Evolución metamórfica del complejo gneísico de Torrox y series adyacentes (Alpujarrides Centrales)

Tesis doctoral

Antonio García Casco

Junio, 1993
Evolución Metamórfica del Complejo Gneísico de Torrox y Series Adyacentes (Alpujárrides Centrales)

Tesis que presenta Antonio García Casco para optar al Grado de Doctor en Ciencias (Sección de Geología)

El Director
Prof. Dr. Rafael Luis Torres Roldán

El Doctorando
Antonio García Casco

Granada, Junio de 1993
A mis Padres, y a Elena,
por distintas razones.
AGRADECIMIENTOS

Estoy profundamente agradecido a tres personas que han estado ayudándome y apoyándome durante todo el tiempo que he estado realizando este trabajo, mi director de Tesis y amigo Dr. Rafael Luis Torres Roldán, mi compañero del Departamento de Mineralogía y Petrología y amigo Dr. Antonio Sánchez Navas, y mi novia Elena. Sin estas personas, el esfuerzo necesario para realizar esta memoria habría sido bastante menos llevadero, las técnicas y métodos utilizados habrían sido más limitados y los resultados presentados adolecerían de una discusión contrastada. El Dr. Antonio Sánchez Navas ha contribuido además con la obtención de imágenes de TEM.

El Dr. Antonio Castro Dorado, del Departamento de Geología y Minería de la Universidad de Sevilla, ha estado siempre interesado en lo concerniente a este trabajo y dispuesto a discutir los problemas encontrados. Las interesantes discussiones mantenidas en torno a los problemas relacionados con los procesos de fusión parcial y deformación de los gneis han sido de gran ayuda.

Expreso mi gratitud al Dr. Charles V. Guidotti, del Department of Geological Sciences, de la Universidad de Maine, por sus sugerencias al respecto del comportamiento de la muscovita y el interés mostrado en este trabajo.

Agradezco a D. Miguel Angel Hidalgo Laguna de los Servicios Técnicos de la Universidad de Granada su paciencia y buen hacer con la microsonda electrónica, y al Dr. W. E. Stephen, por sus facilidades con la microsonda del Department of Geography and Geology, de la Universidad de St. Andrews. El Dr. Patrick Monié, del Laboratoire de Tectonique et Géochronologie (USTL, Montpellier), llevó a cabo análisis de 40Ar/39Ar. El Dr. Hubert H. Zech me facilitó la estancia en el Institut for Petrologi, de la Universidad de Copenhagen, durante la cual realicé trabajos de separación mineral y análisis isotópico. El Dr. B. T. Hansen del Institut for Mineralogy, Westfälische Wilhelms-Universität (Münster) realizó análisis isotópicos Rb/Sr. D. Agustín Rueda y D. Miguel Carpena realizaron las preparaciones de las láminas delgadas de las muestras.

La ayuda prestada en las tareas de montaje de esta memoria por A. Jorge A. Durán Suárez, María José Domene, Antonio Molina, Carolina Cardell y Faouziy Kaissen ha sido inestimable.

Expreso también mi reconocimiento a mis compañeros del Departamento de Mineralogía y Petrología de la Universidad de Granada que de una u otra manera han contribuido a que esta tesis se lleve a término.

Por último, he de agradecer a mi familia el ánimo, la ayuda y la comprensión que me han otorgado durante estos años de trabajo.

Este trabajo se ha financiado con cargo a los Proyectos de Investigación CICYT nº PB85-0408 (Investigador Principal Dr. R.L. Torres Roldán), CICYT nº PB89-0217 (Investigadora Principal Dra. E. Puga Rodríguez), NATO nº Grant RG 85/0691, Acciones Integradas Hispano-Francesas nº HF 034 y HF 322, y Grupo de Investigación nº 4072 de la Junta de Andalucía (Directora Dra. E. Puga Rodríguez).
ÍNDICE

RESUMEN

1. INTRODUCCIÓN

1.1. LAS ZONAS INTERNAS DE LAS CORDILLERAS BÉTICO-RIFENAS

1.2. EL DOMINO ALPUJARRIDE

1.2.1. EVOLUCIÓN ESTRUCTURAL DEL DOMINO ALPUJARRIDE

1.2.2. EVOLUCIÓN METAMÓRFICA DEL DOMINO ALPUJARRIDE

1.2.3. CONSTRUCCIONES RADIOMÉTRICAS

1.2.4. EVALUACIÓN DE LAS IDEAS CONCERNIENTES A LA EVOLUCIÓN P-T EN LAS UNIDADES DE TIPO CASARES-LOS REALES

2. LA UNIDAD Y EL COMPLEJO GNEÍSICO DE TORROX

2.1. LA UNIDAD DE TORROX

2.1.1. EL COMPLEJO GNEÍSICO DE TORROX (CGT) Y LA BANDA DE GNEÍSES DE ROMPEALBARDAS

2.2. ESTRUCTURAS

2.2.1. ESQUISTOS Y GNEÍSES PÉLÍTICOS GRAFITOSOS

2.2.2. GNEÍSES LEUCOCRÁTOS

2.2.2.1. Estructuras Asociadas a la Foliación Milonítica Principal

2.2.2.2. Estructuras que Deforman la Foliación Milonítica Principal

3. TIPOLOGÍAS ROCAS, ASOCIACIONES MINERALES Y TEXTURAS

3.1. METAPELITAS GRAFITOSAS

3.1.1. TIPOLOGÍAS ROCAS Y TEXTURAS

3.1.1.1. Granate

3.1.1.2. Estaurolita

3.1.1.3. Silicatos de Al

3.1.1.4. Plagioclasa

3.1.1.5. Micas

3.1.1.6. Oxídos de Fe-Ti

3.1.1.7. Cordierita

3.1.1.8. Turmalina

3.1.2. COMPOSICIÓN DE LOS SISTEMAS Y REACCIONES DEDUCIDAS TEXTURALMENTE

3.1.2.1. Proyección de los Sistemas en los Diagramas AFM y AKF

3.1.2.2. Reacciones Precoces

3.1.2.3. Reacciones Tardías

3.2. GNEÍSES LEUCOCRÁTOS Y METAPELITAS ASOCIADAS

3.2.1. TIPOLOGÍAS ROCAS Y TEXTURAS

3.2.1.1. Gneises bandeados de con Muscovita+Biotita+Granate

3.2.1.2. Gneises porfíricos de grano grueso con Muscovita+Biotita

3.2.1.3. Enclaves Restíticos con Biotita+Rutilo+Diseno+Granate

3.2.1.4. Gneises Apílicos y Segregados Granitoides con Muscovita+Biotita+Granate

3.2.1.5. Esquistos Muscovíticos Muscovita+Biotita+Granate+Feldespato-K

3.2.2. COMPOSICIÓN DE LOS SISTEMAS Y REACCIONES DEDUCIDAS TEXTURALMENTE

3.2.2.1. Composición de los Gneises Leucocráticos en Términos del Sistema Granítico Qtz-Ab-An-Or-H2O

3.2.2.2. Reacciones Deducidas Texturalmente

1
7
9
12
13
15
17
18
25
27
31
34
35
35
37
37
39
42
44
47
48
49
50
50
51
51
54
55
57
57
58
60
61
64
67
68
68
70
4. QUIMISMO MINERAL

4.1. INTRODUCCIÓN

4.2. MÉTODOS INSTRUMENTALES

4.3. EL ESPACIO COMPOSICIONAL: VECTORES DE INTERCAMBIO Y TÉRMINOS EXTREMOS. TRATAMIENTO ALGEBRÁICO Y ESTADÍSTICO

4.3.1. EL ESPACIO COMPOSICIONAL

4.3.2. VECTORES DE INTERCAMBIO Y COMPONENTES ADITIVOS

4.3.3. RESOLUCIÓN ALGEBRÁICA: TRANSFORMACIONES DE BASES

4.3.3.1. Aplicación de los Métodos Algebraicos en la Descripción de Soluciones Sólidas

4.4. MOSCOVITA

4.4.1. INTRODUCCIÓN

4.4.2. FÓRMULA ESTRUCTURAL Y LIMITACIONES ANALÍTICAS

4.4.3. VARIACIONES COMPOSICIONALES Y VECTORES DE INTERCAMBIO

4.4.3.1. Espectro Composicional

4.4.3.2. Vectores de Inter cambio

4.4.3.2.1. Sustitución Paragónica

4.4.3.2.2. Sustitución Tschermak y de Fe³⁺

4.4.3.2.3. Sustitución Di-Trimectálica

4.4.3.3. Sustituciones de Ti

4.4.3.3.1. Sustituciones Profilítica y de Hidróxido

4.4.3.3.2. "Partición" Fe-Mg y Na-K en las Sustituciones

4.4.4. GNEISES LEUCOCRATOS Y ROCAS ASOCIADAS

4.4.4.1. Gneises Bandedos con Moscovita+Biotita+Granate

4.4.4.2. Quantificación de las Sustituciones y Componentes

4.4.4.3. Gneises Pesforizados con Moscovita+Biotita

4.4.4.4. Gneises Aflatizados con Moscovita+Biotita+Granate

4.4.4.5. Dique de Microgranito 1494

4.4.4.6. Esquistos moscovíticos con Moscovita+Biotita+Granate+Feldespati-K

4.4.5. METAPELITAS GRAFITOSAS

4.4.5.1. Gneises Poliéticos con Estaurolita+Biotita+Granate+Distesa+Fibrolita+Andalucita+Cordierita

4.4.5.2. Esquistos Grafíticos

4.4.5.3. Variciones Relacionadas con el Grado Metamórfico

4.4.5. RESUMEN

4.5. BIOTITA

4.5.1. INTRODUCCIÓN

4.5.2. FORMULA ESTRUCTURAL Y LIMITACIONES ANALÍTICAS

4.5.2.1. Formula Estructural

4.5.2.2. Errores e Incertidumbres Analíticas

4.5.3. VARIACIONES COMPOSICIONALES Y VECTORES DE INTERCAMBIO

4.5.3.1. Espectro Composicional

4.5.3.2. Vectores de Inter cambio

4.5.4. METAPELITAS GRAFITOSAS

4.5.5. GNEISES LEUCOCRATOS Y ROCAS ASOCIADAS

4.5.5.1. Gneises Bandedos con Moscovita+Biotita+Granate
4.5.5.2. Restitas con Biotita+Rutile+Diopside+Granate
4.5.5.3. Gneises Plutónicas con Monzónita+Biotita+Granate y Diopside de Microgranito 7494
4.5.5.4. Concentración Positiva entre Ti y Mg/Fe
4.5.6. CUANTIFICACIÓN DE LOS CAMBIOS COMPOSIIONALES MEDIANTE VECTORES DE INTERCAMBIO
4.5.6.1. Vectores de Intercambio Múltiples
4.5.6.2. Transformación de la Base Catiónica en Base de Vectores de Intercambio
4.5.7. VARIACIONES COMPOSIIONALES: EFECTOS ESTRUCTURALES, CONTROL CINÉTICO Y METAESTABILIDAD
4.5.7.1. Efectos Estructurales de las Variaciones Compositacionales
4.5.7.2. Efectos Estructurales en el Plano Ideal de la Biotita
4.5.7.3. Efectos Estructurales Debidos a Sustituciones Extranjas al Plano Ideal de la Biotita
4.5.7.4. Metapetlas Grafíticas
4.5.7.5. Gneises leucocratos
4.5.8. CONCLUSIONES
4.6. GRANATE
4.6.1. INTRODUCCIÓN
4.6.2. LA ZONACIÓN DEL GRANATE EN METAPETLAS
4.6.3. METAPETLAS GRAFITICAS
4.6.3.1. Grupo I: Porfiroblastos
4.6.3.2. Esquitos con Estaurolita+Biotita+Granate+Andalucita
4.6.3.3. Gneises con Estaurolita+Biotita+Granate+Andalucita+Distena
4.6.3.4. Gneises con Estaurolita+Biotita+Granate+Distena+Andalucita+Cordierita
4.6.3.5. Resumen
4.6.4. GNEISES LEUCOCRATOS Y ROCAS ASOCIADAS
4.6.5. SIGNIFICADO DE LOS PATRONES DE ZONACIÓN Y ORIGEN DE LOS GRANATES
4.6.5.1. Metapetlas Grafíticas
4.6.5.2. Gneises Leucocratos
4.7. ESTAUROLITA
4.7.1. INTRODUCCIÓN
4.7.2. FORMULA ESTRUCTURAL Y ERRORES E INCERTIDUMBRES ANALÍTICAS
4.7.3. VARIACIONES COMPOSIIONALES
4.7.3.1. Variaciones Compositacionales Relacionadas con el Grado Metamórfico
4.7.3.2. Variaciones Compositacionales dentro de Muestras Individuales
4.8. FELDESPATOS
4.8.1. INTRODUCCIÓN
4.8.2. METAPETLAS GRAFITICAS
4.8.2.1. Variaciones Compositacionales Intra Muestra
4.8.2.2. Variaciones Compositacionales Relacionadas con el Grado Metamórfico
4.8.2.3. Interpretación de los Patrones de Zonación en Porfiroblastos
4.8.3. GNEISES LEUCOCRATOS Y METAPETLAS INTERCALADAS
4.8.3.1. Plagioclasa
4.8.3.2. Feldespato-K
4.9. TURMALINA
4.9.1. INTRODUCCIÓN
4.9.2. FORMULA ESTRUCTURAL Y ERRORES E INCERTIDUMBRES ANALÍTICAS
4.9.2.1. Fórmula Estructural
4.9.2.2. Componentes Moleculares y Vectores de Intercambio
5. RELACIONES P-T-X, HISTORIA REACCIÓN Y EVOLUCIÓN P-T-x

5.1. INTRODUCCIÓN

5.2. MÉTODOS DE ESTIMACIÓN DE LAS RELACIONES P-T-X

5.2.1. RELACIONES THERMODYNÁMICAS BÁSICAS

5.2.2. EQUILIBRIOS THERMOBAROMÉTRICOS SELECCIONADOS

5.2.2.1. Termómetro CEG

5.2.2.2. Barómetro GASP

5.2.2.3. Barómetro GAMB y Barómetro Simultáneo de Holisch (1990, 1991)

5.2.3. ESTIMACIÓN DEL ERROR SOBRE P Y T CALCULADAS

5.2.4. OTROS TÉCNICAS THERMOBAROMÉTRICAS

5.2.4.1. Técnica del Multi-Equilibrio

5.2.4.2. El Método de Gibbs

5.3. ANÁLISIS PROYECTIVO Y ESPACIO REACCIÓN

5.4. METAPELITAS GRAFITOSAS

5.4.1. PARTICIÓN Mg-Fe ENTRE LAS FASES DE LAS METAPELITAS GRAFITOSAS

5.4.1.1. Esquistos con Estaurolita+Biotita+Granate+Andalucita

5.4.1.2. Esquistos con Estaurolita+Biotita+Andalucita

5.4.1.3. Gneises Pelíticos con Estaurolita+Biotita+Granate+Andalucita

5.4.1.4. Posibles Significados de la Partición Mg-Fe inversa entre Estaurolita y Granate

5.4.2. ESTIMACIONES THERMOBAROMÉTRICAS

5.4.2.1. Esquistos Grafíticos con Estaurolita+Biotita+Granate+Andalucita

5.4.2.2. Esquistos Grafíticos con Estaurolita+Biotita+Granate+Andalucita

5.4.2.3. Gneises Pelíticos con Estaurolita+Biotita+Granate+Andalucita

5.4.2.4. Conclusiones

5.4.3. MODELIZACIÓN DE LAS REACCIONES METAMÓRFICAS POR BALANCES DE MASA

5.4.3.1. Proyección PAF

5.4.3.2. Modelización de las Reacciones

5.4.4. RELACIONES P-T-X EN SISTEMAS MODELO

5.4.4.1. Relaciones P-T-X en el Sistema KFMASH

5.4.4.2. Relaciones P-T-X en sub-sistemas del sistema KnCaFmMgMSPHC

5.5. GNEISES LEUCOCRATOS

5.5.1. GNEISES BANDEADOS CON MOSCOVITA+Biotita+Granate
5.5.1.2. Modelización de las Reacciones
- Descomposición de Granate
- Descomposición de las Moscovitas Primarias
- Descomposición de las Moscovitas Pegmatíticas

5.5.2. GNEISES APLITICOS Y DIQUE DE MICROGRANITO T494
5.5.2.1. Relaciones de Fases
5.5.2.2. Estimaciones Termohorométricas
5.5.2.3. Modelización de las Reacciones
- Descomposición Trioxádrica de la Moscovita
- Descomposición de la Moscovita en Feldespato-K + Andulúcita + Biotita
- Descomposición de la Moscovita en Dique de Microgranito T494

5.5.3. ESQUISTOS MOSCOVÍTICOS CON MOSCOVITA + BIOTITA + GRANATE + FELDSPATO-K
5.5.4. ENCLAVES RESTÍTICOS CON BIOTITA + RUTIL + DÍSTENA + GRANATE Y GNEISES PORFIRÓIDES CON MOSCOVITA + BIOTITA
5.5.4.1. Relaciones de Fases
5.5.4.2. Estimaciones Termohorométricas
5.5.4.3. Modelización de las Reacciones
- Reemplazo de Feldespato-K por Moscovita y Silicatos de Al en los Gneises Porfiroídes
- Rutilo → Ilmenita, Biotita → Andulúcita + Granato + Ilmenita + Biotita → Granate en los Enclaves Restíricos

5.6. TRAYECTORIAS P-T: CONSTRICIONES RADIOMÉTRICAS Y EVIDENCIAS DE LA CINÉTICA DE REACCIÓN

6. CONCLUSIONES

REFERENCIAS

APÉNDICE I. ANÁLISIS QUÍMICOS DE ROCA TOTAL

APÉNDICE II. ANÁLISIS QUÍMICOS DE FASES MINERALES

Resumen

El tema de esta tesis es la evolución metamórfica sufrida por las metapelitas grafíticas y leucogneises peraluminosas anatócticas de la unidad de Torrox. Esta unidad pertenece al Dominio Alpujárride de la Zona Bética (o zonas internas de las Cordilleras Béticas), y está localizada en el macizo cristalino de Sierra-Tejeda (Sector Central de la cadena), en una posición estructural superior en la pila de unidades alpujárrides correlacionable con la unidad de Casares-Los Reales (localizada sobre los cuerpos olahámicos de Ronda). Está constituida por una potente serie de metapelitas gráfíticas de grado medio (con escasa intercalaciones de metacarbonatos grafíticos) de algunos km de potencia, y por gneises leucocratos anatócticos localizados en las secciones expuestas más profundas. Los materiales que forman esta unidad fueron incluidos por Elorza (1979) y Aldaya et al. (1979) en la unidad de Sayalonga, que además presentaría una serie de metapelitas y carbonatos de grado más bajo localizados, en continuidad estructural y metamórfica, a techo de la serie anterior. Sin embargo, existe una discontinuidad estructural entre ambas series, identificable, entre otras razones, por un salto del metamorfismo y por interrupciones de las superficies que definen las asociaciones minerales en las metapelitas de la unidad infrayacente. Por ello, en el presente trabajo se ha excluido la utilización del término unidad de Sayalonga, que se ha subdividido en las unidades de Torrox (inferior) y de Salares (superior), ambas pertenecientes al Dominio Alpujárride.

