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Abstract

We prove that, if M > 4(1 4+ 2v/3) and ¢ > 0, if V and W are
complex JBW*-triples (with preduals V, and W,, respectively), and if
U is a separately weak*-continuous bilinear form on V x W, then there
exist norm-one functionals @1, p2 € V, and ¢y, 92 € W, satisfying

1 1

Uz, )l < MU ()5, +* M203,) 2 (Iyll, + e lyll3,)
for all (z,y) € V xW. Here, for a norm-one functional ¢ on a complex
JB*-triple V, ||.||, stands for the prehilertian seminorm on V associ-
ated to ¢ in [BF1]. We arrive in this “Grothendieck’s inequality”
through results of C-H. Chu, B. Iochum, and G. Loupias [CIL], and
a corrected version of the “Little Grothendieck’s inequality” for com-
plex JB*-triples due to T. Barton and Y. Friedman [BF1]. We also
obtain extensions of these results to the setting of real JB*-triples.

2000 Mathematics Subject Classification: 17C65, 46K70, 46105, 46110,
and 46L70.

Introduction

In this paper we pay tribute to the important works of T. Barton and
Y. Friedman [BF1]| and C-H. Chu, B. Iochum, and G. Loupias [CIL] on the
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generalization of “Grothendieck’s inequalities” to complex JB*-triples. Of
course, the Barton-Friedman-Chu-Tochum-Loupias techniques are strongly
related to those of A. Grothendieck [Gro], G. Pisier (see [P1], [P2], and [P3]),
and U. Haagerup [H], leading to the classical “Grothendieck’s inequalities”
for C*-algebras. One of the most important facts contained in the Barton-
Friedman paper is the construction of “natural” prehilbertian seminorms
||.||,, associated to norm-one continuous linear functionals ¢ on complex
JB*-triples, in order to play, in Grothendieck’s inequalities, the same role as
that of the prehilbertian seminorms derived from states in the case of C*-
algebras. This is very relevant because JB*-triples need not have a natural
order structure.

A part of Section 1 of the present paper is devoted to review the main
results in [BF1], and the gaps in their proofs (some of which are also sub-
sumed in [CIL]). We note that those gaps consist in assuming that separately
weak*-continuous bilinear forms on dual Banach spaces, as well as weak*-
continuous linear operators between dual Banach spaces, attain their norms.
Section 1 also contains quick partial solutions of the gaps just mentioned.
These solutions are obtained by applying theorems of J. Lindenstrauss [L]
and V. Zizler [Z] on the abundance of weak*-continuous linear operators
attaining their norms (see Theorems 1.4 and 1.6, respectively).

We begin Section 2 by proving a deeper correct version of the Barton-
Friedman “Little Grothendieck’s Theorem” for complex JB*-triples [BF1,
Theorem 1.3] (see Theorem 2.1). Roughly speaking, our result assures that
the assertion in [BF1, Theorem 1.3] is true whenever we replace the prehilber-

P27
where @1, o are suitable norm-one continuous linear functionals. It is worth
mentioning that in fact our Theorem 2.1 deals with complex JBW*-triples
and weak*-continuous operators, and that, in such a case, the functionals
©1, P2 above can be chosen weak*-continuous. Among the consequences of
Theorem 2.1 we emphasize appropriate “Little Grothendieck’s inequalities”
for JBW-algebras and von Neumann algebras (see Corollary 2.5 and Remark
2.7, respectively). Corollary 2.5 allows us to adapt an argument in [P] in
order to extend Theorem 2.1 to the real setting (Theorem 2.9).

Section 3 contains the main results of the paper, namely the “Big Grothen-
dieck’s inequalities” for complex and real JBW*-triples (Theorems 3.1 and
3.4, respectively). Indeed, given M > 4(1 + 2v/3) (respectively, M >
4(1 +2v3) (1 +3v2)?), e > 0, V,W complex (respectively, real) JBW*-

tian seminorm ||.|4 arising in that assertion with [|.[|,, o, := {/[l.[Z, + I|.||2
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triples, and a separately weak*-continuous bilinear form U on V' x W, there
exist norm-one functionals ¢, o € V, and vy, 1y € W, satisfying

1
2

1
Uz, )l < MU (215, + 2 l=ll5,)? (lyll, +2° Tyll,)

for all (z,y) € V x W.

The concluding section of the paper (Section 4) deals with some appli-
cations of the results previously obtained. We give a complete solution to a
gap in the proof of the results of [R1] on the strong* topology of complex
JBW*-triples, and extend those results to the real setting. We also extend
to the real setting the fact proved in [R2] that the strong® topology of a
complex JBW*-triple W and the Mackey topology m(W, W) coincide on
bounded subsets of W. From this last result we derive a Jarchow-type char-
acterization of weakly compact operators from (real or complex) JB*-triples
to arbitrary Banach spaces.

1 Discussing previous results

We recall that a complex JB*-triple is a complex Banach space £ with a
continuous triple product {.,.,.} : &€ x & x &€ — & which is bilinear and
symmetric in the outer variables and conjugate linear in the middle variable,
and satisfies:

1. (Jordan Identity) L(a,b){z,y, 2} = {L(a,b)z,y, 2z} — {z, L(b,a)y, 2z} +
{z,y, L(a,b)z} for all a,b,c,x,y,zin £, where L(a,b)z := {a,b,z};

2. The map L(a, a) from &£ to £ is an hermitian operator with nonnegative
spectrum for all a in &;

3. ||{a,a,a}|| = ||a||® for all a in &.

Complex JB*-triples have been introduced by W. Kaup in order to pro-
vide an algebraic setting for the study of bounded symmetric domains in
complex Banach spaces (see [K1], [K2] and [U]).

If £ is a complex JB*-triple and e € £ is a tripotent ({e,e,e} = e) it
is well known that there exists a decomposition of £ into the eigenspaces of
L(e, e), the Peirce decomposition,

£ = 50(6) D 81(6) @D 52(6),
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where & := {z € £ : L(e,e)x = £x}. The natural projection Py(e) : £ —
Ek(e) is called the Peirce k-projection. A tripotent e € £ is called complete
if & (e) = 0. By [KU, Proposition 3.5] we know that the complete tripotents
in £ are exactly the extreme points of its closed unit ball.

By a complex JBW*-triple we mean a complex JB*-triple which is a dual
Banach space. We recall that the triple product of every complex JBW*-
triple is separately weak*-continuous [BT], and that the bidual £** of a com-
plex JB*-triple £ is a JBW*-triple whose triple product extends the one of
& [Di).

