A Saitô-Tomita-Lusin Theorem for JB*-triples and Applications

Leslie J. Bunce, Francisco J. Fernández-Polo, Juan Martínez Moreno and Antonio M. Peralta*

Abstract

A Lusin's theorem is proved in the non-ordered context of JB*-triples. This is applied to obtain versions of a general transitivity theorem and to deduce refinements of facial structure in closed unit balls of JB*-triples and duals.

1 Introduction and Preliminaries

If the open unit ball D of a complex Banach space E is a bounded symmetric domain the holomorphy of D determines the geometry of E and induces a ternary algebraic structure upon it. Banach spaces of this kind are known as JB*-triples [13]. The norm closed subspaces E of C*-algebras for which xx^*x lies in E whenever x does form a large class of examples of JB*-triples that, up to linear isometry, includes all Hilbert spaces, spin factors and many other familiar operator spaces. If $\mathbb O$ denotes the complex Cayley numbers then the space of all 1 by 2 matrices over $\mathbb O$, $M_{1,2}(\mathbb O)$, appropriately normed, is an example of a JB*-triple not of this form. Despite a general lack of order and other constraints the ternary structure in JB*-triples, which generalises the binary structure in C*-algebras, has been shown to be a natural medium in diverse disciplines such as complex holomorphy, convexity and quantum mechanics [6, 8, 13].

Non-commutative versions of Egoroff's and Lusin's theorems for C*-algebras [17, 19] are extended in this paper to the non-ordered context of JB*-triples. A transitivity theorem for an arbitrary JB*-triple E, in the sense that the "D - operator" associated with a finite rank tripotent of E^{**}

 $^{^*{\}rm Authors}$ Partially supported by D.G.I. project no. BFM2002-01529, and Junta de Andalucía grant FQM 0199

has coincident image upon E and E^{**} , is obtained as one application and consequences for facial structure discussed. In particular, it is deduced that the norm exposed faces of E_1^* associated with finite rank tripotents in E^{**} are weak* exposed whenever E is separable and that, in general, the norm semi-exposed faces of E_1 are intersections of maximal norm closed faces.

We recall [13] that a JB*-triple is a complex Banach space together with a continuous triple product $\{.,.,.\}: E^3 \to E$ which is conjugate linear in the middle variable and symmetric bilinear in the outer variables such that, for the operator D(a,b) given by $D(a,b)x = \{a,b,x\}$, we have

$$D(a,b)D(x,y) - D(x,y)D(a,b) = D(D(a,b)x,y) - D(x,D(b,a)y);$$

and that D(a, a) is an hermitian operator with non-negative spectrum and $||D(a, a)|| = ||a||^2$.

Every C*-algebra is a JB*-triple via the triple product given by

$$2\{x, y, z\} = xy^*z + zy^*x,$$

and every JB*-algebra is a JB*-triple under the triple product

$${x, y, z} = (x \circ y^*) \circ z + (z \circ y^*) \circ x - (x \circ z) \circ y^*.$$

A JBW*-triple is a JB*-triple with (unique) [3] predual. The second dual of a JB*-triple is a JBW*-triple [5]. Elements a,b in a JB*-triple E are orthogonal if D(a,b)=0. With each tripotent u (i.e. $u=\{u,u,u\}$) in E is associated the Peirce decomposition

$$E = E_2(u) \oplus E_1(u) \oplus E_0(u),$$

where for i = 0, 1, 2 $E_i(u)$ is the $\frac{i}{2}$ eigenspace of D(u, u). The Peirce rules are that $\{E_i(u), E_j(u), E_k(u)\}$ is contained in $E_{i-j+k}(u)$ if $i-j+k \in \{0, 1, 2\}$ and is zero otherwise. In addition,

$$\{E_2(u), E_0(u), E\} = \{E_0(u), E_2(u), E\} = 0.$$

The corresponding Peirce projections, $P_i(u): E \to E_i(u), (i = 0, 1, 2)$ are contractive and satisfy

$$P_2(u) = D(2D - I), P_1(u) = 4D(I - D), \text{ and } P_0(u) = (I - D)(I - 2D),$$

where D is the operator D(u, u) (compare [9]).

Let E be a JBW*-triple with tripotent u. The Peirce space $E_2(u)$ is a JBW*-algebra with Jordan product and involution given by $a \circ b = \{a, u, b\}$, $a^{\sharp} = \{u, a, u\}$. Order amongst tripotents in E arises as follows. Tripotents u and v satisfy $v \leq u$ if and only if v is a projection in the JBW*-algebra $E_2(u)$. See [6], [14, §5] for several characterisations. A development [7] (see also [6], [9]) of triple functional calculus [13] is that if x is norm-one element of E there is a least tripotent r(x) of E such that x belongs to the positive part of $E_2(r(x))$; the tripotent that arises as the greatest projection in $E_2(r(x))_+$ majorised by x is denoted by u(x). In particular, in $E_2(r(x))_+$ we have

$$u(x) \le x \le r(x)$$
.

