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ABSTRACT. It shown that if P is a weak™-continuous contractive pro-
jection on a JBW*-triple M, then P(M) is type I or semifinite, respec-
tively, if M is of the corresponding type. We also show that P(M) has
no infinite spin part if M is a type I von Neumann algebra.

JW*-triples, that is, weak*-closed subspaces of B(H) that are also closed
under x — zz*z, arise as images of contractive (i.e. norm one) projections
on von Neumann algebras. Their generalisations, JBW*-triples, are those
complex Banach dual spaces whose open unit ball is a bounded symmetric
domain. The holomorphy of such spaces induces a ternary Jordan algebraic
structure determined by a certain “triple product” {a,b,c} [16]. If P : M —
M is a weak*-continuous contractive projection on a JBW*-triple M then
P(M) is a JBW*-triple with a triple product given by {a,b,c} p := P {a, b, c}
by [17], [19], and by [9, 10] if M is a JW*-triple. The interesting special cases
that occur when P is positive unital acting on von Neumann algebra or a
JBW*-algebra were studied earlier in [4], [7] and [18].

Suppose P : M — M is a weak®-continuous contractive projection on a
JBW*-triple M. In this paper we study the stability of P(M) with respect
to the type theory of [13, 14, 15]. We show that if M is type I or semifinite,
respectively, then P(M) is of the corresponding type. This extends the
classical results of [22] when M is a von Neumann algebra and P(M) is a
subalgebra. We remark that in general P(M) is not a subtriple of M. Using
recent results on properties of the predual of a type I von Neumann algebra
we deduce that P(M) cannot be isometric to an infinite dimensional spin
factor whenever M is a type I von Neumann algebra.

The first section of this paper contains preliminary results on JBW*-
algebras. This is continued in §2 where we study the fixed point JW*-
algebra, W&, of an involution o on a von Neumann algebra W. A principal
aim here is to show that a faithful weak*-continuous contractive projection
from W onto a continuous JW*-subalgebra induces a weak*-continuous
contractive projection from W onto a continuous von Neumann subalgebra.
This allows us to apply [22] to obtain our main results in §4. The formulation
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of type theory of JBW*-triples contained in §3 is extracted from [13, 14, 15]
and is included for completeness.

For later reference we shall recall some of the fundamentals of JBW*-
triples used in this paper. A JBW*-triple can be realised [16] as a complex
Banach space M with predual M, and continuous ternary triple product
(a,b,c¢) — {a,b,c} that is conjugate linear in b and symmetric bilinear in
a,c such that || {a,a,a} || = ||la||® and such that the operator z — {a,a,x},
denoted by D(a,a), is hermitian with non-negative spectrum and satisfies

D(a,a)({z,y,2}) = {D(a,a)z,y, 2} —{x, D(a,a)y, 2z} + {z,y, D(a,a)z} .
The predual is unique and the triple product is separately weak*-continuous
[2], [13]. The surjective linear isometries between JBW*-triples are the triple
product preserving bijections (triple isomorphisms) [16]. A von Neumann
algebra is a JBW*-triple with triple product {a,b,c} = %(ab*c + c¢b*a). The
weak*-closed subtriples of von Neumann algebras are the JW*-triples. By
[14, 15] most JBW*-triples are of this form. See §3 for further details.

An element u in a JBW*-triple M satisfying {u,u,u} = u is called a
tripotent, when M is a JW*-triple these are precisely the partial isometries
of M. Associated with a tripotent u are the mutually orthogonal Peirce
projections Ps(u), Pi(u), and Py(u). We have,

Py(u)(z) = {u,{u,z,u} ,u} for all x,
Py(u) = 2(D(u,u) — Py(u)) and Py(u) + Py (u) + Py(u) =1

(where i is the identity map). A tripotent u of M is said to be complete
(or maximal) if Py(u) = 0, to be unitary if Po(u) = ¢ and to be minimal
if Po(u)(M) = Cu. We recall (see [5, Corollary 4.8], for example) that the
complete tripotents of M are the extreme points of the closed unit ball of
M. A crucial simplifying property of JBW*-triples is that for a tripotent
u of M the Peirce-2-subspace Py(u)(M) is a JBW*-algebra with product
aob = {a,u,b} and involution a* = {u,a,u}. For further properties of
JBW*-triples we refer to the papers [9], [5, 6], [13, 14, 15] and [16], and
the book [24]. Since JBW*-algebras are just the complexifications of JW-
algebras we refer to [12] for their theory.

