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Abstract

1 Introduction

The results known as Grothendieck’s inequalities began with the famous
paper [8] in which A. Grothendieck proved the so-called “Grothendieck’s
inequalities” for commutative C*-algebras. These inequalities were general-
ized by G. Pisier [18] and U. Haagerup [10, 9] to the setting of C*-algebras.

Every C*-algebra belongs to a more general class of Banach spaces known
as JB*-triples (see definition and examples below). JB*-triples were intro-
duced by Kaup [14] in the study of bounded symmetric domains in complex
Banach spaces. The class of JB*-triples has been intensively developed in
the last twenty years. In the setting of JB*-triples, Grothendieck’s ine-

qualities were studied by T. Barton and Y. Friedman [1], C.-H. Chu, B.
Iochum and G. Loupias [3], A. M. Peralta [15] and A. M. Peralta and A.
Rodriguez Palacios [16, 17].

The natural prehilbertian seminorms associated derived from states in a
C*-algebra do not make sense in a JB*-triple because the latter needs not
have, in general, a natural order structure. In the setting of JB*-triples, the
prehilbertian seminorms associated to norm-one functionals are constructed
as follows: Let ¢ be a norm-one element in the dual space of a JB*-triple
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E. Let z be a norm-one element in E (or in E**) such that ¢(z) = 1.
By [1, Proposition 1.2] the mapping (z,y) — ¢ {x,y, z} defines a positive
sesquilinear form on F which does not depend on the element z. Thus the
law x — ||z, = (¢ {z,, z})% (x € E) defines a prehilbert seminorm on E.

The main contribution of [15, 16] is the discovery that some technical
result from the Banach space geometry on weak*-continuous bilinear forms
is not true (see [16, Example 1 and comments before]). Therefore, pre-
viously published results on Grothendieck’s inequalities for JB*-triples in
[1, 3] cannot be considered fully proved. In the amendment provided in
[16, Coroolaries 1 and 7] it is shown that the assertions in [1, Theorems 1.3
and 1.4] remains true when the seminorms of the form ||.||, are replaced by

seminorms of the form ||z, o, = +/lz]|2, + [lz[|2,. More precisely, there

exists a universal constant M > 0 such that for every pair of JB*-triples
(E, F) and every bounded bilinear form V on E x F' there exist norm-one
functionals @1, o € E* and ¢, € F* satisfying

[V, )l < MWV l2lloren 191l (1)

for all (x,y) € F x F. However, until this moment we do not know a
counterexample to the version of Grothendieck’s inequality for JB*-triples
established by Barton and Friedman. Therefore, it is natural to ask whether
the seminorms of the form ||z||,, ,, appearing in (1) can be replaced by
seminorms of the form ||z, as it is established in [1]. More concretely, let
G denote the set of all bounded bilinear forms V on E x F' such that there
exist norm-one functionals ¢ € E* and ¥ € F* satisfying

V()| <M AV lzlle vl

for all (z,y) € Ex F. Although it is known that G is norm-dense in L(?(E x
F')), the space of all bounded bilinear forms on E X F' (see [16, Theorem 1]),
we do not know if G coincides or not with whole space L(*(E x F)).

When E and F are JBW*-triples (JB*-triples which are dual Banach
spaces) and the bilinear form ia assumed to be separately weak*-continuous
it seems natural to request that the functionals appearing in (1) belong to
the preduals of E and F, respectively.

In the present paper we present a big class of JB*-triples where the above
problem have a positive answer. We shall show that this class includes all
Cartan factors and all atomic JBW*-triples.

Let X and Y be Banach spaces. Throughout the paper, L(X,Y") will
stand for the Banach space of all bounded linear operators from X to Y.
We usually write L(X) instead of L(X, X).



