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ABSTRACT. In the last twenty years, a theory of real Jordan triples
has been developed. In 1994 T. Dang and B. Russo introduced the
concept of J*B-triple. These J*B-triples include real C*-algebras
and complex JB*-triples. However, concerning J*B-triples, an im-
portant problem was left open. Indeed, the question was whether
the complexification of a J*B-triple is a complex JB*-triple in some
norm extending the original norm. T. Dang and B. Russo solved
this problem for commutative J*B-triples.

In this paper we characterize those J*B-triples with a unitary
element whose complexifications are complex JB*-triples in some
norm extending the original one. We actually find a necessary
and sufficient new axiom to characterize those J*B-triples with a
unitary element which are J*B-algebras in the sense of [1] or real
JB*-triples in the sense of [4].

1. INTRODUCTION

We recall that a real (respectively, complex) Banach Jordan triple
is a real (respectively, complex) Banach space U with a continuous
trilinear (respectively, bilinear in the outer variables and conjugate
linear in the middle one) product

UxUxU—=U
(ryz) = {=z,y, 2}
satisfying

(1) {z,y, 2} = {2y, 7};
(2) Jordan Identity:
L(a,b){z,y,2} — {L(a,b)z,y,2} =

—{l', L(ba a)y, Z} + {.CL', Y, L(aa b)Z}
for all a,b,x,y, 2 in U, where L(z,y)z := {z,y, 2}.
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A Banach Jordan triple U is commutative or abelian if

{{:C, Y, Z} U, U} = {:L‘, Y, {Za u, U}} = {:L‘, {ya 2 u} ) U}

forall z,y, z,u,v € U. An element u € U is said to be unitary if L(u, u)
coincides with the identity map on U.

A complex Jordan Banach triple £ is said to be a (complex) JB*-
triple if

(a) The map L(a,a) from € to £ is an hermitian operator with non
negative spectrum for all a in &;

(b) |{a,a,a}|| = ||a||® for all a in &.

We recall that a bounded linear operator 7" on a complex Banach
space is said to be hermitian if || exp(iaT)|| = 1 for all real .

Complex JB*-triples were introduced by W. Kaup in the study of
Bounded Symmetric Domains in complex Banach spaces (see [5], [6]).

During the 80’s and early 90’s three notions of JB*-triples over the
real field were introduced by H. Upmeier [9], T. Dang and B. Russo [3]
and J. M. Isidro, W. Kaup and A. Rodriguez [4], respectively.

In 1994 T. Dang and B. Russo [3, Definition 1.3] gave the following
axiomatic definition of a JB*-triple over the real field. A J*B-triple
is a real Banach space E equipped with a structure of a real Banach
Jordan triple which satisfies

(3*B1): ||{z, z,z}|| = ||z|? for all 2 in E;

(3*B2): [[{z,y, 2} < [l [lyl[||z]| for all z,y, z in E;
(J*B3): af(E)(L(x,x)) C [0, +00) for all x € E;
(J*B4): ag(E)(L(x,y) — L(y,z)) CiR for all z,y € E.

Every closed subtriple of a J*B-triple is a J*B-triple (c.f. [3, Remark
1.5]). The class of J*B-triples includes real C*-algebras and complex
JB*-triples. Moreover, in [3, Proposition 1.4] it is shown that complex
JB*-triples are precisely those complex Banach Jordan triples whose
underlying real Banach space is a J*B-triple. In [3] the following im-
portant problems concerning J*B-triples were left open

(P1) TIs the complexification of a J*B-triple a complex JB*-triple in
some norm extending the original norm?

(P2) Is the bidual of a J*B-triple a J*B-triple with a separately
weak*-continuous triple product?

Problem (P1) was affirmatively solved by T. Dang and B. Russo
in the particular case of a commutative J*B-triple [3, Theorem 3.11].
They proved that the complexification of every commutative J*B-triple
E is a complex JB*-triple in some norm extending the norm on F.
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In this paper we study both problems in the general case of J*B-
triples with a unitary element. We characterize those J*B-triples having
a unitary element whose complexifications are complex JB*-triples in
some norm extending the original norm. As a consequence we solve
(P2) for the class of J*B-triples with a unitary element where problem
(P1) has an affirmative solution.