Given a complex JBW*-triple W and a norm-one element ¢ in the predual
W, of W, we can construct a prehilbert seminorn ||.||,, as follows (see [BF1,
Proposition 1.2]). By the Hahn-Banach theorem there exists z € W such that
©(z) = ||z|| = 1. Then (z,y) — ¢ {z,y,z} becomes a positive sesquilinear
form on W which does not depend on the point of support z for ¢. The
prehilbert seminorm ||. |, is then defined by ||z(|2 := ¢ {z, z, 2} for allz € W.
If £ is a complex JB*-triple and ¢ is a norm-one element in £*, then ||.||,
acts on £, hence in particular it acts on £.

In [BF1, Theorem 1.4], J. T. Barton and Y. Friedman claim that for
every pair of complex JB*-triples £, F, and every bounded bilinear form V'
on £ x F, there exist norm-one functionals ¢ € £* and ¢ € F* such that the
inequality

Ve, < B+2V3) IV llzlly Iyl (1.1)

holds for every (z,y) € € x F. This result is called “Grothendieck’s inequal-
ity for JB*-triples”. However, the beginning of the Barton-Friedman proof
assumes that the two following assertions are true.

1. For £, F and V as above, there exists a separately weak*-continuous
extension of V' to £** x F**.

2. Again for £,F and V as above, every separately weak*-continuous
extension of V' to £ x F** attains its norm (at a couple of complete
tripotents).

We have been able to verify Assertion 1, but only by applying the fact,
later proved by C-H. Chu, B. Tochum and G. Loupias [CIL, Lemma 5|, that
every bounded linear operator from a complex JB*-triple to the dual of an-
other complex JB*-triple factors through a complex Hilbert space. Actually,
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this fact is also claimed in the Barton-Friedman paper (see [BF1, Corollary
3.2]), but their proof relies on their alleged [BF1, Theorem 1.4].

Lemma 1.1 Let £ and F be complex JB*-triples. Then every bounded bilin-
ear form V' on EXF has a separately weak*-continuous extension to £** x F**.

Proof. Let V be a bounded bilinear form on & x F. Let F' denote the
unique bounded linear operator from £ to F* which satisfies

V(z,y) =< F(z),y >

for every (z,y) € € x F. By [CIL, Lemma 5], F factors through a Hilbert
space, and hence is weakly compact. NBy [HP, Lemma 2.13.1], we have
F*(&**) C F*. Then the bilinear form V' on £ x F** given by

V(a, B) =< F*(a), 8 >

extends V and is weak*-continuous in the second variable. But V is also
weak*-continuous in the first variable because, for (o, 3) € £* x F**, the
equality

< F*(a),f >=< a, F*(B) >

holds. O

Unfortunately, as the next example shows, Assertion 2 above is not true.
Example 1.2 Toke £ and F equal to the complex {5 space, and consider the
bounded bilinear form on € x F defined by V(z,y) := (S(x)|o(y)) where S

18 the bounded linear operator on ly whose associated matriz is

1 0 0
o 2 .
3
=
0 0
n+1

and o is the conjugation on fy fixing the elements of the canonical basis.
Then V' does not attain its norm.
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It is worth mentioning that, although the bilinear form V' above does not
attain its norm, it satisfies inequality 1.1 for every z,y € ¢, and every norm-
one elements ¢, € (5. Therefore it does not become a counterexample to
the Barton-Friedman claim. In fact we do not know if Theorem 1.4 of [BF1]
is true.

Now that we know that Assertion 2 is not true, we prove that it is “al-
most” true.

Lemma 1.3 Let £, F be complex JB*-triples. Then the set of bounded bilin-
ear forms on € X F whose separately weak*-continuous extensions to E¥* x F**
attain their norms is norm-dense in the space L(3(€ x F)) of all bounded bi-
linear forms on € x F.

Proof. Let V be in £(2(€ x F)). Denote by V the (unique) separately
weak*-continuous extension of V' to £** x F**. By the proof of Lemma 1.1, we
can assure the existence of a bounded linear operator Fy : £ — F* satisfying
FyH (&) C F* and N

Ve, B) =< Fy*(a), 6 >

for every («, ) € £ x F**. It follows that V attains its norm whenever
Fy* does. Since the mapping V' + Fy, from L(*(€ x F)) into the Banach
space of all bounded linear operators from £ to F*, is a surjective isometry,
the result follows from [L, Theorem 1]. O

An alternative proof of the above Lemma can be given taking as a key
tool [A, Theorem 1].

Now note that, if X and Y are dual Banach spaces, and if U is a separately
weak*-continuous bilinear form on X x Y which attains its norm, then U
actually attains its norm at a couple of extreme points of the closed unit
balls of X and Y (hence at a couple of complete tripotents in the case that
X and Y are complex JB*-triples). Since the Barton-Friedman proof of their
claim actually shows that the inequality (1.1) holds (for suitable norm-one
functionals ¢ € £* and ¢ € F*) whenever the separately weak*-continuous
extension of V' given by Lemma 1.1 attains its norm at a couple of complete
tripotents, the next theorem follows from Lemma 1.3.

Theorem 1.4 Let £, F be complex JB*-triples. Then the set of all bounded
bilinear forms V on & X F such that there exist norm-one functionals p € £*
and v € F* satisfying

Viz, )l < B+2V3) VI llzlly llylls
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for every (z,y) € € x F, is norm dense in L(*(E x F)).

Another alleged proof of the Barton-Friedman claim [BF1, Theorem 1.4]
(with constant 3+2v/3 replaced with 4(1+2\/§)) appears in the Chu-Iochum-
Loupias paper already quoted (see [CIL, Theorem 6]). Such a proof relies
on the Barton-Friedman version of the so called “Little Grothendieck’s The-
orem” for complex JB*-triples [BF1, Theorem 1.3]. However, the Barton-
Friedman argument for this “Little Grothendieck’s Theorem” also has a gap
(see [P]).

Several authors (the second author of the present paper among others)
subsumed the gap in the proof of Theorem 1.3 of [BF1] just commented,
and formulated daring claims like the following (see [R1, Proposition 1] and
the proof of Lemma 4 of [CM]). For every complex JBW*-triple W, every
complex Hilbert space H, and every weak*-continuous linear operator T :
W — H, there exists a norm-one functional ¢ € W, such that the inequality

IT() < V2T |l]l, (1.2)

holds for all x € W. Asin the case of the Barton-Friedman big Grothendieck’s
inequality, we do not know if the above claim is true. In any case, the next
lemma is implicitly shown in the proof of Theorem 1.3 of [BF1].