A non-zero tripotent u in E is said to be minimal if $E_2(u) = \mathbb{C}u$, and is said to have finite rank if it is an orthogonal sum of finitely many minimal tripotents. Given a convex set K we denote by $\partial_e(K)$ its set of extreme points. If E is a JB*-triple, for each $\rho \in \partial_e(E_1^*)$ there is a unique minimal tripotent, $u(\rho)$, of E^{**} such that $\rho(u(\rho)) = 1$, and all minimal tripotents arise in this way [9].

Given a JBW*-triple M, a norm-one element φ of M_* and a norm-one element z in M such that $\varphi(z) = 1$, it follows from [1, Proposition 1.2] that the assignment

$$(x,y)\mapsto \varphi\left\{x,y,z\right\}$$

defines a positive sesquilinear form on M, the values of which are independent of choice of z, and induces a prehilbert seminorm on M given by

$$||x||_{\varphi}:=\left(\varphi\left\{ x,x,z\right\} \right)^{\frac{1}{2}}.$$

As φ ranges over the unit sphere of M_* the topology induced by these seminorms is termed the strong*-topology of M. The strong*-topology was introduced in [2], and further developed in [16, 15]. In particular [16], the triple product is jointly strong*-continuous on bounded sets.

2 Saitô-Tomita-Lusin Theorem

The classical Lusin's theorem states that if μ is a Radon measure on a locally compact Hausdorff space T and if f is a complex-valued measurable function on T such that there exists a Borel set $A \subseteq T$ with $\mu(A) < \infty$ and f(x) = 0 for all $x \notin A$, then for each $\varepsilon > 0$ there exists a Borel set $E \subseteq T$ with $\mu(T \setminus E) < \varepsilon$ and a function $g \in C_0(T)$ such that f and g coincide on

E. A non-commutative analogue of Lusin's theorem for general C*-algebras was given in [19] and considerably developed subsequently in [17]. The underlying strategy in our approach to non-ordered JB*-triple extensions is to release and exploit local order structures harboured by Peirce 1- spaces and Peirce-2 spaces. Our initial aim is to derive a novel inequality (see Proposition 2.4) involving D-operators and then to employ it as a controlling device thereafter.

The following result is proved in [9, Lemma 1.5] and remark prior to it.

Lemma 2.1. Let u be a tripotent in a JB^* -triple E and let $x \in E_1(u) \cup E_2(u)$. Then D(x,x)u is a positive element in the JB^* -algebra $E_2(u)$.

Lemma 2.2. Let e be a projection in a JB^* -algebra E and let $a \in E_1(e) \cup E_2(e)$ where $a = a^*$. Then $a^2 \circ e \ge 0$ and $||a||^2 = ||D(a, a)e||$.

Proof. We have $D(a, a)e = a^2 \circ e$. We may suppose without loss that E has an identity element, 1. If $a \in E_2(e)$, then $a^2 = a^2 \circ e$. Let $a \in E_1(e)$. By [20], the JB-subalgebra of E_{sa} generated by 1, e and a can be realised as a JC-subalgebra of the self-adjoint part of a C*-algebra B so that, in B, we have a = 2D(e, e)a = ea + ae and therefore $a^2 = ea^2 + aea$, giving $ea^2 = a(1 - e)a = a^2e$. Consequently,

$$||ea^2|| = ||(1-e)a^2(1-e)|| = ||(1-e)a^2|| = ||(1-e)a||^2$$

and therefore

$$||a||^2 = \max\{||ea^2||, ||(1-e)a^2||\} = ||ea^2|| = ||D(a, a)e||.$$

Lemma 2.3. Let E be a type I von Neumann factor or a finite dimensional simple JB^* -algebra. Let u be a tripotent in E. Then there exists a triple embedding $\pi: E \to E$ such that $\pi(u)$ is a projection.

Proof. In the first case we may suppose E = B(H) for some complex Hilbert space H [18, V.1.28] and that u is a partial isometry. From [12, Lemma 3.12] it follows that there exists a complete tripotent $c \in B(H)$ such that $c \ge u$. Since c is complete in B(H) we have $(1 - cc^*)B(H)(1 - c^*c) = 0$ and hence $cc^* = 1$ or $c^*c = 1$. We may assume that $cc^* = 1$. Denoting $q = c^*c$, it follows that $c: q(H) \to H$ is a surjective linear isometry. Thus, the mapping $\pi: B(H) \to B(H, q(H)) \subseteq B(H)$ defined by $\pi(x) = c^*x$ is a surjective linear

isometry from B(H) onto B(H, q(H)) and hence a triple isomorphism. It is clear that $\pi(c) = q$ is a projection in B(H). Moreover, since π is a triple isomorphism and $c \geq u$ we have $\pi(u) \leq \pi(c) = q$, and hence $\pi(u)$ is a projection in B(H).

The second case follows from [14, Corollary 5.12]. \Box

Proposition 2.4. Let u be a tripotent in a JB^* -triple E and let $x \in E_1(u) \cup E_2(u)$. Then $||x||^2 \le 4 ||D(x,x)u||$.