A JB*-triple is a complex Banach space E equipped with a continuous
triple product
{,,. /}} FQRE®E—E
(z,y,2) — {z,y, 2}

which is bilinear and symmetric in the outer variables and conjugate linear
in the middle one and satisfies:

(a) (Jordan Identity)
L(xvy)L(aa b) - L(a,b)L(w,y) = L(L(x,y)a, b) - L(G,L(y,fl/’)b),
for all z,y,a,b € E, where L(x,y) : E — E is the linear mapping
given by L(z,y)z = {z,y, 2};

(b) The map L(z,x) is an hermitian operator with non-negative spectrum
for all z € E;

(e) |[{z,z,z}| = ||=||* for all z € E.
Every C*-algebra is a JB*-triple with respect to the triple product
{w,y, 2} =27 (ay"2 + 2y’x).
Every JB*-algebra is a JB*-triple with triple product given by
{a,b,c} = (aob*)oc+ (cob)oa— (aoc)ob™.

The (classical) Cartan factors constitute and interesting variety of exam-
ples of JB*-triples. Cartan factors are defined as follows (see [13] for more
details): Let H and K be complex Hilbert spaces. A type 1 Cartan factor
is a JB*-triple of the form L(H, K) with operator norm and triple product
defined by

(9,2} = o= + 7). &)

Let j : H — H be a conjugation (conjugate linear isometry of period 2) on
H. For each x € L(H) we define 2! = jz*j. The the law x — ! defines
linear isometry of period 2 on L(H). S, := {z € L(H) : 2! = —z} with
product (2) and operator norm is a Cartan factor of type 2 or of symplectic
type and H,, := {x € L(H) : 2' = z} with product (2) and operator norm is
a Cartan factor of type 3 or of symplectic type.



A type-4 Cartan factor, (also called spin factor) is a complex Hilbert
space provided with a conjugation x — =, triple product

{z,y,2} = (zly) 2 + (2[y) © — (2[2) ,

and norm given by ||z||? = (z]z) + \/(37]3:)2 — | (z|z) |2

The type 6 Cartan factor is the space H3(Q) of all 3 x 3 hermitian
matrices over the complex Cayley algebra O with product

{z,y,2} =(zoy")oz+ (20y*)ox —(voz)oy", (3)

where a o b = Z(ab+ ba). The type 5 Cartan factor consists of all 1 by 2
matrices over Q@ and can be regarded as a JB*-subtriple of the Cartan factor
of type 6.

A JBW*-triple is a JB*-triple which is also a dual Banach space. The
bidual of a JB*-triple is a JBW*-triple with respect to a triple product
extending the one of E' [4]. Every JBW*-triple has a unique predual and its
triple product is separately weak* continuous [2].

Let E be a JB*-triple. An element e € E is said to be a tripotent if
{e,e,e} = e. The set of all tripotents of E is denoted by Tri(E). Given a
tripotent e € FE there exist a decomposition of E in terms of the eigenspaces
of L(e,e) given by

E = Ey(e) ® Eq(e) © Ea(e), (4)

where Ej(e) := {x € £ : L(e,e)x = £x} is a subtriple of £ (k:0,1,2). The
natural projection of E onto Ei(e) will be denoted by Px(e). The following
rules are also satisfied

{Ex(e), Ei(e), Em(e)} € Ex_iym(e),

{Eo(e)vEQ(e)vE} = {EQ(G)’EO(G)’E} =0,

where Fy_jim(e) = 0 whenever k — 1 + m is not in {0,1,2}. It is also
known that Es(e) is a unital JB*-algebra with respect to the product and
involution given by z oy = {z,e,y} and z* = {e, z, e}, respectively. When
E is a JBW*-triple then Es(e) is a JBW*-algebra.

For background about JB- and JBW-algebras the reader is referred to
[11]. We recall that JB-algebras (respectively, JBW-algebras) are nothing
but the self-adjoint parts of JB*-algebras (respectively, JBW*-algebras) [21]
(respectively, [5]).