In 1997 real JB*-triples were introduced by J. M. Isidro, W. Kaup,
and A. Rodriguez [4], as norm-closed real subtriples of complex JB*-
triples. Isidro, Kaup, and Rodriguez [4, Proposition 2.2] proved that
given a real JB*-triple E, then there exists a unique complex JB*-triple
structure on its complexification with a norm extending the norm on
E.

Let X be a complex Banach space. A conjugation on X is a conjugate-
linear isometry on X of period 2. If 7 is a conjugation on X, then X7
will stand for the real Banach space of all 7-fixed elements of X. Real
normed spaces which can be written as X7, for some conjugation 7 on
X, are called real forms of X.

If £ is a complex JB*-triple, then conjugations on £ preserve the
triple product of E (c.f. [6, Proposition 5.5]), and hence the real forms
of £ are real JB*-triples. In [4] it is shown that actually every real JB*-
triple can be regarded as a real form of a suitable complex JB*-triple.

The class of real JB*-triples includes all JB-algebras, all real C*-
algebras, all J*B-algebras (compare [1]), and obviously all complex JB*-
triples. In [4, Proposition 2.5] it is shown that every real JB*-triple is
a J*B-triple but the converse is an open problem. Problem:

(P1') Is every J*B-triple a real JB*-triple?

Problem (P1’) has been also stated in [4, page 318]. Actually problems
(P1) and (P1') are equivalent.

In this paper (see Theorem 2.6) we also find a necessary and suffi-
cient fifth axiom for a J*B-triple E with a unitary element to be a real
JB*-triple in the sense of [4]. This new axiom assures that the oper-
ator L(z,x) has non negative numerical range (see definition below).
Actually, this new axiom characterizes those J*B-triples with a unitary
element which are J*B-algebras in the sense of [1].

2. THE RESULTS

Let X be a Banach space. Through the paper we denote by By, Sy,
and X* the closed unit ball, the unit sphere, and the dual space, re-
spectively, of X. Ix will denote the identity operator on X, and if Y is
another Banach space, then L(X,Y) stands for the Banach space of all
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bounded linear operators from X to Y. We usually write L(X) instead
of L(X, X).

Let E be a J*B-triple with a unitary element u. Then E is a unital
real Jordan Banach algebra with product x oy := {z,u,y} and involu-
tion z* := {u,z,u} (compare [9, Proposition 19.13]). By (J*B 2) and
(J*B 1) it follows that ||z*|| = ||z|| and ||z||®> = ||U,(z*)|| for all z € F,
where U,(y) := 2z o (z oy) — 22 o y. Throughout the paper we will
denote by Ej,, the set of all x-symmetric elements in F.

Let X be a Banach space, and u a norm-one element in X. The
set of states of X relative to u, D(X,u), is defined as the non empty,
convex, and weak*-compact subset of X* given by

D(X,u) :={® € By« : ®(u) = 1}.
For z € X, the numerical range of x relative to u, V(X,u,x), is given

by V(X,u,z) := {®(z) : & € D(X,u)}. The numerical radius of x
relative to u, v(X, u, z), is given by