Proof. By [10, Corollary 1] we may suppose that E is a JB*-subtriple of an ℓ_{∞} -sum, $M \oplus N$, where M is a type I von Neumann factor and N is an ℓ_{∞} -sum of finite dimensional simple JB*-algebras. Letting F denote the JB*-algebra $M \oplus N$, it follows from Lemma 2.3 that there is a triple embedding, $\pi: F \to F$, such that $\pi(u)$ is a projection. Thus, since $E_i(u) \subseteq F_i(u)$ for i = 1, 2 and π preserves the triple product we may assume without loss that E is a JB*-algebra and that u is a projection in E.

In which case, we have x = a + ib where a and b are self-adjoint elements of E. Let $x \in E_1(u)$. Then a, b and x^* lie in $E_1(u)$. Via the equalities $2u \circ x = x$ and $2u \circ x^* = x^*$ and Lemma 2.2 we have

$$D(x, x)u = (x \circ x^*) \circ u = (a^2 + b^2) \circ u \ge a^2 \circ u, b^2 \circ u \ge 0$$

so that

$$4 \|D(x,x)u\| \ge 4 \max\{\|a\|^2, \|b\|^2\} \ge (\|a\| + \|b\|)^2 \ge \|x\|^2.$$

If x lies in $E_2(u)$ the assertion is verified by a similar (easier) argument. \square

The following observations illustrate the geometric nature of the inequality in Proposition 2.4. Given a tripotent u in a JB*-triple E the weak*-closed face of E_1^* ,

$$F_u = \{ \varphi \in E^* : \varphi(u) = ||\varphi|| = 1 \}$$

identifies with the state space of the JB*-algebra $E_2(u)$. Let $x \in E_1(u)$. Since $D(x,x)u \in (E_2(u))_+$ we therefore have that

$$||D(x,x)u|| = \sup \{ \varphi(D(x,x)u) : \varphi \in F_u \}.$$

Thus, letting $||x||_u$ denote $||D(x,x)u||^{\frac{1}{2}}$ we have that

$$||x||_u = \sup \{||x||_\varphi : \varphi \in F_u\},\,$$

the seminorms $||x||_{\varphi}$ being as defined in the introduction. Further, $||x||_{u} = 0$ implies x = 0. Thus, $||.||_{u}$ is a norm on $E_{1}(u)$ satisfying

$$||.||_u \le ||.|| \le 2||.||_u$$

the second inequality being given by Proposition 2.4. In particular, we record the following.

Corollary 2.5. If u is a tripotent in a JB^* -triple E then $||.||_u$ and ||.|| are equivalent norms on $E_1(u)$.

Lemma 2.6. Let u be a tripotent in a JB^* -triple E, let $x \in E$ and let $x_j = P_j(u)(x)$ for j = 1, 2. Then $P_2(u)D(x, x)u \ge 0$ in $E_2(u)$ and

$$||D(x_j, x_j)u|| \le ||P_2(u)D(x, x)u||$$
 for $j = 1, 2$.

Proof. Using the Peirce rules calculation gives

$$D(x_1, x_1)u + D(x_2, x_2)u = P_2(u)D(x, x)u.$$

Thus, by Lemma 2.1, in $E_2(u)$ we have

$$0 \le D(x_j, x_j)u \le P_2(u)D(x, x)u$$
 for $j = 1, 2,$

from which the assertion follows.

For subsequent purposes we remark that for tripotents u, v in a JB*-triple with $v \leq u$ we have

$$P_i(u)P_j(v) = P_j(v)P_i(u)$$
 for $i, j = 1, 2$;

$$P_1(v)P_0(u) = P_2(v)P_1(u) = 0$$
 and $P_2(v)P_2(u) = P_2(v)$.

In particular,

$$P_i(v) (P_2(u) + P_1(u)) = P_i(v)$$
 for $i = 1, 2$.

In addition,

$$P_2(u) + P_1(u) = 3D(u, u) - 2D(u, u)^2$$
 and $2P_2(u) + P_1(u) = 2D(u, u)$.

We employ the geometric inequality obtained in Proposition 2.4 as a key tool in arguments below that culminate with a non-ordered Lusin's theorem for JB*-triples. The general process owes much to the scheme and ideas of Saitô [17]. We begin with a Saitô-Egoroff theorem for JB*-triples.

Theorem 2.7. Let x belong to the strong*-closure of a bounded subset X of E^{**} , where E is a JB*-triple. Let u be a tripotent in E^{**} , let $\varphi \in E^*$ and let $\varepsilon > 0$. Then there exist a sequence (x_n) in X and a tripotent v in E^{**} such that $v \le u$, $|\varphi(u-v)| < \varepsilon$, and $||S(x_n-x)|| \to 0$, for $S = P_2(v)$, $P_1(v)$ and D(v,v).

