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Abstract

We establish some generalizations of Urysohn lemma for the hull-
kernel structure in the setting of JB*-triples. These results are the
natural extensions of those obtained by C. A. Akemann in the setting
of C*-algebras. We also develop some connections with the classical
Stone-Weierstrass problem for C*-algebras and JB*-triples.

1 Introduction

Let K be a topological compact Hausdorff space and let C(K) denote the
Banach space of all complex-valued continuous functions onK. The classical
Urysohn lemma allows us to describe the open subsets of K in the following
way: a subset A ⊆ K is open if and only if there is an increasing net (xα)
in C(K) satisfying that 0 ≤ xα(t) ↗ 1, for each t ∈ A, and 0 = xα(t) for
each t ∈ K\A. Clearly, a subset C ⊆ K is closed (equivalently, compact)
if and only if K\C is open. We can see the characteristic functions χA as
projections in the bidual of C(K).

In the more general setting of non-necessarily abelian C*-algebras the
notions of open and compact projections in the bidual of a C*-algebra are
mainly due to C. A. Akemann ([1, 3], see also [5, 33]). Let A be a C*-algebra.
A projection p in A∗∗ is said to be open if p is the weak*-limit of a increasing
net of positive elements in A, equivalently, pA∗∗p∩A is weak*-dense in pA∗∗p
(compare [33, Proposition 3.11.9]). We say that p is closed whenever 1−p is
open. Finally, a projection p is said to be compact if, and only if, p is closed
and there exists a positive element a ∈ A such that p ≤ a ≤ 1, equivalently,
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there is a monotone decreasing net (aλ) in A+ with p ≤ aλ ≤ 1, converging
strongly to p (see for example [1] or [11, Definition-Lemma 2.47]). If A is
unital then every closed projection in A∗∗ is compact. Akemann called this
collection of open projections in A∗∗ the hull-kernel structure (HKS) of A.
In the HKS of a C*-algebra, the following generalization of Urysohn lemma
was obtained by Akemann in [2, Theorem I.1]:

Theorem 1.1. Let A be a unital C*-algebra and let p and q be two closed
projections in A∗∗ with pq = 0. Then there exists a in A with 0 ≤ a ≤ 1,
ap = 0 and aq = q. 2

The generalizations of Urysohn Lemma to the setting of
non-commutative C*-algebras are closely related with the general Stone-
Weierstrass problem for non-commutative C*-algebras. This tool has been
intensively developed since 1969 by C. A. Akemann [1, 2, 3], L. G. Brown
[11], C. A. Akemann, J. Anderson and G. Pedersen [4] and C. A. Akemann
and G. Pedersen [5], among others.

C*-algebras belong to the more general class of complex Banach spaces
known as JB*-triples (see definition below). In this setting the role of pro-
jections is played by those elements called tripotents. Moreover, in [20] and
[22] the notions of open, compact and closed tripotents in the bidual of a
JB*-triple are introduced and developed. The aim of this paper is the study
of the hull-kernel structure in a JB*-triple. In section 2 we prove some
generalizations of Urysohn lemma for this HKS. Theorem 2.4 assures that
whenever e and f are two orthogonal tripotents in the bidual of a JB*-triple
E, with e compact and f minimal, then there exist two orthogonal norm-one
elements a1 and a2 in E such that e ≤ a1 and f ≤ a2. The second Urysohn
lemma type result is Theorem 2.10, where we establish the following: Let
E be a JB*-triple, x a norm-one element in E and u a compact tripotent
in E∗∗ relative to E satisfying that u ≤ r(x). Then there exists a norm-one
element y in the inner ideal of E generated by x, such that u ≤ y ≤ r(x).

In the last section we find some connections between the generalizations
of Urysohn lemma to the HKS of a C*-algebras or a JB*-triple with the
Stone-Weierstrass problem. As main result (see Theorem 3.5) we prove that
whenever B is a JB*-subtriple of a JB*-triple E such that for every couple
of orthogonal tripotents u, v in E∗∗ with v minimal and u minimal or zero,
there exist orthogonal elements x, y in B such that ‖y‖ = 1, ‖x‖ ∈ {0, 1}
and u ≤ x and v ≤ y (when u = 0, then we mean x = 0), then B separates
the extreme points of the closed unit ball of E∗ and zero. This result com-
bined with those obtained by C. A. Akemann [2] and B. Sheppard [39], on
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the Stone-Weierstrass theorem for C*-algebras and JB*-triples, respectively,
allow us to establish some new versions of the Stone-Weierstrass theorem in
the setting of C*-algebras and JB*-triples.

We recall (c.f. [31]) that a JB*-triple is a complex Banach space E
together with a continuous triple product {., ., .} : E×E×E → E, which is
conjugate linear in the middle variable and symmetric bilinear in the outer
variables satisfying that,

(a) L(a, b)L(x, y) = L(x, y)L(a, b) + L(L(a, b)x, y) − L(x, L(b, a)y), where
L(a, b) is the operator on E given by L(a, b)x = {a, b, x} ;

(b) L(a, a) is an hermitian operator with non-negative spectrum;

(c) ‖L(a, a)‖ = ‖a‖2.

Every C*-algebra is a JB*-triple via the triple product given by

2 {x, y, z} = xy∗z + zy∗x,

and every JB*-algebra is a JB*-triple under the triple product

{x, y, z} = (x ◦ y∗) ◦ z + (z ◦ y∗) ◦ x− (x ◦ z) ◦ y∗.

A JBW*-triple is a JB*-triple which is also a dual Banach space (with a
unique predual [9]). The second dual of a JB*-triple is a JBW*-triple [17].
Elements a, b in a JB*-triple, E, are orthogonal if L(a, b) = 0. With each
tripotent u (i.e. u = {u, u, u}) in E is associated the Peirce decomposition

E = E2(u)⊕ E1(u)⊕ E0(u),

where for i = 0, 1, 2, Ei(u) is the i
2 eigenspace of L(u, u). The Peirce rules

are that {Ei(u), Ej(u), Ek(u)} is contained in Ei−j+k(u) if i−j+k ∈ {0, 1, 2}
and is zero otherwise. In addition,

{E2(u), E0(u), E} = {E0(u), E2(u), E} = 0.

