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Abstract

1 Introduction

The results known as Grothendieck’s inequalities began with the famous
paper [8] in which A. Grothendieck proved the so-called “Grothendieck’s
inequalities” for commutative C*-álgebras. These inequalities were general-
ized by G. Pisier [18] and U. Haagerup [10, 9] to the setting of C*-algebras.

Every C*-algebra belongs to a more general class of Banach spaces known
as JB*-triples (see definition and examples below). JB*-triples were intro-
duced by Kaup [14] in the study of bounded symmetric domains in complex
Banach spaces. The class of JB*-triples has been intensively developed in
the last twenty years. In the setting of JB*-triples, Grothendieck’s ine-
qualities were studied by T. Barton and Y. Friedman [1], C.-H. Chu, B.
Iochum and G. Loupias [3], A. M. Peralta [15] and A. M. Peralta and A.
Rodŕıguez Palacios [16, 17].

The natural prehilbertian seminorms associated derived from states in a
C*-algebra do not make sense in a JB*-triple because the latter needs not
have, in general, a natural order structure. In the setting of JB*-triples, the
prehilbertian seminorms associated to norm-one functionals are constructed
as follows: Let ϕ be a norm-one element in the dual space of a JB*-triple
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E. Let z be a norm-one element in E (or in E∗∗) such that ϕ(z) = 1.
By [1, Proposition 1.2] the mapping (x, y) 7→ ϕ {x, y, z} defines a positive
sesquilinear form on E which does not depend on the element z. Thus the
law x 7→ ‖x‖ϕ := (ϕ {x, x, z})

1
2 (x ∈ E) defines a prehilbert seminorm on E.

The main contribution of [15, 16] is the discovery that some technical
result from the Banach space geometry on weak*-continuous bilinear forms
is not true (see [16, Example 1 and comments before]). Therefore, pre-
viously published results on Grothendieck’s inequalities for JB*-triples in
[1, 3] cannot be considered fully proved. In the amendment provided in
[16, Coroolaries 1 and 7] it is shown that the assertions in [1, Theorems 1.3
and 1.4] remains true when the seminorms of the form ‖.‖ϕ are replaced by

seminorms of the form ‖x‖ϕ1,ϕ2 =
√
‖x‖2

ϕ1
+ ‖x‖2

ϕ2
. More precisely, there

exists a universal constant M > 0 such that for every pair of JB*-triples
(E,F ) and every bounded bilinear form V on E × F there exist norm-one
functionals ϕ1, ϕ2 ∈ E∗ and ψ1, ψ2 ∈ F ∗ satisfying

|V (x, y)| ≤M ‖V ‖ ‖x‖ϕ1,ϕ2 ‖y‖ψ1,ψ2 (1)

for all (x, y) ∈ E × F . However, until this moment we do not know a
counterexample to the version of Grothendieck’s inequality for JB*-triples
established by Barton and Friedman. Therefore, it is natural to ask whether
the seminorms of the form ‖x‖ϕ1,ϕ2 appearing in (1) can be replaced by
seminorms of the form ‖x‖ϕ, as it is established in [1]. More concretely, let
G denote the set of all bounded bilinear forms V on E × F such that there
exist norm-one functionals ϕ ∈ E∗ and ψ ∈ F ∗ satisfying

|V (x, y)| ≤M ‖V ‖ ‖x‖ϕ ‖y‖ψ,

for all (x, y) ∈ E×F . Although it is known that G is norm-dense in L(2(E×
F )), the space of all bounded bilinear forms on E×F (see [16, Theorem 1]),
we do not know if G coincides or not with whole space L(2(E × F )).

When E and F are JBW*-triples (JB*-triples which are dual Banach
spaces) and the bilinear form ia assumed to be separately weak*-continuous
it seems natural to request that the functionals appearing in (1) belong to
the preduals of E and F, respectively.

In the present paper we present a big class of JB*-triples where the above
problem have a positive answer. We shall show that this class includes all
Cartan factors and all atomic JBW*-triples.

Let X and Y be Banach spaces. Throughout the paper, L(X,Y ) will
stand for the Banach space of all bounded linear operators from X to Y .
We usually write L(X) instead of L(X,X).
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A JB*-triple is a complex Banach space E equipped with a continuous
triple product

{., ., .} : E ⊗ E ⊗ E → E

(x, y, z) 7→ {x, y, z}

which is bilinear and symmetric in the outer variables and conjugate linear
in the middle one and satisfies:

(a) (Jordan Identity)

L(x, y)L(a, b)− L(a, b)L(x, y) = L(L(x, y)a, b)− L(a, L(y, x)b),

for all x, y, a, b ∈ E, where L(x, y) : E → E is the linear mapping
given by L(x, y)z = {x, y, z};

(b) The map L(x, x) is an hermitian operator with non-negative spectrum
for all x ∈ E;

(c) ‖ {x, x, x} ‖ = ‖x‖3 for all x ∈ E.

Every C∗-algebra is a JB∗-triple with respect to the triple product

{x, y, z} = 2−1(xy∗z + zy∗x).

