New advances on the Grothendieck's inequality problem for bilinear forms on JB*-triples

Antonio M. Peralta^{*}

Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain. E-mail: aperalta@ugr.es

Abstract

1 Introduction

The results known as Grothendieck's inequalities began with the famous paper [8] in which A. Grothendieck proved the so-called "Grothendieck's inequalities" for commutative C*-álgebras. These inequalities were generalized by G. Pisier [18] and U. Haagerup [10, 9] to the setting of C*-algebras.

Every C*-algebra belongs to a more general class of Banach spaces known as JB*-triples (see definition and examples below). JB*-triples were introduced by Kaup [14] in the study of bounded symmetric domains in complex Banach spaces. The class of JB*-triples has been intensively developed in the last twenty years. In the setting of JB*-triples, Grothendieck's inequalities were studied by T. Barton and Y. Friedman [1], C.-H. Chu, B. Iochum and G. Loupias [3], A. M. Peralta [15] and A. M. Peralta and A. Rodríguez Palacios [16, 17].

The natural prehilbertian seminorms associated derived from states in a C*-algebra do not make sense in a JB*-triple because the latter needs not have, in general, a natural order structure. In the setting of JB*-triples, the prehilbertian seminorms associated to norm-one functionals are constructed as follows: Let φ be a norm-one element in the dual space of a JB*-triple

^{*}Author Partially supported by D.G.I. project no. BFM2002-01529, and Junta de Andalucía grant FQM 0199

E. Let *z* be a norm-one element in *E* (or in *E*^{**}) such that $\varphi(z) = 1$. By [1, Proposition 1.2] the mapping $(x, y) \mapsto \varphi \{x, y, z\}$ defines a positive sesquilinear form on *E* which does not depend on the element *z*. Thus the law $x \mapsto ||x||_{\varphi} := (\varphi \{x, x, z\})^{\frac{1}{2}} (x \in E)$ defines a prehilbert seminorm on *E*.

The main contribution of [15, 16] is the discovery that some technical result from the Banach space geometry on weak*-continuous bilinear forms is not true (see [16, Example 1 and comments before]). Therefore, previously published results on Grothendieck's inequalities for JB*-triples in [1, 3] cannot be considered fully proved. In the amendment provided in [16, Coroolaries 1 and 7] it is shown that the assertions in [1, Theorems 1.3 and 1.4] remains true when the seminorms of the form $\|.\|_{\varphi}$ are replaced by seminorms of the form $\|x\|_{\varphi_1,\varphi_2} = \sqrt{\|x\|_{\varphi_1}^2 + \|x\|_{\varphi_2}^2}$. More precisely, there exists a universal constant M > 0 such that for every pair of JB*-triples (E, F) and every bounded bilinear form V on $E \times F$ there exist norm-one functionals $\varphi_1, \varphi_2 \in E^*$ and $\psi_1, \psi_2 \in F^*$ satisfying

$$V(x,y)| \le M \|V\| \|x\|_{\varphi_1,\varphi_2} \|y\|_{\psi_1,\psi_2}$$
(1)

for all $(x, y) \in E \times F$. However, until this moment we do not know a counterexample to the version of Grothendieck's inequality for JB*-triples established by Barton and Friedman. Therefore, it is natural to ask whether the seminorms of the form $||x||_{\varphi_1,\varphi_2}$ appearing in (1) can be replaced by seminorms of the form $||x||_{\varphi}$, as it is established in [1]. More concretely, let \mathcal{G} denote the set of all bounded bilinear forms V on $E \times F$ such that there exist norm-one functionals $\varphi \in E^*$ and $\psi \in F^*$ satisfying

$$|V(x,y)| \le M ||V|| ||x||_{\varphi} ||y||_{\psi},$$

for all $(x, y) \in E \times F$. Although it is known that \mathcal{G} is norm-dense in $L({}^{2}(E \times F))$, the space of all bounded bilinear forms on $E \times F$ (see [16, Theorem 1]), we do not know if \mathcal{G} coincides or not with whole space $L({}^{2}(E \times F))$.

When E and F are JBW*-triples (JB*-triples which are dual Banach spaces) and the bilinear form in assumed to be separately weak*-continuous it seems natural to request that the functionals appearing in (1) belong to the preduals of E and F, respectively.

In the present paper we present a big class of JB*-triples where the above problem have a positive answer. We shall show that this class includes all Cartan factors and all atomic JBW*-triples.

Let X and Y be Banach spaces. Throughout the paper, L(X, Y) will stand for the Banach space of all bounded linear operators from X to Y. We usually write L(X) instead of L(X, X). A JB^* -triple is a complex Banach space E equipped with a continuous triple product

$$\{.,.,.\}: E \otimes E \otimes E \to E$$
$$(x,y,z) \mapsto \{x,y,z\}$$

which is bilinear and symmetric in the outer variables and conjugate linear in the middle one and satisfies:

(a) (Jordan Identity)

$$L(x, y)L(a, b) - L(a, b)L(x, y) = L(L(x, y)a, b) - L(a, L(y, x)b),$$

for all $x, y, a, b \in E$, where $L(x, y) : E \to E$ is the linear mapping given by $L(x, y)z = \{x, y, z\};$

- (b) The map L(x, x) is an hermitian operator with non-negative spectrum for all $x \in E$;
- (c) $|| \{x, x, x\} || = ||x||^3$ for all $x \in E$.

Every C*-algebra is a JB*-triple with respect to the triple product

$$\{x, y, z\} = 2^{-1}(xy^*z + zy^*x).$$

Every JB*-algebra is a JB*-triple with triple product given by

$$\{a,b,c\} = (a \circ b^*) \circ c + (c \circ b^*) \circ a - (a \circ c) \circ b^*.$$

The (classical) Cartan factors constitute and interesting variety of examples of JB*-triples. Cartan factors are defined as follows (see [13] for more details): Let H and K be complex Hilbert spaces. A type 1 Cartan factor is a JB*-triple of the form L(H, K) with operator norm and triple product defined by

$$\{x, y, z\} = \frac{1}{2}(xy^*z + zy^*x).$$
(2)

Let $j: H \to H$ be a conjugation (conjugate linear isometry of period 2) on H. For each $x \in L(H)$ we define $x^t = jx^*j$. The the law $x \mapsto x^t$ defines linear isometry of period 2 on L(H). $S_n := \{x \in L(H) : x^t = -x\}$ with product (2) and operator norm is a Cartan factor of type 2 or of symplectic type and $H_n := \{x \in L(H) : x^t = x\}$ with product (2) and operator norm is a Cartan factor of type 3 or of symplectic type.