1. POSITIVE UNITAL PROJECTIONS ON JBW*-ALGEBRAS

Let M be a JBW*-algebra. Writing
[a,b,c] ;= (aob)oc+ (cob)oa—(aoc)ob,

M is a JBW*-triple with triple product given by {a,b,c} := [a,b*,c]. The
Peirce-2 projection, P»(e), associated with a projection e of M satisfies
Py(e)(z) = [e,x, €] for all z in M.

Elements a and b of M are said to operator commute in M if
(aox)ob = qao(xob) for all x in M. Self-adjoint elements a and b in
M generate a JBW*-subalgebra that can be realised as a JW*-subalgebra
of some B(H) [25] and, in this realisation, ¢ and b commute in the usual



IMAGES OF CONTRACTIVE PROJECTIONS ON OPERATOR ALGEBRAS 3

sense if they operator commute in M [23, Proposition 1]. By the same
references, self-adjoint elements ¢ and b of M operator commute if and only
if a? o b = [a,b,a](= {a,b,a}). If N is a JBW*-subalgebra of M we use
M N N' to denote the set of elements in M that operator commute with
every element of N. (This corresponds to the usual notation when M is a
von Neumann algebra). The centre of M is M N M " which we also denote
by Z(M).

Let P be a unital (i.e. P(1) = 1) weak*-continuous contractive projection
on a JBW*-algebra M. Then P is positive and therefore is invariant on the
self-adjoint part. Such projections were studied in [7] and [18]. Suppose now
that P(M) is a JBW*-subalgebra N of M. Then, by [7, Lemma 1.5], [18,
Lemma 1.5] we have P(aox) = ao P(z) for all a € N and z € M. Further,
if e denotes the support projection of P in M (i.e. the least projection in M
sent to 1 by P) then P = PP,(e) and, by a slight extension of [7, Lemma
1.2(2)], e € M N N'. Moreover, if z > 0 and P(z) = 0 then Py(e)(z) = 0. If
e =1, P is said to be faithful.

Lemma 1.1. Let P : M — M be a weak®-continuous unital contractive
projection from o JBW*-algebra M onto a JBW*-subalgebra N. Let e be the
support projection of P. Then Py(e)P is a faithful weak”-continuous unital
projection from Py(e)(M) onto N oe. Moreover, N is isomorphic to N oe.

Proof. Suppose © € Py(e)(M) such that z > 0 and Py(e)P(x) = 0. Then
P(z) = PPy(e)P(z) = 0 so that z = P»(e)(xz) = 0. Together with the above
remarks this proves the first statement.

Since e € M NN multiplication by e induces a (Jordan) homomorphism,
m, from N onto N oe. Let ¢ in NV such that ¢ > 0 and a o e = 0, then
a = P(aoe)=0. It follows that 7 is injective. O

Lemma 1.2. Let P : M — M be a weak*-continuous unital contractive
projection from a JBW*-algebra onto a JBW*-subalgebra N. Let e be any
non-zero projection in MNN'. Suppose that P is faithful. Then there exists
a faithful weak*-continuous unital contractive projection from Ps(e)(M) onto
Noe.

Proof. For each self-adjoint a € N we have
a0 P(e) = P(a’ o) = P({a,e,a}) = {a, P(e), a}

and so, by the previous remark, P(e) € Z(N). Therefore the range projec-
tion r(P(e)) € Z(N). Denote r(P(e)) by h. The ideal of N,
N o P(e) = P(N oe), is weak*-closed and so equals N o h. It follows
that P(e) is invertible in N o h with inverse b, say, in Z(N) o h. Define
Q: Py(e)(M) — Py(e)(M) by Q(x) = (P(z)ob)oe. Let a € N where a > 0.
By operator commutivity we have (ao (1 —h)) oe > 0 and

P((ao (1 —h))oe)=(ao(l—h))oPle)=ao((l1—h)oPle)) =0.
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Since P is faithful, a o e = (a o h) o e, and so
Q(aoce) =(Plaoe)ob)oe=((aoP(e))ob)oe=(aoh)oe=aoe,

implying that @ is a unital projection onto N o e. To see that @ is faithful
let z € Py(e)(M) such that > 0 and (P(z) o b) o e = 0. By the above,

P(z)oe= (P(zx)oh)oe= ((P(x)ob)oe)o P(e) =0.