Proof. Choose a net (x_{λ}) in X with strong*-limit x. We may suppose that X lies in the closed unit ball of E^{**} , that $\|\varphi\| = 1$ and (by translation) that x = 0.

For each λ let y_{λ} denote $P_2(u)D(x_{\lambda},x_{\lambda})u$. By the joint strong*-continuity of the triple product on bounded sets (y_{λ}) is strong*-null. By Lemma 2.6 each y_{λ} is a positive element of the JBW*-algebra $E_2^{**}(u)$, and $||y_{\lambda}|| \leq 1$. In particular, for each λ , the JBW*-subtriple of E^{**} generated by y_{λ} and u is an abelian W*-subalgebra of the JBW*-algebra $E_2^{**}(u)$. For each λ , let u_{λ} denote $\chi(y_{\lambda})$, where χ is the characteristic function of the interval $(-2^{-4}, 2^{-4})$. Then u_{λ} is a projection in $E_2^{**}(u)$ satisfying

$$2^4 y_{\lambda} \ge u - u_{\lambda} \ge 0$$
,

for all λ . Since (y_{λ}) is strong*-null and hence weak*-null, $u-u_{\lambda}$ must be weak*-null in (the JBW*-algebra) $E_2^{**}(u)$ and thus weak*-null in E^{**} .

Choose λ_1 , such that $|\varphi(u-u_{\lambda_1})| < 2^{-1} \varepsilon$. Denote u_{λ_1} , x_{λ_1} and y_{λ_1} by u_1 , x_1 and y_1 , respectively. Using Proposition 2.4 in the second inequality below and Lemma 2.6 in the third, we have

$$||P_2(u_1)x_1 + P_1(u_1)x_1||^2 \le 2 (||P_2(u_1)x_1||^2 + ||P_1(u_1)x_1||^2)$$

$$\le 2^3 (||D(P_2(u_1)x_1, P_2(u_1)x_1)u_1|| + ||D(P_1(u_1)x_1, P_1(u_1)x_1)u_1||)$$

$$\le 2^4 ||P_2(u_1)D(x_1, x_1)u|| \le 1.$$

Duplicating the above argument for $\lambda \geq \lambda_1$ where this time χ represents the characteristic function of the interval $(-2^{-6}, 2^{-6})$ we obtain a $\lambda_2 \geq \lambda_1$ and elements u_2 , x_2 and y_2 , respectively denoting u_{λ_2} , x_{λ_2} and y_{λ_2} , satisfying

$$u_2 \le u_1$$
, $|\varphi(u_1 - u_2)| < 2^{-2}\varepsilon$ and $||P_2(u_2)x_2 + P_1(u_2)x_2|| < 2^{-1}$.

Proceeding inductively we obtain a decreasing sequence (u_n) of projections in the JBW*-algebra $E_2^{**}(u)$ and a sequence (x_n) in X such that, with $u = u_0$,

$$|\varphi(u_{n-1} - u_n)| < 2^{-n}\varepsilon$$
 and $||P_2(u_n)x_n + P_1(u_n)x_n|| \le n^{-1}$, for all $n \ge 1$.

The sequence (u_n) decreases in the weak*-topology to a projection v of $E_2^{**}(u)$ giving $u-v=\sum_{1}^{+\infty}(u_{n-1}-u_n)$ and so $|\varphi(u-v)|\leq \varepsilon$. Further, for each n,

$$||P_i(v)(x_n)|| = ||P_i(v)(P_2(u_n)x_n + P_1(u_n)x_n)|| \le n^{-1},$$

for i = 1, 2. The remaining assertions follow.

Corollary 2.8. Let u be a tripotent in E^{**} , where E is a JB^* -triple. Let $x \in E^{**}$ and $\varphi \in E^*$. Let $\varepsilon > 0$ and $\delta > 0$. Then there exists $y \in E$ and a tripotent v in E^{**} such that $v \le u$, $|\varphi(u - v)| < \varepsilon$, $||P_i(v)(x - y)|| < \delta$ for i = 1, 2 and $||y|| \le ||(P_2(u) + P_1(u))(x)||$.

Proof. Since, by [2, Corollary 3.3], the closed unit ball E_1 of E is strong*-dense in the closed unit ball of E^{**} , the assertions follow from replacing x and X in Theorem 2.7 with $(P_2(u) + P_1(u))(x)$ and $||(P_2(u) + P_1(u))(x)|| E_1$, respectively.

A Lusin's theorem for JB*-triples is proved next.

Theorem 2.9. Let E be a JB^* -triple, let $\varphi \in E^*$ and let $x \in E^{**}$. Let u be a tripotent in E^{**} and let $\varepsilon > 0$ and $\delta > 0$. Then there is an element $y \in E$ and a tripotent $v \in E^{**}$ such that $v \le u$, $|\varphi(u - v)| < \varepsilon$, S(x - y) = 0 for $S = P_2(v), P_1(v)$ and D(v, v), and $||y|| \le (1 + \delta) ||(P_2(u) + P_1(u))(x)||$.

