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Abstract. A Banach space X has the alternative Dunford-Pettis prop-
erty if for every weakly convergent sequences (xn) → x in X and
(x∗n) → 0 in X∗ with ‖xn‖ = ‖x‖ = 1 we have (x∗n(xn)) → 0. We
get a characterization of certain operator spaces having the alternative
Dunford-Pettis property. As a consequence of this result, if H is a
Hilbert space we show that a closed subspace M of the compact oper-
ators on H has the alternative Dunford-Pettis property if, and only if,
for any h ∈ H, the evaluation operators from M to H given by S 7→ Sh,
S 7→ Sth are DP1 operators, that is, they apply weakly convergent
sequences in the unit sphere whose limits are also in the unit sphere
into norm convergent sequences. We also prove a characterization of cer-
tain closed subalgebras of K(H) having the alternative Dunford-Pettis
property by assuming that the multiplication operators are DP1.

1. Introduction

A Banach space X has the Dunford-Pettis property (DP in the sequel)
if for any Banach space Y , every weakly compact operator from X to Y is
completely continuous, that is it maps weakly compact subsets of X onto
norm compact subsets of Y . The DP was introduced by Grothendieck who
also showed that a Banach space X has the DP if, and only if, for every
weakly null sequences (xn) in X and (x∗n) in X∗ we have x∗n(xn) → 0. Since
its introduction by Grothendieck, the DP has had an important develop-
ment. We refer to [10] as an excellent survey on the DP and to [2], [17], [4],
[7], and [8] for more recent results.

Recently, S. Brown and A. Ülger (see [3, 15]) have studied the DP for
subspaces of the compact operators on an arbitrary Hilbert space. Indeed,
if M is a closed subspace of the compact operators in a Hilbert space H,
then M has the DP if, and only if, for any h ∈ H the point evaluation
{S(h) : S ∈ BM} and {S∗(h) : S ∈ BM} are relatively compact in H, where
BM is the closed unit ball in M , equivalently, if and only if, for any h ∈ H
the evaluation operators given by

M −→ H M −→ H
S 7→ Sh S 7→ Sth
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are completely continuous operators. In [16], E. Saksman and H.O. Tylli
have extended this characterization for closed subspaces of the compact
operators in `p (1 < p < ∞). Saksman and Tylli also showed that if M is
a closed subspace of the compact operators in a reflexive Banach space X
having the DP, then for every x ∈ X the evaluation operators given above
are completely continuous.

In [12] W. Freedman introduces a weaker version of the DP, the alternative
Dunford-Pettis property (DP1 in the sequel). A Banach space X has the
DP1 iff for every weakly convergent sequences (xn) → x in X and (x∗n) → 0
in X∗ with ‖xn‖ = ‖x‖ = 1 we have x∗n(xn) → 0. The DP and the DP1
properties are equivalent for von Neumann algebras and C∗-algebras (see
[12] and [5]) but the DP1 is strictly weaker than the DP for preduals of von
Neumann algebras and general Banach spaces. We refer to [13], [1], [5], and
[6] for the most recent results on the DP1.

The DP1 was also characterized by W. Freedman in the following terms.
A Banach space X has the DP1 if and only if for any Banach space Y , every
weakly compact operator T from X to Y is a DP1 operator, that is, if (xn)
converges weakly to x in X with ‖xn‖ = ‖x‖ = 1 we have (T (xn)) converges
to T (x) in norm. Therefore, the DP1 operators play with respect to the
DP1 the same role that completely continuous operators with respect to the
DP.

In this paper we study the DP1 for closed subspaces of the compact
operators in a Banach space. In the case that M is a closed subspace of the
compact operators on a reflexive Banach space X we prove that a necessary
condition on M to have the DP1 is that for every x ∈ X and x∗ ∈ X∗ the
evaluation operators given by

M −→ X M −→ X∗

S 7→ Sx S 7→ S∗x∗

are DP1 operators.
If X is a reflexive Banach space having a Schauder basis and M is a closed

subspace of the compact operators on X having the P-property (defined
below) we show that the necessary condition given above if also sufficient.
For a closed subspace M of the compact operators on a (non necessarily
separable) Hilbert space H, we prove that the above characterization is also
valid.

For any subalgebra A of the compact operators on a Hilbert space the
multiplication operators by elements of A are DP1 whenever A has DP1.
Under a very mild condition on the algebra A we show that the converse is
true.