Lemma 1.5 Let W be a complex JBW*-triple, H a complex Hilbert space,
and T a weak*-continuous linear operator from W to H which attains its
norm. Then T satisfies inequality (1.2) for a suitable norm-one functional
© EW,.

We note that, for W and H as in the above lemma, weak*-continuous lin-
ear operators from W to H need not attain their norms (see the introduction
of [P]). Now, from Lemma 1.5 and [Z] we obtain the following result.

Theorem 1.6 Let W be a complex JBW*-triple and H a complex Hilbert
space. Then the set of weak*-continuous linear operators T from W to H
such that there exists a norm-one functional ¢ € W, satisfying

IT@) < V2T |,

for all x € W, is norm dense in the space of all weak*-continuous linear
operators from W to H.
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2 Little Grothendieck‘s Theorem for JBW *-
triples

In this section we prove appropriate versions of “Little Grothendieck’s in-
equality” for real and complex JBW*-triples. We begin by considering the
complex case, where the key tools are the Barton-Friedman result collected in
Lemma 1.5, and a fine principle on approximation of operators by operators
attaining their norms, due to R. A. Poliquin and V. E. Zizler [PZ].

Theorem 2.1 Let K > /2 and ¢ > 0. Then, for every complex JBW*-
triple W, every complex Hilbert space H, and every weak*-continuous linear
operator T : W — H, there exist norm-one functionals @1, 02 € W, such
that the inequality

IT@) < K ANTH (2], +* 1=13,)?
holds for all x € W.

Proof. Without loss of generality we can suppose ||T|| = 1. Take § > 0
such that § < &2 and /2((1 + §)2 +0) < K. By [PZ, Corollary 2] there is a
rank one weak*-continuous linear operator 77 : W — H such that [|T}]| < §
and T — T attains its norm. Since T} is of rank one and weak*-continuous,
it also attains its norm. By Lemma 1.5, there exist norm-one functionals
©1, p2 € W, such that

ITi@)| < V2Tl ),

(T —T)(2)|| < V2 ||T = Ty [|z]|,
for all x € W. Therefore for x € WW we have

IT@) < 1T = T0)@)]] + 1T ()]
<VR T =T |lallys + V2 T3] [2llo
< V2 (1+0) ||zllp, + V25 V3 [|2]],,
< V(0250 ()2, +6 [l2]2,)?

1
< K (=I5, +=* l=115,)* -
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O

Given a complex JBW*-triple W and norm-one elements ¢, o, € W,

we denote by ||.[l,,,p, the prehilbert seminorm on W given by |[|z||2, ,, =

2|2, + [|z]|?,. The next result follows straightforwardly from Theorem 2.1.

Corollary 2.2 Let W be a complex JBW*-triple and T a weak*-continuous
linear operator from W to a complex Hilbert space. Then there exist norm-
one functionals o1, o € W, such that, for every x € W, we have

1T (@) < 20T [lIzllo1,0-

We recall that a JB*-algebra is a complete normed Jordan complex alge-
bra (say A) endowed with a conjugate-linear algebra involution * satisfying
|U.(z*)|| = ||z||® for every x € A. Here, for every Jordan algebra A, and ev-
ery v € A, U, denotes the operator on A defined by U, (y) := 2zo(zoy)—x20y,
for all y € A. We note that every JB*-algebra can be regarded as a complex
JB*-triple under the triple product given by

{z,y,2} == (xoy)oz+ (z0y")ox —(roz)oy"

(see [BKU] and [Y]). By a JBW*-algebra we mean a JB*-algebra which is
a dual Banach space. Every JBW*-algebra A has a unit 1 [Y], so that the
binary product of A can be rediscovered from the triple product by means
of the equality z oy = {z,1,y}.

Theorem 2.3 Let M > 2. Then, for every JBW*-algebra A, every complex
Hilbert space H, and every weak*-continuous linear operator T : A — H,
there exists a norm-one positive functional £ € A, such that the inequality

IT(@)|| < M ||T|| (¢(zoa*))?
holds for all x € A.

Proof. Taking K :=+/M and ¢ := ,/% in Theorem 2.1, we find norm-

one functionals @1, ps € A, such that
1
IT@) < KNI (l=llg, +2° 12113,)?

for all z € A. Let i = 1,2. We choose ¢; € A with ¢;(e;) = |le;]| = 1,
and denote by & the mapping x — p;(z o e;) from A to C. Clearly &; is
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a norm-one weak*-continuous linear functional on A. Moreover, from the
identity

{z,z,e;} + {z", 2", ¢;} =2¢;0 (x0z")
we obtain that & is positive and that the equality ||z(|2, +||z*|2, = 2&(zox*)
holds. Therefore we have ||z[|2 < 2&(x o 2*) and hence

1

IT(@)]| < V2K |IT|| (&a(zoa®) +&” &(woa))?.

Finally, putting & := (& + € &), € becomes a norm-one positive func-
tional in A, and for € A we have

IT@)] < V2 T+ 2K || (E@oa’))? = M |T| (§(zoa))

M

O

We recall that the bidual of every JB*-algebra A is a JBW*-algebra
containing A as a JB*-subalgebra.

Corollary 2.4 Let A be a JB*-algebra and T a bounded linear operator from
A to a complex Hilbert space. Then there exists a norm-one positive func-
tional £ € A* satisfying

N

IT(x)]] < 2T (£(x 0 z7))
for all x € A.

Proof. By Theorem 2.3, for n € N there is a norm-one positive functional
&, € A* satisfying
1 ey 1
1T ()] < (2+ ﬁ)IITII (€u(z0x™))?

for all x € A. Take in A* a weak™ cluster point 7 of the sequence &,. Then
n is a positive functional with ||n|| < 1, and the inequality

(S

1T ()| < 20T (n(z 0 27))°

holds for all x € A. If n = 0, then T = 0 and nothing has to be proved.
Otherwise take & := ﬁn. O

For background about JB- and JBW-algebras the reader is referred to
[HS]. We recall that JB-algebras (respectively, JBW-algebras) are nothing
but the self-adjoint parts of JB*-algebras (respectively, JBW*-algebras) [W]
(respectively, [E]).
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Corollary 2.5 Let K > 2v/2. Then, for every JBW-algebra A, every real
Hilbert space H, and every weak*-continuous linear operator T : A — H,
there exists a norm-one positive functional £ € A, such that

IT@)| < K |T]| (£(22)?
for all x € A.

Proof. Let A denote the JBW*- algebra whose self-adjoint part is equal to
A, and H be the Hilbert space complexification of H. Consider the complex-
linear operator T : A — H, which extends T'. Clearly we have ||T|| <\2|T|.

