Grothendieck's inequalities for real and complex JBW*-triples

Antonio M. Peralta^{*} and Angel Rodríguez Palacios[†]

Abstract

We prove that, if $M > 4(1 + 2\sqrt{3})$ and $\varepsilon > 0$, if \mathcal{V} and \mathcal{W} are complex JBW*-triples (with preduals \mathcal{V}_* and \mathcal{W}_* , respectively), and if U is a separately weak*-continuous bilinear form on $\mathcal{V} \times \mathcal{W}$, then there exist norm-one functionals $\varphi_1, \varphi_2 \in \mathcal{V}_*$ and $\psi_1, \psi_2 \in \mathcal{W}_*$ satisfying

$$|U(x,y)| \le M \|U\| \left(\|x\|_{\varphi_2}^2 + \varepsilon^2 \|x\|_{\varphi_1}^2 \right)^{\frac{1}{2}} \left(\|y\|_{\psi_2}^2 + \varepsilon^2 \|y\|_{\psi_1}^2 \right)^{\frac{1}{2}}$$

for all $(x, y) \in \mathcal{V} \times \mathcal{W}$. Here, for a norm-one functional φ on a complex JB*-triple \mathcal{V} , $\|.\|_{\varphi}$ stands for the prehilertian seminorm on \mathcal{V} associated to φ in [BF1]. We arrive in this "Grothendieck's inequality" through results of C-H. Chu, B. Iochum, and G. Loupias [CIL], and a corrected version of the "Little Grothendieck's inequality" for complex JB*-triples due to T. Barton and Y. Friedman [BF1]. We also obtain extensions of these results to the setting of real JB*-triples.

2000 Mathematics Subject Classification: 17C65, 46K70, 46L05, 46L10, and 46L70.

Introduction

In this paper we pay tribute to the important works of T. Barton and Y. Friedman [BF1] and C-H. Chu, B. Iochum, and G. Loupias [CIL] on the

^{*}Supported by Programa Nacional F.P.I. Ministry of Education and Science grant, D.G.I.C.Y.T. project no. PB 98-1371, and Junta de Andalucía grant FQM 0199

[†]Partially supported by Junta de Andalucía grant FQM 0199

generalization of "Grothendieck's inequalities" to complex JB*-triples. Of course, the Barton-Friedman-Chu-Iochum-Loupias techniques are strongly related to those of A. Grothendieck [Gro], G. Pisier (see [P1], [P2], and [P3]), and U. Haagerup [H], leading to the classical "Grothendieck's inequalities" for C*-algebras. One of the most important facts contained in the Barton-Friedman paper is the construction of "natural" prehilbertian seminorms $\|.\|_{\varphi}$, associated to norm-one continuous linear functionals φ on complex JB*-triples, in order to play, in Grothendieck's inequalities, the same role as that of the prehilbertian seminorms derived from states in the case of C*algebras. This is very relevant because JB*-triples need not have a natural order structure.

A part of Section 1 of the present paper is devoted to review the main results in [BF1], and the gaps in their proofs (some of which are also subsumed in [CIL]). We note that those gaps consist in assuming that separately weak*-continuous bilinear forms on dual Banach spaces, as well as weak*continuous linear operators between dual Banach spaces, attain their norms. Section 1 also contains quick partial solutions of the gaps just mentioned. These solutions are obtained by applying theorems of J. Lindenstrauss [L] and V. Zizler [Z] on the abundance of weak*-continuous linear operators attaining their norms (see Theorems 1.4 and 1.6, respectively).

We begin Section 2 by proving a deeper correct version of the Barton-Friedman "Little Grothendieck's Theorem" for complex JB*-triples [BF1, Theorem 1.3] (see Theorem 2.1). Roughly speaking, our result assures that the assertion in [BF1, Theorem 1.3] is true whenever we replace the prehilbertian seminorm $\|.\|_{\phi}$ arising in that assertion with $\|.\|_{\varphi_1,\varphi_2} := \sqrt{\|.\|_{\varphi_1}^2 + \|.\|_{\varphi_2}^2}$, where φ_1, φ_2 are suitable norm-one continuous linear functionals. It is worth mentioning that in fact our Theorem 2.1 deals with complex JBW*-triples and weak*-continuous operators, and that, in such a case, the functionals φ_1, φ_2 above can be chosen weak*-continuous. Among the consequences of Theorem 2.1 we emphasize appropriate "Little Grothendieck's inequalities" for JBW-algebras and von Neumann algebras (see Corollary 2.5 and Remark 2.7, respectively). Corollary 2.5 allows us to adapt an argument in [P] in order to extend Theorem 2.1 to the real setting (Theorem 2.9).

Section 3 contains the main results of the paper, namely the "Big Grothendieck's inequalities" for complex and real JBW*-triples (Theorems 3.1 and 3.4, respectively). Indeed, given $M > 4(1 + 2\sqrt{3})$ (respectively, $M > 4(1 + 2\sqrt{3})$ $(1 + 3\sqrt{2})^2$), $\varepsilon > 0$, V, W complex (respectively, real) JBW*- triples, and a separately weak*-continuous bilinear form U on $V \times W$, there exist norm-one functionals $\varphi_1, \varphi_2 \in V_*$ and $\psi_1, \psi_2 \in W_*$ satisfying

$$|U(x,y)| \le M \|U\| \left(\|x\|_{\varphi_2}^2 + \varepsilon^2 \|x\|_{\varphi_1}^2 \right)^{\frac{1}{2}} \left(\|y\|_{\psi_2}^2 + \varepsilon^2 \|y\|_{\psi_1}^2 \right)^{\frac{1}{2}}$$

for all $(x, y) \in V \times W$.

The concluding section of the paper (Section 4) deals with some applications of the results previously obtained. We give a complete solution to a gap in the proof of the results of [R1] on the strong^{*} topology of complex JBW^{*}-triples, and extend those results to the real setting. We also extend to the real setting the fact proved in [R2] that the strong^{*} topology of a complex JBW^{*}-triple \mathcal{W} and the Mackey topology $m(\mathcal{W}, \mathcal{W}_*)$ coincide on bounded subsets of \mathcal{W} . From this last result we derive a Jarchow-type characterization of weakly compact operators from (real or complex) JB^{*}-triples to arbitrary Banach spaces.

1 Discussing previous results

We recall that a complex JB*-triple is a complex Banach space \mathcal{E} with a continuous triple product $\{.,.,.\}$: $\mathcal{E} \times \mathcal{E} \times \mathcal{E} \to \mathcal{E}$ which is bilinear and symmetric in the outer variables and conjugate linear in the middle variable, and satisfies:

- 1. (Jordan Identity) $L(a,b)\{x,y,z\} = \{L(a,b)x,y,z\} \{x, L(b,a)y,z\} + \{x,y,L(a,b)z\}$ for all a,b,c,x,y,z in \mathcal{E} , where $L(a,b)x := \{a,b,x\}$;
- 2. The map L(a, a) from \mathcal{E} to \mathcal{E} is an hermitian operator with nonnegative spectrum for all a in \mathcal{E} ;
- 3. $||\{a, a, a\}|| = ||a||^3$ for all *a* in \mathcal{E} .

Complex JB*-triples have been introduced by W. Kaup in order to provide an algebraic setting for the study of bounded symmetric domains in complex Banach spaces (see [K1], [K2] and [U]).

If \mathcal{E} is a complex JB*-triple and $e \in \mathcal{E}$ is a tripotent $(\{e, e, e\} = e)$ it is well known that there exists a decomposition of \mathcal{E} into the eigenspaces of L(e, e), the Peirce decomposition,

$$\mathcal{E} = \mathcal{E}_0(e) \oplus \mathcal{E}_1(e) \oplus \mathcal{E}_2(e),$$

where $\mathcal{E}_k := \{x \in \mathcal{E} : L(e, e)x = \frac{k}{2}x\}$. The natural projection $P_k(e) : \mathcal{E} \to \mathcal{E}_k(e)$ is called the Peirce k-projection. A tripotent $e \in \mathcal{E}$ is called complete if $\mathcal{E}_0(e) = 0$. By [KU, Proposition 3.5] we know that the complete tripotents in \mathcal{E} are exactly the extreme points of its closed unit ball.

By a complex JBW*-triple we mean a complex JB*-triple which is a dual Banach space. We recall that the triple product of every complex JBW*triple is separately weak*-continuous [BT], and that the bidual \mathcal{E}^{**} of a complex JB*-triple \mathcal{E} is a JBW*-triple whose triple product extends the one of \mathcal{E} [Di].

Given a complex JBW*-triple \mathcal{W} and a norm-one element φ in the predual \mathcal{W}_* of \mathcal{W} , we can construct a prehilbert seminorn $\|.\|_{\varphi}$ as follows (see [BF1, Proposition 1.2]). By the Hahn-Banach theorem there exists $z \in \mathcal{W}$ such that $\varphi(z) = \|z\| = 1$. Then $(x, y) \mapsto \varphi\{x, y, z\}$ becomes a positive sesquilinear form on \mathcal{W} which does not depend on the point of support z for φ . The prehilbert seminorm $\|.\|_{\varphi}$ is then defined by $\|x\|_{\varphi}^2 := \varphi\{x, x, z\}$ for all $x \in \mathcal{W}$. If \mathcal{E} is a complex JB*-triple and φ is a norm-one element in \mathcal{E}^* , then $\|.\|_{\varphi}$ acts on \mathcal{E}^{**} , hence in particular it acts on \mathcal{E} .

In [BF1, Theorem 1.4], J. T. Barton and Y. Friedman claim that for every pair of complex JB*-triples \mathcal{E}, \mathcal{F} , and every bounded bilinear form Von $\mathcal{E} \times \mathcal{F}$, there exist norm-one functionals $\varphi \in \mathcal{E}^*$ and $\psi \in \mathcal{F}^*$ such that the inequality

$$|V(x,y)| \le (3+2\sqrt{3}) \|V\| \|x\|_{\varphi} \|y\|_{\psi}$$
(1.1)

holds for every $(x, y) \in \mathcal{E} \times \mathcal{F}$. This result is called "Grothendieck's inequality for JB*-triples". However, the beginning of the Barton-Friedman proof assumes that the two following assertions are true.

