (ay)3= + (52Iy)o))
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Thus it follows from (x) that

1
5 (((0z]y) + (2]0y))= + ((2]0y) + (32]y))z) =0
for all z,y,z € X. In particular we have
(z]0y) = —(0zfy)

forall z,y € X, i.e., §* = —4§. Therefore every derivation on X, regarded as the real
type 1 Cartan factor BL(X,R), is a skew-symmetric operator on X. Conversely:

LemMA 3. If X is a real Hilbert space, regarded as the real Cartan factor
BL(X,R), then the derivations on X coincide with the skew-symmetric operators
on X.

Proof. Suppose that T is a skew-symmetric operator on X. The identities

T {2,9,2} = 3 (@ly)Tz + (=y)T)
{Ta,y,2) = 3 (Taly)z + (=ly)Ta)),
(.79, 2} = ~ 5 (Taly)z + (Tzly)a)),

2,0, T2} = 5 ((@)T2 + (T=ly)a)),

show that T' is a derivation on X.
The next proposition characterizes the inner derivations on X.

PROPOSITION 3. The inner derivations on X, regarded as the real Cartan
factor BL(X,R), coincide with the finite rank operators on X which are skew-
symmetric.

Proof. Let
P
6= d(aj,b;)
Jj=1
be an inner derivation on X. Since

S0, b)) = 5((lbs)as — (elas)hy),

it follows that ¢ is a finite rank operator. The other implication follows from Lemma,
3

REMARK 2. Since for every infinite dimensional Hilbert space X there exists
a skew-symmetric operator T on X satisfying that T? = —Id, we conclude from
Lemma 3 and Proposition 3 that 7" is an outer derivation on X. It follows that
BL(X,R) does not satisfy the IDP.
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Our next goal is to build derivations on BL(X,Y") from derivations on X =
BL(X,R).

LEMMA 4. Let § be a derivation on a real Hilbert space X (regarded as the real
Cartan factor BL(X,R)) and let Y be another real Hilbert space. Then the operator

6 : BL(X,Y) - BL(X,Y)
da = ad
is a derivation on BL(X,Y).

Proof. Since § is a derivation on X, 6* = —¢ (see Lemma 3). Given a,b,c €

BL(X,Y), we have
{Sa,b,c} + {a,gb,c} + {a,b,gc} =

1
= —(adb*c + cb*ad + ad*b*c + c6*b*a + ab*cd + cdb*a) =
2
1
= §(a6b*c + cb*ad — adb*c — céb*a + ab*cd + cdb*a) =

1 -
= §(cb*a5 + ab*cd) = {a,b,c} 6 = d{a,b,c},
which proves that 4 is a derivation.

At this moment, we need the following identification. Let us fix a norm one
element gy € Y. In the sequel we will identify each h € X, with the operator

fh:X—)Y

fn(z) = (z|h)yo (x € X).

In this way X can be regarded with the subspace of BL(X,Y") formed by all oper-
ators of the form f; with h € X. Using this identification it is easy to check that if
0 and 0 are as in Lemma 4, then §(X) C X. In fact

3(fn)(@) = fu(dz) = (6z|h)yo =
= (x[0"h)yo = (x| — dh)yo = f—sn(x).

The next lemma is the key tool of the main result of this subsection.

LEMMA 5. Let & and 6 be as in Lemma /, and suppose that & is an inner
derivation. Then § has rank less or equal than the hilbertian dimension of Y.

Proof. Since 4 is an inner derivation on BL(X,Y), é is the sum
P
0= Z 6((1]', b])
j=1

for suitable a;,b; € BL(X,Y’). As we have seen previously for each h € X, ofn =
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f—on € X. On the other hand,
P

feon="08(fn) = 6(a;,b;)(fn) =

Jj=1

P
1 * * * *
=> 5 (@05 fu + fubjaj — bjaj fn — frajbs) =

=t
P 1 P 1
= (Y 5ty = by + 1Y 5 (Bja; — ajby) =
Jj=1 j=1
= Rfn + T,

where

are two skew-symmetric operators. Moreover
foT(z) = (Tz|h)yo = (x| — Th)yo = f-1n(z)
for all z € X, so that f,T = f 74, and
Rfpn=0fn—faT = f sn1n = fw € X.
Therefore, for all z,h € X, the equality
Rfn(x) = (z[h)R(yo) = (z[h)yo,

holds. Thus, we have R(yo) = Ayo for a suitable A € R.. Since R is a skew-symmetric
operator and A is a real eigenvalue of R, A = 0.
In this way, since Rf, = 0, we have

fsn = 0(fn) = fuT = f-rn
for all h € X, and hence T = §.

Since each bja; and each ajb; are operators which factorize through V', they
have rank at most the hilbertian dimension of Y. Therefore so does

"1
0=T =73 -(bja; - ajb;).
j=1

THEOREM 4. Let X be an infinite dimensional real Hilbert space, andY a real
Hilbert space with hilbertian dimension less than the hilbertian dimension of X.
Then BL(X,Y) does not satisfy the IDP.

