Grothendieck's inequalities revisited

Antonio M. Peralta* and Angel Rodríguez Palacios[†]

Abstract

2000 Mathematics Subject Classification: 17C65, 46K70, 46L05, 46L10, and 46L70.

Introduction

Let X be a normed space. We denote by S_X , B_X , and X^* the unit sphere, the closed unit ball, and the dual space, respectively of X. If X is a Banach dual space we write X_* for a predual of X.

1 Little Grothendieck's inequality

We recall that a complex JB*-triple is a complex Banach space \mathcal{E} with a continuous triple product $\{.,.,.\}$: $\mathcal{E} \times \mathcal{E} \times \mathcal{E} \to \mathcal{E}$ which is bilinear and symmetric in the outer variables and conjugate linear in the middle variable, and satisfies:

- 1. (Jordan Identity) $L(a,b)\{x,y,z\} = \{L(a,b)x,y,z\} \{x,L(b,a)y,z\} + \{x,y,L(a,b)z\}$ for all a,b,c,x,y,z in \mathcal{E} , where $L(a,b)x := \{a,b,x\}$;
- 2. The map L(a, a) from \mathcal{E} to \mathcal{E} is an hermitian operator with nonnegative spectrum for all a in \mathcal{E} ;

^{*}Supported by Programa Nacional F.P.I. Ministry of Education and Science grant, D.G.I.C.Y.T. project no. PB 98-1371, and Junta de Andalucía grant FQM 0199

[†]Partially supported by Junta de Andalucía grant FQM 0199

3. $\|\{a, a, a\}\| = \|a\|^3$ for all a in \mathcal{E} .

Complex JB*-triples have been introduced by W. Kaup in order to provide an algebraic setting for the study of bounded symmetric domains in complex Banach spaces (see [K1], [K2] and [U]).

By a complex JBW*-triple we mean a complex JB*-triple which is a dual Banach space. We recall that the triple product of every complex JBW*-triple is separately weak*-continuous [BT], and that the bidual \mathcal{E}^{**} of a complex JB*-triple \mathcal{E} is a JBW*-triple whose triple product extends the one of \mathcal{E} [Di].

Given a complex JBW*-triple \mathcal{W} and a norm-one element φ in the predual \mathcal{W}_* of \mathcal{W} , we can construct a prehilbert seminorn $\|.\|_{\varphi}$ as follows (see [BF1, Proposition 1.2]). By the Hahn-Banach theorem there exists $z \in \mathcal{W}$ such that $\varphi(z) = \|z\| = 1$. Then $(x,y) \mapsto \varphi\{x,y,z\}$ becomes a positive sesquilinear form on \mathcal{W} which does not depend on the point of support z for φ . The prehilbert seminorm $\|.\|_{\varphi}$ is then defined by $\|x\|_{\varphi}^2 := \varphi\{x,x,z\}$ for all $x \in \mathcal{W}$. If \mathcal{E} is a complex JB*-triple and φ is a norm-one element in \mathcal{E}^* , then $\|.\|_{\varphi}$ acts on \mathcal{E}^{**} , hence in particular it acts on \mathcal{E} .

Following [IKR], we define real JB*-triples as norm-closed real subtriples of complex JB*-triples. In [IKR] it is shown that every real JB*-triple E can be regarded as a real form of a complex JB*-triple. Indeed, given a real JB*-triple E there exists a unique complex JB*-triple structure on the complexification $\widehat{E} = E \oplus i E$, and a unique conjugation (i.e., conjugate-linear isometry of period 2) τ on \widehat{E} such that $E = \widehat{E}^{\tau} := \{x \in \widehat{E} : \tau(x) = x\}$. The class of real JB*-triples includes all JB-algebras [HS], all real C*-algebras [G], and all J*B-algebras [Al].

By a real JBW*-triple we mean a real JB*-triple whose underlying Banach space is a dual Banach space. As in the complex case, the triple product of every real JBW*-triple is separately weak*-continuous [MP], and the bidual E^{**} of a real JB*-triple E is a real JBW*-triple whose triple product extends the one of E [IKR].

If U is a real or complex JB*-triple, and A is a subset of U we denote by

$$A^{\perp} := \{x \in U : \{x, A, U\}\}$$

the orthogonal complement of A.

In [PR] (see also [P]) the authors proved the following appropriated version of the so called "Little Grothendieck's inequality" for real and complex JBW*-triples, which avoids the gaps contained in [BF1].