2. The Results

In the following, if X is a Banach space, we will denote by BX , SX the
closed unit ball and the unit sphere of X, respectively. Along the paper H
is a Hilbert space. L(X, Y ) will be the Banach space of all bounded linear
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operators from the Banach space X to a Banach space Y and K(X, Y ) will
denote the closed subspace of all compact operators.

Definition 2.1. Let X and Y be Banach spaces. A bounded linear operator
T : X −→ Y is said to be DP1 operator if whenever xn → x weakly in X
with ‖xn‖ = ‖x‖ = 1 we have ‖Txn − Tx‖ → 0.

The following proposition gives us a necessary condition, in a closed sub-
space of the Banach space of all operators on a reflexive Banach space, to
have the DP1.

Proposition 2.2. Let X and Y be reflexive Banach spaces, M ⊆ L(X, Y )
be a closed subspace. Suppose that M has the DP1 then for every x ∈ X
and y∗ ∈ Y ∗ the evaluation operators given by

M −→ Y M −→ X∗

S 7→ Sx S 7→ S∗y∗

are DP1 operators.

Proof. Assume that M has the DP1, then by using [12, Theorem 1.4], any
bounded linear operator from M into any reflexive Banach space is, in fact,
DP1. Hence, for any x ∈ X, the operator T : M −→ Y given by

T (S) = Sx (S ∈ M),

is in fact DP1. The corresponding assertion for the other operator follows
from an analogous argument. �

Remark 2.3.
(1) X has the DP1 if and only if for every weakly null sequences xn in

X and x∗n in X∗, x ∈ SX with ‖xn + x‖ = 1 we have x∗n(xn) → 0.
(2) Let X, Y be Banach spaces and M ⊆ L(X, Y ) be a closed subspace.

Suppose that for every x ∈ X and y∗ ∈ Y ∗ the evaluation operators
given by

M −→ Y M −→ X∗

S 7→ Sx S 7→ S∗y∗

are DP1 operators. Then if (Tn) converges weakly to T in M with
‖Tn‖ = ‖T‖ = 1, then for every x ∈ X we have ‖Tn(x)−T (x)‖ → 0,
that is, (Tn) converges to T strongly. Since the sequence {Tn} is
bounded, Tn converges to T uniformly on compact subsets. Hence,
TnS converges in norm to TS for every S ∈ K(X). Similarly, T ∗nK
converges in norm to T ∗K, for every K ∈ K(Y ∗). Therefore, for
every S ∈ K(X) and K ∈ K(Y ∗), the mappings

M −→ K(X, Y ) M −→ K(Y ∗, X∗)
T 7→ TS T 7→ T ∗K

are DP1 operators.
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W. Freedman characterized Banach spaces having the DP1 as those Ba-
nach spaces X for which for any Banach space Y any weakly compact op-
erator T : X −→ Y is a DP1 operator [12]. Here we prove that if X is
a Banach space with a shrinking Schauder basis, then for subspaces M of
K(X) satisfying certain isometric assumption, it is enough to assume that
the evaluation operators on M are DP1 operators in order to check that M
has the DP1.

Lemma 2.4. Let X be a Banach space with a shrinking (Schauder) basis
{xn} and Y be a Banach space with basis {yn}. Then for every S ∈ K(X, Y ),
the sequence

‖S −QnSPn‖ → 0
where Qn, Pn are the projections onto the subspaces generated by {y1, · · · , yn}
and {x1, · · · , xn}, respectively.

Proof. Since (Qn(y)) → y for any y ∈ Y and (Qn) is bounded, then (Qn)
converges uniformly on compact subsets. This gives that

∥∥∥(I −Qn)S
∥∥∥ → 0.

Since the basis of X is shrinking, by using the same argument for S∗,
which is also compact, it follows that the sequence

‖QnSPn − S‖ = ‖P ∗nS∗Q∗
n − S∗‖ ≤ ‖P ∗nS∗Q∗

n − P ∗nS∗‖+ ‖(P ∗n − I)S∗‖ ≤
≤ ‖Pn‖ ‖(I −Qn)S‖+ ‖(P ∗n − I)S∗‖

converges to zero. �

Remark 2.5. By using the same argument, if H is any Hilbert space and
S ∈ K(H), then for every ε > 0 there is a finite dimensional subspace V ⊂ H
such that ‖S−PV SPV ‖ < ε, where PV is the orthogonal projection onto V .