Every JB∗-algebra is a JB∗-triple with triple product given by

{a, b, c} = (a ◦ b∗) ◦ c+ (c ◦ b∗) ◦ a− (a ◦ c) ◦ b∗.

The (classical) Cartan factors constitute and interesting variety of exam-
ples of JB*-triples. Cartan factors are defined as follows (see [13] for more
details): Let H and K be complex Hilbert spaces. A type 1 Cartan factor
is a JB*-triple of the form L(H,K) with operator norm and triple product
defined by

{x, y, z} =
1
2
(xy∗z + zy∗x). (2)

Let j : H → H be a conjugation (conjugate linear isometry of period 2) on
H. For each x ∈ L(H) we define xt = jx∗j. The the law x 7→ xt defines
linear isometry of period 2 on L(H). Sn := {x ∈ L(H) : xt = −x} with
product (2) and operator norm is a Cartan factor of type 2 or of symplectic
type and Hn := {x ∈ L(H) : xt = x} with product (2) and operator norm is
a Cartan factor of type 3 or of symplectic type.

3



A type-4 Cartan factor, (also called spin factor) is a complex Hilbert
space provided with a conjugation x 7→ x, triple product

{x, y, z} = (x|y) z + (z|y)x− (x|z̄) ȳ,

and norm given by ‖x‖2 = (x|x) +
√

(x|x)2 − | (x|x) |2.
The type 6 Cartan factor is the space H3(O) of all 3 × 3 hermitian

matrices over the complex Cayley algebra O with product

{x, y, z} = (x ◦ y∗) ◦ z + (z ◦ y∗) ◦ x− (x ◦ z) ◦ y∗, (3)

where a ◦ b = 1
2(ab + ba). The type 5 Cartan factor consists of all 1 by 2

matrices over O and can be regarded as a JB*-subtriple of the Cartan factor
of type 6.

A JBW*-triple is a JB*-triple which is also a dual Banach space. The
bidual of a JB*-triple is a JBW*-triple with respect to a triple product
extending the one of E [4]. Every JBW*-triple has a unique predual and its
triple product is separately weak* continuous [2].

Let E be a JB*-triple. An element e ∈ E is said to be a tripotent if
{e, e, e} = e. The set of all tripotents of E is denoted by Tri(E). Given a
tripotent e ∈ E there exist a decomposition of E in terms of the eigenspaces
of L(e, e) given by

E = E0(e)⊕ E1(e)⊕ E2(e), (4)

where Ek(e) := {x ∈ E : L(e, e)x = k
2x} is a subtriple of E (k : 0, 1, 2). The

natural projection of E onto Ek(e) will be denoted by Pk(e). The following
rules are also satisfied

{Ek(e), El(e), Em(e)} ⊆ Ek−l+m(e),

{E0(e), E2(e), E} = {E2(e), E0(e), E} = 0,

where Ek−l+m(e) = 0 whenever k − l + m is not in {0, 1, 2}. It is also
known that E2(e) is a unital JB∗-algebra with respect to the product and
involution given by x ◦ y = {x, e, y} and x∗ = {e, x, e} , respectively. When
E is a JBW*-triple then E2(e) is a JBW*-algebra.

For background about JB- and JBW-algebras the reader is referred to
[11]. We recall that JB-algebras (respectively, JBW-algebras) are nothing
but the self-adjoint parts of JB*-algebras (respectively, JBW*-algebras) [21]
(respectively, [5]).

4



2 Grothendieck’s Inequalities

The natural strategy to approach Grothendieck’s inequalities in the setting
of JB*-triples is based on the study of the so called “Little Grothendieck’s
Theorem” for JB*-triples. The results in [16] provide a new approach to
Grothendieck’s inequalities for JB*-triples, which allows us to avoid some
difficulties in the proofs of [1, Theorems 1.3 and 1.4] and [3, Proposi-
tion 4, Theorem 6]. In [16, Corollary 1] it is proved the following Little
Grothendieck’s Theorem:

Theorem 2.1. Let W be a complex JBW*-triple and T a weak*-continuous
linear operator from W to a complex Hilbert space. Then there exist norm-
one functionals ϕ1, ϕ2 ∈ W∗ such that, for every x ∈ W, we have

‖T (x)‖ ≤ 2‖T‖‖x‖ϕ1,ϕ2 .

2

The question if in the above Theorem we can replace the seminorm
‖.‖ϕ1,ϕ2 by a seminorm of the form ‖.‖ϕ remains open. The aim of this
section is to give an affirmative answer to the above question in the case of
an atomic JBW*-triple.

Remark 2.2. Let E be a finite dimensional JB*-triple and let T be a
bounded linear operator from E to a complex Hilbert space H. Since T
attains its norm we conclude from [16, Lemma 3] that there exists a norm-
one functional ϕ ∈ E∗ satisfying

‖T (x)‖ ≤
√

2 ‖T‖ ‖x‖ϕ,

for all x ∈ E.