The corresponding Peirce projections, Pi(u) : E → Ei(u), (i = 0, 1, 2) are
contractive and satisfy

P2(u) = D(2D − I), P1(u) = 4D(I −D), and P0(u) = (I −D)(I − 2D),

where D is the operator L(u, u) and I is the identity map on E (compare
[23]). A non-zero tripotent u ∈ E is called minimal if and only if E2(u) =
Cu.
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Let e and x be two norm-one elements in a JB*-triple, E, with e tripo-
tent. We shall say that e ≤ x (respectively, x ≤ e) whenever L(e, e)x = e
(respectively, x is a positive element in the JB*-algebra E2(e)).

The strong*-topology in a JBW*-triple was introduced by T. J. Barton
and Y. Friedman in [8]. This strong*-topology can be defined in the following
way: Given a JBW*-triple W, a norm-one element ϕ in W∗ and a norm-one
element z in W such that ϕ(z) = 1, it follows from [8, Proposition 1.2] that
the assignment

(x, y) 7→ ϕ {x, y, z}

defines a positive sesquilinear form on W. Moreover, for every norm-one
element w in such satisfying ϕ(w) = 1, we have ϕ {x, y, z} = ϕ {x, y, w} , for
all x, y ∈ W . The law x 7→ ‖x‖ϕ := (ϕ {x, x, z})

1
2 , defines a prehilbertian

seminorm onW . The strong*-topology (noted by S∗(W,W∗)) is the topology
on generated by the family {‖ · ‖ϕ : ϕ ∈W∗, ‖ϕ‖ = 1}.

The strong*-topology is compatible with the duality (W,W∗) (see [8,
Theorem 3.2]). The strong*-topology was further developed in [36, 34]. In
particular, the triple product is jointly strong*-continuous on bounded sets
(see [36, 34]).

Let W be a JBW*-triple and let a be a norm-one element in W . The
sequence (a2n−1) defined by a1 = a, a2n+1 =

{
a, a2n−1, a

}
(n ∈ N) con-

verges in the strong*-topology (and hence in the weak*-topology) of W
to a tripotent u(a) in W (compare [20, Lemma 3.3]). This tripotent will
be called the support tripotent of a. There exists a smallest tripotent
r(a) ∈ W satisfying that a is positive in the JBW*-algebra W2(r(a)), and
u(a) ≤ a2n−1 ≤ a ≤ r(a). This tripotent r(a) will be called the range tripo-
tent of a. (Beware that in [20], r(a) is called the support tripotent of a).

In [20], C. M. Edwards and G. T. Rüttimann introduced the concepts
of open and compact tripotents in the bidual of a JB*-triple. In [22], the
authors of the present paper studied the notions of open and compact tripo-
tents in a JBW*-triple with respect to a weak*-dense subtriple. Concretely,
given a JBW∗-tripleW and a weak*-dense JB*-subtriple E ofW , a tripotent
u in W is said to be compact-Gδ relative to E if u is the support tripotent
of a norm one element in E. The tripotent u is said to be compact relative
to E if u = 0 or there exist a decreasing net, (uλ) ⊆ W, of compact-Gδ

tripotents relative to E converging, in the strong*-topology of W, to the
element u (compare [20, §4]). A tripotent u in W is said to be open relative
to E if E ∩W2(u) is weak*-dense in W2(u). When E is a JB*-triple, the
range (respectively, the support) tripotent of every norm-one element in E
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is always an open (respectively, compact) tripotent in E∗∗ relative to E.
Notation Given a Banach space X, we denote by X1, SX , and X∗ the

closed unit ball, the unit sphere, and the dual space of X, respectively. If
K is any convex subset of X, then we write ∂e(K) for the set of extreme
points of K.

2 The non-commutative Urysohn lemma for
JB*-triples

This section is mainly devoted to obtain some Urysohn lemma type results
for the HKS of a JB*-triple. We begin by developing some new properties
of compact tripotents in the bidual of a JB*-triple.

Proposition 2.1. Let W and V be JBW*-triples, E a weak*-dense JB*-
subtriple of W and T : W → V a surjective weak*-continuous triple ho-
momorphism such that ‖T (x)‖ = ‖x‖, for all x in E. Suppose that e is a
tripotent in W, then T (e) is compact relative to T (E) in V whenever e is
compact relative to E. Moreover, if T is a triple isomorphism, then e is
compact relative to E in W if and only if T (e) is compact relative to T (E)
in V .

Proof. Suppose that e ∈ W is compact relative to E. If T (e) = 0, then
there is nothing to prove. Suppose that T (e) is a non-zero tripotent in V .
By definition, there exists a decreasing net (uλ)λ∈Λ ⊂ W, of compact-Gδ

tripotents relative to E (i.e., ∀λ there exists aλ ∈ SE such that uλ = u(aλ)),
converging to e in the strong*-topology of W .

From the hypothesis we know that, for each λ ∈ Λ, ‖T (aλ)‖ = ‖aλ‖ = 1.
Since, for each λ, u(T (aλ)) coincides with the limit, in the weak*-topology
of V , of the sequence (T (aλ)2n−1) = (T (a2n−1

λ )), and T is weak*-continuous,
we have u(T (aλ)) = T (u(aλ)). The conditions (uλ) decreasing and T triple
homomorphism imply that u(T (aλ)) = T (u(aλ)) is also a decreasing net in
V. Since T is weak*-continuous, we deduce, from [36, Corollary 3], that T
is S∗(W,W∗)−S∗(V, V∗)-continuous. Therefore, u(T (aλ)) = T (u(aλ)) tends
to T (e) in the S∗(V, V∗)-topology. This shows that T (e) is compact relative
to T (E) in V .