According to [14], given two Banach spaces with Schauder basis X and
Y , we say that a closed subspace M of L(X, Y ) has the P-property if for all
natural numbers m,n and every operators T, S ∈ M

‖QW TPV +(I−QW )S(I−PV )‖ ≤ max{‖QW TPV ‖, ‖(I−QW )S(I−PV )‖},
where V,W are the subspaces of X, Y , respectively, generated by the first
m,n vectors of the basis and PV , QW are the canonical projections onto V
and W , respectively.

Theorem 2.6. Let X be a Banach space with a shrinking Schauder basis,
Y a Banach space with basis and assume that M is a closed subspace of
K(X, Y ) satisfying the P-property. If for any x ∈ X, y∗ ∈ Y ∗, the evalua-
tion operators given by

M −→ Y M −→ X∗

S 7→ Sx S 7→ S∗y∗

are DP1 operators, then M satisfies the DP1.
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Proof. Let us denote by {xn} and {yn} the Schauder bases of X and Y ,
respectively. We will argue by contradiction, so we assume that M does not
satisfy the DP1. Therefore, assume there are r > 0, a weakly null sequence
Tn in M , an element T ∈ SM and a weakly null sequence m∗

n ∈ M∗ satisfying
that

‖Tn + T‖ = 1, |m∗
n(Tn)| ≥ r, ∀n ∈ N. (1)

By assumption, the evaluations at elements of X and Y ∗ are DP1 operators
from M into Y and X∗, respectively. For a fixed natural number k, we
denote by V = [x1, · · · , xk] ⊂ X, W = [y1, · · · , yk] ⊂ Y . By Remark 2.3,
the operators from M to K(X, Y ) given by T 7→ TPV and T 7→ QW T ,
respectively, are DP1 operators, where PV and QW denote the projections
of X and Y onto V and W , respectively. Hence ‖TnPV ‖, ‖QW Tn‖ → 0. As
a consequence,

‖Tn − (I −QW )Tn(I − PV )‖ = ‖TnPV + QW Tn(I − PV )‖ ≤
≤ ‖TnPV ‖+ (1 + C) ‖QW Tn‖,

where C is the basic constant of the basis of X. The above inequality implies
that the sequence

‖Tn − (I −QW )Tn(I − PV )‖ → 0. (2)

Now we will construct a subsequence of m∗
n that does not converge weakly

to zero. This is a contradiction since m∗
n is weakly null. In order to do this,

let us take
m∗

σ(1) = m∗
1, Tσ(1) = T1.

Since Tσ(1) ∈ K(X, Y ), by Lemma 2.4 there exists p1 ∈ N such that

‖Tσ(1) −QW1Tσ(1)PV1‖ <
1
2
,

where V1 and W1 are the closed subspaces generated by {x1, . . . , xp1} and
{y1, . . . , yp1}, respectively. By using (2) and the fact that m∗

n and Tn are
weakly null sequences of M∗ and K(X, Y ), respectively, for n large enough
it is satisfied

‖Tn−(I−QW1)Tn(I−PV1)‖ <
1
23

, |m∗
σ(1)(Tn)| < r

23
, |m∗

n(Tσ(1))| <
r

23
.

We choose a natural number σ(2) > σ(1) satisfying the previous conditions.
By the choice of σ(2) it is satisfied

‖Tσ(2) − (I −QW1)Tσ(2)(I − PV1)‖ <
1
23

(3).

Since (I −QW1)Tσ(2)(I − PV1) is a compact operator, by Lemma 2.4, there
exists p2 > p1 such that

‖(I −QW1)Tσ(2)(I − PV1)−QW2(I −QW1)Tσ(2)(I − PV1)PV2‖ <
1
23

,

where V2 and W2 are the finite dimensional subspaces generated by {x1, . . . ,
xp2} and {y1, . . . , yp2}, respectively.
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In view of (3) we get

‖Tσ(2) − (QW2 −QW1)Tσ(2)(PV2 − PV1)‖ <
1
22

.

Of course, we have chosen Tσ(2),m
∗
σ(2) such that they satisfy

|m∗
σ(1)(Tσ(2))| <

r

23
, |m∗

σ(2)(Tσ(1))| <
r

23
, |m∗

σ(2)(Tσ(2))| ≥ r.