La serie de metapelitas gráfíticas es bastante monótona. Está formada por esquistos y cuarzo-esquistos alternantes en la mayor parte de la serie, si bien los términos localizados inmediatamente sobre los gneises leucocratos son ricos en plagioclase, particularmente en las capas metapsamítmicas. Adicionalmente, estas rocas ricas en plagioclasa presentan segregados leucocráticos concordantes formados esencialmente por plagioclase y cuarzo, pero no presentan feldespatos K (i.e., composición trondhiemítica). La estructura bandeadada es propia de migmatitas estromáticas s.l. (cf., Mehnert, 1968; Ashworth, 1983), aunque posiblemente desarrollada en condiciones subsolidas por proceso de segregación metamórfica (e.g., Yardley, 1978; Sawyer y Robin, 1986; Babcock y Misch, 1989). Estas características permiten describir a estas rocas como gneises pelíticos, si bien abundan rocas esquistosas s.s. intercaladas. La composición del conjunto de metapelitas gráfíticas s.s. (incluyendo los términos esquistosos de los gneises pelíticos) es bastante homogénea, particularmente en lo referente a las proporciones de los componentes Al_2O_3-FeO-MgO-TiO_2. Considerando estos términos metamóliticos s.s. se pueden distinguir, de techo a muro, las siguientes asociaciones de fases AFMTi (abreviaturas minerales según Kretz, 1983, excepto Fib = fibrolita):

- $\text{St} + \text{Bl} + \text{Gr} + \text{And} + \text{Rt} + \text{Ilm}$ ⇒ Esquistos sin fibrolita
- $\text{St} + \text{Bl} + \text{Gr} + (\pm \text{Ky}) + \text{Fib} + \text{And} + \text{Rt} + \text{Ilm}$ ⇒ Esquistos con fibrolita
- $\text{St} + \text{Bl} + \text{Gr} + \text{Ky} + \text{Fib} + \text{And} + (\pm \text{Crd}) + \text{Rt} + \text{Ilm}$ ⇒ Gneises pelíticos
Los cuerpos de gneises leucocratos son heterogéneos, formados por una gran variedad de rocas de composición granítica, en general moderadamente fuertemente deformadas. La estructura de conjunto es bandeadada, originada esencialmente por la fuerte deformación sufrida. No obstante, el bandeadoyo es en parte original, i.e., representa una estructuración de origen sedimentario actualmente transpuesta, dada la presencia de capas alternantes de rocas metapelíticas no metálicas que presentan grano (aunque en cantidades mucho menores que en la serie de metapelitas grafitas suprayacentes). Adicionalmente, parte del bandeadoyo es debido a la segregación de fundidos parciales, representados por abundantes intercalaciones de gneises aplíticos que localmente cortan a la foliación principal de los gneises y metapelitas. En el cuerpo de gneises de Torroxx, el más extenso de la unidad, existe toda una gradación composicional y de asociaciones de fases, aunque pueden definirse 4 tipos de rocas extremos: gneises bandeados con Ms+Br+Grt, gneises porfiroides con Ms+Br, gneises y dikes aplíticos con Ms+Br+Grt, y esquistos moscovíticos con Ms+Br+Grt+Kfs. Todos los tipos de gneises presentan proporciones graníticas a la Qtz-Kfs-Pl, aunque algunos gneises y dikes aplíticos presentan composiciones ricas en plagioclasa y pobres en Feldespat-K de tipo trondhjemitico, posiblemente indicativo de procesos de fusión parcial a alta P. Los esquistos moscovíticos, presentes en toda la sección expuesta de los cuerpos de gneises, son ricos en cuarzo y moscovita. El contacto entre el cuerpo de leucogénesis y la serie de metapelitas grafitas suprayacentes se verifica mediante una zona de transición de unos metros de potencia formada esencialmente por esquistos moscovíticos que presenta finas intercalaciones graníticas. El conjunto de las relaciones de campo, asociaciones de fases y texturas, quimismo mineral, quimismo de roca total y características isotópicas indican que los complejos de gneises leucocratos son rocas paradervadas, que han sufrido condiciones de grado alto y fusión parcial durante el metamorfismo alpino. Las relaciones estructurales indican que estas rocas estaban parcialmente fundidas durante la deformación ductil alpina. No obstante, el origen último de estos cuerpos, particularmente en el caso del complejo de Torroxx, es incierto. Hipótesis alternativas incluyen (1) un cuerpo gneisico de grado alto pre-alpino, refundido durante el metamorfismo alpino y (2) una serie sedimentaria de composición cuarzo-feldespática (Apéndice V). Aún en el caso de un origen pre-alpino, todas las características composicionales de las fases son asignables a la recriystalización y fusión parcial alpinas. Esto mismo aplica a la serie de metapelitas grafitas suprayacentes, donde todas las fases coexistentes han crecido durante el metamorfismo alpino.

Las rocas de la unidad de Torroxx presentan asociaciones de fases incompatibles, i.e., no representan condiciones de equilibrio. Los datos aportados, petrográficos (relaciones biotésis-deformación, texturas reaccionales, Capítulo 3), quimismo mineral (heterogeneidades composicionales en las soluciones sólidas, Capítulo 4), historia reacional (quimigrafia, incompatibilidad de fases, modelización algebraica de reacciones, termobarometria, relaciones P-T-X, Capítulo 5), y evaluación de las trayectorias P-T mediante dataciones isotópicas (Rb/Sr, 40Ar/39Ar) e inferencias sobre los procesos de cinética de reacción (Capítulo 5), coinciden en una evolución metamórfica dominada por una fuerte y rápida descomposición quaus-isoínterna, seguida por un rápido enfriamiento a baja P. La descomposición afecta a las rocas una vez equilibradas bajo condiciones progradas de grado medio a alto (550-700 °C) y presión intermedia a alta (8-10 kbar), y alcanza condiciones de baja P cercanas a 2-3 kbar.

En sentido progrado, las asociaciones AFM asignables al estado de P intermedia incluyen, St+Grt+Br, St+Grt+Btz+Ky, Grt+Br+Ky, en las metapelitas, y Br+Ms+Kfs+Grt+Ky fundido en los leucogénesis. En un intento de descifrar la historia P-T prograda sufrida por estas rocas, se han realizado cálculos mediante el método de Gibbs en base a la zonación de los porfidoblastos de granate. Los resultados indican un
calentamiento \((\Delta T = 150 \, ^{\circ}\text{C})\) casi isobárico, aunque con débiles pérdidas de presión \((\Delta P = 2 \, \text{kbar})\), tanto en los esquistos de grado menor como de grado mayor. Esta trayectoria, que en todo momento se localiza en el campo de estabilidad de diestra, es consistente con modelos comúnmente identificados en otras áreas metamórficas progradadas. No obstante, en los esquistos de grado mayor (gneises pelíticos) se registra una compresión \((\Delta P = 2.3 \, \text{kbar})\) casi isostática posterior al escenario anterior, que deriva de un incremento en las cantidades de glosurlia hacia los bordes de los granaes. Esta compresión casi isostática, que no ha sido identificada hasta la fecha en otras unidades alpujarriadas, justifica que estas rocas superaran el límite superior de estabilidad de estaurlita bajo condiciones de \(P\) intermedia (i.e., \(\text{St+Mt+Qtz} = \text{Bt+Grt+Ky+H}_2\text{O}\), en el sistema KFMASH), a pesar de que esta fase es abundante en estas rocas. En los esquistos con fibrolita y sin fibrolita, los datos disponibles indican que no se superó el límite superior de estabilidad de estaurlita, y que esta fase coexistió en todo momento con las fases de \(P\) intermedia. Por otra parte, el cuerpo de gneises ha sufrido condiciones de grado alto y fusión parcial, tal y como lo evidencia la presencia de gneises aplíticos concordantes y diques y cuerpos de aplío-pygmaitas que cortan a la foliación principal milonítica. Las condiciones asociadas a la fusión parcial no pueden ser estimadas con precisión debido a problemas de equilibrio, aunque las estimaciones termobarométricas sugieren condiciones de \(650-700 \, ^{\circ}\text{C}\) y \(\geq 10 \, \text{kbar}\). Estas condiciones de alta \(P\) y \(T\) son consistentes con la persistencia de moscovita en todos los tipos de gneises y metapelitas intercaladas dada la pendiente positiva de la reacción de fusión anhidra por deshidratación de moscovita \(\text{Mt+Qtz} = \text{Kfs+AlxLiquido}\), hasta el menos 20 kbar (Storre, 1972; Péte y Thompson, 1974). La fusión parcial debió ocurrir en estos gneises mediante reacciones propias del sólidos granítico saturado en \(\text{H}_2\text{O}\) en presencia de moscovita. La composición de las moscovitas de estas rocas es típica de moscovitas ligeras y de grado alto por cuanto presentan concentraciones muy elevadas en Ti (hasta 0.23 átomos por 20 oxígenos y 4(OH)), aunque así mismo presentan cantidades elevadas en componentes fengíticos (las cantidades de Si llegan hasta 6.66 átomos) consistentes con un equilibrioamiento a alta presión. Estas composiciones fengíticas de alta \(T\) son excepcionales por comparación con los casos descritos hasta la fecha en rocas de grado alto.

Durante la tectogénesis sinmetamórfica principal actualmente reconocible (D_7-D_3), las asociaciones de \(P\) intermedia se desestabilizan y se generan asociaciones de \(P\) progresivamente más baja. En las metapelitas, las secuencias de asociaciones AFM deducidas de las texturas reacionales son:

\[
\Delta P \rightarrow
\]

\(\downarrow\) Esquistos sin fibrolita: \(\text{St+Grt+Bt} \rightarrow \text{St+Bt+And} \rightarrow \text{And+Bt}\)

\(\Delta T\) \(\downarrow\) Esquistos con fibrolita: \(\text{St+Grt+Bt+Ky} \rightarrow \text{St+Bt+Fib} \rightarrow \text{St+Bt+And} \rightarrow \text{And+Bt}\)

\(\downarrow\) Gneises pelíticos: \(\text{Grt+Bt+Ky} \rightarrow \text{Grt+Bt+St} \rightarrow \text{St+Bt+Fib} \rightarrow \text{St+Bt+And} \rightarrow \text{And+Bt}\)

En los tres tipos de metamorfismo, todas las fases de estas asociaciones se encuentran en muestras individuales. Aunque la asociación estable a baja \(P\) más abundante es And+Bt, en algunas muestras de gneises pelíticos se desarrolla la asociación And+Bt+Crd, si bien la cordierita aparece generalmente alterada a pírita. En los esquistos no se observa cordierita fresca, aunque en algunas muestras existen agregados criptocristalinos que podrían asignarse a cordierita alterada.

Las historias reacionales sufijas por estas rocas durante la descomprimación pueden ilustrarse considerando el sistema simple KFMASH, ya que la forma de las reacciones en este sistema no se modifica por la consideración de componentes extra (Ca, Mn, Ti, Zn, C) y fases adicionales (Pl, Rl, Ilm, fluido C-O-H) (aunque sí se modifica la varianza de los sistemas). El ejemplo de los gneises pelíticos es ilustrativo ya que
parten de las condiciones P-T más externas, por encima del campo de estabilidad de St+Ms+Qz. La descomposición supone intersectar reacciones de rehidratación (Bt+Grt+Ky+H₂O = St+Ms+Qz2 y, posteriormente, Grt+Ms+H₂O = St+Bt+Qz2 en el sistema simple KFMASH) durante los estados iniciales de la descomposición debido a sus pendientes dP/dT negativas en el campo de estabilidad de la diésima. Estas reacciones habrían dado lugar al crecimiento de la estaurolita presente en estas rocas, como lo indican texturas de reemplazamiento de grano por estaurolita. En consecuencia, la estaurolita de estas rocas no es una fase "progresada", derivada de reacciones de descomposición de clorita o cloritoide. Al menos parte de la estaurolita de los esquistos sin y con fibrolita es igualmente el resultado de la descomposición de grano mediante la reacción Grt+Ms+H₂O = St+Bt+Qz2 durante la descomposición. Evidencias que apoyan esta interpretación son las modificaciones difusionales de la zonación de granos de tamaño fino (r < 0.125 μm), que comúnmente están reemplazados por estaurolita. Estas modificaciones han supuesto la inversión de la zonación Mg/Fe (y Mn), que es consistente con la operatividad de la reacción anterior ya que los cálculos en el sistema modelo KFMASH predicen un descenso en la razón Mg/Fe de las fases a medida que desciende P. Esto es, las tielines que definen el campo divariant mixto Grt-St en la proyección AFM estarían hace el polo FeO del diagrama AFM, aproximándose la composición de las rocas a la tieline St-Bt. Al intersecarse esta unión, el grano debería haberse consumido en estas rocas. La descomposición subsecuente a la intersección de la tieline St-Bt inestabilizaría a la estaurolita, ya que progresaría la reacción St+Ms+Qz2 = Bt+Fib+H₂O, y posteriormente la reacción St+Ms+Qz2 = Bt+And+H₂O una vez se intersectara el campo de estabilidad de andulcita. Los cálculos en el sistema modelo KFMASH predicen también una rotación de las tielines que unen estas fases hacia el polo FeO del diagrama AFM. Cuando la composición de las rocas intersectara la tieline Bt-Als la estaurolita no debería coexistir. Por lo tanto, el hecho de que la estaurolita se produzca y se consuma secuencialmente durante la descomposición es el resultado del efecto que ejercen los distintos polimorfos de Als (Ky por un lado, y Sil y And por otros) sobre la pendiente dP/dT de las reacciones implicadas. Eventualmente, en rocas de composición algo más magnésicas, la rotación de las tielines permitió intersectar el campo trífásico And+Bt+Crd, que debería aparecer por la reacción And+Bt+Qz2+H₂O = Crd+Ms. No obstante, las texturas reaccionales indican que la cordierita creció por reacciones de descomposición de grano y estaurolita, lo que es interpretado como el resultado del progreso de reacciones metastables que habrían operado como consecuencia de la persistencia metastable de St y Grt a baja P. A pesar de la baja presión que debieron alcanzar estas rocas, no existen evidencias que permitan inferir que se llegó a alcanzar el límite máximo de estabilidad de estaurolita (reacción univariant mixta St+Ms+Qz2 = Bt+Grt+And+H₂O en el sistema KFMASH, con pendiente dP/dT positiva) durante la descomposición ya que no se detecta crecimiento de grano a baja P, lo cual sugiere enfriamiento durante los estados finales de la descomposición. Sin embargo, es posible que las condiciones de esta reacción (i.e., su equivalente multicomponente) se superasen, aunque no habría progresado ya que las asociaciones estables a baja P son And+Bt y And+Bt+Crd, y por lo tanto el grano no es estable.

La historia reacional sufrida por los leucogneises durante la descomposición implica reacciones de cristalización de fundidos parciales, descomposición de grano, descomposición de componentes fengísticos, triocaidricos y de Ti en la moscovita, formación de moscovita secundaria, fibrolita y andulcita por descomposición de los feldespatos, moscovita, y biotita (reacciones sólido-fluido con especies iónicas en solución), e intersección del límite superior de estabilidad de moscovita en sistemas saturados en SiO₂ (Ms+Qz2 = Kfs+Als+H₂O, en el sistema KASH). La intersección de esta reacción indica que las condiciones P-T evolucionaron hasta ca. 600 °C y 2-3 kbar.
Dadas las abundantes evidencias de desequilibrio, se interpreta que las reacciones anteriores (i.e., sus equivalentes multicomponentes) fueron fuertemente sobrepasadas durante la descomposición. En términos gráficos, este sobrepaso puede describirse para las metapelitas greisitas como una rápida rotación de las tielines que unen las fases Si-Grt-Bl-Als en el diagrama AFM hacia el polo FeO, que localizaría a las composiciones de las rocas en el campo And+Bl (y eventualmente And+Bl+Grd). Aunque esto permite explicar la persistencia inestable de Grt, St, Kny y Flb a baja P en los tres tipos de metapelitas greisitas, es igualmente necesario un rápido enfriamiento subsecuente a la descomposición. Lo mismo se concluye para los gneises leucocratos, entre otras razones, por el incompleto reemplazamiento de moscovita por Kfs+And(=Gr=), aunque componentes y fases extra expanden la reacción univariable Ms+Qz = Kfs+Al+H2O a multivariable, existen evidencias derivadas de estudios de rocas naturales, teóricos y experimentales que indican que la descomposición de Ms+Qz es una discontinuidad en términos prácticos. Además, las velocidades de reacción estimadas por Schramke et al. (1987) indican que la moscovita debe reaccionar completamente y desaparecer en sistemas saturados en SiO2 bajo condiciones de sobrepaso cercanas al equilibrio (e.g., ΔT = 10 °C, Ridley y Thompson, 1986). En consecuencia, el incompleto reemplazamiento de los cristas de moscovita y la ausencia de reemplazamiento en bastantes gneises leucocratos sólo puede implicarse si la trayectoria de descomposición sufrió una fuerte inflexión a baja P debido a un rápido enfriamiento. Estas inferencias son consistentes con los cálculos basados en las dataciones isotópicas (Rb/Sr, 40Ar/39Ar) de moscovita, biotita y feldespatos-K de metapelitas greisitas y leucogneises, que se agrupan en edades de enfriamiento de 19-22 Ma (Mioceno Inferior) e indican tasas de descomposición y enfriamiento de 2.5-5 km/Ma y >250 °C/Ma, respectivamente, durante la sección de baja P de la trayectoria P-T. No ha sido posible datar las condiciones de P intermedia, aunque el análisis cinético de las texturas reaccionales, parcialmente, las resultantes de la descomposición fangítica de moscovita en los gneises leucocratos, permite deducir un fuerte sobrepaso de las superficies P-T-X de equilibrio, y en consecuencia fuertes tasas de descomposición desde las condiciones de P intermedia. En base a estos resultados, se propone que el tectogenésis principal sinmetamórfica (D3) es debido a un colapso extensional que afectó a la unidad de Toronal (y al resto de unidades Alpujarrides) durante el Mioceno Inferior.

La fuerte y rápida descomposición sufridas por las rocas estudiadas han dado lugar a características de desequilibrio rara vez descritas en metapelitas y gneises de grado medio y alto, y que han sido estudiadas en detalle en este trabajo. Entre las más interesantes por su rareza destacan (en parte ya mencionadas más arriba):

- Las fuertes variaciones composicionales y peculiares texturas reaccionales que presentan las moscovitas en muestras individuales (particularmente en los gneises leucocratos y gneises pelíticos greisitas), resultantes de procesos reacionales de descomposición de los componentes fangíticos, triocotectóricos y de Ti, además de la reacción de inestabilidad de Ms+Qz.

- Las fuertes variaciones composicionales de la biotita en muestras individuales, particularmente en las cantidades de Ti, vacantes octaédricas y [M4Al] (M4Al alcanza cantidades cercanas a 1.5 átomos por 20 oxígenos y 4(OH), lo cual es anómalo por comparación con otras biotitas de esquistos y gneises).

- La inversión en la partición Mg/Fe entre esaurolita y grane en los gneises pelíticos, que indica el desequilibrio existente entre estas fases y justifica el que la esaurolita haya crecido durante los estudios iniciales de la descomposición.

- Reemplazamiento directo Kny → And en los gneises pelíticos, que han superado con creces la temperatura del punto triple de los silicatos de Al (501 °C, Holdaway, 1971).
El crecimiento de cordierita por reacciones metastables de descomposición de estaurolita y granate, resultantes de la persistencia metastable estas fases a baja T.

La descripción de las heterogeneidades composicionales de las fases estudiadas se presenta haciendo uso del análisis algebráico y mediante técnicas estadísticas (Análisis de Componentes Principales), que se han revelado muy útiles en la identificación y cuantificación de términos extremos y reacciones de sustitución en las micas. Para el caso de la moscovita, las relaciones entre heterogeneidades composicionales y texturas reaccionales se presentan mediante imágenes de electrones retrodispersados; que también han servido, junto con imágenes de microscopía electrónica de transmisión, para el análisis cinético de los procesos de descomposición sufridos. El análisis de las asociaciones de fases se presenta usando técnicas algebraicas y termoquímicas, al mismo tiempo que se evalúan distintos equilibrios comúnmente utilizados como estimadores de condiciones de P-T. Dadas las heterogeneidades composicionales de las fases presentes y el evidente estado de desequilibrio que presentan las rocas estudiadas, la estimación de condiciones P-T mediante termobarómetros y/o otras técnicas termoquímicas basadas en el equilibrio (e.g., método de Gibbs basado en la ecuación de Gibbs-Duhem, Spear et al., 1982a; Spear y Sverjense, 1983; ecuación $\Delta G^0_f = -RT\ln K$, Powell y Holland, 1988; Berman, 1991) presenta un grado de incertidumbre añadido. Por estas razones, en este trabajo se enfatizan los aspectos relativos a los cambios composicionales esperables de una trayectoria de descomposición en las rocas estudiadas, para lo que se hace uso de las técnicas de cálculo de las relaciones P-T-X mencionadas anteriormente. Específicamente, se presentan los resultados obtenidos en subsistemas del sistema KNaCaRFeMgSi3O12, integrando todas las observaciones relativas a texturas y composición de las fases estudiadas.
1 Introducción

La evolución de los cinturones orogénicos es un objetivo fundamental de la Geología. Los aspectos de esta evolución relativos a la petrología metamórfica son de especial relevancia puesto que permiten descifrar la historia PT sufrida por las rocas. En conjunción con los resultados obtenidos de estudios geocronológicos, geofísicos y estructurales, esta historia permite establecer e interpretar las causas que subyacen a las perturbaciones de la litosfera.

Siguiendo los principios de la termodinámica reversible, la materia que constituye una roca, sometida a unas condiciones dadas de P, T y μ, (energía libre parcial molar de los componentes), debe reordenarse en unas fases dadas, cuyo número, composición y abundancia están determinados. Por lo tanto, y en una casuística general, no podría extraerse información sobre la historia anterior al momento en que una roca equilibró bajo la temperatura máxima sufrida. Esta inferencia ha sido la base para considerar que las asociaciones de fases que forman las rocas metamórficas representan las condiciones de "pico" de temperatura. Así, el estudio de terrenos metamórficos dio lugar al concepto de facies de Eskola (1939), fuertemente asentado en los principios de la petrología metamórfica (Fyfe et al., 1958; Turner, 1981), y posteriormente a las series de facies de Miyashiro (1961). Las series de facies ofrecían la posibilidad de interpretar la historia de un terreno metamórfico determinado, considerando el principio de que las rocas de mayor grado ha pasado por estadios anteriores representados por rocas de menor grado. Sin embargo, England y Richardson (1977) reconocieron que la historia PT de una roca no se corresponde comúnmente con la proyección en el espacio PT de rocas de grado menor de este terreno, y distinguieron el concepto de geotermo metamórfica (en el sentido de las series de facies) del de trayectoria PT-t. Las modelizaciones térmicas de orógenos basadas en un estudio de engrosamiento debido a colisión y erosión subsiguiente (e.g., Oxburgh y Turcotte, 1974; England y Richardson, 1977; England y Thompson, 1986) resultan en evoluciones metamórficas de decenas de millones de años que incluyen (1) compresión y calentamiento, (2) descompresión y calentamiento, y (3) descompresión y enfriamiento (i.e., estadios PT que evolucionan en el sentido de las agujas del reloj y describen trayectorias curvas). Las condiciones de "pico" para una roca dada se alcanzarían en el estado (2) de descompresión y calentamiento, y la historia anterior no coincidiría con las condiciones de pico de rocas de grado menor. A pesar de ser modelos simples desde el punto de vista geológico, los ejemplos de áreas metamórficas que presentan este tipo de evolución general son abundantes (e.g., Oxburgh y England, 1980; Sharma et al., 1980; Dempster, 1983; Blanckenburg et al., 1989).

