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Introduction

Let X be a normed space. We denote by Sx, Bx, and X* the unit sphere,
the closed unit ball, and the dual space, respectively of X. If X is a Banach
dual space we write X, for a predual of X.

1 Little Grothendieck’s inequality

We recall that a complex JB*-triple is a complex Banach space £ with a
continuous triple product {.,.,.} : &€ x & x &€ — & which is bilinear and
symmetric in the outer variables and conjugate linear in the middle variable,
and satisfies:

1. (Jordan Identity) L(a,b){z,y,z} = {L(a,b)x,y,z} — {z, L(b,a)y, z} +
{z,y, L(a,b)z} for all a,b,c,x,y,z in £, where L(a,b)z := {a,b, z};

2. The map L(a, a) from £ to £ is an hermitian operator with nonnegative
spectrum for all a in &;
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3. ||{a, a,a}|| = ||a])® for all a in &.

Complex JB*-triples have been introduced by W. Kaup in order to pro-
vide an algebraic setting for the study of bounded symmetric domains in
complex Banach spaces (see [K1], [K2] and [U]).

By a complex JBW*-triple we mean a complex JB*-triple which is a dual
Banach space. We recall that the triple product of every complex JBW*-
triple is separately weak*-continuous [BT], and that the bidual £** of a com-
plex JB*-triple £ is a JBW*-triple whose triple product extends the one of
& [Di).

Given a complex JBW*-triple W and a norm-one element ¢ in the predual
W, of W, we can construct a prehilbert seminorn ||.||, as follows (see [BF1,
Proposition 1.2]). By the Hahn-Banach theorem there exists z € W such that
o(z) = ||z|| = 1. Then (z,y) — ¢ {z,y,2} becomes a positive sesquilinear
form on W which does not depend on the point of support z for . The
prehilbert seminorm ||. |, is then defined by ||z]|?, := ¢ {z, 2, 2} for all z € W.
If £ is a complex JB*-triple and ¢ is a norm-one element in £*, then ||.||,
acts on £**, hence in particular it acts on &.

Following [IKR], we define real JB*-triples as norm-closed real subtriples
of complex JB*-triples. In [IKR] it is shown that every real JB*-triple F
can be regarded as a real form of a complex JB*-triple. Indeed, given a
real JB*-triple E' there exists a unique complex JB*-triple structure on the
complexification F = F @ i E, and a unique conjugation (i.e., conjugate-
linear isometry of period 2) 7 on E such that E = E7 := {z € E: T(x) = z}.
The class of real JB*-triples includes all JB-algebras [HS], all real C*-algebras
[G], and all J*B-algebras [Al].

By a real JBW*-triple we mean a real JB*-triple whose underlying Banach
space is a dual Banach space. As in the complex case, the triple product of
every real JBW*-triple is separately weak*-continuous [MP], and the bidual
E** of a real JB*-triple F is a real JBW*-triple whose triple product extends
the one of E [IKR].

If U is a real or complex JB*-triple, and A is a subset of U we denote by

At ={x e U:{z,A,U}}

the orthogonal complement of A.

In [PR] (see also [P]) the authors proved the following appropriated ver-
sion of the so called “Little Grothendieck’s inequality” for real and complex
JBW*-triples, which avoids the gaps contained in [BF1].
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Theorem 1.1 [PR, Theorems 2.1 and 2.9]

Let K > /2 (respectively, K > 1+ 3v/2) and ¢ > 0. Then, for every
complex (respectively, real) JBW*-triple W, every complex (respectively, real)
Hilbert space H, and every weak*-continuous linear operator T : W — H,
there exist norm-one functionals @1, oo € W, such that the inequality

1
2

1T (@) < KT (Nl3, +<* l=]5,) >,
holds for all x € W.

Let T be a bounded linear operator from a real (respectively, complex)
JB*-triple E to a real (respectively, complex) Hilbert space H, since E** is
a real (respectively, complex) JBW*-triple and T** is a weak*-continuous
operator from E** to H, then the following result follows from the previous
theorem.

Corollary 1.2 Let K > /2 (respectively, K > 1+ 3\/5) and € > 0. Then,
for every complex (respectively, real) JB*-triple £, every complex (respec-
tively, real) Hilbert space H, and every bounded linear operator T : € — H,
there exist norm-one functionals @1, s € £* such that the inequality

1
2

IT@) < K NTN ()5, +2* l3,)”
holds for all x € £.