2 Grothendieck’s Inequalities

The natural strategy to approach Grothendieck’s inequalities in the setting
of JB*-triples is based on the study of the so called “Little Grothendieck’s
Theorem” for JB*-triples. The results in [16] provide a new approach to
Grothendieck’s inequalities for JB*-triples, which allows us to avoid some
difficulties in the proofs of [1, Theorems 1.3 and 1.4] and [3, Proposi-
tion 4, Theorem 6]. In [16, Corollary 1] it is proved the following Little
Grothendieck’s Theorem:

Theorem 2.1. Let W be a complex JBW*-triple and T a weak*-continuous
linear operator from W to a complex Hilbert space. Then there exist norm-
one functionals p1,p2 € Wy such that, for every x € W, we have

1T (@) < 20 T[l|2]l 01 02
O

The question if in the above Theorem we can replace the seminorm
|l.llo1,02 by @ seminorm of the form |.||, remains open. The aim of this
section is to give an affirmative answer to the above question in the case of
an atomic JBW*-triple.

Remark 2.2. Let F be a finite dimensional JB*-triple and let T be a
bounded linear operator from E to a complex Hilbert space H. Since T
attains its norm we conclude from [16, Lemma 3] that there exists a norm-
one functional ¢ € F, satisfying

IT ()| < V2T ||zl
forall x € E.

Let H and K be Hilbert spaces. Let h in H and k in K we denote by
k ® h the element in L(H, K) given by k ® h(z) := (z|h)k (z € H).

Proposition 2.3. Let H be a complex Hilbert space and let p be a projection
in L(H). Suppose that p(H) = K is infinite dimensional. Let E = L(H, K)
be the JBW*-subtriple of L(H) of all bounded linear operators from H to
K. Then for every normal state ¢ € L(H ) there exists a norm-one element
p € E, satisfying

lzlly < V6 flz]le

forall z € E.



Proof. Let ¢ be a normal state of L(H). Write ¢ = 1 — p. Let x € L(H).
By the Cauchy-Schwarz inequality we deduce that

|6(pr*zq)|* = |9(qx"zp)|* < ¢(pr*zp) P(qz*zq),

which implies that
p(x*x) = d(pax*ap) + ¢p(pr*xq) + ¢(qx*xp) + ¢(qr*xq)

< ¢(pz*zp) + d(qz*xq) + 2 \/d(pr*zp) P(qa*zq) < 2(P(pr* D) + P(q2*2q)).

Write ¢1(z) = ¢(prp) and pa2(x) := ¢(gqrq). Then ¢; and p2 are pos-
itive normal functionals of L(H), [[¢1|| + |le2ll = ¢1(1) + ¢2(1) = ¢(1),
v1(p) = v1(1), v2(q) = ¢2(1), and for every positive element y € L(H) we
have

d(y) < 2(p1(y) + wa(y)). (5)

Since ;1 is a positive normal functional of pL(H)p, it follows that

= 3" Maa(ma)n) (x € L(H)), (6)

neN

where (7,,) is an orthonormal sequence in p(H) = K and (),) is a sequence
of non-negative real numbers with Yy An = [[¢1]] = ¢1(1) (compare [20,
Corollary 1.15.4]). Analogously we deduce that

=Y wn(a(&)ln) (@ € L(H)), (7)

neN

where (§,,) is an orthonormal sequence in p(H) = K and (u,) is a sequence

n
of non-negative real numbers with ) pn = [l@2] = w2(1).
If ||¢2]] = 0 then ¢ = ¢ is a norm-one element in (pL(H)p). = (Ep). C
E,, which gives the desired conclusion for ¢ = ¢.
If ||¢1]] = 0 then ¢ = 9 is a normal state of ¢L(H)q. Since p(H) = K is
infinite dimensional we can choose an orthonormal sequence (1) in K. Let
¢ be the norm-one functional in F, defined by

Zﬂn gn |Vn (l‘ € E)

neN



Let us denote by e the tripotent in E given by e = > Vs ® &,. Let x be
an arbitrary element in E. Since ¢(e) =1 and ¢(q) = 1, we deduce that

1 * *
lallz = ¢ {2, ¢} = Jplwa'e +ex'a) = 3 Er((@ae + ex)(0)lvn)
neN

=3 & (" )2 + () 1)
neN
and ) .
lall? = ¢{z. 2.4} = 56(xa*q + g2"2) = 5é(qr")
=Y B a))le) = 305 (la(ea)l?).
neN neN

From the above expressions we see that
2 2
ll5 < [l=1%,

forall x € E.