- 1. For \mathcal{E}, \mathcal{F} and V as above, there exists a separately weak*-continuous extension of V to $\mathcal{E}^{**} \times \mathcal{F}^{**}$.
- 2. Again for \mathcal{E}, \mathcal{F} and V as above, every separately weak*-continuous extension of V to $\mathcal{E}^{**} \times \mathcal{F}^{**}$ attains its norm (at a couple of complete tripotents).

We have been able to verify Assertion 1, but only by applying the fact, later proved by C-H. Chu, B. Iochum and G. Loupias [CIL, Lemma 5], that every bounded linear operator from a complex JB*-triple to the dual of another complex JB*-triple factors through a complex Hilbert space. Actually, this fact is also claimed in the Barton-Friedman paper (see [BF1, Corollary 3.2]), but their proof relies on their alleged [BF1, Theorem 1.4].

Lemma 1.1 Let \mathcal{E} and \mathcal{F} be complex JB^* -triples. Then every bounded bilinear form V on $\mathcal{E} \times \mathcal{F}$ has a separately weak*-continuous extension to $\mathcal{E}^{**} \times \mathcal{F}^{**}$.

Proof. Let V be a bounded bilinear form on $\mathcal{E} \times \mathcal{F}$. Let F denote the unique bounded linear operator from \mathcal{E} to \mathcal{F}^* which satisfies

$$V(x, y) = \langle F(x), y \rangle$$

for every $(x, y) \in \mathcal{E} \times \mathcal{F}$. By [CIL, Lemma 5], F factors through a Hilbert space, and hence is weakly compact. By [HP, Lemma 2.13.1], we have $F^{**}(\mathcal{E}^{**}) \subset \mathcal{F}^*$. Then the bilinear form \widetilde{V} on $\mathcal{E}^{**} \times \mathcal{F}^{**}$ given by

$$V(\alpha,\beta) = \langle F^{**}(\alpha),\beta \rangle$$

extends V and is weak*-continuous in the second variable. But \widetilde{V} is also weak*-continuous in the first variable because, for $(\alpha, \beta) \in \mathcal{E}^{**} \times \mathcal{F}^{**}$, the equality

$$\langle F^{**}(\alpha), \beta \rangle = \langle \alpha, F^{*}(\beta) \rangle$$

holds. \Box

Unfortunately, as the next example shows, Assertion 2 above is not true.

Example 1.2 Take \mathcal{E} and \mathcal{F} equal to the complex ℓ_2 space, and consider the bounded bilinear form on $\mathcal{E} \times \mathcal{F}$ defined by $V(x, y) := (S(x)|\sigma(y))$ where S is the bounded linear operator on ℓ_2 whose associated matrix is

$$\begin{pmatrix} \frac{1}{2} & 0 & \dots & 0 & \dots \\ 0 & \frac{2}{3} & \dots & 0 & \dots \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \frac{n}{n+1} & \dots \\ \dots & \dots & \dots & \dots & \dots \end{pmatrix},$$

and σ is the conjugation on ℓ_2 fixing the elements of the canonical basis. Then V does not attain its norm.

It is worth mentioning that, although the bilinear form V above does not attain its norm, it satisfies inequality 1.1 for every $x, y \in \ell_2$ and every normone elements $\varphi, \psi \in \ell_2^*$. Therefore it does not become a counterexample to the Barton-Friedman claim. In fact we do not know if Theorem 1.4 of [BF1] is true.

Now that we know that Assertion 2 is not true, we prove that it is "almost" true.

Lemma 1.3 Let \mathcal{E}, \mathcal{F} be complex JB^* -triples. Then the set of bounded bilinear forms on $\mathcal{E} \times \mathcal{F}$ whose separately weak*-continuous extensions to $\mathcal{E}^{**} \times \mathcal{F}^{**}$ attain their norms is norm-dense in the space $\mathcal{L}(^2(\mathcal{E} \times \mathcal{F}))$ of all bounded bilinear forms on $\mathcal{E} \times \mathcal{F}$.

Proof. Let V be in $\mathcal{L}(^2(\mathcal{E} \times \mathcal{F}))$. Denote by \widetilde{V} the (unique) separately weak*-continuous extension of V to $\mathcal{E}^{**} \times \mathcal{F}^{**}$. By the proof of Lemma 1.1, we can assure the existence of a bounded linear operator $F_V : \mathcal{E} \to \mathcal{F}^*$ satisfying $F_V^{**}(\mathcal{E}^{**}) \subset \mathcal{F}^*$ and

$$\widetilde{V}(\alpha,\beta) = \langle F_V^{**}(\alpha),\beta \rangle$$

for every $(\alpha, \beta) \in \mathcal{E}^{**} \times \mathcal{F}^{**}$. It follows that \widetilde{V} attains its norm whenever F_V^{**} does. Since the mapping $V \mapsto F_V$, from $\mathcal{L}(^2(\mathcal{E} \times \mathcal{F}))$ into the Banach space of all bounded linear operators from \mathcal{E} to \mathcal{F}^* , is a surjective isometry, the result follows from [L, Theorem 1]. \Box

An alternative proof of the above Lemma can be given taking as a key tool [A, Theorem 1].

Now note that, if X and Y are dual Banach spaces, and if U is a separately weak*-continuous bilinear form on $X \times Y$ which attains its norm, then U actually attains its norm at a couple of extreme points of the closed unit balls of X and Y (hence at a couple of complete tripotents in the case that X and Y are complex JB*-triples). Since the Barton-Friedman proof of their claim actually shows that the inequality (1.1) holds (for suitable norm-one functionals $\varphi \in \mathcal{E}^*$ and $\psi \in \mathcal{F}^*$) whenever the separately weak*-continuous extension of V given by Lemma 1.1 attains its norm at a couple of complete tripotents, the next theorem follows from Lemma 1.3.

Theorem 1.4 Let \mathcal{E}, \mathcal{F} be complex JB^* -triples. Then the set of all bounded bilinear forms V on $\mathcal{E} \times \mathcal{F}$ such that there exist norm-one functionals $\varphi \in \mathcal{E}^*$ and $\psi \in \mathcal{F}^*$ satisfying

 $|V(x,y)| \le (3+2\sqrt{3}) ||V|| ||x||_{\varphi} ||y||_{\psi}$

for every $(x, y) \in \mathcal{E} \times \mathcal{F}$, is norm dense in $\mathcal{L}(^2(\mathcal{E} \times \mathcal{F}))$.

Another alleged proof of the Barton-Friedman claim [BF1, Theorem 1.4] (with constant $3+2\sqrt{3}$ replaced with $4(1+2\sqrt{3})$) appears in the Chu-Iochum-Loupias paper already quoted (see [CIL, Theorem 6]). Such a proof relies on the Barton-Friedman version of the so called "Little Grothendieck's Theorem" for complex JB*-triples [BF1, Theorem 1.3]. However, the Barton-Friedman argument for this "Little Grothendieck's Theorem" also has a gap (see [P]).

Several authors (the second author of the present paper among others) subsumed the gap in the proof of Theorem 1.3 of [BF1] just commented, and formulated daring claims like the following (see [R1, Proposition 1] and the proof of Lemma 4 of [CM]). For every complex JBW*-triple \mathcal{W} , every complex Hilbert space \mathcal{H} , and every weak*-continuous linear operator T: $\mathcal{W} \to \mathcal{H}$, there exists a norm-one functional $\varphi \in \mathcal{W}_*$ such that the inequality

$$||T(x)|| \le \sqrt{2} ||T|| ||x||_{\varphi} \tag{1.2}$$

holds for all $x \in \mathcal{W}$. As in the case of the Barton-Friedman big Grothendieck's inequality, we do not know if the above claim is true. In any case, the next lemma is implicitly shown in the proof of Theorem 1.3 of [BF1].

Lemma 1.5 Let \mathcal{W} be a complex JBW^* -triple, \mathcal{H} a complex Hilbert space, and T a weak*-continuous linear operator from \mathcal{W} to \mathcal{H} which attains its norm. Then T satisfies inequality (1.2) for a suitable norm-one functional $\varphi \in \mathcal{W}_*$.

We note that, for \mathcal{W} and \mathcal{H} as in the above lemma, weak*-continuous linear operators from \mathcal{W} to \mathcal{H} need not attain their norms (see the introduction of [P]). Now, from Lemma 1.5 and [Z] we obtain the following result.

Theorem 1.6 Let \mathcal{W} be a complex JBW^* -triple and \mathcal{H} a complex Hilbert space. Then the set of weak*-continuous linear operators T from \mathcal{W} to \mathcal{H} such that there exists a norm-one functional $\varphi \in \mathcal{W}_*$ satisfying

$$||T(x)|| \le \sqrt{2} ||T|| ||x||_{\varphi}$$

for all $x \in \mathcal{W}$, is norm dense in the space of all weak*-continuous linear operators from \mathcal{W} to \mathcal{H} .

2 Little Grothendieck's Theorem for JBW*triples

In this section we prove appropriate versions of "Little Grothendieck's inequality" for real and complex JBW*-triples. We begin by considering the complex case, where the key tools are the Barton-Friedman result collected in Lemma 1.5, and a fine principle on approximation of operators by operators attaining their norms, due to R. A. Poliquin and V. E. Zizler [PZ].

Theorem 2.1 Let $K > \sqrt{2}$ and $\varepsilon > 0$. Then, for every complex JBW^* triple \mathcal{W} , every complex Hilbert space \mathcal{H} , and every weak*-continuous linear operator $T : \mathcal{W} \to \mathcal{H}$, there exist norm-one functionals $\varphi_1, \varphi_2 \in \mathcal{W}_*$ such that the inequality

$$||T(x)|| \le K ||T|| (||x||_{\varphi_2}^2 + \varepsilon^2 ||x||_{\varphi_1}^2)^{\frac{1}{2}}$$

holds for all $x \in \mathcal{W}$.