Let H and K be Hilbert spaces. Let h in H and k in K we denote by
k ⊗ h the element in L(H,K) given by k ⊗ h(x) := (x|h)k (x ∈ H).

Proposition 2.3. Let H be a complex Hilbert space and let p be a projection
in L(H). Suppose that p(H) = K is infinite dimensional. Let E = L(H,K)
be the JBW*-subtriple of L(H) of all bounded linear operators from H to
K. Then for every normal state φ ∈ L(H)∗ there exists a norm-one element
ϕ ∈ E∗ satisfying

‖x‖φ ≤
√

6 ‖x‖ϕ
for all x ∈ E.
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Proof. Let φ be a normal state of L(H). Write q = 1 − p. Let x ∈ L(H).
By the Cauchy-Schwarz inequality we deduce that

|φ(px∗xq)|2 = |φ(qx∗xp)|2 ≤ φ(px∗xp) φ(qx∗xq),

which implies that

φ(x∗x) = φ(px∗xp) + φ(px∗xq) + φ(qx∗xp) + φ(qx∗xq)

≤ φ(px∗xp)+φ(qx∗xq)+2
√
φ(px∗xp) φ(qx∗xq) ≤ 2(φ(px∗xp)+φ(qx∗xq)).

Write ϕ1(x) := φ(pxp) and ϕ2(x) := φ(qxq). Then ϕ1 and ϕ2 are pos-
itive normal functionals of L(H), ‖ϕ1‖ + ‖ϕ2‖ = ϕ1(1) + ϕ2(1) = φ(1),
ϕ1(p) = ϕ1(1), ϕ2(q) = ϕ2(1), and for every positive element y ∈ L(H) we
have

φ(y) ≤ 2(ϕ1(y) + ϕ2(y)). (5)

Since ϕ1 is a positive normal functional of pL(H)p, it follows that

ϕ1(x) :=
∑
n∈N

λn(x(ηn)|ηn) (x ∈ L(H)), (6)

where (ηn) is an orthonormal sequence in p(H) = K and (λn) is a sequence
of non-negative real numbers with

∑
n∈N λn = ‖ϕ1‖ = ϕ1(1) (compare [20,

Corollary 1.15.4]). Analogously we deduce that

ϕ2(x) :=
∑
n∈N

µn(x(ξn)|ξn) (x ∈ L(H)), (7)

where (ξn) is an orthonormal sequence in p(H) = K and (µn) is a sequence
of non-negative real numbers with

∑
n∈N µn = ‖ϕ2‖ = ϕ2(1).

If ‖ϕ2‖ = 0 then φ = ϕ1 is a norm-one element in (pL(H)p)∗ = (Ep)∗ ⊆
E∗, which gives the desired conclusion for ϕ = φ.

If ‖ϕ1‖ = 0 then φ = ϕ2 is a normal state of qL(H)q. Since p(H) = K is
infinite dimensional we can choose an orthonormal sequence (νn) in K. Let
φ be the norm-one functional in E∗ defined by

ϕ(x) =
∑
n∈N

µn(x(ξn)|νn) (x ∈ E).
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Let us denote by e the tripotent in E given by e =
∑

n∈N νn ⊗ ξn. Let x be
an arbitrary element in E. Since ϕ(e) = 1 and φ(q) = 1, we deduce that

‖x‖2
ϕ = ϕ {x, x, e} =

1
2
ϕ(xx∗e+ ex∗x) =

∑
n∈N

µn
2

((xx∗e+ ex∗x)(ξn)|νn)

=
∑
n∈N

µn
2

(
‖x∗(νn)‖2 + ‖x(ξn)‖2

)
and

‖x‖2
φ = φ {x, x, q} =

1
2
φ(xx∗q + qx∗x) =

1
2
φ(qx∗x)

=
∑
n∈N

µn
2

((qx∗x)(ξn)|ξn) =
∑
n∈N

µn
2

(
‖x(ξn)‖2

)
.

From the above expressions we see that

‖x‖2
φ ≤ ‖x‖2

ϕ,

for all x ∈ E.
Finally we assume ‖ϕ1‖, ‖ϕ2‖ 6= 0. Set φi := ‖ϕi‖−1 ϕi (1 ≤ i ≤ 2) and

φ̃ = 2−1(ϕ1 + ϕ2). It is clear that φ̃ is a normal state of L(H). Since for
each x ∈ E, {x, x, 1} is a positive element in L(H), we conclude from (5)
that the inequality

‖x‖2
φ = φ {x, x, 1} ≤ 2(φ1 + φ2) {x, x, 1} = 4φ̃ {x, x, 1} = 4‖x‖2

φ̃
(8)

holds for each x ∈ E. From (6) and (7) we see that the expression

‖x‖2
φ̃

= φ̃ {x, x, 1} =
1
2
φ̃(xx∗ + x∗x)