Remark 2.2. Note that under the assumptions of the previous proposition
there is a relationship between compact-Gδ tripotents in W (respectively,
range tripotents in W ) relative to E and compact-Gδ tripotents in V
(respectively, range tripotents in V ) relative to T (E). Indeed, let x ∈ E
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be a norm-one element. The sequence x2n−1 (respectively, x
1

2n−1 ) tends to
u(x) (respectively, r(x)) in the weak*-topology of W . Since T is a weak*-
continuous triple homomorphism isometric on E, it follows that
T (u(x)) = u(T (x)) (respectively, T (r(x)) = r(T (x))). Moreover, since every
compact-Gδ (respectively, range) tripotent in V relative to T (E) is of the
form u(T (x)) (respectively, r(T (x))) for a suitable norm-one element x ∈ E,
it is clear that T maps the set of compact-Gδ (respectively, range) tripo-
tents in W relative to E onto the set of compact-Gδ (respectively, range)
tripotents in V relative to T (E).

In [16, Theorem 3.4] it is proved that every minimal tripotent in the
bidual of a JB*-triple, E, is compact relative to E. The next corollary shows
that this result remains true for every minimal tripotent in a JBW*-triple
W for any weak*-dense JB*-subtriple of W .

Let E be a JB*-triple. A subtriple I of E is said to be an ideal of E
if {E,E, I} + {E, I,E} ⊆ I. We shall say that I is an inner ideal of E
whenever {I, E, I} ⊆ I.

If E and F are two JB*-triples, a representation π : E → F is any triple
homomorphism from E to F . Let j : E → E∗∗ be the canonical inclusion
of E into its bidual. Each weak*-closed ideal I of E∗∗ is an M-summand
(see [27]). Therefore there exists a weak*-continuous contractive projection
π : E∗∗ → I. The representation E → I given by x 7→ πj(x) is called
the canonical representation of E corresponding to I. Suppose that E is a
weak*-dense JB*-subtriple of a JBW*-triple W and let λ : E → W be the
natural inclusion. From [7, Proposition 6], there exists a weak*-closed triple
ideal M of E∗∗ and a triple isomorphism Ψ : W →M satisfying that Ψλ is
the canonical representation of E corresponding to M .

Corollary 2.3. Let E be a weak*-dense JB*-subtriple of a JBW*-triple
W . Let M be the weak*-closed triple ideal of E∗∗ and let Ψ : W → M the
triple isomorphism described in the above paragraph, satisfying that Ψλ is
the canonical representation of E corresponding to M. Let e be a tripotent in
W. Then e is compact relative to E in W whenever Ψ(e) is compact relative
to E in E∗∗. In particular, every minimal tripotent in W is compact relative
to E.

Proof. Let π : E∗∗ → M denote the canonical projection of E∗∗ onto M .
Clearly, π is a surjective weak*-continuous triple homomorphism and if
i : E → W and j : E → E∗∗ denote the canonical inclusions of E into
W and E∗∗, respectively, we have Ψ ◦ i = π ◦ j.
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Let e ∈ W be a tripotent in W such that Ψ(e) is compact relative to
E in E∗∗. Proposition 2.1 applied to π : E∗∗ → M, E∗∗ and E, gives Ψ(e)
compact relative to π(E) in M . Again, Proposition 2.1 assures that e is
compact relative to E in W .

Finally, if e is minimal in W , that is, W2(e) = Ce, it is not hard to see
that M2(Ψ(e)) = E∗∗

2 (Ψ(e)) = CΨ(e), and hence Ψ(e) is a minimal tripotent
in E∗∗. Therefore, from [16, Theorem 3.4], it follows that Ψ(e) is compact
relative to E in E∗∗, which implies that e is compact relative to E in W .

Let x be a norm-one element in a JB*-triple E. Throughout the paper,
Ex will denote the norm-closed JB*-subtriple of E generated by x. It is
known that Ex is JB*-triple isomorphic (and hence isometric) to C0(Ω)
for some locally compact Hausdorff space Ω contained in [0, 1], such that
Ω ∪ {0} is compact and C0(Ω) denotes the Banach space of all complex-
valued continuous functions vanishing at 0. Moreover, if we denote by Ψ the
triple isomorphism from Ex onto C0(Ω), then Ψ(x)(t) = t (t ∈ Ω) (cf. [30,
4.8], [31, 1.15] and [23]).

The following result is a first generalization of Urysohn Lemma to the
setting of JB*-triples.

Theorem 2.4. Let E be a weak*-dense JB*-subtriple of a JBW*-triple W .
Let u, v be two orthogonal tripotents in W with u compact relative to E and
v minimal. Then there exist two orthogonal elements a1 and a2 in E such
that ‖a2‖ = 1, ‖a1‖ ∈ {0, 1}, u ≤ a1 and v ≤ a2.

Proof. When u = 0, we take a1 = 0 and the existence of a2 follows from
the last statement in Corollary 2.3 (see also [16]). We may therefore assume
u 6= 0.

Since v is a minimal tripotent in W, from [23, Proposition 4] it follows
that there exists ϕ ∈ ∂e((W∗)1) satisfying ϕ(v) = 1.

Corollary 2.3 implies v compact relative to E. Now, [22, Proposition 2.3]
assures that v and u are closed tripotents relative to E, that is, W0(u) ∩ E
and W0(v) ∩ E are subtriples of W which are weak*-dense in W0(u) and
W0(v), respectively. From the orthogonality of u and v we have u ∈ W0(v)
and v ∈W0(u).

Let us denote F = W0(u)∩E. Since [16, Theorem 2.8] remains true when
E∗∗ is replaced with any JBW*-triple W such that E is weak*-dense in W ,
then applying this result to F and W0(u), it follows that for every ε, δ > 0,
there exist y ∈ F and a tripotent e ∈W0(u) such that e ≤ v, Pi(e)(v−y) = 0
for i = 1, 2, ‖y‖ ≤ (1+δ)‖(P2(e)+P1(e))(v)‖ and |ϕ(v−e)| < ε. Since ε can
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be chosen arbitrary small and v is a minimal tripotent in W0(u), we have
e = v. The same arguments given in [16, Lemma 3.1] assure the existence
of a norm-one element b2 ∈ F such that v ≤ b2.