Proof. We recall that, since X is infinite dimensional, there exists a bounded
linear operator T on X, such that T? = —Idx and T* = —T. Hence T has rank
equal to the hilbertian dimension of X. Since T* = —T', Lemma 3 assures that 7" is
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a derivation on X. Moreover, by Lemma 4, the operator T given by T'a = aT (a €
BL(X,Y)), is a derivation on BL(X,Y). If T is an inner derivation, then Lemma 5,
assures that T has rank at most the hilbertian dimension of Y, which is impossible
since dim(X) > dim(Y").

Again combining the above Theorem and Proposition 1, we obtain the following
corollary.

COROLLARY 3. The complex infinite dimensional non-square type 1 Cartan
factors and their real forms do not satisfy the IDP.

By virtue of the previous results we know that there exist real and complex
JB*-triples having outer derivations. Therefore it is natural to ask if any derivation
can be approximated (in a convenient topology) by inner derivations. Upmeier [23]
proved that there exists a unital JB-algebra X, and a derivation D on X which
can not be approximated in norm by inner algebra derivations. Let X denotes the
complexification of X, and D the complex linear extension of D to X then X is a
unital JB*-algebra w1th unit u, and hence a JB*-triple, and Disa trlple derivation,
since D is an algebra derivation which commutes with the involution (see Lemma
2). We claim that D cannot be approximated in norm by inner triple derivations.
Otherwise for £ > 0 there would exist an inner triple derivation

6= Zjﬂejafj)

such that
ID - 6| < e.
Now by Lemma 2

P
0 — Ls(u) = Z]. 0(ej, f5) = Loy 1000 =

1 P
= 52] [Lllj7LCj] + [Lbj7Ldj]

where e; = 1(a; +ib;), f; = 3(cj +1id;) with a;,b;, ¢j,d; in X. Therefore § — Ly,
is an inner derivation on X such that

|D = (6 = Lswy) | = |D = Ly — (0 = Lsw)|| <

< |D =]+ 120w — Lswll <

< |2 -9 +lILpe-swll <

<[5 o] [0 -t <2

which is imposible, since D cannot be approximated in norm by inner derivation.
On the other hand, D is also a derivation on the real JB*-triple X. If D could
be approximated in norm by inner triple derivations on X, then for every € > 0

there exists
P
6= Z]. d(ej; f5)
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with e;, f; € X such that ||D — §|| < e. In this case, § = Zf&(ej,fj), is an inner
derivation on X and

(D —8)]| < 2e.

This is impossible.

Upmeier [23], also proved that every algebra derivation on a JB-algebra can be
approximated in the strong operator topology by inner derivations. In [3, Theorem
4.6], T. Barton and Y. Friedman proved that the set of all inner derivations on a
JB*-triple is dense in the set of all derivations with respect to the strong operator
topology. This result can be extended to real JB*-triples.

THEOREM 5. The set of all inner derivations on a real JB*-triple is dense in
the set of all derivations with respect to the strong operator topology.
Proof. Let E be a real JB*-triple and ¢ a derivation on E. We consider
5:E=E
5(z + iy) := 6(z) + id(y)

the natural extension of § to E. Since E is a complex JB*-triple, by [3, Theorem

4.6], it follows that for every z1,...,z, € E C E and every € > 0, there exists an
inner derivation

P
ov ="y d(aj,b;)
=1

on E such that ||6A(a:l) —oi(xm)|| <eforallli=1,...,n
Since a; = aj1 +iaj2 and bj = bj1 + ib; 2, where a; and bj are in E, it is
easy to check that

P
Z (aj1,bj1) +0(ajz2,bj2)+
j=1

+i(L(aj2,bj1) + L(bj1,a52) — L(aji,bj2) — L(bj2,a;1)))z:.

Since a; r,bjr and z; are elements in F, it follows that

P
> i(L(aj2,bj1) + L(bj1,a52) — L(aj1,bj5) — L(bja,a51))zi € i E.
j=1
Thus
P
16Gzr) =D (8(az1,b51) + 6(aj2, bj2) (@) <
j=1
P

< ||0(z1) Z (aj,1,b5,1) + 0(aj2, bj2) (w1)—

Jj=1

P
—i Y (L(ajz2,b51) + L(bj1,a5,2) — L(aj1,bj2) — L(bj,2, a5,0)) ()| =

=1
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P

=110(a1) = > (6(aj1,bj1) + 6(ajz,bj)+

Jj=1

+i(L(ajz2,bj,1) + L(bj1,a52) — L(aj1,bj2) — L(bj2,a;,1))) 2l =

~

= [16(z1) = dr(m)l| < e

foralll=1,...,n.

Problem: If we could obtain a universal bound for the degree of all derivation
in a type 2 Cartan factor with dim H odd, we could try to determine all JBW*-
triples of type I satisfying the IDP following the techniques contained in T. Ho’s
dissertation [10].
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