A type-4 Cartan factor, (also called *spin factor*) is a complex Hilbert space provided with a conjugation $x \mapsto \overline{x}$, triple product

$$\{x, y, z\} = (x|y) z + (z|y) x - (x|\bar{z}) \bar{y},$$

and norm given by $||x||^2 = (x|x) + \sqrt{(x|x)^2 - |(x|\overline{x})|^2}.$

The type 6 Cartan factor is the space $H_3(\mathbb{O})$ of all 3×3 hermitian matrices over the complex Cayley algebra \mathbb{O} with product

$$\{x, y, z\} = (x \circ y^*) \circ z + (z \circ y^*) \circ x - (x \circ z) \circ y^*,$$
(3)

where $a \circ b = \frac{1}{2}(ab + ba)$. The type 5 Cartan factor consists of all 1 by 2 matrices over \mathbb{O} and can be regarded as a JB*-subtriple of the Cartan factor of type 6.

A JBW*-triple is a JB*-triple which is also a dual Banach space. The bidual of a JB*-triple is a JBW*-triple with respect to a triple product extending the one of E [4]. Every JBW*-triple has a unique predual and its triple product is separately weak* continuous [2].

Let E be a JB*-triple. An element $e \in E$ is said to be a tripotent if $\{e, e, e\} = e$. The set of all tripotents of E is denoted by Tri(E). Given a tripotent $e \in E$ there exist a decomposition of E in terms of the eigenspaces of L(e, e) given by

$$E = E_0(e) \oplus E_1(e) \oplus E_2(e), \tag{4}$$

where $E_k(e) := \{x \in \mathcal{E} : L(e, e)x = \frac{k}{2}x\}$ is a subtriple of E(k:0, 1, 2). The natural projection of E onto $E_k(e)$ will be denoted by $P_k(e)$. The following rules are also satisfied

$$\{E_k(e), E_l(e), E_m(e)\} \subseteq E_{k-l+m}(e),$$
$$\{E_0(e), E_2(e), E\} = \{E_2(e), E_0(e), E\} = 0,$$

where $E_{k-l+m}(e) = 0$ whenever k - l + m is not in $\{0, 1, 2\}$. It is also known that $E_2(e)$ is a unital JB*-algebra with respect to the product and involution given by $x \circ y = \{x, e, y\}$ and $x^* = \{e, x, e\}$, respectively. When E is a JBW*-triple then $E_2(e)$ is a JBW*-algebra.

For background about JB- and JBW-algebras the reader is referred to [11]. We recall that JB-algebras (respectively, JBW-algebras) are nothing but the self-adjoint parts of JB*-algebras (respectively, JBW*-algebras) [21] (respectively, [5]).

2 Grothendieck's Inequalities

The natural strategy to approach Grothendieck's inequalities in the setting of JB*-triples is based on the study of the so called "Little Grothendieck's Theorem" for JB*-triples. The results in [16] provide a new approach to Grothendieck's inequalities for JB*-triples, which allows us to avoid some difficulties in the proofs of [1, Theorems 1.3 and 1.4] and [3, Proposition 4, Theorem 6]. In [16, Corollary 1] it is proved the following Little Grothendieck's Theorem:

Theorem 2.1. Let \mathcal{W} be a complex JBW^* -triple and T a weak*-continuous linear operator from \mathcal{W} to a complex Hilbert space. Then there exist norm-one functionals $\varphi_1, \varphi_2 \in \mathcal{W}_*$ such that, for every $x \in \mathcal{W}$, we have

$$||T(x)|| \le 2||T|| ||x||_{\varphi_1,\varphi_2}.$$

The question if in the above Theorem we can replace the seminorm $\|.\|_{\varphi_1,\varphi_2}$ by a seminorm of the form $\|.\|_{\varphi}$ remains open. The aim of this section is to give an affirmative answer to the above question in the case of an atomic JBW*-triple.

Remark 2.2. Let E be a finite dimensional JB*-triple and let T be a bounded linear operator from E to a complex Hilbert space \mathcal{H} . Since T attains its norm we conclude from [16, Lemma 3] that there exists a norm-one functional $\varphi \in E_*$ satisfying

$$||T(x)|| \le \sqrt{2} ||T|| ||x||_{\varphi},$$

for all $x \in E$.

Let H and K be Hilbert spaces. Let h in H and k in K we denote by $k \otimes h$ the element in L(H, K) given by $k \otimes h(x) := (x|h)k$ $(x \in H)$.

Proposition 2.3. Let H be a complex Hilbert space and let p be a projection in L(H). Suppose that p(H) = K is infinite dimensional. Let E = L(H, K)be the JBW*-subtriple of L(H) of all bounded linear operators from H to K. Then for every normal state $\phi \in L(H)_*$ there exists a norm-one element $\varphi \in E_*$ satisfying

$$\|x\|_{\phi} \le \sqrt{6} \|x\|_{\varphi}$$

for all $x \in E$.

Proof. Let ϕ be a normal state of L(H). Write q = 1 - p. Let $x \in L(H)$. By the Cauchy-Schwarz inequality we deduce that

$$|\phi(px^*xq)|^2 = |\phi(qx^*xp)|^2 \le \phi(px^*xp) \ \phi(qx^*xq),$$

which implies that

$$\begin{split} \phi(x^*x) &= \phi(px^*xp) + \phi(px^*xq) + \phi(qx^*xp) + \phi(qx^*xq) \\ &\leq \phi(px^*xp) + \phi(qx^*xq) + 2 \sqrt{\phi(px^*xp) \ \phi(qx^*xq)} \leq 2(\phi(px^*xp) + \phi(qx^*xq)). \end{split}$$