v(X,u,r) ;== max{|\| : A € V(X,u, )}

It is well known that a bounded linear operator 1" on a complex Banach
space X is hermitian if and only if V/(L(X),Ix,T) C R (compare |2,
Corollary 10.13]).
It is well known that for an element a of a unital Banach algebra A
with unit u the following assertions hold
(a) V(A u,a) = V(L(A),Ia,L,) = V(L(A), I, R,), where L, (re-
spectively, R,) is the map given by x — ax (respectively, x —
ra);
(b) If B is a subalgebra of A with {a,u} C B, then V(B,u,a) =
V(A u,a).
Remark 2.1. Let X be a complex Banach space and 7 a conjugation
on X. We define a conjugation 7 on L(X) by 7(T) := 7T7. f T is a
T-invariant element of L(X), then we have T(X7) C X7, and hence we
can consider A(T) := T'|x- as a bounded linear operator on the real
Banach space X7. Since the mapping A : L(X)™ — L(X7) is a linear
contraction sending Ix to Ix-, we get
V(L(XT), Ixr, A(T)) C V(L(X)7, Ix,T)
for all T € L(X)T. On the other hand, by the Hahn-Banach Theorem,
we have B
V(LX) , Ix,T) =V(L(X)r, Ix,T)
for every T € L(X)T. It follows
V(L(XT), Ix-,A(T)) CRe V(L(X), Ix,T)
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for all T € L(X)".

By [8, Lemma 1.6] we know that if we denote by H the real Banach
space of all hermitian operators on X which lie in L(X)", then for
every ® € D(L(X),Ix), there exists ¥ € D(L(X7,Ix-) such that
®(T) = W(A(T)) for every T in H. As a consequence

V(L(X), Ix, T)=V(L(X7), Ix, AN(T))
for every T € H.
Let E be a J*B-triple with a unitary element. The next proposition

allows us to calculate the norm of a symmetric element z € E from the
numerical radius of the map L(z, ).

Proposition 2.2. Let E be a J*B-triple with a unitary element .
Then for every x € Eyyy,, the following assertions hold

V(L(E), Ig, L(z,x)) C [0, +00),
and
|2]* = [l2*]] = v(E, u, 2*) = v(L(E), Iy, L(w, ).
Moreover
122 0 x*|| = v(E, u, Logoy+) = v(L(E), Ig, L(x,z) + L(z*, "))
forall x € E.
Proof. Let v € Ey,. We denote by

C(z) = Spcm”’“{x” :n=0,1,2,...}

the closed Jordan subalgebra of E generated by = and u. Since z* = x
we conclude that C'(x) is a commutative closed subtriple of E. By
[3, Remark 1.5], it follows that C'(z) is a commutative J*B-triple with
a unitary element. Now Theorem 3.11 in [3] assures us that there
exists a commutative complex JB*-triple B(z) and a conjugation 7 on
B(zx) such that C(x) = B(z)". Since B(z) is a commutative complex
JB*-triple with a unitary element u, we can conclude that B(z) is a
commutative C*-algebra with product z oy = {z,u,y} and involution
2* = {u, z,u}. Moreover, the conjugation 7 on B(x) satisfies 7(2*) =
(1(2))* for all z € B(xz). By Remark 2.1, the identity L(z,z) = L2,
and since C'(z) is a subalgebra of E containing {z,u}, it follows that

V(L(B()), Ipw), L(z,z)) = V(L(C(x)), Io@), Lz, x))
=V(L(C(2)), Iow), Ly2) = V(C(z), u,2?) = V(E,u,2?)
(1) = V(L(E), I, L(z, ).
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Since B(x) is a complex JB*-triple, and hence L(z,z) is hermitian
and has non-negative spectrum, it follows from (1) and [2, Lemma 38.3]
that

V(L(E), I, L(z, ) = V(L(B(x)), I, Lz, )) C [0,+00).

Since B(z) is a commutative C*-algebra and « € B(z) is an hermit-
ian element (z* = {u,z,u} = z), Sinclair’s theorem (c.f. [2, Theorem
10.17]) and equality (1) assure that

1Lz, )|l = |2ll* = [|l2*[| = v(B(), u, 2"
= U(L(B(x)), IB(m); L:ﬁ) = ’U(L(B(:L‘)), [B(:v)a L(x,x))
= v(L(E),Ig, L(z, 7)) = v(E, u, 1%).

Finally, let x € E. From the equality L(z,z) + L(z*,2*) = Logoy
and following the arguments given above, we conclude that

122 02"|| = v(B(x o x™),u,22 0 ") = v(L(B(x 0 7)), I p(zox+)> Lozos+)
= v(L(C(x 0 2")), Io(zow)s Logoa=) = v(C(x 0 2¥)), u, 22 0 27)
=v(E,u,2xo0z") =v(L(E), g, L(z,z) + L(z*, z¥)).