=
∑
n∈N

( λn
4‖ϕ1‖

(
‖x∗(ηn)‖2 + ‖x(ηn)‖2

)
+

µn
4‖ϕ2‖

‖x(ξn)‖2
)
, (9)

holds for all x ∈ E.
Let ϕ be the norm-one functional in E∗ given by

ϕ(x) =
∑
n∈N

δn(x(ξ
′
n)|ηn) (x ∈ E),

where (ξ
′
n) is the orthonormal sequence in H defined by ξ

′
2k = ηk and

ξ
′
2k−1 = ξk (∀k ∈ N), and (δn) is the sequence in R+

0 given by δ2k = λ2k+λk
3 ‖ϕ1‖
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and δ2k−1 = µk ‖ϕ2‖−1+λ2k−1 ‖ϕ1‖−1

3 (∀k ∈ N). It is not hard to check
from the above definition that 3δ2n ≥ λn ‖ϕ1‖−1, 3δ2n−1 ≥ µn ‖ϕ2‖−1,
3δn ≥ λn

‖ϕ1‖ , and
∑

n∈N δn = 1. Set e =
∑

n∈N ηn ⊗ ξ
′
n ∈ E. It is easy to see

that ϕ(e) = 1. Thus, for each x ∈ E we get

‖x‖2
ϕ = ϕ {x, x, e} =

∑
n∈N

δn
2
‖x∗(ηn)‖2+

∑
n∈N

δ2n−1

2
‖x(ξn)‖2+

∑
n∈N

δ2n
2
‖x∗(ηn)‖2.

From (8), (9) and the above expression we deduce that

‖x‖2
φ ≤ 4‖x‖2

φ̃
≤ 6 ‖x‖2

ϕ,

for all x ∈ E.

Corollary 2.4. Let E = L(H,K) be a type 1 Cartan factor with H and K
infinite dimensional and let H be a complex Hilbert space. Then for every
weak*-continuous linear operator T from E to H there exists a norm-one
functional ϕ ∈ E∗ satisfying

‖T (x)‖ ≤ 2
√

3 ‖T‖ ‖x‖ϕ,

for all x ∈ E.

Proof. Since L(H,K) and L(K,H) are triple isomorphic we may assume
that K is a Hilbert subspace of H. Let p be a projection in L(H) such that
p(H) = K. Let T : E → H be a weak*-continuous linear operator. The law
z 7→ T (pz) defines a weak*-continuous linear operator T̃ from L(H) to H
which satisfies T̃ (x) = T (x) for all x ∈ E. By [10, Proposition 2.3] (see also
[16, Remark 1]) there exists a normal state φ ∈ L(H)∗ satisfying

‖T̃ (z)‖ ≤
√

2 ‖T‖ ‖z‖φ,

for all z ∈ L(H). From Proposition 2.3 it follows that there exists a norm-
one functional ϕ ∈ E∗ satisfying

‖x‖φ ≤
√

6 ‖x‖ϕ,

for all x ∈ E. Therefore

‖T (x)‖ ≤ 2
√

3 ‖T‖ ‖x‖ϕ,

for all x ∈ E.
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The case of a type 1 Cartan factor E = L(H,K) with dim(K) finite will
need an special development.

Remark 2.5. Let E be a JBW*-triple. From [16, Remark 3, (i) ⇔ (iii)] it
follows that the following assertions are equivalent:

(a) There is a universal constant G such that, for every couple (ϕ1, ϕ2) of
norm-one functionals in E∗ × E∗, we can find a norm-one functional
ϕ ∈ E∗ satisfying

‖x‖ϕi ≤ G‖x‖ϕ
for every x ∈ E and i = 1, 2.

(b) There is a universal constant G̃ such that for every weak*-continuous
linear operator T from E to a complex Hilbert space, there exists a
norm-one functional ϕ ∈ E∗ satisfying

‖T (x)‖ ≤ G̃ ‖T‖ ‖x‖ϕ

for all x ∈W .

Moreover, in the implication (a) ⇒ (b) we can take G̃ = 2
√

2G. and in
(b) ⇒ (a) we can choose G =

√
2G̃ (compare [16, Corollary 1]).

Let V and W be JBW*-triples satisfying one of the above equivalent
statements. From [16, Remark 3 (ii) ⇔ (i)] (see also the proof of [16,
Theorem 6]), we deduce that there is a universal constant Ĝ = G̃2(1+2

√
3)

such that for every separately weak*-continuous bilinear form U on V ×W ,
there are norm-one functionals ϕ ∈ V∗, and ψ ∈W∗ satisfying

|U(x, y)| ≤ Ĝ ‖U‖ ‖x‖ϕ‖y‖ψ

for all (x, y) ∈ V ×W .

The following result describes the hilbertian semi-norms of the form ‖.‖ϕ
in a type 1 Cartan factor.

