SPIN SPACES AND POSITIVE DECOMPOSITION OF
LINEAR MAPS ON ORDERED BANACH SPACES

LESLIE J. BUNCE AND ANTONIO M. PERALTA

ABSTRACT. Spin factors and generalisations are used to revisit positive
generation of B(E, F') where E and F are ordered Banach spaces. Inte-
rior points of B(FE, F')4+ are discussed and in many cases it is seen that
positive generation of B(E, F) is controlled by spin structure in F' when
F is a JBW-algebra.

1. INTRODUCTION

Given a real Banach space X there is a natural isometric embedding,
i: X — V(X), where the latter is a certain order unit space derived from
X by a construction that mimics the construction of a spin factor (as an
order unit space) from a Hilbert space, see §2. Advantages of V(X) are
a simple order structure and the property that every bounded linear map
from X into another Banach space factors through ¢ : X — V(X), which
we shall exploit to revisit the question of positive decomposition of bounded
linear maps between ordered Banach spaces considered, diversely, in [6, 5,
12, 14, 15, 17, 23], for example. We remark that inspection of the particular
passages [14, pp. 122-125] (see also [21, pages 96-97] and the proof of 3.10
of [23]) reveals hints of the utility of V' (X)-spaces developed in the present
note.

V(X)-spaces are formally introduced in §2 which contains a treatment
of interior points of B(E, F');, where E and F are ordered Banach spaces.
When X is a Hilbert space V(X)) is order isometric to a spin factor and there-
fore realisable as a JBW-algebra [13]. If F' is a JBW-algebra it transpires
that, for a wide range of ordered Banach spaces E, positive generation of
B(E, F) is controlled by spin structure in F'. In particular, if F is a simplex
space and F' is a JBW-algebra containing an infinite dimensional spin factor
then B(FE, F) is positively generated only when F is finite dimensional, a
result that remains locally true for certain spaces E such as strongly spectral
GM-spaces and their JB-algebra motivating examples.

By an ordered Banach space we shall mean a real Banach space E with
closed positive cone Ey; thus EL + Ey C E, and Ry E; C E,. The
cone E is said to be proper if EL N (—E;) = {0}, to be generating if
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E = E; — E4 and to be normal if there exists & > 1 such that whenever
a <b<c(in E) we have ||b]| < amax{||al,]||c||}, in which case F is said to
be a-normal. We refer to [4] and the survey [5, §1] for any undefined terms
and details used of ordered Banach spaces and to [1, 4] for the theory of
order unit spaces.

The set int(Ey) of norm interior points of E; is empty or dense and
coincides with the set u € E (of order units) satisfying

E=U{[-Au,Au]:X>0}.
Given u € int(E})
|z, = inf{X > 0: —du <z < Au}

defines a seminorm on E. If, in addition, F is normal then ||.||, is a norm
on E and F is order isomorphic (not necessarily isometric) to an order unit
space. Many examples show that £, can have interior points without being
normal. One instance of the latter is the ordered Banach space E of all
continuously differentiable functions on [0, 1] with the usual ordering and
norm

111 = 11flloo + ILf Tloo-
We have u € int(F; ) where u(A) =1 for all \. But E; is not normal since,
in this case, ||.||, coincides with the supremum norm and the latter is not
equivalent to [|.||, since E is not complete in the supremum norm.

An element z in F is said to have a positive decomposition if it is the
difference of two positive elements. This is equivalent to the existence of
a € E such that ¢ > 0 and @ > z. Given o > 1, E is said to be a-generated
if each z € E has a positive decomposition, z = y — z, with ||y|| + [|z]| < .

Such an a > 1 always exists if E, is generating. We remark that the
theory of interior points of £, (respectively, E7 ) is equivalent to the theory
of weak® compact bases of £ (respectively, bases of I, ).

The following is a slight variation of parts of [23, Theorems 3.5, 4.4]
involving positive decomposition in the ordered Banach space B(FE, F) of all
bounded linear operators from E to F', where the latter are ordered Banach
spaces, and the corresponding space K(E, F') of compact operators. The

space of all continuous F-valued functions on a compact Hausdorff space €2
is denoted by C(12, F).

