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Abstract. Let τ be a conjugation, alias a conjugate linear isome-
try of order 2, on a complex Banach space X and let Xτ be the real
form of X of τ -fixed points. In contrast with the Dunford-Pettis
property, the alternative Dunford-Pettis property of [10] need not
lift from Xτ to X. But if X is a C*-algebra it is shown that Xτ

has the alternative Dunford-Pettis property if and only if X does
and an analogous result is shown when X is the dual space of a C*-
algebra. One consequence is that both Dunford-Pettis properties
coincide on all real forms of C*-algebras.

1. Introduction

Investigations of Dunford-Pettis and associated properties of spaces
of operators and their dual spaces include [1, 2, 4, 5, 6, 7, 10, 11].
In particular, the Alternative Dunford-Pettis property (definitions are
given below) was introduced in [10] and shown to coincide with the
usual Dunford-Pettis property on von Neumann algebras. This was
extended to all C∗-algebras in [4] and the class of those C∗-algebras
whose dual space has the Alternative Dunford-Pettis property was de-
termined. In this paper we investigate the Alternative Dunford-Pettis
property on spaces of fixed points of conjugations on C∗-algebras.

A Banach space X is said to have the Dunford-Pettis property (DP)
if whenever (xn) is a weakly null sequence in X and (ρn) is a weakly
null sequence in the dual space of X, then ρn(xn) → 0. The reader
is referred to [8] for several characterisations. On the other hand, if
ρn(xn) → 0 whenever xn → x weakly in the unit sphere of X and
(ρn) is weakly null in the dual space of X, then X is said to have
the Alternative Dunford-Pettis property (DP1). The DP1 is preserved
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by linear isometries but not by linear isomorphisms [10, Example 1.6]
whereas, visibly, the DP is preserved by linear isomorphisms. Both
the DP and the DP1 are inherited by complemented subspaces. If X
is a complex Banach space we let X∗ denote its dual space and X∗ a
predual, if the latter exists. We use the corresponding notations of X

′

and X′ if X is a real Banach space. Further, for a complex Banach
space X we shall denote by Xr the real Banach space obtained by
reduction of scalars.

Let X be a complex Banach space. The map

ϕ : (X∗)r → (Xr)
′

(ρ 7→ <eρ)

is a surjective linear isometry with inverse γ 7→ γ(·)−iγ(i ·). The bidual
surjective linear isometry

ψ : (X∗∗)r → (Xr)
′′

sends the canonical embedding of X in X∗∗ onto the canonical em-
bedding of Xr in (Xr)

′′
. The maps ϕ and ψ are homeomorphisms for

the respective weak topologies and for the respective weak∗ topologies.
Similarly, the identity map on X is a σ(X,X∗)-σ(X, (Xr)

′
) homeomor-

phism. The following is evident.

Lemma 1.1. If X is a complex Banach space, then

(a) X has the DP (respectively, the DP1) if and only if Xr has the
DP (respectively, the DP1);

(b) X∗ has the DP (respectively, the DP1) if and only if (Xr)
′
has

the DP (respectively, the DP1).

Let τ : X → X be a conjugation, alias a conjugate linear isometry
of order 2, on the complex Banach space X. The associated real form
of X is the set of fixed points Xτ := {x ∈ X : τ(x) = x}. We note that
Xτ is the image of the real contractive projection 1

2
(id+ τ), and that

(1) X = Xτ ⊕ iXτ .

In particular, if X has the DP or the DP1, respectively, then so
does Xτ . The map τ̃ : X∗ → X∗ given by τ̃(ρ) = ρ ◦ τ , is a weak∗

continuous conjugation and satisfies τ̃ = ϕ−1 ◦ τ ′ ◦ ϕ, where τ
′
is the

real transpose of τ and ϕ is as defined above. The restriction map
α : (X∗)τ̃ → (Xτ )

′
is a surjective linear isometry, the inverse being

ρ 7→ ρ̃, where ρ̃ is the unique complex linear extension of ρ ∈ (Xτ )
′
.