Therefore, P(z) o P(e) = P(P(z) oe) = 0. But P(z) < ||z||P(e). Hence,
P(z) =0 and so z = 0 because P is faithful. O

2. INVOLUTORY * ANTIAUTOMORPHISMS

Following [21] by an involution & on a von Neumann algebra we shall mean
an involutory * antiautomorphism on the algebra. Let a be an involution on
a von Neumann algebra W. We shall write R(W) := {z € W : a(z) = z*}
and W® := {z € W : a(x) = z} (The latter notation is different from
that used in [21], where it stands for the hermitian part). Then R(W)
is a weak*-closed real *-subalgebra of W with R(W) NniR(W) = {0} and
W = R(W) +iR(W). We have W* = R(W),, + iR(W)s, and, for a,b €
R(W), we have a(a + ib) = a* + ib*.

Lemma 2.1. Let a be an involution on a von Neumann algebra W and sup-
pose e is a central projection in W such that e + ale) = 1.
Then eW® = eW and W is (Jordan) isomorphic to eW via x +— ex.

Proof. For each z in W, ex + (1 — e)a(z) € W and every element of W¢
is of this form. Thus eW® = eW and W is isomorphic to el in the way
stated. 0

Lemma 2.2. Let o be an involution on a von Neumann algebra W and
suppose that e is a projection in W with e + a(e) = 1. Then we have the
following.

(1) There is a faithful weak*-continuous unital contractive projection,
P :W* = W, such that P(W®) is a JW*-subalgebra isomorphic
to eWe (and to (1 —e)W (1 —e)).

(i5) If W* generates W as a von Neumann algebra and eW*a(e) = 0,
then e € Z(W).

Proof. (i) Let V denote the von Neumann algebra eWe + (1 — e)W (1 — e).
Define P: W — W by P(z) := exe+ (1 —e)z(1 —e). Then P(W) =V =
(V). If s denotes the symmetry 2e —1 we see that P(z) = 5(z+szs). Since
a(s) = —s, we have aP = Pa from which we deduce that P(W®*) = V%
Since e lies in the centre of V', Lemma 2.1 implies that V' is isomorphic to
eV =eWe. It is clear that P satisfies ().

(73) Suppose eW*a(e) = 0. Then for € W we have

x=ecre+ (1 —e)z(l —e)
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so that ex = exe. Passing to the self-adjoint part we see that e commutes
with all elements of W and so lies in the centre of W if W is the von
Neumann algebra generated by W©. O

Lemma 2.3. Let o be an involution in a non-abelian von Neumann algebra
W. Then there is a non-zero projection e in W with ea(e) = 0.

Proof. We have R(W),, # R(W) otherwise « is the identity map on W
and therefore W is abelian. Choose a in R(W) such that a # a* and let
a —a* =b. Let V denote the von Neumann subalgebra of W generated by
b. We have that V is abelian, that a(b) = —b and (V') = V. Since « is not
the identity map on V', by [12, 7.3.4] there is a non-zero projection e € V
such that ea(e) = 0. O

Proposition 2.4. Let o be an involution on a von Neumann algebra W
and suppose that W has no type I part. Then there is a projection e in
W and a faithful weak®-continuous unital contractive projection from W®
onto a JW*-subalgebra M such that e € W N M' and Me is a W*-algebra
isomorphic to M.

Moreover, if W< is of type Iy, Il or III, respectively, then M 1is of the
corresponding type.

Proof. Let (e;) be a family of projections in W maximal subject to the
condition that (e; + a(e;)) is a mutually orthogonal family of projections.
Pute =73, e;. Thenea(e) =0. Let f = 1—e—a(e). Then a(fWf) = fWf
and it follows from Lemma 2.3, and maximality, that fW f is abelian and
hence that fW“f is abelian. By assumption, we must have f = 0. Lemma
2.2(7) now gives the first statement. Since W generates W, by [11, Theorem
2.8], the second statement follows from [1, Theorem 8] together with Lemma
2.2(4). O

Proposition 2.5. Let a be an involution on a von Neumann algebra W,
and let M denote W<. Suppose there is a faithful weak*-continuous unital
contractive projection, P, from M onto a JW*-subalgebra N. If N is con-
tinuous (respectively, type IIT) then there is a weak®-continuous contractive
projection from W onto a continuous (respectively type IIT) W*-subalgebra.