Let A be a C*-algebra with involution ∗. Let ◦ denote the natural Jordan
product on A defined by x ◦ y = 1

2(xy + yx). It is well known that A has
a JB*-algebra structure with respect to the product ◦, the involution ∗,
and the natural norm. The JB*-algebra (A, ◦, ∗) will be denoted by A+.
Moreover A+ is a JBW*-algebra whenever A is a von Neumann algebra. It
is also known that A+ and A has the same normal states.
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Lemma 2.6. Let E = L(H,K) be a type 1 Cartan factor. Suppose that
there exists a projection p ∈ L(H) with p(H) = K. Let ϕ be a norm-one
functional in E∗. Then there exists a partial isometry e ∈ L(H) such that
pe = e ∈ E, an orthonormal sequence (ξn) in e∗(H), and a sequence of
non-negative real numbers (λn) such that

∑
n∈N λn = 1 and

ϕ(x) =
∑
n∈N

λn (x(ξn)|e(ξn)),

for all x ∈ E. As a consequence, for each x ∈ E we have

‖x‖2
ϕ =

∑
n∈N

λn
2

(
‖x∗(e(ξn))‖2 + ‖x(ξn)‖2

)
.

Proof. It is immediate that every tripotent e ∈ E is also a tripotent in L(H),
since E = pL(H) is a JBW*-subtriple of L(H). Thus every tripotent e ∈ E
is a partial isometry e ∈ L(H) satisfying pe = e. Let e be a tripotent in
E. Then ee∗ = p1 and e∗e = q1 are projections in L(H) with p1 ≤ p and
e|e∗(H) : e∗(H) = p1(H) → e(H) = q1(H) is a surjective isometry. It is easy
to check that E2(e) = p1L(H)q1 = p1L(H)q1.

Let us denote by •e and ]e the product and involution on E2(e) given by

x •e y := xe∗y (x, y ∈ E2(e))

and
x]e = ex∗e (x ∈ E2(e)),

respectively. It is clear that (E2(e), •e, ]e) is a von Neumann algebra and
the mapping

E2(e) → L(e∗(H))

x 7→ e∗x

is a *-isomorphism from (E2(e), •e, ]e) to L(e∗(H)).
Let ϕ be a norm-one functional in E∗. By [6, Proposition 2], there exists

a tripotent e ∈ E such that ϕ = ϕP2(e) and ϕ|E2(e) is a positive normal
functional on the JBW*-algebra (E2(e), ◦, ∗) = (E2(e), •e, ]e)+. Therefore,
by [20, Corollary 1.15.4], there exists an orthonormal sequence (ξn) in e∗(H),
and a sequence of non-negative real numbers (λn) such that

∑
n∈N λn = 1

and
ϕ(x) =

∑
n∈N

λn (x(ξn)|e(ξn)),

for all x ∈ E2(e). Finally, the above expression remains valid for all x ∈ E,
since ϕ = ϕP2(e) and P2(e)(x) = ee∗xe∗e (∀x ∈ E).
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Remark 2.7. Let E = L(H,K) be a type 1 Cartan factor with dim(H) ≥
dim(K). Let ϕ be a norm-one element in the predual of E and let e be
the tripotent given in E given by Lemma 2.6 above. We claim that we
can always assume that ee∗ coincide with the orthogonal projection of H
onto K (i.e., ee∗(H) = e(H) = K). Indeed, from the above proposition we
deduce that there is an orthonormal sequence (ξn) in e∗(H), and a sequence
of non-negative real numbers (λn) such that

∑
n∈N λn = 1 and

ϕ(x) =
∑
n∈N

λn (x(ξn)|e(ξn)),

for all x ∈ E. If e(H) 6= K we write K1 = (e(H))⊥ ∩K. Since dim(H) ≥
dim(K), there exists a Hilbert subspace H1 ⊆ (e∗(H))⊥∩H and a surjective
isometry e1 mapping H1 to K1. Then, when e1 is regarded as a tripotent
in E it follows that u = e + e1 is a tripotent in E satisfying ϕ(u) = 1 and
u(H) = K.

Proposition 2.8. Let K be a finite dimensional subspace of a Hilbert space
H. Let E = L(H,K) be a type 1 Cartan factor. Then for every couple of
norm-one functionals ϕ1, ϕ2 ∈ E∗ there exists a norm-one functional ϕ ∈ E∗
satisfying

‖x‖ϕi ≤ 2
√

2 ‖x‖ϕ,

for all x ∈ E, i ∈ {1, 2}.

Proof. Let p denote the orthogonal projection of H onto K. Let ϕ1, ϕ2

norm-one functionals in E∗. By Lemma 2.6 there are partial isometries
e1, e2 ∈ L(H) such that pei = ei ∈ E (i ∈ {1, 2}), orthonormal sequences
(ξn) ⊂ e∗1(H) and (ηn) ⊂ e∗2(H), and sequences of non-negative real numbers
(λn) and (µn) such that

∑
n∈N λn =

∑
n∈N µn = 1,

ϕ1(x) =
∑
n∈N

λn (x(ξn)|e1(ξn)) (∀x ∈ E), (10)

and

ϕ2(x) =
∑
n∈N

µn (x(ηn)|e2(ηn)) (∀x ∈ E), (11)