Let Fb2 denote the JB*-subtriple of F generated by b2. As we have
commented above, there exists a locally compact Hausdorff space L ⊆ [0, 1]
with L ∪ {0} compact such that Fb2 is isometrically isomorphic to C0(L)
under some surjective isometry denoted by ψ and ψ(b2)(t) = t, for any
t ∈ L. Let a2 and ã2 ∈ Fb2 the norm-one elements given by the expressions

ψ(a2)(t) :=


0, if 0 ≤ t ≤ 3

4 ;
affine, if 3

4 ≤ t ≤ 1;
1, if t = 1.

ψ(ã2)(t) :=


0, if 0 ≤ t ≤ 1

2 ;
affine, if 1

2 ≤ t ≤ 3
4 ;

1, if t ≥ 3
4 .

Clearly v ≤ u(b2) ≤ u(a2) ≤ a2 ≤ r(a2) ≤ ã2.

Now, Theorem 2.6 in [22] assures the existence of a norm-one element x
in E such that u ≤ x. We define

c1 = P0(ã2)(x) := x− 2L(z, z)x+Q(z)2(x) ∈ E,

where z is the element in Fea2
= Eea2

satisfying {z, r(ã2), z} = ã2 (compare
[22, §2]). From [22, Lemma 2.5], we have c1 ∈ E ∩ W0(r(a2)), which, in
particular, implies that c1 and a2 are orthogonal. We claim that

L(u, u) c1 = u.

Indeed, since x ≥ u, then x = u + P0(u)(x). Moreover, since
z ∈ Fea2

= Eea2
⊆W0(u), it follows, from Peirce rules, that

L(u, u)c1 =
{
u, u, x− 2L(z, z)x+Q(z)2(x)

}
=

{
u, u, u+ P0(u)(x)− 2L(z, z)(u+ P0(u)(x)) +Q(z)2(u+ P0(u)(x))

}
= {u, u, u}+

{
u, u, P0(u)(x)− 2L(z, z)(P0(u)(x)) +Q(z)2(P0(u)(x))

}
= u.

Again, the same arguments given in [16, Lemma 3.1] imply the existence of
a norm-one element a1 ∈ Ec1 such that u ≤ a1.

In the case of von Neumann algebras the above theorem generalizes
Theorem II.19 in [1] from the setting of biduals of C*-algebras to the more
general setting of von Neumann algebras.
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Corollary 2.5. Let A be a weak*-dense C*-subalgebra of a von Neumann al-
gebra W . Let p, q be two orthogonal projections in W with p compact relative
to A and q minimal. Then there exist two orthogonal positive elements a1

and a2 in A such that ‖a2‖ = 1, ‖a1‖ ∈ {0, 1}, p ≤ a1 and q ≤ a2. 2

In some particular triple representations the results stated in Proposition
2.1 and Remark 2.2 can be improved. This is the case of the canonical rep-
resentation of a JB*-triple into the atomic part of its bidual. We recall that,
given a JB*-triple E, then E∗∗ decomposes into an orthogonal direct sum of
two weak*-closed triple ideals A and N, where A (called the atomic part of
E∗∗) coincides with the weak*-closure of the linear span of all minimal tripo-
tents in E∗∗, E∗ = A∗⊕`1 N∗ and the closed unit ball of N∗ has no extreme
points, which implies that ∂e(E∗

1) = ∂e(A∗,1) (compare [23, Theorems 1 and
2]). If π denotes the natural weak*-continuous projection of E∗∗ onto A and
i : E → E∗∗ is the canonical inclusion, then the mapping π ◦ i : E → A is
an isometric triple embedding called the canonical embedding of E into the
atomic part of its bidual (see [24, proof of Proposition 1]).

We recall some notation needed in what follows. Let X be a Banach
space. For each pair of subsetsG,F in the unit ball ofX andX∗, respectively,
let the subsets G

′
and F′ be defined by

G
′
= {f ∈ BX∗ : f(x) = 1, ∀x ∈ G}

and
F′ = {x ∈ BX : f(x) = 1 ∀f ∈ F},

respectively.

Proposition 2.6. Let E be a JB*-triple, let π denote the canonical pro-
jection of E∗∗ onto its atomic part and let i : E → E∗∗ be the canonical
embedding of E into its bidual. The following assertions hold

a) Let u and v be two compact tripotents in E∗∗ relative to E. Then u ≤ v
if and only if π(u) ≤ π(v).

b) For each compact tripotent u in π(E∗∗) relative to π(E) there exists a
unique compact tripotent e in E∗∗ relative to E such that π(e) = u.

Proof. a) Let us denote A := π(E∗∗). If u ≤ v in E∗∗, then π(u) ≤ π(v),
since π is a triple homomorphism. Suppose now that π(u) ≤ π(v). From
[18, Theorem 4.4], we have

{π(u)}′
A∗

⊆ {π(v)}′
A∗

(1)
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By [20, Theorem 4.5] together with the comments preceding Corollary
3.5 in [16], every non-zero compact tripotent in E∗∗ relative to E majorises
a minimal tripotent of E∗∗. In particular, if e is a compact tripotent in E∗∗

with π(e) = 0, then e = 0. We may therefore assume that π(u) and hence
π(v) are not zero.

From [20, Theorem 4.2], it follows that the sets {u}′
E∗

and {v}′
E∗

are non-

empty σ(E∗, E)-compact and convex subsets of E∗
1 . By the Krein-Milman

theorem we have

{u}′
E∗

= coσ(E∗,E)
(
∂e({u}′

E∗
)
)

(2)

{v}′
E∗

= coσ(E∗,E)
(
∂e({v}′

E∗
)
)

(3)

Since ∂e(E∗
1) = ∂e(A∗,1), we have

{π(u)}′
A∗
∩ ∂e(A∗,1) = {π(u)}′

E∗
∩ ∂e(E∗

1)

= {u}′
E∗

∩ ∂e(E∗
1) = ∂e

(
{u}′

E∗

)
.