Assume that we have chosen p1 < p2 < . . . < pn ∈ N and σ(1) < σ(2) <
. . . < σ(n) ∈ N, satisfying

‖Tσ(i)−(QWi−QWi−1)Tσ(i)(PVi−PVi−1)‖ <
1

2i+1
, |m∗

σ(i)(Tσ(i))| ≥ r, (i : 1, . . . , n)

and also

|m∗
σ(i)(Tσ(n))| <

r

2n+1
, |m∗

σ(n)(Tσ(i))| <
r

2n+1
(i < n), (4)

where Vi and Wi are the closed subspace of X and Y generated by {x1, . . . , xpi}
and {y1, . . . , ypi}, respectively.

By (2) we know that for p large enough, we have

‖Tp − (I −QWn)Tp(I − PVn)‖ <
1

2n+2
,

and also, because Tp,m
∗
p are weakly null

|m∗
p(Tσ(i))| <

r

2n+2
, |m∗

σ(i)(Tp)| <
r

2n+2
(i ≤ n).

We choose a natural number σ(n + 1) > σ(n) for which the previous condi-
tions hold.

By Lemma 2.4 we can approximate the compact operator

(I −QWn)Tσ(n+1)(I − PVn),

so there exists pn+1 > pn such that

‖(I−QWn)Tσ(n+1)(I−PVn)−QWn+1(I−QWn)Tσ(n+1)(I−PVn)PVn+1‖ <
1

2n+2
,

where Vn+1 and Wn+1 are the finite dimensional subspaces generated by
{x1, . . . , xpn+1} and {y1, . . . , ypn+1}, respectively. Thus

‖Tσ(n+1) −QWn+1Tσ(n+1)PVn+1‖ <
1

2n+1
, |m∗

σ(n+1)(Tσ(n+1))| ≥ r,

|m∗
σ(n+1)(Tσ(i))| <

r

2n+2
, |m∗

σ(i)(Tσ(n+1))| <
r

2n+2
(i < n + 1),

where Vn+1 and Wn+1 are the closed subspace of X and Y generated by
{x1, . . . , xpn+1} and {y1, . . . , ypn+1}, respectively.

Now we will check that (m∗
σ(n)), the subsequence of (m∗

n) we defined,
does not converge weakly to zero. First we observe that the subsequence∑n

k=1 Tσ(k) is bounded, since in view of (4)∥∥∥∥ n∑
k=1

Tσ(k)

∥∥∥∥ ≤ ∥∥∥∥ n∑
k=1

(QWk
−QWk−1

)Tσ(k)(PVk
− PVk−1

)
∥∥∥∥+
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+
n∑

k=1

‖(QWk
−QWk−1

)Tσ(k)(PVk
− PVk−1

)‖ ≤

≤
∥∥∥∥ n∑

k=1

(QWk
−QWk−1

)Tσ(k)(PVk
− PVk−1

)
∥∥∥∥ +

∞∑
k=1

1
2k

,

where PV0 = 0, QW0 = 0.
Since M has the P-property, then it holds that∥∥∥∥ n∑

k=1

(QWk
−QWk−1

)Tσ(k)(PVk
− PVk−1

)
∥∥∥∥ ≤ max

1≤k≤n
‖QWk

Tσ(k)PVk
‖ ≤

≤ 4CC ′ max
1≤k≤n

‖Tσ(k)‖,

where C ′ is the basic constant associated to the basis of Y . Therefore, the
previous sequence is bounded since Tσ(n) is a weakly null sequence.

Let x∗∗ ∈ M∗∗ be a cluster point of the sequence
∑n

k=1 Tσ(k). We will
observe that

(
x∗∗(m∗

σ(n))
)

does not converge to zero.
For p > n we have, in view of (1) and (4), we have∣∣m∗

σ(n)

( p∑
k=1

Tσ(k)

)∣∣ ≥ |m∗
σ(n)(Tσ(n))| −

p∑
k = 1
k 6=n

|m∗
σ(n)(Tσ(k))| ≥

≥ r −
n−1∑
k=1

|m∗
σ(n)(Tσ(k))| −

p∑
k=n+1

|m∗
σ(n)(Tσ(k))| ≥

≥ r − r

n−1∑
k=1

1
2n+1

− r

p∑
k=n+1

1
2k+1

≥

≥ r − r

∞∑
k=1

1
2k+1

=
r

2
.