Write $\varphi_1(x) := \phi(pxp)$ and $\varphi_2(x) := \phi(qxq)$. Then φ_1 and φ_2 are positive normal functionals of L(H), $\|\varphi_1\| + \|\varphi_2\| = \varphi_1(1) + \varphi_2(1) = \phi(1)$, $\varphi_1(p) = \varphi_1(1)$, $\varphi_2(q) = \varphi_2(1)$, and for every positive element $y \in L(H)$ we have

$$\phi(y) \le 2(\varphi_1(y) + \varphi_2(y)). \tag{5}$$

Since φ_1 is a positive normal functional of pL(H)p, it follows that

$$\varphi_1(x) := \sum_{n \in \mathbb{N}} \lambda_n(x(\eta_n) | \eta_n) \quad (x \in L(H)), \tag{6}$$

where (η_n) is an orthonormal sequence in p(H) = K and (λ_n) is a sequence of non-negative real numbers with $\sum_{n \in \mathbb{N}} \lambda_n = \|\varphi_1\| = \varphi_1(1)$ (compare [20, Corollary 1.15.4]). Analogously we deduce that

$$\varphi_2(x) := \sum_{n \in \mathbb{N}} \mu_n(x(\xi_n) | \xi_n) \quad (x \in L(H)), \tag{7}$$

where (ξ_n) is an orthonormal sequence in p(H) = K and (μ_n) is a sequence of non-negative real numbers with $\sum_{n \in \mathbb{N}} \mu_n = \|\varphi_2\| = \varphi_2(1)$.

If $\|\varphi_2\| = 0$ then $\phi = \varphi_1$ is a norm-one element in $(pL(H)p)_* = (Ep)_* \subseteq E_*$, which gives the desired conclusion for $\varphi = \phi$.

If $\|\varphi_1\| = 0$ then $\phi = \varphi_2$ is a normal state of qL(H)q. Since p(H) = K is infinite dimensional we can choose an orthonormal sequence (ν_n) in K. Let ϕ be the norm-one functional in E_* defined by

$$\varphi(x) = \sum_{n \in \mathbb{N}} \mu_n(x(\xi_n) | \nu_n) \quad (x \in E).$$

Let us denote by e the tripotent in E given by $e = \sum_{n \in \mathbb{N}} \nu_n \otimes \xi_n$. Let x be an arbitrary element in E. Since $\varphi(e) = 1$ and $\phi(q) = 1$, we deduce that

$$\|x\|_{\varphi}^{2} = \varphi \{x, x, e\} = \frac{1}{2} \varphi (xx^{*}e + ex^{*}x) = \sum_{n \in \mathbb{N}} \frac{\mu_{n}}{2} ((xx^{*}e + ex^{*}x)(\xi_{n})|\nu_{n})$$
$$= \sum_{n \in \mathbb{N}} \frac{\mu_{n}}{2} \left(\|x^{*}(\nu_{n})\|^{2} + \|x(\xi_{n})\|^{2} \right)$$

and

$$\|x\|_{\phi}^{2} = \phi \{x, x, q\} = \frac{1}{2}\phi(xx^{*}q + qx^{*}x) = \frac{1}{2}\phi(qx^{*}x)$$
$$= \sum_{n \in \mathbb{N}} \frac{\mu_{n}}{2}((qx^{*}x)(\xi_{n})|\xi_{n}) = \sum_{n \in \mathbb{N}} \frac{\mu_{n}}{2} (\|x(\xi_{n})\|^{2}).$$

From the above expressions we see that

$$||x||_{\phi}^{2} \le ||x||_{\varphi}^{2},$$

for all $x \in E$.

Finally we assume $\|\varphi_1\|, \|\varphi_2\| \neq 0$. Set $\phi_i := \|\varphi_i\|^{-1} \varphi_i$ $(1 \leq i \leq 2)$ and $\tilde{\phi} = 2^{-1}(\varphi_1 + \varphi_2)$. It is clear that $\tilde{\phi}$ is a normal state of L(H). Since for each $x \in E$, $\{x, x, 1\}$ is a positive element in L(H), we conclude from (5) that the inequality

$$\|x\|_{\phi}^{2} = \phi \{x, x, 1\} \le 2(\phi_{1} + \phi_{2}) \{x, x, 1\} = 4\widetilde{\phi} \{x, x, 1\} = 4\|x\|_{\widetilde{\phi}}^{2}$$
(8)

holds for each $x \in E$. From (6) and (7) we see that the expression

$$\|x\|_{\widetilde{\phi}}^{2} = \widetilde{\phi} \{x, x, 1\} = \frac{1}{2} \widetilde{\phi}(xx^{*} + x^{*}x)$$
$$= \sum_{n \in \mathbb{N}} \left(\frac{\lambda_{n}}{4\|\varphi_{1}\|} \left(\|x^{*}(\eta_{n})\|^{2} + \|x(\eta_{n})\|^{2}\right) + \frac{\mu_{n}}{4\|\varphi_{2}\|} \|x(\xi_{n})\|^{2}\right), \tag{9}$$

holds for all $x \in E$.

Let φ be the norm-one functional in E_* given by

$$\varphi(x) = \sum_{n \in \mathbb{N}} \delta_n(x(\xi_n') | \eta_n) \quad (x \in E),$$

where (ξ'_n) is the orthonormal sequence in H defined by $\xi'_{2k} = \eta_k$ and $\xi'_{2k-1} = \xi_k \ (\forall k \in \mathbb{N})$, and (δ_n) is the sequence in \mathbb{R}^+_0 given by $\delta_{2k} = \frac{\lambda_{2k} + \lambda_k}{3 \|\varphi_1\|}$

and $\delta_{2k-1} = \frac{\mu_k \|\varphi_2\|^{-1} + \lambda_{2k-1} \|\varphi_1\|^{-1}}{3}$ ($\forall k \in \mathbb{N}$). It is not hard to check from the above definition that $3\delta_{2n} \geq \lambda_n \|\varphi_1\|^{-1}$, $3\delta_{2n-1} \geq \mu_n \|\varphi_2\|^{-1}$, $3\delta_n \geq \frac{\lambda_n}{\|\varphi_1\|}$, and $\sum_{n \in \mathbb{N}} \delta_n = 1$. Set $e = \sum_{n \in \mathbb{N}} \eta_n \otimes \xi'_n \in E$. It is easy to see that $\varphi(e) = 1$. Thus, for each $x \in E$ we get

$$\|x\|_{\varphi}^{2} = \varphi\left\{x, x, e\right\} = \sum_{n \in \mathbb{N}} \frac{\delta_{n}}{2} \|x^{*}(\eta_{n})\|^{2} + \sum_{n \in \mathbb{N}} \frac{\delta_{2n-1}}{2} \|x(\xi_{n})\|^{2} + \sum_{n \in \mathbb{N}} \frac{\delta_{2n}}{2} \|x^{*}(\eta_{n})\|^{2} + \sum_{n \in \mathbb{N}} \frac{\delta_{2n}}{2} \|x^{*}(\eta_{n})\|^{2}$$

From (8), (9) and the above expression we deduce that

$$||x||_{\phi}^{2} \le 4||x||_{\widetilde{\phi}}^{2} \le 6 ||x||_{\varphi}^{2},$$

for all $x \in E$.