Lemma 1.1. Let E and F be ordered Banach spaces and € a compact
stonean space, where E is a-normal, Fy is B-generated and F has finite
dimension n. Let ¢ € B(E,C(Q, F)). Then there exists ¢ € B(E,C (S, F))
with ¢ > 0, % > ¢ such that ]| <2 a §n ]

If o e K(E,C(Q,F)), then ¢ can be chosen in K(E,C(Q, F)) such that

1]l <3 a B nllel.
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Proof. A suitable choice of basis {z1,...,z,} of norm one elements of F
induces norm one linear maps, m; : C(Q, F') — C(Q), satisfying

Wj(Zfi(X)xi):fj (j:1,...,n)
i=1

(where (f @ z)(y) = f(y)z, f € C(Q), z € F and y € Q)). Thus,

n
o(.) = Zwi(-) & T4,
1
where ¢; denotes ;.

By [23, Theorem 3.5] each ¢; : E — C(f2) has a positive decomposition
pi = S; — Tj such that ||S;|| < alle| and | Ti[| < 2afl¢], since [l@s]| = llol|.
By assumption, each z; has a positive decomposition z; = y; — z; such that
llyill + ||zi]] < B. The map 9 : E — C(Q, F) defined by

D)= Si() @y +Ti() ® 2
1

is positive, majorises ¢ and ||¢|| < 2 «a B n ||¢||, as required.

If ¢ is compact then each ¢; is compact and by [23, Theorem 4.4] the
positive S;, T; (above) can be chosen to be compact satisfying || S;|| < 2all¢,
IT5|| < 3a|e|| so that ) is compact and ||| < 3 a B n|¢|. O

Corollary 1.2. Let E, Fy, ..., F, be ordered Banach spaces such that E, s
normal and all F; are finite dimensional and (F;)y are generating, and let
D, ..., Q, be compact stonean spaces. Let F' be the log-sum of the C'(Q;, F}).
Then B(E,F)y and K(E,F), are generating.

2. THE ORDER UNIT SPACE V(X)

Formally replicating the construction and order of a spin factor in the
case of a Hilbert space, for any real Banach space X, let V(X) = Rl &1 X
(£1-sum) and define

V(X); ={al+a:a€RaeX,a>|a}

to make V(X)) into an ordered Banach space with closed proper cone V(X)) .
We assume it is well-known that V(X)) is an order unit space. The simple
proof is included below nevertheless.

Let ix : X — V(X) and Px : V(X) — V(X) denote respectively the
natural (isometric) inclusion and projection onto X.

Define 7x : V(X) - R by 7x(al +a) = a. We note that Py is
bicontractive and that 7x € V(X)% with ||7x|| = 1. For each z in V(X) we
have z = 7x(z)1 + Px(x).

Lemma 2.1. Let X be a real Banach space. Let T denote Tx. Then

(a) ||z|| < 27(x) for all z € V(X),.
() Ifae X, z € V(X)y and a < x we have ||a|| < 27(z).
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(¢) p < 2[|pllr for all p € V(X)*.
Proof.

(a) z =71(z)l + Px(z) > 0 implies ||z|| = 7(z) + || Px (z)|| < 27(x).

(b) a,z being as stated implies 7(z) > ||Px(z)|, 7(z) > ||Px(z) — al|,
giving 27(z) > ||al.

(c) If p € V(X)* and z € V(X)4, then p(z) < |pllllz]l < 2|pll7(2),
using (a).

El

Lemma 2.2. Let X be a real Banach space. Then V(X) is an order unit
space, Tx € int(V(X)%) and V(X)* is order isomorphic to an order unit
space.