The question is whether in Corollary 1.2 the value ¢ = 0 is allowed for
some value of the constant K. We are going to give an affirmative answer
to this question whenever we replace the prehilbertian seminorm |||, with
another prehilbertian seminorm associated with a “state” of a real or complex
JB*-triple.

Given a Banach space X, BL(X), and Iy will denote the normed algebra
of all bounded linear operators on X, and the identity operator on X, re-
spectively. If u is a norm-one element in X, the set of states of X relative to
u, D(X,u), is defined as the non empty, convex, and weak*-compact subset
of X* given by

D(X,u) :={® € Bx-: ®(u) = 1}.

Let £ be a complex JB*-triple and ® € D(BL(E), I¢). Since for every
x € &, the map L(z, ) is an hermitian operator with non-negative spectrum,
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we can define the prehilbertian seminorm |||.|||e by |||z|||e := ®(L(z, z)) for
all x € £.

Let ¢ € Sg- and let e € Sg«« such that ¢(e) = 1. We define ®,, €
D(BL(E), I¢) by ®,.(T) := ¢T**(e) for all T € BL(E). We notice that in
this case [||.|[|s,. and ||.||, coincide on £** (and hence in £).

Theorem 1.3 Let £ be a complex (respectively, real) JB*-triple, H a com-
plex (respectively, real) Hilbert space and T : € — H a bounded linear opera-
tor. Then there exists ® € D(BL(E), I¢) such that

IT()|| < V2 T |z,
(respectively, || T(x)|| < (1 + 3\/5) T ||lx||ls) for all x € E.

Proof. We suppose that £ is a complex JB*-triple. The proof for a real
JB*-triple is the same. By Corollary 1.2, for every n € N there are norm-one
functionals @7, 5 € £ such that the inequality

1
1 1 2
@< V24 2 il (el + - el )

. 1 2 1 2
(V24 1T (B 5 el )

holds for all z € &, where e € Sg«« with p}(el’) =1 (i = 1,2, n € N).
Let i € {1,2}, since D(BL(E), I¢) is weak*-compact, we can take a weak™
cluster point ®; € D(BL(E), I¢) of the sequence ®yn on (i = 1,2). Then the
inequality

IT )l < V2T ]l
holds for all z € £. O

From the previous Theorem we can now derive a remarkable result of U.
Haagerup.

Corollary 1.4 [H1, Theorem 3.2/
Let A be a C*-algebra, H a complex Hilbert space, and T : A — H a
bounded linear operator. There exist two states @ and v on A, such that

1T (2)|1* < ITP(p(a"x) + (zz")),
for all x € A.
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Proof. By Theorem 1.3 there exists ® € D(BL(A), I4) such that
IT(@)I]* < 2||T|[*®(L(, z))
for all z € A. Since for every z € A, L(z,z) = %(Lm + L;+;) (where L, and
R, stands for the left and right multiplication by a, respectively), we have
IT@)I* < ITI*®(Loor + Ravo)

for all x € A. R
Now denoting by @ and 1) the positive functionals on A given by p(x) :=
®(L,), and ¢(z) := ®(R,), respectively, we conclude that ¢ = H—f” and
¥
P = “—gn are states on A and

IT(@)]]* < ITIP(p(z*x) + ¢ (zz¥)),
forallz € A. O

The concluding section of the paper [PR] deals with some applications of
the Theorem 1.1, including certain results on the strong*-topology, S*(W, W.),
of a real or complex JBW*-triple W. We recall that if V¥ is a real or complex
JBW*-triple then the S*(W, W,) topology is defined as the topology on W
generated by the family of seminorms {||.||, : ¢ € W,, ||¢]| = 1}. For every
dual Banach space X (with a fixed predual denoted by X,), we denote by
m(X, X,) the Mackey topology on X relative to its duality with X,.

It is worth mentioning that if a JBW*-algebra A is regarded as a com-
plex JBW*-triple, S*(A, A.) coincides with the so-called “algebra-strong*
topology” of A, namely the topology on A generated by the family of semi-
norms of the form z — /&(z o x*) when & is any positive functional in A,
[R1, Proposition 3]. As a consequence, when a von Neumann algebra M is
regarded as a complex JBW*-triple, S*(M, M.) coincides with the familiar
strong*-topology of M (compare [S, Definition 1.8.7]).

The results of [PR] allow us to avoid the difficulties in [R1] (compare [PR,
page 23]), and to extend these results to the real case. We summarize these
results in the following theorem.