Desde el punto de vista teórico, existe una evidente contradicción entre una parte sustancial de los objetivos de carácter global perseguidos en los estudios metamórficos (i.e., establecimiento de historias termo-báricas) y los métodos de la termodinámica de procesos reversibles utilizados, ya que si la historia sufrida por:
una roca puede ser descrita a éso por el hecho de presentar características de desequilibrio. Lejos de ser
un inconveniente, el desequilibrio es una ventaja siempre que pueda demostrarse que existen equilibrios en
microdominios de las rocas. Cuando la evolución PT de una área ha sido pasada a la escala geológica,
como es el caso de áreas sometidas a engrosamiento y erosión, la información PT obtenible de las rocas suele
ser escasa (condiciones de "pico" y una cierta sección del enfriamiento). No obstante, es posible extraer las
condiciones anteriores al "pico" mediante técnicas de la termodinámica reversible a partir de composiciones
relícticas, por ejemplo, de granitas zonados (Spear et al., 1984), aunque la incertidumbre es elevada si es
necesario inferir las fases coexistentes en estados anteriores (y sus composiciones). Las aplicaciones de estas
técnicas en distintos orógenos han puesto de manifiesto la irregularidad de las trayectorias PT (e.g., Spear y
Selverstone, 1983; Spear et al., 1984; Selverstone et al., 1984; Selverstone y Spear, 1985; Spear y Rumble,
1986; Crowley, 1990), de acuerdo con lo esperable de la complejidad de los procesos tectónicos sufridos.

Cuando la evolución PT de un área ha sido rápida existen más probabilidades de que las rocas
presenten características de desequilibrio, tales como coexistencia de asociaciones incompatibles,
heterogeneidades composicionales, texturas reaccionales, etc. En estos casos, la aplicación de las técnicas de la
termodinámica de procesos reversibles para la obtención de condiciones PT conlleva una elevada
incertidumbre. Sin embargo, la sección de la trayectoria PT potencialmente investigable es más amplia por lo
que, al menos, puede extraerse una información valiosa concerniente a la forma de la trayectoria (no tanto a
la posición absoluta en el espacio PT). Dado que la transmisión de calor por conducción en la corteza es un
proceso lento (la transmisión por radiación no es importante debido a las bajas temperaturas, y la
convección no es aplicable), las evoluciones térmicas rápidas más importantes son debidas a movimientos de
calor por advección (esto es, por movimiento físico de la materia), que localizan fuentes térmicas en contacto
con áreas más frías receptoras del calor. Por ejemplo, el emplazamiento de cuerpos ígneos, que suministran
una fuente de calor de forma súbita, permite que la evolución térmica de las rocas de contacto sea rápido. De
la misma manera, rápidos movimientos tectónicos de rocas calientes permiten también súbitos cambios de T
en rocas adyacentes más frías. Sin embargo, la importancia de los movimientos tectónicos rápidos deriva
esencialmente de los rápidos cambios de P que inducen, lo que controla la forma de las trayectorias PT al no
poderse transmitir el calor con celeridad, como es el caso de rápidas descompresiones debidas a procesos
extensionales (e.g., Albarède, 1976). Este aspecto de las trayectorias PT es pues importante, ya que permite
relacionar las compresiones y descompresiones con eventos tectónicos y movimientos verticales de una
cadena (Dempster, 1985; Ridley, 1989). Desde el punto de vista estrictamente petrológico, la investigación de
rocas que han sufrido cambios de presión rápidos es muy interesante, ya que pueden estudiar los resultados de
procesos reaccionales fuertemente desplazados de las condiciones de equilibrio (e.g., Hollister, 1982).

En esta tesis se documenta un caso extremo entre los procesos metamórficos que tienen lugar
en las rocas, por cuanto la historia PT de las rocas estudiadas (metapelitas y gneises de grado alto),
sonas internas de las Cordilleras Béticas, ha estado dominada por una fuente y rápida
descompresión casi isotérmica, causada por procesos tectónicos extensionales. En los Capítulos II y III se
presentan las características petrográficas, con empeño acentuado en las texturas reaccionales y su relación con
la historia PT. En el Capítulo IV se describen las heterogeneidades composicionales de las fases, que
se relacionan con las texturas de crecimiento y reaccionales. El Capítulo V se dedica a las historias
reaccionales sufridas, estimaciones termobarométricas y trayectorias PT. De los resultados obtenidos
en el presente trabajo han sido objeto de publicaciones independientes (Zeck et al., 1989a -Apéndice IV; García-Casco et al., 1993 -Apéndice III). Adicionalmente, en el Apéndice V se presenta un estudio (Torres-
Roldán et al., manuscrito) todavía no publicado sobre las características isotópicas Rh/Sr del complejo tectónico de Torreó, que no se tratan en la presente memoria.

1.1. LAS ZONAS INTERNAS DE LAS CORDILLERAS BÉTICO-RIFEÑAS

Estos tres dominios están formados por un número de unidades y escamas tectónicas variable según la transversal de la cadena, lo que unido a variaciones en la naturaleza de las series estratigráficas, similitudes metamórficas y otras causas locales, ha inducido cambios de asignación de algunas unidades en posición intermedia entre los complejos de unidades, y a subdivisiones ulteriores. Entre estas unidades destacan las adscritas al complejo de Ballabona-Cucharón o Almáigudes (Egger y Simon, 1969; Simon y Vischer, 1983; Kozur et al., 1985; Simon, 1987), localizado entre el dominio nevado-filábride y alpujárride, y la unidad de Benamocarra (Aldaya et al., 1979; Elorz, 1979, 1982; Tubía, 1985; Tubía et al., 1991), localizada entre los dominios alpujárride y maláagueña.

Las unidades de la Dorsal Calcárea (Durand-Delgado y Foucault, 1967; Balanyá, 1982, 1984), bien desarrolladas en la continuación rifeña del orógeno Bético, o sus equivalentes béticos, los Rondaides (Blumenthal, 1928; Martín-Algarra, 1987), se incluyen dentro de las zonas internas como dominio individualizado, en los contactos con las zonas externas. El conjunto de estas unidades, y las unidades pertenecientes a los tres complejos de las zonas internas, ha sido denominado dominio de Alborán por Andréux et al (1971), cuya historia orogénica alpina incluye un desplazamiento hacia el W durante el Paleógeno y colisión con las zonas externas de la Cadena durante el tránsito Paleógeno-Neógeno. Balanyá y García-Dueñas (1987) han indicado que el bloque de Alborán cabalgó, una vez estructurado y con vergencia W, a las unidades del Campo de Gibraltar (flyschs) y a unidades asignables a las zonas externas (Penibéctico) durante el Oligoceno Terminal-Mioceno Inferior. Existen, sin embargo, evidencias radiométricas, que se discuten más adelante, que no son totalmente concordantes con una estructuración postmetamórfica compleja del bloque de Alborán en el Oligoceno terminal.

Las unidades pertenecientes a los tres dominios mayores de las zonas internas están constituidas fundamentalmente por materiales mesozoicos y paleozoicos o más antiguos y se caracterizan por presentar una imponencia metamórfica generalizada. El metamorfismo en cada dominio, sin embargo, presenta

Las rocas pertenecientes al dominio alpujarriense también muestran evidencias de haber sufrido condiciones metamórficas variables, y presentan asociaciones de fases características de ambientes de alta-P, P intermedia, y baja P, bajo condiciones de grado muy bajo a alto; esto es, cubriendo gran parte del espectro P-T propio del metamorfismo cortical. En el dominio Malagüide por el contrario, las condiciones metamórficas son más restringidas, siendo en gran parte no metamórfico (Blumenthal, 1927, 1935) excepto en las zonas más profundas de este dominio (esquistos grafitosos bajo la Formación Morales silúrica, Geel, 1973) que presentan un grado de recristalización significativo que puede llegar al grado medio con St+Bi+Grt+And (abreviaturas minerales según Kretz, 1983). Entre estas rocas se encuentran los miastibolitas a phénoblastes de Boulin (1970), cuyas texturas y asociaciones de fases son semejantes, por no decir idénticas, a rocas pertenecientes a unidades asignables al dominio alpujarriense subyacente.

La estructuración y metamorfismo del dominio Malagüide han sido asignados alternativamente a las orogénesis hercinicas y alpina (Foucault y Paquet, 1971; Roep, 1974; Felder, 1978; Mäkel et al., 1984; Mäkel, 1985, 1988), aunque los estudios recientes favorecen la importancia de movimientos tectónicos hercinicos (Balanyá, 1986; Balanyá y García-Dueñas, 1987; Chalouan, 1986; Chalouan y Michard, 1990). La presencia de cristales de rocas graníticas en el conglomerado de Marbella (Blumenthal, 1949), de edad Carbonífero Superior (cristales de calizas del Carbonífero Inferior han sido datadas por Herbig y Mamet, 1983), y de una discordancia evidenciada por una foliación penetrativa (slaty cleavage) en rocas pre-Pérmicas no detectada en rocas post-Pérmicas (F. González-Ledeiro, com. pers.), sugieren de hecho una historia pre-alpina significativa. A este respecto, hay que señalar que no existen similitudes entre los cantos de rocas graníticas del conglomerado de Marbella y las rocas analíticas de unidades alpujarrienses subyacentes (Balanyá, 1991). En cualquier caso, el metamorfismo alpino ha afectado localmente con intensidad a rocas pertenecientes al dominio Malagüide localizadas en las cercanías de los complejos ultramáficos de Ronda (Torres-Roldán, 1979a), y Beni-Bouza donde dataciones radiométricas K/Ar sobre moscovitas indican apertura del sistema isotópico hacia los 25 Ma (unidad de Akallí, Ouazzani-Touhami, 1986).
1.2. EL DOMINIO ALPUJÁRRIDE

El dominio Alpujárriide se caracteriza por un elevado número de unidades tectónicas con un desarrollo lateral y en potencia muy variable, aunque la secuencia estratigráfica alpujárriide es bastante uniforme (De Vries y Zwan, 1967; Aldaya et al., 1979; Delgado et al., 1981; Fontbeté y Vera, 1983). De muro a techo, esta secuencia consiste en una potente formación de metapelitas y metacuarcitas gráfíticas, con esporádicos niveles de metacarbonatos gráfíticos hacia la base, de edad asumida pre-Permica (incluiría las formaciones Montesinos y Morenos de De Vries y Zwan, 1967), si bien se considera que no existen evidencias estratigráficas y/o estructurales para tal subdivisión, Aldaya et al., 1979), una formación de metapelitas y metacuarcitas pobres en gráfito con intercalaciones de ónico- y para-anfibolitas, rocas de silicatos cálcicos y rocas evaporíticas de edad Permo-Triásica (Formación Tonsos de De Vries y Zwan, 1967), y una potente formación carbonatada de edad Triásico Medio a Superior (Formación Estancias de De Vries y Zwan, 1967), eventualmente coronada por escasos niveles carbonáceos Jurásicos (Delgado et al., 1981). La presencia de fósiles del Trias Medio-Superior en la formación carbonatada de unidades no metamórficas (e.g., Gonzalo y Tarín, 1982; Barrois y Oppert, 1989; Fallot et al., 1954; De Vries y Zwan, 1967; Delgado et al., 1981; Kozur et al., 1985) es la base para la asignación Triásica de formaciones de metacarbonatos de grado medio y alto de otras unidades alpujárriides.

Dada la inviabilidad de correlaciones laterales basadas en unidades individuales, a menudo de escasa entidad, la subdivisión y correlación de las unidades a lo largo de la cadena presenta dificultades notables. En el sector central de la cadena, Aldaya et al. (1979) definieron los grupos Almijara, Contraviesa, Guadalco y Lújar (éstos tres últimos en orden descendente en la pila). Aunque de carácter local, esta subdivisión ha sido la base para la clasificación en grupos de manto, i.e., grupos inferior, medio y superior (Mapa Geológico de Andalucía, Junta de Andalucía, 1985). Estos grupos de unidades se caracterizan por diferencias en el grado metamórfico (muy bajo, bajo en el inferior, y medio a alto en los grupos medio y superior) y en el desarrollo relativo de los distintos términos de la serie estratigráfica (unidades inferiores sin series pre-Permicas, unidades superiores con escaso desarrollo de series carbonatadas Triásicas). Sin embargo, la individualización y distribución actual de la mayoría de las unidades tectónicas alpujárriides parece ser el resultado de los últimos eventos deformacionales tardíos en régimen dúctil-frágil a frágil. Los contactos entre unidades cortan estructuras de plegamiento mayores, son de carácter frágil y ponen en contacto rocas de grado metamórfico distinto (e.g., Cuevas et al., 1986; Balanyà et al., 1987; Simancas y Campos, 1988). Gran parte de estos contactos se han interpretado recientemente como fracturas extensionales de bajo ángulo relacionadas con procesos de extensión cortical durante el Mioceno (e.g., Aldaya et al., 1984; García-Dueñas y Balanyà, 1991). Por lo tanto, el agrupamiento de unidades Alpujárriides basado en sus posiciones actuales conlleva incertidumbres en lo relativo a sus posiciones relativas en condiciones sin metamórficas. Dado que es probable que ninguna clasificación de las unidades Alpujárriides pueda dar cuenta de todos (o gran parte de) los procesos tectonometamórficos sufridos, este trabajo se sugiere una clasificación alterativa que evita la utilización de términos geométricos, basada esencialmente en la naturaleza del metamorfismo de unidades tipo. Estas unidades tipo son: la unidad de Casares-Los Reales (Dürr, 1967; Didon et al., 1973), localizada sobre los cuerpos ultramáficos de Ronda, y caracterizada un desarrollo limitado del metamorfismo en los materiales Triásicos, aunque la secuencia metamórfica es amplia e incluye desde el grado bajo a alto, la unidad de Blanca (Mollat, 1968), localizada bajo los cuerpos ultramáficos de Ronda, y caracterizada por
series Triásicas con grado metamórfico intenso (grado medio y alto), y la unidad de Lájar (Almería, 1969), localizada sobre el dominio Nevado-Filábride y caracterizada por un metamorfismo de grado muy bajo a bajo (en facies de HP/LT). Esta clasificación es aplicable al menos a los sectores central y occidental de la cadena, lo que es interesante en el contexto del presente trabajo. Así, las unidades de Casares-Los Reales y de Blanca pueden correlacionarse con unidades del sector central no asociadas directamente con cuerpos peridórficos, como las unidades de Sayalonga (objeto del presente estudio) y Tejeda (Elorza, 1979; Elorza et al., 1979; Elorza y García-Dueñas, 1981 respectivamente (ver Westerhof, 1977; Balanyá y García-Dueñas, 1991).

Al respecto de esta clasificación debe indicarse que los esquistos grafitosos pertenecientes a la unidad de Casares-Los Reales, que alcanzan en sucesión metamórfica el techo de los cuerpos hierzoíticos de Ronda, fueron asignados inicialmente a la base del Maláquide (i.e., Bético de Málaga, Blumenthal, 1927, 1933; 1935; 1949; Kockel, 1959), posteriormente al alpujárride (Dürr, 1967; Mollat, 1968; Durand-Delga, 1968; Mauthe, 1971; Didon, et al., 1973) y recientemente se han reconsiderado como el zócalo maláquide (Tubía et al., 1991). A juicio del autor de este trabajo, la asignación al complejo Alpujárride parece aceptada ya que la unidad de Casares-Los Reales presenta carbonatos a techo de la serie correlacionables con los carbonatos triásicos de otras unidades alpujárrides (cf. Torres-Roldán, 1981). No obstante, como se ha señalado más arriba, son innegables las similitudes en las asociaciones de fases y texturas entre los esquistos grafitosos de grado bajo a medio de la base del complejo Maláquide (Coppone, 1958; Boulin, 1970) y de unidades de tipo Casares-Los Reales (e.g., unidad de Sayalonga, Elorza, 1979, 1982). Las implicaciones de este hecho se discutirán más adelante.

1.2.1. EVOLUCIÓN ESTRUCTURAL DEL DOMINIO ALPUJÁRRIDE

Las unidades alpujárrides muestran una evolución estructural compleja que comprende una serie de eventos déciles sin-metamórficos y una sucesión de deformaciones de carácter dúctil-frágil y frágil, con sentidos de movimiento y estilo deformacional variables. Dentro de esta historia se incluye el emplazamiento cortical de los cuerpos hierzoíticos de Ronda (España) y Bení-Bouzer (Marruecos), uno de las características más relevantes de las Cordilleras Bético-Rifeñas (Dürr, 1967; Mollat, 1968; Bunthuss, 1970; Didon et al., 1973; Loomis, 1972a; 1972b; 1975a; Kornprobst, 1974; 1976; Lundeen, 1978; Torres-Roldán, 1979b, 1981; Reuber et al., 1982; Kornprobst y Vieilzeuf, 1984; Tubía, 1984, 1985a; Tubía y Cuevas, 1986, 1987; Saddiqi et al., 1988; Doblas y Oyarzun, 1989; Van der Wal y Vissers, manuscruesto).

En el sector español de la Cadena Bética, la estructura principal sin-metamórfica corresponde a una foliación penetrativa regional, asociada comúnmente a una línea de estramamiento de dirección ENE-WSW y sentido de movimiento hacia el E (e.g., Loomis, 1972b; Darot, 1974; Tubía, 1984, 1985a y b; Tubía y Cuevas, 1986, 1987; Cuevas, 1986; 1987; Cuenas, 1988; Cuevas et al., 1986, 1989, 1990; Cuevas y Tubía, 1990; Balanyá, 1991; Balanyá y García-Dueñas, 1987, 1991). Este episodio deformacional no-coaxial (denominado D3) se ha relacionado con movimientos compresivos generalizados vergentes al E (Cuevas y Tubía, 1990) que, en el sector occidental desarrollarían grandes pliegues recumbentes (Balanyá et al., 1987) y estarían relacionados con el emplazamiento tectónico de los cuerpos peridórficos de Ronda (Lundeen, 1978; Tubía, 1985a; Tubía y Cuevas, 1986), aunque otros modelos tectónicos extensionales también han sido propuestos (Loomis, 1972b, 1975a; Doblas y Oyarzun, 1989; Platt y Vissers, 1989). En el sector Central de la cadena (unidad de Adra, unidad de Sayalonga,) Cuevas y colaboradores han descrito estructuras mayores (imbricaciones), pliegues
con crenulación penetrativa, pliegues curvos y fábricas de estriviento y cristalográficas de dirección WSW-ENE y vergencia E que se sobreimponen a las estructuras D₂, aunque son interpretadas como el resultado de la deformación progresiva D₂ asociada a los cabalgamientos dúctiles vergentes al E (Cuevas et al., 1986; 1989; Cuevas y Tubía, 1990). Sin embargo, la dirección WSW-ENE de las estructuras D₂-D₃, detectada en el sector español de la cadena contrasta con las direcciones NW-SE y sentido de rotación hacia el NW de la línea deunción asociada al contacto superior de las peridócticas de Beni-Bouzera en Marruecos (Reuber et al., 1982), lo que implicaría cabalgamientos simultáneos hacia el NW. Balanyà y García-Deeñas (1987) y Frizon de Lamotte et al. (1989) han propuesto modelos de rotación de las estructuras del dominio Alpujarride-Séptide alrededor del Arco de Gibraltar para explicar tales variaciones en la dirección y vergencia de las estructuras. Recientemente, Balanyà (1991) ha reconsiderado esta asignación a movimientos compresivos de las estructuras D₂ en la unidad de Casares-Los Reales, que, alternativamente, estarían asociadas a movimientos extensionales sinmetamórficos, aunque sin excluir la existencia de cabalgamientos previos.

Por otra parte, las estructuras pre-D₂ son escasas, particularmente en las rocas de grado medio a alto. En metapelitas de grado bajo a muy bajo, donde S₂ está menos desarrollada, las estructuras pre-D₂ se detectan por la presencia de una foliación crenulada por S₂. En metapelitas de grado medio a alto, donde el desarrollo de S₂ es importante, las estructuras pre-D₂ se identifican esencialmente por microestructuras como foliaciones internas (Sₜ) en porfídoblastos oebíticos a la foliación principal externa (S₂ = Sᵢ), arcos poligonales, y bandeados tec-tonicos en dominios lepidoblasticos y cuarzosos (e.g., Torres-Roldán, 1974, 1981; Elorza, 1979; Álvarez, 1987; Cuevas, 1988). Sin embargo, hasta donde llegan los conocimientos del autor, por el momento no existen descripciones de estructuras mayores asociadas a esta fase, por lo que la fase principal D₂ es considerada como una fase de transposición que impide establecer el tipo de cinemática de los eventos tec-tonicos pre-D₂.