Corollary 2.4. Let E = L(H, K) be a type 1 Cartan factor with H and K infinite dimensional and let \mathcal{H} be a complex Hilbert space. Then for every weak*-continuous linear operator T from E to \mathcal{H} there exists a norm-one functional $\varphi \in E_*$ satisfying

$$||T(x)|| \le 2\sqrt{3} ||T|| ||x||_{\varphi},$$

for all $x \in E$.

Proof. Since L(H, K) and L(K, H) are triple isomorphic we may assume that K is a Hilbert subspace of H. Let p be a projection in L(H) such that p(H) = K. Let $T : E \to \mathcal{H}$ be a weak*-continuous linear operator. The law $z \mapsto T(pz)$ defines a weak*-continuous linear operator \widetilde{T} from L(H) to \mathcal{H} which satisfies $\widetilde{T}(x) = T(x)$ for all $x \in E$. By [10, Proposition 2.3] (see also [16, Remark 1]) there exists a normal state $\phi \in L(H)_*$ satisfying

$$\|\tilde{T}(z)\| \le \sqrt{2} \|T\| \|z\|_{\phi}$$

for all $z \in L(H)$. From Proposition 2.3 it follows that there exists a normone functional $\varphi \in E_*$ satisfying

$$\|x\|_{\phi} \le \sqrt{6} \|x\|_{\varphi},$$

for all $x \in E$. Therefore

$$||T(x)|| \le 2\sqrt{3} ||T|| ||x||_{\varphi},$$

for all $x \in E$.

The case of a type 1 Cartan factor E = L(H, K) with dim(K) finite will need an special development.

Remark 2.5. Let *E* be a JBW*-triple. From [16, Remark 3, $(i) \Leftrightarrow (iii)$] it follows that the following assertions are equivalent:

(a) There is a universal constant G such that, for every couple (φ_1, φ_2) of norm-one functionals in $E_* \times E_*$, we can find a norm-one functional $\varphi \in E_*$ satisfying

$$\|x\|_{\varphi_i} \le G \|x\|_{\varphi}$$

for every $x \in E$ and i = 1, 2.

(b) There is a universal constant \widetilde{G} such that for every weak*-continuous linear operator T from E to a complex Hilbert space, there exists a norm-one functional $\varphi \in E_*$ satisfying

$$||T(x)|| \le G ||T|| ||x||_{\varphi}$$

for all $x \in W$.

Moreover, in the implication $(a) \Rightarrow (b)$ we can take $\tilde{G} = 2\sqrt{2}G$. and in $(b) \Rightarrow (a)$ we can choose $G = \sqrt{2}\tilde{G}$ (compare [16, Corollary 1]).

Let V and W be JBW*-triples satisfying one of the above equivalent statements. From [16, Remark 3 (*ii*) \Leftrightarrow (*i*)] (see also the proof of [16, Theorem 6]), we deduce that there is a universal constant $\hat{G} = \tilde{G}^2(1+2\sqrt{3})$ such that for every separately weak*-continuous bilinear form U on $V \times W$, there are norm-one functionals $\varphi \in V_*$, and $\psi \in W_*$ satisfying

$$|U(x,y)| \le \hat{G} \|U\| \|x\|_{\varphi} \|y\|_{\psi}$$

for all $(x, y) \in V \times W$.

The following result describes the hilbertian semi-norms of the form $\|.\|_{\varphi}$ in a type 1 Cartan factor.

Let A be a C*-algebra with involution *. Let \circ denote the natural Jordan product on A defined by $x \circ y = \frac{1}{2}(xy + yx)$. It is well known that A has a JB*-algebra structure with respect to the product \circ , the involution *, and the natural norm. The JB*-algebra $(A, \circ, *)$ will be denoted by A^+ . Moreover A^+ is a JBW*-algebra whenever A is a von Neumann algebra. It is also known that A^+ and A has the same normal states. **Lemma 2.6.** Let E = L(H, K) be a type 1 Cartan factor. Suppose that there exists a projection $p \in L(H)$ with p(H) = K. Let φ be a norm-one functional in E_* . Then there exists a partial isometry $e \in L(H)$ such that $pe = e \in E$, an orthonormal sequence (ξ_n) in $e^*(H)$, and a sequence of non-negative real numbers (λ_n) such that $\sum_{n \in \mathbb{N}} \lambda_n = 1$ and

$$\varphi(x) = \sum_{n \in \mathbb{N}} \lambda_n \ (x(\xi_n) | e(\xi_n)),$$

for all $x \in E$. As a consequence, for each $x \in E$ we have

$$\|x\|_{\varphi}^{2} = \sum_{n \in \mathbb{N}} \frac{\lambda_{n}}{2} \left(\|x^{*}(e(\xi_{n}))\|^{2} + \|x(\xi_{n})\|^{2} \right).$$

Proof. It is immediate that every tripotent $e \in E$ is also a tripotent in L(H), since E = pL(H) is a JBW*-subtriple of L(H). Thus every tripotent $e \in E$ is a partial isometry $e \in L(H)$ satisfying pe = e. Let e be a tripotent in E. Then $ee^* = p_1$ and $e^*e = q_1$ are projections in L(H) with $p_1 \leq p$ and $e|_{e^*(H)} : e^*(H) = p_1(H) \to e(H) = q_1(H)$ is a surjective isometry. It is easy to check that $E_2(e) = p_1L(H)q_1 = p_1L(H)q_1$.