Proof. We may assume without loss that $\|(P_2(u) + P_1(u))(x)\| = 1$. By Corollary 2.8, there is an element y_1 in E and a tripotent $u_1 \leq u$ in E^{**} satisfying

$$|\varphi(u-v)| < 2^{-1} \varepsilon$$
, $||P_i(u_1)(x-y_1)|| < 2^{-2} \delta$ for $i = 1, 2$
and $||y_1|| \le ||(P_2(u) + P_1(u))(x)|| = 1$.

Replacing u with u_1 and x with $(P_2(u_1) + P_1(u_1))(x - y_1)$ in Corollary 2.8 now gives an element y_2 in E and a tripotent u_2 in E^{**} such that $u_2 \leq u_1$ satisfying

$$|\varphi(u_1-u_2)|<2^{-2}\varepsilon,$$

 $||P_i(u_2)(x-y_1-y_2)|| = ||P_i(u_2)(P_2(u_1)+P_1(u_1))(x-y_1-y_2)|| < 2^{-3} \delta$ for i=1,2 and

$$||y_2|| \le ||(P_2(u_1) + P_1(u_1))(x - y_1)|| < 2^{-1} \delta.$$

Proceeding in this way gives rise to a sequence (y_n) in E and a decreasing sequence (u_n) of tripotents in $E_2^{**}(u)$, which, for $u_0 = u$, and all $n \geq 1$ satisfies

$$|\varphi(u_{n-1} - u_n)| < 2^{-n} \varepsilon$$
, $||P_i(u_n)(x - \sum_{k=1}^n y_k)|| < 2^{-(n+1)} \delta$ for $i = 1, 2$

and
$$||y_{n+1}|| \le ||(P_2(u_n) + P_1(u_n))(x - \sum_{k=1}^n y_k)|| < 2^{-n} \delta.$$

Letting v denote the weak*-limit of (u_n) in $E_2^{**}(u)$, and $y = \sum_{n=1}^{+\infty} y_n$, we have that v is a tripotent in E^{**} with $v \leq u$ and $y \in E$ such that $|\varphi(u-v)| < \varepsilon$ and $||y|| \leq 1 + \delta$.

Finally, for i = 1, 2

$$||P_i(v)(x - \sum_{k=1}^n y_k)|| = ||P_i(v)||(P_2(u_n) + P_1(u_n))(x - \sum_{k=1}^n y_k)|| < 2^{-n} \delta$$

for all $n \ge 1$, so that $P_i(v)(x-y) = 0$. In turn, this implies

$$D(v,v)(x-y) = 0.$$

3 Applications

In [6] Edwards and Rüttiman investigated facial structure of unit balls of a JBW*-triple and predual giving a complete description, and made significant inroads into corresponding general JB*-triple theory in the subsequent treatise [7]. In this section we exploit Theorem 2.9 to obtain versions of Kadison transitivity for JB*-triples (c.f. [18, II.4.18]) and use it to contribute observations on facial structure.

Let $x \in E$ where E is a JB*-triple. Let E_x and E(x), respectively denote the JB*-subtriple and norm closed inner ideal of E generated by x. We have $E(x)^{**} = E_2^{**}(r(x))$ and, when the latter is realised as a JBW*-algebra, E(x) is a JB*-algebra with $x \in E(x)_+$ and E_x is the abelian C*-algebra (i.e. associative JB*-algebra) of E(x) generated by x, with corresponding spectrum $\sigma(x)$. To avoid posible confusion below, given a continuous real-valued function f on $\sigma(x) \cup \{0\}$ vanishing at 0, f(x) shall have its usual meaning when E_x is regarded as an abelian C*-algebra and $f_t(x)$ shall denote

the same element of E_x when the latter is regarded as a JB*-subtriple of E. Thus, for any real odd polynomial, $P(\lambda) = \sum_{k=0}^{n} \alpha_k \lambda^{2k+1}$, we have $P_t(x) = \sum_{k=0}^{n} \alpha_k D(x, x)^k(x)$.

We remark that if ||x|| = 1, then the tripotents u(x) and r(x) in E^{**} are projections in the abelian von Neumann algebra $(E_x)^{**}$, r(x) being the identity element.

Lemma 3.1. Let $x \in E$ and $u \in E^{**}$ where E is a JB^* -triple and u is a tripotent such that D(u,u)x = u. Then there is an element $a \in E_x$ such that ||a|| = 1 and D(u,u)a = u. Moreover, D(u,u)u(a) = D(u,u)r(a) = u and $u \le u(a) \le a \le r(a)$ (in $E_2^{**}(r(a))$).

Proof. We may suppose that u is non-zero and therefore that $||x|| \ge 1$. Since $P_0(u)(x-u) = 0$, u and x-u are orthogonal which implies

$$D(u, x) = D(u, u) = D(x, u).$$

By Peirce arithmetic D(x,x) and D(u,u) commute and, by induction, we have

$$D(u, u)D(x, x)^n x = u$$
, for all $n \ge 0$.