La deformación post-D₂₃ es tardimetamórfica, de carácter dúctil-frágil, e incluye una secuencia de pliegues, con crenulación local de la foliación principal, y fracturación. Entre estos pliegues destacan por su constancia a lo largo de la cadena los de traza axial W-E, a veces de dimensiones kilométricas, que suelen verger al N-NNW y estar cortados por cizallas frágiles vergentes al N (Estèvez et al., 1985; Cuevas et al., 1986; Balanyà et al., 1987; Álvarez, 1987; Simancas y Campos, 1988; Balanyà, 1991). Estas estructuras se han relacionado con una etapa de cabalgamientos frágiles vergentes al N que sería la responsable de la individualización de la mayor parte de las unidades tec-tonicas actuales, así como con la superposición del dominio Malaguíde sobre el Alpujarride (e.g., Brouwer, 1926; Van Bemmelen, 1927; Westerveld, 1929; Blumenthal, 1927-1935; Fallet, 1948; Aldaya, 1969; Egeler y Simon, 1969; Orozco, 1972; Balanyà et al., 1987; Simancas y Campos, 1988; Cuevas y Tubía, 1990). No obstante, en Sierra Almijara y Sierra Tejeda (sector central de la cadena), Sanz de Galdeano (1988, 1989) ha descrito grandes pliegues tumbados post-D₂₃ vergentes tanto al Norte como al Sur, cortados por fallas inversas igualmente vergentes al Norte y Sur. La generación de estos pliegues se implicitamente considerada sin a tardimetamórfica por Sanz de Galdeano (1989).

dirigida al N (D₂) relacionada con el emplazamiento de la unidad de Almanzora sobre el complejo del Mulhacen por expansión gravitacional \((\text{gravity spreading})\). Esta deformación pliega la foliación principal y desarrolla estructuras con direcciones variables entre N-S y E-W (D₃). Es interesante señalar, que De Jong (1991, p. 102) asociada a esta deformación extensional las estructuras de dirección E-W vergentes al E descritas por Cuevas y Tulba (1990) en el manto de Adra, e interpretadas por estos autores como indicativas de movimientos compresivos de dirección E. Plan et al. (1983) y Platt y Behrmann (1986) también asocian estructuras vergentes al N a esta etapa de deformación por expansión gravitacional relacionada con el empilamiento de manti en el sector de Sierra Alhamilla.

Los contactos entre las unidades tectónicas de los dominios Malaguide y Alpujárride están selladas por formaciones clásicas y vulcanoclásicas sintectónicas (e.g., la Formación de la Viñuela, localizada al NW del sector estudiado en el presente trabajo, Boulin et al., 1973; la Brecha de la Nava, localizada en el sector occidental de la cadena en las cercanías de los cuerpos ultramáficos de Ronda, Bourgeois, 1978, Martin-Argarra y Estévez, 1984). Estas formaciones, de edad Oligoceno Superior-Mioceno Inferior (i.e., 24-19 Ma, González-Domono, et al., 1982; Martin-Argarra y Estévez, 1984) contienen clastos de rocas metamórficas asignables a las unidades malaguide y alpujárrides selladas, por lo que el límite superior de la tectogénesis y metamorfismo principales alpinos de ambos complejos se localiza en el tránsito Oligoceno-Mioceno. Por otra parte, el conjunto de las unidades han sufrido un despegue (\(\text{detachment}\)) extensional mayor hacia el W-SW durante el Miocene Inferior a Superior (e.g., Galindo-Zaldívar, et al., 1989; Monié et al., 1991a; García-Dueñas y Balanyá, 1991). Aunque la superficie principal de despegue se localiza en el contacto entre los dominios Alpujárride y Nevado-Filabride, numerosas e importantes fallas extensionales han sido puestas de manifiesto recientemente en el interior del dominio Alpujárride (Aldaya et al., 1984; García-Dueñas y Balanyá, 1991; Balanyá, 1991). Estos movimientos extensionales se relacionan con la apertura de la cuenca de Alborán (e.g., García-Dueñas y Martínez-Martínez, 1988). En el sector oriental de la cadena, Alvarez et al. (1989) indican una posible edad Miocene Inferior para el contacto extensional entre los dominios Alpujárride y Nevado-Filabride, mientras que Aldaya et al. (1991) asignan igualmente una edad Oligoceno Superior a Aquitanien al contacto extensional entre los dominios Alpujárride y Malaguide, que en este caso muestra sentido de movimiento al E, y lo relacionan con la apertura de la cuenca Ligur-Balear.

Los estudios estructurales ponen de manifiesto que el dominio Alpujárride ha sufrido una compleja historia deformacional que, en la opinión del autor, aún no es del todo comprendida, particularmente en lo referente a la asignación compresiva vs. extensional de las distintas estructuras. Adicionalmente, la integración de esta historia deformacional en modelos geotectónicos generales necesita de la consideración de las constricciones resultantes de las historias térmicas y trayectorias presión-temperatura-tiempo (P-T-t) sufri das por las distintas unidades, lo cual hasta ahora sólo ha sido intentado en contadas ocasiones (e.g., Bakker et al., 1989).

1.2.2. EVOLUCIÓN METAMÓRFICA DEL DOMINIO ALPUJÁRRIDE

El proceso metamórfico sufrido por las unidades alpujárrides ha sido complejo. Aunque se encuentran fuertes variaciones en la intensidad del metamorfismo entre las distintas unidades, de los estudios realizados hasta la fecha se deduce que el registro metamórfico más ampliamente detectado consiste en asociaciones pre- a sin-D₂ indicativas de condiciones de P intermedias que coexisten con asociaciones sin- a post-D₂ de baja P, tanto en unidades de tipo Casares-Los Reales como de tipo Blanca (Westra, 1969; Loomis,
EVOLUCIÓN METAMÓRFICA DEL COMPLEJO GHÉSICO DE TORROX Y SERIE ADYACENTES

En las unidades de Casas-Los Reales y de Blanca se encuentran asociaciones granulíticas (Ky+Sil+Grt+But+Kfs), granitoides anacréticos y migmatitas en los contactos con los cuerpos ultramáficos de Ronda. En ambas unidades estas asociaciones de grado alto presentan una evolución bajo condiciones similares, desde condiciones de alta-P/alta-T (> 10 Kbar y 700-750 °C) hasta a baja P (2 a 4 Kbar) (Loomis, 1972a, 1976, 1979; Westerhoff, 1975; Torres-Roldán, 1981, 1983). No obstante, Tubía y Gil-Ibarguchi (1991) han descrito recientemente asociaciones eclogíticas (piropo-oniscita) de alta T (>16 Kbar y 730 °C), incluidas en anfibolitas de la unidad de Blanca que registran retrogradación a anfibolitas (5-8 Kbar, 700-750 °C). Asociaciones de similar presión no han sido detectadas hasta fechas en la unidad de Casas-Los Reales, aunque hay que señalar que las estimaciones barométricas asignadas a las condiciones de P intermedia en las rocas de grado alto de esta unidad son sólo indicativas de presiones mínimas (cf. Torres-Roldán, 1981). Las asociaciones de las metamórficas de grado medio de las unidades de Casas-Los Reales y Blanca, más alejadas de los contactos con los cuerpos ultramáficos, incluyen combinaciones de las fases St-But-Grt-And-Ky-Fis(fibrolita)-Cor. La historia metamórfica de estas rocas incluye igualmente una evolución desde condiciones de P intermedia a baja P también similar (referencias anteriores).

La estrecha relación existente entre la zonalidad metamórfica de las unidades de Casas-Los Reales y Blanca y los contactos con los cuerpos ierzolíticos de Ronda, sugiere un efecto térmico de los cuerpos peridiórticos sobre las unidades adyacentes, cualquiera que fuere el modelo tectónico de emplazamiento de los mismos. Sin embargo, condiciones de grado alto, aunque en ningún caso granulíticas, se encuentran esporádicamente en unidades de tipo Casas-Los Reales y de tipo Blanca del sector central no relacionadas directamente (al menos actualmente) con cuerpos ultramáficos (e.g., Torres-Roldán, 1974; Navarro-Vill, 1976; Fontboné-Rubió, 1976; Pinto, 1986; Cuevas, 1988; García-Casco et al., 1993), y evoluciones P-T cualitativamente similares se registran en todas las unidades, incluyendo las inferiores a contacto con los materiales Nevado-Filábrides (e.g., García-Casco et al., 1993; Bakker et al., 1989). Por lo tanto, la fuente de la perturbación térmica de la corteza alpújarreña no debe implicar necesariamente a las láminas de peridiórticos, a pesar de que el emplazamiento sinmetamórfico de las mismas haya podido condicionar la evolución particular de unidades adyacentes.

Por otra parte, asociaciones relictas desarrolladas bajo condiciones de alta-P/baja-T (>7 Kbar, 400-500 °C), que incluyen núcleos de glaucofana y crostita en anfibol (Kampschuur, 1975; Bakker et al., 1989; Puga y Torres-Roldán, 1989) y pseudomorfosis de Fe-carborrita y aragonito (Goff et al., 1989), aparecen en las unidades alpújarraíres inferiores (tipo Lújar) y en las asignadas al complejo Almágrasp. Estas asociaciones parecen ausentes de las unidades de tipo Casas-Los Reales y de tipo Blanca que han alcanzado condiciones de grado medio a alto, por lo que, o bien no sufrieron tales condiciones, o tales asociaciones han sido obliterate por recristalizaciones sucesivas a temperaturas más elevadas. Las asociaciones eclogíticas relictas detectadas en la unidad de Blanca por Tubía y Gil-Ibarguchi (1991) podrían correlacionarse tentativamente con este metamorfismo de alta P, que daría paso al metamorfismo de P intermedia, aunque las relaciones entre estos dos eventos no están claras. En cualquier caso, las condiciones de presión asociadas al desarrollo de paragenésis de P intermedia con Ky debieron ser elevadas, mayores de 10 kbar, tanto en rocas de grado alto (Loomis, 1972a; Westerhof, 1975, 1977; Torres-Roldán, 1979a, 1981; García-Casco et al., 1993) como en rocas de grado medio (García-Casco et al., 1992, y el presente trabajo).
1.2.3. CONSTRICIONES RADIOMÉTRICAS

Las dataciones radiométricas realizadas en rocas alpujarraídes de unidades de tipo Casasas-Los Reales y de tipo Blanca, incluyendo rocas máficas de los cuerpos peridotíticos de Ronda, son bastante consistentes en las edades de enfriamiento obtenidas, que se agrupan en torno a los 18-25 Ma, i.e., Chatuense-Aquitaniense tanto en el sector español y como marroqui de la cadena (e.g., Loomis, 1975a; Seidenmann, 1976; Priem et al., 1979; Michard et al., 1983; Zindler et al., 1983; Polvé, 1983; Ouazzani-Touhami, 1986; Zeck et al., 1989a y b, 1992; Réauber et al., 1989; Monié et al., 1991a y b). Excepción una edad de 25 Ma sobre fengitas de grado bajo perteneciente a condiciones de alta-P/baja-T (Mónié et al., 1991a), el resto de las edades minerales pueden considerarse edades de bloqueo de los sistemas isotópicos dado que las rocas datadas son, en todos los casos, rocas de grado medio a alto. Sin embargo, sorprende esta concordancia de edades en fases tan distintas isotópicamente (e.g., moscovita, biotita, feldespato-K, anfibol, piroxeno, granate) y para sistemas isotópicos tan variados con temperaturas de bloqueo distintas (K/Ar, 40Ar/39Ar, Rb/Sr, Sm/Nd). Esta coincidencia de edades es aún más llamativa toda vez que las edades Rb/Sr rococ-toral de rocas graníticas anatécicas asociadas a los contactos e intrusivos en los cuerpos ultramáficos de Ronda y Beni-Bouzra oscilan igualmente entre 19 y 22 Ma (i.e., edades de formación a ca. 700 °C, Priem et al., 1979, Polvé y Allège, 1983). Estos hechos, y el que estas edades coincidán con las edades paleontológicas de formaciones síntectónicas que se hallan contactos frágiles (e.g., La Vinuela, ver más arriba) sugiere que tales tasas de enfriamiento (>250 °C/Ma) y supervivencia (3-7 Km/Ma) han debido tener lugar en todo el dominio Alpujarraide durante el Mioceno Inferior (Priem et al., 1979; Zeck et al., 1989a, 1992; Monié et al., 1991b). Los datos isotópicos son por tanto consistentes con la operatividad de la importante tectónica extensional que ha configurado la distribución actual de la cadena y cuencas adyacentes a partir del Oligoceno Terminal/Mioceno Inferior. En este sentido, parece poco probable que el bloque de Alborán hubiera estado totalmente estructurado, incluyendo los cabalgamientos frágiles hacia el N en los Alpujarraídes, en el Oligoceno Terminal como sugieren Balanyà y García-Dueñas (1987) y Balanyà (1991). Según estos datos isotópicos, la estructuración frágil del dominio Alpujarraide debió ocurrir al mismo tiempo o con posterioridad al enfriamiento de las secuencias metamórficas, i.e. 22-19 Ma o Mioceno Inferior.

En contraposición con los dominios Malagüide y Nevado-Piñatubre, en el dominio Alpujarraide no existen evidencias petrográficas y/o de campo definitivas acerca de la existencia y características de eventos orogénicos pre-alpinos. Así, no existen diferencias sustanciales en cuanto a las asociaciones de fases presentes y la evolución PT sufrida por las metamólicas por grafito (sedimentos de edad permo-triáctica) y las metamólicas grafíticas subyacentes (sedimentos paleozoicos o más antiguos). No obstante, Kornprobst (1976) consideró un origen pre-alpino para el metamorfismo alpujarraide en base a la presencia de gramos de espinela, granate y olivino (considerados por Kornprobst como detritos de las peridotitas) en la serie sédéntica de metamólicas grafíticas de Marruecos. Al margen de estas observaciones, las únicas indicaciones al respecto de una historia tectonometamórfica pre-alpina provienen de datos isotópicos Rb/Sr (roca total). Bouin et al. (1969) sugirieron una edad de 280 Ma para el gneis de Torrox en base a 3 muestras analizadas, y Bernard-Griffiths et al. (1977) obtuvieron una isocrona rococ-toral de 290 Ma. en los gneises miloníticos anatécicos de Monte Hacho (Ceuza), localizados en una posición correlacionable con la unidad de Blanca al otro lado del Estrecho de Gibraltar. En ambos casos, estas edades se relacionaron con un origen hercínico del metamorfismo alpujarraide, lo cual contrasta con las edades alpinas discutidas anteriormente. Los datos
presentados por Torres-Roldán et al. (manuscrito; ver Apendice V) manuscrito reafirma la erosión de ca 300 Ma obtenida por Bouin et al. (1969) en el complejo greisico de Torrox, si bien no todas las muestras de gneises analizadas se alinean en tal edad. Así, la mayoría de los gneises aplisicos, concordantes y discordantes están fuertemente empobrecidos en 87Rb, mientras que las metapelitas intercaladas están enriquecidas. Los datos sugieren un fuerte desequilibrio isotópico en el complejo de gneises y son inconclusivos en la interpretación hercínica de la erosión. De hecho, todos los análisis Rb/Sr disponibles hasta la fecha en rocas migmatizadas, gneises y metapelitas de grado alto de los contactos de los cuerpos ultramáficos de Ronda, Ojén y Beni-Bouzera se alinean en una erosión "regional" de una edad aparente de 315 Ma, a pesar de estar separadas en algunos casos decenas de kilómetros y pertenecer a unidades distintas (i.e., Casares-Los Reales y Blanca). Interpretaciones alternativas incluyen (1) un metamorfismo hercínico de grado alto (y por lo tanto, plasmación de las perditas) en el Hercínico), Kornprobst (1976) y Bernard-Griffiths et al. (1977), (2) equilibrio isotópico regional inducido por circulación de fluidos durante un episodio de grado bajo a muy bajo, (3) herencia isotópica del área fuente de los sedimentos, o (4) incluso puede carecer de significado temporal alguno.

1.2.4. Evaluación de las Ideas Concernientes a la Evolución P-T en las Unidades de Tipo Casares-Los Reales

El presente estudio concierne a la evolución metamórfica de la unidad de Torrox, localizada en el sector central de la Cadena Bética, y cuyas características litológicas, estructurales, y metamórficas permiten considerarla como de tipo Casares-Los Reales. Por esta razón, se discuten ciertos aspectos concernientes a la evolución metamórfica de este tipo de unidades alpujarrides, aunque al menos parte de ellos pueden ser aplicados también a las unidades de tipo Blanca.

La coexistencia de asociaciones de P intermedia y baja P en muestras individuales de rocas pertenecientes a unidades del tipo Casares-Los Reales sugiere que la evolución P-T sufrida ha estado dominada por una fuerte descompresión asociada al desarrollo de la foliación principal S2. No obstante, las ideas relacionadas con la evolución del metamorfismo en los sectores central y occidental de la cadena han sido confusas, posiblemente debido (1) al establecimiento de modelos tectónicos en conflicto con estas características y (2) a que frecuentemente no se ha reconocido el estado de desequilibrio que presentan las mayorías de las rocas. Este último hecho sorprende toda vez que las evidencias petrográficas al respecto son abundantes, incluyendo la presencia de asociaciones de fases incompatibles y texturas que indican relaciones de reacción no completadas. A modo introductorio, es muy ilustrativo exponer las distintas interpretaciones a la coexistencia de los tres polímeros de los silicatos de Al, dióxida, sillimanita (fibrolítica, excepto en el grado alto) y andalucita.

Loomis (1972a, c), en sus trabajos en la serie metamórfica de la unidad de Casares-Los Reales (i.e., sus greas series), identificó el problema e interpretó la coexistencia de andalusita y sillimanita en metapelitas de grado medio en términos de la coexistencia metaestable de andalusita dentro del campo de estabilidad de la sillimanita, que habría crecido inicialmente por transformación de andalusita en una secuencia progresiva. Esto es, interpretó la secuencia metamórfica en términos progresados, como una serie de baja presión con And → Sil resultante del efecto térmico del emplazamiento diártico de las perilitosas de Ronda (Loomis, 1972b), lo cual supone considerar que la sillimanita es posterior a la andalusita. Sin embargo, todas las evidencias texturales en muestras individuales apuntan a lo contrario, i.e., Sil → And. El modelo progresado
de Loomis (1972a) necesitaba de complicaciones tectónicas adicionales dada la coexistencia en rocas de grado más alto de distena, interpretada como el resultado del "dragado" de las metapelitas del contacto con las peridotas de Ronda durante su ascenso diapírico en la corteza. Este modelo tectonometamórfico es claramente insatisfactorio, como puede deducirse del hecho de que Loomis no identificó la presencia de distena en rocas de grado bajo y medio (cf. Torres-Roldán, 1981) y de la propia discusión de Loomis.

Así, Loomis (1972a) identificó una de las características petrográficas más generales de las metapelitas de las unidades de tipo Casares-Los Reales, la presencia de porfídobreccias de estaurolitia xeromorfo en el interior de porfídobreccias de andalucita, aunque sugirió que "staurolite is the developing phase even though apparently originating in the environment inside andalusite crystals" (op. cit., p. 2455). Esto es, interpretó la estaurolitia como una fase prograda desarrollada sobre andalucita, en lugar de interpretar la blástesis de esta última fase como el producto de descomposición de estaurolitia, tal y como lo sugiere el análisis textural. Posiblemente, Loomis se vio forzado a tal interpretación por el modelo de metamorfismo progrado en una serie de baja P, y porque observó que la estaurolitia aumenta en abundancia en la secuencia prograda (op. cit., p. 2455). En el razonamiento de Loomis (1972a) queda implícito que sí la andalucita reemplazase a la estaurolitia en el metamorfismo progrado en una serie de facies de And → SiI, el incremento modal y de grano de la estaurolitia con el grado metamórfico no podría observarse. Por lo tanto, el modelo metamórfico de Loomis no es satisfactorio ya que no puede conciliar las evidencias de reemplazo SiI → And con el hecho de que la abundancia y tamaño de la estaurolitia no desciende a lo largo de gran parte del grado medio. Sin embargo, las interpretaciones de Loomis (1975b, 1976, 1977, 1979) sobre la evolución metamórfica de las rocas de grado alto en la unidad de Casares-Los Reales sí es consistentes con las evidencias texturales. En estas rocas Loomis identificó la operatividad de procesos reaccionales en desequilibrio, que fueron considerados por este autor como el resultado de una fuerte y rápida descompresión (i.e., por dragado de estas rocas durante el emplazamiento diapírico de los cuerpos peridófricos) bajo condiciones de grado alto.