Similarly,
{π(v)}′

A∗
∩ ∂e(A∗,1) = ∂e

(
{v}′

E∗

)
.

Finally, we deduce, from (1), (2), (3) and the last two expressions, that

{u}′
E∗

⊆ {v}′
E∗
,

which shows that u ≤ v (compare [18, Theorem 4.4]).
b) Let u be a non-zero compact tripotent in A = π(E∗∗) relative to

π(E). Then there exists a decreasing net (uλ) of compact-Gδ tripotents in A
relative to π(E) converging in the strong*-topology of A to u. By Remark
2.2, for each λ, there is a norm-one element xλ ∈ E such that

uλ = u(π(xλ)) = π(u(xλ)).

Since π(u(xλ)) is a decreasing net of compact-Gδ tripotents, then (a) implies
that (u(xλ)) is a decreasing net in E∗∗. By [20, Theorem 4.5] there exist a
non-zero compact tripotent e ∈ E∗∗ relative to E such that e coincides with
the infimum of the family (u(xλ)). Since π is weak*-continuous and (u(xλ))
tends to e in the weak*-topology of E∗∗, we have that π((u(xλ)) → π(e) in
the σ(E∗∗, E∗)-topology, and hence π(e) = u. Finally, the uniqueness of e
follows from (a).
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The above result is a partial generalization of Theorem II.17 in [1]. In
the more particular setting of JB*-algebras we have:

Corollary 2.7. Let A be a JB*-algebra, let π denote the canonical projection
of A∗∗ onto its atomic part and let i : A→ A∗∗ be the canonical embedding
of A into its bidual. The following assertions hold

a) Let p and q be two compact projections in A∗∗ relative to A. Then p ≤ q
if and only if π(p) ≤ π(q).

b) For each compact projection p in π(A∗∗) relative to π(A) there exists a
unique compact projection q in A∗∗ relative to A such that π(q) = p. 2

Given a JB*-algebra A, the cone of all positive elements in A will be
denoted by A+, while A∗

+ will denote the set of positive elements in A∗. Let
W be a JBW*-algebra. The symbol Q∗(W ) will denote the set of all positive
elements in W∗ with norm less or equal to one. Q∗(W ) will be called the
normal quasi-state space of W . The normal state space, S∗(W ), is the set
of all elements in Q∗(W ) with norm equals to one. Given a projection p
in W we shall denote F (p) = FW (p) := {ϕ ∈ Q∗(W ) : ϕ(p) = ‖ϕ‖}. If
A is a JB*-algebra, then the set, Q(A) (respectively, S(A)), of quasi-states
(respectively, states) of A is defined as Q∗(A∗∗) (respectively, S∗(A∗∗)).

The following result was proved by M. Neal in [32, Lemma 3.2 and
Theorem 5.2].

Proposition 2.8. Let A be a JB*-algebra and let p be a projection in A∗∗.
Then we have:

(a) p is open relative to A if and only if there exists an increasing net (aλ)
in A1,+ with least upper bound p.

(b) p is closed relative to A if and only if F (p) is σ(A∗, A)-closed in Q(A).2

The next result gives a characterization of compact projections in JB*-
algebra biduals. A similar result was obtained by C. A. Akemann, J. Ander-
son and G. K. Pedersen in the setting of C*-algebra biduals (see [4, Lemma
2.4]).

Given a JB*-algebra A, Ã = A⊕C1 will stand for the result of adjoining
a unit to A (compare [26, §3.3]). Ã is also called the unitization of A.

Proposition 2.9. Let A be a JB*-algebra and let p be a projection in A∗∗.
Then p is compact relative to A if and only if F (p)∩S(A) is σ(A∗, A)-closed
in Q(A).
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Proof. The proof given in [4, Lemma 2.4] can be literally adapted to the
present setting. We include here an sketch of the proof for completeness
reasons. Suppose first that p is a non-zero compact projection in A∗∗. From
[20, theorem 4.2] we have F (p) ∩ S(A) = {p}′ is σ(A∗, A)-closed in Q(A).

Let Ã be the unitization of A. Each element φ ∈ Q(Ã) can be written
in the form φ = ψ + αφ0, with ψ ∈ Q(A), ‖φ‖ = ‖ψ‖+ |α|, where φ0 is the
unique state of Ã satisfying φ0(A) = 0 (compare [26, Lemma 3.6.6]). Since
p ∈ A∗∗ and hence φ0(p) = 0, we easily check that

FA∗(p) ∩ S(A) = F eA∗(p) ∩ S(Ã).

Therefore, FA∗(p) ∩ S(A) is σ(A∗, A)-closed in Q(A) if and only if
F eA∗(p) ∩ S(Ã) is σ(Ã∗, Ã)-closed in Q(Ã). By Proposition 2.8, it follows
that p is closed in (Ã)∗∗ and in A∗∗. Since, clearly p ≤ 1 eA, we deduce from
[22, Theorem 2.6] that p is compact in (Ã)∗∗ relative to Ã. Let p0 be the
minimal projection in (Ã)∗∗ satisfying φ0(p0) = 1. Theorem 2.4 implies the
existence of a norm-one element x ∈ Ã such that p0 and x are orthogonal
and L(p, p)x = x ◦ p = p. In particular x ∈ A, which gives p compact in A∗∗

relative to A (compare [22, Theorem 2.6]).

Let B be a JB*-subtriple of a JB*-triple E. Throughout the paper, we
shall identify the weak*-closure of B in E∗∗ with B∗∗. Let x be a norm-
one element and let E(x) denote the norm closure of {x,E, x} in E. It
was proved by L. J. Bunce, Ch.-H. Chu and B. Zalar in [14, 15], that E(x)
coincides with the norm-closed inner ideal of E generated by x, E(x) is a
JB*-subalgebra of the JBW*-algebra E(x)∗∗ = E∗∗

2 (r(x)), where r(x) is the
range tripotent of x in E∗∗. Moreover, x ∈ E(x)+.