Proof. Let 7, P denote 7x, Px. Given z € V(X) we have
21t =2 = (|I7(z)] — 7(z) + | P(z)[)1 — P(x) > 0,
so that —||z||1 <z < |[|z]|]1. If A > 0 such that —A1 < z < Al then
At 7(z) 2 [P(2)]], and A > [7(z)] + [|[P(z)|| = ||=].-

Hence, ||z|]| = inf{A > 0 : =A1 < z < Al}; proving the first state-
ment. The second statement is immediate from Lemma 2.1(c) whilst the
final statement follows from the first two. O

For Banach spaces X and Y with p € X* and y € Y, let p® y denote the
rank one operator in B(X,Y') given by (p ® y)(x) = p(z)y. Let X; denote
the closed unit ball of the Banach space X.

Lemma 2.3. Let u € int(Ey) where E is an ordered Banach space. Then
T @ u 1s an interior point of B(V(X), E),, where X is a real Banach space
and T denotes Tx.

Proof. Let ¢ € B(V(X), E) with ||¢]| = 1. We have p = 7 ® (1) + @P,
where P = Px. By assumption, F; C [—au,au] for some a > 0. Let
z € V(X)4. Then

o(P(z)) < alle(P(z))|u < of|P(z)||lu < ar(z)u = ot @ u)(z).

Also ¢(1) < au so that 7 ® ¢(1) < a(r ® u). Hence, ¢ < 2a(7 ® u), as
required. O

Lemma 2.4. Let ¢ € B(E,V (X)) where E is an ordered Banach space and
X is a real Banach space. Let T denote Tx.
(a) ¢ >0 if, and only if, p < 2(Tp) @ 1.
(b) ¢ has a positive decomposition if, and only if, ¢ < p® 1 for some
p € LY.
Proof. (a) We have ¢ = (7¢) ® 1 + Pp, where P = Px. Since, by
definition of V(X), we have ¢ > 0 if, and only if, (T¢) ® 1 > £ Py,
(a) follows.
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Let ¢ € B(E,V (X)) with ¢» > 0, ¢ > ¢. Then (a) gives

p<2rp)@land — (P —¢) <p—p<2Ar(Y —9)) @1

so that ¢ < p® 1 where p = 271. The converse is obvious.
O

Let E be an ordered Banach space. We recall (compare [6, page 374])
that int(E;) # () if, and only if, there exists v € E; such that E; C [—v,v].

Lemma 2.5. Let E be an ordered Banach space.

(@)
(b)

Proof.

int(EY) # 0 if, and only if, ip : E — V(E) has a positive decompo-
sition in B(E,V(E)).
int(Ey) # 0 if, and only if, Pp : V(E) — E has a positive decompo-
sition in B(V(E), E).

(a) Let p € E%. The condition that E} C [—p, p] is equivalent to
the condition that

lo(a)| < pl(a) for all o € E} and all a € E,

which, in turn, is equivalent to the condition that ||a|| < p(a) for all
a € E,. But the latter holds if, and only if, ip < p ® 1. The result
now follows from Lemma 2.4(b).
Suppose Pg : V(E) — E has a positive decomposition in B(V (E), E).
Choose ¢ € B(V(E), E) with ¢ > 0 and ¢ > Pg. Let a € E. Then
lal1+a € V(E),. So, a = Pe(lalli+0) < o(lall1+a) < 2lallo(1),
implying that ¢(1) € int(E,).

Conversely, by Lemma 2.3, B(V(E), E), has an interior point and
so is generating if £, has an interior point.

El

If E and F are ordered Banach spaces with 7 € int(B(FE, F') ) then, since
B(E, F)4 is generating, £ and F are generating, by [23, Proposition 3.2].
Moreover, if a € E; with a # 0 then 7(a) € int(F} ). The reason being that,
since E* = E — E%, there exist p € E% such that p(a) > 0. Thus, if b € F
we have p® b < A for some A > 0 by assumption, giving b < p(a) ' Ar(a).
Similar argument shows that 7*(p) € int(E?%) for all p € F}\{0}. A simple
special case is that if p € E* and u € F; are such that p®u € int(B(E, F'),),
then p € int(E£7 ) and u € int(F). The converse is shown next.