Let us denote by \bullet_e and \sharp_e the product and involution on $E_2(e)$ given by

$$x \bullet_e y := xe^*y \quad (x, y \in E_2(e))$$

and

$$x^{\sharp_e} = ex^*e \quad (x \in E_2(e)),$$

respectively. It is clear that $(E_2(e), \bullet_e, \sharp_e)$ is a von Neumann algebra and the mapping

$$E_2(e) \to L(e^*(H))$$
$$x \mapsto e^*x$$

is a *-isomorphism from $(E_2(e), \bullet_e, \sharp_e)$ to $L(e^*(H))$.

Let φ be a norm-one functional in E_* . By [6, Proposition 2], there exists a tripotent $e \in E$ such that $\varphi = \varphi P_2(e)$ and $\varphi|_{E_2(e)}$ is a positive normal functional on the JBW*-algebra $(E_2(e), \circ, *) = (E_2(e), \bullet_e, \sharp_e)^+$. Therefore, by [20, Corollary 1.15.4], there exists an orthonormal sequence (ξ_n) in $e^*(H)$, and a sequence of non-negative real numbers (λ_n) such that $\sum_{n \in \mathbb{N}} \lambda_n = 1$ and

$$\varphi(x) = \sum_{n \in \mathbb{N}} \lambda_n \ (x(\xi_n) | e(\xi_n)),$$

for all $x \in E_2(e)$. Finally, the above expression remains valid for all $x \in E$, since $\varphi = \varphi P_2(e)$ and $P_2(e)(x) = ee^*xe^*e \ (\forall x \in E)$.

Remark 2.7. Let E = L(H, K) be a type 1 Cartan factor with $\dim(H) \ge \dim(K)$. Let φ be a norm-one element in the predual of E and let e be the tripotent given in E given by Lemma 2.6 above. We claim that we can always assume that ee^* coincide with the orthogonal projection of H onto K (i.e., $ee^*(H) = e(H) = K$). Indeed, from the above proposition we deduce that there is an orthonormal sequence (ξ_n) in $e^*(H)$, and a sequence of non-negative real numbers (λ_n) such that $\sum_{n \in \mathbb{N}} \lambda_n = 1$ and

$$\varphi(x) = \sum_{n \in \mathbb{N}} \lambda_n \ (x(\xi_n) | e(\xi_n)),$$

for all $x \in E$. If $e(H) \neq K$ we write $K_1 = (e(H))^{\perp} \cap K$. Since dim $(H) \geq$ dim(K), there exists a Hilbert subspace $H_1 \subseteq (e^*(H))^{\perp} \cap H$ and a surjective isometry e_1 mapping H_1 to K_1 . Then, when e_1 is regarded as a tripotent in E it follows that $u = e + e_1$ is a tripotent in E satisfying $\varphi(u) = 1$ and u(H) = K.

Proposition 2.8. Let K be a finite dimensional subspace of a Hilbert space H. Let E = L(H, K) be a type 1 Cartan factor. Then for every couple of norm-one functionals $\varphi_1, \varphi_2 \in E_*$ there exists a norm-one functional $\varphi \in E_*$ satisfying

$$\|x\|_{\varphi_i} \le 2\sqrt{2} \|x\|_{\varphi},$$

for all $x \in E$, $i \in \{1, 2\}$.

Proof. Let p denote the orthogonal projection of H onto K. Let φ_1, φ_2 norm-one functionals in E_* . By Lemma 2.6 there are partial isometries $e_1, e_2 \in L(H)$ such that $pe_i = e_i \in E$ $(i \in \{1, 2\})$, orthonormal sequences $(\xi_n) \subset e_1^*(H)$ and $(\eta_n) \subset e_2^*(H)$, and sequences of non-negative real numbers (λ_n) and (μ_n) such that $\sum_{n \in \mathbb{N}} \lambda_n = \sum_{n \in \mathbb{N}} \mu_n = 1$,

$$\varphi_1(x) = \sum_{n \in \mathbb{N}} \lambda_n \ (x(\xi_n)|e_1(\xi_n)) \quad (\forall x \in E),$$
(10)

and

$$\varphi_2(x) = \sum_{n \in \mathbb{N}} \mu_n \ (x(\eta_n)|e_2(\eta_n)) \quad (\forall x \in E),$$
(11)

As a consequence, for each $x \in E$ we have

$$||x||_{\varphi_1}^2 = \sum_{n \in \mathbb{N}} \frac{\lambda_n}{2} \left(||x^*(e_1(\xi_n))||^2 + ||x(\xi_n)||^2 \right)$$
(12)

and

$$\|x\|_{\varphi_2}^2 = \sum_{n \in \mathbb{N}} \frac{\mu_n}{2} \left(\|x^*(e_2(\eta_n))\|^2 + \|x(\eta_n)\|^2 \right).$$
(13)

Let H_1 be the subspace of H generated by $e_1^*(H)$ and $e_2^*(H)$ and let p_1 be the orthogonal projection of H onto H_1 . Since K is finite dimensional and for each $i \in \{1, 2\}$, $e_i|_{e_i^*(H)} : e_i^*(H) \to e_i(H) \subseteq K$ is a surjective isometry, we conclude that H_1 is finite dimensional. Set $F = Ep_1 = pL(H)p_1$. Then Fis a finite dimensional JBW*-subtriple of E and $e_1, e_2 \in F$. Since $\|.\|_{\varphi_1,\varphi_2}|_F$ comes from a suitable separately weak*-continuous positive sesquilinear form (.|.) on F given by the equality $\|x\|_{\varphi_1,\varphi_2}^2 := (x|x)$, it follows from the proof of [19, Corollary] that there exists a weak*-continuous linear operator T from F to a Hilbert space satisfying $\|T(x)\| = \|x\|_{\varphi_1,\varphi_2}$ for each $x \in F$. Since F is finite dimensional, it follows from Remark 2.2 that there exists a norm-one functional $\varphi \in F_* \subseteq E_*$ satisfying

$$\|y\|_{\varphi_1,\varphi_2}^2 \le 2\|y\|_{\varphi}^2,\tag{14}$$

for all $y \in F$. Let e be a tripotent in F such that $\varphi(e) = 1$. We note that $F_2(e) = E_2(e)$ and $ep_1 = e$. We may also assume $ee^* = p$ (see Remark 2.7).