We can now state the following version of Urysohn lemma which is a
partial generalization of the result obtained by C. A. Akemann, J. Ander-
son and G. K. Pedersen in [4, Lemma 2.5] (see also [3, Lemma III.1], [11,
Corollary 2.48], [5, Lemma 2.7]).

Theorem 2.10. Let E be a JB*-triple, x a norm-one element in E and u a
compact tripotent in E∗∗ relative to E satisfying that u ≤ r(x). Then there
exists a norm-one element y in E(x) such that u ≤ y ≤ r(x). Moreover, u
is a compact tripotent in E∗∗

2 (r(x)) = (E(x))∗∗ relative to E(x).

Proof. We may assume that 0 6= u ≤ r(x). From [20, Theorem 4.2], there
exists a set of norm-one elements {aλ} ⊂ E satisfying that

{u}′
E∗

=
⋂
λ∈Λ

{u(aλ)}′ =
⋂
λ∈Λ

{aλ}
′
. (4)

12



Since u ≤ r(x), then u is a projection in E(x)∗∗ = E∗∗
2 (r(x)).

Since E(x) is a norm-closed inner ideal of E, it follows from [19, The-
orem 2.6] every element ϕ ∈ E(x)∗ has a unique norm-preserving linear
extension to E. The restriction mapping Ψ : E∗

1 → E(x)∗1, φ 7→ φ|E(x), is
σ(E∗, E) − σ(E(x)∗, E(x))-continuous. Let φ ∈ {u}′

E∗
. Since u is a projec-

tion in E∗∗
2 (r(x)) and φ(u) = 1 = ‖φ|E∗∗

2 (r(x))‖ we deduce that φ|E∗∗
2 (r(x))

belongs to S∗(E∗∗
2 (r(x))) = S(E(x)), and hence ‖φ|E(x)‖ = 1. Again, the

unique extension property (see [19, Theorem 2.6]) assures that

FE(x)∗(u) ∩ S(E(x)) = {u}′
E(x)∗

= Ψ
(
{u}′

E∗

)
.

If we show that FE(x)∗(u)∩S(E(x)) is σ(E(x)∗, E(x))-closed in Q(E(x)),
the thesis of the theorem will follow from Proposition 2.9. To see this, let
(ϕµ) be a net in FE(x)∗(u) ∩ S(E(x)) converging to some ϕ in
FE(x)∗(u) ∩ S(E(x)) in the σ(E(x)∗, E(x))-topology. Since Ψ is surjective,
there exist a net (φµ) in {u}′

E∗
and φ ∈ E∗

1 such that Ψ(φµ) = ϕµ and

Ψ(φ) = ϕ. Since E∗
1 is σ(E∗, E)-compact, there exists a subnet (φδ)

converging to some φ
′

in the σ(E∗, E)-topology. For each λ ∈ Λ we have
φδ(aλ) → φ

′
(aλ). In particular, since (φδ) ⊂ {u}′

E∗
, we have, by (4),

φδ(aλ) = 1 for all δ, λ, which implies φ
′ ∈ {u}′

E∗
. Finally, Ψ(φδ) = ϕδ

tends to Ψ(φ
′
) in the σ(E(x)∗, E(x))-topology, thus

ϕ = Ψ(φ) = Ψ(φ
′
) ∈ Ψ

(
{u}′

E∗

)
= FE(x)∗(u) ∩ S(E(x)),

which finishes the proof.

Theorem 2.10 allows us to get the following generalization of [1, Theorem
II.17] and [3].

Proposition 2.11. Let E be a JB*-triple, let π denote the canonical pro-
jection of E∗∗ onto its atomic part and let i : E → E∗∗ be the canonical
embedding of E into its bidual. Then, for each range tripotent e in π(E∗∗)
relative to π(E) there exists a unique range tripotent r in E∗∗ relative to E
such that π(r) = e.

Proof. Remark 2.2 assures the existence of such a tripotent, so the proof
ends by proving the uniqueness. Suppose that there exist norm-one ele-
ments x, y ∈ E such that π(r(x)) = π(r(y)) = e. By [31], there exist
a locally compact Hausdorff space L ⊆ [0, 1] with L ∪ {0} compact such
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that Ex is isometrically isomorphic to C0(L). Let us define un = χ
L∩[1/n,1]

,
n ∈ N. Clearly, un is a compact tripotent in E∗∗ relative to E and un is
an increasing sequence converging to r(x) in the weak*-topology of E∗∗.
π(un) ≤ π(r(x)) = e = π(r(y)) and by Proposition 2.6 and Theorem
2.10 there is a sequence of norm-one elements (zn) ⊂ E(y) satisfying that
π(un) ≤ u(π(zn)) ≤ π(zn) ≤ π(r(y)). Again, Proposition 2.6 gives un ≤
u(zn) ≤ r(y). Finally, since E∗∗

2 (r(y)) is weak*-closed and (un) tends to
r(x) in the weak*-topology we have r(x) ≤ r(y). Symmetrically, we get
r(y) ≤ r(x).

Remark 2.12. Let x and y be two norm-one elements in a JB*-triple
E. Suppose that π is the projection of E∗∗ onto its atomic part. In the
proof of the above proposition we showed that r(x) ≤ r(y) if, and only if,
π(r(x)) ≤ π(r(y)). This result remains true for open tripotents, the proof
follows from a recent paper by A. Steptoe (We are indebted to L. J. Bunce
for telling us about Steptoe’s results). Theorem 8.3 in [40] assures that
whenever J and I are two norm-closed inner ideals of E, then I ⊆ J if, and
only if, ∂e(I∗1) ⊆ ∂e(J∗1), which is equivalent to π(I∗∗) ⊆ π(J∗∗). Suppose
that e and f are two open tripotents in E∗∗ relative to E with π(e) ≤ π(f).
Since E ∩ E∗∗

2 (e) and E ∩ E∗∗
2 (f) are two norm-closed inner ideals of E

and π(e) ≤ π(f), we have π(E ∩ E∗∗
2 (e)) ⊆ π(E ∩ E∗∗

2 (f)). Thus, by [40,
Theorem 8.3], we have E ∩ E∗∗

2 (e) ⊆ E ∩ E∗∗
2 (f), and hence e ≤ f . Since

π(e) ≤ π(f) always follows from e ≤ f , we therefore have e ≤ f, if and only
if, π(e) ≤ π(f), for every couple of open tripotents e, f in E∗∗ relative to E.