En trabajos posteriores, Torres-Roldán (1979a, 1981) interpretó la coexistencia de los polimorfos de Al₄SiO₉ en términos metastables, aunque ofreciendo un modelo alternativo al de Loomis (1972a) no basado en un metamorfismo progrado. Para este autor, el metamorfismo de la unidad de Casares-Los Reales puede interpretarse en términos progrados bajo condiciones de P intermedia, dentro del campo de estabilidad de la distena en toda la serie prograda. Esta secuencia habría sufrido un proceso de descompresión quasiquotermico, que afecta a la secuencia metamórfica completa, de manera que una zonalidad metamórfica de baja P se sobrepone a la zonación prograda de P intermedia. Así, la blástesis de los polimorfos es secuencial (Ky → SiI → And) y relacionada con reacciones de descomposición de fases preexistentes (esencialmente granate y estaurolitia) durante la descompresión. Este modelo explica gran parte de las relaciones texturales observadas en las tierras y zonas minerales, particularmente en la zona de la estaurolitia donde la fibrolita y andalucita pseudomorfizan a la estaurolitia. Estudios posteriores sobre otras series metamórficas alpinas de tipo Casares-Los Reales en el sector occidental de la cadena, han propuesto interpretaciones análogas a las de Torres-Roldán (1979a, 1981). Así, Túbia (1985a) encuentra los tres polimorfos en la zona denominada "sillimanita-mentorita" del manto de Los Reales al sur de Sierra Alpujarras, especificando claramente el carácter no sincrónico de la blástesis de los tres polimorfos; la distena sería residual (pre-D3), y la sillimanita (sin-D3) y andalucita (post-D3) se producirían a partir de reacciones de desestabilización de estaurolitia y granate relacionadas con descompresión de la secuencia (Túbia, 1985a, p.125). No obstante, en este modelo no queda explicado el hecho notado por Loomis (1972a) al respecto del aumento modal de estaurolitia en gran
parte de la secuencia prograda de grado medio, ya que las reacciones de descomposición de estaurolita durante la descompresión desde presiones intermedias hasta baja P habrían debido progresar más en las rocas de grado mayor (y consecuentemente la proporción modal de estaurolita debería ser menor).

En otras unidades alpujarrides de tipo Casares-Los Reales del sector central de la cadena, la mayor parte de los autores han interpretado las asociaciones minerales presentes en términos esencialmente progrados. Un caso de especial relevancia en el presente estudio es el de Elorza (1979), quien describe la coexistencia de los tres polimorfos en los esquifes de la unidad de Sayalonga y el gneis de Torrox subyacente (objeto del presente estudio), y considera todas las zonas minerales definidas como el producto de un metamorfismo progrado. Sin embargo, la definición de las zonas carece de base petrográfica puesto que, por ejemplo, la estaurolita es abundante en toda su "zona de silimanita-moscovita" y en parte de su "zona de silimanita-feldespato-K", y distena, fibrolita y andalucita coexisten en muestras individuales de estas dos zonas minerales (ver Capítulos 2 y 3). Así, de su discusión sobre la evolución metamórfica (op. cit., p. 151-163) se desprende que para explicar las asociaciones minerales encontradas se necesita un metamorfismo progrado cercano al punto triple (op. cit., p. 157). En su Tabla de relaciones blastesis-deformación (Figura 3-22 de Elorza, 1979, p. 152) indica blastesis contemporánea de andalucita, silimanita y distena en las "zonas de silimanita-moscovita" y "silimanita-feldespato-K" (gneises de Torrox) en condiciones post-D2. Desde el punto de vista del autor de este trabajo, es imposible que un conjunto de rocas que incluyen rocas de grado medio y alto con desarrollo de procesos de fusión parcial y suponen varias centenas de metros de potencia actual (perpendicularly a la failación principal) puedan equilibrarse en las condiciones singulares del punto triple de los polimorfos de los silicatos de Al, cualquiera que sea el punto invariante considerado (e.g., Richardson et al., 1969, Holdaway, 1971).

De acuerdo con los resultados del presente trabajo, la coexistencia de los tres polimorfos en las unidades de tipo Casares-Los Reales es una evidencia de metaestabilidad, resultante de la descompresión de las secuencias metamórficas desde condiciones de P intermedia propias de la estabilidad de distena, hasta condiciones de baja P propias de estabilidad de andalucita. Esto excluye cualquier consideración al respecto de equilibrioamiento progrado en las cercanías del punto triple de los silicatos de Al, y permite explicar las texturas reaccionales, las asociaciones de fases incompatibles en muestras individuales y la distribución areal de las "zonas metamórficas", que no pueden definirse en términos progradados en base a un único par de polimorfos de los silicatos de Al. Así por ejemplo, puede explicarse la aparente ausencia de una "zona de
Un número de observaciones adicionales, extraídas de los estudios regionales existentes en las unidades de tipo Casares-Los Reales, apuntan igualmente a una interpretación de las secuencias metapelíticas como el resultado de los efectos de un evento descompresivo importante.

De las descripciones disponibles de las asociaciones minerales en las series de metapelitas de las unidades de tipo Casares-Los Reales del sector centro-occidental de la cadena (e.g., Loomis, 1972a; Torres-Roldán, 1974, 1981; Elorza, 1979; Elorza et al., 1979; Elorza y García-Dueñas, 1981; Avidad y García-Dueñas, 1981; Tubaí, 1985a; Cuevas, 1988) se deduce que la topología AFM aplicable a la blastesis inicial de estaurolita bajo condiciones de P intermedia pudo suponer la compatibilidad Chl+St+Qtz o Chl+St+Br. Sin embargo, de estos estudios destaca el escaso desarrollo espacial existente entre la aparición de granate y la aparición de estaurolita, así como la ausencia, o muy escaso desarrollo, de asociaciones estaurolita-clorita demostradas en equilibrio en el triángulo del grado bajo al medio. Esto implica un aparente salto metamórfico brusco, que contrasta con las típicas secuencias de P intermedia (series de facies de distena-silimanita), donde se observa una zona de transición espacialmente significativa en el tránsito del grado bajo al medio con asociaciones AFM (excluyendo el cloritoide) Br-Chl-Grt y Grt-Chl-St que dan paso a Br-St-Chl y Grt-St mediante la reacción univariantes (sistema KFMASH) Grt+Chl+Ms = Br+St+Qtz+H₂O (ver los casos naturales descritos por Hollister, 1969; Guidotti, 1974; Thompson et al., 1977a y b; Fletcher y Greenwood, 1979, Labocka, 1980; Yardley et al., 1980; Delor et al., 1984; Lang y Rice, 1985a y b; Klapper y Bucher-Nurminen, 1987; Holdaway et al., 1988; y las consideraciones teóricas de A.B. Thompson, 1976a y b; Spear y Cheney, 1989; Powell y Holland, 1990; Symsnes y Ferry, 1992). Aunque una composición rica en Fe de estas metapelitas podría excluir la coexistencia de St+Chl+Br, el escasez y escaso desarrollo actual de este tipo de asociaciones demostradas en equilibrio en rocas de grado y composición apropiadas puede explicarse por su consumación durante la descomposición por reacciones univariantes (en el sistema KFMASH) como Ms+St+Chl = Br+Al₂Qtz+H₂O, o diveriantes como Chl+Ms = St+Br+Qtz+H₂O.

Por otra parte, descarta la ya mencionada persistencia de estaurolita en condiciones de grado alto con desarrollo de asociaciones confeldespato-K y migmatización (e.g., en la unidad de Áfra, Cuevas, 1988; en las unidades de Los Guíjarres y La Herradura, Torres-Roldán, 1974 y Avidad y García-Dueñas, 1981; en la unidad de Casares-Los Reales adyacente a las peridotitas de Ronda donde las condiciones llegan a ser granulíticas, Loomis, 1972a, Torres-Roldán, 1981; Tubaí, 1985a). Desde un punto de vista progrado, esta coexistencia es difícilmente explicable si cuarzo y moscovita son factores en exceso en los sistemas considerados (cf. Evans y Guidotti, 1966; Guidotti, 1970; Ashworth, 1975; Carmichael, 1978; Yardley et al., 1980). Así, Loomis (1972a, p. 2459) señala: "However, the continued abundance and large grain size of staurolite beyond the K-feldspar isograd, until garnet began development, imply that this reaction [St+Ms+Qtz = Al₂+Br+H₂O, Hoschek, 1969] is not represented by the second garnet isograd. Richardson's (1968) curve for the reaction of Poststaurolite to form almandine, sillimanite, and H₂O [St+Qtz = Al₂+Sil+H₂O], which falls at higher temperature than the K-feldspar or sillimanite isograd around 4 kb, is more appropriate" independientemente de que en el contexto del modelo favorecido en el presente trabajo las relaciones de Stout deben ser evaluadas a presiones mayores de 4 kbar durante el metamorfismo de P intermedia, la explicación de Loomis (1972a) no es aceptable ya que la
Evolución Metamórfica del Complejo Gneisico de Torreú y Series Adjacentes

estaurolita debería reaccionar antes de entrar en grado alto en presencia de cuarzo y moscovita (i.e., antes de producirse asociaciones con feldespato-K), más aún en el campo de estabilidad de diestena donde la pendiente dP/dT de la reacción St+Ms+Qtz = Br+Grt+Ky+H₂O es negativa. Loomis (1972a) encontró "...no conclusive evidence for the dominance of one of..." los factores "...that could delay the staurolite plus moscovite reaction..." (op. cit., p 2459). En el modelo de Torres-Roldán (1981) la persistencia de estaurolita en rocas de grado alto, con Kfs, puede explicarse ya que según este autor la cartografía de una "isogela del feldespato-K" supone cartografiar la aparición de esta fase en relación con reacciones de desestabilización de Ms+Qtz durante la descomposición de la secuencia, no durante el estadio previo de P intermedio. Así, dentro de la zona de Kfs-Crd-Sil (i.e., grado alto), Torres-Roldán (1981) señala "Relics of garnet, staurolite and kyanite are common, and the stability of muscovite in this older assemblage is indicated by the obvious operation of reactions of the type (3) [por inestabilidad de St+Ms+Qtz previas a (4) (por Ms+Qtz = Kfs+Al₂Si₂O₅)] (op. cit., p. 126). La misma interpretación puede deducirse de las descripciones blastesis-deformación de Tubía (1985).

A juicio del autor de este trabajo, el problema no está resuelto dado que la aparente desaparición de estaurolita en condiciones de P intermedia es muy próxima al desarrollo de asociaciones granulíticas (Grt+Kfs) para las que se han ofrecido estimaciones P-T cercanas a 750 °C y > 9 Kbar (e.g., Torres-Roldán, 1981). Estando condiciones extremadamente altas para la desestabilización de estaurolita, que debería haberse completado en rocas donde coexisten con Qtz+Ms a temperaturas menores de 700 °C, a juzgar por los datos experimentales disponibles para la reacción St+Qtz = Al₂Si₂O₅+H₂O (Richardson, 1968; Ganguly, 1972; Rao y Johannes, 1979; Dutrow y Holdaway, 1989). Por lo tanto, y según las modelizaciones de la historia P y T sufridas por las partes más metamórficas de las unidades de tipo Casares-Los Reales (Loomis, 1972a, 1976, 1979; Torres-Roldán, 1979a, 1981; Tubía, 1985; Cuevas, 1988), la metaestabilidad de la estaurolita parecería aplicarse no sólo a su desestabilización durante la descomposición de las secciones, sino también durante las condiciones progradas de P intermedia dentro del campo de estabilidad de la diestena, involucrando rangos de temperatura de persistencia metaestable entre 50 y 100 °C. El autor de este trabajo considera esta posibilidad bastante improbable, excluyendo relictos de estaurolita en porfídoblastos de granate en las asociaciones granulíticas con Grt+Br+Kfs+Ky+Sil (J. Carriús, com. pers).

Una alternativa es que la estaurolita haya cocido durante los estadios iniciales de la descomposición por reacciones que se interceptarían en sentido retrogrado (i.e., rehidratación por ΔP, no por ΔT). Los resultados obtenidos en el presente trabajo sugieren que una parte sustancial de la estaurolita en las metapelitas grafíticas de grado medio ha debido crecer durante la descomposición a partir de reacciones como Grt+Ms+H₂O → St+Br+Qtz (sistema KFMASH). Si esto es extensible a la unidad de Casares-Los Reales, la observación de Loomis (1972a) al respecto del aumento en abundancia modal y tamaño de los porfídoblastos de estaurolita en sentido prograd (dentro del grado medio) puede ser explicada, a pesar de que esta fase es reactante durante los estadios finales de la descomposición. Así, el crecimiento de estaurolita en las rocas de grado medio no puede explicarse exclusivamente por desestabilización de clorita, ya sea en condiciones progradadas (P intermedia) o durante la descomposición, tal y como ha sido implícita o explícitamente considerada en los trabajos anteriores. El crecimiento de estaurolita durante la descomposición permite explicar su presencia en rocas de grado alto y es consistente con la dada por Ashworth (1975), quien justificó la coexistencia de estaurolita en rocas migmatíticas con Sil+Kfs y sin moscovita de Escocia debido al progreso en sentido retrogrado (i.e., rehidratación) de reacciones con Kfs y al efecto de estabilización del Zn.

Otro aspecto destacable es la buena conservación de asociaciones pre-D₂ con diestena en las partes más profundas y de más alto grado de la unidad de Los Reales, i.e., las llamadas kuzigitas (cf. Mehnert, 1968) de
la zona de Gtri-Ky-Kfs de Torres-Roldán (1981). El análisis de Loomis (1976, 1979) demuestra que la causa de tal hecho son las bajas tasas de reacción relativas a los rápidos cambios en las condiciones de presión sufridas. Dado que las temperaturas a las que se verificaron las reacciones irreversibles analizadas por Loomis (1976, 1979) exceden los 700 °C, el estado de desequilibrio en estas rocas sugiere fuerte sobrepeaso (overstepping) de las superficies P-T-X de los equilibrios involucrados, y por lo tanto unas tasas de descompresión muy elevadas. Los resultados del presente trabajo también son consistentes con un fuerte sobrepeaso de los equilibrios durante la descompresión, toda vez que las rocas de grado más alto estudiadas (gneises con procesos de fusión parcial) presentan claras evidencias de desequilibrio (García-Casco et al., 1993).

Finalmente, cabe recordar que los datos radiométricos parecen indicar una historia polimetamórfica en las unidades alpujárrides, aunque es evidente que condiciones metamórficas de grado medio a alto prevalecían en unidades de tipo Casares-Los Reales y de tipo Blanca durante el Mioceno Inferior. A este metamorfismo alpino deben asignarse, al menos, las recristalizaciones que generaron las asociaciones tardías indicativas de condiciones de baja P (i.e., con andalucita), tanto en unidades de tipo Casares-Los Reales como de tipo Blanca. Más aún, si los productos sedimentarios de las metapelitas pobres en grafito de unidades alpujárrides como Sierra Tejeda (tipo Blanca) son permo-triásicos y su metamorfismo es alpino, incluyendo las condiciones de P intermedia y de baja P, debe inferirse que las asociaciones de P intermedia de los esquistos grafitos alpujárrides (incluyendo los de las unidades de tipo Casares-Los Reales) son igualmente de edad alpina. Esto se deduce igualmente de la historia reacional de las rocas, que implican una rápida evolución temporal desde las condiciones de P intermedia hasta las de baja P. Por lo tanto, la existencia de similitudes en las asociaciones de fases y texturas entre metapelitas grafitosas de grado bajo a medio asignables al complejo Maláguide y metapelitas grafitosas de unidades alpujárrides de tipo Casares-Los Reales no puede tomarse como evidencia de que el metamorfismo de estas últimas es de edad hercinica, como se podría inferir del hecho de que las primeras se localizan por debajo de la discordancia carbonífera del complejo Maláguide (ver más arriba). Al contrario, parece más probable que el metamorfismo que dio lugar a estas asociaciones en rocas maláguides de origen alpino, en consistencia con las evidencias isotópicas (K/Ar) de Ouzzazi-Touhami (1986) y el hecho de que en las cercanías de las pérdidas de Ronda el metamorfismo en los materiales maláguides ha sido intenso (Torres-Roldán, 1979a).
2

La Unidad y El Complejo Gneísico de Torrox

2.1. LA UNIDAD DE TORROX

La unidad de Torrox constituye la unidad Alpujárride superior del área (Figura 2.1.1). Esta unidad está constituida esencialmente por una monotona secuencia donde alternan capas de potencia variable (del orden del cm a m) de esquisto y cuarzoesquistos grafitosos (secuencia pre-Permiotriásica) de varios km de potencia perpendicularmente a la foliación principal. Dentro de esta secuencia afloran muy localmente metaconglomerados grafitosos que no han sido objeto del presente estudio. En las metapelitas, las asociaciones AFM son diagnósticas del grado medio, y están constituidas por combinaciones de St-Be-Grt-And y St-Be-Grt-Fib-And (±Ky ocasional) en las partes alta y baja de la secuencia, respectivamente (Figuras 2.1.2 y 2.1.3). Elorza (1979) definió a la serie de esquistos sin fibrolita como esquistos de Calaceite y a la serie de esquistos con fibrolita subyacente como esquistos de Benthomiz.

Hacia el NW, la serie de metapelitas de Torrox descansa bajo una serie constituida (de muro a techo) por metapelitas grafitosas de grado más bajo (en su mayoría sin estaurolita y con clorita escasa o ausente), filitas de asignación Permio-Triásica, y carbonatos de asignación Triásica (Torres-Roldán, cartografía inédita). El contacto entre ambas es tectónico, de carácter frágil y, aunque no puede trazarse una única superficie de contacto, se observan abundantes fracturas normales de dirección y buzamiento variados (Figuras 2.1.1b, 2.1.2a y 2.1.3; ver también Fernández-Fernández et al., 1992). En numerosos puntos del tránsito se reconoce un salto en el grado de metamorfismo, particularmente en el sector NW, donde gneises de alto grado (gneises de Rompealbardas, Figura 2.1.2a) se disponen bajo filitas de grado bajo, y el contacto en sí corta la distribución de fases minerales en los esquistos grafitosos subyacentes de la unidad de Torrox (Figuras 2.1.1a
y 2.1.2a). Esto sugiere la existencia de un contacto extensional post-metamórfico entre ambas series, más que una continuidad formal distorsionada localmente por fallas normales. Por esta razón se ha renombrado y redefinido la unidad de Sayalonga, que en el esquema de Elorza (1979) y Elorza y García-Dueñas (1981) incluía ambas series en continuidad estructural y metamórfica. La unidad inferior la denominamos unidad de Torrox, y la superior unidad de Salares; no obstante, ambas presentan afinidades como para considerarse láminas despegadas de una misma unidad anterior de mayor entidad.
Filas de tonalidades claras, rojizas y verdosas (Permio-Triás) de la unidad de Salares descansan bajo materiales asignables al paleozoico inferior malagüide, faltando comúnmente entre ellos materiales carbonatados de la serie Alpujárride tipo. Estos materiales de afinidad malagüide se han incluido en la unidad de Vélez-Málaga (Torres-Roldán, mapa inédito).

La unidad de Torrox está limitada en su mayor parte por fracturas de dirección NW-SE tardías, verticalizadas y con fuerte componente dextrasa de salto en dirección, que distorsionan la pila tectónica (Sanz de Galdeano, 1986, 1989). Fernández-Fernández et al. (1992) consideran que estas fallas representan un despege extensional con movimiento del bloque de techo hacia el WSW. En su borde meridional, aunque limitada esencialmente por este tipo de fracturas, puede definirse un dispositivo similar al anteriormente descrito, la unidad de Torrox descansa bajo materiales de grado medio a bajo asimilables a la unidad de Salares y bajo materiales asignados por Boulin (1970) al malagüide y por Elorza (1979, 1982) y Elorza y García-Dueñas (1981) a la unidad de Benamocarra de afinidad alpujárride. En los contactos entre estas unidades (esquistos y filitas con elorita y cloritoide) y la unidad de Torrox (esquistos con fibrolita) se detecta una clara discontinuidad en el metamorfismo.

A pesar de las importantes fracturas NW-SE y W-E que limitan la unidad de Torrox en sus bordes N y NE, puede deducirse que ésta descansa sobre unidades alpujárrides de tipo Blanca que afloran hacia el N, en la alineación montañosa de Sierra Tejeda dominada, por potentes tramos de metacarbonatos (Boulin, 1970; Fontboté-Rubió, 1976; Elorza, 1979; Elorza y García-Dueñas, 1981; Sanz de Galdeano, 1989). En orden descendente en la pila, estas unidades son las de Canillas y Tejeda (Elorza et al., 1979), renombradas en este trabajo como de Cómpeta y Sierra Tejeda, respectivamente (ver Figura 2.1.1), que pertenecen al grupo de la Almijara (Sanz de Galdeano, 1986, 1989), y que están formadas por series de mármolitos, esquistos claros, esquistos grafíticos y gneises metamorfizados bajo condiciones de grado medio a alto (Fontboté-Rubió, 1976; Elorza, 1979; García-Casco et al., 1992).