Proof. Without loss of generality we can suppose ||T|| = 1. Take $\delta > 0$ such that $\delta \leq \varepsilon^2$ and $\sqrt{2((1+\delta)^2 + \delta)} \leq K$. By [PZ, Corollary 2] there is a rank one weak*-continuous linear operator $T_1 : \mathcal{W} \to \mathcal{H}$ such that $||T_1|| \leq \delta$ and $T - T_1$ attains its norm. Since T_1 is of rank one and weak*-continuous, it also attains its norm. By Lemma 1.5, there exist norm-one functionals $\varphi_1, \varphi_2 \in \mathcal{W}_*$ such that

$$||T_1(x)|| \le \sqrt{2} ||T_1|| ||x||_{\varphi_1},$$
$$|(T - T_1)(x)|| \le \sqrt{2} ||T - T_1|| ||x||_{\varphi_2}$$

for all $x \in \mathcal{W}$. Therefore for $x \in \mathcal{W}$ we have

$$\begin{aligned} \|T(x)\| &\leq \|(T-T_1)(x)\| + \|T_1(x)\| \\ &\leq \sqrt{2} \|T-T_1\| \|x\|_{\varphi_2} + \sqrt{2} \|T_1\| \|x\|_{\varphi_1} \\ &\leq \sqrt{2} (1+\delta) \|x\|_{\varphi_2} + \sqrt{2\delta} \sqrt{\delta} \|x\|_{\varphi_1} \\ &\leq \sqrt{2((1+\delta)^2+\delta)} (\|x\|_{\varphi_2}^2 + \delta \|x\|_{\varphi_1}^2)^{\frac{1}{2}} \\ &\leq K (\|x\|_{\varphi_2}^2 + \varepsilon^2 \|x\|_{\varphi_1}^2)^{\frac{1}{2}}. \end{aligned}$$

Given a complex JBW*-triple \mathcal{W} and norm-one elements $\varphi_1, \varphi_2 \in \mathcal{W}_*$ we denote by $\|.\|_{\varphi_1,\varphi_2}$ the prehilbert seminorm on \mathcal{W} given by $\|x\|_{\varphi_1,\varphi_2}^2 :=$ $\|x\|_{\varphi_1}^2 + \|x\|_{\varphi_2}^2$. The next result follows straightforwardly from Theorem 2.1.

Corollary 2.2 Let \mathcal{W} be a complex JBW*-triple and T a weak*-continuous linear operator from \mathcal{W} to a complex Hilbert space. Then there exist normone functionals $\varphi_1, \varphi_2 \in \mathcal{W}_*$ such that, for every $x \in \mathcal{W}$, we have

$$||T(x)|| \le 2||T|| ||x||_{\varphi_1,\varphi_2}$$

We recall that a JB*-algebra is a complete normed Jordan complex algebra (say \mathcal{A}) endowed with a conjugate-linear algebra involution * satisfying $||U_x(x^*)|| = ||x||^3$ for every $x \in \mathcal{A}$. Here, for every Jordan algebra \mathcal{A} , and every $x \in \mathcal{A}$, U_x denotes the operator on \mathcal{A} defined by $U_x(y) := 2x \circ (x \circ y) - x^2 \circ y$, for all $y \in \mathcal{A}$. We note that every JB*-algebra can be regarded as a complex JB*-triple under the triple product given by

$$\{x, y, z\} := (x \circ y^*) \circ z + (z \circ y^*) \circ x - (x \circ z) \circ y^*$$

(see [BKU] and [Y]). By a JBW*-algebra we mean a JB*-algebra which is a dual Banach space. Every JBW*-algebra \mathcal{A} has a unit **1** [Y], so that the binary product of \mathcal{A} can be rediscovered from the triple product by means of the equality $x \circ y = \{x, \mathbf{1}, y\}$.

Theorem 2.3 Let M > 2. Then, for every JBW^* -algebra \mathcal{A} , every complex Hilbert space \mathcal{H} , and every weak*-continuous linear operator $T : \mathcal{A} \to \mathcal{H}$, there exists a norm-one positive functional $\xi \in \mathcal{A}_*$ such that the inequality

$$||T(x)|| \le M ||T|| (\xi(x \circ x^*))^{\frac{1}{2}}$$

holds for all $x \in \mathcal{A}$.

Proof. Taking $K := \sqrt{M}$ and $\varepsilon := \sqrt{\frac{M-2}{2}}$ in Theorem 2.1, we find normone functionals $\varphi_1, \varphi_2 \in \mathcal{A}_*$ such that

$$||T(x)|| \le K ||T|| (||x||_{\varphi_2}^2 + \varepsilon^2 ||x||_{\varphi_1}^2)^{\frac{1}{2}}$$

for all $x \in \mathcal{A}$. Let i = 1, 2. We choose $e_i \in \mathcal{A}$ with $\varphi_i(e_i) = ||e_i|| = 1$, and denote by ξ_i the mapping $x \mapsto \varphi_i(x \circ e_i)$ from \mathcal{A} to \mathbb{C} . Clearly ξ_i is a norm-one weak^{*}-continuous linear functional on \mathcal{A} . Moreover, from the identity

$$\{x, x, e_i\} + \{x^*, x^*, e_i\} = 2e_i \circ (x \circ x^*)$$

we obtain that ξ_i is positive and that the equality $||x||_{\varphi_i}^2 + ||x^*||_{\varphi_i}^2 = 2\xi_i(x \circ x^*)$ holds. Therefore we have $||x||_{\varphi_i}^2 \leq 2\xi_i(x \circ x^*)$ and hence

$$||T(x)|| \le \sqrt{2}K ||T|| \left(\xi_2(x \circ x^*) + \varepsilon^2 \xi_1(x \circ x^*)\right)^{\frac{1}{2}}$$

Finally, putting $\xi := \frac{1}{1+\varepsilon^2} (\xi_2 + \varepsilon^2 \xi_1)$, ξ becomes a norm-one positive functional in \mathcal{A}_* and for $x \in \mathcal{A}$ we have

$$||T(x)|| \le \sqrt{2 (1+\varepsilon^2)} K ||T|| (\xi(x \circ x^*))^{\frac{1}{2}} = M ||T|| (\xi(x \circ x^*))^{\frac{1}{2}}$$

We recall that the bidual of every JB*-algebra \mathcal{A} is a JBW*-algebra containing \mathcal{A} as a JB*-subalgebra.

Corollary 2.4 Let \mathcal{A} be a JB^* -algebra and T a bounded linear operator from \mathcal{A} to a complex Hilbert space. Then there exists a norm-one positive functional $\xi \in \mathcal{A}^*$ satisfying

$$||T(x)|| \le 2||T|| \left(\xi(x \circ x^*)\right)^{\frac{1}{2}}$$

for all $x \in \mathcal{A}$.

Proof. By Theorem 2.3, for $n \in \mathbb{N}$ there is a norm-one positive functional $\xi_n \in \mathcal{A}^*$ satisfying

$$||T(x)|| \le (2 + \frac{1}{n})||T|| \left(\xi_n(x \circ x^*)\right)^{\frac{1}{2}}$$

for all $x \in \mathcal{A}$. Take in \mathcal{A}^* a weak^{*} cluster point η of the sequence ξ_n . Then η is a positive functional with $\|\eta\| \leq 1$, and the inequality

$$||T(x)|| \le 2||T|| (\eta(x \circ x^*))^{\frac{1}{2}}$$

holds for all $x \in \mathcal{A}$. If $\eta = 0$, then T = 0 and nothing has to be proved. Otherwise take $\xi := \frac{1}{\|\eta\|} \eta$. \Box

For background about JB- and JBW-algebras the reader is referred to [HS]. We recall that JB-algebras (respectively, JBW-algebras) are nothing but the self-adjoint parts of JB*-algebras (respectively, JBW*-algebras) [W] (respectively, [E]).

Corollary 2.5 Let $K > 2\sqrt{2}$. Then, for every JBW-algebra A, every real Hilbert space H, and every weak*-continuous linear operator $T : A \to H$, there exists a norm-one positive functional $\xi \in A_*$ such that

$$||T(x)|| \le K ||T|| (\xi(x^2))^{\frac{1}{2}}$$

for all $x \in A$.

Proof. Let \widehat{A} denote the JBW*-algebra whose self-adjoint part is equal to A, and \widehat{H} be the Hilbert space complexification of H. Consider the complexlinear operator $\widehat{T} : \widehat{A} \to \widehat{H}$, which extends T. Clearly we have $\|\widehat{T}\| \leq \sqrt{2} \|T\|$. By Theorem 2.3 there exists a norm-one positive functional $\xi \in \widehat{A}_*$ such that

$$||T(x)|| = ||\widehat{T}(x)|| \le \frac{K}{\sqrt{2}} ||\widehat{T}|| (\xi(x^2))^{\frac{1}{2}} \le K ||T|| (\xi(x^2))^{\frac{1}{2}}$$

for all $x \in A$. Since ξ is positive, $\xi|_A$ is in fact a norm-one positive functional in A_* . \Box

The next result follows from the above corollary in the same way that Corollary 2.4 was derived from Theorem 2.3.

Corollary 2.6 [P, Theorem 3.2]

Let A be a JB-algebra, H a real Hilbert space, and $T: A \to H$ a bounded linear operator. Then there is a norm-one positive linear functional $\varphi \in A^*$ such that

$$||T(x)|| \le 2\sqrt{2}||T|| (\varphi(x^2))^{\frac{1}{2}}$$

for all $x \in A$.

Remark 2.7 1.— Since every C*-algebra becomes a JB*-algebra under the Jordan product $x \circ y := \frac{1}{2}(xy + yx)$, it follows from Theorem 2.3 that, given M > 2, a von Neumann algebra \mathcal{A} , and a weak*-continuous linear operator T from \mathcal{A} to a complex Hilbert space, there exists a norm-one positive functional $\varphi \in \mathcal{A}_*$ satisfying

$$||T(x)|| \le M ||T|| \left(\varphi(\frac{1}{2}(xx^* + x^*x))\right)^{\frac{1}{2}}$$

for all $x \in A$. A lightly better result can be derived from [H, Proposition 2.3].

2.— As is asserted in [CIL], Corollary 2.4 can be proved by translating verbatim Pisier's arguments for the case of C^* -álgebras [P2, Theorem 9.4]. We note that actually Corollary 2.4 contains Pisier's result. Moreover, it is worth mentioning that our proof of Corollary 2.4 avoids any use of ultraproducts techniques.