Theorem 1.5 [PR, page 23, Corollary 4.2, and Theorem 4.3] (see also [R1,
Theorem] and [R2, Theorem D.21])
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1. Let W be a real or complex JBW*-triple. Then the strong*-topology of
W is compatible with the duality (W, W,).

2. Linear mappings between real or compler JBW*-triples are strong*-
continuous if and only if they are weak*-continuous.

3. If W is a real or complex JBW*-triple, and if V is a weak*-closed
subtriple, then the inequality S*(W,W.,)|y < S*(V, Vi) holds, and in
fact S*(W, W) |y and S*(V,V.) coincide on bounded subsets of V.

4. Let W be a real or complex JBW*-triple. Then the triple product of
W is jointly S*(W, W,)-continuous on bounded subsets of W, and the
topologies m(W, W.,.) and S*(W, W,) coincide on bounded subsets of W.

Remark 1.6 In a recent work L. J. Bunce has obtained an improvement of
the third statement. Concretely in [Bu, Corollary] he proves that if W is a
real or complex JBW*-triple, and if V is a weak*-closed subtriple, then

1. each element of V, has a norm preserving extension in W,;

2. S*(W,W.)|y = S*(V, V)

From the results related with the strong*-topology we derive a Jarchow-
type characterization of weakly compact operators from (real or complex)
JB*-triples to arbitrary Banach spaces.

Theorem 1.7 [PR, Theorem 4.6]

Let E be a real (respectively, complex) JB*-triple, X a real (respectively,
complex) Banach space, and T : E — X a bounded linear operator. The
following assertions are equivalent:

1. T 1is weakly compact.
2. There exist a bounded linear operator G from E to a real (respectively,
complex) Hilbert space and a function N : (0,+00) — (0,400) such

that
T ()] < N(e)[|[G(@)]| + ||zl

forall z € E and € > 0.

3. There exist norm one functionals p1,p € E* and a function N :
(0,400) = (0, +00) such that

[T ()| < N(£) lzllorp. + el
forall z € E and € > 0.
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2 Big Grothendieck’s inequality
In [PR, Theorems 3.1 and 3.4] we obtained the following result.

Theorem 2.1 Let M > 4(1 + 2/3) (1 + 3v/2)? (respectively, M > 4(1 +
2v/3)) and € > 0. For every couple (V,W) of real (respectively, complex)
JBW*-triples and every separately weak*-continuous bilinear form U on V' x
W, there exist norm-one functionals @1, ps € Vi, and 1y,1Pe € W, satisfying

M

1
Uz )| < MU (=115, +* =015, (i, +<* ylly,)

for all (z,y) € V x W.

In the case of complex JB*-triples the interval of variation of the constant
M can be enlarged with M > 3 +2v/3 (see [PR, Remark 3.6]). Precisely, we
have the following theorem.

Theorem 2.2 Let M > 3423 and ¢ > 0. Then for every couple (£, F) of
complex JB*-triples and every bounded bilinear form U on £ x F there exist
norm-one functionals @1,y € E* and 1,10y € F* satisfying

1
2

1
Uz, y)| < MU (N1, +* ll2l3,)” (vl +* yl,)
for all (z,y) € € x F.

As in the “Little Grothendieck’s inequality”, we do not know if the value
e = 0 is allowed in the previous Theorem. However we can take ¢ = 0
whenever we change norm-one functionals with states. Indeed, when in the
proof of Theorem 1.3, Theorem 2.2 and [PR, Corollary 3.5] replace Corollary
1.2, we obtain the following theorem.

Theorem 2.3 Let £, F be complex (respectively, real) JB*-triples, M = 3+
2V/3 (respectively, M = 4(1+2v/3) (14+3+/2)?), and let U be a bounded bilin-
ear form on ExF. Then there are ® € D(BL(E),I¢) and ¥ € D(BL(F), Ir)
such that

U(z,y)| < M{[U|[ll|zll|elly[[|w

for all (z,y) € € x F.
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Another interesting question is whether the interval M > 3 + 21/3, is
valid in the complex case of Theorem 2.1. The rest of the paper deals with
the affirmative answer of this question. The following proposition gives a
first answer in the particular case of biduals of JB*-triples. We recall that
if £ and F are complex JB*-triples, then every bounded bilinear form U on

& X F has a (unique) separately weak*-continuous extension, denoted by U,
to £ x F** (see [PR, Lemma 1.1]).