Theorem 1.1 [PR, Theorems 2.1 and 2.9]

Let $K > \sqrt{2}$ (respectively, $K > 1 + 3\sqrt{2}$) and $\varepsilon > 0$. Then, for every complex (respectively, real) JBW*-triple W, every complex (respectively, real) Hilbert space \mathcal{H} , and every weak*-continuous linear operator $T : W \to \mathcal{H}$, there exist norm-one functionals $\varphi_1, \varphi_2 \in W_*$ such that the inequality

$$||T(x)|| \le K ||T|| (||x||_{\varphi_2}^2 + \varepsilon^2 ||x||_{\varphi_1}^2)^{\frac{1}{2}},$$

holds for all $x \in \mathcal{W}$.

Let T be a bounded linear operator from a real (respectively, complex) JB*-triple E to a real (respectively, complex) Hilbert space H, since E^{**} is a real (respectively, complex) JBW*-triple and T^{**} is a weak*-continuous operator from E^{**} to H, then the following result follows from the previous theorem.

Corollary 1.2 Let $K > \sqrt{2}$ (respectively, $K > 1 + 3\sqrt{2}$) and $\varepsilon > 0$. Then, for every complex (respectively, real) JB^* -triple \mathcal{E} , every complex (respectively, real) Hilbert space \mathcal{H} , and every bounded linear operator $T : \mathcal{E} \to \mathcal{H}$, there exist norm-one functionals $\varphi_1, \varphi_2 \in \mathcal{E}^*$ such that the inequality

$$||T(x)|| \le K ||T|| \left(||x||_{\varphi_2}^2 + \varepsilon^2 ||x||_{\varphi_1}^2 \right)^{\frac{1}{2}},$$

holds for all $x \in \mathcal{E}$.

The question is whether in Corollary 1.2 the value $\varepsilon = 0$ is allowed for some value of the constant K. We are going to give an affirmative answer to this question whenever we replace the prehilbertian seminorm $\|.\|_{\varphi}$ with another prehilbertian seminorm associated with a "state" of a real or complex JB*-triple.

Given a Banach space X, BL(X), and I_X will denote the normed algebra of all bounded linear operators on X, and the identity operator on X, respectively. If u is a norm-one element in X, the set of **states** of X relative to u, D(X, u), is defined as the non empty, convex, and weak*-compact subset of X^* given by

$$D(X, u) := \{ \Phi \in B_{X^*} : \Phi(u) = 1 \}.$$

Let \mathcal{E} be a complex JB*-triple and $\Phi \in D(BL(\mathcal{E}), I_{\mathcal{E}})$. Since for every $x \in \mathcal{E}$, the map L(x, x) is an hermitian operator with non-negative spectrum,

we can define the prehilbertian seminorm $|||.|||_{\Phi}$ by $|||x|||_{\Phi} := \Phi(L(x, x))$ for all $x \in \mathcal{E}$.

Let $\varphi \in S_{\mathcal{E}^*}$ and let $e \in S_{\mathcal{E}^{**}}$ such that $\varphi(e) = 1$. We define $\Phi_{\varphi,e} \in D(BL(\mathcal{E}), I_{\mathcal{E}})$ by $\Phi_{\varphi,e}(T) := \varphi T^{**}(e)$ for all $T \in BL(\mathcal{E})$. We notice that in this case $\| \| \cdot \| \|_{\Phi_{\varphi,e}}$ and $\| \cdot \|_{\varphi}$ coincide on \mathcal{E}^{**} (and hence in \mathcal{E}).

Theorem 1.3 Let \mathcal{E} be a complex (respectively, real) JB^* -triple, \mathcal{H} a complex (respectively, real) Hilbert space and $T: \mathcal{E} \to \mathcal{H}$ a bounded linear operator. Then there exists $\Phi \in D(BL(\mathcal{E}), I_{\mathcal{E}})$ such that

$$||T(x)|| \le \sqrt{2} ||T|| |||x|||_{\Phi},$$

(respectively, $||T(x)|| \le (1+3\sqrt{2}) ||T|| |||x|||_{\Phi}$) for all $x \in \mathcal{E}$.