Following [IKR], we define real JB*-triples as norm-closed real subtriples of complex JB*-triples. In [IKR] it is shown that every real JB*-triple Ecan be regarded as a real form of a complex JB*-triple. Indeed, given a real JB*-triple E there exists a unique complex JB*-triple structure on the complexification $\hat{E} = E \oplus i E$, and a unique conjugation (i.e., conjugatelinear isometry of period 2) τ on \hat{E} such that $E = \hat{E}^{\tau} := \{x \in \hat{E} : \tau(x) = x\}$. The class of real JB*-triples includes all JB-algebras [HS], all real C*-algebras [G], and all J*B-algebras [Al].

By a real JBW*-triple we mean a real JB*-triple whose underlying Banach space is a dual Banach space. As in the complex case, the triple product of every real JBW*-triple is separately weak*-continuous [MP], and the bidual \mathcal{E}^{**} of a real JB*-triple \mathcal{E} is a real JBW*-triple whose triple product extends the one of \mathcal{E} [IKR]. Noticing that every real JBW*-triple is a real form of a complex JBW*-triple [IKR], it follows easily that, if W is a real JBW*triple and if φ is a norm-one element in W_* , then, for $z \in W$ such that $\varphi(z) = ||z|| = 1$, the mapping $x \mapsto (\varphi \{x, x, z\})^{\frac{1}{2}}$ is a prehilbert seminorm on W (not depending on z). Such a seminorm will be denoted by $||.||_{\varphi}$.

Now we proceed to deal with "Little Grothendieck's inequality" for real JBW*-triples. We begin by showing the appropriate version of Lemma 1.5 for real JBW*-triples. Such a version is obtained by adapting the proof of a recent result of the first author for real JB*-triples (see [P]) to the setting of real JBW*-triples.

Lemma 2.8 Let $M > 1 + 3\sqrt{2}$. Then, for every real JBW*-triple W, every real Hilbert space H, and every weak*-continuous linear operator $T: W \to H$ which attains its norm, there exists a norm one functional $\varphi \in W_*$ such that

$$||T(x)|| \le M ||T|| ||x||_{\varphi}$$

for all $x \in W$.

Proof. We follow with minors changes the line of proof of [P, Theorem 4.3]. Without loss of generality we can suppose ||T|| = 1. Write

$$K = \left[2\sqrt{2}\left(\frac{M^2}{1+3\sqrt{2}} - (1+\sqrt{2})\right)\right]^{\frac{1}{2}} > 2\sqrt{2}$$

and $\rho = \frac{2\sqrt{2}}{1+\sqrt{2}}$. By [IKR, Lemma 3.3], there exists a complete tripotent $e \in W$ with 1 = ||T(e)||. Then denoting by ξ the linear functional on W given by $\xi(x) := (T(x)|T(e))$ for every $x \in W$, ξ belongs to W_* and satisfies $||\xi|| = \xi(e) = 1$. Moreover, when in the proof of [P, Theorem 4.3] Corollary 2.5 replaces [P, Theorem 3.2], we obtain the existence of a normone functional $\psi \in W_*$ with $\psi(e) = 1$ such that

$$||T(x)|| \le K ||x||_{\psi} + (1 + \sqrt{2}) ||x||_{\xi}$$

for all $x \in W$. Setting $\varphi := \frac{1}{1+\rho}(\xi + \rho \psi)$, φ is a norm-one functional in W_* with $\varphi(e) = 1$, and we have

$$||T(x)|| \le \sqrt{(1+\sqrt{2})^2 + \frac{K^2}{\rho}} \sqrt{||x||_{\xi}^2 + \rho} ||x||_{\psi}^2$$
$$= \left([(1+\sqrt{2})^2 + \frac{K^2}{\rho}](1+\rho) \right)^{\frac{1}{2}} ||x||_{\varphi} = M ||x||_{\varphi}$$

for all $x \in W$. \Box

When in the proof of Theorem 2.1 Lemma 2.8 replaces Lemma 1.5, we arrive in the following result.

Theorem 2.9 Let $K > 1+3\sqrt{2}$ and $\varepsilon > 0$. Then, for every real JBW*-triple W, every real Hilbert space H, and every weak*-continuous linear operator $T: W \to H$, there exist norm-one functionals $\varphi_1, \varphi_2 \in W_*$ such that the inequality

$$||T(x)|| \le K ||T|| (||x||_{\varphi_2}^2 + \varepsilon^2 ||x||_{\varphi_1}^2)^{\frac{1}{2}}$$

holds for all $x \in W$.

For norm-one elements φ_1, φ_2 in the predual of a given real JBW*-triple W, we define the prehilbert seminorm $\|.\|_{\varphi_1,\varphi_2}$ on W verbatim as in the complex case.

Corollary 2.10 Let W be a real JBW*-triple and T a weak*-continuous linear operator from W to a real Hilbert space. Then there exist norm-one functionals $\varphi_1, \varphi_2 \in W_*$ such that, for every $x \in W$, we have

$$||T(x)|| \le 6||T|| ||x||_{\varphi_1,\varphi_2}.$$

3 Grothendieck's Theorem for JBW*-triples

In this section we prove "Grothendieck's inequality" for separately weak*continuous bilinear forms defined on the cartesian product of two JBW*triples.

Theorem 3.1 Let $M > 4(1 + 2\sqrt{3})$ and $\varepsilon > 0$. For every couple $(\mathcal{V}, \mathcal{W})$ of complex JBW*-triples and every separately weak*-continuous bilinear form V on $\mathcal{V} \times \mathcal{W}$, there exist norm-one functionals $\varphi_1, \varphi_2 \in \mathcal{V}_*$, and $\psi_1, \psi_2 \in \mathcal{W}_*$ satisfying

$$|V(x,y)| \le M \|V\| \left(\|x\|_{\varphi_2}^2 + \varepsilon^2 \|x\|_{\varphi_1}^2 \right)^{\frac{1}{2}} \left(\|y\|_{\psi_2}^2 + \varepsilon^2 \|y\|_{\psi_1}^2 \right)^{\frac{1}{2}}$$

for all $(x, y) \in \mathcal{V} \times \mathcal{W}$.

Proof. We begin by noticing that a bilinear form U on $\mathcal{V} \times \mathcal{W}$ is separately weak*-continuous if and only if there exists a weak*-to-weak-continuous linear operator $F_U: \mathcal{V} \to \mathcal{W}_*$ such that the equality

$$U(x,y) = \langle F_U(x), y \rangle$$

holds for every $(x, y) \in \mathcal{V} \times \mathcal{W}$.

Put $T := F_V : \mathcal{V} \to \mathcal{W}_*$ in the sense of the above paragraph. By [CIL, Lemma 5] there exist a Hilbert space \mathcal{H} and bounded linear operators S : $\mathcal{V} \to \mathcal{H}, R : \mathcal{H} \to \mathcal{W}_*$ satisfying T = R S and $||R|| ||S|| \leq 2(1 + 2\sqrt{3}) ||T||$. Notice that in fact we can enjoy such a factorization in such a way that R is injective. Indeed, take \mathcal{H}' equals to the orthogonal complement of Ker(R)in $\mathcal{H}, R' := R|_{\mathcal{H}'}$ and $S' := \pi_{\mathcal{H}'} S$, where $\pi_{\mathcal{H}'}$ is the orthogonal projection from \mathcal{H} onto \mathcal{H}' , to have T = R' S' with R' injective and $||R'|| ||S'|| \leq 2(1 + 2\sqrt{3}) ||T||$.

Next we show that S is weak*-continuous. By [DS, Corollary V.5.5] it is enough to prove that S is weak*-continuous on bounded subsets of \mathcal{V} . Let x_{λ} be a bounded net in \mathcal{V} weak*-convergent to zero. Take a weak cluster point h of $S(x_{\lambda})$ in \mathcal{H} . Then R(h) is a weak cluster point of $T(x_{\lambda}) = R S(x_{\lambda})$ in \mathcal{W}_* . Moreover, since T is weak*-to-weak-continuous, we have $T(x_{\lambda}) \to 0$ weakly. It follows R(h) = 0 and hence h = 0 by the injectivity of R. Now, zero is the unique weak cluster point in \mathcal{H} of the bounded net $S(x_{\lambda})$, and therefore we have $S(x_{\lambda}) \to 0$ weakly.

Now that we know that the operator S is weak*-continuous, we apply Theorem 2.1 with $K = \sqrt{\frac{M}{2(1+2\sqrt{3})}} > \sqrt{2}$ to find norm-one functionals $\varphi_1, \varphi_2 \in \mathcal{V}_*$, and $\psi_1, \psi_2 \in \mathcal{W}_*$ satisfying

$$||S(x)|| \le K ||S|| (||x||_{\varphi_2}^2 + \varepsilon^2 ||x||_{\varphi_1}^2)^{\frac{1}{2}} \text{ and} ||R^*(y)|| \le K ||R^*|| (||y||_{\psi_2}^2 + \varepsilon^2 ||y||_{\psi_1}^2)^{\frac{1}{2}}$$

for all $x \in \mathcal{V}$ and $y \in \mathcal{W}$. Therefore

$$|V(x,y)| = | \langle T(x), y \rangle | = | \langle S(x), R^*(y) \rangle |$$

$$\leq \frac{M}{2(1+2\sqrt{2})} \|R\| \|S\| (\|x\|_{\varphi_2}^2 + \varepsilon^2 \|x\|_{\varphi_1}^2)^{\frac{1}{2}} (\|y\|_{\psi_2}^2 + \varepsilon^2 \|y\|_{\psi_1}^2)^{\frac{1}{2}}$$

$$\leq M \|V\| (\|x\|_{\varphi_2}^2 + \varepsilon^2 \|x\|_{\varphi_1}^2)^{\frac{1}{2}} (\|y\|_{\psi_2}^2 + \varepsilon^2 \|y\|_{\psi_1}^2)^{\frac{1}{2}},$$

$$\|V\| (x,y) \in \mathcal{V} \times \mathcal{W} \square$$

for all $(x, y) \in \mathcal{V} \times \mathcal{W}$. \Box

In the same way that Theorem 2.3 was derived from Theorem 2.1, we can obtain from Theorem 3.1 that, given M > 8 $(1 + 2\sqrt{3})$, JBW*-algebras \mathcal{A}, \mathcal{B} , and a separately weak*-continuous bilinear form V on $\mathcal{A} \times \mathcal{B}$, there exist norm-one positive functionals $\varphi \in \mathcal{A}_*$ and $\psi \in \mathcal{B}_*$ satisfying

$$|V(x,y)| \le M ||V|| \; (\varphi(x \circ x^*))^{\frac{1}{2}} \; (\psi(y \circ y^*))^{\frac{1}{2}}$$

for all $(x, y) \in \mathcal{A} \times \mathcal{B}$. As a relevant particular case we obtain the following result.