Via the obvious identification we have

(2) (X∗)τ̃ = (Xτ )
′ ⊕ i(Xτ )

′
.
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The further conjugation, ˜̃τ : X∗∗ → X∗∗, satisfies ˜̃τ = ψ−1 ◦ τ ′′ ◦
ψ. Thus, since ˜̃τ is weak∗-continuous and agrees with τ on X, it is
the unique weak∗-continuous conjugate linear extension of τ . For this

reason, in notation, we shall tend not to distinguish between τ and ˜̃τ
and shall write ˜̃τ = τ .

Lemma 1.2. If τ is a conjugation on a complex Banach space X, then
X has the DP if and only if Xτ has the DP.

Proof. This follows from (1) and (2) above. �

The same is not true of the DP1. In contrast to the DP, the DP1
need not lift from a real form to the original space.

Example 1.3. Let H be an infinite dimensional real Hilbert space and
let X be the space of all bounded real linear maps T : H → C. For each
T in X let T be given by T (h) = T (h). Now X is a complex Banach
space with a conjugation τ : X → X given by τ(T ) = T . The real
form Xτ is linearly isometric to B(H,R) and hence to H, and so has
the DP1 [10, Corollary 1.5]. However, X is real linearly isometric to
B(H,K) where K is a real Hilbert space of dimension two. Therefore,
by [1, Proposition 2] (which is independent of the scalar field), X does
not have the DP1.

In spite of the general failure embodied in Example 1.3, we shall
prove that if A is a C∗-algebra with a conjugation τ , then Aτ has
the DP1 if and only if A has the DP1 and we shall further prove an
analogous result for the dual space of A. We shall conclude that the
DP1 and the DP are equivalent for any real form of a C∗-algebra.

We remark that if A is a C∗-algebra with a ∗-antiautomorphism ϕ
of order 2, and τ is the conjugation given by τ(x) = ϕ(x)∗, then Aτ is
a real C∗-algebra. All real C∗-algebras arise in this way. If ϕ is relaxed
to a Jordan ∗-automorphism of order 2, then Aτ is a real Jordan C∗-
algebra. In general, a real form of a C∗-algebra need not be an algebra,
but is invariably a real subspace closed under x 7→ xx∗x. We wish
to state that although in the context of C*-algebras this paper is self-
contained, it is informed by ideas arising in the theory of JB*-triples
[13, 15].

2. Positive Conjugations

Let A be a C∗-algebra. We use s to denote the standard conjugation,
x 7→ x∗, on A. By a Jordan ∗-involution of A we shall mean a Jordan
∗-automorphism of order 2. Given a conjugation τ on A, we let τ
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continue to denote its unique weak∗ continuous extension to A∗∗ (see
§1). In which case, s ◦ τ is a complex linear isometry on A∗∗ and
so equals a Jordan ∗-automorphism multiplied by a unitary, by [14,
Theorem 7]. In particular, it follows that

τ(xy∗z + zy∗x) = τ(x)τ(y)∗τ(z) + τ(z)τ(y)∗τ(x), for all x, y, z ∈ A∗∗.
We shall make extensive use of this property of τ . A conjugation
τ : A → A is said to be positive if τ(A+) ⊆ A+. Thus, τ(x∗) = τ(x)∗

for all x in A if τ is a positive conjugation. The standard conjugation
is an example of a positive conjugation. In the following, 1 denotes the
identity of A∗∗ and r(x) denotes the range projection of x in A∗∗. We
do not assume that 1 ∈ A.

Lemma 2.1. Let A be a C*-algebra with conjugation τ . The following
are equivalent.

(a) τ is positive.
(b) τ(1) = 1.
(c) s ◦ τ is a Jordan ∗-involution.