Importantes fracturas verticales de dirección NW-SE y W-E afectan igualmente la unidad de Torrox, y distorsionan la continuidad estructural y metamórfica. Así, las asociaciones minerales cambian de un lado al otro de la gran falla de dirección NW-SE que atraviesa la serie de metapelitas grafíticas, conformando un bloque meridional más elevado en el que afloran extensivamente las metapelitas de más alto grado con fibrolita (Figura 2.1.2a).

2.1.1. EL COMPLEJO GNEÍSICO DE TORROX (CGT) Y LA BANDA DE GNEISES DE ROMPEALBARDAS

A favor de un sistema de fracturas tardías de dirección E-W aflora el complejo gneisico de Torrox (CGT) en la parte meridional de la unidad de Torrox, que constituye la sección expuesta más profunda de la misma (Figuras 2.1.2 y 2.1.3). El CGT está formado por varios afloramientos discontinuos de leucogneises, siendo el más extenso (ca. 3 Km²) el localizado en las cercanías del pueblo de Torrox (Figura 2.1.2b). En los afloramientos del CGT pueden distinguirse distintos tipos de leucogneises y rocas metapelíticas intercaladas que confieren al complejo una característica heterogénea.

A techo de los gneises leucocratos de Torrox aparecen metapelitas y metarenitas grafíticas con St+Bi+Grt+Ky+Fib+And(+Crd) y abundante plagioclase (Figuras 2.1.2b y 2.1.3), cuyo tamaño de grano es mayor que el de los esquistos grafíticos suprayacentes, particularmente en la muscovita que puede observarse a simple vista. Además del bandeado de origen sedimentario, estas rocas presentan un bandeado

Cuando el contacto primario del complejo de leucogneises no está distorsionado por fallas, puede observarse que la serie de gneises pelíticos grafitosos grada (hacia el muro) a unas rocas pelíticas, no muy grafitosas y ricas en moscovita y cuarzo, que, a su vez, dan paso a los gneises leucocratos s.s. A pesar de que la deformación principal ha transmutado cualquier geometría original, parece que el contacto original entre los GP y estas rocas del techo de los GL tenía un carácter transicional (i.e., no intrusivo). La transición se verifica en unos metros de potencia, y el contacto es paralelo a la foliación principal subhorizontal (Figura 2.1.3). Esto mismo puede deducirse de los afloramientos donde se encuentran gneises graníticos en la banda de gneises de Rompealbardas del sector NW de la unidad de Torrox. Respecto de los GP, estos esquistos moscovíticos muestran una pérdida del carácter pelítico por aumento de la cantidad de cuarzo, importante descenso en la cantidad de grafita y biotita, desaparición de estaurolita, presencia de cantidades menores de feldespato-K y un desarrollo limitado de venas leucocráticas de composición granítica que en su mayoría son concordantes con la foliación. El tamaño de grano de estas rocas es menor que el de rocas adyacentes, y presentan evidencias de retrogresión a baja T, tales como la presencia de elorita y filisóliticos de tamaño de grano fino a muy fino, que les confiere un aspecto de fílias. Parece que han sufrido un retrometasomorfismo asociado o posterior a una fuerte reducción de tamaño de grano, lo que sugiere una naturaleza tectónica del contacto. Es muy probable que el desarrollo del posible contacto mecánico se haya dado una circulación de fluidos canalizados que facilitase la retrogradación.

A lo largo de la serie de esquistos ricas en moscovita y cuarzo de la transición hacia el cuerpo de leucogneises s.s. de Torrox, las bandas leucocráticas con feldespato-K aumentan en cantidad y grosor. Estas capas están deformadas, aunque se encuentran texturas hipidiomórficas de aspecto igneo. Algunas venas oblícuas a la foliación y cuerpos irregulares sugieren cierto grado de migración de fundidos, aunque no se han encontrado venas graníticas s.s. (i.e., con feldespato-K) discordantes o concordantes en los gneises pelíticos suprayacentes. Esto contrasta con la observación de Cuevas et al. (1989, p. 110), quienes indicaron que algunos filones apláticos cortan a la foliación principal en los gneises pelíticos.
Figura 2.1.2. a) La unidad de Torox y localización del complejo gneisico de Torox (carras) y la banda de gneises de Ronda-bardas (g). Se distinguen las asociaciones metamórficas de las metamorfias gneisicas, y la localización de muestras con indicación de las seleccionadas para análisis mineral. b) El complejo gneisico de Torox, con indicación de las asociaciones metamórficas de las metamorfias gneisicas (incluyendo los gneises pélites). Sólo se indican las muestras seleccionadas para análisis mineral debido a la elevada densidad de muestreo en este área.
Unos metros por debajo de la zona de transición aparecen bandas de algunas decenas de cm a métricas de leucogneises graníticos miloníticos fuertemente deformados (Figura 2.1.3). Su foliación es paralela a contacto y al bandeadó composicional definido por bandas centimétricas a métricas de gneises aplíticos y esquistos similares a los presentes en la zona de transición (aunque sin signos de retrogración). La abundancia de las metapelitas desciende hacia las partes más profundas del CGT, si bien estas metapelitas se encuentran a lo largo de toda la sección del complejo aflorante. Boulin (1970) denominó a estas rocas "rocas micaschíticas", y Pinto (1986) "blástitas", dadas sus peculiaridades petrográficas (abundancia de moscovita y cuarzo). Debe indicarse que las particulares características composicionales, asociación de fases, y quimismo mineral (ver Capítulos 3 y 4) permiten desligar a estas rocas metapelíticas de la serie de metapelitas grafítosas suprayacentes.

Aunque fuertemente heterogéneo desde el punto de vista litológico y estructural, en el CGT pueden distinguirse 4 tipos principales de rocas, que se agruparán bajo la denominación de gneises leucocratos (GL). Estas rocas son (1) gneises bandeados de grano medio con Ms+Bl+Grt, (2) gneises porfiroides con Ms+Bl y

![Diagrama de las asociaciones metamórficas](image)

Figura 2.1.3. Columna sintética (no a escala) de la unidad de Torrox con indicación de las asociaciones metamórficas de las metapelitas grafítosas (incluyendo los gneises polícitos) y del complejo grésico de Torrox, que es los representado con símbolos variados para enfatizar su naturaleza heterogénea.
megasistales de Kfs, (3) gneises aplíticos y aplopegmatíticos con Ms+Br+Grt, y (4) esquistos moscovíticos con Ms+Br+Grt+Kfs (o blastitas siguiendo a Pinto, 1986). Los dos primeros tipos de gneises se presentan, en general, fuerte a moderadamente deformados, mientras que los gneises aplíticos forman bandas deformadas paralelas a la foliación principal y bolsadas y díques que cortan a la foliación principal (ver más adelante). La presencia de rocas metapelíticas (con grafita) en el interior del complejo de gneises leucocratos permite inferir una heterogeneidad litológica de origen sedimentario previa al desarrollo de heterogeneidades derivadas de los procesos de fusión parcial y deformación sufridos por el CGT.

Otra banda de gneises analíticos, con abundantes metapelitas intercaladas, aflora en el contacto NW de la unidad (gneises de Rompelbarden), formando una estrecha banda de algunos metros de potencia que descansa sobre esquistos grafíticos, y bajo esquistos de grado bajo asignables a la unidad de Salares (Figura 2.1.2a). Esta distribución de rocas de grado más alto sobre rocas de grado medio indica una inversión de la serie en las inmediaciones de Sierra Tejeda, y una edad tardía para las fracturas que limitan la unidad de Salares. Aunque con exposición en superficie muy limitada, en la banda de gneises de Rompelbarden la disposición de las rocas es similar a la descrita para Torrox. En general dominan gneises pelíticos grafíticos con St+Br+Grt+Ky+Fib+And(±Crd) que presentan bandas y segregados trondjemínicos ricos en plagioclasa, y que pasan gradualmente a alternancias de gneises graníticos aplíticos y esquistos moscovíticos. En esta banda de gneises no se observan grandes masas de gneises granitoides monóliticos como los presentes en el complejo de gneises de Torrox.

2.2. ESTRUCTURAS

En este apartado se pretende describir las estructuras de las rocas estudiadas con el fin de servir de base para las descripciones petrográficas (Capítulo 3). En ningún momento se ha pretendido realizar un estudio estructural detallado, sino enfatizar los aspectos estructurales relevantes desde el punto de vista petrogenético. En este sentido, es de interés la consideración de (1) el sincronismo en el desarrollo de estructuras particulares a lo largo de la secuencia, (2) de la heterogeneidad de la deformación a media y pequeña escala, y (3) del grado de sincronismo en la blastesis de las fases a lo largo de una secuencia metamórfica. La consideración sincrónica e instantánea de las distintas estructuras y asociaciones minerales observadas en una secuencia puede conducir a un establecimiento de relaciones blastesis-deformación extremadamente complicadas y contradictorias (e.g., Vernon, 1978; Bell, 1986).

2.2.1. ESQUISTOS Y GNEISES PELÍTICOS GRAFÍTICOS

Las metapelitas grafíticas de la unidad de Torrox presentan una foliación principal penetrativa (S2) paralela a las alternancias litológicas de esquistos y cuarzo-esquistos. Esta foliación puede describirse como una foliación de crenulación diferenciada que transpone estructuras previas (Figura 2.2.1a), tal y como se revela microscópicamente por la presencia de pliegues intrafoliares, bandeo composicional tectónico, arcos poligonales definidos por máicas, y de una foliación interna (S1) presente en porfiroblastos precristalinos de plagioclasa y, en menor medida, de granate y estaurolita, oblicua y discordante con la foliación principal (ver Capítulo 3). En las metapelitas grafíticas el grado de penetratividad de la foliación aumenta hacia las partes más profundas. Los pliegues mesosópticos asociados a D2 en la metapelitas son apretado, de plano axial subhorizontal, observándose curvaturas y crenulación en las alternancias de cuarzas y esquistos (Figura
2.2.1b). Estructuras mesoscópicas relacionadas con etapas anteriores a la deformación D2 no son comunes, aunque se encuentran algunas estructuras en venas de cuarzo precoces que podrían interpretarse como pliegues P1 plegados y transpuestos por D3 (Figura 2.2.1e).

La foliación principal está afectada a escala microscópica y microscópica por una deformación posterior (D3). En las rocas menos profundas de la secuencia se desarrolla un microplegado sobre el bandead comunicional S2 y una foliación de crenulación diferenciada S3 (Figuras 2.2.1c-e). En las metapelitas más profundas se observan a escala microscópica dominios cuarzosos sigmoidales entre los que se anastomosan las bandas lepidoblásticas que definen la foliación y trazas pseudoparalelas de foliaciones distintas que pueden relacionarse con un desarrollo importante de D3. De hecho, las relaciones S3/S2 de los porfídoloblastos (particularmente de plagioclases) y las relaciones microestructurales entre las distintas foliaciones externas sugieren que S3 se habría paralelizado con S2 (o la habría transpuesto) en gran parte de las muestras (Capítulo 3). La importancia del componente no-coaxial en el desarrollo de S2 puede constatarse por la presencia de estructuras S-C y S_{ac}-C (Figura 2.2.1f).

Bell y colaboradores (e.g., Bell, 1981, 1986; Bell y Rubenach, 1983; Bell et al., 1986) han propuesto un modelo de desarrollo de crenulación basado en la partición de la deformación por acortamiento progresivo inhomogéneo no-coaxial (non coaxial progressive bulk inhomogeneous shortening). Según este modelo las bandas de filoistilcitos acomodan la deformación por acortamiento progresivo y cizalla, en contraposición con las bandas cuarzosas donde la deformación es esencialmente por acortamiento progresivo. Las relaciones entre S2 y S3 anteriormente descritas sugieren la operatividad de procesos de partición de la deformación y reactivación de la foliación S2 (Bell, 1986). Por lo tanto, este modelo se considera apropiado para explicar las características de la fábrica encontrada en estas rocas, incluyendo las complicadas relaciones de blastesis-deformación que se explican mediante los criterios clásicos de Zwarc (1962) (Vernon, 1978, 1989; Bell, 1985; Bell et al., 1986; Bell y Johnson, 1989; Bell y Hayward, 1991).

Los gneises polícticos girofisiticos presentan características estructurales análogas a las de los esquistos suprayacentes con fibrolita, aunque presentan ciertas peculiaridades interesantes. El bandead comunicional tectónico suele estar bien desarrollado, con pliegues de crenulación desenraizados (estadio 5 de Bell y Rubenach, 1983; Figura 2.2.1g). En estas rocas es común encontrar placas de muscovita desorientadas (aunque deformadas) en los dominios cuarzo-feldespáticos, mientras que en los dominios lepidoblásticos rícos en grafito, las placas de filoistilcitos son por el contrario de tamaño de grano fino a muy fino (Figura 2.2.1h). Estas características son consistentes con una partición de la deformación D2-D3 en dominios de deformación por acortamiento progresivo (dominios cuarzosos) y dominios de deformación por cizalla y acortamiento progresivos (dominios lepidoblásticos). En algunas muestras se desarrolla una deformación

![Figure 2.2.1](image-url) - (Página siguiente) a) Pliegues P2 en un banco cuarcelito y S2 paralelizada a S3 en la serie de metamórficas girofisiticas. b) Centrado P2 y S2 de plano axial en intercalaciones cuarcelíticas dentro de esquistos girofisiticos. c) Pliegues P3 y S3 de crenulación en esquistos girofisiticos con fibrolita. d) Pliegues P3 turbados y S3 de crenulación en gneises polícticos girofisiticos con alternancias de politicos-cuaroncos y segregadas transformáticas. e) Vena de cuarzo que registra un posible pliego P3 plagado por P2 con un fuerte desarrollo de S2 en sus flancos, y pliegues menores P2 en metamórficas girofisiticas. f) Supersposición S3 y S1 en esquistos girofisiticos con fibrolitas (núcleos paralelos). g) Micropliegue desenraizado (P2-P3) en dominio lepidoblástico de un gneise políctico (núcleos paralelos). h) Placas de muscovita de tamaño de grano medio desorientadas (aunque deformadas) en dominio cuarzo y placas físicas de muscovita orientadas según Sg (S2-S3) en dominio lepidoblástico de un gneise políctico (núcleos paralelos) que sugieren la partición de la deformación en el sentido de Bell y Rubenach (1983).
milonítica intensa que deforma a la foliación S_2 con desarrollo de fábricas miloníticas (S_3-C y S_m-C), aunque normalmente se detecta crenulación asociada a D_4, que afecta al bandeo tektonico y se paraleliza con S_2. El tamaño de grano medio a grueso de algunos cristales ha favorecido el desarrollo de fábricas rotacionales, especialmente en las placas de moscovita que presentan hábitos fusiformes (Capítulo 3).

Cuevas et al. (1989) indicarón que la deformación rotacional (D_3) desarrolla crenulación, pliegues de dirección axial WNW-ESE, pliegues en vaina y linterna de estratificación N70E, superponiéndose y obliterando las estructuras D_2 en los gneises pelíticos grafitosos. Los pliegues P_2 presentan planos axiales tumbados y flancos cortos invertidos con vergencia E (Figura 2.2.1d). Dados el carácter rotacional de las estructuras D_2 y D_3 y su paralelismo en dirección y sentido de movimiento, es razonable considerar que D_3 ha reactivado S_2, y que ambas deformaciones son asignables a un mismo evento deformacional progresivo de carácter no-coaxial, de manera que las estructuras, precozmente llegan a estar afectadas por la deformación progresiva. Esta inferencia se mantendrá en la descripciones petrográficas del Capítulo 3.

A pesar del aspecto armónico de los pliegues P_2 en gran parte de los GP (Figura 2.2.1d), en algunos afloramientos pueden observarse pliegues con formas contorsionadas y disarmónicas (Figuras 2.2.2a y b) que indican unas condiciones de ductilidad elevadas. Segregados irregulares trondhjemitcados de aspecto pegmatoido cortan la foliación plegada en las bandas cuarzosas más competentes, disponiéndose paralelamente a las superficies axiales de estos pliegues (P_2, Figura 2.2.2a y b). No obstante, la mayoría de los segregados trondhjemitcados son concordantes con la foliación principal, están afectados por la misma y llegan a generar morfologías de tipo augen. Estas relaciones indican que el proceso de segregación en los GP tuvo lugar en condiciones síntectonicas (pre-D_2 a sin-D_3), y sugieren una importante circulación de fluidos que podrían haber sido liberados del complejo de gneises leucocratos subyacente. De hecho, la segregación de fundidos parciales graníticos en los gneises leucocratos tuvo lugar igualmente en condiciones sintectonicas respecto de D_2-D_3. Por lo tanto, la estrecha relación espacial entre los gneises pelíticos y leucocratos podría interpretarse como el resultado de la infiltración de fluidos en la serie de metapelitas grafitosas.

Las fábricas encontradas en los gneises pelíticos son muy variadas y aparentemente contradictorias. Sorprende el hecho de que las deformaciones D_2 y D_3 han sido intensas, y sin embargo, bastantes muestras foliadas presentan texturas decusadas en dominios cuarzosos, cuarzo-feldespáticos y trondhjemitcados, con granos desorientados de fases como plagioclase y moscovita que en las zonas lepidoblasticas más deformadas de la misma muestra están afectadas por la deformación. Además, existen gneises pelíticos sin fábrica, particularmente abundantes en el sector meridional del CGT, que además suelen presentar asociaciones con cordierita. El aspecto macroscópico de estas rocas es no obstante estructurado, manteniendo un bandeo composicional trondhjemitico de escala centimétrica a milimétrica, aunque el aspecto microscópico es decusado, similar al de corneanas con placas desorientadas de micas. Estas observaciones indican que con posterioridad a la deformación (D_2-D_3), la secuencia se encontraba a una temperatura suficiente como para sufrir un proceso de recristalización anisótropica importante y borrar prácticamente todas las evidencias de deformación interna en los gramos minerales. Por sus características particulares de fábrica y de asociación de fases, estas rocas serán descritas como un subtipo de los gneises pelíticos, i.e., gneises pelíticos cordieríticos.

Finalmente, cabe notar la existencia de pliegues abiertos con escaso desarrollo de engrosamiento de chanclas y crenulación (D_4), que indican una deformación dúctil tardía correlacionable a escala regional con pliegues de vergencia N. la débil crenulación asociada a estos pliegues en las partes más profundas de la secuencia metapelítica es posterior a la blastesis mineral de baja P.

33
2.2.2. Gneises Leucocratos

El conjunto de gneises leucocratos de Torrox presenta una gran complejidad estructural, resultado tanto de una secuencia deformacional compleja como del hecho de que los gneises han sido deformados en estado parcialmente fundido. Los gneises más deformados presentan una línea de estratificación N70E con sentido de movimiento al E (Cuevas et al., 1989) asociada a una foliación subhorizontal y asignada por estos autores a la deformación D₃ de las metametalías, que en el caso de los gneises leucocratos habría generado esencialmente rocas leucíticas. En relación con la estructuración y historia del CGT, es interesante señalar algunas de las conclusiones de Cuevas et al. (1989): "la nature massive des protolithes gneis, ce qui entraine que les structures observées sont contrôlées essentiellement par les caractéristiques de la déformation et non par les hétérogénéités des matériaux" (op. cit., p. 108). "La foliation existe dans tous les faciès qui composent le massif gneisique bien que son importance soit variable" (op. cit.; p. 110), y "Les Gneis de Torrox, resultant de la migmatisation synchrone de D₂ ou de la transition D₂-D₃, n'ont registre que les structures de l'episode de déformation D₃" (op. cit., p. 114). Implicitamente, de estas palabras y del conjunto del trabajo de Cuevas et al. (1989), se desprende que el conjunto de gneises se comportó como un cuerpo sólido durante la deformación miólitica asignada a D₃, y que gran parte de las diferencias petrográficas de los distintos tipos de gneises se debe a intensidades de miñonitización variables sobre un protolito litológicamente bastante homogéneo.

Sin embargo, como se ha indicado más arriba, el complejo de gneiscos de Torrox es bastante heterogéneo, resultado de una variedad litológica original independiente del grado de miñonitización (ver Capítulo 3). Además, las estructuras observadas sugieren que el complejo estaba parcialmente fundido durante gran parte de la historia deformacional registrada. Dentro de las estructuras típicas de gneises anatócticos y migmatitas resumidas por Mehlert (1968), se encuentran estructuras nebulícticas (Figura 2.2.3a y b), flebiticas (Figura 2.2.3a), estromáticas (Figuras 2.2.3b y c), plegadas (disarmónicamente, Figura 2.2.3d), ptigmáticas (Figura 2.2.3e), schlieren (Figuras 2.2.3f, g y h), ofaldíticas (Figura 2.2.3i) y siliculíticas (Figuras 2.2.3j y k). Estas estructuras están afectadas por la deformación principal D₂-D₃, y a su vez cortan estructuras asignables a D₂-D₃, por lo que necesitan de aproximarse a un estado parcialmente fundido durante la deformación. Así, la mayor parte de las abundantes bandas de gneises aplo-pezmático son paralelas y están afectadas por la deformación, aunque existen bultadas, venas, y diques que presentan relaciones de corte variables respecto de la foliación en todo el complejo de gneises (Figuras 2.2.3 y 2.2.4), indicando segregación continua de líquidos graníticos. Es interesante resaltar el ejemplo ilustrado en la Figura 2.2.4a, que muestra una vena granítica discordante que no presenta relaciones de corte con una capa leucocrática concordante localizada en el seno de gneises bandeados miñoníticos, como se demuestra por el hecho de que la capa concordante aplanada no se continúa a la derecha de la vena discordante. De manera excepcional, también se encuentran masas de gneises graníticos porfíricos, con megacríticos de feldespatos-K, que presentan relaciones discordantes en capas potentes respecto esquistos moscovíticos, aunque afectados moderadamente por la deformación principal (Figura 2.2.4d).