Corollary 3.2 Let $M > 8(1 + 2\sqrt{3})$. For every couple $(\mathcal{A}, \mathcal{B})$ of von Neumann algebras and every separately weak*-continuous bilinear form V on $\mathcal{A} \times \mathcal{B}$, there exist norm-one positive functionals $\varphi \in \mathcal{A}_*$ and $\psi \in \mathcal{B}_*$ satisfying

$$|V(x,y)| \le M ||V|| \ (\varphi(\frac{1}{2}(xx^* + x^*x)))^{\frac{1}{2}} \ (\psi(\frac{1}{2}(yy^* + y^*y)))^{\frac{1}{2}}$$

for all $(x, y) \in \mathcal{A} \times \mathcal{B}$.

A refined version of the above corollary can be found in [H, Proposition 2.3].

Now we proceed to deal with Grothendieck's Theorem for real JBW*triples. The following lemma generalizes [CIL, Lemma 5] to the real case.

Lemma 3.3 Let E and F be real JB^* -triples and $T : E \to F^*$ a bounded linear operator. Then T has a factorization T = R S through a real Hilbert space with $||R|| ||S|| \le 4(1 + 2\sqrt{3}) ||T||$

Proof.

Let us consider the JB*-complexifications \widehat{E} and \widehat{F} of E and F, respectively, and denote by $\widehat{T} : \widehat{E} \to \widehat{F}^*$ the complex linear extension of T, so that we easily check that $\|\widehat{T}\| \leq 2\|T\|$. As we have mentioned before, \widehat{T} has a factorization $\widehat{T} = \widehat{R}\widehat{S}$ through a complex Hilbert space \mathcal{H} , with $\|\widehat{R}\| \|\widehat{S}\| \leq 2(1+2\sqrt{3}) \|\widehat{T}\|$.

Since $\overline{\widehat{T}}$ is the complex linear extension of T, the inclusion $\widehat{T}(E) \subseteq F^*$ holds. Put $H := \overline{\widehat{S}(E)}$, the closure of $\widehat{S}(E)$ in \mathcal{H} . Then H is a real Hilbert space and we have $\widehat{R}(H) \subseteq \overline{\widehat{R}(\widehat{S}(E))} = \overline{\widehat{T}(E)} \subseteq F^*$.

Finally we define the bounded linear operators $S := \widehat{S}|_{E} : E \to H$ and $R := \widehat{R}|_{H} : H \to F^{*}$. It is easy to see that T = R S and

$$||R|| ||S|| \le ||\widehat{R}|| ||\widehat{S}|| \le 2(1+2\sqrt{3}) ||\widehat{T}|| \le 4(1+2\sqrt{3}) ||T||.$$

_		
L		
L	_	

When in the proof of Theorem 3.1 Lemma 3.3 and Theorem 2.9 replace [CIL, Lemma 5] and Theorem 2.1, respectively, we obtain the following theorem.

Theorem 3.4 Let $M > 4(1 + 2\sqrt{3}) (1 + 3\sqrt{2})^2$ and $\varepsilon > 0$. For every couple (V, W) of real JBW*-triples and every separately weak*-continuous bilinear form U on $V \times W$, there exist norm-one functionals $\varphi_1, \varphi_2 \in V_*$, and $\psi_1, \psi_2 \in W_*$ satisfying

$$|U(x,y)| \le M \|U\| \left(\|x\|_{\varphi_2}^2 + \varepsilon^2 \|x\|_{\varphi_1}^2 \right)^{\frac{1}{2}} \left(\|y\|_{\psi_2}^2 + \varepsilon^2 \|y\|_{\psi_1}^2 \right)^{\frac{1}{2}}$$

for all $(x, y) \in V \times W$.

Thanks to Lemma 3.3, Lemma 1.1 remains true when real JB*-triples replace complex ones. Then Theorems 3.4 and 3.1 give rise to the real and complex cases, respectively, of the result which follows.

Corollary 3.5 Let $M > 4(1 + 2\sqrt{3}) (1 + 3\sqrt{2})^2$ (respectively, $M > 4(1 + 2\sqrt{3}))$ and $\varepsilon > 0$. Then for every couple (E, F) of real (respectively, complex) JB*-triples and every bounded bilinear form U on $E \times F$ there exist norm-one functionals $\varphi_1, \varphi_2 \in E^*$ and $\psi_1, \psi_2 \in F^*$ satisfying

$$|U(x,y)| \le M \|U\| \left(\|x\|_{\varphi_2}^2 + \varepsilon^2 \|x\|_{\varphi_1}^2 \right)^{\frac{1}{2}} \left(\|y\|_{\psi_2}^2 + \varepsilon^2 \|y\|_{\psi_1}^2 \right)^{\frac{1}{2}}$$

for all $(x, y) \in E \times F$.

Remark 3.6 In the complex case of the above corollary, the interval of variation of the constant M can be enlarged by arguing as follows. Let $M > 3 + 2\sqrt{3}$, $\varepsilon > 0$, \mathcal{E} and \mathcal{F} be complex JB^* -triples, and U a norm-one bounded bilinear form on $\mathcal{E} \times \mathcal{F}$. Consider the separately weak*-continuous bilinear form \widetilde{U} on $\mathcal{E}^{**} \times \mathcal{F}^{**}$ which extends U, and take a weak*-to-weak continuous linear operator $T : E^{**} \to F^*$ satisfying

$$\widetilde{U}(\alpha,\beta) = \langle T(\alpha),\beta \rangle$$

for all $(\alpha, \beta) \in \mathcal{E}^{**} \times \mathcal{F}^{**}$. Choose $\delta > 0$ such that $\delta \leq \varepsilon^2$ and $(3 + 2\sqrt{3})(1 + \delta) \leq M$. By [PZ, Corollary 2] there is a rank one weak*-to-weak continuous linear operator $T_1 : \mathcal{E}^{**} \to \mathcal{F}^*$ such that $||T_1|| \leq \delta$ and $T_2 := T - T_1$ attains its norm. Since T_1 is of rank one and weak*-continuous, it also attains its norm. For i = 1, 2, consider the separately weak*-continuous bilinear form \widetilde{U}_i on $\mathcal{E}^{**} \times \mathcal{F}^{**}$ defined by

$$\widetilde{U}_i(\alpha,\beta) = \langle T_i(\alpha),\beta \rangle,$$

and put $U_i = \widetilde{U}_i|_{\mathcal{E}\times\mathcal{F}}$, so that U_i is a bounded bilinear form on $\mathcal{E}\times\mathcal{F}$ whose separately weak*-continuous extension to $\mathcal{E}^{**}\times\mathcal{F}^{**}$ attains its norm. By the proof of [BF1, Theorem 1.4], there exist norm-one functionals $\varphi_1, \varphi_2 \in \mathcal{E}^*$ and $\psi_1, \psi_2 \in \mathcal{F}^*$ such that

$$|U_i(x,y)| \le (3+2\sqrt{3}) ||U_i|| ||x||_{\varphi_i} ||y||_{\psi_i},$$

for all $(x, y) \in \mathcal{E} \times \mathcal{F}$ and i = 1, 2.

Therefore

$$|U(x,y)| \leq |U_{2}(x,y)| + |U_{1}(x,y)|$$

$$\leq (3+2\sqrt{3})(||U_{2}|| ||x||_{\varphi_{2}}||y||_{\psi_{2}} + ||U_{1}|| ||x||_{\varphi_{1}}||y||_{\psi_{1}})$$

$$\leq (3+2\sqrt{3})((1+\delta) ||x||_{\varphi_{2}}||y||_{\psi_{2}} + \delta ||x||_{\varphi_{1}}||y||_{\psi_{1}})$$

$$\leq (3+2\sqrt{3})(1+\delta) (||x||_{\varphi_{2}}||y||_{\psi_{2}} + \delta ||x||_{\varphi_{1}}||y||_{\psi_{1}})$$

$$\leq (3+2\sqrt{3})(1+\delta) \sqrt{||x||_{\varphi_{2}}^{2}} + \delta ||x||_{\varphi_{1}}^{2} \sqrt{||y||_{\psi_{2}}^{2}} + \delta ||y||_{\psi_{1}}^{2}$$

$$\leq M (||x||_{\varphi_{2}}^{2} + \varepsilon^{2} ||x||_{\varphi_{1}}^{2})^{\frac{1}{2}} (||y||_{\psi_{2}}^{2} + \varepsilon^{2} ||y||_{\psi_{1}}^{2})^{\frac{1}{2}}$$

$$\leq M (||x||_{\varphi_{2}}^{2} + \varepsilon^{2} ||x||_{\varphi_{1}}^{2})^{\frac{1}{2}} (||y||_{\psi_{2}}^{2} + \varepsilon^{2} ||y||_{\psi_{1}}^{2})^{\frac{1}{2}}$$

for all $(x, y) \in E \times F$.

We do not know if the value $\varepsilon = 0$ is allowed in Theorems 3.1 and 3.4. In any case, as the next result shows, the value $\varepsilon = 0$ is allowed for a "big quantity" of separately weak*-continuous bilinear forms.

Theorem 3.7 Let $M > 4(1 + 2\sqrt{3}) (1 + 3\sqrt{2})^2$ (respectively, $M > 4(1 + 2\sqrt{3}))$ and V, W be real (respectively, complex) JBW*-triples. Then the set of all separately weak*-continuous bilinear forms U on $V \times W$ such that there exist norm-one functionals $\varphi \in V_*$ and $\psi \in W_*$ satisfying

$$|U(x,y)| \le M ||U|| ||x||_{\varphi} ||y||_{\psi}$$

for all $(x, y) \in V \times W$, is norm dense in the set of all separately weak*continuous bilinear forms on $V \times W$.