0
Remark 2.3. Let E be a J*B-triple, x € E and let C(z) the closed

real subtriple of E generated by x. Then C(x) is a commutative real
J*B-triple (compare [3, Remark 1.5]). Therefore, by [3, Theorem 3.11],
there is a commutative (complex) JB*-triple C'(x) and a conjugation 7
on C(z) such that C(z) = C(z)". Now, since B(z) is a complex JB*-
triple, and hence L(z,z) is hermitian and has non-negative spectrum,
it follows from Remark 2.1 that

V(L(C()), Io@), L(z,x)) = V(L(B(%)), Ipw), L(z, 7)) C [0, +00).

Since the mapping T+ T'|¢(y) is a linear contraction from L(E) to
L(C (7)) sending I to Iy we have

v(L(C(x)), o), L(z,2)) < v(L(E),Ig, L(z, 7)).
Finally, by Sinclair’s theorem we have
1Lz, 2)[| = v(L(B(2)), @), L(x, 2)) = v(L(C(2)), Io(w), Lz, 7))
< v(L(E), Ip, L(w, 7)) < ||L(z, )| = [|=*.

The following corollary shows that the symmetric part of a J*B-triple
with a unitary element is a JB-algebra.

Corollary 2.4. Let E be a J*B-triple with a unitary element u. Then
Eoym is a JB-algebra.
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Proof. By Proposition 2.2 the equality
(2) [2)|* = v(L(E), Ir, L(z, x)) = v(E, u, 2%)
holds for all z € E,y,.

Now let x,y € Eyyn, and ¢ € Sp- with ¢(u) = 1. By Proposition 2.2,
we also have V(E,u,2%) = V(L(E), I, L(2,2) = L,2) C [0, +0c0), for
all z € Eyp,. In particular ¢(2%) > 0 for all z € Eyyp,. Thus, it follows
that

22 + 2| > ¢(2” +y°) > p(a?).
Finally, taking supreme on {¢ € Sg- : ¢(u) = 1}, we conclude by (2)
that
2% + 2| > [l2]],
which shows that Ej,,, is a JB-algebra. [

Remark 2.5. Let E be a J*B-triple. Suppose that the complexification
of F admits a complex JB*-triple structure with a norm extending
the orlgmal norm of E. Then FE is clearly a real JB*-triple. Let us
denote by E = E @ i F the complex1ﬁcat10n of E, by 7 the canonlcal
conjugation on E satisfying £ = E™ and let z € E. Since E is a
complex JB*-triple, it follows that L(x,z) is an hermitian operator
with non-negative spectrum, and hence, by [2, Lemma 38.3],

V(L(E), I, L(z,x)) C [0, +00).
By Remark 2.1 we also have
V(L(E), Ig, L(z,z)) = V(L(E), Iz, L(z, z)) C [0,+00).
Thus it seems natural to add the axiom
(3) V(L(E),Ig, L(z,z)) C [0,+00) for all z € E
to the structure of the J*B-triple E, in order to show that E is also a
real JB*-triple.

We can now state our main result which shows that a J*B-triple £
with a unitary element is a real JB*-triple if and only if F satisfies axiom
(3). Previously, we recall (c.f. [1]) that a J*B-algebra is a real Jordan
algebra A with unit and an involution * equipped with a complete
algebra norm such that [|U,(z*)|| = ||z||* and ||z*z|| < ||z*z + y*y]| for
all z,y € A.

Theorem 2.6. Let E be a J*B-triple with a unitary element u. The
following assertions are equivalent

(a) V(L(E),Ig, L(z,z)) C [0,+00) for all x € E;

(b) E is a J*B-algebra with product xoy := {x,u,y} and involution

¥ =A{u,x,u};
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(¢) E is a real JB*-triple;
(d) The complezification of E is a complex JB*-triple in some norm
extending the original norm on E.