Proposition 2.4 Let M > 3+2+/3 and e > 0. Then for every couple (£, F)
of complex JB*-triples and every bounded bilinear form U on £ x F there
exist norm-one functionals o1, o € E* and y,vYe € F* satisfying

U, Ol < MUY (lalls, +2* al2,)? (1815, + 2 18115,)°
for all (o, B) € £ x F*~.

M

Proof. By Theorem 2.2, there are norm-one functionals @1, ps € £* and
1,19 € F* satisfying
- 1 1
U(z,y)| < MU (l2l3, +€* l2l5,)> (1yl5, +* [yll7,)
for all (z,y) € &€ x F.

Since the first assertion of Theorem 1.5 assures that £ and F are strong™*-
dense in £** and F**, respectively, for every («, 3) € £ x F** we have nets
(zx) € € and (y,) € F converging to a and 3, respectively, in the strong™
topology (hence they converge also in the weak™ topology of £* and F**,
respectively. Let now x € &, since for i € {1,2}, the seminorm |||y, is

(2.1)

strong*-continuous, by (2.1) and the separately weak*-continuity of U we
have

- 1 1
Uz, B)| < MU (=115, +* l2[15,)> (18115, +2* 1817,)°

for all (z, 3) € £x F**. Using the same argument, but fixing § € F** instead
of x € £, we finish the proof. O

By [BDH, Proposition 6] every JBW*-triple is (isometrically) isomorphic
to a weak*-closed ideal of its bidual. Indeed, given a JBW*-triple V, then
there exists a weak*-closed ideal P of V** such that ¥ := IIp.Jy is a triple
isomorphism (and hence weak*-continuous) from V onto P, where IIp de-
notes the natural projection from V** onto P, and .J,, denotes the natural
embedding of V onto V**. It is also known that J, |p = ¥~
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We can know state the complex case of Theorem 2.1 with constant M >

3+ 2V/3.

Theorem 2.5 Let M > 3+ 2v/3 and ¢ > 0. For every couple (V, W) of
complex JBW*-triples and every separately weak*-continuous bilinear form
U onV X W, there exist norm-one functionals ©1, ps € Vs, and 1,1y € W,
satisfying

1
2

1
U, y)l < MU (=5, +e* 1215,) " Uyl +<* lyll3,)
for all (z,y) € V x W.

Proof. Let U the unique separately weak*-continuous extension of U to
V= x W**. By Proposition 2.4 there exist norm-one functionals ¢, ps € V*
and 1, ¥y € W* satisfying

1
2

~ 1
Ue, B)] < M |[UN (llall, + 2 llall3,)* (1815, + ¢ 118115,) (2.2)
for all (o, B) € V** x W*~.

By the previous comments there are weak*-closed ideals P and @, of V**
and W**, respectively, such that

Uy, :=1IlpJy,: V> P

and
L2YY Z:HQJ)/VIW—)Q

~

are triple isomorphisms. Let us now define another bilinear form, U, on
VYV x W* by Ule, 8) := U(Jy, («), Jy,. (). Then U is separately weak™-
continuous and extends U to V** x W**, so U = U. In particular

U(z,y) = UMpJy(z), g w(y))

for all (z,y) € V x W.

It is well known that V** = P@‘> P+ and W™ = Q @'~ Q', so the norm-
one functionals given in (2.2) decompose ¢; = ! + ¢? and ¢; = ¥} + ¥?
(i € {1,2}), where

pi € Py, ¢} € (P, llpill + 1031l = 1,
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and

Ui € Qu, ¥ € Q1) Il + (17l =1,
for i € {1,2}. Now taking # € V and norm one elements ef € P and €} € P+
such that ¢!(e!) = ||¢! (4,7 € {1,2}), applying the orthogonality of P and
P+, we get

[y (@)II5, = i {Pr(2), Py(z), e } + 97 {Pr(2), Py(z), €]

= 0 Oy {z,2, 05" (e) } < [l2[|3,

0
where @; := “SOZITVH € V, if p}®y # 0, if ¢} Py, = 0 we can take as p; any
P; Py ~
other norm-one functional in V,. Similarly we get norm-one functionals
in W, such that

12w )II5, < llyllZ,
forally e W, i € {1,2}.
Finally applying (2.2) we get

1

2

1
U, )l < MO (el + 2 12li2)* (i, +<2 vl

for all (z,y) € ¥V x W.O
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