Proof. Let U a non zero separately weak*-continuous bilinear form on $V \times W$. By the proof of Theorem 3.4 (respectively, Theorem 3.1) there exists a real (respectively, complex) Hilbert space H such that for all $(x, y) \in V \times W$ we have

$$U(x, y) := \langle F(x), G(y) \rangle,$$

where $F: V \to H$ and $G: W \to H^*$ are weak*-continuous linear operators satisfying $||F|| ||G|| \leq L ||U||$ with $L = 4(1 + 2\sqrt{3})$ (respectively, $L = 2(1 + 2\sqrt{3}))$.

By [Z], there are sequences $\{F_n : V \to H\}$ and $\{G_n : W \to H^*\}$ of weak*continuous linear operators, converging in norm to F and G, respectively, and such that F_n and G_n attain their norms for every n. Then, putting

$$U_n(x,y) := \langle F_n(x), G_n(y) \rangle \quad ((n,x,y) \in \mathbb{N} \times V \times W),$$

 $\{U_n\}$ becomes a sequence of separately weak*-continuous bilinear forms on $V \times W$, converging in norm to U. Take $\sqrt{\frac{M}{L}} > K > 1 + 3\sqrt{2}$ (respectively, $\sqrt{\frac{M}{L}} > K > \sqrt{2}$). Applying Lemma 2.8 (respectively, Lemma 1.5), for $n \in \mathbb{N}$ we find norm-one functionals $\varphi_n \in V_*$ and $\psi_n \in W_*$ satisfying

$$||F_n(x)|| \le K ||F_n|| ||x||_{\varphi_n}$$
 and
 $||G_n(y)|| \le K ||G_n|| ||y||_{\psi_n}$

for all $(x, y) \in V \times W$. Set

$$\delta = \frac{\frac{M}{K^2} - L}{1 + L} \frac{\|U\|}{2} > 0,$$

and take $m \in \mathbb{N}$ such that the inequalities

$$||F_n|| ||G_n|| - ||F|| ||G|| | < \delta,$$

| $||U_n|| - ||U|| | < \delta$, and
 $||U_n|| \ge \frac{||U||}{2}$

hold for every $n \geq m$.

Now for $n \ge m$ and $(x, y) \in V \times W$ we have

$$\begin{aligned} |U_n(x,y)| &\leq K^2 ||F_n|| ||G_n|| ||x||_{\varphi_n} ||y||_{\psi_n} \\ &\leq K^2 (||F|| ||G|| + \delta) ||x||_{\varphi_n} ||y||_{\psi_n} \\ &\leq K^2 (L ||U|| + \delta) ||x||_{\varphi_n} ||y||_{\psi_n} \\ &\leq K^2 (L ||U_n|| + \delta (1 + L)) ||x||_{\varphi_n} ||y||_{\psi_n} \\ &= K^2 (L ||U_n|| + (\frac{M}{K^2} - L)\frac{||U||}{2}) ||x||_{\varphi_n} ||y||_{\psi_n} \\ &\leq M ||U_n|| ||x||_{\varphi_n} ||y||_{\psi_n}. \end{aligned}$$

As we noticed before Corollary 3.5, Lemma 1.1 remains true in the real setting. Then, given real or complex JB^* -triples E, F, the mapping sending each element $U \in \mathcal{L}({}^{2}(E \times F))$ to its unique separately weak*-continuous bilinear extension \widetilde{U} to $E^{**} \times F^{**}$ is an isometry from $\mathcal{L}(^2(E \times F))$ onto the Banach space of all separately weak*-continuous bilinear forms on $E^{**} \times F^{**}$. Therefore we obtain the following corollary.

Corollary 3.8 Let $M > 4(1 + 2\sqrt{3}) (1 + 3\sqrt{2})^2$ (respectively, $M > 4(1 + 2\sqrt{3}))$ and E, F be real (respectively, complex) JB*-triples. Then the set of all bounded bilinear forms U on $E \times F$ such that there exist norm-one functionals $\varphi \in E^*$ and $\psi \in F^*$ satisfying

$$|U(x,y)| \le M ||U|| ||x||_{\varphi} ||y||_{\psi}$$

for all $(x, y) \in E \times F$, is norm dense in $\mathcal{L}(^2(E \times F))$.

We note that Theorem 1.4 is finer than the complex case of the above corollary. However, since Theorem 1.4 depends on the proof of [BF1, Theorem 1.4], it is much more difficult.

Remark 3.9 We do not know if the value $\varepsilon = 0$ is allowed in Theorems 2.1 and 2.9 (respectively, in Theorems 3.1 and 3.4) for some value of the constant K (respectively, M). Concerning this question, it is worth mentioning that the following three assertions are equivalent:

1. There is a universal constant G such that, for every real (respectively, complex) JBW*-triple W and every couple (φ_1, φ_2) of norm-one functionals in $W_* \times W_*$, we can find a norm-one functional $\varphi \in W_*$ satisfying

$$||x||_{\varphi_i} \le G ||x||_{\varphi}$$

for every $x \in W$ and i = 1, 2.

2. There is a universal constant \widehat{G} such that for every couple of real (respectively, complex) JBW*-triples (V, W) and every separately weak*continuous bilinear form U on $V \times W$, there are norm-one functionals $\varphi \in V_*$, and $\psi \in W_*$ satisfying

$$|U(x,y)| \le G ||U|| ||x||_{\varphi} ||y||_{\psi}$$

for all $(x, y) \in V \times W$.

3. There is a universal constant \widetilde{G} such that for every real (respectively, complex) JBW*-triple W and every weak*-continuous linear operator T from W to a real (respectively, complex) Hilbert space, there exists a norm-one functional $\varphi \in W_*$ satisfying

$$||T(x)|| \le \widetilde{G} ||T|| ||x||_{\varphi}$$

for all $x \in W$.

The implication $1 \Rightarrow 2$ follows from Theorems 3.1 and 3.4.

Assume that Assertion 2 above is true. Let W be a real (respectively, complex) JBW*-triple, H a real (respectively, complex) Hilbert space, and $T: W \to H$ a weak*-continuous linear operator. Consider the separately weak*-continuous bilinear form U on $W \times H$ given by U(x, y) := (T(x)|y) (respectively, $U(x, y) := (T(x)|\sigma(y))$, where σ is a conjugation on H). Regarding H as a JBW*-triple under the triple product $\{x, y, z\} := \frac{1}{2}((x|y)z + (z|y)x)$, and applying the assumption, we find norm-one functionals $\varphi \in W_*$ and $\psi \in H_*$ satisfying

$$|U(x,y)| \le \widehat{G} ||U|| ||x||_{\varphi} ||y||_{\psi}$$
$$\le \widehat{G} ||T|| ||x||_{\varphi} ||y||$$

for all $(x, y) \in W \times H$. Taking y = T(x) (respectively, $y = \sigma(T(x))$) we obtain

$$||T(x)|| \le \widehat{G}||T|| ||x||_{\varphi}$$

for all $x \in W$. In this way Assertion 3 holds.

Finally let us assume that Assertion 3 is true. Let W be a real (respectively, complex) JBW*-triple and φ_1, φ_2 norm-one functionals in W_* . Since $\|.\|_{\varphi_1,\varphi_2}$ comes from a suitable separately weak*-continuous positive sesquilinear form < ., . > on W by means of the equality $\|x\|_{\varphi_1,\varphi_2}^2 = < x, x >$, it follows from the proof of [R1, Corollary] that there exists a weak*-continuous linear operator T from W to a real (respectively, complex) Hilbert space satisfying $\|x\|_{\varphi_1,\varphi_2} = \|T(x)\|$ for all $x \in W$ (which implies $\|T\| \le \sqrt{2}$). Now applying the assumption we find a norm one functional $\varphi \in W_*$ such that

$$||x||_{\varphi_1,\varphi_2} = ||T(x)|| \le \tilde{G} ||T|| ||x||_{\varphi} \le \sqrt{2}\tilde{G} ||x||_{\varphi}$$

for all $x \in W$. As a consequence, for i = 1, 2 we have

$$\|x\|_{\varphi_i} \le \sqrt{2}\tilde{G}\|x\|_{\varphi}$$

for all $x \in W$.

4 Some Applications

We define the strong*-topology $S^*(W, W_*)$ of a given real or complex JBW*triple W as the topology on W generated by the family of seminorms $\{\|.\|_{\varphi}:$ $\varphi \in W_*$, $\|\varphi\| = 1$ }. In the complex case, the above notion has been introduced by T. J. Barton and Y. Friedman in [BF2]. When a JBW*-algebra \mathcal{A} is regarded as a complex JBW*-triple, $S^*(\mathcal{A}, \mathcal{A}_*)$ coincides with the so-called "algebra-strong* topology" of \mathcal{A} , namely the topology on \mathcal{A} generated by the family of seminorms of the form $x \mapsto \sqrt{\xi(x \circ x^*)}$ when ξ is any positive functional in \mathcal{A}_* [R1, Proposition 3]. As a consequence, when a von Neumann algebra \mathcal{M} is regarded as a complex JBW*-triple, $S^*(\mathcal{M}, \mathcal{M}_*)$ coincides with the familiar strong*-topology of \mathcal{M} (compare [S, Definition 1.8.7]).

We note that, if \mathcal{W} is a complex JBW*-triple, then, denoting by $\mathcal{W}_{\mathbb{R}}$ the realification of \mathcal{W} (i.e., the real JBW*-triple obtained from \mathcal{W} by restriction of scalar to \mathbb{R}), we have $S^*(\mathcal{W}, \mathcal{W}_*) = S^*(\mathcal{W}_{\mathbb{R}}, (\mathcal{W}_{\mathbb{R}})_*)$. Indeed, the mapping $\varphi \mapsto \Re e \ \varphi$ identifies \mathcal{W}_* with $(\mathcal{W}_{\mathbb{R}})_*$, and, when φ has norm one, the equality $||x||_{\varphi} = ||x||_{\Re e \ \varphi}$ holds for every $x \in \mathcal{W}$.

Proposition 4.1 Let W be a real (respectively, complex) JBW^* -triple. The following topologies coincide in W:

- 1. The strong *-topology of W.
- 2. The topology on W generated by the family of seminorms of the form $x \mapsto \sqrt{\langle x, x \rangle}$, where $\langle ., . \rangle$ is any separately weak*-continuous positive sesquilinear form on W.
- 3. The topology on W generated by the family of seminorms $x \mapsto ||T(x)||$, when T runs over all weak*-continuous linear operators from W to arbitrary real (respectively, complex) Hilbert spaces.