_ Finally we assume [|¢1], 2]l # 0. Set ¢ := [Joi]| ™! ;i (1 <i < 2) and
¢ = 27Y(p1 + o). It is clear that ¢ is a normal state of L(H). Since for
each € F, {z,z,1} is a positive element in L(H), we conclude from (5)
that the inequality

23 = ¢ {z,2,1} < 21 + @) {2, 1} = 4 {z,x, 1} = 4l|z]2  (8)

holds for each = € E. From (6) and (7) we see that the expression

Htz qS{a: z, 1} = (a:a: +x*x)

- . z” 24| 2 2
_%(WH(H )P+ ) P) + g e @), 9)

holds for all x € E.

Let ¢ be the norm-one functional in E, given by

Zd fn ’Un (:UGE)?

neN

where (£,,) is the orthonormal sequence in H defined by fl% = 1 and

o1 = & (Vk € N), and (4,) is the sequence in R given by doj, = )z‘,f’ﬁ;;\"f




and 09y = H& ||‘p2”71+§2’“‘1 lpall (Vk € N). It is not hard to check
from the above definition that 3d2, > A\, [lo1]7Y, 30201 > i [l2] ™,

30y, > ”;—’;”, and ) nOn =1 Sete=> T ® &, € E. Tt is easy to see
that ¢(e) = 1. Thus, for each x € F we get

On i« 02n—1 Oon 1
12 = o {r.ze) = 3 2l ) 24+ 30 2 a2+ 30 220 o ()2
neN neN neN
From (8), (9) and the above expression we deduce that
13 < 4flzl? <6 |23,
for all z € E. O

Corollary 2.4. Let E = L(H, K) be a type 1 Cartan factor with H and K
infinite dimensional and let H be a complex Hilbert space. Then for every
weak*-continuous linear operator T from E to H there exists a morm-one
functional p € E, satisfying

IT (@)l < 2v3 T |z,
forallz € E.

Proof. Since L(H,K) and L(K, H) are triple isomorphic we may assume
that K is a Hilbert subspace of H. Let p be a projection in L(H) such that
p(H) = K. Let T : E — H be a weak*-continuous linear operator. The law
z + T(pz) defines a weak*-continuous linear operator T from L(H) to H
which satisfies T'(z) = T'(z) for all x € E. By [10, Proposition 2.3] (see also
[16, Remark 1]) there exists a normal state ¢ € L(H ), satisfying

1T < V2T =],

for all z € L(H). From Proposition 2.3 it follows that there exists a norm-
one functional ¢ € F, satisfying

Izlle < V6 [l
for all x € E. Therefore
IT ()| < 2V3 [T [zl

forall x € E. O



The case of a type 1 Cartan factor E = L(H, K) with dim(K) finite will
need an special development.

Remark 2.5. Let E be a JBW*-triple. From [16, Remark 3, (i) < (i4)] it
follows that the following assertions are equivalent:

(a) There is a universal constant G such that, for every couple (1, p2) of
norm-one functionals in E, X E,, we can find a norm-one functional
p € E, satisfying
[z]lo: < Glllly

for every x € F and ¢ = 1, 2.

(b) There is a universal constant G such that for every weak*-continuous
linear operator 1T from F to a complex Hilbert space, there exists a
norm-one functional ¢ € F, satisfying

1T ()| < G |7 ||,
for all z € W.

Moreover, in the implication (a) = (b) we can take G = 2v/2G. and in

(b) = (a) we can choose G = v/2G (compare [16, Corollary 1]).

Let V and W be JBW*-triples satisfying one of the above equivalent
statements. From [16, Remark 3 (ii) < (i)] (see also the proof of [16,
Theorem 6]), we deduce that there is a universal constant G = G2(1 +2v/3)
such that for every separately weak™*-continuous bilinear form U on V' x W,
there are norm-one functionals ¢ € V,, and ¢ € W, satisfying

U@l < G U lzlolylle

for all (z,y) € V x W.

The following result describes the hilbertian semi-norms of the form ||.|[,
in a type 1 Cartan factor.