Proof. (a) = (b) As we have seen before, E is a real Jordan Banach
algebra with product z oy := {z,u,y} and involution z* := {u,z,u}.
We have also seen that ||U,(z*)|| = ||z|?, for all z € E. Hence only the
inequality
l* o z|| < [|a* oz +y* oy
has to be shown for all z,y € E.
By Proposition 2.2, it follows that

(4)  ||2z02*||=v(F,u,2202") =v(L(F), Ig, L(z,2) + L(z*, 2%))

for all z € E.

Let ¢ € Sp« with ¢(u) = 1. By hypothesis, V(L(E), Ig, L(x,x))
is contained in [0, +o00) for all x € E, then we can conclude by the
identity L(z,z) + L(z*,2*) = Logos- that ¢(z oxx) >0 for all z € E.
Therefore, given z,y € E we have

lwoa +youll> owor’ +yoy) > plror).
Finally, taking supreme on {¢ € Sg- : ¢(u) = 1}, we conclude by (4)
that
la* o zl] < flz* 0w +y" o yl.

(b) = (c) By [1, Theorem 4.4] it follows that the norm on E can
be extended to the complexification E = E@iF of E such that
(E,o,,||]l) is a JB*-algebra. Actually [1, Theorem 4.4] shows that
E is a real form of its complexification. Since every JB*-algebra is a
complex JB*-triple ([9, Proposition 20.35]), we conclude that F is a
real JB*-triple.

The implications (¢) = (d) and (d) = (a) follow from [4, Proposition
2.2] and Remark 2.5, respectively.

0

The next definition is motivated by the above theorem.
Definition 2.7. A numerically positive real J*B-triple is a J*B-triple
E satisfying the following fifth aziom
V(L(E),Ig, L(z,z)) C [0,+00) for allx € E (J*B 5).
Clearly every real JB*-triple is a numerically positive real J*B-triple
and every numerically positive real J*B-triple is a J*B-triple. By The-

orem 2.6 we know that if £ is a Banach Jordan triple with a unitary
element then problem (P1) has an affirmative solution for F if and
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only if F is a real JB*-triple if and only if E is a numerically positive
real J*B-triple.

It seems natural to ask if we have found an axiomatic definition of
real JB*-triples, but for the moment, we do not know if every numeri-
cally positive real J*B-triple is a real JB*-triple.

Now we deal with problem (P2). By [4, Lemma 4.2 and Theorem
4.4] we know that the bidual of a real JB*-triple is a real JB*-triple
with a separate weak*-continuous triple product. Thus the following
corollary is derived from Theorem 2.6.

Corollary 2.8. Let E be a J*B-triple with a unitary element. Sup-
pose that V(L(E), Ig, L(z,z)) C [0,+00) for all x € E, ie., E is a
numerically positive real J*B-triple with a unitary element. Then the
bidual of E is again a J*B-triple with a unitary element and separately
weak *-continuous triple product.

If E is a real JB*-triple which is also a Banach dual space, then F
has a unique predual and the triple product of E is separately weak*-
continuous (c.f. [7]). Now applying Theorem 2.6, we obtain the follow-
ing corollary.

Corollary 2.9. Let E be a numerically positive real J*B-triple with
a unitary element. Suppose that E is a Banach dual space. Then F
has a unique predual and the triple product of E is separately weak*-
continuous.

We leave open the following problems

(P3) Is the complexification of a numerically positive real J*B-triple
a complex JB*-triple in some norm extending the original norm?
This problem is equivalent to ask whether a numerically positive
real J*B-triple is a real JB*-triple.

(P4) Ts the bidual of a numerically positive real J*B-triple a numeri-
cally positive real J*B-triple with a separately weak*-continuous
triple product?

(P5) Let E be a numerically positive real J*B-triple which is also
a Banach dual space. Does E have a unique predual? Is the
triple product on F separately weak*-continuous?

We have shown that problems (P3), (P4), and (P5) have an affir-
mative solution whenever E has a unitary element.
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