Proposition 2.6. Let p and u be interior points of EY and F., respec-

tively.

Then p ® u is an interior point of B(E,F)y. Moreover, with S =

int(B(E, F)) we have

(i)
(é2)

int(Fy) = {r(Es\{0}) : 7 € S} and
int(EY) = {r*(F:\{0}) : 7 € S}.
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Proof. Given ¢ € B(E,V(FE)y) we have ¢ < 2(1p) ® 1 by Lemma 2.4(a),
where 7 = 7. Since 7o < Ap for some A > 0, we have ¢ < 2A\(p ® 1) for
some A\ > 0.

Now let m# € B(E,F). Then ¢ = i, where ¢» € B(V(E), F) is given by
P(al + a) = ¢(a) and where 7 denotes ip. By Lemma 2.3 and Lemma 2.5,
1) and ¢ have positive decompositions

=8 —T and i = R — U say.

This gives 7 = ¢1 < SR + TU. By the first part of the proof and Lemma
2.3 we have

S, T <a(r®u)and R,U < B(p®1)

for some «, 8 > 0, where 7 denotes 7. It follows that
m<af(r@u)(p®1) =20B(p @ u)

proving the first statement. The equalities (i) and (i7) now follow from this
together with the prior remarks. O

We state the following automatic corollaries of Lemma 2.5, Proposition
2.6 and intervening remark. In both corollaries the implication (d) = (b)
is effectively proved in [23, Propositions 3.10 and 3.11]. E and F denote
ordered Banach spaces throughout.

Corollary 2.7. The following are equivalent.
(a) int(B(E,F)y) #0 for some F with int(Fy) # 0;
(b) int(E%) # 0;
(c) int(B(E, F)y) # 0 whenever int(Fy) # 0;
(d

) B(E, F)+ is generating whenever F is an order unit space.

Corollary 2.8. The following are equivalent.
(a) int(B(E,F)y) #0 for some E with int(E%) # 0;
(b) int(Fy) # 0;
(c) int(B(E,F)y) # 0 whenever int(E%) # 0;
(d)

B(E, )+ is generating whenever E* is an order unit space.

3. SPIN FACTORS

If X is a real Hilbert space, V(X)) is known as an abstract spin factor and
is realisable as a JW-algebra ([13, §6], [20]) in which guise we refer to it as
just a spin factor. A general reference for JB-algebras and JBW-algebras is
[13], and [19] for von Neumann algebras. An ordered Banach space E with
upward filtering open unit ball and satisfying Ey = (E1 + E4) N (E1 — Ey),
called a GM-space, is order isometric to the space Ag(K) of weak* continuous
affine functions on K vanishing at 0, where K = {p € E% : ||p|| < 1} [8].
Simplex spaces are examples of GM-spaces. Strongly spectral GM-spaces, as
defined in [8], include all JB-algebras. This follows from [3, Corollary 3.2]
and the results of [8, §3].
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Lemma 3.1. Let E and F be ordered Banach spaces. Let ¢ € B(E**, F*)
be weak* continuous and let 1p denote its restriction in B(E, F*). Suppose
that 1 has a positive decomposition in B(E,F*). Then ¢ has a positive
decomposition in B(E**, F*).

Proof. The canonical inclusion j : F — F** induces the positive surjective
projection j* : F*** — F*. The composition j*** : F** — F*** — F* ig
the unique weak* continuous extension of ¢ : E — F*, so that j*¢** = ¢.
Thus if ¢ has a positive decomposition p = S — T, ¢ = §*5* — j*T** is a
positive decomposition of . O

Lemma 3.2. Let E be an ordered Banach space containing an infinite di-
mensional simplex space S as an ordered Banach subspace. Then B(E,F), —
B(E, F), does not contain K(E,F) in each of the following cases:

(a) F =V (X) where X is an infinite dimensional Hilbert space;
(b) F=(_7"V(Xn))y (Lso-sum) where X, is an n-dimensional Hilbert
space for each n € N.