Proof. Let us denote by τ_1, τ_2 , and τ_3 the topologies arising in paragraphs 1, 2, and 3, respectively. The inequality $\tau_1 \geq \tau_3$ follows from Corollary 2.10 (respectively, Corollary 2.2). Since the proof of [R1, Corollary 1] shows that for every separately weak*-continuous positive sesquilinear form $\langle ., . \rangle$ on W there exists a weak*-continuous linear operator T from W to a real (respectively, complex) Hilbert space satisfying $\sqrt{\langle x, x \rangle} = ||T(x)||$ for all $x \in W$, we have $\tau_3 \geq \tau_2$. Finally, since for every norm-one functional $\varphi \in W_*$ there is a separately weak*-continuous positive sesquilinear form $\langle ., . \rangle$ satisfying $||x||_{\varphi} = \sqrt{\langle x, x \rangle}$ for all $x \in W$, the inequality $\tau_2 \geq \tau_1$ follows. \Box

For every Banach space X, B_X will stand for the closed unit ball of X. For every dual Banach space X (with a fixed predual denoted by X_*), we denote by $m(X, X_*)$ the Mackey topology on X relative to its duality with X_* .

Corollary 4.2 Let W be a real or complex JBW^* -triple. Then the strong*topology of W is compatible with the duality (W, W_*) .

Proof. We apply the characterization of $S^*(W, W_*)$ given by paragraph 3 in Proposition 4.1. Clearly $S^*(W, W_*)$ is stronger than the weak*-topology $\sigma(W, W_*)$ of W. On the other hand, if T is a weak*-continuous linear operator from W to a Hilbert space H, and if we put $T = S^*$ for a suitable bounded linear operator $S : H_* \to W_*$, then $S(B_{H_*})$ is an absolutely convex and weakly compact subset of W_* and we have $||T(x)|| = \sup | \langle x, S(B_{H_*}) \rangle |$. This shows that $S^*(W, W_*)$ is weaker than $m(W, W_*)$. \Box

The complex case of the above corollary is due to T. J. Barton and Y. Friedman [BF2]. The complex case of Proposition 4.1 is claimed in [R1, Corollary 2] (see also [R2, Proposition D.17]), but the proof relies on [R1, Proposition 1], which subsumes a gap from [BF1] (see the comments before Lemma 1.5). Now that we have saved [R1, Corollary 2], all subsequent results in [R1] concerning the strong*-topology of complex JBW*-triples are valid. Moreover, keeping in mind Proposition 4.1 and Corollary 4.2, some of those results remain true for real JBW*-triples with verbatim proof. For instance, the following assertions hold:

- 1. Linear mappings between real JBW*-triples are strong*-continuous if and only if they are weak*-continuous (compare [R1, Corollary 3]).
- 2. If W is a real JBW*-triple, and if V is a weak*-closed subtriple, then the inequality $S^*(W, W_*)|_V \leq S^*(V, V_*)$ holds, and in fact $S^*(W, W_*)|_V$ and $S^*(V, V_*)$ coincide on bounded subsets of V (compare [R1, Proposition 2]).

It follows from the first part of Assertion 2 above and a new application of Proposition 4.1 that, if W is a real JBW*-triple, and if V is a weak*complemented subtriple of W, then we have $S^*(W, W_*)|_V = S^*(V, V_*)$. Since every real JBW*-triple V is weak*-complemented in the realification of a complex JBW*-triple W (see V as a real form of its JB*-complexification), and $S^*(W, W_*) = S^*(W_{\mathbb{R}}, (W_{\mathbb{R}})_*)$, the results [R1, Theorem] and [R2, Theorem D.21] for complex JBW*-triples can be transferred to the real setting, providing the following result. **Theorem 4.3** Let W be a real JBW*-triple. Then the triple product of W is jointly $S^*(W, W_*)$ -continuous on bounded subsets of W, and the topologies $m(W, W_*)$ and $S^*(W, W_*)$ coincide on bounded subsets of W.

Our concluding goal in this paper is to establish, in the setting of real JB^{*}triples, a result on weakly compact operators originally due to H. Jarchow [J] in the context of C^{*}-algebras, and later extended to complex JB^{*}-triples by C-H. Chu and B. Iochum [CI]. This could be made by transferring the complex results to the real setting by a complexification method. However, we prefer to do it in a more intrinsic way, by deriving the result from the second assertion in Theorem 4.3 according to some ideas outlined in [R2, pp. 142-143].

Proposition 4.4 Let X be a dual Banach space (with a fixed predual X_*). Then the Mackey topology $m(X, X_*)$ coincides with the topology on X generated by the family of semi-norms $x \mapsto ||T(x)||$, where T is any weak*continuous linear operator from X to a reflexive Banach space.

Proof. Let us denote by τ the second topology arising in the statement. As in the proof of Corollary 4.2, if T is a weak*-continuous linear operator from X to a reflexive Banach space, then there exists an absolutely convex and weakly compact subset D of X_* such that the equality

$$||T(x)|| = \sup |\langle x, D \rangle|$$

holds for every $x \in X$. This shows that $\tau \leq m(X, X_*)$.

Let D be an absolutely convex and weakly compact subset of X_* . Consider the Banach space $\ell_1(D)$ and the bounded linear operator

$$F: \ell_1(D) \to X_*$$

given by

$$F(\{\lambda_{\varphi}\}_{\varphi\in D}) := \sum_{\varphi\in D} \lambda_{\varphi}\varphi.$$

Then we have $F(B_{\ell_1(D)}) = D$, and hence F is weakly compact. By [DFJP] there exists a reflexive Banach space Y together with bounded linear operators $S : \ell_1(D) \to Y$, $R : Y \to X_*$ such that F = R S. Then, for $x \in X$, we have

$$\sup |\langle x, D \rangle| = \sup |\langle x, F(B_{\ell_1(D)}) \rangle|$$

$$= \sup | \langle x, R(S(B_{\ell_1(D)})) \rangle | \leq ||S|| \sup | \langle x, R(B_Y) \rangle$$

= $||S|| ||R^*(x)||.$

Since D is an arbitrary absolutely convex and weakly compact subset of X_* , and R^* is a weak*-continuous linear operator from X to the reflexive Banach space Y^* , the inequality $m(X, X_*) \leq \tau$ follows. \Box

Let X be a dual Banach space (with a fixed predual X_*). In agreement with Proposition 4.1, we define the strong*-topology of X, denoted by $S^*(X, X_*)$, as the topology on X generated by the family of semi-norms $x \mapsto ||T(x)||$, where T is any weak*-continuous linear operator from X to a Hilbert space.

Proposition 4.5 Let X be a dual Banach space (with a fixed predual X_*). Then the following assertions are equivalent:

- The topologies m(X, X_{*}) and S^{*}(X, X_{*}) coincide on bounded subsets of X.
- 2. For every weak*-continuous linear operator F from X to a reflexive Banach space, there exists a weak*-continuous linear operator G from X to a Hilbert space satisfying $||F(x)|| \le ||G(x)|| + ||x||$ for all $x \in X$.
- 3. For every weak*-continuous linear operator F from X to a reflexive Banach space, there exist a weak*-continuous linear operator G from X to a Hilbert space and a mapping $N : (0, \infty) \to (0, \infty)$ satisfying

$$||F(x)|| \le N(\varepsilon) ||G(x)|| + \varepsilon ||x||$$

for all $x \in X$ and $\varepsilon > 0$.

Proof. $1 \Rightarrow 2$.— Let F be a weak*-continuous linear operator from X to a reflexive Banach space. Then, by Proposition 4.4

$$\mathcal{O} := \{ y \in B_X : ||F(y)|| \le 1 \}$$

is a $m(X, X_*)|_{B_X}$ -neighborhood of zero in B_X . By assumption, there exist Hilbert spaces H_1, \ldots, H_n and weak*-continuous linear operators $G_i : X \to H_i$ $(i : 1, \ldots, n)$ such that

$$\mathcal{O} \supseteq \cap_{i=1}^{n} \{ y \in B_X : \|G_i(y)\| \le 1 \}.$$

Now set $H := (\bigoplus_{i=1}^{n} H_i)_{\ell_2}$, and consider the weak*-continuous linear operator $G : X \to H$ defined by $G(x) := (G_1(x), \ldots, G_n(x))$. Notice that

$$\{y \in B_X : ||G(y)|| \le 1\} \subseteq \cap_{i=1}^n \{y \in B_X : ||G_i(y)|| \le 1\} \subseteq \mathcal{O}.$$

Finally, if $x \in X \setminus \{0\}$, then $\frac{1}{\|x\| + \|G(x)\|} x$ lies in $\{y \in B_X : \|G(y)\| \le 1\} \subseteq \mathcal{O}$, and hence $\|F(\frac{1}{\|x\| + \|G(x)\|} x)\| \le 1$.