In the setting of C*-algebras, C. A. Akemann, J. Anderson and G. Ped-
ersen proved, in [4, Proposition 2.6], the following stronger version of the
Urysohn Lemma. Let A be a C*-algebra and let p and q be two closed
orthogonal projections in A∗∗ with p compact and ‖ap‖ < ε for some a in
A. Then there are orthogonal open projections r, s ∈ A∗∗ such that p ≤ r,
q ≤ s and ‖ar‖ < ε. We do not know if we can obtain a similar result in the
setting of JB*-triples.

Problem 2.13. Let E be a JB*-triple and let e, f be two non-zero
orthogonal compact tripotents in E∗∗ relative to E. Do there exist
orthogonal norm-one elements x, y in E such that e ≤ x and f ≤ y?

Problem 2.14. Can be replace in Theorem 2.10 the range tripotent, r(x),
with any open tripotent in E∗∗ relative to E?

14



3 Connections with the Stone-Weierstrass
Theorem for C*-algebras and JB*-triples

As we have commented in the introduction, the generalizations of Urysohn
Lemma to the setting of non-commutative C*-algebras are closely related
with the general Stone-Weierstrass problem for non-commutative C*-algebras.
This tool has been intensively developed and applied to the Stone-Weierstrass
problem in papers like [1, 2, 3, 4, 5] and [11].

The Stone-Weierstrass problem for C*-algebras can be concretely stated
as follows:

Let B be a C*-subalgebra of a C*-algebra A. Suppose that B
separates the pure states of A and zero. Is B equal to A?

I. Kaplansky gave a positive answer to the above problem for the special
class of Type I C*-algebras in [29]. For general C*-algebras, many authors
gave partial answer to the Stone-Weierstrass problem by including various
additional conditions (see for example [29, 28, 25, 1, 2, 37, 21, 12, 6] and
[10] among others).

We are particularly interested in the following Stone-Weierstrass type
Theorem proved by C. A. Akemann in [2, Theorem II.7].

Theorem 3.1. Let B be a C*-subalgebra of a unital C*-algebra A such that
B separates the pure states of A and zero. Suppose that for every pair of
orthogonal projections p, q in A∗∗ with q minimal and p compact relative to
A, there exists orthogonal (positive) elements x, y in B such that ‖y‖ = 1,
‖x‖ ∈ {0, 1}, p ≤ x and q ≤ y. Then B = E. 2

In the statement of [2, Theorem II.7] it is not explicitly included in the
hypothesis that B separates the pure states of A and zero. However, the
proof uses the results in [1, §3], where this condition is assumed (see [1, page
285] and [2, page 305]).

In the setting of JB-algebras and JB*-triples an intensive study of the
Stone-Weierstrass problem was developed by B. Sheppard [38, 39]. Among
others results, B. Sheppard generalizes the result obtained by Kaplansky for
postliminal JB*-algebras and JB*-triples in the following result.

Theorem 3.2. [39, Theorem 5.7] Let B be a JB*-subtriple of a JB*-triple
E such that B separates the extreme points of the closed unit ball of E∗.
Then, if E or B is postliminal, E = B. 2
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The aim of this section is an analysis of the connections between the
Stone-Weierstrass theorem and the Urysohn lemma type results for JB*-
triples, analogous to that made by C. A. Akemann in the setting of C*-
algebras.

The following definition is inspired on Urysohn Lemma for JB*-triples
proved in Theorem 2.4. We introduce this property just to simplify the
notation in this paper.

Definition 3.3. Let B be a JB*-subtriple of a JB*-triple E. We say that B
satisfies the SW-property with respect to E if and only if for every couple of
orthogonal tripotents u, v in E∗∗ with v minimal and u compact relative to
E, there exist orthogonal elements x, y ∈ B such that ‖y‖ = 1, ‖x‖ ∈ {0, 1},
u ≤ x and v ≤ y. When u = 0, then we mean x = 0 in u ≤ x.

Theorem 2.4 shows that every JB*-triple has the SW-property with
respect to itself.

Lemma 3.4. Let A be a JBW*-algebra and let p, q be minimal projections
in A. Suppose that q = q2 + q1 + q0 is the Peirce decomposition of q with
respect to p and ϕq in ∂e(A∗,1) such that ϕq(q) = 1. Then, either p = q or
ϕq(q0) 6= 0.

Proof. By [26, 2.4.16 and 2.4.21] we have

P2(p) = U2
p ◦ ∗ = Up2 ◦ ∗,

P0(p) = U1−p ◦ ∗,
where Up(x) := {p, x∗, p} and ∗ denotes the canonical involution of A. Sup-
pose that ϕq(q0) = 0. We claim that q = p. Indeed, by [23, Proposition 1]
and the hypothesis we have

0 = ϕq(q0) = ϕq(U1−p(q)) = ϕq(UqU1−p(q)).

Since q is minimal and ϕq is faithful in A2(q) = Cq, we have

UqU1−p(q) = 0.

Now by [26, 2.4.18] it follows that

UqU1−p(q) = UqU1−pUq(q) = U{q,1−p,q}(q) = 0.

However, since 1 − p ≥ 0, by [26, 3.3.6], we have {q, 1− p, q} is a posi-
tive element in A2(q). Moreover, since q is the unit element in A2(q) and
U{q,1−p,q}(q) = 0, it follows that {q, 1− p, q} = q − P2(q)p = 0. Finally, the
equality p = q can be derived from the minimality of p, since q−P2(q)p = 0
and [23, Lemma 1.6] imply that p = q + P0(q)p.
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Let E be a JB*-triple. Throughout the paper MinTri(E) will stand for
the set of all minimal tripotents in E.