Proof. Since S* is an AL-space, S** is a dual AM-space and therefore order
isometric to the self-adjoint part of a commutative von Neumann algebra.
It follows that there exists e € S; and infinite sequences (z,) in S; and
(pn) in E* such that

n
lell = [|zall = llpnll = 1, > 2 < e for all n;
1

pm(zn) = O for all mn.

This is seen by first choosing (o,,) in S* satisfying the relevant conditions
(above) and then taking p, € E* to be a Hahn-Banach extension of o, for
each n (We do not assume the p, positive).

Let (hy) be an infinite orthogonal sequence in an infinite dimensional
Hilbert space X. Note that V(X) = V(X)**~.

(a) Define ¢ : E** — V(X) by o =.7° %pn ® hy,, the p, being regarded
as weak® continuous linear functionals on E**. Let ¢ : E — V(X) denote
the restriction of ¢ to E. For each a in E** with ||al| < 1 and each n € N
we have

<1 <1 <1
> e 2—2 <Y
k=n k=n

so that [|¢ — @,|l — 0, where ¢, is the finite rank operator Y7 +p ® hy
for each n. Therefore, ¢ is compact and weak* continuous since each ¢,
has these properties. Suppose ¢ has a positive decomposition. By Lemma
2.4(b) there exists p € B such that ¢ < p®1. Since p(E**) C X this gives
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for all z € EY* and all n € N,

Ipn <Z % 2) = (@) < p(x).
1

In particular, for all n,

ik ; p(z) —P<;$k> < ple),

a contradiction. Therefore ¢ does not have a positive decomposition and
hence neither does v, by Lemma 3.1.

(b) We adapt a construction that first appeared in [14, Lemma 2.1, The-
orem 2.2]. For each n let V,, denote V(X,) where X,, is the subspace of
X generated by {hi,...,h,}. Fix « satisfying 1 < 2a < 2. For each n,
let v, : E** — V,, be the operator n% Y k1 Pk @ hi. Consider the ¢;-sum,
L=V

Define ¢ : E** — L* = (3°7° Vi), by ¢ = (¢n) and let ¢ : E — L* be
its restriction. For each n we have

1 1
“‘Pn“2 < nTan = Wa
so that ¢ is the norm limit of the weak* continuous finite rank operators
(P1y-+,%n,0,0,0,...) and hence is itself weak* continuous and compact.
By Lemma 3.1, since 1 is compact, it is enough to show that ¢ has no
positive decomposition.

In order to derive a contradiction suppose there exists @ € B(E**, L*)
such that # > 0 and @ > . Then © = (m,) where each w, : E** — V,
satisfies m, > 0 and 7, > @,. For each k : 1,...,n we have

1
mn(x) > 0 and m,(zk) > @n(zr) = Ehk

which, since ¢, (z;) € Xy, implies 27,7, (2x) > ||on(z4)|| = 2 by Lemma
2.1(b), where 7,, = 1y, . Hence, for all n,

2||w(e)|| > 27,m(e) > 21, (Z $k> > n— =n "9

a contradiction that completes the proof. Il

Definition 3.3. We say that a JBW-algebra F' is spin bounded if there
exists n € N such that dim(V') < n for every spin factor V'.C M.

Recall the Jordan algebra inclusions
Vn C MZ” ((C)sa C M2n+1 (R)saaM2” (H)sa

where V, is an n + 1 dimensional spin factor (and H represents the quater-
nions.)
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Lemma 3.4. A JBW-algebra F is spin bounded if, and only if,
F = (37C(Q4, F)), , where the Q; are compact hyperstonean spaces and
the F; are finite dimensional type I JBW-algebra factors.

Proof. If V is a sub-spin factor of F' and F' has the /,,-decomposition stated
then representation theory implies that V' can be faithfully realised as a sub-
spin factor of one of the Fj‘s implying F' is spin bounded. If F' is not of the
stated form but is still type I finite, structure theory [18] implies F' contains
a spin factor of infinite dimension or a sequence of finite dimensional type I
factors of strictly increasing dimension and so is not spin bounded, by prior
remarks in the latter case.