By Theorem 2.3 there exists a norm-one positive functional £ € A such that

IT @) = IT(@)ll < == f 17N (6a*)F < K |IT) (€(2)*

for all z € A. Since £ is positive, £| 4 is in fact a norm-one positive functional
in A,. O

The next result follows from the above corollary in the same way that
Corollary 2.4 was derived from Theorem 2.3.

Corollary 2.6 [P, Theorem 3.2/

Let A be a JB-algebra, H a real Hilbert space, and T : A — H a bounded
linear operator. Then there is a norm-one positive linear functional ¢ € A*
such that

DN =

17| < 2v2)T) ((22))
for all x € A.

Remark 2.7 1.— Since every C*-algebra becomes a JB*-algebra under the
Jordan product x oy = %(xy + yx), it follows from Theorem 2.3 that, given
M > 2, a von Neumann algebra A, and a weak*-continuous linear operator T
from A to a complex Hilbert space, there exists a norm-one positive functional
v € A, satisfying

2

T < M 7] (50 + o)

for allx € A. A lightly better result can be derived from [H, Proposition 2.5].
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2.— As is asserted in [CIL], Corollary 2.4 can be proved by translating
verbatim Pisier’s arguments for the case of C*-dlgebras [P2, Theorem 9.4].
We note that actually Corollary 2.4 contains Pisier’s result. Moreover, it is
worth mentioning that our proof of Corollary 2.4 avoids any use of ultraprod-
ucts techniques.

Following [IKR], we define real JB*-triples as norm-closed real subtriples
of complex JB*-triples. In [IKR] it is shown that every real JB*-triple F
can be regarded as a real form of a complex JB*-triple. Indeed, given a
real JB*-triple E' there exists a unique complex JB*-triple structure on the
complexification F = F @& i E, and a unique conjugation (i.e., conjugate-
linear isometry of period 2) 7 on E such that E = E7 := {z € E: 7(x) = z}.
The class of real JB*-triples includes all JB-algebras [HS], all real C*-algebras
[G], and all J*B-algebras [Al].

By a real JBW*-triple we mean a real JB*-triple whose underlying Banach
space is a dual Banach space. As in the complex case, the triple product of
every real JBW*-triple is separately weak*-continuous [MP], and the bidual
E** of a real JB*-triple £ is a real JBW*-triple whose triple product extends
the one of £ [IKR]. Noticing that every real JBW*-triple is a real form of
a complex JBW*-triple [IKR], it follows easily that, if W is a real JBW*-
triple and if ¢ is a norm-one element in W,, then, for = € W such that
o(2) = ||z|| = 1, the mapping = — (¢ {x,z, z})2 is a prehilbert seminorm on
W (not depending on z). Such a seminorm will be denoted by ||.||,.

Now we proceed to deal with “Little Grothendieck’s inequality” for real
JBW*-triples. We begin by showing the appropriate version of Lemma 1.5
for real JBW*-triples. Such a version is obtained by adapting the proof of a
recent result of the first author for real JB*-triples (see [P]) to the setting of
real JBW*-triples.

Lemma 2.8 Let M > 1+ 3v/2. Then, for every real JBW*-triple W, every
real Hilbert space H, and every weak*-continuous linear operator T : W — H
which attains its norm, there exists a norm one functional o € W, such that

1T ()| < M (|T|| |l

for all x € W.
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Proof. We follow with minors changes the line of proof of [P, Theorem
4.3]. Without loss of generality we can suppose ||T'|| = 1. Write

2
1+3v2
2\@ B

and p = s By [IKR, Lemma 3.3|, there exists a complete tripotent
e € W with 1 = ||T(e)||]. Then denoting by £ the linear functional on
W given by &(x) := (T'(z)|T(e)) for every x € W, £ belongs to W, and
satisfies ||| = &(e) = 1. Moreover, when in the proof of [P, Theorem 4.3]
Corollary 2.5 replaces [P, Theorem 3.2], we obtain the existence of a norm-
one functional ¢» € W, with (e) = 1 such that

K = [2V2( ~(1+V2)]: > 22

IT@)] < Kllzlly + (1+V2) [|zlle

for all z € W. Setting ¢ := #ﬂ({ + p 1), ¢ is a norm-one functional in W,
with p(e) = 1, and we have

K2
HOIE \/ (V2P + ==l + o el

= (0 ver+ Syae ) sl =1 Jall,

forallz e W. O

When in the proof of Theorem 2.1 Lemma 2.8 replaces Lemma 1.5, we
arrive in the following result.

Theorem 2.9 Let K > 1+3v/2 and e > 0. Then, for every real JBW*-triple
W, every real Hilbert space H, and every weak*-continuous linear operator
T : W — H, there exist norm-one functionals o1, 0o € W, such that the
inequality
1
1T ()| < K NTI (M]3, + 2 [l=]15,)

holds for all x € W.
For norm-one elements @1, 5 in the predual of a given real JBW*-triple

W, we define the prehilbert seminorm |.||,, ,, on W verbatim as in the
complex case.

P2
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Corollary 2.10 Let W be a real JBW*-triple and T a weak*-continuous
linear operator from W to a real Hilbert space. Then there exist norm-one
functionals o1, py € W, such that, for every x € W, we have

1T (@) < 6T Izllor,00-

3 Grothendieck’s Theorem for JBW*-triples

In this section we prove “Grothendieck’s inequality” for separately weak*-
continuous bilinear forms defined on the cartesian product of two JBW*-
triples.

Theorem 3.1 Let M > 4(1 4+ 2v/3) and € > 0. For every couple (V, W) of
complex JBW*-triples and every separately weak*-continuous bilinear form
V oon V X W, there exist norm-one functionals ©1, ps € Vs, and Y1,y € W,
satisfying

M

V()| < M VI (=[5, +€* 12015,) > (lyli5, +€* lyll3,)
for all (z,y) € YV x W.

Proof. We begin by noticing that a bilinear form U on V x W is separately
weak*-continuous if and only if there exists a weak*-to-weak-continuous lin-
ear operator Fyy : V — W, such that the equality

U(l‘ay) =< FU(x)ay >

holds for every (z,y) € V x W.

Put T := Fy : V — W, in the sense of the above paragraph. By [CIL,
Lemma 5] there exist a Hilbert space  and bounded linear operators S :
V= H, R:H — W, satisfying T = R S and ||R]| ||S]| < 2(1 +2V3) ||IT||.
Notice that in fact we can enjoy such a factorization in such a way that R is
injective. Indeed, take H equals to the orthogonal complement of Ker(R)

inH, R = R|,, and S = 7y S, where 7, is the orthogonal projection
from H onto H , to have T = R S with R injective and [|R'[| [|S]] <
2(1+2v3) ||T].