Theorem 3.5. Let B be a JB*-subtriple of a JB*-triple E. Suppose that
for every u 6= v in MinTri(E) ∪ {0}, with u and v orthogonal, there exist
orthogonal elements x, y ∈ B such that ‖y‖, ‖x‖ ∈ {0, 1} and u ≤ x and
v ≤ y (if u = 0 or v = 0, we mean x = 0 or y = 0, respectively). Then B
separates ∂e(E∗

1) ∪ {0}.

Proof. Let ϕ1 6= ϕ2 in ∂e(E∗
1) ∪ {0}. If ϕ1 = 0, then there is a minimal

tripotent u2 in E∗∗ such that ϕ2(u2) = 1 (compare [23, Proposition 4]).
Now, the hypothesis on B applied to 0 and u2, assure the existence of
orthogonal elements x, y ∈ B such that ‖y‖, ‖x‖ ∈ {0, 1} and 0 ≤ x and
u2 ≤ y. In particular 0 = ϕ1(y) 6= ϕ2(y) = 1. We may therefore assume
ϕ1, ϕ2 6= 0.

Take u1 6= u2 minimal tripotents in E∗∗, such that ϕi(ui) = 1, for
i = 1, 2. As we have commented in the previous paragraph, the hypothesis
imply the existence of a norm-one element a ∈ B, such that u1 ≤ a and
hence ϕ1(a) = 1. If ϕ2(a) 6= 1, then B separates ϕ1, ϕ2 and we finish. We
may therefore assume that ϕ2(a) = 1. In this case, by [23, Propositions 1,
2 and Lemma 1.6] u2 ≤ a. Therefore, u1, u2 ≤ a ≤ r(a), which implies that
u1 and u2 are minimal projections in the JBW∗-algebra E∗∗

2 (r(a)). From
Lemma 3.4 and the hypothesis, we have ϕ2(P0(u1)(u2)) 6= 0. Moreover, from
[8, page 258], it follows that 0 < |ϕ2(P0(u1)(u2))| ≤ ‖ϕ2(P0(u1)(u2))‖ϕ2 .

Let A denote the atomic part of E∗∗. Clearly, P0(u1)(A) ⊂ A and
hence P0(u1)(A) coincides with the weak*-closure of the linear span of
MinTri(E∗∗) ∩ E∗∗

0 (u1) (compare [23]). Since 0 < |ϕ2(P0(u1)(u2))| we have
ϕ2|P0(u1)(A)

6= 0, and hence there exists a minimal tripotent
w ∈ MinTri(E∗∗) ∩ E∗∗

0 (u1), such that 0 < ϕ2(w) ≤ ‖w‖ϕ2 .

Finally, by hypothesis, there are two orthogonal norm-one elements x, y
in B such that u1 ≤ x and w ≤ y. In particular 0 < ‖w‖ϕ2 ≤ ‖y‖ϕ2 and
ϕ1(x) = 1. Therefore,

|ϕ2(x)|2 ≤ ‖x‖2
ϕ2
< ‖x‖2

ϕ2
+ ‖y‖2

ϕ2
= ‖x+ y‖2

ϕ2
≤ ‖x+ y‖2 = 1,

which proves the desired statements.

Since every minimal tripotent in the bidual of a JB*-triple is compact
(see [16, Theorem 3.4]) we have:

Corollary 3.6. Let B be a JB*-subtriple of a JB*-triple E. Suppose that
B has the SW-property with respect to E. Then B separates ∂e(E∗

1) ∪ {0}.
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The significant results obtained by B. Sheppard on the Stone-Weierstrass
theorem for JB*-triples in [39] allow us to get the following result connecting
the SW-property and the Stone-Weierstrass Theorem for postliminal JB*-
triples.

Corollary 3.7. Let B a JB*-subtriple of a JB*-triple E. Suppose that B
has the SW-property with respect to E, and E or B is postliminal. Then
B = E.

Proof. This follows from Theorems 3.5 and 3.2 (see [39, Theorem 5.7]).

Remark 3.8. Let A be a C*-algebra regarded as a JB*-triple and let p be
a projection in A∗∗. Let ◦ denote the Jordan product on A. Suppose that
x is a norm-one element in A such that L(p, p)x = p (that is, p ≤ x in A∗∗

regarded the latter as a JB*-triple), and hence x = p + P0(p)(x). In this
case L(p, p)(x ◦ x∗) = p. This shows that p ≤ x ◦ x∗.

Now, the proof given in Theorem 3.5 can be literally adapted, via Remark
3.8, to show that the assumption of B separating the pure states of A and
zero can be dropped in Theorem 3.1 (see also [2, Theorem II.7]).

Corollary 3.9. Let B be a C*-subalgebra of a C*-algebra A. Suppose that
for every pair of orthogonal projections p, q in A∗∗ with q minimal and p
compact relative to A, there exists orthogonal (positive) elements x, y in B
such that ‖y‖ = 1, ‖x‖ ∈ {0, 1}, p ≤ x and q ≤ y. Then B = A.

Proof. The proof of Theorem 3.5 can be literally followed up to its last part.
To finish, in this case, we note that the element w can be chosen as a minimal
projection, for example ww∗ or w∗w.

Acknowledgments: The authors would like to thank L. J. Bunce for
fruitful comments and discussions during the preparation of this paper.
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[34] Peralta, A. M. and Rodŕıguez Palacios, A., Grothendieck’s inequalities
for real and complex JBW*-triples, Proc. London Math. Soc. (3) 83,
no. 3, 605-625 (2001).

[35] Popa, S., Semiregular maximal abelian *-subalgebras and the solution
to the factor state Stone-Weierstrass problem, Invent. Math. 76, no. 1,
157-161 (1984).
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