NORMS TRANSFORMING ALGEBRAIC ORTHOGONALITY INTO GEOMETRIC ORTHOGONALITY ON C*-ALGEBRAS

MARIBEL RAMÍREZ

ABSTRACT. Let $(A, \|.\|_0)$ be a C*-algebra. Two elements a, b in A are said to be (algebraically) orthogonal (denoted by $a \perp b$) whenever $ab^* = b^*a = 0$. It is well known that orthogonal elements in A are (geometrically) M-orthogonal in the underlying Banach space, that is, $\|a \pm b\|_0 = \max\{\|a\|_0, \|b\|_0\}$ whenever $a \perp b$. In other words, the C^* -norm behaves as the maximum norm on every couple of orthogonal elements in A. A norm $\|.\|_1$ on A is said to be an M-norm (resp., a semi-M-norm) if for every a, b in A with $a \perp b$ we have $\|a \pm b\|_1 = \max\{\|a\|_1, \|b\|_1\}$ (resp., $\|a \pm b\|_1 \ge \max\{\|a\|_1, \|b\|_1\}$). We have already commented that the original C*-norm, $\|.\|_0$, is an M-norm on A. On the other hand, it is well known that there exists (complete) M-norms on A which do not satisfy the Gelfand-Naimark axiom. We shall present in this talk the latest advance in the study of the following problem:

Problem. Is every complete semi-M-norm on a C^* -algebra automatically continuous with respect to the original C^* -norm?

In collaboration with T. Oikhberg and A. Peralta we establish that every complete (semi-) M-norm on a von Neumann algebra or on a compact C^* -algebra, A is equivalent to the original C^* -norm of A

Date: June, 2013, mramirez@ual.es.