Proof. We suppose that \mathcal{E} is a complex JB*-triple. The proof for a real JB*-triple is the same. By Corollary 1.2, for every $n \in \mathbb{N}$ there are norm-one functionals $\varphi_1^n, \varphi_2^n \in \mathcal{E}^*$ such that the inequality

$$||T(x)|| \le (\sqrt{2} + \frac{1}{n}) ||T|| \left(||x||_{\varphi_2^n}^2 + \frac{1}{n} ||x||_{\varphi_1^n}^2 \right)^{\frac{1}{2}}$$

$$= (\sqrt{2} + \frac{1}{n}) \|T\| \left(\||x|||_{\Phi_{\varphi_2^n, e_2^n}}^2 + \frac{1}{n} \||x|||_{\Phi_{\varphi_1^n, e_1^n}}^2 \right)^{\frac{1}{2}},$$

holds for all $x \in \mathcal{E}$, where $e_i^n \in S_{\mathcal{E}^{**}}$ with $\varphi_1^n(e_i^n) = 1$ $(i = 1, 2, n \in \mathbb{N})$. Let $i \in \{1, 2\}$, since $D(BL(\mathcal{E}), I_{\mathcal{E}})$ is weak*-compact, we can take a weak* cluster point $\Phi_i \in D(BL(\mathcal{E}), I_{\mathcal{E}})$ of the sequence $\Phi_{\varphi_i^n, e_i^n}$ (i = 1, 2). Then the inequality

$$||T(x)|| \le \sqrt{2} ||T|| |||x|||_{\Phi_2}$$

holds for all $x \in \mathcal{E}$. \square

From the previous Theorem we can now derive a remarkable result of U. Haagerup.

Corollary 1.4 [H1, Theorem 3.2]

Let A be a C*-algebra, H a complex Hilbert space, and $T: A \to H$ a bounded linear operator. There exist two states φ and ψ on A, such that

$$||T(x)||^2 \le ||T||^2 (\varphi(x^*x) + \psi(xx^*)),$$

for all $x \in A$.

Proof. By Theorem 1.3 there exists $\Phi \in D(BL(A), I_A)$ such that

$$||T(x)||^2 \le 2||T||^2\Phi(L(x,x))$$

for all $x \in A$. Since for every $x \in A$, $L(x, x) = \frac{1}{2}(L_{xx^*} + L_{x^*x})$ (where L_a and R_a stands for the left and right multiplication by a, respectively), we have

$$||T(x)||^2 \le ||T||^2 \Phi(L_{xx^*} + R_{x^*x})$$

for all $x \in A$.

Now denoting by $\widehat{\varphi}$ and $\widehat{\psi}$ the positive functionals on A given by $\widehat{\varphi}(x) := \Phi(L_x)$, and $\widehat{\psi}(x) := \Phi(R_x)$, respectively, we conclude that $\varphi = \frac{\widehat{\varphi}}{\|\widehat{\varphi}\|}$ and $\psi = \frac{\widehat{\psi}}{\|\widehat{\psi}\|}$ are states on A and

$$||T(x)||^2 \le ||T||^2 (\varphi(x^*x) + \psi(xx^*)),$$

for all $x \in A$. \square

The concluding section of the paper [PR] deals with some applications of the Theorem 1.1, including certain results on the strong*-topology, $S^*(W, W_*)$, of a real or complex JBW*-triple W. We recall that if W is a real or complex JBW*-triple then the $S^*(W, W_*)$ topology is defined as the topology on W generated by the family of seminorms $\{\|.\|_{\varphi} : \varphi \in W_*, \|\varphi\| = 1\}$. For every dual Banach space X (with a fixed predual denoted by X_*), we denote by $m(X, X_*)$ the Mackey topology on X relative to its duality with X_* .

It is worth mentioning that if a JBW*-algebra \mathcal{A} is regarded as a complex JBW*-triple, $S^*(\mathcal{A}, \mathcal{A}_*)$ coincides with the so-called "algebra-strong* topology" of \mathcal{A} , namely the topology on \mathcal{A} generated by the family of seminorms of the form $x \mapsto \sqrt{\xi(x \circ x^*)}$ when ξ is any positive functional in \mathcal{A}_* [R1, Proposition 3]. As a consequence, when a von Neumann algebra \mathcal{M} is regarded as a complex JBW*-triple, $S^*(\mathcal{M}, \mathcal{M}_*)$ coincides with the familiar strong*-topology of \mathcal{M} (compare [S, Definition 1.8.7]).

The results of [PR] allow us to avoid the difficulties in [R1] (compare [PR, page 23]), and to extend these results to the real case. We summarize these results in the following theorem.