Proof. (a) ⇒ (b). Assume (a). Then τ(1) is a self-adjoint unitary and
hence a projection of A∗∗. Given any self-adjoint element a in A∗∗ we
have τ(a) = τ(1a1) = τ(1)τ(a)τ(1), so that τ(a) = τ(a)τ(1) and it
follows that τ(1) = 1.

(b) ⇒ (c). Denoting s◦τ by π, for a in A∗∗ we have π(a2) = π(a1a) =
π(a)1π(a) = π(a)2, that π(a∗) = π(a)∗ and that π2 = id, as required.

(c) ⇒ (a). This is immediate. �

It follows from Lemma 2.1 that τ 7→ s ◦ τ is a bijection from the set
of positive conjugations of A onto the set of Jordan ∗-involutions of A.

Lemma 2.2. Let A be a C*-algebra with conjugation τ . Suppose there
is an element x ∈ (Aτ )+ with r(x) = 1. Then τ is positive.

Proof. Let S denote the weak∗ closure of the real linear space generated
by {x2n+1 : n ≥ 0}. Since τ(x) = x we have S ⊆ (A∗∗)τ . But 1 ∈ S,
by spectral theory. �

In general, a conjugation on a C∗-algebra need have no non-zero
positive fixed points. However, every conjugation is locally positive in
the sense described below.

Let A be a weak∗ dense C∗-subalgebra of a W∗-algebra W and let
x ∈ A. Consider the polar decomposition of x in W

x = u|x| (u∗u = r(x) = r(|x|)).
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The polar decomposition of x∗ in W is then

x∗ = u∗|x∗| (uu∗ = r(x∗) = r(|x∗|)).

We have u∗x = |x| = x∗u, xu∗ = |x∗| = ux∗.

Let A(x) denote the norm closure of xAx. Retaining these notations
below, we have:

Lemma 2.3. uWu is a von Neumann algebra with identity u and with
product and standard conjugation given by a • b = aub, a] = ua∗u.
Moreover, u is the range projection of x in uWu.

Proof. See [9, Lemmas 3.2, 3.3] �

Lemma 2.4. A(x) is a C*-subalgebra of the von Neumann algebra
uWu. Moreover, x ∈ A(x)+ and A(x) is weak∗ dense in uWu.

Proof. If p and q are polynomials with zero constant term we have
p(xx∗)Aq(x∗x) is contained in A(x). Thus if α, β > 0, functional cal-
culus gives |x∗|αA|x|β ⊆ A(x) and similarly that |x∗|αx and x|x|β lie in
A(x).

Given a, b ∈ A we have (xax) • (xbx) = x(ax|x|b)x ∈ A(x) and
(xax)] = ux∗a∗x∗u = |x∗|a∗|x| ∈ A(x). It follows that A(x) is closed
under the product and standard conjugation on uWu and so is a C∗-
subalgebra of uWu.

Since ux∗x = |x∗|x ∈ A(x), we have up(x∗x) ∈ A(x) for every poly-

nomial p with zero constant term and thus u|x| 12 ∈ A(x) by functional

calculus. Now (u|x| 12 )] = u|x| 12u∗u = u|x| 12 , u|x| 12 • u|x| 12 = u|x| = x.

Therefore x ∈ A(x)+. Since u is the range projection of x in uWu,
by Lemma 2.3, we have A(x) is weak∗ dense in uWu. �

Consider now the weak∗ continuous extension, π : A∗∗ → W, of the
inclusion A ↪→ W. Let v be the range projection of x in A∗∗ with u
the range projection of x in W as before. Then π(v) = u and by
restriction, π : vA∗∗v → uWu is a weak∗ continuous ∗-homomorphism
of von Neumann algebras. The set A(x) is a weak∗ dense C∗-subalgebra
in both vA∗∗v and uA∗∗u, as above. But π acts identically on A(x).
It follows that the above C∗-structure on A(x) is independent of any
faithful representation of A in a von Neumann algebra.