Write $q_1 = 1 - p_1$. Then $E = F \oplus Eq_1$. Let $z_3 \in Eq_1$. Since $\{z_3, z_3, e\}$ is a positive element in the von Neumann algebra $(E_2(e), \bullet_e, \sharp_e)$ (the latter is defined in the proof of 2.6), then there exists $y \in E_2(e)$ satisfying $y^{\sharp_e} = y$ and $\{z_3, z_3, e\} = y \bullet_e y$. From the equality $y^{\sharp_e} = ey^*e = y$ we deduce that $ye^* = ey^*$, $e^*y = y^*e$ and hence $\{y, y, e\} = yy^*e = \{z_3, z_3, e\} = yy^*e = \frac{1}{2}z_3z_3^*e$. As a consequence we get $yy^* = yy^*ee^* = \frac{1}{2}z_3z_3^*ee^* = \frac{1}{2}z_3z_3^*$, and

$$\|y\|_{\varphi} = \|z_3\|_{\varphi}$$

It follows from (14) that

$$2\|z_3\|_{\varphi}^2 = 2\|y\|_{\varphi}^2 \ge \|y\|_{\varphi_i}^2 \quad (1 \le i \le 2).$$

We compute now the right hand side of the above inequality. From (10) and (11) it is easily seen that $\varphi_i(e_i y^* y) \ge 0$ for all $i \in \{1, 2\}$. Thus

$$2\|z_3\|_{\varphi}^2 = 2\|y\|_{\varphi}^2 \ge \|y\|_{\varphi_i}^2 = \varphi_i \{y, y, e_i\} = \frac{1}{2}\varphi_i(yy^*e_i + e_iy^*y)$$
$$\ge \frac{1}{2}\varphi_i(yy^*e_i) = \frac{1}{4}\varphi_i(z_3z_3^*e_i) = \frac{1}{2}\varphi_i \{z_3, z_3, e_i\} = \frac{1}{2}\|z_3\|_{\varphi_i}^2.$$

Therefore, for each $z_3 \in Eq_1$ and $i \in \{1, 2\}$ we get

$$\|z_3\|_{\varphi_i}^2 \le 4\|z_3\|_{\varphi}^2 \tag{15}$$

Finally, let $x \in E$. Then $x = y + z_3$ for suitable $y \in F$ and $z_3 \in Eq_1$. From (14) and (15) we obtain:

$$\|x\|_{\varphi_i} \le \|y\|_{\varphi_i} + \|z_3\|_{\varphi_i} \le 2 \left(\|y\|_{\varphi} + \|z_3\|_{\varphi}\right) \le 2\sqrt{2} \sqrt{\|y\|_{\varphi}^2 + \|z_3\|_{\varphi}^2},$$

for all $i \in \{1, 2\}$. Since $ez_3^* = ep_1q_1z_3^* = 0 = yz_3^*$ we deduce that

$$\varphi\{z_3, y, e\} = \overline{\varphi\{y, z_3, e\}} = \varphi(0) = 0$$

and hence

$$||x||_{\varphi}^{2} = ||y||_{\varphi}^{2} + ||z_{3}||_{\varphi}^{2},$$

which implies

 $\|x\|_{\varphi_i} \le 2\sqrt{2} \|x\|_{\varphi},$

for all $i \in \{1, 2\}$.

The following corollary shows that every rectangular type 1 Cartan factor satisfies the Little Grothendieck's inequality.

Corollary 2.9. Let E = L(H, K) be a type 1 Cartan factor with $dim(H) \ge dim(K)$. Then for every complex Hilbert space \mathcal{H} and every weak*-continuous linear operator $T : E \to \mathcal{H}$ there exists a norm-one functional $\varphi \in E_*$ satisfying

$$||T(x)|| \le 8 ||T|| ||x||_{\varphi},$$

for all $x \in E$

Proof. When H and K are finite dimensional then E is finite dimensional and hence Remark 2.2 gives the desired conclusion. If H and K are infinite dimensional then the statement follows from Proposition 2.3. Finally, if H is infinite dimensional and K is finite dimensional the conclusion follows from Remark 2.5 and Proposition 2.8.

We have already proved the Little Grothendieck's inequality in the particular case of a finite dimensional Cartan factor (see Remark 2.2) and in the case of a rectangular Cartan factor (Corollary 2.9). We shall discuss now the remaining Cartan factors.

Let J be a JB*-triple. We recall that a tripotent $u \in J$ is said to be unitary if L(u, u) coincides with the identity operator on J. In this case $J = J_2(u)$ and hence J is a JB*-algebra with product and involution given by $x \circ y = \{x, u, y\}$ and $x^* = \{u, x, u\}$, respectively. When E is a JBW*triple with a unitary element u then E is a JBW*-algebra with respect to the product and involution given above. We can now rephrase [16, Theorem 4] as follows.

Proposition 2.10. Let M > 2 and let E be a JBW*-triple with a unitary element u. Then for every complex Hilbert space and every weak*-continuous linear operator $T : E \to H$ there exists a norm-one functional $\varphi \in E_*$ such that

$$||T(x)|| \le M ||T|| ||x||_{\varphi},$$

for all $x \in E$.

Proof. Let T be a weak*-continuous linear operator from E to a complex Hilbert space. Since E contains a unitary element u, then E is a JBW*-algebra with product and involution given by $x \circ y = \{x, u, y\}$ and $x^* = \{u, x, u\}$, respectively. By [16, Theorem 4], there exists a norm-one positive linear functional $\varphi \in E_*$ such that

$$||T(x)|| \le M ||T|| (\varphi(x \circ x^*))^{\frac{1}{2}},$$

for all $x \in E$. Since φ is norm-one and positive then $\varphi(u) = 1 = \|\varphi\|$, and hence for each $x \in E$ we have $\|x\|_{\varphi}^2 = \varphi\{x, x, u\} = \varphi(x \circ x^*)$, which completes the proof.

Let S be a spin factor and let u be a norm-one element in S satisfying $u = \overline{u}$. It is easily seen that L(u, u) coincides with the identity operator on S and hence u is a unitary element in S. It is also known that every Cartan factor of type 1 with dim $(H) = \dim(K)$, every Cartan factor of type 2 with dim(H) even, or infinite, every Cartan factors of type 3 and every type 6 Cartan factor contains a unitary element (see for instance [12, Proposition 2]). As a consequence, we can assure that when C is one of the above Cartan factors and Ω is a hyperstonean compact Hausdorff space then $C(\Omega, C)$ is a JBW*-triple containing a unitary element.