Theorem 1.5 [PR, page 23, Corollary 4.2, and Theorem 4.3] (see also [R1, Theorem] and [R2, Theorem D.21])

- 1. Let W be a real or complex JBW^* -triple. Then the strong*-topology of W is compatible with the duality (W, W_*) .
- 2. Linear mappings between real or complex JBW*-triples are strong*-continuous if and only if they are weak*-continuous.
- 3. If W is a real or complex JBW*-triple, and if V is a weak*-closed subtriple, then the inequality $S^*(W, W_*)|_V \leq S^*(V, V_*)$ holds, and in fact $S^*(W, W_*)|_V$ and $S^*(V, V_*)$ coincide on bounded subsets of V.
- 4. Let W be a real or complex JBW^* -triple. Then the triple product of W is jointly $S^*(W, W_*)$ -continuous on bounded subsets of W, and the topologies $m(W, W_*)$ and $S^*(W, W_*)$ coincide on bounded subsets of W.

Remark 1.6 In a recent work L. J. Bunce has obtained an improvement of the third statement. Concretely in [Bu, Corollary] he proves that if W is a real or complex JBW*-triple, and if V is a weak*-closed subtriple, then

- 1. each element of V_* has a norm preserving extension in W_* ;
- 2. $S^*(W, W_*)|_V = S^*(V, V_*)$

From the results related with the strong*-topology we derive a Jarchow-type characterization of weakly compact operators from (real or complex) JB*-triples to arbitrary Banach spaces.

Theorem 1.7 [PR, Theorem 4.6]

Let E be a real (respectively, complex) JB^* -triple, X a real (respectively, complex) Banach space, and $T: E \to X$ a bounded linear operator. The following assertions are equivalent:

- 1. T is weakly compact.
- 2. There exist a bounded linear operator G from E to a real (respectively, complex) Hilbert space and a function $N:(0,+\infty)\to(0,+\infty)$ such that

$$||T(x)|| \le N(\varepsilon)||G(x)|| + \varepsilon||x||$$

for all $x \in E$ and $\varepsilon > 0$.

3. There exist norm one functionals $\varphi_1, \varphi_2 \in E^*$ and a function $N: (0, +\infty) \to (0, +\infty)$ such that

$$||T(x)|| \le N(\varepsilon) ||x||_{\varphi_1,\varphi_2} + \varepsilon ||x||$$

for all $x \in E$ and $\varepsilon > 0$.

2 Big Grothendieck's inequality

In [PR, Theorems 3.1 and 3.4] we obtained the following result.

Theorem 2.1 Let $M > 4(1 + 2\sqrt{3})$ $(1 + 3\sqrt{2})^2$ (respectively, $M > 4(1 + 2\sqrt{3})$) and $\varepsilon > 0$. For every couple (V, W) of real (respectively, complex) JBW^* -triples and every separately weak*-continuous bilinear form U on $V \times W$, there exist norm-one functionals $\varphi_1, \varphi_2 \in V_*$, and $\psi_1, \psi_2 \in W_*$ satisfying

$$|U(x,y)| \le M \|U\| (\|x\|_{\varphi_2}^2 + \varepsilon^2 \|x\|_{\varphi_1}^2)^{\frac{1}{2}} (\|y\|_{\psi_2}^2 + \varepsilon^2 \|y\|_{\psi_1}^2)^{\frac{1}{2}}$$

for all $(x, y) \in V \times W$.

In the case of complex JB*-triples the interval of variation of the constant M can be enlarged with $M > 3 + 2\sqrt{3}$ (see [PR, Remark 3.6]). Precisely, we have the following theorem.

Theorem 2.2 Let $M > 3 + 2\sqrt{3}$ and $\varepsilon > 0$. Then for every couple $(\mathcal{E}, \mathcal{F})$ of complex JB^* -triples and every bounded bilinear form U on $\mathcal{E} \times \mathcal{F}$ there exist norm-one functionals $\varphi_1, \varphi_2 \in \mathcal{E}^*$ and $\psi_1, \psi_2 \in \mathcal{F}^*$ satisfying

$$|U(x,y)| \le M \|U\| (\|x\|_{\varphi_2}^2 + \varepsilon^2 \|x\|_{\varphi_1}^2)^{\frac{1}{2}} (\|y\|_{\psi_2}^2 + \varepsilon^2 \|y\|_{\psi_1}^2)^{\frac{1}{2}}$$

for all $(x,y) \in \mathcal{E} \times \mathcal{F}$.

As in the "Little Grothendieck's inequality", we do not know if the value $\varepsilon=0$ is allowed in the previous Theorem. However we can take $\varepsilon=0$ whenever we change norm-one functionals with states. Indeed, when in the proof of Theorem 1.3, Theorem 2.2 and [PR, Corollary 3.5] replace Corollary 1.2, we obtain the following theorem.