As a consequence, for each x ∈ E we have

‖x‖2
ϕ1

=
∑
n∈N

λn
2

(
‖x∗(e1(ξn))‖2 + ‖x(ξn)‖2

)
(12)
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and

‖x‖2
ϕ2

=
∑
n∈N

µn
2

(
‖x∗(e2(ηn))‖2 + ‖x(ηn)‖2

)
. (13)

Let H1 be the subspace of H generated by e∗1(H) and e∗2(H) and let p1 be
the orthogonal projection of H onto H1. Since K is finite dimensional and
for each i ∈ {1, 2}, ei|e∗i (H) : e∗i (H) → ei(H) ⊆ K is a surjective isometry, we
conclude that H1 is finite dimensional. Set F = Ep1 = pL(H)p1. Then F
is a finite dimensional JBW*-subtriple of E and e1, e2 ∈ F . Since ‖.‖ϕ1,ϕ2 |F
comes from a suitable separately weak*-continuous positive sesquilinear form
(.|.) on F given by the equality ‖x‖2

ϕ1,ϕ2
:= (x|x), it follows from the proof of

[19, Corollary] that there exists a weak*-continuous linear operator T from
F to a Hilbert space satisfying ‖T (x)‖ = ‖x‖ϕ1,ϕ2 for each x ∈ F . Since F is
finite dimensional, it follows from Remark 2.2 that there exists a norm-one
functional ϕ ∈ F∗ ⊆ E∗ satisfying

‖y‖2
ϕ1,ϕ2

≤ 2‖y‖2
ϕ, (14)

for all y ∈ F . Let e be a tripotent in F such that ϕ(e) = 1. We note that
F2(e) = E2(e) and ep1 = e. We may also assume ee∗ = p (see Remark 2.7).

Write q1 = 1 − p1. Then E = F ⊕ Eq1. Let z3 ∈ Eq1. Since {z3, z3, e}
is a positive element in the von Neumann algebra (E2(e), •e, ]e) (the latter
is defined in the proof of 2.6), then there exists y ∈ E2(e) satisfying y]e = y
and {z3, z3, e} = y •e y. From the equality y]e = ey∗e = y we deduce that
ye∗ = ey∗, e∗y = y∗e and hence {y, y, e} = yy∗e = {z3, z3, e} = yy∗e =
1
2z3z

∗
3e. As a consequence we get yy∗ = yy∗ee∗ = 1

2z3z
∗
3ee

∗ = 1
2z3z

∗
3 , and

‖y‖ϕ = ‖z3‖ϕ.

It follows from (14) that

2‖z3‖2
ϕ = 2‖y‖2

ϕ ≥ ‖y‖2
ϕi

(1 ≤ i ≤ 2).

We compute now the right hand side of the above inequality. From (10) and
(11) it is easily seen that ϕi(eiy∗y) ≥ 0 for all i ∈ {1, 2}. Thus

2‖z3‖2
ϕ = 2‖y‖2

ϕ ≥ ‖y‖2
ϕi

= ϕi {y, y, ei} =
1
2
ϕi(yy∗ei + eiy

∗y)

≥ 1
2
ϕi(yy∗ei) =

1
4
ϕi(z3z∗3ei) =

1
2
ϕi {z3, z3, ei} =

1
2
‖z3‖2

ϕi
.

12



Therefore, for each z3 ∈ Eq1 and i ∈ {1, 2} we get

‖z3‖2
ϕi
≤ 4‖z3‖2

ϕ (15)

Finally, let x ∈ E. Then x = y + z3 for suitable y ∈ F and z3 ∈ Eq1.
From (14) and (15) we obtain:

‖x‖ϕi ≤ ‖y‖ϕi + ‖z3‖ϕi ≤ 2
(
‖y‖ϕ + ‖z3‖ϕ

)
≤ 2

√
2

√
‖y‖2

ϕ + ‖z3‖2
ϕ,

for all i ∈ {1, 2}. Since ez∗3 = ep1q1z
∗
3 = 0 = yz∗3 we deduce that

ϕ {z3, y, e} = ϕ {y, z3, e} = ϕ(0) = 0

and hence
‖x‖2

ϕ = ‖y‖2
ϕ + ‖z3‖2

ϕ,

which implies
‖x‖ϕi ≤ 2

√
2 ‖x‖ϕ,

for all i ∈ {1, 2}.

The following corollary shows that every rectangular type 1 Cartan factor
satisfies the Little Grothendieck’s inequality.

Corollary 2.9. Let E = L(H,K) be a type 1 Cartan factor with dim(H) ≥
dim(K). Then for every complex Hilbert space H and every weak*-continuous
linear operator T : E → H there exists a norm-one functional ϕ ∈ E∗ satis-
fying

‖T (x)‖ ≤ 8 ‖T‖ ‖x‖ϕ,

for all x ∈ E

Proof. When H and K are finite dimensional then E is finite dimensional
and hence Remark 2.2 gives the desired conclusion. If H and K are infinite
dimensional then the statement follows from Proposition 2.3. Finally, if H is
infinite dimensional and K is finite dimensional the conclusion follows from
Remark 2.5 and Proposition 2.8.