Let A be a C*-algebra with involution *. Let o denote the natural Jordan
product on A defined by x oy = %(xy + yx). It is well known that A has
a JB*-algebra structure with respect to the product o, the involution x,
and the natural norm. The JB*-algebra (A, o,x*) will be denoted by A*.
Moreover AT is a JBW*-algebra whenever A is a von Neumann algebra. It
is also known that AT and A has the same normal states.



Lemma 2.6. Let E = L(H,K) be a type 1 Cartan factor. Suppose that
there exists a projection p € L(H) with p(H) = K. Let ¢ be a norm-one
functional in E.. Then there exists a partial isometry e € L(H) such that
pe = e € E, an orthonormal sequence (&,) in €*(H), and a sequence of
non-negative real numbers (A\,) such that ) Ay =1 and

o) =D A (x(&n)leén)),

neN

for allx € E. As a consequence, for each x € E we have

2l = 322 (lle* (eI + la(€I?).

neN

Proof. Tt is immediate that every tripotent e € E is also a tripotent in L(H),
since E = pL(H) is a JBW*-subtriple of L(H). Thus every tripotent ¢ € E
is a partial isometry e € L(H) satisfying pe = e. Let e be a tripotent in
E. Then ee* = p; and e*e = ¢ are projections in L(H) with p; < p and
eles(rry s € (H) = p1(H) — e(H) = q1(H) is a surjective isometry. It is easy
to check that Eg(e) = plL(H)ql = plL(H)ql.

Let us denote by e, and £, the product and involution on Es(e) given by
ze.y:=uxe'y (r,y€ Eye))

and
afe = ex*e (x € Ea(e)),
respectively. It is clear that (Fy(e),e.,fe) is a von Neumann algebra and
the mapping
Ey(e) — L(e*(H))
T e

is a *-isomorphism from (Es(e), e¢, 1) to L(e*(H)).

Let ¢ be a norm-one functional in E,. By [6, Proposition 2], there exists
a tripotent e € E such that ¢ = pP(e) and ¢|g, () is a positive normal
functional on the JBW*-algebra (Es(e),0,*) = (Ex(e), 8¢, fe)". Therefore,
by [20, Corollary 1.15.4], there exists an orthonormal sequence () in e*(H),
and a sequence of non-negative real numbers (\,) such that " A, =1
and

p(@) =Y A (@(En)leén)),
neN

for all z € Es(e). Finally, the above expression remains valid for all z € E,
since p = pPs(e) and Py(e)(x) = ee*ze*e (Vx € EF). O

10



Remark 2.7. Let E = L(H, K) be a type 1 Cartan factor with dim(H) >
dim(K). Let ¢ be a norm-one element in the predual of E and let e be
the tripotent given in E given by Lemma 2.6 above. We claim that we
can always assume that ee* coincide with the orthogonal projection of H
onto K (i.e., ee*(H) = e(H) = K). Indeed, from the above proposition we
deduce that there is an orthonormal sequence (&,) in e*(H), and a sequence
of non-negative real numbers () such that ) A, =1 and

neN

for all € E. If e(H) # K we write K1 = (e(H))* N K. Since dim(H) >
dim(K), there exists a Hilbert subspace H; C (e*(H))*NH and a surjective
isometry e; mapping H; to Ki. Then, when e is regarded as a tripotent
in E it follows that u = e + e; is a tripotent in E satisfying ¢(u) = 1 and
u(H) =K.

Proposition 2.8. Let K be a finite dimensional subspace of a Hilbert space
H. Let E = L(H,K) be a type 1 Cartan factor. Then for every couple of
norm-one functionals o1, p2 € E, there exists a norm-one functional p € F,
satisfying

lzllp, < 2V2 ||z,

forallx € E, i€ {1,2}.