We refer to A(x) as the C∗-homotope of A with respect to x. If
x ∈ A+, then A(x) is a C∗-subalgebra of A.
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If W is a type I factor then so is uWu. For if z is a central projection
of uWu and e is a minimal projection of W we have

0 = (u− z) • uWu • z = (u− z)Wz,

so that u− z = 0 or z = 0, if W is a factor, and

(ueu) • uWu • (ueu) = ue(u∗Wu∗)eu = u(Ce)u = Cueu.

Proposition 2.5. Let π : A→ B(H) be an irreducible ∗-representation,
where A is a C*-algebra. Let x ∈ A and let v be the range projection
of π(x) in B(H). Then by restriction π : A(x) → vB(H)v is a type I
factor representation of A(x).

Proof. Let π̃ : A∗∗ → B(H) be the weak∗ continuous extension of π.
Let u be the range projection of x in A. Then π̃ : uA∗∗u→ vB(H)v is
a weak∗ continuous ∗-homomorphism onto the type I factor vB(H)v
and π(A(x)) is weak∗ dense in vB(H)v. �

Proposition 2.6. Let A be a C*-algebra with a conjugation τ . Then
τ is a positive conjugation on the C*-homotope A(x), for all x ∈ Aτ .

Proof. Let x be in Aτ . Then τ(xa∗x) = xτ(a)∗x for each a ∈ A,
implying that τ restricts to a conjugate linear isometry of A(x). By
Lemma 2.3 (with W = A∗∗) and Lemma 2.4 x ∈ A(x)+ with range
projection the identity element of A(x)∗∗ = uA∗∗u. �

A more direct reduction to positive conjugations is possible for von
Neumann algebras.

Theorem 2.7. Let W be a von Neumann algebra with conjugation τ .
Then there is a positive conjugation σ on W such that W τ is linearly
isometric to W σ.

Proof. It follows from [14, Theorem 7] that τ(x)∗ = uψ(x) for all x in
W , where ψ : W → W is a Jordan ∗-isomorphism and u is a unitary.
Since τ(1) = u∗ we have 1 = τ(u∗) = ψ(u)u∗ giving ψ(u) = u and
hence that W ∗(u) ⊂ Wψ, where W ∗(u) is the (abelian) von Neumann
subalgebra of W generated by u. By spectral theory u = eia for some
self-adjoint element a in W ∗(u). Thus with v = ei

a
2 , we have v ∈ W ∗(u)

and v2 = u.

Define ϕ : W → W by ϕ(x) = vψ(x)v∗. Let x ∈ W . We have, since
ϕ(v) = v,

τ(x) = ψ(x)∗u∗ = v∗ϕ(x)∗vu∗ = v∗ϕ(x)∗v∗ = ϕ(vxv)∗.
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In turn,
x = τ(ϕ(vxv)∗) = ϕ (v(ϕ(vxv)∗)v)∗ = ϕ2(x).

Hence, ϕ is a Jordan ∗-involution. Choose (as before) a unitary
w ∈ W ∗(v) such that w2 = v, and consider the positive conjugation,
σ = s ◦ ϕ. We claim that W σ = wW τw.

If x ∈ W σ then ϕ(x) = x∗ so that, since w2 = v and ϕ(w) = w, we
have

τ(w∗xw∗) = ϕ (v(w∗xw∗)v)∗ = ϕ(wxw)∗ = w∗xw∗,

giving x ∈ wW τw, thereby proving W σ ⊆ wW τw. On the other hand,
if x ∈ W τ then

x∗ = τ(x)∗ = ϕ(vxv) = wϕ(wxw)w,

so that ϕ(wxw) = (wxw)∗ and thus x ∈ wW σw. It follows that
W σ = wW τw and, since x 7→ wxw is an isometry, the proof is com-
plete. �

3. Type I Structure

If π : A → A is a Jordan ∗-involution where A is a C∗-algebra we
shall continue to use π to denote its bitranspose extension on A∗∗.