Proof. Let V' the von Neumann subalgebra of W generated by N and let R
be the weak®-closed real *-subalgebra of W generated by Vs,. We have
a(V) = V since «a fixes each element of N, and R N iR = {0} since
R C R(W). Suppose N is continuous (respectively, type III). Then Ny, =
R4, using [12, 7.3.3], so that V' = R + iR, by [20, Theorem 2.4]. Hence,
Ve = Ry, + 1Rsq = N. By Proposition 2.4 there exists a faithful weak*-
continuous unital contractive projection, Q : N — N, onto a continu-
ous (respectively, type III) JW*-subalgebra K together with a projection
e € WNK such that Ke is a W*-algebra isomorphic to K. If E denotes
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the (faithful) canonical projection %(z + a) : W — M, then the proof is
completed by application of Lemma 1.2 to the projection QPE : W — K.
Il

We recall ([21]) that an involution « is said to be a central involution if
it fixes every element in Z(W).

Lemma 2.6. Let o be a central involution on a continuous von Neumann al-
gebra W. Let uw be a partial isometry of W such that
(1 —wu*)W*(1 — u*u) = 0. Then u*u = uu* = 1.

Proof. Let e denote 1 —uu*. Then a(e) = 1—u*u. Put p = e+a(e). Then «
is a central involution on pWp. By [11, Theorem 2.8] on [21, Proposition 3.2]
(pWp)* (= pW*p) generates pWp. Hence by Lemma 2.2(ii), e € Z(pWp) =
Z(W)p so that a(e) = e, whence the result. O

3. TYPES OF JBW*-TRIPLES

The aim of this short section, which contains no new results, is to collate
existing theory into a form easy to use subsequently.

Cartan factors. Of the six kinds of Cartan factors (up to linear isometry),
three are of the form pB(H), {r € B(H) : z = jz*j} and
{r € B(H) : x = —jz*j}, where H is a complex Hilbert space, p is a
projection in B(H) and j : H — H is a conjugation. These are referred
to as rectangular, hermitian and symplectic Cartan factors, respectively.
Hermitian factors are type I JW*-algebra factors and, if H is even or infinite
dimensional, symplectic factors are linearly isometric to type I JW*-algebra
factors. Spin factors (complexifications of real spin factors) comprise a
fourth kind. The remaining two ezceptional Cartan factors can be
realized as the 3 x 3 hermitian matrices and the 1 x 2 matrices, respec-
tively, over the complex Cayley numbers.

Type I JBW*-triples. In view of [13, 4.14] a JBW*-triple M is said to be
type I if there is a complete tripotent u of M such that P(u)(M) is a type
I JBW*-algebra. By the type I classification theorem [14, 1.7] the type I
JBW*-triples are precisely the £-sums of JBW*-triples of the form

(¢) : A®C, where A is an abelian von Neumann algebra and C'is a Cartan
factor realised as a JW*-subtriple of some B(H), the bar denoting
the weak*-closure in the wusual von Neumann tensor
product A®B(H), and

(17) : A® C (algebraic tensor product) where A is as before and C' is an
exceptional Cartan factor.

(Of course, AQC = A®C whenever C is a finite dimensional non-
exceptional Cartan factor.)

Let e be a tripotent in a type I JBW*-triple M. A known consequence of
the type I classification theorem is that P(e)(M) is type I. We include an
argument for completeness and want of a precise reference.
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We may suppose that M is of the form (i) or (ii), above. In the latter
case it is clear that Py(e)(M) is type I since every subfactor of it must have
rank less than 4. Thus we may assume that we are in the case (i) and,
consequently, that we are working in AQB(H).

Let u be a nonzero (we assume e # 0) in a weak*-closed ideal J of
Py(e)(M).

Since {u,(A®B(H)),u} = (A®1){u,(1 ® B(H)),u} and B(H) is the
weak*-closed linear span of its minimal tripotents, {u, (1 ® v),u} # 0 for
some minimal tripotent v. We have {(1 ® v), M, (1 ® v)} = A ® v so that
with = {u, (1 ® v),u}(€ Po(u)(M)) we have {z,M,z} C (A® 1)z. Since
A ® 1 commutes elementwise with =, (A ® 1)z generates an abelian sub-
triple in the sense of [13, 1.4]. But, as follows from [5, Lemma 3.1], the
weak*-closure of {z, M,z} equals P,(w)(M), for some tripotent w, and so
is abelian. Since w € J, Py(e)(M) is type I, by [13, 4.14 (2) = (1)].