Thus,

$$D(u, u)P_t(x) = P(1)u,$$

for all real odd polinomials P. If f is a continuous real valued function on [0, ||x||] vanishing at 0 it follows that

$$D(u, u) f_t(x) = f(1)u.$$

Putting $a = f_t(x)$, where $f(\lambda) = \min\{\lambda, 1\}$, we have that D(u, u)a = u and ||a|| = 1.

Further, since $(f_n)_t(a) \to r(a)$ and $(g_n)_t(a) \to u(a)$ in the weak*-topology, where $f_n(\lambda) = \lambda^{\frac{1}{2n+1}}$ and $g_n(\lambda) = \lambda^{2n+1}$ $(0 \le \lambda \le 1)$ we have

$$D(u, u)r(a) = u = D(u, u)u(a).$$

The final assertion follows from this and the above remarks. \Box

Lemma 3.2. Let u be a tripotent in E^{**} where E is a JB^* -triple. The sets $\{x \in E_1 : D(u,u)x = u\}, (u + E_0^{**}(u)) \cap E_1 \text{ and } \{x \in E : u \leq x \leq r(x)\}$ coincide.

Proof. The coincidence of the first two sets is evident from the fact that, for $x \in E^{**}$, D(u,u)x = u if and only if $x - u \in \ker D(u,u) = E_0^{**}(u)$. The first set is contained in the third by Lemma 3.1. Conversely, given $x \in E$ with $u \le x \le r(x)$ we have, since $r(x) - x \ge 0$ in $E_2^{**}(r(x))$ and u is a projection there satisfying $\{u, r(x) - x, u\} = 0$, that u and r(x) - x must be orthogonal so that

$$0 = D(u, u)(r(x) - x) = u - D(u, u)x.$$

We shall now prove a transitivity theorem for JB*-triples.

Theorem 3.3. Let E be a JB^* -triple and let u_1, \ldots, u_n be orthogonal minimal tripotents in E^{**} with sum u. Then

- (a) $D(u,u)E = D(u,u)E^{**}$ and $P_j(u)E = P_j(u)E^{**}$ for j = 1, 2.
- (b) There exists a in E such that ||a|| = 1 and D(u, u)a = u.
- (c) There exist orthogonal elements, a_1, \ldots, a_n in E such that $D(u_i, u_i)a_i = u_i$ and $||a_i|| = 1$ for $i = 1, \ldots, n$.

Proof. (a) The JBW*-algebra $E_2^{**}(u)$ is an ℓ_{∞} -sum of JBW*-algebras M_1, \ldots, M_k where each M_i is a type I_{n_i} factor with $n_i < \infty$. For each i, let ψ_i be the (unique) faithful tracial state on M_i , and let φ denote $\psi P_2(u)$ where ψ is the faithful tracial state on $E_2^{**}(u)$ given by $k^{-1} \sum_{i=1}^k \psi_i$. By construction, as v ranges over all tripotents in E^{**} such that $v \leq u$ and $v \neq u$, the values of $\varphi(v)$ form a finite set of rational numbers with supremum $\alpha < \varphi(u) = 1$.

Let $x \in E^{**}$. By Theorem 2.9 there exists an element $a \in E$ and a tripotent $v \in E^{**}$ with $v \le u$ such that D(v,v)(x-a)=0 and $1-\varphi(v)<1-\alpha$. Since $\varphi(v)>\alpha$, we must have v=u and hence $D(u,u)E=D(u,u)E^{**}$. The remaining equalities are immediate from the identities $2P_j(u)D(u,u)=jP_j(u)$ for j=1,2.

- (b) By the arguments of the previous paragraph, and Lemma 3.1, there is a norm-one element $a \in E$ such that u D(u, u)a = D(u, u)(u a) = 0.
- (c) Let a be as in (b) and let $\rho_i \in \partial_e(E_1^*)$ such that $\rho_i(u_i) = 1$ for each i [9, Proposition 4]. By restriction, the ρ_i are pure states of the JB*-algebra E(a) with support projections u_i in $E(a)^{**}$. Hence, by [11, Proposition 2.3], there exist orthogonal norm-one elements $b_1, \ldots, b_n \in E(a)_+$ with $\rho_i(b_i) = 1$ for $i = 1, \ldots, n$. Since each u_i is now a minimal tripotent of $E(b_i)^{**}$ we can

apply (b) to find a norm-one element $a_i \in E(b_i)$ such that $D(u_i, u_i)a_i = u_i$. Since the inner ideals $E(b_1), \ldots, E(b_n)$ are mutually orthogonal, so are the elements a_1, \ldots, a_n .