Las estructuras mesoscópicas asociadas y posteriores al desarrollo de la foliación principal son muy

Figura 2.2.2. a) Pliegues P₂ discordantes en alternancias arenaosivas de gneises pelíticos y segregados pegmatíticos, en plagiplanos localizados en las caras del antiguo torrox. Nótese que las bandas armísticas diferencian también estratías aplanadas de pliegues P₂ (ver inferior derecha). b) Detalle de a) que muestra las segregaciones pegmatíticas en las caras P₂.
variadas. Aunque en este trabajo no se ha hecho un estudio estructural detallado de las mismas, estas estructuras se han caracterizado de manera general, particularmente en lo que respecta a su relación con la segregación de fundidos parciales en el complejo de gneises.

2.2.2.1. ESTRUCTURAS ASOCIADAS A LA DEFORMACIÓN MILONITICA PRINCIPAL

Pliogóricos a decimétricos afectan a niveles de gneises graníticos con bandeados litológicos (Figuras 2.2.5a y b). Este bandead se asigna tentativamente a una foliación preva (S1 o S2), aunque en cualquier caso es reflejo de un bandeado litológico original que incluye rocas metamórficas (i.e., esquistos moscovíticos). La foliación milonítica es paralela a los planos axiales subhorizontales de los pliegues anteriormente mencionados (Figura 2.2.5a y b), aunque pliegues cerrados con foliación asociada también afectan a esta foliación milonítica (Figura 2.2.5c), por lo que se considera que se desarrollan durante la deformación progresiva D2-D3. Pliogóricos menores de ejes paralelos a la línea de fatiga (Figura 2.2.5d), y pliegues con sección cerrada (en vaina, Figura 2.2.5e y f), afectan a las bandas aplásticas concordantes localizadas en el seno de gneises bandeados y esquistos moscovíticos. Una fuerte transposición de este bandead es muy común (Figura 2.2.5g), así como el desarrollo de bandas de cizalla donde se concentra la deformación heterogénea (Figura 2.2.5h). El hecho de que las bandas de aplöpegmáticas paralelas a la foliación muestren deformaciones internas más atenuadas que los gneises miloníticos bandeados y porfiríticos, a pesar de la trasposición tectónica asociada a D2-D3, es consistente con estados parcialmente fundidos durante la deformación principal D2-D3.

2.2.2.2. ESTRUCTURAS QUE DEFORMAN LA FOLIACIÓN MILONITICA PRINCIPAL

En su mayoría, las estructuras que deforman la foliación milonítica principal sugieren la presencia de un fundido parcial y controlan a la segregación de masas y diques aplöpegmáticos de dimensiones menores. Pueden observarse pliegues abundantes de pequeñas dimensiones que deforman la foliación y bandead composicional, y donde a veces se localizan aplöpegmáticas con importante engrosamiento de cintas (Figura 2.2.6a). También de escala limitada, pero muy comunes en todo el macizo son bandas de cizalla dúctiles de pequeñas dimensiones y verticalizadas, que afectan a la foliación principal y dan un aspecto contorsionado a los gneises (Figura 2.2.6b). Esto es interpretado como evidencia de la alta plasticidad de los materiales. Localmente, estas cizallas llegan a generar superficies discretas muy netas que cortan limpiamente el bandead composicional gneis-aplit (Figura 2.2.6c y d). No obstante, en el caso de la Figura 2.2.6e puede apreciarse que las superficies que cortan el bandead no se propagan dentro del gneis que lo engloba, sino que se pierden rápidamente en unos centímetros. Esto sugiere un comportamiento muy dúctil, y es posiblemente debido a que la deformación se absorbe por flujo de un fundido parcial en las zonas donde las cizallas no se propagan.

En relación con estas cizallas verticalizadas se segregan localmente aplöpegmáticas y microgranitas en zonas transversales que llegan a cortar al gneis encartado (Figuras 2.2.6f y g). La escala de la segregación de fundidos durante este estado deformacional es de rango limitado, dadas las pequeñas dimensiones de las venas y cuerpos leucocrásicos y el hecho de que a veces estas venas se conectan con las bandas leucocrásicas paralelas a la foliación sin relación de corte aparente (Figuras 2.2.4a y 2.2.6f).

Los ejemplos mostrados en la Figura 2.2.6 ilustran como un sistema parcialmente fundido puede miñonitizarse, plegarse y fracturarse, probablemente debido a que el complejo de gneises leucocráticos era
bastante heterogéneos en términos litológicos y en cuanto a las tasas de fusión parcial local. En sistemas parcialmente fundidos, entre 5 y 25% en volumen, sometidos a esfuerzos no hidrostáticos, van der Molen y Paterson (1979) apreciaron redistribución del fundido parcial intergranular en fracturas perpendiculares a respecto del esfuerzo compresivo principal menor. Estos autores también observaron diferencias significativas en el comportamiento de los sistemas con agua y sin agua añadida (hasta 0.25% en peso), i.e., con tasas de fusión variables, encontrándose zonas de cizalla localizadas y finas en en primer caso y más amplias y homogéneamente distribuidas en el segundo. El hecho de encontrar segregaciones aplopégmatíticas asociadas a zonas de cizalla y fracturas verticalizadas, y variaciones en la anchura de las bandas de cizalla, que deforman la foliación principal, es coherente con una situación de esfuerzos no hidrostática donde los esfuerzos principales menor y mayor serían subhorizontal y subvertical, respectivamente. El estilo contorsionado y disarmonicó de algunos pliegues que afectan a apilatas y a gneises con bandeados composicionales, con fuerte engrosamiento de charnelas, refuerza la interpretación de estas estructuras como resultado de deformación en estado parcialmente fundido (e.g., Ashworth, 1979b; McLellan, 1984), al tiempo que sugiere que durante los estados tardíos de la deformación del complejo de gneises de Torrox las cantidades de fundido parcial debieron descender progresivamente. La posibilidad de segregación bajo condiciones de baja fracción de fundido (low melt fraction), i.e., menores de la necesaria para desagregar las partículas sólidas, ha sido también puesta de manifiesto experimentalmente por Jurewicz y Watson (1985), que encontraron en sistemas graníticos secos (sin H₂O presente como fase vapor) ángulos diédricos entre cuarzo, feldespatos y fundido del orden de 44-60°, lo que supone que el líquido formará una película intergranular, siendo capaz de ser extraído por flujo intergranular (si el ángulo fuese mayor de 60°, el fundido no estaría interconectado y no podría extraerse). Con tasas de fundido mayores del 4% vol, Jurewicz y Watson (1985) encontraron formación de bolsadas (pools) de fundido.

Las tasas de fusión parcial durante la deformación principal progresiva D₂D₃ son difíciles de establecer. La cantidad de fundido existente durante la deformación principal debió ser, en general, menor que la necesaria para desagregar las partículas sólidas y producir un cambio en el comportamiento mecánico del sistema de flujo granular controlado a flujo de tipo suspensión, i.e., probablemente menores de ca. 20-35% vol (rheological critical melt percentage de Arzi, 1978; o critical melt fraction de van der Molen y Paterson, 1979; ver también Wickham, 1987), ya que la mayor parte de las rocas se encuentran deformadas. No obstante, las abundantes bandas de aplopégmatas paralelas a la foliación principal sugieren cantidades elevadas de fundidos parciales localmente. En este sentido, hay que tener en cuenta que gneises porfiroídes de aspecto granítico llegan a “intruir” dentro de las bandas gruesas de esquistos mioscovíticos (Figura 2.2.4d), lo que las tasas de fusión debieron llegar a superar en estas rocas la fracción de fundido crítica (i.e., > 20-35% vol). Esto mismo puede deducirse de los casos en que estos gneises porfiroídes presentan fragmentos desagregados de enclaves restritos (Figura 2.2.3i). Sin embargo, estas inferencias son altamente especulativas debido a la intensidad de la deformación sufrida que ha transpuesto las relaciones primarias. Las estructuras registradas sólo permiten aseverar que el conjunto de gneises sufrió la deformación posterior a D₃ con tasas de fundidos parciales bajas.
Figura 2.2.3 (Página siguiente). Estructuras relacionadas con la presencia y movilidad de jasperoles parciales en el complejo gresítico de Torroella. a) Gresita granitoides neobiólticas y bandas de aplástico con estructura fiselítica. b) Estructura de tipo neobióltica con venas aplásticas y zona que no muestra límites netos con el graite encuadrante. c) Bandas en átrómites definida por gresitas aplásticas concordantes en capas paralelas de esquistos neobiólticos, donde también se observan venas discordantes.
Figura 2.2.3 (continuación; página siguiente). d) Banderado estratigráfico definido por capas de gneis aplíticos, gneis bandeados deformados y capas metasedimentarias (tonos oscuras) en este caso constituydas por metacasitas. e) Pliegues convolutos y diseciones en tonos aplíticos y gneis bandeados. f) Vere biotítica picúrica en organos microcristalinos. g) Concentración metamórfica (con moscovita) de tipo solitario en el interior de un bloque potente de gneis aplítico heterogéneo (obsérse el bandeo definido esencialmente por concentración prefractal de moscovita).
Figura 2.2.3 (continuación; Páginas siguientes). b) Concentración metamórfica (vita en biotita y esquisto muscovita) en grises postriados con migmatitas de feldespato-K. i) Lucesores reutilizados (vita en biotita y gálibos de Al) en grises postriados con migmatitas de feldespato-K, donde se observan aglomerado de un cuerpo mayor posiblemente similar al mostrado en la Figura 2.2.3b. j) Estructura afamística en grises bandeados, donde las migmatitas de Kfs se asocian a bandas leucocráticas. k) Estructura metasomática, definida en este caso por agregados reactivos de sericita rodeada por un nuevo pegmatita feldespático en grises bandeados.
Figura 2.2.4. (Página siguiente) Estructuras intrusivas en el complejo gneisico de Torrox. a) Vena aplastica discordante en gneisos basfificados musoníticos que no muestra relaciones de corte con la zona concordante de gneis aplastico localizada en el seno del gneis basfendido. b) y c) Venas pegmatíticas discordantes y afectadas por la deformación en gneis musoníticos. 4) Cuerpo de gneis subcomprende con negativo de foliatura X moderadamente deformado que presenta relaciones intrusivas (en la imagen) con los esquistos musoníticos que lo envuelven.
Figura 2.2.5. (Página siguiente) Estructuras asociadas a la deformación metamórfica D₃-D₄ en el complejo gneisico de Tornion y series adyacentes. a) Pliegues apretados de plano axial sub-horizontal en alternancia de gresos aplásticos y espacios metasédicos y transposición del bandead, b) Pliegues apretados de plano axial sub-horizontal en una capa de gresos aplásticos en el seno de gresos perfielados con foliación metamórfica subhorizontal. c) Pliegues de plano axial sub-horizontal que afectan al bandead composicional metasédico y a la foliación metamórfica de gresos bandeados con perfielados de feldespato-K. Estos pliegues llevan asociada una nueva foliación metamórfica paralela a los planos axiales. d) Micropiegues en bandas finas de gresos aplásticos capas que son paralelas a la dirección mineral de los gresos bandeados que los engloban.
Figura 2.2.5. (continuación: Página siguiente) 1) y 2) Hojas arrastradas (en rojo) definidas por una capa de gránito apélaito incluida en esquistos muscovíticos. 3) Transformación incipiente de alternancias de gránito apélaitos y esquistos muscovíticos. b) Desarrollo heterogéneo de la foliación malignítica en gránito polifásico con fenocristales relativamente desorganizados de feldespato K. Nota que gran parte del bandeadío leucocrácico es el resultado de la reducción de tamaño de grano y estratificación de las cristales de feldespato.
Figura 2.2.6. (Véase siguiente). Estratigrafía que deforman la foliación monoclínica principal y contribuyen a la segregación tectónica de subcintas plegadas en el complejo geológico de Torrox. a) Plegue de plano axial subvertical que afecta a la foliación monoclínica, con engrosamiento de cintas donde se localiza gneiss aplástico. b) Banda de cizalla tectónica a la foliación monoclínica. c) Plegue de plano axial subvertical sobre gneiss bandados y superficies de translación asociadas. d) Pequeñas superficies de cizalla discretas que cortan al bandedo composicional, aunque no se transmiten hacia los partes superiores, donde aparecen citas aplasticas contorsionadas, e inferiores.
EVOLUCIÓN METAMÓRFICA DEL COMPLEJO CRISÓSICO DE TOBILLA Y SÍNCRITES ADYACENTES

Figura 2.2.6. (continuación; Página siguiente). i) Detalle de d). j) Cuerpo irregulares pegmatítico localizado en una zona de cisalla verticilizada que afecta a greiscas bandadas. La segregación de este cuerpo parece local, asociada a la formación de la zona de cisalla. k) Vena microgranítica emplazada en una cisalla verticilizada que afecta a greiscas bandadas miloníticas. La vena presenta una zonaación definida por concentración de material leucoocrático en los bordes, y presenta textura pegmatítica irregularesmente distribuida en la masa microgranítica de grano más fino.
3
Tipologías Rocosas, Asociaciones
Minerales y Texturas

Prácticamente todas las rocas estudiadas en la unidad de Torrox presentan un estado de desequilibrio textural muy acusado, definido por la coexistencia de asociaciones de fases incompatibles y la presencia de texturas que indican relaciones de reacción no completas entre las asociaciones de P intermedia y baja. En este Capítulo se describen los aspectos petrográficos más relevantes relativos a estas texturas reaccionales, y se relaciona la blastesis mineral en las distintas rocas con el desarrollo de la foliación principal en las metapelitas grafitosas y gneises leucocratos (D$_2$-D$_3$).

3.1. METAPELITAS GRAFITOSAS

3.1.1. TIpOLOGÍAS ROCOSAS Y TEXTURAS

Dentro de este tipo de rocas se incluyen la secuencia de esquistos, cuarzoesquistos y cuarcitas pelíticas grafitosas, que forma la mayor parte de la unidad, y los gneises pelíticos grafitosos adyacentes a los gneises leucocratos de Torrox y Rompealbardas (Figura 2.1.3). Las metapelitas que forman la mayor parte de la secuencia de estos pelíticos son composicional y petrográficamente similares a las metapelitas suprayacentes, si bien las capas metaareníticas son más ricas en plagioclasa que las alternancias cuarzoesquistosas de la serie anterior.

Considerando exclusivamente las rocas pelíticas (i.e., excluyendo las metapsammitas y segregados mònóliticos), las asociaciones de fases encontradas son muy constantes, aunque las proporciones modales de las fases son variables. Además de cuarzo, plagioclasa sodica, moscovita, y grafito, como fases siempre presentes y abundantes, de tourmalina, apatito, circón y pirrotina (en venas tardías) como fases ocasionales y accesorias; y de clorita y hematites como fases retrógradas, las asociaciones AFMT más completas son (abreviaturas de minerales según Kreiz, 1983, excepto Fibx fibrolita; en este trabajo se distinguen la fibrolita y stilimánita como fases distintas siguiendo la sugerencia de Kerrick, 1990, p.245, por las importantes implicaciones petrológicas que supone la metaestabilidad de fibrolita):

- $\text{St+Br+Gr+And+Rt+Ilm} \rightarrow \text{Esquistos sin fibrolita}$
- $\text{St+Br+Gr+(±Ky)+Fib+And+Rt+Ilm} \rightarrow \text{Esquistos con fibrolita}$
- $\text{St+Br+Gr+Ky+Fib+And+(±Crd)+Rt+Ilm} \rightarrow \text{Gneises pelíticos}$
Debido a la presencia generalizada de texturas de reacción que implican a las fases AFM y particularmente los silicatos de Al (ver Capítulo 1), las asociaciones anteriores no pueden considerarse indicativas de "zonas metamórficas" en sentido progrado ya que no representan condiciones de equilibrio, como es fácil deducir de la presencia de tres polimorfos de Al₂SiO₅ en rocas individuales y a lo largo de toda la sección. Por lo tanto, la incorporación de fibrolita en estos esquistos no ha sido utilizada para definir la zonalidad metamórfica en términos progradados s.s., (e. g., zona de la estaurolita-silimanita o moscovita-silimanita de otros autores, Torres-Roldán, 1974, 1981; Elorza, 1979; Tübía, 1985a, Cuevas, 1988) como sería el caso. El metamorfismo del área estudiada representaba una sección estructural coherente, i.e., resultante de una evolución PT-t simple que condujese al registro de picos metamórficos en las distintas zonas minerales, que a su vez definirían un determinado gradiente metamórfico de campo (metamorphic field gradien, Richardson, 1977; Royden y Hodges, 1984; Spera et al., 1984; Englund y Thompson, 1984, 1986; Thompson y England, 1984). No obstante, las asociaciones anteriores reflejan condiciones metamórficas más extremas al pasar de los esquistos con St+Bt+Grt+And a los gneises pelíticos con St+Bt+Grt+Ky+Fib+And.

No se ha encontrado distena en ninguna de las muestras estudiadas de esquistos con St+Bt+Grt+And (ver puntos de muestra en Figura 2.1.2a), si bien Elorza (1979) describe la presencia de esta fase en una sola de las muestras estudiadas por él. Tampoco se ha observado en ningún caso clorita estable con el resto de las fases AFM. La clorita aparece en desequilibrio textural, como intercrecimientos en biotita y localmente asociada a granate, lo que indica su naturaleza retrógrada. Dado que el rango de composiciones de las metapelitas grafitosas es limitado y rico en Fe (Elorza, 1979, Pinto, 1986, y más adelante), la ausencia de clorita no puede interpretarse estrictamente como evidencia de su inestabilidad para las condiciones sufridas por estas rocas. Es posible que en sistemas más magnéticos la clorita fuera estable, al menos para las condiciones de los esquistos con St+Bt+Grt+And. Por otra parte, a pesar de que Elorza (1979) y Elorza y García-Dueñas (1981) describen la presencia de feldespato-K en los gneises pelíticos (que son incluidos por estos autores como el inicio de la zona de silimanita-feldespato-K), esta fase no se ha detectado en ninguna de las muestras analizadas petrográficamente de rocas metapelíticas, metaareniscas y segregados trondhjemíticos (ca. 100 muestras, en gran parte teñidas), ni en los análisis realizados con la microsonda, tanto en el área de Torrox como en los gneises de Rompealbardas. Esta observación concuerda con las observaciones de Boulin (1970) y Pinto (1986). De hecho, la composición de los segregados leucocrálicos es muy pobre en K (Pinto, 1986, Apéndice 1), que esencialmente está presente como componente de la moscovita. La ausencia de feldespato-K es importante ya que construye las interpretaciones concernientes al origen de los segregados trondhjemíticos.

Las asociaciones de fases y texturas de crecimiento y reaccionalmente presentes en los gneises pelíticos indican que las diferencias más sustanciales respecto de los esquistos con fibrolita provienen de características asignables a las condiciones de P intermedia. En estas destaca el desarrollo de abundantes prismas de distena, aunque también debe incluirse la mayor abundancia modal de porfíдоблastos de granate que presentan texturas de crecimiento y disolución precoz ausentes en los esquistos con fibrolita. Las asociaciones y texturas asignables a procesos reaccionales de desestabilización de las asociaciones precoces, que involucran el desarrollo de fibrolita y andalucita, son del todo similares a los encontrados en los esquistos con fibrolita. Este es uno de los argumentos para considerar el desarrollo de fibrolita en los esquistos suprayacentes como producto de la descomposición y no de un metamorfismo progrado en series de distena-silimanita.
Los gneises pelíticos con cordierita están pobremente foliados y deformados, y contienen un micro- y mesobandeado composicional rico en plagioclasa y cuarzo. Sus asociaciones minerales son similares a las de los gneises pelíticos s.s., aunque presentan ciertas particularidades texturales y mineralógicas. Entre ellas, las más distintivas son su textura decusada y la presencia de cordierita que no había sido descrita en estas rocas hasta el presente trabajo. Los blasos de biotita, moscovita, andalucita, turbulina (particularmente abundante en estas rocas) y plagioclasa son decusados. Esturolita y granate son escasos y muestran texturas de reacción abundantes. De manera distintiva, en estas rocas suele aparecer blastos y agregados de clorita (verdosa y colores de interferencia anómalos azulados) retrógrados asociados a biotita y moscovita.