Let A be a C∗-algebra with Jordan ∗-involution π. Then Aπ is a JC∗-
subalgebra of A and is the image of the positive unital bicontractive
projection 1

2
(π+ id) on A. If the latter is a von Neumann algebra then

1
2
(π + id) is weak∗ continuous and Aπ is a JW∗-subalgebra. By these

remarks the first result below is immediate from [19, Lemma 7].

Lemma 3.1. Let W be a von Neumann algebra with Jordan ∗-involution
π. Suppose that z is a minimal central projection of W .

(a) If π(z) = z then z is either minimal central in W π or is the
sum of two minimal central projections of W π.

(b) If π(z) 6= z then z + π(z) is either a minimal central projection
of W π or is the sum of two minimal central projections of W π.2

Lemma 3.2. Let W be a von Neumann algebra with Jordan ∗-involution
π such that W π is a type In factor where n < ∞. Then W is ∗-
isomorphic to Mn(C), Mn(C)⊕Mn(C) or M2n(C).

Proof. When n = 1 this is [19, Lemma 1] (see also [17, Proposition 2.6]).
In general we have e1+. . .+en = 1 where the ei are minimal projections
of W π. For each i we have e1 ∼ ei and so e1We1 is ∗-isomorphic to
eiWei. Since π : e1We1 → e1We1 and (e1We1)

π = e1W
πe1, by the case

for n = 1 there are these possibilities; e1We1
∼= C, C⊕ C or M2(C).
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In the first of these cases the ei are minimal inW givingW ∼= Mn(C).
If e1We1 ∼= C⊕C then, since Z(e1We1) = e1Z(W )e1, there exist non-
zero central projections z1 and z2 in W such that e1 = (z1 +z2)e1. Thus
for each i, ei = (z1 + z2)ei since ei ∼ e1. It follows that z1 + z2 = 1,
that Wz1

∼= Wz2
∼= Mn(C) and hence that W ∼= Mn(C)⊕Mn(C).

In the final case each ei = pi + qi, where the pi and qi are minimal
projections in eiWei and hence minimal inW , givingW ∼= M2n(C). �

We shall make repeated use of the evident fact that every JW∗-
subalgebra of a type I finite JW∗-algebra is again type I finite.

Proposition 3.3. Let A be a C∗-algebra with a Jordan ∗-involution π.
Then (A∗∗)π is type I finite if and only if A∗∗ is type I finite.

Proof. If A∗∗ is type I finite then so is (A∗∗)π by the above remark.

Suppose that (A∗∗)π (= (Aπ)∗∗) is type I finite. Let z be the central
projection of A∗∗ for which A∗∗z is the atomic part of A∗∗. Being a
Jordan ∗-automorphism of A∗∗, π must preserve the atomic part and
so π(z) = z. Denoting A∗∗z and (A∗∗)πz by W and N , respectively, we
have that π is a Jordan ∗-involution on W with W π = N . By assump-
tion, N is a direct sum of type In factors where n <∞. Therefore, by
Lemma 3.2, if e and f are minimal central projections of N then eWe
and fWf are finite dimensional (in particular, by Lemma 3.2, any spin
factor summand of N is contained in a copy of M4(C), a fact also seen
from [19, Lemma 5]) and so (e + f)W (e + f) is finite dimensional. It
now follows from Lemma 3.1 that W must be a sum of finite dimen-
sional type I factors.This implies that all irreducible ∗-representations
of A are finite dimensional and therefore that A∗∗ is type I finite. �

Proposition 3.4. Let W be a von Neumann algebra with a Jordan
∗-involution π. Then W π is type I if and only if W is type I.

Proof. Let W be type I. Suppose W π has a non-zero central projection
z such that W πz is continuous. Being type I, zWz contains a non-zero
abelian projection e. Let f be the projection e ∨ π(e). Then fWf is
type I finite and f = π(f) ≤ z. Thus, fW πf is type I finite contained
in W πz, a contradiction. Therefore, W π is type I.