Since x∗∗ is a weak∗ cluster point of
(∑m

k=1 Tσ(k)

)
we get

|x∗∗(m∗
σ(n))| ≥

r
2 , for every natural number n, that is,

(
m∗

σ(n)

)
is not weakly

null, but this is impossible and hence M has the DP1. �

Remark 2.7. There are many pairs of Banach spaces (X, Y ) for which
K(X, Y ) satisfies the P-property. For instance, K(`1, Y ), for any Banach
space with basis Y . Also K(`p, `q) (1 < p < ∞, q ≤ p) has the the P-
property. Clearly for any Hilbert space H, it is satisfied that

‖QW TPV + (I −QW )S(I − PV )‖ = max{‖T‖, ‖S‖},

for any subspaces V,W of H and arbitrary operators T, S ∈ L(H), where
PV denotes the orthogonal projection onto V . The above equality is the
appropriate version of the P-property.
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It is well known that every Schauder basis in a reflexive Banach space is
shrinking. Actually, M. Zippin proved that a Banach space X with basis
is reflexive if, and only if, any basis in X is shrinking [18]. Therefore, our
principal result follows now from Proposition 2.2 and Theorem 2.6.

Corollary 2.8. Let X, Y be reflexive Banach spaces with Schauder basis
and M a closed subspace of K(X, Y ) satisfying the P-property. Then M
has the DP1 if, and only if, for every x ∈ X and y∗ ∈ Y ∗ the evaluation
operators given by

M −→ Y M −→ X∗

S 7→ Sx S 7→ S∗y∗

are DP1 operators.

The following result characterizes those closed subspaces of the compact
operators on an arbitrary Hilbert space H (non necessarily separable) satis-
fying the DP1. The proof can be obtained by adapting the proof of Theorem
2.6. We include here and sketch of the proof for completeness.

Theorem 2.9. Let M be a closed subspace of K(H). Then M has the DP1
if, and only if, for any h ∈ H the evaluation operators given by

M −→ H M −→ H

S 7→ Sh S 7→ Sth

are DP1 operators.

Proof. The ‘only if’ part follows by Proposition 2.2.
In order to prove the converse it is enough to observe that Remark 2.5

allows us to approximate compact operators by “finite matrices” and also
that in this case, the space K(H) satisfies the corresponding version of
the P-property (Remark 2.7). With these two ideas in mind, the proof of
Theorem 2.6 can be easily adapted to this case. �

Remark 2.10. In order to show that the assumptions of Corollary 2.8 and
Theorem 2.9 are sharp, let us observe several examples.

(1) If the space X is not reflexive, there can be subspaces of K(X)
satisfying the DP1 such that the evaluation operators are not DP1.
Indeed, this is the case of an example appearing in [16]. Take X = c0,
and M = K(c0). Since M ≡ c0(`1), it follows that M has the DP and
hence M also has the DP1. Let T = e∗1⊗e1 and Tn = e∗2⊗en (n ≥ 2),
where ei is the natural coordinate basis in c0 and e∗i ⊗ ej((λn)) :=
λiej . Then ‖T‖ = ‖T + Tn‖ = 1 for every n ≥ 2, Tn → 0 weakly
and ‖Tn(e2)‖ = 1 (n ≥ 2). Therefore, the evaluation operator at e2

is not DP1.
(2) Finally, for any (infinite-dimensional) Hilbert space H, one we can

find a subspace M ⊂ L(H) which does not satisfy the DP1 although
the evaluations at elements of H are DP1 operators from M to H.
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Clearly it is enough to check the statement for `2. Let H = `2 and
Vn, Wn be pairwise orthogonal subspaces of H such that H can be
decomposed into the (orthogonal) sum

H =
(
⊕`2Vn

)
⊕`2

(
⊕`2Wn

)
and dim(Vn) = dim(Wn) = n (n ∈ N). Let M the C∗-algebra given
by

M =
( ∞⊕

n=1

L(Vn)
)
∞
⊕∞

( ∞⊕
n=1

L(Wn)
)
∞

.