Next we show that S is weak*-continuous. By [DS, Corollary V.5.5] it is
enough to prove that S is weak*-continuous on bounded subsets of V. Let x)
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be a bounded net in ¥V weak*-convergent to zero. Take a weak cluster point
h of S(z,) in H. Then R(h) is a weak cluster point of T'(z)) = R S(x))
in W,. Moreover, since T' is weak*-to-weak-continuous, we have T'(z)) — 0
weakly. It follows R(h) = 0 and hence h = 0 by the injectivity of R. Now,
zero is the unique weak cluster point in H of the bounded net S(zx,), and
therefore we have S(x,) — 0 weakly.

Now that we know that the operator S is weak*-continuous, we ap-
. _ M .
ply Theorem 2.1 with K = Arava) > V2 to find norm-one functionals
©1, P2 € Vi, and Yy, 10y € W, satisfying

1
2

IS@)I < KIS (I2ll5, +&* llzl5,)”  and

1
2

IR ()l < KRN (lylls, +* lyll,)
for all z € V and y € W. Therefore
Viz,y)|=[<T(z),y >[=]<5(),R(y) > |
M 1
< —— — ||R]|| ||S z|2, 4+ ||z]]2 )2 2+ e’ 2 )
S X125 1RSI (][5, =05.) " (lylly, lyll7,)
1 1
<M VI (llg, + € 12012,) (lyllg, +€* llg,)”
for all (z,y) € V xW. O

In the same way that Theorem 2.3 was derived from Theorem 2.1, we
can obtain from Theorem 3.1 that, given M > 8 (1 + 2/3), JBW*-algebras
A, B, and a separately weak*-continuous bilinear form V on A x B, there
exist norm-one positive functionals ¢ € A, and ¢ € B, satisfying

V(@ 9)| < M|V (p(zoa") (blyoy"))?

for all (z,y) € A x B. As a relevant particular case we obtain the following
result.

M

Corollary 3.2 Let M > 8(1 + 2v/3). For every couple (A, B) of von Neu-
mann algebras and every separately weak*-continuous bilinear form V on
A x B, there exist norm-one positive functionals o € A, and v € B, satisfy-
mng

M

Vi) < MIV] (oG (a2 +2*0) (5" +5'9))
for all (z,y) € A x B.
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A refined version of the above corollary can be found in [H, Proposition
2.3].

Now we proceed to deal with Grothendieck’s Theorem for real JBW*-
triples. The following lemma generalizes [CIL, Lemma 5] to the real case.

Lemma 3.3 Let E and F be real JB*-triples and T : E — F* a bounded
linear operator. Then T has a factorization T = R S through o real Hilbert
space with ||R|| ||S|| < 4(1 4 2v/3) ||T||

Proof.

Let us consider the ;]B*—/gornpl/gxiﬁcations E and F of E and F', respec-
tively, and denote by 7" : E — F™ the complex linear extension of 7', so
that we easily check that ||T|| < 2||T||. As we have mentioned before,

T _has a factorization T = RS through a complex Hilbert space H, with
17 1151 < 2(1+2v/3) |ITl-

Since T is the complex linear extension of T', the inclusion T(E) C F*
holds. Put H := S(E), the closure of S(E) in H. Then H is a real Hilbert
space and we have R(H) C R(S(E)) = T(E) C F*.

Finally we define the bounded linear operators S := §|E : F'— H and
R:=R|, : H— F*. It is easy to see that "= R S and

IR|| |S|| < 1R IS] < 2(1 +2v/3) || T|| < 4(1 +2v/3) ||T||.

O

When in the proof of Theorem 3.1 Lemma 3.3 and Theorem 2.9 replace
[CIL, Lemma 5] and Theorem 2.1, respectively, we obtain the following the-
orem.

Theorem 3.4 Let M > 4(1 +2v/3) (1 + 3v2)? and ¢ > 0. For every
couple (VW) of real JBW*-triples and every separately weak*-continuous
bilinear form U on V x W, there exist norm-one functionals @1, s € Vi, and

1, e € W, satisfying

1 1
Uz )| < MU (l=llz, +* 1205,)* (i, +2* ylly,)?

for all (z,y) € V x W.
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Thanks to Lemma 3.3, Lemma 1.1 remains true when real JB*-triples
replace complex ones. Then Theorems 3.4 and 3.1 give rise to the real and
complex cases, respectively, of the result which follows.

Corollary 3.5 Let M > 4(1 + 2v/3) (1 + 3v/2)? (respectively, M > 4(1 +
2v/3)) and e > 0. Then for every couple (E, F) of real (respectively, complex)
JB*-triples and every bounded bilinear form U on E x F there exist norm-one
functionals o1, o € E* and 1,19 € F* satisfying

U, )l < MU (205, +e l215,) > (lyll, +¢* yll,)?
for all (x,y) € E x F.

Remark 3.6 In the complex case of the above corollary, the interval of
variation of the constant M can be enlarged by arguing as follows. Let
M >3+2V3, >0, E and F be complex JB*-triples, and U a norm-one
bounded bilinear form on £ x F. Consider the separately weak*-continuous
bilinear form U on £** x F** which extends U, and take a weak*-to-weak
continuous linear operator T : E** — F* satisfying

Ula, 8) =<T(a), 3 >

for all (o, B) € £ x F**. Choose § > 0 such that § < &% and (3 +2v/3)(1 +
8) < M. By [PZ, Corollary 2] there is a rank one weak*-to-weak continuous
linear operator Ty : £ — F* such that ||T1|| < 0 and Ty := T — T} attains
its norm. Since Ty is of rank one and weak*-continuous, it also attains its
norm. For i = 1,2, consider the separately weak*-continuous bilinear form

ﬁi on £ x F** defined by

Ui(aaﬁ) =< E(Q),ﬁ >,

and put U; = ﬁi|g><].‘, so that U; s a bounded bilinear form on € X F whose
separately weak*-continuous extension to E* x F** attains its norm. By the
proof of [BF1, Theorem 1.4], there exist norm-one functionals @1,y € E*
and 1,y € F* such that

Uiz, 9)] < (3+2V3) U] [l

ei llY 1y

for all (x,y) € E X F andi=1,2.
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Therefore
Uz, y)| < [Uz(z, y)| + |[Ur(z, y)]
< B+ 2V3) (|l 1zl pallylly + 1T 2]l l19]l)
< (B+2V3)((1+9) llellgslyllvs + 6 1]l llylly,)

< (3+2V3)(1+3) (lellgallolles +6 7l llolen)
< (3+2V3)(1+3) \flall2, + olle 2, /lull3, + 313,

<M (=%, +* ll215,)” (yll, +2* lyll,)’
for all (x,y) € E x F.