In order to show the converse, suppose first that W π is abelian.
Then (W π)∗∗ = (W ∗∗)π is abelian and so of type I finite, in particular.
Therefore W ∗∗ is type I finite, by Lemma 3.2, and hence W is type I
finite being a quotient of W ∗∗.

Now suppose that W π is type I. The required remaining argument is
now virtually that of [18, Theorem 5.5]. Thus, if Wz is the continuous
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part of W we have π(z) = z. Therefore, (Wz)π = W πz is a summand
of W π and so is type I and therefore contains a non-zero abelian pro-
jection e, if z 6= 0, implying that eWe is type I by the first part of the
proof. Therefore, z = 0. Hence, W is type I. �

We note the following in passing.

Corollary 3.5. Let W be a von Neumann algebra with a Jordan ∗-
involution π. Then W π is type I finite if and only if W is type I finite.

Proof. Let W π be type I finite and denote it by M . We may suppose
M = (

∑
Mzn)∞ where the zn are orthogonal central projections in

M such that Mzn is type In for each n. Let B denote the c0-sum
(
∑
Mzn)0 and let b denote the element

∑
2−nzn ∈ B. Then r(b) = 1

and so W (b) is weak∗ dense in W . In addition, π : W (b) → W (b) and
W (b)π ⊂ B, the latter because bMb ⊂ B.

Each (Mzn)
∗∗ is type In and so B∗∗ = (

∑
(Mzn)

∗∗)∞ is type I finite.
Therefore, (W (b)∗∗)π = (W (b)π)∗∗ is type I finite implying that W (b)∗∗

is type I finite by Proposition 3.3. Hence, since it contains W (b) as a
weak∗ dense subalgebra, W is type I finite. The converse is clear. �

In essence, the following is [21, Theorem 1.6].

Proposition 3.6. Let M be a JW-subalgebra of B(H)sa without type I
finite part and let R be the weakly closed real ∗-algebra generated by M
in B(H). Let W be the formal complexification of R (not necessarily
the von Neumann algebra generated by R in B(H)). Then there exists a
von Neumann algebra N and a weak* continuous positive unital bicon-
tractive projection, P : M → M, such that P (M) is a JW-subalgebra
of M Jordan isomorphic to Nsa and such that W is ∗-isomorphic to
M2(N).

Moreover, N has no type I finite part. If M has no type I part then
N has no type I part.

Proof. Since M has no finite type I part we have M = Rsa [12, Proposi-
tion 7.3.3]. Thus, (see [21, Theorem 1.6]) there is a real ∗-isomorphism
ϕ : R→M2(S) for some real von Neumann algebra S. Put N = S⊕iS.
Then W = R ⊕ iR ∼= M2(N). Now embed N as a real von Neumann

subalgebra of M2(S) via x+ iy 7→
(
x −y
y x

)
.

Consider the real ∗-automorphism π of order 2 of M2(S) given by

π(x) = uxu∗, where u =

(
0 −1
1 0

)
.
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Then M2(S)π coincides with the image of N in M2(S), and the cor-
responding self-adjoint parts also coincide. Thus P (M2(S)πsa) = Nsa,
where P denotes 1

2
(π + id). By pulling back P to R via ϕ the desired

result obtains. The final statement follows from type theory. �

4. DP1

If A is a C∗-algebra, Ã denotes the C∗-subalgebra of A∗∗ generated
by A and 1.

Proposition 4.1. Let A be a C*-algebra with a Jordan ∗-involution π
such that Aπsa has the DP. Then A has the DP.