Let E be a JB*-triple. In the terminology introduced in [7] the tripotents of E^{**} of the form u(a) where $a \in E$ with ||a|| = 1, are referred to as compact G_{δ} 's relative to E and each tripotent of E^{**} that is the weak* limit of a decreasing net of compact G_{δ} 's relative to E is called compact relative to E. Let $x \in E^{**}$ with ||x|| = 1. The norm-exposed face of E_1^* ,

$$F_x = \{ \varphi \in E_1^* : \varphi(x) = 1 \}$$

satisfies $F_x = F_{u(x)}$ [7, Lemma 3.3]. The face F_x is weak*-exposed if $x \in E$. By [7, Corollary 4.4] (c.f. [6, Lemma 3.2, Theorem 4.6]) the assignments

$$u \mapsto F_u$$
 and $u \mapsto (u + E_0^{**}(u)) \cap E_1$

are respectively an order isomorphism, and an anti-order isomorphism, from the non-zero compact tripotents relative to E onto the proper weak*-semiexposed faces of E_1^* , and onto the proper norm-semi-exposed faces of E_1 .

Theorem 3.4. Let E be a JB^* -triple and let u be a finite rank tripotent of E^{**} . Then

- (a) u is compact relative to E;
- (b) F_u is a weak*-semi-exposed face of E_1^* .

Moreover, if E is separable, then

- (c) u is a compact G_{δ} relative to E;
- (d) F_u is a weak*-exposed face of E_1^* ;
- (e) $\{\rho\}$ is weak*-exposed for all $\rho \in \partial_e(E_1^*)$.

Proof. (a) Let u be the sum of orthogonal minimal tripotents u_1, \ldots, u_n in E^{**} . Via Theorem 3.3 (c), choose orthogonal norm-one elements a_1, \ldots, a_n in E such that

$$u_i \le a_i \le r(a_i)$$
 for $i = 1, \dots, n$.

Each u_i is a minimal projection of $E(a_i)^{**} = E_2^{**}(r(a_i))$. Thus $r(a_1) - a_1, \ldots, r(a_n) - a_n$ are, respectively, weak* limits of increasing nets

 $(x_1)_{\lambda}, \ldots, (x_n)_{\lambda}$ in $E(a_1), \ldots, E(a_n)$ [4]. Let x be the sum of a_1, \ldots, a_n . Via mutual orthogonality of the a_i we have

$$u \le x \le r(x) = \sum_{i=1}^{n} r(a_i),$$

and $r(x) - \sum_{i=1}^{n} (x_i)_{\lambda}$ is a decreasing net in $A(x)^{**}$ with weak* limit u. Thus,

$$\left\{x, r(x) - \sum_{i=1}^{n} (x_i)_{\lambda}, x\right\}$$

is a decreasing net in E(x) with weak*-limit $\{x, u, x\} = u$. It follows that u is compact relative to E.

(b) This is immediate from (a) and [7, Corollary 4.4].

Suppose now that E is separable.

(c) Let the minimal tripotents u_1, \ldots, u_n be as in (a) and let ρ_1, \ldots, ρ_n in $\partial_e(E_1^*)$ such that $\{\rho_i\} = F_{u_i}$ for each i [6, Proposition 4]. As in part (a) we can choose x in E such that $u \leq x \leq r(x)$. Passing to the separable JB*-algebra E(x), it follows from [11, Propositions 2.3 and 3.1] that there exist orthogonal norm-one elements a_1, \ldots, a_n in $E(x)_+$ such that for each i,

$$\{\rho_i\} = F_{a_i} = F_{u(a_i)},$$

the second equality coming from [6, Lemma 3.3], so that $u_i = u(a_i)$ by [6, Theorem 4.4]. Thus, letting $a = \sum_{i=1}^{n} a_i$, in the JB*-algebra E(x) we have that

$$a^{2n+1} = \sum_{i=1}^{n} a_i^{2n+1}$$

is a decreasing sequence with weak* limit $\sum_{i=1}^{n} u_i = u$ in $E(x)^{**}$. Therefore, u = u(a).

(d) With a in E as in the proof of (c), we have $F_u = F_a$, as required.

(e) This is contained in the proof of (c).

We conclude with an observation on the facial structure of the closed unit ball E_1 of a JB*-triple E. If \mathcal{G} is a norm-semi-exposed face of E_1 then (see [7])

$$\mathcal{G}' = \{ \rho \in E_1^* : \rho(x) = 1 \text{ for all } x \in \mathcal{G} \}$$

is a weak*-semi-exposed face of E_1^* and

$$\mathcal{G} = \{x \in E_1 : \rho(x) = 1 \text{ for all } \rho \in \mathcal{G}'\}.$$

Let u(a) be a compact G_{δ} in E^{**} relative to E (where a lies in E with ||a||=1) and let $\rho\in\partial_e(F_a)$. Then u(a) majorises the support tripotent v of ρ in E^{**} , and we note that v is a minimal tripotent since $\rho\in\partial_e(E_1^*)$. It follows by definition that each element in the set, S, of all non-zero compact tripotents in E^{**} relative to E, majorises a minimal tripotent of E^{**} . Since, by Theorem 3.4 (a), all minimal tripotents of E^{**} are compact relative to E we deduce that the minimal elements of the set S (see [7, Theorem 4.5]) are, precisely, the minimal tripotents of E^{**} . By Theorem 3.3 (b) each $\rho\in\partial_e(E_1^*)$ attains its norm on E_1 so that

$$E_{\rho} = \{x \in E_1 : \rho(x) = 1\}$$

is a non-empty (norm-exposed) face of E_1 .