M

We do not know if the value ¢ = 0 is allowed in Theorems 3.1 and 3.4.
In any case, as the next result shows, the value ¢ = 0 is allowed for a “big
quantity” of separately weak™-continuous bilinear forms.

Theorem 3.7 Let M > 4(1 4+ 2v/3) (1 + 3v/2)? (respectively, M > 4(1 +
2v/3)) and V, W be real (respectively, complex) JBW*-triples. Then the set
of all separately weak*-continuous bilinear forms U on VX W such that there
exist norm-one functionals ¢ € V, and v € W, satisfying

Uz, y)| < MU lzlly lylly

for all (z,y) € V. x W, is norm dense in the set of all separately weak*-
continuous bilinear forms on V- x W.

Proof. Let U a non zero separately weak*-continuous bilinear form on
V x W. By the proof of Theorem 3.4 (respectively, Theorem 3.1) there exists
a real (respectively, complex) Hilbert space H such that for all (z,y) € VxW
we have

Ulz,y) :=< F(z),G(y) >,

where F': V — H and G : W — H* are weak™-continuous linear operators
satisfying || F|| |G| < L ||U|| with L = 4(1 + 2/3) (respectively, L = 2(1 +
2v/3)).

By [Z], there are sequences {F,, : V' — H} and {G,, : W — H*} of weak*-
continuous linear operators, converging in norm to F' and G, respectively, and
such that F,, and G,, attain their norms for every n. Then, putting

Un(z,y) =< F,(2),G,(y) > ((n,z,y) e NxV x W),



Grothendieck’s Theorem for JBW*-triples

{U,} becomes a sequence of separately weak*-continuous bilinear forms on
V' x W, converging in norm to U. Take \/% > K > 1+ 3v/2 (respectively,

\/% > K > /2). Applying Lemma 2.8 (respectively, Lemma 1.5), for n € N
we find norm-one functionals ¢,, € V, and ¢, € W, satisfying

[Ea ()] < K Fll [llp, and

G W)l < K (|Gl [1ylles,

for all (z,y) € V x W.

Set u
M-

1+L 2
and take m € N such that the inequalities

| Il IGull = [IFI NG T <6,

| 1T ]| = 1T | < 6, and

U]
> —
AR

> 0,

hold for every n > m.
Now for n > m and (z,y) € V x W we have

Un(,9)| < K2 | Eo|l 1Gall |2l 191,

< K2 (IFI1GI1+0) Nl 91l
< K2 (L 011+ 0) el gl
< K2 (LUl +6 (14 1) el o,
= K2 (2 Ul + (g — DI il o,
< MGl Il ],
O

As we noticed before Corollary 3.5, Lemma 1.1 remains true in the real
setting. Then, given real or complex JB*-triples E, F, the mapping sending
each element U € L(*(E x F)) to its unique separately weak*-continuous
bilinear extension U to E** x F** is an isometry from £(2(E x F)) onto the
Banach space of all separately weak*-continuous bilinear forms on E** x F**.

Therefore we obtain the following corollary.
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Corollary 3.8 Let M > 4(1 + 2v/3) (1 4 3v/2)? (respectively, M > 4(1 +
2v/3)) and E,F be real (respectively, complex) JB*-triples. Then the set
of all bounded bilinear forms U on E X F such that there exist norm-one
functionals p € E* and i) € F* satisfying

Uz, y)| < MU zlly Iyl
for all (z,y) € E X F, is norm dense in L(3(E X F)).

We note that Theorem 1.4 is finer than the complex case of the above
corollary. However, since Theorem 1.4 depends on the proof of [BF1, Theo-
rem 1.4], it is much more difficult.

Remark 3.9 We do not know if the value ¢ = 0 is allowed in Theorems 2.1
and 2.9 (respectively, in Theorems 3.1 and 3.4) for some value of the constant
K (respectively, M ). Concerning this question, it is worth mentioning that
the following three assertions are equivalent:

1. There is a universal constant G such that, for every real (respectively,
complex) JBW*-triple W and every couple (1, p2) of norm-one func-
tionals in W, x W, we can find a norm-one functional p € W, satis-
fying

[lly; < Glilly

for every x € W and 1 =1, 2.

2. There is a universal constant G such that for every couple of real (re-
spectively, complex) JBW*-triples (V,W) and every separately weak*-
continuous bilinear form U on V x W, there are norm-one functionals
p € V., and ¢ € W, satisfying

Uz, )| < G Ul [lzflollylly
for all (z,y) € V x W.

3. There is a universal constant G such that for every real (respectively,
complex) JBW*-triple W and every weak*-continuous linear operator
T from W to a real (respectively, complex) Hilbert space, there ezists a
norm-one functional o € W, satisfying

IT(@)|| < G |IT| flll,
for all x € W.
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The implication 1 = 2 follows from Theorems 3.1 and 3.4.

Assume that Assertion 2 above is true. Let W be a real (respectively,
complex) JBW*-triple, H a real (respectively, complex) Hilbert space, and
T : W — H a weak*-continuous linear operator. Consider the separately
weak*-continuous bilinear form U on W x H given by U(z,y) := (T(x)ly) (re-
spectively, U(z,y) := (T(x)|o(y)), where o is a conjugation on H ). Regarding
H as a JBW*-triple under the triple product {z,y,z} = 1((z|y)z + (z|y)z),
and applying the assumption, we find norm-one functionals ¢ € W, and
Y € H, satisfying R

Uz, y)| <G [U| lzllo [yl

<G Tl llyl

for all (z,y) € W x H. Taking y = T(x) (respectively, y = o(T(z))) we
obtain

IT@) < GITIllll,

for all x € W. In this way Assertion 3 holds.

Finally let us assume that Assertion 3 is true. Let W be a real (respec-
tively, complex) JBW*-triple and @1, vy norm-one functionals in W,. Since
-l 1,0, cOmes from a suitable separately weak*-continuous positive sesquilin-
ear form < .,. > on W by means of the equality ||x||i1,m =< x,x >, it follows
from the proof of [R1, Corollary] that there exists a weak*-continuous linear
operator T from W to a real (respectively, complex) Hilbert space satisfying
12/ p1.00 = |T(2)|| for all x € W (which implies |T|| < V/2). Now applying
the assumption we find a norm one functional o € W, such that

|2 /lpr: = 1T (@)l < GIIT 2], < V262l
for all z € W. As a consequence, for i = 1,2 we have
[l < V2G|,

for all x € W.