Proof. Since Aπsa is the fixed point set of the standard conjugation on
Aπ the latter has the DP by Lemma 1.2. If 1 /∈ A and (an + λn1)

and ρn are weakly null sequences in (Ã)π and ((Ã)π)∗, respectively,
where each an ∈ Aπ, then λn → 0 and (an) is weakly null implying

that ρn(an + λn1) → 0 and in turn that (Ã)πsa has the DP. Thus we
may suppose that 1 ∈ A. Let ψ : Aπ → B(H) be an irreducible
Jordan ∗-representation. By [7, Proposition 8] and [3, Theorem 5.5]
we have ψ(Aπ) ⊆ K(H) and so H is finite dimensional since 1 ∈ Aπ. It
follows that all irreducible ∗-representations of the universal enveloping
C∗-algebra [12, §7] C∗(Aπ) of Aπ are finite dimensional and thus that
(C∗(Aπ))∗∗ is type I finite. Hence, (Aπ)∗∗ is type I finite, as therefore
is A∗∗ by Proposition 3.3, so that A has the DP by [11, Theorem 1]. �

Lemma 4.2. Let A be a C*-algebra with a Jordan ∗-involution such
that Aπsa has the DP1. Let x and y be non-zero positive elements in

(Ã)π such that xy = 0. Then A(x) and A(y) have the DP.

Proof. Let (an) and (ρn) be weakly null self-adjoint sequences in A(x)π

and (A(x)π)∗, respectively. We have (A(x)∗∗)π = e(A∗∗)πe, where e is
the range projection of x in A∗∗. For each n define ϕn ∈ (Aπsa)

′
by

ϕn(a) = ρn(eae).

Choose a non-zero positive element a ∈ Aπ such that ay 6= 0 and
put z = ‖yay‖−1yay. Suppose, as we may, that ‖an‖ ≤ 1 for all n. We
have an ≤ e for all n, and since zx = 0 we have z ≤ 1− e. Therefore

‖z + an‖ = max{‖z‖, ‖an‖} = 1, for all n.

Now z + an → z weakly in Aπsa and (ϕn) is weakly null. Therefore, by
hypothesis ρn(an) = ϕn(z + an) → 0. This proves that A(x)πsa has the
DP and hence that A(x) has the DP by Proposition 4.1. �
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Corollary 4.3. Let A be a C*-algebra with positive conjugation τ such
that Aτ has the DP1. Then A has the DP.

Proof. Using Lemma 2.1, let π denote the Jordan ∗-involution s ◦ τ .
Then Aπsa = Aτsa is complemented in Aτ and so has the DP1. It is

sufficient to show that there exists a positive element a in Ã such that
A(a) and A(1 − a) have the DP since, by Lemma 4.2, this will imply
that all irreducible ∗-representations of A are finite dimensional and
consequently that A has the DP [6] and [11].

Since otherwise trivial, suppose that (Ã)π contains a non-zero non-

invertible element x with 0 ≤ x ≤ 1. If σ(x) is not connected then (Ã)π

contains a non-trivial projection e so that A(e) and A(1− e) have the
DP by Lemma 4.2. If σ(x) is connected then σ(x) = [0, 1] and we can
choose continuous functions f, g, h : [0, 1] → [0, 1] such that f ≤ g ≤ h,
fg = f , gh = h with f 6= 0 and h 6= 1. Letting a, b and c be f(x), g(x)
and h(x), respectively, we have a(1 − b) = b(1 − c) = 0. Now Lemma
4.2 implies A(1− b) and A(b) have the DP, as required. �

Let τ be a conjugation on a C∗-algebra A and, in the notation of
§1, let τ̃ be the associated conjugation on A∗. When each ρ ∈ (Aτ )

′
is

identified with its unique complex linear extension in (A∗)τ̃ we have the
identification (Aτ )

′
= (A∗)τ̃ and correspondingly, (Aτ )

′′
= ((A∗)τ̃ )

′
=

(A∗∗)
˜̃τ = (A∗∗)τ .

Lemma 4.4. Let A be a C∗-algebra with conjugation τ such that Aτ

has the DP1. Let x ∈ Aτ . Then A(x)τ has the DP1.