Theorem 2.3 Let \mathcal{E} , \mathcal{F} be complex (respectively, real) JB^* -triples, $M=3+2\sqrt{3}$ (respectively, $M=4(1+2\sqrt{3})$ $(1+3\sqrt{2})^2$), and let U be a bounded bilinear form on $\mathcal{E} \times \mathcal{F}$. Then there are $\Phi \in D(BL(\mathcal{E}), I_{\mathcal{E}})$ and $\Psi \in D(BL(\mathcal{F}), I_{\mathcal{F}})$ such that

$$|U(x,y)| \le M||U||||x|||_{\Phi}|||y|||_{\Psi}$$

for all $(x, y) \in \mathcal{E} \times \mathcal{F}$.

Another interesting question is whether the interval $M>3+2\sqrt{3}$, is valid in the complex case of Theorem 2.1. The rest of the paper deals with the affirmative answer of this question. The following proposition gives a first answer in the particular case of biduals of JB*-triples. We recall that if \mathcal{E} and \mathcal{F} are complex JB*-triples, then every bounded bilinear form U on $\mathcal{E} \times \mathcal{F}$ has a (unique) separately weak*-continuous extension, denoted by \widetilde{U} , to $\mathcal{E}^{**} \times \mathcal{F}^{**}$ (see [PR, Lemma 1.1]).

Proposition 2.4 Let $M > 3 + 2\sqrt{3}$ and $\varepsilon > 0$. Then for every couple $(\mathcal{E}, \mathcal{F})$ of complex JB^* -triples and every bounded bilinear form U on $\mathcal{E} \times \mathcal{F}$ there exist norm-one functionals $\varphi_1, \varphi_2 \in \mathcal{E}^*$ and $\psi_1, \psi_2 \in \mathcal{F}^*$ satisfying

$$|\widetilde{U}(\alpha,\beta)| \leq M \|U\| \left(\|\alpha\|_{\varphi_2}^2 + \varepsilon^2 \|\alpha\|_{\varphi_1}^2 \right)^{\frac{1}{2}} \left(\|\beta\|_{\psi_2}^2 + \varepsilon^2 \|\beta\|_{\psi_1}^2 \right)^{\frac{1}{2}}$$
for all $(\alpha,\beta) \in \mathcal{E}^{**} \times \mathcal{F}^{**}$.

Proof. By Theorem 2.2, there are norm-one functionals $\varphi_1, \varphi_2 \in \mathcal{E}^*$ and $\psi_1, \psi_2 \in \mathcal{F}^*$ satisfying

$$|\widetilde{U}(x,y)| \le M \|U\| \left(\|x\|_{\varphi_2}^2 + \varepsilon^2 \|x\|_{\varphi_1}^2 \right)^{\frac{1}{2}} \left(\|y\|_{\psi_2}^2 + \varepsilon^2 \|y\|_{\psi_1}^2 \right)^{\frac{1}{2}}$$
 (2.1)

for all $(x, y) \in \mathcal{E} \times \mathcal{F}$.

Since the first assertion of Theorem 1.5 assures that \mathcal{E} and \mathcal{F} are strong*-dense in \mathcal{E}^{**} and \mathcal{F}^{**} , respectively, for every $(\alpha, \beta) \in \mathcal{E}^{**} \times \mathcal{F}^{**}$ we have nets $(x_{\lambda}) \subseteq \mathcal{E}$ and $(y_{\mu}) \subseteq \mathcal{F}$ converging to α and β , respectively, in the strong* topology (hence they converge also in the weak* topology of \mathcal{E}^{**} and \mathcal{F}^{**} , respectively. Let now $x \in \mathcal{E}$, since for $i \in \{1, 2\}$, the seminorm $\|.\|_{\psi_i}$ is strong*-continuous, by (2.1) and the separately weak*-continuity of \widetilde{U} we have

$$|\widetilde{U}(x,\beta)| \le M \|U\| \left(\|x\|_{\varphi_2}^2 + \varepsilon^2 \|x\|_{\varphi_1}^2 \right)^{\frac{1}{2}} \left(\|\beta\|_{\psi_2}^2 + \varepsilon^2 \|\beta\|_{\psi_1}^2 \right)^{\frac{1}{2}}$$

for all $(x, \beta) \in \mathcal{E} \times \mathcal{F}^{**}$. Using the same argument, but fixing $\beta \in \mathcal{F}^{**}$ instead of $x \in \mathcal{E}$, we finish the proof. \square

By [BDH, Proposition 6] every JBW*-triple is (isometrically) isomorphic to a weak*-closed ideal of its bidual. Indeed, given a JBW*-triple \mathcal{V} , then there exists a weak*-closed ideal P of \mathcal{V}^{**} such that $\Psi := \Pi_P J_{\mathcal{V}}$ is a triple isomorphism (and hence weak*-continuous) from \mathcal{V} onto P, where Π_P denotes the natural projection from \mathcal{V}^{**} onto P, and $J_{\mathcal{V}}$ denotes the natural embedding of \mathcal{V} onto \mathcal{V}^{**} . It is also known that $J_{\mathcal{V}_*}^*|_P = \Psi^{-1}$.