By [12, Examples 3.3 (ii)] we know that M does not satisfy the
DP1. Given h ∈ H, we denote by Eh : M → H the evalua-
tion operator at h. To see that Eh is completely continuous, it
is enough to check that Eh maps weakly convergent sequences to
norm-convergent. Let us fix h ∈ H and a weakly null sequence (mk)
in M . For every ε > 0 there exist p ∈ N, hi ∈ Vi and ki ∈ Wi (i ≤ p)
such that ‖h−

∑p
i=1(hi + ki)‖ ≤ ε, that is

‖Eh −
p∑

i=1

(Ehi
+ Eki

)‖ ≤ ε. (∗)

For any k, mk ∈ M , and then mk(hi) = PVimkPVi(hi). Now,
since (PVimkPVi)k is a weakly null sequence in the finite dimensional
space L(Vi), it follows that limk→∞ ‖PVimkPVi‖ = 0. Therefore
Ehi

: M → H is a completely continuous operator. The analogous
argument shows that Eki

is a completely continuous operator for
every ki ∈ Wi. Finally, since, by (∗), Eh is in the norm closure of
all completely continuous operators from M to H, we conclude that
Eh is completely continuous and hence DP1.

The last example actually provides us an example of a subspace
of L(H) which does not satisfy the DP although the evaluations
at elements of H are completely continuous operators from M to
H. This example shows that the characterization of the DP for
subspaces of K(H) obtained by Brown and Ülger [3, 15] or Saksman-
Tylli [16] is not valid for subspaces of L(H).

For subspaces of K(H) which are C∗-subalgebras the DP1 can be char-
acterized in the following way:

Proposition 2.11. Let A ⊂ K(H) be a C∗-subalgebra. The following con-
ditions are equivalent:

i) A has the DP1.
ii) For every sequence (Tn) ⊂ A satisfying that (Tn) w→ 0 and such that

for some T ∈ A, it holds ‖T + Tn‖ = 1 = ‖T‖,∀n, then ‖Tnh‖ → 0
for any h ∈ H.

iii) A has the DP.
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iv) For every sequence (Tn) ⊂ A, which is w-null, then ‖Tnh‖ → 0 for
any h ∈ H.

Proof. It is known that for C∗-algebras the DP and the DP1 are equivalent
(see [5]).

Now we will check that iii) and iv) are equivalent. By using [7] a C∗-
algebra has the DP iff for any weakly null sequence (xn) in the space, it
holds that (x∗nxn) is also weak null. Therefore, if A has the DP, for any
weak null sequence (Tn) ⊂ A, it holds that T ∗nTn converges weakly to zero,
an so, for any h ∈ H, it holds (T ∗nTnh|h) → 0, that is, ‖Tnh‖ → 0.

On the other hand, if every weakly null sequence (Tn) ⊂ A converges to
zero in the strong operator topology, then it implies that (‖T ∗nTnh‖ → 0 for
any h ∈ H, and so (T ∗nTnh1| h2) → 0 for every h1, h2 ∈ H. Since A ⊂ K(H),
this implies that T ∗nTn converges to zero weakly and by the result of [7], A
has the DP.

In order to prove that i) and ii) are equivalent, a similar argument can be
used, but replacing the result by Chu-Iochum by [12, Theorem 3.1]. �

Remark 2.12. Theorem 2.9 can be also used to prove the equivalence
between i) and ii), since the second condition just says that the pointwise
evaluation at elements of H are DP1 operators on the algebra and in this
case A = {T t : T ∈ A}.

There are examples of subalgebras of K(H) having the DP1 that are not
DP. For instance, let us consider the subspace A generated by the subset

{e∗n ⊗ e1 : n ∈ N},
where {en} is an orthonormal system of an infinite dimensional Hilbert space
H and we denote by

(e∗n ⊗ e1)(x) = (x|en)e1.

It is immediate that A is an subalgebra of K(H) isometric to `2, hence it
has the Kadec-Klee property, and so the DP1. Of course, `2 does not have
the DP.

For some special subalgebras of K(H), we will also obtain a characteri-
zation of DP1. To begin with, for a reflexive Banach space X, the following
result provides necessary conditions in a subalgebra of K(X) to have the
DP1.

Proposition 2.13. Let X be a reflexive Banach space and A ⊂ K(X) a
closed subalgebra of K(X) having the DP1. Then the operators RS , LS are
DP1 operators for any S ∈ A, where RS , LS : A −→ A are given by

RS(T ) = TS, LS(T ) = ST, ∀T ∈ A.

Proof. See Proposition 2.2 and Remark 2.3. �
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The following result is a partial converse for a class of subalgebras of
K(H) satisfying a very mild condition (compare this result to [15, Theorem
7]).