Corollary 2.11. Let $E = C(\Omega, C)$, where Ω is a hyperstonean Hausdorff space and C is a Cartan factor of type 1 with with $\dim(H) = \dim(K)$, or a Cartan factor of type 2 with $\dim(H)$ even, or infinite, or a Cartan factors of type 3, or a spin factor, or a type 6 Cartan factor. Let M > 2. Then for every complex Hilbert space and every weak*-continuous linear operator $T: E \to H$ there exists a norm-one functional $\varphi \in E_*$ such that

$$||T(x)|| \le M ||T|| ||x||_{\varphi}$$

for all $x \in E$.

The next theorem shows that the family of all JBW*-triples satisfying the Little Grothendieck's inequality is stable by ℓ_{∞} -sums.

Theorem 2.12. Let M > 0. Let $\{E_{\alpha}\}_{\alpha \in \Lambda}$ be a family of JBW^* -triples such that for every $\alpha \in \Lambda$ and every weak*-continuous linear operator T from E_{α} to a complex Hilbert space H there exists a norm-one functional $\varphi_{\alpha} \in (E_{\alpha})_*$ satisfying that

$$||T(x)|| \le M ||T|| ||x||_{\varphi_{\alpha}},$$
(16)

for all $x \in E_{\alpha}$. Let $E = \bigoplus_{\alpha \in \Lambda}^{\ell_{\infty}} E_{\alpha}$. Then for every complex Hilbert space \mathcal{H} and every weak*-continuous linear operator $T : E \to \mathcal{H}$ there exists a norm-one functional $\varphi \in E_*$ such that

$$||T(x)|| \le 4\sqrt{2} M ||T|| ||x||_{\varphi},$$

for all $x \in E$.

Proof. By [16, Remark 3] (see also Remark 2.5 above) it suffices to prove that for every pair (φ_1, φ_2) of norm-one functionals in $E_* \times E_*$ there exists a norm-one functional $\varphi \in E_*$ satisfying

$$||x||_{\varphi_1,\varphi_2} \le 2M ||x||_{\varphi},$$

for all $x \in E$. Let φ_1, φ_2 norm-one functionals in $E_* = \bigoplus_{\alpha \in \Lambda}^{\ell_1} (E_\alpha)_*$. Then there are countably subsets $\Lambda_1, \Lambda_2 \subseteq \Lambda$ such that

$$\varphi_1 = \sum_{\alpha \in \Lambda_1} \mu_\alpha \phi_\alpha^1$$
, and $\varphi_2 = \sum_{\alpha \in \Lambda_2} \nu_\alpha \phi_\alpha^2$.

where $(\mu_{\alpha}) \in \ell_1(\Lambda_1)$, $(\nu_{\alpha}) \in \ell_1(\Lambda_2)$, $\mu_{\alpha}, \nu_{\alpha} \ge 0$, ϕ_{α}^j are norm-one elements in $(E_{\alpha})_* \forall j : 1, 2, \forall \alpha$ and $\|\varphi_1\| = \sum_{\alpha \in \Lambda_1} \mu_{\alpha}$ and $\|\varphi_2\| = \sum_{\alpha \in \Lambda_2} \nu_{\alpha}$.

Let $I = \Lambda_1 \cap \Lambda_2$, $I_1 = (\Lambda \setminus \Lambda_2) \cap \Lambda_1$ and $I_2 = (\Lambda \setminus \Lambda_1) \cap \Lambda_2$. By hypothesis and [16, Remark 3] it follows that for each $\alpha \in I$ there exists a norm-one functional $\psi_{\alpha} \in (E_{\alpha})_*$ such that

$$\|x\|_{\varphi_1,\varphi_2} \le \sqrt{2}M \ \|x\|_{\psi_\alpha},$$

for all $x \in E_{\alpha}$. Let φ be the norm-one functional in E_* defined by

$$\varphi := \sum_{\alpha \in I} \frac{\mu_{\alpha} + \nu_{\alpha}}{2} \ \psi_{\alpha} + \sum_{\alpha \in I_1} \frac{\mu_{\alpha}}{2} \ \phi_{\alpha}^1 + \sum_{\alpha \in I_2} \frac{\nu_{\alpha}}{2} \ \phi_{\alpha}^2.$$

It is not hard to see that in this case

$$\|x\|_{\varphi_1,\varphi_2} \le 2M \ \|x\|_{\varphi},$$

for all $x \in E$, which proves the theorem.

Let e be a tripotent in a JB*-triple J. When $J_2(e) = \mathbb{C}e$ we say that e is a minimal tripotent. A JBW*-triple E is called *atomic* if E coincides with the weak*-cosed ideal generated by all its minimal tripotents. From [7, Proposition 2] it follows that every atomic JBW*-triple coincides with an ℓ_{∞} -sum of Cartan factors.

Theorem 2.13. Let E be an atomic JBW*-triple. Then for every weak*continuous linear operator T from E to a complex Hilbert space there exists a norm-one functional $\varphi \in E_*$ satisfying

$$||T(x)|| \le 32\sqrt{2} ||T|| ||x||_{\varphi},$$

for all $x \in E$.

Proof. Let E be an atomic JBW*-triple. We have already commented that E admits a decomposition in the form $\bigoplus^{\ell_{\infty}} C_{\alpha}$, where each C_{α} is a Cartan factor. If we prove that each factor C_{α} satisfies the hypothesis of Theorem 2.12 for M = 8, then the assertion will follow from the just quoted theorem.

Let $T: C_{\alpha} \to \mathcal{H}$ be a weak*-continuous linear operator from C_{α} to a complex Hilbert space. If C_{α} is a type 1 Cartan factor with dim(H) >dim (K), then Corollary 2.9 assures the existence of a norm-one functional $\varphi_{\alpha} \in (C_{\alpha})_*$ satisfying inequality (16) for M = 8. If C_{α} is a Cartan factor of type 1 with with dim(H) = dim(K), or a Cartan factor of type 2 with dim(H)even, or infinite, or a Cartan factors of type 3, or a type 6 Cartan factor, then 2.11 gives the existence of a norm-one functional $\varphi_{\alpha} \in (C_{\alpha})_*$ satisfying (16) for M > 2. Finally, if C_{α} is finite dimensional, then it follows from Remark 2.2 that there exists a norm-one functional $\varphi_{\alpha} \in (C_{\alpha})_*$ satisfying (16) for $M = \sqrt{2}$.