We have already proved the Little Grothendieck’s inequality in the par-
ticular case of a finite dimensional Cartan factor (see Remark 2.2) and in
the case of a rectangular Cartan factor (Corollary 2.9). We shall discuss
now the remaining Cartan factors.

Let J be a JB*-triple. We recall that a tripotent u ∈ J is said to be
unitary if L(u, u) coincides with the identity operator on J . In this case

13



J = J2(u) and hence J is a JB*-algebra with product and involution given
by x ◦ y = {x, u, y} and x∗ = {u, x, u}, respectively. When E is a JBW*-
triple with a unitary element u then E is a JBW*-algebra with respect to
the product and involution given above. We can now rephrase [16, Theorem
4] as follows.

Proposition 2.10. Let M > 2 and let E be a JBW*-triple with a unitary
element u. Then for every complex Hilbert space and every weak*-continuous
linear operator T : E → H there exists a norm-one functional ϕ ∈ E∗ such
that

‖T (x)‖ ≤M ‖T‖ ‖x‖ϕ,
for all x ∈ E.

Proof. Let T be a weak*-continuous linear operator from E to a complex
Hilbert space. Since E contains a unitary element u, then E is a JBW*-
algebra with product and involution given by x ◦ y = {x, u, y} and x∗ =
{u, x, u}, respectively. By [16, Theorem 4], there exists a norm-one positive
linear functional ϕ ∈ E∗ such that

‖T (x)‖ ≤M ‖T‖ (ϕ(x ◦ x∗))
1
2 ,

for all x ∈ E. Since ϕ is norm-one and positive then ϕ(u) = 1 = ‖ϕ‖,
and hence for each x ∈ E we have ‖x‖2

ϕ = ϕ {x, x, u} = ϕ(x ◦ x∗), which
completes the proof.

Let S be a spin factor and let u be a norm-one element in S satisfying
u = u. It is easily seen that L(u, u) coincides with the identity operator on
S and hence u is a unitary element in S. It is also known that every Cartan
factor of type 1 with dim(H) =dim(K), every Cartan factor of type 2 with
dim(H) even , or infinite, every Cartan factors of type 3 and every type 6
Cartan factor contains a unitary element (see for instance [12, Proposition
2]). As a consequence, we can assure that when C is one of the above Cartan
factors and Ω is a hyperstonean compact Hausdorff space then C(Ω, C) is a
JBW*-triple containing a unitary element.

Corollary 2.11. Let E = C(Ω, C), where Ω is a hyperstonean Hausdorff
space and C is a Cartan factor of type 1 with with dim(H) =dim(K), or a
Cartan factor of type 2 with dim(H) even , or infinite, or a Cartan factors
of type 3, or a spin factor, or a type 6 Cartan factor. Let M > 2. Then
for every complex Hilbert space and every weak*-continuous linear operator
T : E → H there exists a norm-one functional ϕ ∈ E∗ such that

‖T (x)‖ ≤M ‖T‖ ‖x‖ϕ,

14



for all x ∈ E. 2

The next theorem shows that the family of all JBW*-triples satisfying
the Little Grothendieck’s inequality is stable by `∞-sums.

Theorem 2.12. Let M > 0. Let {Eα}α∈Λ be a family of JBW*-triples such
that for every α ∈ Λ and every weak*-continuous linear operator T from Eα
to a complex Hilbert space H there exists a norm-one functional ϕα ∈ (Eα)∗
satisfying that

‖T (x)‖ ≤M ‖T‖ ‖x‖ϕα , (16)

for all x ∈ Eα. Let E =
⊕`∞

α∈ΛEα. Then for every complex Hilbert space
H and every weak*-continuous linear operator T : E → H there exists a
norm-one functional ϕ ∈ E∗ such that

‖T (x)‖ ≤ 4
√

2 M ‖T‖ ‖x‖ϕ,

for all x ∈ E.

Proof. By [16, Remark 3] (see also Remark 2.5 above) it suffices to prove
that for every pair (ϕ1, ϕ2) of norm-one functionals in E∗ × E∗ there exists
a norm-one functional ϕ ∈ E∗ satisfying

‖x‖ϕ1,ϕ2 ≤ 2M‖x‖ϕ,

for all x ∈ E. Let ϕ1, ϕ2 norm-one functionals in E∗ =
⊕`1

α∈Λ(Eα)∗. Then
there are countably subsets Λ1,Λ2 ⊆ Λ such that

ϕ1 =
∑
α∈Λ1

µαφ
1
α, and ϕ2 =

∑
α∈Λ2

ναφ
2
α,

where (µα) ∈ `1(Λ1), (να) ∈ `1(Λ2), µα, να ≥ 0, φjα are norm-one elements
in (Eα)∗ ∀j : 1, 2,∀α and ‖ϕ1‖ =

∑
α∈Λ1

µα and ‖ϕ2‖ =
∑

α∈Λ2
να.