Proposition 2.14. Let X be a reflexive Banach space with Schauder basis
and A ⊂ K(X) be a closed subalgebra of K(X) satisfying the P-property.
Suppose that the linear subspaces generated by

{Tx : x ∈ X, T ∈ A}
and

{T ∗x∗ : x∗ ∈ X∗, T ∈ A}
are dense in X and X∗, respectively and assume that the operators LT , RT :
A −→ A are DP1. Then A has the DP1.

Proof. By Corollary 2.8 we have to check that the evaluation operators
at elements x ∈ X and x∗ ∈ X∗ are DP1 when they are restricted to A.

Hence, let us fix x ∈ X and a sequence (Tn) ⊂ A such that (Tn) is weakly
null and for some S ∈ SA it holds that 1 = ‖S + Tn‖ for every n. We have
to show that {Tnx : n ∈ N} is relatively compact in X.

By assumption, there are elements y1, . . . , yn in X and S1, . . . , Sn in A
satisfying ∥∥∥∥ m∑

i=1

Siyi − x

∥∥∥∥ < ε.

Hence ∥∥∥∥ m∑
i=1

TnSiyi − Tnx

∥∥∥∥ < ε‖Tn‖,∀n ∈ N.

Since {TnSi : n ∈ N} is relatively compact, because RSi is a DP1 operator,
also the subset {TnSiyi : n ∈ N} is relatively compact and this property is
preserved by finite sums, therefore by using that

{Tnx : n ∈ N} ⊂
{ m∑

i=1

TnSiyi : n ∈ N
}

+ ε sup{‖Tn‖}BX ,

then {Tnx : x ∈ X} is relatively compact. By a similar argument, if we
use the denseness of the subspace generated by {T ∗x∗ : x∗ ∈ X∗, T ∈ A}
it follows that {T ∗nx∗ : n ∈ N} is relatively compact for any x∗ ∈ X∗. By
Corollary 2.8, the subalgebra A has the DP1. 2

Corollary 2.15. Let X be a reflexive Banach space with Schauder basis
and A ⊂ K(X) a closed subalgebra of K(X) in the hypothesis of Proposition
2.14. Then A has the DP1 if, and only if, the operators LT , RT : A −→ A
are DP1.

When in the proof of Proposition 2.14 we replace Corollary 2.8 by Theo-
rem 2.9, we obtain the following result.
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Proposition 2.16. Let A ⊂ K(H) be a closed subalgebra of K(H) satisfying
that the linear subspaces generated by

{Th : h ∈ H,T ∈ A}

and
{T ∗h : h ∈ H,T ∈ A}

are dense in H. Assume that the operators LT , RT : A −→ A are DP1 for
any T in A. Then A has the DP1.

Corollary 2.17. Let A ⊂ K(H) be a closed subalgebra of K(H) satisfying
the hypothesis of Proposition 2.16. Then A has the DP1 if, and only if, the
operators LT , RT : A −→ A are DP1.

Remark 2.18. We recall that a Banach space Y is said to have the Schur
property if every weakly compact subset of Y is norm compact. It is known
that the dual Y ∗ of a Banach space Y has the Schur property if and only if Y
has the DP and does not contain an isomorphic copy of `1 (see for instance
[10, Theorem 3]). Since K(H) does not contain an isomorphic copy of `1

([11]), it follows that a closed subspace M of K(H) satisfies the DP if, and
only if, M∗ has the Schur property if, and only if, for every h ∈ H the
evaluation operators given by

M −→ H M −→ H

S 7→ Sh S 7→ S∗h

are completely continuous (see [15, Corollary 4] and also [3]).
Since the DP1 (respectively, the KKP) can be obtained by confining the

DP (respectively, the Schur) condition to the unit sphere, we might expect a
relation between DP1 in a closed subspace M of K(H) and the KKP in M∗.
However, the KKP in M∗ does not imply the DP1 in M . Indeed, let {en}
be an orthonormal sequence in a Hilbert space H. The closed subspace M
of K(H) generated by {e∗1⊗ e1, e

∗
n ⊗ e2 : n ≥ 2} is isometric to R⊕∞ `2 and

e∗n ⊗ em(h) := (h|en)em. Therefore M does not satisfy the DP1 property
(see [12, Example 1.6]), however M∗ satisfies the KKP since it is isometric
to R ⊕`1 `2 (see [12, Theorem 1.9]). Another example is M = K(H). The
dual of K(H), the Banach space of all trace class operators on H, satisfies
the KKP ([9]) and K(H) does not satisfy the DP1 whenever H is infinite
dimensional.
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