Continuous JBW*-triples. A JBW*-triple M is said to be continuous if it
has no type I /o-summand. In which case, up to isometry, M is a JW*-triple
with unique decomposition, M = W @ pV, where W and V are continuous
von Neumann algebras, p is a projection in V and « is a central involution
on W [15, 2.1 and 4.8]. It is implicit in [15] that every complete tripotent
of W¢ is a unitary tripotent. An alternative proof of this fact is provided
by Lemma 2.6. Thus, by [15, 5.1-5.7], for every complete tripotent v in M,
Py(u)(M) is isometric to W* @ pWp. We define M to be of type I, Il
or II1, respectively if both W and pWp are of the corresponding type. M
is said to be semifinite if it has no type III /,,-summand.

Lemma 3.1, below, summarizes the above. The second statement is a con-
sequence of the fact that every tripotent in a JBW*-triple M is a projection
in P(u)(M) for some complete tripotent u [13, 3.12].

Lemma 3.1. A JBW*-triple M 1is of type I, II,, I, III or is semifinite,
respectively if and only if Py(u)(M) is of the corresponding type for some,
and hence every, complete tripotent u of M. If M is of type I, II;, III or is
semifinite, respectively, then so is Py(u)(M) for every tripotent u of M.

We shall say that a JBW*-triple has no infinite spin part if it has no -
summands of the form A®C where A is an abelian von Neumann algebra
and C is an infinite dimensional spin factor.

4. CONTRACTIVE PROJECTIONS ON JBW*-TRIPLES

By [17] and [19] the image of a weak*-continuous contractive projection,
P: M — M, on a JBW*-triple M is again a JBW™*-triple with triple
product {z,y,z}p := P({x,y, z}) for z,y,z in P(M) and

P{P(z),y, P(2)} = P{P(x), P(y), P(2)}
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for all z,y,z in M. The image, P(M), need not be a JBW*-subtriple of M.
However, as is made explicit in [6, Lemma 5.3] and its proof, we do have the
following.

Lemma 4.1. [6, Lemma 5.3] If P: M — M is a weak*-continuous contrac-
tive projection on a JBW*-triple M, there exists a JBW*-subtriple C' of M
such that C is linearly isometric to P(M) and such that C is the image of
a weak” -continuous projection on M.

We are now in a position to prove our first main result. We freely use
Lemma 3.1 throughout.

Theorem 4.2. Let P: M — M be a weak™-continuous contractive projec-
tion on a JBW*-triple M. If M is of type I (respectively, semifinite) then
P(M) is type I (respectively, semifinite).

Proof. Let M be type I (respectively, semifinite). By Lemma 4.1 we may
suppose P(M) to be a JBW*-subtriple, N, of M. Let u be a complete
tripotent of N. By the above formula, P restricts to a unital projection
from Py(u)(M) to Py(u)(N).

By this fact, together with Lemma 1.1, we may suppose P to be faithful,
M to be a JBW*-algebra and N to be a JBW*-subalgebra.

Let M oz be the type I finite part of M, where z is a central projection of
M. Then N o z is type I finite, being a subalgebra of M o z, and it remains
only to show that N o (1 — z) is type I (respectively, semifinite). Since, by
Lemma 1.2, No(1—z) is the image of some faithful weak*-continuous unital
contractive projection on M o (1 — z), it can be supposed that z = 0. In
which case, by [12, 7.2.7 and 7.3.3], we may suppose that M = W, where
« is an involution on a von Neumann algebra W. Since W* generates W
[11, Theorem 2.8], W is type I (respectively, semifinite) by [12, 7.4.2] and
[1, Theorem 8§].

In order to obtain a contradiction, suppose now that N has a non-zero
continuous (respectively, type III) part, N oe, where e is a central projection
of N. Now, « is an involution on eWe with (eWe)* = eMe. Applying
Proposition 2.5 to P : eMe — N o e, which is surjective, we obtain a
weak*-continuous projection from the type I (respectively, semifinite) W*-
algebra eWe onto a continuous (respectively, type III) W*-subalgebra. This
contradicts [22, Theorem 3 (respectively, Theorem 4)] and so completes the
proof. O

In order to prove a refinement of part of Theorem 4.2, we first recall a
Banach space property introduced in [8].