Proof. By Lemma 2.4, A(x)∗∗ = uA∗∗u where u is the partial isometry
arising in the polar decomposition of x in A∗∗. Let an → a weakly in
A(x)τ where ‖an‖ = ‖a‖ = 1 for all n, and let (ρn) be a weakly null
sequence in (A∗)τ̃ . For each n define ϕn ∈ A∗ by ϕn(a) = ρn(uu

∗au∗u).
Then (ϕn) is weakly null in A∗.

Since τ(u) = 1 we have τ(uu∗au∗u) = τ(a) for each a ∈ A∗∗. Hence
τ̃(ϕn) = ϕn so that ϕn ∈ (A∗)τ̃ for each n. Therefore, ρn(an) =
ϕn(an) → 0 by hypothesis. Hence, A(x)τ has the DP1. �

We are now ready to prove our main results.

Theorem 4.5. Let A be a C*-algebra with a conjugation τ . Then the
following are equivalent:

(a) Aτ has the DP1.
(b) A has the DP.
(c) Aτ has the DP.
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(d) (Aτ )
′
has the DP.

Proof. (a) ⇒ (b). Let Aτ have the DP1 and let π : A → B(H) be
an irreducible ∗-representation. It is enough to show that π is finite
dimensional. Let x ∈ Aτ . By Lemma 4.4, A(x)τ has the DP1. There-
fore A(x) has the DP by Proposition 2.5 together with Corollary 4.3.
Hence, π(x) has finite rank in the induced type I factor representation
on the homotope A(x) described in Proposition 2.6 and by construc-
tion π(x) has finite rank in B(H). It follows that π(a) has finite rank
in B(H) for all a ∈ A = Aτ + iAτ so that π is finite dimensional, as
required.

(b) ⇒ (c). Aτ is complemented in A.

(c) ⇒ (a). This is immediate.

(b) ⇒ (d). If A has the DP then so does A∗ by [6]. Thus, since
(Aτ )

′
= (A∗)τ̃ is complemented in A∗, (Aτ )

′
has the DP.

(d) ⇒ (c). This is clear by [8, Corollary 2]. �

If W is a von Neumann algebra with conjugation τ then W τ has
unique predual (W τ )′

∼= (W∗)
τ̃ (see [13, §4] and [16]).

Theorem 4.6. Let W be a von Neumann algebra with involution τ .
Then the following are equivalent

(a) (W τ )′ has the DP1.
(b) W∗ has the DP1.
(c) W is type I.

Proof. The equivalence of (b) and (c) was shown in [4, Theorem 6].
The implication (b) ⇒ (c) is immediate from the fact that (W τ )′ is
complemented in W∗.

(a) ⇒ (c). Let (W τ )′ have the DP1. By Lemma 2.1 we may suppose
that τ is positive and thus that W τ

sa = W π
sa, where π is the Jordan

∗-involution associated to τ via Lemma 2.1. Since complemented in
(W τ )′ , (W π

sa)′ has the DP1. In order to derive a contradiction, sup-
pose that W π

sa contains a non-zero continuous direct summand M . By
Proposition 3.6 there is a weak∗ continuous contractive projection P
on M such that P (M) is isometric to Nsa for some continuous von
Neumann algebra N . The predual of Nsa has the DP1 since it is com-
plemented in the predual of M which is complemented in (W π

sa)′ . By
[10, Proposition 2.1(b)], in order to determine the DP1 status of N∗ it
is sufficient to consider weak convergence of sequences of normal states
(which lie in (Nsa)′ ). It follows that N∗ has the DP1 and therefore that
N is type I, by (b) ⇒ (c). This contradiction completes the proof. �
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Theorem 4.7. Let A be a C*-algebra with conjugation τ . Then the
following are equivalent

(a) (Aτ )
′
has the DP1.

(b) A∗ has the DP1.
(c) A is postliminal.

Proof. Since (Aτ )
′
is the predual of (A∗∗)τ , the equivalence of (a) and

(b) is immediate from Theorem 4.6 (a) ⇔ (b). The equivalence of (b)
and (c) was proved in [4, Corollary 7]. �
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