Corollary 3.5. Let E be a JB^* -triple.

- (a) The E_{ρ} are the maximal proper norm-closed faces of E_1 as ρ ranges over $\partial_e(E_1^*)$.
- (b) Each norm semi-exposed face of E_1 is an intersection of maximal norm closed faces of E_1 .

Proof. (a) Each maximal proper norm closed face of E_1 is norm exposed by [7, Lemma 2.1]. Given $\rho \in \partial_e(E_1^*)$ with minimal support tripotent u in E^{**} we clearly have that E_ρ contains $(u + E_0^{**}(u)) \cap E_1$. By the above remarks together with [7, Corollary 4.4 (ii)] the assertion now follows.

(b) Let \mathcal{G} be a norm semi-exposed face of E_1 . By the Krein-Milman theorem

$$\mathcal{G} = \{x \in E_1 : \rho(x) = 1 \text{ for all } \rho \in \partial_e(\mathcal{G}')\}.$$

Further, $\partial_e(\mathcal{G}') = \partial_e(E_1^*) \cap \mathcal{G}'$, since \mathcal{G}' is a face. Hence,

$$\mathcal{G} = \bigcap \{ E_{\rho} : \rho \in \partial_e(E_1^*) \cap \mathcal{G}' \}.$$

References

- [1] Barton, T. and Friedman, Y.: Grothendieck's inequality for JB*-triples and applications, J. London Math. Soc. (2) **36**, 513-523 (1987).
- [2] Barton, T. and Friedman Y.: Bounded derivations of JB*-triples, Quart. J. Math. Oxford 41, 255-268 (1990).
- [3] Barton, T. and Timoney, R. M.: Weak*-continuity of Jordan triple products and its applications, *Math. Scand.* **59**, 177-191 (1986).
- [4] Bunce, L. J.: The theory and structure of dual JB-algebras, Math. Z. 180, no. 4, 525-534 (1982).
- [5] S. Dineen, The second dual of a JB*-triple system, In: Complex analysis, functional analysis and approximation theory (ed. by J. Múgica), 67-69, (North-Holland Math. Stud. 125), North-Holland, Amsterdam-New York, 1986.
- [6] Edwards, C. M. and Rüttimann, G. F.: On the facial structure of the unit balls in a JBW*-triple and its predual, *J. London Math. Soc.* (2) **38**, no. 2, 317-332 (1988).
- [7] Edwards, C. M. and Rüttimann, G. T.: Compact tripotents in bi-dual JB*-triples, *Math. Proc. Cambridge Philos. Soc.* **120**, no. 1, 155-173 (1996).
- [8] Edwards, C.M. and Ruttimann, G. T.: Gleason's theorem for rectangular JBW*-triples, *Commun. Math. Phys.* **203**, 269-295 (1999).
- [9] Friedman, Y. and Russo, B.: Structure of the predual of a JBW*-triple, J. Reine u. Angew. Math. 356, 67-89 (1985).
- [10] Friedman, Y. and Russo B.: The Gelfand-Naimark Theorem for JB*-triples, *Duke Math. J.* **53**, 139-148 (1986).
- [11] Hamhalter, J.: Supporting sequences of pure states on JB algebras, *Studia Math.* **136**, no. 1, 37-47 (1999).
- [12] Horn, G.: Characterization of the predual and ideal structure of a JBW*-triple, *Math. Scand.* **61**, 117-133 (1987).
- [13] Kaup, W.: A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, *Math. Z.* **183**, 503-529 (1983).

- [14] Loos, O.: Bounded symmetric domains and Jordan pairs, Math. Lectures, University of California, Irvine (1977).
- [15] Peralta, A. M. and Rodríguez Palacios, A.: Grothendieck's inequalities for real and complex JBW*-triples, *Proc. London Math. Soc.* (3) **83**, no. 3, 605–625 (2001).
- [16] Rodríguez A.: On the strong* topology of a JBW*-triple, Quart. J. Math. Oxford (2) 42, 99-103 (1989).
- [17] Saitô, K.: Non-commutative extension of Lusin's theorem, *Tôhoku Math. J.* (2) **19**, 332-340 (1967).
- [18] Takesaki, M.: *Theory of operator algebras I*, Springer Verlag, New York, 1979.
- [19] Tomita, M.: Spectral theory of operator algebras. I, Math. J. Okayama Univ. 9, 63-98 (1959).
- [20] Wright, J. D. M.: Jordan C*-algebras, *Michigan Math. J.* **24**, no. 3, 291-302 (1977).

University of Reading Reading RG6 2AX, Great Britain.

Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.

e-mails: L.J.Bunce@reading.ac.uk, pacopolo@ugr.es, jmmoreno@ugr.es, and aperalta@ugr.es $\,$