We can know state the complex case of Theorem 2.1 with constant $M > 3 + 2\sqrt{3}$.

Theorem 2.5 Let $M > 3 + 2\sqrt{3}$ and $\varepsilon > 0$. For every couple $(\mathcal{V}, \mathcal{W})$ of complex JBW*-triples and every separately weak*-continuous bilinear form U on $\mathcal{V} \times \mathcal{W}$, there exist norm-one functionals $\varphi_1, \varphi_2 \in \mathcal{V}_*$, and $\psi_1, \psi_2 \in \mathcal{W}_*$ satisfying

$$|U(x,y)| \le M \|U\| (\|x\|_{\varphi_2}^2 + \varepsilon^2 \|x\|_{\varphi_1}^2)^{\frac{1}{2}} (\|y\|_{\psi_2}^2 + \varepsilon^2 \|y\|_{\psi_1}^2)^{\frac{1}{2}}$$

for all $(x, y) \in \mathcal{V} \times \mathcal{W}$.

Proof. Let \widetilde{U} the unique separately weak*-continuous extension of U to $\mathcal{V}^{**} \times \mathcal{W}^{**}$. By Proposition 2.4 there exist norm-one functionals $\varphi_1, \varphi_2 \in \mathcal{V}^*$ and $\psi_1, \psi_2 \in \mathcal{W}^*$ satisfying

$$|\widetilde{U}(\alpha,\beta)| \le M \|U\| \left(\|\alpha\|_{\varphi_2}^2 + \varepsilon^2 \|\alpha\|_{\varphi_1}^2 \right)^{\frac{1}{2}} \left(\|\beta\|_{\psi_2}^2 + \varepsilon^2 \|\beta\|_{\psi_1}^2 \right)^{\frac{1}{2}} \tag{2.2}$$

for all $(\alpha, \beta) \in \mathcal{V}^{**} \times \mathcal{W}^{**}$.

By the previous comments there are weak*-closed ideals P and Q, of \mathcal{V}^{**} and \mathcal{W}^{**} , respectively, such that

$$\Psi_{\mathcal{V}} := \Pi_P J_{\mathcal{V}} : \mathcal{V} \to P$$

and

$$\Psi_{\mathcal{W}} := \Pi_{\mathcal{O}} J_{\mathcal{W}} : \mathcal{W} \to \mathcal{Q}$$

are triple isomorphisms. Let us now define another bilinear form, \widehat{U} , on $\mathcal{V}^{**} \times \mathcal{W}^{**}$ by $\widehat{U}(\alpha, \beta) := U(J^*_{\mathcal{V}_*}(\alpha), J^*_{\mathcal{W}_*}(\beta))$. Then \widehat{U} is separately weak*-continuous and extends U to $\mathcal{V}^{**} \times \mathcal{W}^{**}$, so $\widehat{U} = \widetilde{U}$. In particular

$$U(x,y) = \widetilde{U}(\Pi_P J_{\mathcal{V}}(x), \Pi_Q J_{\mathcal{W}}(y))$$

for all $(x, y) \in \mathcal{V} \times \mathcal{W}$.

It is well known that $\mathcal{V}^{**} = P \oplus^{\ell_{\infty}} P^{\perp}$ and $\mathcal{W}^{**} = Q \oplus^{\ell_{\infty}} Q^{\perp}$, so the normone functionals given in (2.2) decompose $\varphi_i = \varphi_i^1 + \varphi_i^2$ and $\psi_i = \psi_i^1 + \psi_i^2$ $(i \in \{1, 2\})$, where

$$\varphi_i^1 \in P_*, \ \varphi_i^2 \in (P^\perp)_*, \ \|\varphi_i^1\| + \|\varphi_i^2\| = 1,$$

and

$$\psi_i^1 \in Q_*, \ \psi_i^2 \in (Q^\perp)_*, \ \|\psi_i^1\| + \|\psi_i^2\| = 1,$$