Proof. Let p denote the orthogonal projection of H onto K. Let ¢, @2
norm-one functionals in F,. By Lemma 2.6 there are partial isometries
e1,ea € L(H) such that pe; = e; € E (i € {1,2}), orthonormal sequences
(&n) C €f(H) and (n,) C e5(H), and sequences of non-negative real numbers
(An) and (py) such that >° g An =D ey bn = 1,

= A (@(&)ler(&))  (Vz € E), (10)
neN

and
Z,Un 77n |€2 nn)) (VLU € E)a (11)
neN

As a consequence, for each x € F we have

212, = 32 (Ja* (e €I + la(EI?) (12)

neN

11



and

lali2, = > 50 (2 (eama)) |2 + lw(m)I1?). (13)

neN

Let H; be the subspace of H generated by ej(H) and e5(H) and let p; be
the orthogonal projection of H onto Hy. Since K is finite dimensional and
for each i € {1,2}, e;[ex(ary @ €] (H) — €i(H) C K is a surjective isometry, we
conclude that Hj is finite dimensional. Set F' = Ep; = pL(H)p;. Then F
is a finite dimensional JBW*-subtriple of E and ey, es € F'. Since ||.||o; 00| F
comes from a suitable separately weak*-continuous positive sesquilinear form
(..) on F given by the equality [|z[2, ., := (z|z), it follows from the proof of
[19, Corollary] that there exists a weak*-continuous linear operator 7" from
F to a Hilbert space satisfying ||T'(z)|| = ||z, 4, for each z € F'. Since F is
finite dimensional, it follows from Remark 2.2 that there exists a norm-one
functional ¢ € F, C F, satisfying

915, 4, < 209l13, (14)

for all y € F. Let e be a tripotent in F' such that ¢(e) = 1. We note that
Fs(e) = Es(e) and ep; = e. We may also assume ee* = p (see Remark 2.7).
Write g =1 —p1. Then E = F @& Eq;. Let z3 € Eq;. Since {z3,23,¢e}
is a positive element in the von Neumann algebra (Fs(e), e, f.) (the latter
is defined in the proof of 2.6), then there exists y € F»(e) satisfying yf =y
and {23, 23,e} = y o, y. From the equality y* = ey*e = y we deduce that
ye* = ey, e*y = y*e and hence {y,y,e} = yy*e = {z3,23,e} = yy*e =
%2325:6. As a consequence we get yy* = yy*ee* = %2325):86* = %2325’;, and

lylle = llz3lle-
It follows from (14) that
2|lzsllZ = 2llyllZ > llyll3, (1<i<2).

We compute now the right hand side of the above inequality. From (10) and
(11) it is easily seen that ¢;(e;y*y) > 0 for all ¢ € {1,2}. Thus

1 * *
2|85 = 2lyl5 > Wl5, = ¢i {v. v, e} = Seilyy™es + eiy’y)

1

. . 1 1
vi(yy*e) = 1%(232361) = il 23,6 = §||Z3”21-~

>
- 2

1
2

12



Therefore, for each z3 € Eq; and i € {1,2} we get
123112, < 4ll2312 (15)

Finally, let z € E. Then x = y + 23 for suitable y € F' and 23 € Eq;.
From (14) and (15) we obtain:

I2llp: < ylle: + 123lle: <2 (lylle + 125lle) < 2v2 \/llyll2 + [I25]12,
for all i € {1,2}. Since ez = ep1q125 = 0 = yz5 we deduce that

p{zy.el =0{y e} = p(0) =0

and hence
Izl12 = llyll% + ll=sl12,

which implies
I2llo; < 2v2 |l

for all ¢ € {1,2}. O

The following corollary shows that every rectangular type 1 Cartan factor
satisfies the Little Grothendieck’s inequality.

Corollary 2.9. Let E = L(H, K) be a type 1 Cartan factor with dim(H) >
dim(K). Then for every complex Hilbert space H and every weak*-continuous
linear operator T : EE — 'H there exists a norm-one functional ¢ € Ey satis-
fying

1T ()| <8 [Tl [l

forallz € E

Proof. When H and K are finite dimensional then F is finite dimensional
and hence Remark 2.2 gives the desired conclusion. If H and K are infinite
dimensional then the statement follows from Proposition 2.3. Finally, if H is
infinite dimensional and K is finite dimensional the conclusion follows from
Remark 2.5 and Proposition 2.8. O

We have already proved the Little Grothendieck’s inequality in the par-
ticular case of a finite dimensional Cartan factor (see Remark 2.2) and in
the case of a rectangular Cartan factor (Corollary 2.9). We shall discuss
now the remaining Cartan factors.