Otherwise, passing to a summand, we may suppose that F' has no type I
finite part and is therefore the self-adjoint part of a real W*-algebra R acting
on a complex Hilbert space [13, 7.3.3]. But then (eg., the argument of [22,
Theorem 1.6]) there exists a von Neumann algebra W with no type I finite
part which is real *-isomorphic to a real *-subalgebra of R. Since W must
contain a type II; hyperfinite factor, Wy, must contain an infinite dimen-
sional spin factor [20], as therefore must F', since Wy, is Jordan isomorphic
to a Jordan subalgebra of Ry, = F'. Il

The following is immediate from Corollary 1.2 and Lemma 3.4.

Corollary 3.5. If E is an ordered Banach space such that EL is normal
and F is a spin bounded JBW-algebra, then K(E,F)y and B(E,F)y are
generating.

Theorem 3.6. Let E be an ordered Banach space and F be a JBW-algebra
which is not spin bounded. Suppose that K(E,F) C B(E,F); — B(E,F),.
Then every ordered Banach simplex subspace of E is finite dimensional. If E
is a strongly spectral GM-space, then every element of E has finite spectrum.

Proof. Suppose E contains an infinite dimensional simplex space as an or-
dered Banach subspace. Since F' is not spin bounded previous arguments
imply that F' contains a JW-subalgebra M where M is either an infinite di-
mensional spin factor, or is a sum of an infinite sequence of mutually orthogo-
nal finite dimensional spin factors of strictly increasing dimension. It follows
from [10, Lemma 2.3] in the first case, and by elementary application of that
result in the second, that M is the image of a positive norm one projection
P : F — F (vanishing on any exceptional part). By Lemma 3.2 there is a
compact operator ¢ : E — M with no positive decomposition in B(E, M).
Therefore the compact operator ¢, : E — F, given by 11 (a) = ¢(a), has no
positive decomposition in B(FE, F'), else ¢ = Py € B(E,M), — B(E, M)+
in contradiction.

Suppose F is a strongly spectral GM-space and that ¢ € E with spectrum
o(a). By [2, Proposition 9.10, Theorem 10.6] and [8, Theorem 3.3, Theorem
3.6] a lies in a subspace Mj(a) of E order isometric to the space of real
valued continuous functions vanishing at 0 on the compact Hausdorff space
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o(a) U {0} which, by the first part of the proof, must be finite dimensional.
l

We note that if ¥ and F are any ordered Banach spaces such that
B(E, F), has an interior point then K (FE, F'), is generating since then (see
§ 2) there exist p € E* and u € F such that the finite rank operator p ® u
is an interior point of B(E, F'); and hence is an interior point of K (E, F) .

Corollary 3.7. Let E be a JB-algebra and F' o JBW-algebra which is not
spin bounded. The following are equivalent:
(a) K(E,F)4 is generating;
(b) B(E,F)4 is generating;
(¢) B(E,F) is order isomorphic to an order unit space;
(d) E = A® B where A is finite dimensional and B is an loo-sum
(possibly empty) of finitely many infinite dimensional spin factors.

Proof. (a) = (d), (b) = (d). Given (a) or (b), the spectrum of every element
of ¥ must be finite by Theorem 3.6. In particular, F is a dual JB-algebra
[7]. Further, being the self-adjoint part of a commutative C*-algebra, every
associative JB-subalgebra of E must be finite dimensional. Thus, (d) now
follows from [7, Theorem 4.3].

(d) = (c). Suppose E = A @ B, where A is finite dimensional and B is
the orthogonal sum of infinite dimensional spin factors By,..., B,. Then
A% and each (Bj); has non-empty interior, by Lemma 2.2 in the latter
case, and so £ has non-empty interior. Hence, B(E, F); has non-empty
interior, by Proposition 2.6, and since also normal [23, Theorem 3.1], (¢)
results.

The implication (¢) = (b) is obvious, and (¢) = (a) is immediate from
the remark prior to the statement. This completes the proof. O
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