for $i \in \{1, 2\}$. Now taking $x \in \mathcal{V}$ and norm one elements $e_i^1 \in P$ and $e_i^2 \in P^{\perp}$ such that $\varphi_i^j(e_i^j) = \|\varphi_i^j(i, j \in \{1, 2\})$, applying the orthogonality of P and P^{\perp} , we get

$$\begin{split} \|\Phi_{\mathcal{V}}(x)\|_{\varphi_{i}}^{2} &= \varphi_{i}^{1} \left\{ \Phi_{\mathcal{V}}(x), \Phi_{\mathcal{V}}(x), e_{i}^{1} \right\} + \varphi_{i}^{2} \left\{ \Phi_{\mathcal{V}}(x), \Phi_{\mathcal{V}}(x), e_{i}^{2} \right\} \\ &= \varphi_{i}^{1} \Phi_{\mathcal{V}} \left\{ x, x, \Phi_{\mathcal{V}}^{-1}(e_{i}^{1}) \right\} \leq \|x\|_{\widetilde{\varphi}_{i}}^{2}, \end{split}$$

where $\widetilde{\varphi}_i := \frac{\varphi_i^1 \Phi_{\mathcal{V}}}{\|\varphi_i^1 \Phi_{\mathcal{V}}\|} \in \mathcal{V}_*$ if $\varphi_i^1 \Phi_{\mathcal{V}} \neq 0$, if $\varphi_i^1 \Phi_{\mathcal{V}} = 0$ we can take as $\widetilde{\varphi}_i$ any other norm-one functional in \mathcal{V}_* . Similarly we get norm-one functionals $\widetilde{\psi}_i$ in \mathcal{W}_* such that

$$\|\Phi_{\mathcal{W}}(y)\|_{\psi_i}^2 \le \|y\|_{\widetilde{\psi}_i}^2$$

for all $y \in \mathcal{W}$, $i \in \{1, 2\}$.

Finally applying (2.2) we get

$$|U(x,y)| \le M \|U\| \left(\|x\|_{\widetilde{\varphi}_2}^2 + \varepsilon^2 \|x\|_{\widetilde{\varphi}_1}^2 \right)^{\frac{1}{2}} \left(\|y\|_{\widetilde{\psi}_2}^2 + \varepsilon^2 \|y\|_{\widetilde{\psi}_1}^2 \right)^{\frac{1}{2}}$$

for all $(x, y) \in \mathcal{V} \times \mathcal{W}$.

References

- [A] Acosta, M. D.: On bilinear mappings attaining their norms, Studia Math. **131** (2), 155-165 (1998).
- [Al] Alvermann, K.: Real normed Jordan algebras with involution, Arch. Math. 47, 135-150 (1986).
- [BDH] Barton, T., Dang, T., and Horn, G.: Normal representations of Banach Jordan triple systems, Proc. Amer. Math. Soc. **102**, 551-555 (1988).
- [BF1] Barton, T. and Friedman Y.: Grothendieck's inequality for JB*-triples and applications, J. London Math. Soc. (2) **36**, 513-523 (1987).

[BF2] Barton, T. and Friedman Y.: Bounded derivations of JB*-triples, Quart. J. Math. Oxford 41, 255-268 (1990).

- [BT] Barton, T. and Timoney, R. M.: Weak*-continuity of Jordan triple products and its applications, Math. Scand. **59**, 177-191 (1986).
- [BKU] Braun, R. B., Kaup, W., and Upmeier, H.: A holomorphic characterization of Jordan-C*-algebras, Math. Z. **161**, 277-290 (1978).
- [Bu] Bunce, L. J.: Norm preserving extensions in JBW*-triple preduals, Preprint, 2000.
- [CI] Chu, C-H. and Iochum, B.: Weakly compact operators on Jordan triples, Math. Ann. 281, 451-458 (1988).
- [CIL] Chu, C-H., Iochum, B., and Loupias, G.: Grothendieck's theorem and factorization of operators in Jordan triples, Math. Ann. **284**, 41-53 (1989).
- [CM] Chu, C-H., Mellon, P.: The Dunford-Pettis property in JB*-triples, J. London Math. Soc. (2) **55**, 515-526 (1997).
- [DFJP] Davis, W. J., Figiel, T., Johnson W. B., and Pelczynski, A.: Factoring weakly compact operators, J. Funct. Anal. 17, 311-327 (1974).
- [Di] Dineen, S.: The second dual of a JB*-triple system, In: Complex analysis, functional analysis and approximation theory (ed. by J. Múgica), 67-69, (North-Holland Math. Stud. 125), North-Holland, Amsterdam-New York, 1986.
- [DS] Dunford, N. and Schwartz, J. T.: Linear operators, Part I, Interscience, New York 1958.
- [E] Edwards, C. M.: On Jordan W*-algebras, Bull. Sci. Math. (2) 104, 393-403 (1980).
- [G] Goodearl, K. R.: Notes on real and complex C*-algebras, Shiva Publ. 1982.
- [Gro] Grothendieck, A.: Résumé de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Mat. Sao Paolo 8, 1-79 (1956).