Let J be a JB*-triple. We recall that a tripotent u € J is said to be
unitary if L(u,u) coincides with the identity operator on J. In this case

13



J = Jo(u) and hence J is a JB*-algebra with product and involution given
by x oy = {z,u,y} and =* = {u,z,u}, respectively. When F is a JBW*-
triple with a unitary element u then E is a JBW*-algebra with respect to
the product and involution given above. We can now rephrase [16, Theorem
4] as follows.

Proposition 2.10. Let M > 2 and let E be a JBW*-triple with a unitary
element u. Then for every complex Hilbert space and every weak*-continuous
linear operator T : EE — H there exists a norm-one functional ¢ € E, such
that
1T ()| < M [T [zl

forallz € E.

Proof. Let T be a weak™-continuous linear operator from E to a complex
Hilbert space. Since E contains a unitary element u, then E is a JBW*-
algebra with product and involution given by z oy = {z,u,y} and z* =

{u, z,u}, respectively. By [16, Theorem 4], there exists a norm-one positive
linear functional ¢ € F, such that

IT@) < M T (pxoa*))?,

for all z € E. Since ¢ is norm-one and positive then p(u) = 1 = |[|¢|l,
and hence for each x € E we have ||3:H?0 = ¢ {x,xz,u} = p(x o x*), which
completes the proof. ]

Let S be a spin factor and let 4 be a norm-one element in S satisfying
u =u. It is easily seen that L(u,u) coincides with the identity operator on
S and hence w is a unitary element in S. It is also known that every Cartan
factor of type 1 with dim(H) =dim(K), every Cartan factor of type 2 with
dim(H) even , or infinite, every Cartan factors of type 3 and every type 6
Cartan factor contains a unitary element (see for instance [12, Proposition
2]). As a consequence, we can assure that when C' is one of the above Cartan
factors and (2 is a hyperstonean compact Hausdorff space then C(2,C) is a
JBW*-triple containing a unitary element.

Corollary 2.11. Let E = C(Q2,C), where ) is a hyperstonean Hausdorff
space and C is a Cartan factor of type 1 with with dim(H) =dim(K), or a
Cartan factor of type 2 with dim(H) even , or infinite, or a Cartan factors
of type 3, or a spin factor, or a type 6 Cartan factor. Let M > 2. Then
for every complex Hilbert space and every weak*-continuous linear operator
T : E — H there exists a norm-one functional ¢ € E, such that

1T ()| < M T =]l
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forallx € E. a

The next theorem shows that the family of all JBW*-triples satisfying
the Little Grothendieck’s inequality is stable by £,.-sums.

Theorem 2.12. Let M > 0. Let {E,}aen be a family of JBW*-triples such
that for every a € A and every weak*-continuous linear operator T from E,
to a complex Hilbert space H there exists a norm-one functional o € (Eq)«
satisfying that

[T (@) < M T 2]l g0 (16)

for all x € E,. Let E = @ﬁ"gl\ Ey. Then for every complex Hilbert space
H and every weak*-continuous linear operator T : E — H there exists a
norm-one functional ¢ € E, such that

IT(x)|| <4V2 M ||| ||z,
forallx € E.

Proof. By [16, Remark 3] (see also Remark 2.5 above) it suffices to prove
that for every pair (¢1,¢2) of norm-one functionals in E, x FE, there exists
a norm-one functional ¢ € F, satisfying

Hmnm,@z < 2M||93Hw,

for all x € E. Let (1,2 norm-one functionals in E, = @f)}e A(Eq)«. Then
there are countably subsets A1, Ao C A such that

P1=D Hats, and 2= Y vad},

a€ly a€o

where (11a) € (1(A1), (Va) € €1(A2), fia, Ve > 0, ¢l are norm-one elements
in (Ey)s Vj:1,2,Va and [|¢1] = Ea€A1 o and [[g2o]| = ZaeAg V.