Definition. A Banach space FE is said to have the DP1 if whenever a
sequence x, — x weakly in E with ||z,| = ||z]| =1 for all n, and (p,) is a
weakly null sequence in E*, then py,(z,) — 0.
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We write M, for the predual of a JBW*-triple M and we note that if
P : M — M is a weak®-continuous contractive projection then the dual
projection restricts to a contractive projection on M, and that P(M), is
linearly isometric to P*(M,) via 7 +— 7o P. It follows that if M, has the
DP1 then so does P(M).,.

Recently, the authors characterised the von Neumann algebras whose pre-
dual has the DP1.

Lemma 4.3. [3, Theorem 6] A von Neumann algebra is type I if and only
if its predual has the DP1.

For properties of (real) spin factors used in the next proof, see [12, §6].

Lemma 4.4. Let C be an infinite dimensional spin factor. Then C, does
not have the DP1.

Proof. The argument is similar to that in [3, Proposition 5]. Let 7 denote
the tracial state of C' and let R be the real Banach space generated by the
non-trivial symmetries in C. Then R is isometric to an infinite dimensional
real Hilbert space and 7(R) = {0}. Let (s,) be an infinite orthogonal
sequence in the Hilbert space R. Then (s,) — 0 weakly in R and hence in
C. Moreover, each s, is a non-trivial symmetry. For each n, let e, denote
the projection %(1 + sp) and let 7, denote the normal state 27(e, . e,). For
all n, e,spe, = e, so that 7(s,) = 1. However, 1, — 7 weakly in C., since
T(z) = 21, (e o ), for all  and n. Therefore, C, does not have the DP1.

Il

One immediate consequence of Lemma 4.4 is that if A is an abelian von
Neumann algebra and C'is an infinite dimensional spin factor then (in the no-
tation of §3) (A®C), cannot have the DP1 because of the canonical (weak*-
continuous) contractive projection AQC — C.

Theorem 4.5. Let M be o JBW*-triple. Then M, has the DP1 if and only
if M is type I without infinite spin part.

Proof. Suppose M, has the DP1. Then the predual of every /,,-summand
of M has the DP1. Thus by Proposition 2.4 and Lemma 4.3, M cannot
have a non-zero /,,-summand of the form W® where « is an involution on
a continuous von Neumann algebra W, nor of the form pV where p is a
non-zero projection in a continuous von Neumann algebra V. (In the latter
case because of the natural projection pV' — pVp). Therefore, M is type I
and, by the remark prior to the statement of the theorem, has no infinite
spin part.

On the other hand, consider an abelian von Neumann algebra A and a
Cartan factor C'. If C is finite dimensional then A ® C' has the Dunford-
Pettis property because A does, and so (A ® C), has the Dunford-Pettis
property and therefore it has the DP1. Suppose C' is infinite dimensional.
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If C is (rectangular) of the form pB(H) for a projection p € B(H), then
ARC = (1 ® p)A®C' and is clearly the image of a weak*-continuous projec-
tion on A®B(H), implying that (A®C), has the DP1, by Lemma 4.3. If C
is hermitian or symplectic then AQC' can be realised as W* where « is an
involution on a type I von Neumann algebra W, by [12, 7.3.3]. Since W®
is the image of the weak*-continuous contractive projection %(z +a) on W,
Lemma 4.3 again gives that (A®C'), has the DP1. Thus, if M is type I with
no infinite spin part, M, has the DP1 by [8, 1.10] together with [14, 1.7].

Il

This leads to the following refinement of Theorem 4.2. The proof is im-
mediate from Theorem 4.5.

Theorem 4.6. Let P: M — M be a weak™-continuous contractive projec-
tion on a JBW*-triple M where M 1is type I with no infinite spin part. Then
P(M) is type I with no infinite spin part.

For every spin factor C acting on a complex Hilbert space H there is a
positive unital projection from B(H) onto C [7, Lemma 2.3]. Since a von
Neumann algebra never has infinite spin part, Theorem 4.6 gives:

Corollary 4.7. There is no weak”-continuous contractive projection from a
type I von Neumann algebra onto an infinite dimensional spin factor.
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