[H1] Haagerup, U.: Solution of the similarity problem for cyclic representations of C*-algebras, Ann. of Math. 118, 215-240 (1983).

- [H2] Haagerup, U.: The Grothendieck inequality for bilinear forms on C*-algebras, Avd. Math. **56**, 93-116 (1985).
- [HS] Hanche-Olsen, H. and Størmer, E.: Jordan operator algebras, Monographs and Studies in Mathematics 21, Pitman, London-Boston-Melbourne 1984.
- [HP] Hille, E. and Phillips, R. S.: Functional analysis and semigroups, A.M.S. Colloquium Publications Vol. XXXI, 1957.
- [IKR] Isidro, J. M., Kaup, W., and Rodríguez, A.: On real forms of JB*-triples, Manuscripta Math. 86, 311-335 (1995).
- [J] Jarchow, H.: Locally Convex Spaces, Teubner, Stuttgart, 1981.
- [K1] Kaup, W.: Algebraic characterization of symmetric complex Banach manifolds, Math. Ann. 228, 39-64 (1977).
- [K2] Kaup, W.: A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 183, 503-529 (1983).
- [KU] Kaup, W. and Upmeier, H.: Jordan algebras and symmetric Siegel domains in Banach spaces, Math. Z. 157, 179-200, (1977).
- [L] Lindenstrauss, J.: On operators which attain their norm, Israel J. Math. 1, 139-148 (1963).
- [MP] Martínez, J. and Peralta A.M.: Separate weak*-continuity of the triple product in dual real JB*-triples, Math. Z., to appear.
- [P] Peralta, A. M.: Little Grothendieck's theorem for real JB*-triples, Math. Z., 234, 635-646 (2000).
- [PR] Peralta, A. M. and Rodríguez, A.: Grothendieck's inequalities for real and complex JBW*-triples, preprint.
- [P1] Pisier, G.: Grothendieck's theorem for non commutative C*-algebras with an appendix on Grothendieck's constant, J. Funct. Anal. 29, 397-415 (1978).

[P2] Pisier, G.: Factorization of linear operators and geometry of Banach spaces, Publ. Amer. Math. Soc. CBMS **60**, Am. Math. Soc. 1986.

- [P3] Pisier, G.: Factorization of operators through $L_{p\infty}$ or L_{p1} and non-commutative generalizations, Math. Ann. **276**, 105-136 (1986).
- [PZ] Poliquin, R. A. and Zizler, V. E.: Optimization of convex functions on w*-compact sets, Manuscripta Math. 68, 249-270 (1990).
- [R1] Rodríguez A.: On the strong* topology of a JBW*-triple, Quart. J. Math. Oxford (2) 42, 99-103 (1989).
- [R2] Rodríguez A.: Jordan structures in Analysis. In Jordan algebras: Proc. Oberwolfach Conf., August 9-15, 1992 (ed. by W. Kaup, K. McCrimmon and H. Petersson), 97-186. Walter de Gruyter, Berlin, 1994.
- [S] Sakai, S.: C*-algebras and W*-algebras, Springer-Verlag, Berlin 1971.
- [U] Upmeier, H.: Symmetric Banach Manifolds and Jordan C*-algebras, Mathematics Studies 104, (Notas de Matemática, ed. by L. Nachbin) North Holland 1985.
- [W] Wright, J. D. M.: Jordan C*-algebras, Michigan Math. J. **24**, 291-302 (1977).
- [Y] Youngson, M. A.: Non unital Banach Jordan algebras and C*-triple systems, Proc. Edinburg Math. Soc. 24, 19-31 (1981).
- [Z] Zizler, V.: On some extremal problems in Banach spaces, Math. Scand. **32**, 214-224 (1973).

A. M. Peralta and A. Rodríguez Palacios Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada 18071 Granada, Spain aperalta@goliat.ugr.es and apalacio@goliat.ugr.es