4 Some Applications

We define the strong*-topology S* (W, W,) of a given real or complex JBW*-
triple W as the topology on W generated by the family of seminorms {||.||, :
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© € W, |l¢|| = 1}. In the complex case, the above notion has been intro-
duced by T. J. Barton and Y. Friedman in [BF2]. When a JBW*-algebra A
is regarded as a complex JBW*-triple, S*(\A, A,) coincides with the so-called
“algebra-strong™® topology” of A, namely the topology on A generated by the
family of seminorms of the form = — /&(z o x*) when & is any positive func-
tional in A, [R1, Proposition 3|. As a consequence, when a von Neumann
algebra M is regarded as a complex JBW*-triple, S*(M, M,) coincides with
the familiar strong*-topology of M (compare [S, Definition 1.8.7]).

We note that, if W is a complex JBW*-triple, then, denoting by Wk the
realification of W (i.e., the real JBW*-triple obtained from W by restriction
of scalar to R), we have S*(W, W,) = S*(Wk, (Wk)«). Indeed, the mapping
¢ — Re p identifies W, with (Wk)., and, when ¢ has norm one, the equality
lz]|, = [|z|lge ,» holds for every x € W.

Proposition 4.1 Let W be a real (respectively, complex) JBW*-triple. The
following topologies coincide in W :

1. The strong*-topology of W.

2. The topology on W generated by the family of seminorms of the form
T — J<xI,r >, where < .,. > is any separately weak*-continuous
positive sesquilinear form on W.

3. The topology on W generated by the family of seminorms x — ||T(z)|],
when T runs over all weak*-continuous linear operators from W to
arbitrary real (respectively, complex) Hilbert spaces.

Proof. Let us denote by 71, 79, and 73 the topologies arising in paragraphs
1, 2, and 3, respectively. The inequality 71 > 73 follows from Corollary
2.10 (respectively, Corollary 2.2). Since the proof of [R1, Corollary 1] shows
that for every separately weak*-continuous positive sesquilinear form < .,. >
on W there exists a weak*-continuous linear operator T from W to a real
(respectively, complex) Hilbert space satisfying /< =,z > = ||T(z)|| for all
x € W, we have 13 > 75. Finally, since for every norm-one functional ¢ € W,
there is a separately weak*-continuous positive sesquilinear form < .,. >
satisfying ||z||, = \/< =,z > for all x € W, the inequality 7 > 7 follows. O

For every Banach space X, By will stand for the closed unit ball of X.
For every dual Banach space X (with a fixed predual denoted by X,), we
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denote by m(X, X,) the Mackey topology on X relative to its duality with
X,.

Corollary 4.2 Let W be a real or complex JBW*-triple. Then the strong*-
topology of W is compatible with the duality (W, W,).

Proof. We apply the characterization of S*(W, W,) given by paragraph 3
in Proposition 4.1. Clearly S*(W,W,) is stronger than the weak*-topology
o(W, W,) of W. On the other hand, if 7" is a weak*-continuous linear operator
from W to a Hilbert space H, and if we put T = S* for a suitable bounded
linear operator S : H, — W,, then S(Bpg,) is an absolutely convex and
weakly compact subset of W, and we have ||T(x)|| = sup| < z,S(Bg.) > |.
This shows that S*(W, W,) is weaker than m(W, W,). O

The complex case of the above corollary is due to T. J. Barton and Y.
Friedman [BF2]. The complex case of Proposition 4.1 is claimed in [RI,
Corollary 2] (see also [R2, Proposition D.17]), but the proof relies on [R1,
Proposition 1], which subsumes a gap from [BF1] (see the comments before
Lemma 1.5). Now that we have saved [R1, Corollary 2], all subsequent results
in [R1] concerning the strong*-topology of complex JBW*-triples are valid.
Moreover, keeping in mind Proposition 4.1 and Corollary 4.2, some of those
results remain true for real JBW*-triples with verbatim proof. For instance,
the following assertions hold:

1. Linear mappings between real JBW*-triples are strong*-continuous if
and only if they are weak*-continuous (compare [R1, Corollary 3]).

2. If W is areal IBW*-triple, and if V' is a weak™-closed subtriple, then the
inequality S*(W, W.)|y < S*(V, Vi) holds, and in fact S*(W, W, )|y and
S*(V, V,) coincide on bounded subsets of V' (compare [R1, Proposition

7).

It follows from the first part of Assertion 2 above and a new application
of Proposition 4.1 that, if W is a real JBW*-triple, and if V' is a weak*-
complemented subtriple of W, then we have S*(W, W,)|y = S*(V, Vi). Since
every real JBW*-triple V' is weak*-complemented in the realification of a
complex JBW*-triple W (see V as a real form of its JB*-complexification),
and S*W, W,) = S*(Wk, Wr).), the results [R1, Theorem] and [R2, The-
orem D.21] for complex JBW*-triples can be transferred to the real setting,
providing the following result.
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Theorem 4.3 Let W be a real JBW*-triple. Then the triple product of W
is jointly S*(W, W,)-continuous on bounded subsets of W, and the topologies
m(W, W.) and S*(W,W,) coincide on bounded subsets of W.

Our concluding goal in this paper is to establish, in the setting of real JB*-
triples, a result on weakly compact operators originally due to H. Jarchow
[J] in the context of C*-algebras, and later extended to complex JB*-triples
by C-H. Chu and B. Tochum [CI]. This could be made by transferring the
complex results to the real setting by a complexification method. However,
we prefer to do it in a more intrinsic way, by deriving the result from the
second assertion in Theorem 4.3 according to some ideas outlined in [R2, pp.
142-143].

Proposition 4.4 Let X be a dual Banach space (with a fived predual X, ).
Then the Mackey topology m(X, X,) coincides with the topology on X gen-
erated by the family of semi-norms x w— ||T(x)||, where T is any weak*-
continuous linear operator from X to a reflexive Banach space.