 $2 \Rightarrow 3.-$ Let F be a weak*-continuous linear operator from X to a reflexive Banach space. By assumption, for every $n \in \mathbb{N}$ there exists a Hilbert space H_n and a weak*-continuous linear operator G_n from X to H_n such that $||nF(x)|| \leq ||G_n(x)|| + ||x||$ for all $x \in X$. Now set $H := (\bigoplus_{n \in \mathbb{N}} H_n)_{\ell_2}$, and consider the bounded linear operator $G : X \to H$ defined by $G(x) := \{\frac{1}{n||G_n||} G_n(x)\}$ and the mapping $N : \varepsilon \to ||G_{n(\varepsilon)}||$ (where $n(\varepsilon)$ denotes the smallest natural number satisfying $n > \frac{1}{\varepsilon}$). Then G is weak*-continuous. Indeed, given $y = \{h_n\} \in H$, we can take for $n \in \mathbb{N}$ α_n in X_* satisfying $(G_n(x)|h_n) = \langle x, \alpha_n \rangle$ for every $x \in X$, so that we have

$$\sum_{n\in\mathbb{N}} \left\|\frac{\alpha_n}{n\|G_n\|}\right\| \le \sum_{n\in\mathbb{N}} \frac{\|h_n\|}{n} \le \sqrt{\sum_{n\in\mathbb{N}} \|h_n\|^2} \sqrt{\sum_{n\in\mathbb{N}} \frac{1}{n^2}} < \infty,$$

and hence $\alpha := \sum_{n \in \mathbb{N}} \frac{\alpha_n}{n ||G_n||}$ is an element of X_* satisfying $(G(x)|h) = \langle x, \alpha \rangle$ for all $x \in X$. Moreover, for all $\varepsilon > 0$ and $x \in X$ we have

$$\|F(x)\| \le \frac{1}{n(\varepsilon)} \|G_{n(\varepsilon)}(x)\| + \frac{1}{n(\varepsilon)} \|x\|$$
$$\le \|G_{n(\varepsilon)}\| \|G(x)\| + \frac{1}{n(\varepsilon)} \|x\| \le N(\varepsilon) \|G(x)\| + \varepsilon \|x\|.$$

 $3 \Rightarrow 1.-$ Let x_{λ} be a net in B_X converging to zero in the topology $S^*(X, X_*)$. Let F be a weak*-continuous linear operator from X to a reflexive Banach space, and $\varepsilon > 0$. By assumption, there exist a weak*-continuous linear operator G from X to a Hilbert space and a mapping $N : (0, \infty) \to (0, \infty)$ satisfying

$$||F(x)|| \le N(\frac{\varepsilon}{2}) ||G(x)|| + \frac{\varepsilon}{2} ||x||$$

for all $x \in X$. Take λ_0 such that $||G(x_\lambda)|| \leq \frac{\varepsilon}{2 N(\frac{\varepsilon}{2})}$ whenever $\lambda \geq \lambda_0$. Then we have $||F(x_\lambda)|| \leq \varepsilon$ for all $\lambda \geq \lambda_0$. By Proposition 4.4, $x_\lambda m(X, X_*)$ converges to zero. \Box We can now state the following characterization of weakly compact operators on JB*-triples.

Theorem 4.6 Let E be a real (respectively, complex) JB^* -triple, X a real (respectively, complex) Banach space, and $T : E \to X$ a bounded linear operator. The following assertions are equivalent:

- 1. T is weakly compact.
- 2. There exist a bounded linear operator G from E to a real (respectively, complex) Hilbert space and a function $N : (0, +\infty) \to (0, +\infty)$ such that

$$||T(x)|| \le N(\varepsilon)||G(x)|| + \varepsilon ||x||$$

for all $x \in E$ and $\varepsilon > 0$.

3. There exist norm one functionals $\varphi_1, \varphi_2 \in E^*$ and a function $N : (0, +\infty) \to (0, +\infty)$ such that

$$||T(x)|| \le N(\varepsilon) ||x||_{\varphi_1,\varphi_2} + \varepsilon ||x||$$

for all $x \in E$ and $\varepsilon > 0$.

Proof. The implication $2 \Rightarrow 3$ follows from Corollary 2.10 (respectively, Corollary 2.2). The implication $3 \Rightarrow 2$ holds because, for norm-one functionals $\varphi_1, \varphi_2 \in E^*$, $\|.\|_{\varphi_1,\varphi_2}$ is a prehilbert seminorm on E, and hence there exists a bounded linear operator G from E to a Hilbert space satisfying $\|G(x)\| = \|x\|_{\varphi_1,\varphi_2}$ for all $x \in E$. On the other hand, the implication $2 \Rightarrow 1$ is known to be true, even if E is an arbitrary Banach space (see for instance [J, Theorem 20.7.3]). To conclude the proof, let us show that 1 implies 2. Assume that Assertion 1 holds. Then, by [DFJP], there exist a reflexive Banach space Y and bounded linear operators $F : E \to Y$ and $S : Y \to X$ such that T = S F and $\|S\| \leq 1$. By Theorem 4.3 and Proposition 4.5, there exist a weak*-continuous linear operator \widetilde{G} from E^{**} to a Hilbert space and a mapping $N : (0, \infty) \to (0, \infty)$ satisfying

$$||F^{**}(\alpha)|| \le N(\varepsilon) ||\tilde{G}(\alpha)|| + \varepsilon ||\alpha||$$

for all $\alpha \in E^{**}$ and $\varepsilon > 0$. By putting $G := \widetilde{G}|_E$, the inequality in Assertion 2 follows. \Box

The complex case of the above theorem is established in [CI, Theorem 11], with $\|.\|_{\varphi_1,\varphi_2}$ in Assertion 3 replaced with $\|.\|_{\varphi}$ for a single norm-one functional $\varphi \in E^*$. As we have noticed in similar occasions, we do not know if such a replacement is correct.

References

- [A] Acosta, M. D.: On bilinear mappings attaining their norms, Studia Math. 131 (2), 155-165 (1998).
- [Al] Alvermann, K.: Real normed Jordan algebras with involution, Arch. Math. 47, 135-150 (1986).
- [BF1] Barton, T. and Friedman Y.: Grothendieck's inequality for JB*-triples and applications, J. London Math. Soc. (2) 36, 513-523 (1987).
- [BF2] Barton, T. and Friedman Y.: Bounded derivations of JB*-triples, Quart. J. Math. Oxford 41, 255-268 (1990).
- [BT] Barton, T. and Timoney, R. M.: Weak*-continuity of Jordan triple products and its applications, Math. Scand. 59, 177-191 (1986).
- [BKU] Braun, R. B., Kaup, W., and Upmeier, H.: A holomorphic characterization of Jordan-C*-algebras, Math. Z. 161, 277-290 (1978).
- [CI] Chu, C-H. and Iochum, B.: Weakly compact operators on Jordan triples, Math. Ann. 281, 451-458 (1988).
- [CIL] Chu, C-H., Iochum, B., and Loupias, G.: Grothendieck's theorem and factorization of operators in Jordan triples, Math. Ann. 284, 41-53 (1989).
- [CM] Chu, C-H., Mellon, P.: The Dunford-Pettis property in JB*-triples, J. London Math. Soc. (2) 55, 515-526 (1997).
- [DFJP] Davis, W. J., Figiel, T., Johnson W. B., and Pelczynski, A.: Factoring weakly compact operators, J. Funct. Anal. 17, 311-327 (1974).

- [Di] Dineen, S.: The second dual of a JB*-triple system, In: Complex analysis, functional analysis and approximation theory (ed. by J. Múgica), 67-69, (North-Holland Math. Stud. 125), North-Holland, Amsterdam-New York, 1986.
- [DS] Dunford, N. and Schwartz, J. T.: Linear operators, Part I, Interscience, New York 1958.
- [E] Edwards, C. M.: On Jordan W*-algebras, Bull. Sci. Math. (2) 104, 393-403 (1980).
- [G] Goodearl, K. R.: Notes on real and complex C*-algebras, Shiva Publ. 1982.
- [Gro] Grothendieck, A.: Résumé de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Mat. Sao Paolo 8, 1-79 (1956).
- [H] Haagerup, U.: The Grothendieck inequality for bilinear forms on C*algebras, Avd. Math. 56, 93-116 (1985).
- [HS] Hanche-Olsen, H. and Størmer, E.: Jordan operator algebras, Monographs and Studies in Mathematics 21, Pitman, London-Boston-Melbourne 1984.
- [HP] Hille, E. and Phillips, R. S.: Functional analysis and semigroups, A.M.S. Colloquium Publications Vol. XXXI, 1957.
- [IKR] Isidro, J. M., Kaup, W., and Rodríguez, A.: On real forms of JB*triples, Manuscripta Math. 86, 311-335 (1995).
- [J] Jarchow, H.: Locally Convex Spaces, Teubner, Stuttgart, 1981.
- [K1] Kaup, W.: Algebraic characterization of symmetric complex Banach manifolds, Math. Ann. 228, 39-64 (1977).
- [K2] Kaup, W.: A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 183, 503-529 (1983).
- [KU] Kaup, W. and Upmeier, H.: Jordan algebras and symmetric Siegel domains in Banach spaces, Math. Z. 157, 179-200, (1977).

- [L] Lindenstrauss, J.: On operators which attain their norm, Israel J. Math. 1, 139-148 (1963).
- [MP] Martínez, J. and Peralta A.M.: Separate weak*-continuity of the triple product in dual real JB*-triples, Math. Z., to appear.
- [P] Peralta, A. M.: Little Grothendieck's theorem for real JB*-triples, Math. Z., to appear.
- [P1] Pisier, G.: Grothendieck's theorem for non commutative C*-algebras with an appendix on Grothendieck's constant, J. Funct. Anal. 29, 397-415 (1978).
- [P2] Pisier, G.: Factorization of linear operators and geometry of Banach spaces, Publ. Amer. Math. Soc. CBMS 60, Am. Math. Soc. 1986.
- [P3] Pisier, G.: Factorization of operators through $L_{p\infty}$ or L_{p1} and noncommutative generalizations, Math. Ann. **276**, 105-136 (1986).
- [PZ] Poliquin, R. A. and Zizler, V. E.: Optimization of convex functions on w*-compact sets, Manuscripta Math. 68, 249-270 (1990).
- [R1] Rodríguez A.: On the strong* topology of a JBW*-triple, Quart. J. Math. Oxford (2) 42, 99-103 (1989).
- [R2] Rodríguez A.: Jordan structures in Analysis. In Jordan algebras: Proc. Oberwolfach Conf., August 9-15, 1992 (ed. by W. Kaup, K. McCrimmon and H. Petersson), 97-186. Walter de Gruyter, Berlin, 1994.
- [S] Sakai, S.: C*-algebras and W*-algebras, Springer-Verlag, Berlin 1971.
- [U] Upmeier, H.: Symmetric Banach Manifolds and Jordan C*-algebras, Mathematics Studies 104, (Notas de Matemática, ed. by L. Nachbin) North Holland 1985.
- [W] Wright, J. D. M.: Jordan C*-algebras, Michigan Math. J. 24, 291-302 (1977).
- [Y] Youngson, M. A.: Non unital Banach Jordan algebras and C*-triple systems, Proc. Edinburg Math. Soc. 24, 19-31 (1981).

[Z] Zizler, V.: On some extremal problems in Banach spaces, Math. Scand. 32, 214-224 (1973).

A. M. Peralta and A. Rodríguez Palacios Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada 18071 Granada, Spain aperalta@goliat.ugr.es and apalacio@goliat.ugr.es