Let I = Λ1 ∩Λ2, I1 = (Λ\Λ2)∩Λ1 and I2 = (Λ\Λ1)∩Λ2. By hypothesis
and [16, Remark 3] it follows that for each α ∈ I there exists a norm-one
functional ψα ∈ (Eα)∗ such that

‖x‖ϕ1,ϕ2 ≤
√

2M ‖x‖ψα ,

for all x ∈ Eα. Let ϕ be the norm-one functional in E∗ defined by

ϕ :=
∑
α∈I

µα + να
2

ψα +
∑
α∈I1

µα
2
φ1
α +

∑
α∈I2

να
2
φ2
α.
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It is not hard to see that in this case

‖x‖ϕ1,ϕ2 ≤ 2M ‖x‖ϕ,

for all x ∈ E, which proves the theorem.

Let e be a tripotent in a JB*-triple J . When J2(e) = Ce we say that
e is a minimal tripotent. A JBW*-triple E is called atomic if E coincides
with the weak*-cosed ideal generated by all its minimal tripotents. From [7,
Proposition 2] it follows that every atomic JBW*-triple coincides with an
`∞-sum of Cartan factors.

Theorem 2.13. Let E be an atomic JBW*-triple. Then for every weak*-
continuous linear operator T from E to a complex Hilbert space there exists
a norm-one functional ϕ ∈ E∗ satisfying

‖T (x)‖ ≤ 32
√

2 ‖T‖ ‖x‖ϕ,

for all x ∈ E.

Proof. Let E be an atomic JBW*-triple. We have already commented that
E admits a decomposition in the form

⊕`∞ Cα, where each Cα is a Cartan
factor. If we prove that each factor Cα satisfies the hypothesis of Theorem
2.12 for M = 8, then the assertion will follow from the just quoted theorem.

Let T : Cα → H be a weak*-continuous linear operator from Cα to a
complex Hilbert space. If Cα is a type 1 Cartan factor with dim(H) >
dim (K), then Corollary 2.9 assures the existence of a norm-one functional
ϕα ∈ (Cα)∗ satisfying inequality (16) for M = 8. If Cα is a Cartan factor of
type 1 with with dim(H) =dim(K), or a Cartan factor of type 2 with dim(H)
even, or infinite, or a Cartan factors of type 3, or a type 6 Cartan factor,
then 2.11 gives the existence of a norm-one functional ϕα ∈ (Cα)∗ satisfying
(16) for M > 2. Finally, if Cα is finite dimensional, then it follows from
Remark 2.2 that there exists a norm-one functional ϕα ∈ (Cα)∗ satisfying
(16) for M =

√
2.

Let E be a JB*-triple. We have already mentioned that E∗∗ is a JBW*-
triple. From [6, Theorems 1 and 2] it follows that E∗∗ and E∗ admit the
following decompositions:

E∗∗ = A⊕∞ N

and
E∗ = A∗ ⊕`1 N∗,
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where A is the weak*-closed ideal of E∗∗ generated by all minimal tripotents
of E∗∗, N contains no minimal tripotents, A∗ is the predual of A and coin-
cides with the norm closure of the linear span of the extreme points of the
closed unit ball of E∗, and the closed unit ball of N∗ contains no extreme
points. A is called the atomic part of E∗∗. Moreover, by [7, Proposition 2]
we conclude that A is an `∞-sum of Cartan factors.

Corollary 2.14. Let E be a JB*-triple and let A denote the atomic part
of E∗∗. Then for every pair (ϕ1, ϕ2) of norm-one functionals in A∗ ⊆ E∗,
there exists a norm-one functional ϕ ∈ A∗ ⊆ E∗ satisfying

‖x‖ϕ1,ϕ2 ≤ 32
√

2 ‖x‖ϕ,

for all x ∈ E.

Proof. Let (ϕ1, ϕ2) be a couple of norm-one functionals in A∗ ⊆ E∗. By
Theorem 2.13 there exists a norm-one functional ϕ ∈ A∗ satisfying

‖z‖ϕ1,ϕ2 ≤ 32
√

2 ‖z‖ϕ, (17)

for all z ∈ A.
Let i denote the canonical embedding of E in its bidual and let π be the

natural projection of E∗∗ onto A. From the proof of [7, Proposition 1] we
deduce that π ◦ i is a triple embedding of E into A. Let φ be a norm-one
functional in A∗. φ can be also regarded as a norm-one element in E∗. Since
φ attains its norm at a tripotent in A, it is not hard to see that for each
x ∈ E we have

‖π ◦ i(x)‖φ = ‖x‖φ.

The conclusion of the corollary follows now from the above expression and
inequality (17).

From the last part of Remark 2.5 and Theorem 2.13 we derive the
following Grothendieck’s Theorem for atomic JBW*-triples.

Theorem 2.15. Let V and W be atomic JBW*-triples. Then for every
separately weak*-continuous bilinear form U on V ×W , there are norm-one
functionals ϕ ∈ V∗, and ψ ∈W∗ satisfying

|U(x, y)| ≤ 211 (1 + 2
√

3) ‖U‖ ‖x‖ϕ‖y‖ψ

for all (x, y) ∈ V ×W . 2
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