Proof. Let us denote by 7 the second topology arising in the statement.
As in the proof of Corollary 4.2, if T is a weak*-continuous linear operator
from X to a reflexive Banach space, then there exists an absolutely convex
and weakly compact subset D of X, such that the equality

|T(@)|| =sup| <2,D > |

holds for every x € X. This shows that 7 < m(X, X,).
Let D be an absolutely convex and weakly compact subset of X,. Con-
sider the Banach space ¢;(D) and the bounded linear operator

F:0,(D) = X,

given by

F({Aotpen) = Z App-
peD
Then we have F(By,(p)) = D, and hence F' is weakly compact. By [DFJP]
there exists a reflexive Banach space Y together with bounded linear opera-
tors S: 41(D) - Y, R:Y — X, such that F = R S. Then, for z € X, we
have
sup | < @, D > | =sup| <z, F(By,(p)) > |
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= sup| <, R(S(Bu,w))) > | < |IS|| sup| <z, R(By) > |
= IS 17 )]l

Since D is an arbitrary absolutely convex and weakly compact subset of X,,
and R* is a weak*-continuous linear operator from X to the reflexive Banach
space Y*, the inequality m(X, X,) < 7 follows.O

Let X be a dual Banach space (with a fixed predual X,). In agree-
ment with Proposition 4.1, we define the strong*-topology of X, denoted
by S*(X, X,), as the topology on X generated by the family of semi-norms
x +— ||T(x)||, where T is any weak*-continuous linear operator from X to a
Hilbert space.

Proposition 4.5 Let X be a dual Banach space (with a fived predual X, ).
Then the following assertions are equivalent:

1. The topologies m(X, X,) and S*(X, X.) coincide on bounded subsets of
X.

2. For every weak*-continuous linear operator F from X to a reflexive
Banach space, there exists a weak*-continuous linear operator G from
X to a Hilbert space satisfying |F(z)|| < [|G(x)|| + ||=|| for all x € X.

3. For every weak*-continuous linear operator F from X to a reflexive
Banach space, there exist a weak*-continuous linear operator G from
X to a Hilbert space and a mapping N : (0,00) — (0, 00) satisfying

|1F(2)[] < N(e) [|G(2)]| + & []]
for allx € X and ¢ > 0.

Proof. 1 = 2.— Let F be a weak*-continuous linear operator from X to
a reflexive Banach space. Then, by Proposition 4.4

O:={yeBx:|F(yl <1}

is a m(X, X,)|g,-neighborhood of zero in Bx. By assumption, there exist
Hilbert spaces Hy, ... , H, and weak*-continuous linear operators G; : X —
H; (i:1,...,n) such that

O DN {y € Bx : ||Gi(y)]| < 1}.
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Now set H := (D), H;)s,, and consider the weak*-continuous linear opera-
tor G : X — H defined by G(x) := (G1(x),...,G,(z)). Notice that

{y € Bx : [|G(y)l| <1} S Mii{y € Bx : [|Gi(y)[ <1} € O.

Finally, if x € X \ {0}, then m zliesin {y € Bx : [|G(y)|| < 1} C O,

and hence “F(W z)]| < 1.

2 = 3.— Let F be a weak*-continuous linear operator from X to a re-
flexive Banach space. By assumption, for every n € N there exists a Hilbert
space H, and a weak*-continuous linear operator G, from X to H, such
that ||nF(z)|| < [|Gn(2)]| + ||z|| for all z € X. Now set H := (D, o Hn)e,
and consider the bounded linear operator G : X — H defined by G(z) :=
{n”G 7 Gn(7)} and the mapping N : ¢ = [|Gy(.)|| (where n(c) denotes the
smallest natural number satisfying n > %) Then G is weak*-continuous.
Indeed, given y = {h,} € H, we can take for n € N «,, in X, satisfying
(Gn(2)|hp) =< x, 0, > for every z € X, so that we have

>l =32 el < Y2 TR

and hence a := ) .y & is an element of X, satisfying (G(z)|h) =

x,a > for all x € X. Moreover, for all e > 0 and z € X we have

1 1
%”Gn(&)(x)“ + @Ilfvﬂ

< Guoll 1G]+ 5 el < NG + <l
3 = 1.— Let x) be a net in Bx converging to zero in the topology
S*(X, X,). Let F be a weak*-continuous linear operator from X to a reflexive
Banach space, and ¢ > 0. By assumption, there exist a weak*-continuous
linear operator G from X to a Hilbert space and a mapping N : (0,00) —
(0, 00) satisfying

1F(2)]| <

IF@)] < N 5) G (@ )II+% ]

for all z € X. Take Ay such that ||G(x)\)|| < 37z Whenever A > Ag. Then
2

we have [|F(z,)|| < e for all A > Ag. By Proposition 4.4, x, m(X, X,)-
converges to zero. [



Some Applications 27

We can now state the following characterization of weakly compact oper-
ators on JB*-triples.

Theorem 4.6 Let E be a real (respectively, complex) JB*-triple, X a real
(respectively, complex) Banach space, and T : E — X a bounded linear
operator. The following assertions are equivalent:

1. T is weakly compact.

2. There exist a bounded linear operator G from E to a real (respectively,
complex) Hilbert space and a function N : (0,+00) — (0,400) such
that

[T(x)]] < N(e)|G(z)]| + el

for allx € E and € > 0.

3. There exist norm one functionals p1,po € E* and a function N :
(0,400) = (0, +00) such that

[T ()| < N(e) l|zllp1,p. + €ll]]
for allx € E and € > 0.

Proof. The implication 2 = 3 follows from Corollary 2.10 (respectively,
Corollary 2.2). The implication 3 = 2 holds because, for norm-one func-
tionals @1, s € E*, ||.||4, 0, 15 @ prehilbert seminorm on E, and hence there
exists a bounded linear operator G from E to a Hilbert space satisfying
|G (2)|| = ||%]|py .0, for all z € E. On the other hand, the implication 2 = 1
is known to be true, even if E is an arbitrary Banach space (see for instance
[J, Theorem 20.7.3]). To conclude the proof, let us show that 1 implies 2.
Assume that Assertion 1 holds. Then, by [DFJP], there exist a reflexive
Banach space Y and bounded linear operators F': E — Y and S:Y — X
such that 7= S F and ||S|| < 1. By Theorem 4.3 and Proposition 4.5, there
exist a weak*-continuous linear operator G from E** to a Hilbert space and
a mapping N : (0,00) — (0, 00) satisfying

IE™* ()] < N (&) |G| +¢ [|o]

for all « € E** and € > 0. By putting G := é|E, the inequality in Assertion
2 follows. O



REFERENCES 28

The complex case of the above theorem is established in [CI, Theorem
11}, with |[|.||4,,4, in Assertion 3 replaced with ||.||, for a single norm-one
functional o € E*. As we have noticed in similar occasions, we do not know
if such a replacement is correct.
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