Let I = A1NAg, I1 = (A\A2) N Ay and I, = (A\A1) N Ag. By hypothesis
and [16, Remark 3] it follows that for each a € I there exists a norm-one
functional 1 € (Eq4)« such that

”37”901#2 < V2M Hwaaa

for all x € E,. Let ¢ be the norm-one functional in E, defined by

D S R D

acl acl; a€cls
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It is not hard to see that in this case
[2llp1,00 < 2M 2|,
for all x € E, which proves the theorem. O

Let e be a tripotent in a JB*-triple J. When Ja(e) = Ce we say that
e is a minimal tripotent. A JBW*-triple FE is called atomic if E coincides
with the weak*-cosed ideal generated by all its minimal tripotents. From [7,
Proposition 2] it follows that every atomic JBW*-triple coincides with an
f-sum of Cartan factors.

Theorem 2.13. Let E be an atomic JBW*-triple. Then for every weak*-
continuous linear operator T from E to a complex Hilbert space there exists
a norm-one functional ¢ € E, satisfying

IT(2)]] < 32v2 ||T|| |24,
forallx € E.

Proof. Let E be an atomic JBW*-triple. We have already commented that
E admits a decomposition in the form @gw C., where each C,, is a Cartan
factor. If we prove that each factor C, satisfies the hypothesis of Theorem
2.12 for M = 8, then the assertion will follow from the just quoted theorem.

Let T : C, — H be a weak*-continuous linear operator from C, to a
complex Hilbert space. If C, is a type 1 Cartan factor with dim(H) >
dim (K), then Corollary 2.9 assures the existence of a norm-one functional
Ya € (Cq)x satisfying inequality (16) for M = 8. If C,, is a Cartan factor of
type 1 with with dim(H) =dim(K), or a Cartan factor of type 2 with dim(H)
even, or infinite, or a Cartan factors of type 3, or a type 6 Cartan factor,
then 2.11 gives the existence of a norm-one functional ¢, € (Cy, )« satisfying
(16) for M > 2. Finally, if C, is finite dimensional, then it follows from

Remark 2.2 that there exists a norm-one functional ¢, € (Cy). satisfying
(16) for M = /2. O

Let E be a JB*-triple. We have already mentioned that E** is a JBW*-
triple. From [6, Theorems 1 and 2] it follows that E** and E* admit the
following decompositions:

and
E* = A, & N,,
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where A is the weak*-closed ideal of E** generated by all minimal tripotents
of E**, N contains no minimal tripotents, A, is the predual of A and coin-
cides with the norm closure of the linear span of the extreme points of the
closed unit ball of E*, and the closed unit ball of IV, contains no extreme
points. A is called the atomic part of E**. Moreover, by [7, Proposition 2]
we conclude that A is an £-sum of Cartan factors.

Corollary 2.14. Let E be a JB*-triple and let A denote the atomic part
of E**. Then for every pair (p1,p2) of norm-one functionals in A, C E*,
there exists a norm-one functional ¢ € A, C E* satisfying

12|10 < 32 V2 2]l
forallz € E.

Proof. Let (¢1,p2) be a couple of norm-one functionals in A, C E*. By
Theorem 2.13 there exists a norm-one functional ¢ € A, satisfying

12llps 00 < 32 V2 |12y (17)

for all z € A.

Let ¢ denote the canonical embedding of F in its bidual and let 7 be the
natural projection of E** onto A. From the proof of [7, Proposition 1] we
deduce that 7w o is a triple embedding of F into A. Let ¢ be a norm-one
functional in A,. ¢ can be also regarded as a norm-one element in E*. Since
¢ attains its norm at a tripotent in A, it is not hard to see that for each
x € E we have

[moi(@)lls = llzlle-

The conclusion of the corollary follows now from the above expression and
inequality (17). O

From the last part of Remark 2.5 and Theorem 2.13 we derive the
following Grothendieck’s Theorem for atomic JBW*-triples.

Theorem 2.15. Let V and W be atomic JBW*-triples. Then for every
separately weak*-continuous bilinear form U on V- x W, there are norm-one
functionals ¢ € Vi, and 1 € W, satisfying

Uz, y)l <2 (1+2V3) U] llzllollylly

for all (x,y) e V x W. O
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