Let E be a JB*-triple. We have already mentioned that E^{**} is a JBW*-triple. From [6, Theorems 1 and 2] it follows that E^{**} and E^* admit the following decompositions:

$$E^{**} = A \oplus^{\infty} N$$
$$E^* = A_* \oplus^{\ell_1} N_*,$$

and

where A is the weak*-closed ideal of E^{**} generated by all minimal tripotents of E^{**} , N contains no minimal tripotents, A_* is the predual of A and coincides with the norm closure of the linear span of the extreme points of the closed unit ball of E^* , and the closed unit ball of N_* contains no extreme points. A is called the atomic part of E^{**} . Moreover, by [7, Proposition 2] we conclude that A is an ℓ_{∞} -sum of Cartan factors.

Corollary 2.14. Let E be a JB^* -triple and let A denote the atomic part of E^{**} . Then for every pair (φ_1, φ_2) of norm-one functionals in $A_* \subseteq E^*$, there exists a norm-one functional $\varphi \in A_* \subseteq E^*$ satisfying

$$\|x\|_{\varphi_1,\varphi_2} \le 32 \sqrt{2} \ \|x\|_{\varphi_1}$$

for all $x \in E$.

Proof. Let (φ_1, φ_2) be a couple of norm-one functionals in $A_* \subseteq E^*$. By Theorem 2.13 there exists a norm-one functional $\varphi \in A_*$ satisfying

$$\|z\|_{\varphi_1,\varphi_2} \le 32 \sqrt{2} \|z\|_{\varphi},\tag{17}$$

for all $z \in A$.

Let *i* denote the canonical embedding of *E* in its bidual and let π be the natural projection of E^{**} onto *A*. From the proof of [7, Proposition 1] we deduce that $\pi \circ i$ is a triple embedding of *E* into *A*. Let ϕ be a norm-one functional in A_* . ϕ can be also regarded as a norm-one element in E^* . Since ϕ attains its norm at a tripotent in *A*, it is not hard to see that for each $x \in E$ we have

$$\|\pi \circ i(x)\|_{\phi} = \|x\|_{\phi}.$$

The conclusion of the corollary follows now from the above expression and inequality (17). $\hfill \Box$

From the last part of Remark 2.5 and Theorem 2.13 we derive the following Grothendieck's Theorem for atomic JBW*-triples.

Theorem 2.15. Let V and W be atomic JBW*-triples. Then for every separately weak*-continuous bilinear form U on $V \times W$, there are norm-one functionals $\varphi \in V_*$, and $\psi \in W_*$ satisfying

$$|U(x,y)| \le 2^{11} (1+2\sqrt{3}) ||U|| ||x||_{\varphi} ||y||_{\psi}$$

for all $(x, y) \in V \times W$.

References

- Barton, T. and Friedman, Y.: Grothendieck's inequality for JB*-triples and applications, J. London Math. Soc. (2) 36, 513-523 (1987).
- [2] Barton, T. and Timoney, R. M.: Weak*-continuity of Jordan triple products and its applications, *Math. Scand.* 59, 177-191 (1986).
- [3] Chu, C-H., Iochum, B., and Loupias, G.: Grothendieck's theorem and factorization of operators in Jordan triples, *Math. Ann.* 284, 41-53 (1989).
- [4] S. Dineen, The second dual of a JB*-triple system, In: Complex analysis, functional analysis and approximation theory (ed. by J. Múgica), 67-69, (North-Holland Math. Stud. 125), North-Holland, Amsterdam-New York, 1986.
- [5] Edwards, C. M.: On Jordan W*-algebras, Bull. Sci. Math. (2) 104, 393-403 (1980).
- [6] Friedman, Y. and Russo, B.: Structure of the predual of a JBW*-triple, J. Reine u. Angew. Math. 356, 67-89 (1985).
- [7] Friedman, Y. and Russo B.: The Gelfand-Naimark Theorem for JB*triples, *Duke Math. J.* 53, 139-148 (1986).
- [8] Grothendieck, A.: Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. Sao Paolo 8, 1-79 (1956).
- [9] Haagerup, U.: Solution of the similarity problem for cyclic representations of C*-algebras, Ann. of Math. 118, 215-240 (1983).
- [10] Haagerup, U.: The Grothendieck inequality for bilinear forms on C*algebras, Avd. Math. 56, 93-116 (1985).
- [11] Hanche-Olsen, H. and Størmer, E.: Jordan operator algebras, Monographs and Studies in Mathematics 21, Pitman, London-Boston-Melbourne 1984.
- [12] Ho, T., Martínez-Moreno J., Peralta, A. M. and Russo, B.: Derivations on real and complex JB*-triples, J. London Math. Soc. (2) 65, 85-102 (2002).

- [13] Kaup, W.: Über die Klassifikation der symmetrischen hermiteschen Mannigfaltigkeiten unendlicher Dimension. I, Math. Ann. 257, no. 4, 463–486 (1981).
- [14] Kaup, W.: A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, *Math. Z.* 183, 503-529 (1983).
- [15] Peralta, A. M.: Little Grothendieck's theorem for real JB*-triples, Math. Z., 237, no. 3, 531-545 (2001).
- [16] Peralta, A. M. and Rodríguez Palacios, A.: Grothendieck's inequalities for real and complex JBW*-triples, *Proc. London Math. Soc.* (3) 83, no. 3, 605–625 (2001).
- [17] Peralta, A. M. and Rodríguez Palacios, A.: Grothendieck's inequalities revisited, *Recent progress in functional analysis (Valencia, 2000)*, 409– 423, North-Holland Math. Stud., 189, North-Holland, Amsterdam, 2001.
- [18] Pisier, G.: Grothendieck's theorem for non commutative C*-algebras with an appendix on Grothendieck's constant, J. Funct. Anal. 29, 397-415 (1978).
- [19] Rodríguez A.: On the strong* topology of a JBW*-triple, Quart. J. Math. Oxford (2) 42, 99-103 (1989).
- [20] Sakai, S.: C*-algebras and W*-algebras, Springer-Verlag, Berlin 1971.
- [21] Wright, J. D. M.: Jordan C*-algebras, Michigan Math. J. 24, 291-302 (1977).