Las asociaciones anteriores se encuentran también en los cuarzo-esquistos y cuarcitas pelíticas intercaladas con las metapelitas s.s., si bien en los primeros la abundancia y tamaño de grano de las fases, exceptuando lógicamente el cuarzo, son menores que en las metapelitas. Las descripciones que siguen se han realizado en términos de fases, y no en términos de las tres asociaciones de fases distinguidas, para no caer en repeticiones innecesarias. Esto es así ya que el análisis textural está dirigido a las texturas que ofrecen información sobre la historia metamórfica y estructural del área (cf. Jamieson, 1988), que en su mayoría son texturas reaccionales ligadas a la descompresión de la secuencia, y son similares en las tres zonas de rocas pelíticas distinguidas. Las descripciones se referirán casi exclusivamente a las metapelitas s.s.

3.1.1.1. GRANATE

A lo largo de la secuencia de metapelitas grafíticas, el granate aparece bajo una gran variedad de texturas que, desde el punto de vista descriptivo, pueden dividirse en dos grupos (Tabla 3.1.1):

Grupo 1 (Figura 3.1.1). Porfídoblastos de tamaño de grano fino a medio (radio \(\geq 0.25\, \text{mm}\)). Este tipo de granate se encuentra en las tres asociaciones de fases distinguidas, aunque es muy escaso e incluso falta en un gran número de muestras de esquistos con fibrolita. No suelen contener inclusiones, excepto de cuarzo, ilmenita, grafito, y rutilo (este último en los gneises pelíticos), y pueden o no presentar texturas de crecimiento y relaciones \(S_{2}/S_{1}\) variables, generalmente indicativas de crecimiento pre- a sincinémico respecto de la foliación principal (Figura 3.1.1a). Rara vez desarrollan texturas idioblásticas, presentándose más bien con formas xenoblasticas redondeadas, que en algunos casos llegan a ser elipsoidales sugiriendo disolución de los blastos (Figura 3.1.1b y c). En muchos casos aparecen con golpes de corrosión y fuertemente pseudomorfizados por agregados orientados y/o decusados de Br+M+Pl+Qtz (Figura 3.1.1c) y a veces por hematíes (psd en la Tabla 3.1.1). Otras veces se localiza andalucita \(\pm\) fibrolita en sus bordes (Figura 3.1.1a y c). Este hecho, y su presencia como inclusiones dentro de porfídoblastos de andalucita (ver más adelante) indica que las reacciones de descomposición de granate están asociadas a la descompresión de la secuencia.

Como puede observarse en la Tabla 3.1.1, los porfídoblastos de granate forman el tipo más común en los esquistos grafíticos con Sr+Bt+Grt+And, donde desarrollan halos de aplastamiento (flattening) respecto de la foliación principal \(S_{2}\) y no suelen presentar inclusiones orientadas, aunque a veces presentan \(S_{1}\) sigmoidales (grafito + ilmenita) y microestructuras de tipo "bola de nieve" que sugieren crecimiento sincinémico (Figura 3.1.1a). Aunque pueden observarse algunos granos con bordes de tendencia dodecaédrica, el grado de disolución y reemplazamiento por micras decusadas es elevado. Así, suelen presentar bordes xenoblasticos (Figura 3.1.1a) y formas alargadas según la foliación principal, lo que sugiere disolución en las caras perpendiculares al esfuerzo compresivo principal asociado a \(D_{2}\) (e.g., Vernon, 1978; Bell et al., 1986). Las texturas de reemplazamiento son claras incluso en granos donde el hábito subidioblastico se mantiene y
donde no se observan placas decusadas de micas. Esto se aprecia en la Figura 3.1.1.b, donde el manto de Ms+Bt (de unos 10 µm) que reemplaza al granate respeta el hábito sub-idioblastico (borde derecho del porfisoblasto de granate). En el caso ilustrado en esta Figura, parece claro que el proceso de reemplazamiento es sin- a post-cinematico respecto de la foliación principal (S3) ya que las micas del manto de Ms+Bt se encuentran orientadas según la foliación, sólo cuando se forman engolofismos de corrosión y el proceso de reemplazamiento es más avanzado (borde izquierdo del porfisoblasto), las micas aparecen decusadas. Si estos porfisoblastos sufrieron disolución durante D2, es posible concluir que las microestructuras rotacionales como la ilustrada en la Figura 3.1.1a, representan un evento deformacional pre-D2 (como se ilustra en la Figura 4.6.3, las caras de este porfisoblasto paralelas a la foliación han sufrido disolución).

Tabla 3.1.1. Grupos texturales de granates observados en las metapelitas de la unidad de Torox en función de las asociaciones de fases diferenciadas.

<table>
<thead>
<tr>
<th>Grupo I</th>
<th>Grupo II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esquistos con St+Bt+Grt+And</td>
<td>pfd</td>
</tr>
<tr>
<td>Esquistos con St+Bt+Grt+(±Kt)+Fib+And</td>
<td>pfd</td>
</tr>
<tr>
<td>Gr. pelítico con St+Bt+Grt+Ky+Fib+And(±Crd)</td>
<td>pfd</td>
</tr>
</tbody>
</table>

Nota: pfd = porfisoblastos; pfd = pseudomorfizados; mtrc = matriz; inc P1, inc St, inc Ms, inc Tar, inc And = incluidos en plagioclase, estaurolita, moscovita, turmalina y andalucita, respectivamente. x = Común; (±) = Escaso; - = No observado.

En los esquistos con St+Bt+Grt+(±Kt)+Fib+And, este tipo de granate es muy escaso, falta en un gran número de muestras, y generalmente presenta un fuerte grado de pseudomorfismo por micas decusadas. Las texturas que presenta estas rocas son muy similares a las descritas anteriormente, e indican que los porfisoblastos de granate han sufrido procesos de disolución sin-cinematica en las caras perpendiculares a la dirección del esfuerzo compresivo principal y han sido reemplazados en condiciones sin- a post-cinematicas respecto de la foliación principal S2 y S3 (Figura 3.1.1c).

En los gneises pelíticos con St+Bt+Grt+Ky+Fib+And(±Crd). Los porfisoblastos de granate son de tamaño de grano mayor que en los esquistos sin y con fibrolita y pueden aparecer texturalmente zonados.

Figura 3.1.1. (Página siguiente). Texturas de granates porfisoblasticos (Grupo I) en la serie de metapelitas de la serie de metabasitas grosfitas. a) Granate con foliación externa segmental (S2) en un cuarto con St+Bt+Grt+And. Nótese la presencia de estaurolita (borde superior) y estaurolita (borde inferior) crecidas sobre la foliación principal S3 (níeles paralelas). b) Imagen de electrónicas retrodispersadas (BSE) que muestra la reemplazamiento de granate (blanco) por un manto de Ms (gris) + Bt (placas blancas) en gran parte orientadas según la foliación principal en un cuarto con St+St+Grt+And. El límite original del porfisoblastos se nota por la mayor concentración de biotita. c) Porfisoblastos de granate en estado de reemplazamiento muy avanzado por agregados de Ms+Bt+Pl+Qz en un cuarto con St+Bt+Grt+Fib+And. Nótese la forma alog alogarítmica de los grano según la foliación principal (níeles paralelas). d) Porfisoblasto de granate con formas sub-idioblasticas y sin registro de recristalización en un gneiss pelítico con St+Grt+Ky+Fib+And (níeles paralelas). e) Porfisoblasto de granate que muestra los colores texturales de crecimiento, con un bordes de crecimiento interesado y cuarto, en un gneiss pelítico con St+Bt+Grt+Ky+Fib+And. Nótese la presencia de Fib+Ky+And+Bt en el borde inferior del grano (níeles paralelas). f) Porfisoblasto de granate con bordes texturales de crecimiento que va a partir de recristalización en un gneiss pelítico con St+Bt+Grt+Ky+Fib+And. Nótese también la presencia de deformación en el borde inferior derecho donde el granate no presenta bordes de crecimiento (níeles paralelas). g) Granate parcialmente reemplazado por una corona de material criptocrstático de tipo pita en un gneiss pelítico cordierítico con St+Bt+Grt+And+Crd (níeles paralelas). Excepto donde se indica, las barras de escala marcan 0.5 mm.
(Figura 3.1.1c y f). En estas rocas el grado de reemplazamiento de los distintos tipos de granates es muy variable, por lo general más avanzado en gneises pelíticos con cordierita. No obstante, las texturas de reemplazamiento son distintivas respecto de los esquistos ya que, además de reemplazamientos por Br+Ms y Fib/And+Bt (Figura 3.1.1e), algunos granos muestran evidencias de descomposición precoz asociada a blastesis de disteno (Figura 3.1.1f). En los gneises pelíticos con cordierita los porfidooblástos de granate están pseudomorfizados por agregados de moscovita + biotita, y por un agregado criptocristalino mármol-verdoso de tipo pinitico, entre los que quedan restos de granate (Figura 3.1.1g).

Grupo II (Figura 3.1.2). En este grupo se incluye una variedad de tipos de granate de tamaño de grano fino a muy fino (radio < 0.25 mm), generalmente incluidos en porfidooblástos de otras fases como estaurolita, plagioclasa, andalucita, moscovita, y turmalina, aunque también se encuentran en la matriz cuarzo-s o lepidoblastica. Existe una relación entre las asociaciones de fases y el tipo de porfidooblástos que incluye a este grupo de granates (Tabla 3.1.1). En los esquistos con St+Br+Grt+And se encuentran incluidos localmente en porfidooblástos de andalucita. En los esquistos con St+Br+Grt+(Zy)+Fib+And este tipo de granate es el más abundante y se encuentra mayoritariamente incluido en estaurolita y plagioclasa, y de manera irregular en andalucita. En los gneises pelíticos se encuentran incluidos en estaurolita, plagioclasa, moscovita (occasional), turmalina (ocasional) y andalucita. En los incluidos en plagioclasa, estaurolita y andalucita y los de la matriz, es común que den texturas de reemplazamiento de tipo atolón por disolución y reemplazamiento del nucleo, o que presenten núcleos con abundantes inclusiones extremadamente finas que les dan un aspecto borroso (o "doubly") que no se observan en los bordes. Inclusiones de la fase que hospeda al granate suelen estar presentes junto con Br-Ms en el interior de estos granates, lo cual indica que el reemplazamiento de estos granates tuvo lugar durante la blastesis de aquellas. Este hecho supone que estas texturas de reemplazamiento son diacrónicas y no pueden relacionarse directamente con las texturas de reemplazamiento a baja P de los porfidooblástos del grupo I (excepto para el caso de los granates incluidos en andalucita), aunque más adelante se mostrará que pueden relacionarse con los estadios iniciales (a presión intermedia) de la descomposición.

Las descripciones anteriores sugieren que los procesos de discomposición de granate no han sido sincrónicos en muestras individuales de las metapelitas grafíticas. Como se ha mostrado, parte de la fibrolita y andalucita de las tres zonas definidas procede de este proceso de descomposición de granate. Sin embargo, las evidencias texturales y composicionales presentadas en el Capítulo 4 indican que los procesos de crecimiento de los distintos tipos de granate fueron complejos. En los esquistos sin fibrolita y con fibrolita los porfidooblástos de granates presentan las típicas características composicionales de zonación de crecimiento encontradas en metapelitas de grado medio. Sin embargo, en los gneises pelíticos la zonación de crecimiento es más complicada, y sugiere estadios distintivos de crecimiento en concordancia con la zonación textural. Estos estadios son anteriores a D2. Por otra parte, los granates del grupo II presentan composiciones diversas a pesar de sus similitudes texturales que no son fáciles de correlacionar con el crecimiento de los porfidooblástos de las mismas muestras. Además, estos granates del grupo II muestran patrones de zonación que sugieren procesos de difusión intracrystalina, posiblemente relacionables con los procesos de reemplazamiento precoz que dan lugar a las texturas en atolón en los granates incluidos en plagioclasa y estaurolita. En resumen, para explicitar las texturas y composiciones de los granates de estas rocas debe implicarse una complicada historia reacional con procesos de crecimiento pre-D2 y disolución sin-a post-D2.
3.1.1.2. Etauroilita

La etauroilita está presente en la mayoría de las muestras estudiadas, y sus relaciones texturales y microestructurales son las más complejas. Forma porfídoblastos de 0.5-2 mm de tamaño, que incluyen grano, ilmenita, a veces rutilo, y más raramente biotita (Figuras 3.1.2b y c, y 3.1.3). En los esquistos con fibrolita y gneis policíticos, algunos porfídoblastos de etauroilita presentan inclusiones de graneulate del grupo II, que pueden estar parcialmente pseudomorfizados por la propia etauroilita (Bi+Ms) (Figura 3.1.3d y e). Como se ha indicado anteriormente, esta característica es distintiva respecto de los esquistos con St+Bi+Grt+And, y es importante en la interpretación de la historia reacional.

Los porfídoblastos de etauroilita presentan comúnmente trazas de inclusiones orientadas de grafito, y a veces ilmenita, cuyas relaciones S/Si sugieren crecimiento pre, sin- y post-cinésmico respecto de la foliación principal S1-*S2 (Figura 3.1.3) siguiendo los criterios clásicos de Zwart (1962). Así, se encuentran cristales perpendiculares a S1 que desarrollan halos de aplastamiento (Figuras 3.1.3a y b), cristales con S1 perpendicular y en discontinuidad con S2, cristales rotacionales con S1 sigmoideas en discontinuidad con S2 (Figura 3.1.3c), cristales con patrones de S2 con formas de "W" parcialmente en continuidad con S1, y parcialmente en discontinuidad con S2 (Figuras 3.1.3e y f), que difícilmente pueden interpretarse como resultado de rotación simple, y, finalmente, blastos y sobrecrecimientos helicíticos con S1 paralela y en continuidad con S2 (Figura 3.1.2b). Estas texturas se encuentran incluso dentro de la misma muestra en todos los tipos de metapelitas distinguídos.

En los esquistos sin fibrolita, el crecimiento de etauroilita se observa comúnmente sobre el bandead de composicional lepidóblástico (S1) rico en muscovita, donde resaltan granos de cuarzo y placas decusadas de biotita asociadas a sus bordes. Los granos de tamaño más fino se asocian a los porfídoblastos de graneulate de estas rocas (Figura 3.1.1a). En algunos casos, estos granos se disponen en las sombras de presión y desarrollan texturas de crecimiento con inclusiones orientadas paralelas a los bordes de los cristales (Figura 3.1.3d). Esto sugiere que, al menos en parte, el crecimiento de etauroilita es el resultado de descomposición de Grt+Ms. Este proceso es tardío, esto es, sin- a post-D2. No obstante, también se encuentran porfídoblastos "preces" de etauroilita anteriores a D2 (Figura 3.1.3a).

En los esquistos con fibrolita y en los gneis policíticos, la presencia de inclusiones de graneulate parcialmente pseudomorfizados por la propia etauroilita (Figura 3.1.2c) sugiere que parte de la blastesis de etauroilita se debe a descomposición de graneulate bajo condiciones sin-D2 ya que inclusiones de graneate se encuentran en porfídoblastos rotacionales de etauroilita (Figura 3.1.3c). Un hecho interesante es que los

Figura 3.1.2 (Página siguiente). Texturas de graneulates del grupo II en el serro de metapeligros grafíticos. a) Granates con texturas en atollón, parcialmente remplazados por Bi+And+Qz+Pl, incluidos en porfídoblastos de andalucita de un esquisito con St+Bi+Grt+Fib+And. (nícolas cruzadas). b) Inclusiones de graneate no remplazadas en un porfídoblasto de etauroilita y en la matriz lepidóblástica rico en moscovita de un gneis policítico con St+Bi+Grt+Kp+Fib+And (nícolas paralelas). c) Granate en atollón, parcialmente remplazado por Bi+Si, incluido en un porfídoblasto de etauroilita de un gneis policítico con St+Bi+Grt+Ky+Fib+And (nícolas paralelas). d) Inclusiones de graneate sin signos de ruptura en un porfídoblasto de plagoclasa con S1*Si, en un esquisito con St+Bi+Grt+Fib+And (nícolas paralelas). e) Granato con nícolas bajas y bordes limpios incluido en un porfídoblasto de plagoclasa (S1*Si) de un esquisito con St+Bi+Grt+Fib+And (nícolas paralelas). f) Granates en atollón, parcialmente remplazados por Bi+Ms+Qz+Pl, incluidos en porfídoblastos de plagoclasa de un gneis policítico con St+Bi+Grt+Ky+Fib+And (nícolas cruzadas). g) Granates incluidos en placas de muscovita de un gneis policítico con St+Bi+Grt+Ky+Fib+And (nícolas cruzadas). h) Granates incluidos en placas de muscovita de un gneis policítico con St+Bi+Grt+Ky+Fib+And (nícolas paralelas). Las barras de escala marcan 0.5 mm.
CAPÍTULO 3: TIPOLOGÍA ROCOSAS, ASOCIACIONES MINERALES Y TEXTURAS

granos de rutilo incluidos en porfidoblastos de esteaurolita de los esquistos con fibrolita y de los gneises pelíticos se encuentran a veces parcialmente reemplazados por ilmenita, lo cual sugiere que la blastesis de esteaurolita debió ser, al menos en parte, posterior o sincrónica con el proceso de transformación Rt → Ilm.

En los tres tipos de asociaciones de fases distinguibles en las metapelitas gneisofitas, la esteaurolita presenta texturas reacionales que involucran a los tres polimorfos del silicato de Al. En algunas venas cuarzoas de segregación hidrotermal precoces localizadas en los gneises pelíticos, esteaurolita y distena presentan texturas de crecimiento epitaxial. Este tipo de crecimientos epitaxiales, cristalógraficamente coherentes, de esteaurolita-distena no son raros en la naturaleza. (e.g., Wenk, 1980) dado que la estructura de la esteaurolita incluye "capas" con la estructura y composición de distena alternantes con monocapas de composición aproximada $[\text{Al}_9\text{Fe}_2\text{O}_{16}](\text{OH})_2$ a lo largo de [010] (e.g., Griffin y Ribbe, 1973; Ribbe, 1982). Estas texturas en venas hidrotermales son importantes ya que indican un crecimiento simultáneo, y por lo tanto una coexistencia en equilibrio de ambas fases durante las condiciones de P intermedia. Esta es una de las evidencias para rechazar una zonaridad metamórfica basada en un metamorfismo progradado bajo series de fases de distenas-ilminita, y apoya la generación de fibrolita en relación con procesos de descomposición.

Por otra parte, la esteaurolita se encuentra en todos los casos parcial o totalmente pseudomorfozada por And + Bt + Ilm (Figuras 3.1.4c, g y h). Esta textura es más común que los pseudomorfos decussados de Ms + Bt, y que los agregados de Fib + Bt + Ilm en los esquistos con fibrolita y gneises pelíticos (Figura 3.1.5b). En los gneises pelíticos con cordierita la esteaurolita aparece, además, como gramos aislados en la matriz, parcialmente pseudomorfizadas por agregados de Crd + Bt + Ilm + Ms o pinita + biotita (Figuras 3.1.7c y e). Todas estas texturas de reemplazamiento afectan a los gramos aparentemente pre-, sin- y post-cinémáticos respecto de la foliación principal. Los reemplazamientos con fibrolita son sint-cinémáticos respecto de D2 y los que involucran andalucita son tardíos post-cinémáticos respecto D3. Puede inferirse que gran parte del crecimiento de andulacja y fibrolita es el resultado de reacciones de descomposición de esteaurolita que progresaron desde condiciones sin-D2 a post-D3 durante la descomposición de la secuencia. Esto se demuestra no sólo por las texturas reacionales, sino también por el hecho de que la abundancia modal y el tamaño de grano de la esteaurolita varían fuertemente en estas rocas en relación inversa a las abundancias modales de fibrolita, andalucita y biotita. Por lo tanto, estas texturas no pueden interpretarse en términos de que la esteaurolita es la fase producto, como sugirió Loomis (1972a; ver Capítulo 1.2.4), toda vez que además la esteaurolita se encuentra también pseudomorfizada por Ms + Bt. Texturas de reemplazamiento similares han sido descritas en muchas áreas, tanto de metamorfismo regional como de contacto (e.g., Guidotti, 1968; Kvak, 1974; Fletcher y Greenwood, 1979; Jamieson, 1988; Rubenach y Bell, 1988; Lang y Dunn, 1990), aunque se han interpretado generalmente en términos progradados. No obstante, en estas rocas se confirma la apreciación de Loomis (1972a) al respecto de que el volumen modal y de tamaño de grano de la esteaurolita no desciende al pasar de los esquistos sin fibrolita a los esquistos con fibrolita, aunque en los gneises pelíticos la abundancia y tamaño de esteaurolita es, en general, menor que en los esquistos. Esto es debido a que el grado de pseudomorfosis sufrido por la esteaurolita no se relaciona con el incremento en el grado a lo largo de la secuencia de metapelitas, ya que el mismo es extremadamente variable dentro de muestras individuales de las tres tipos de rocas distinguidas, oscilando desde porfidoblastos idiomorfo reemplazados a pequeños relictos (< 0.1 mm) incluidos en andalucita.

Las descripciones anteriores indican que las relaciones blastesis-deformación-reemplazamiento de la esteaurolita son bastante complejas. El que parte de estas relaciones (las asignables a condiciones sin- a post-D3) no se expliquen fácilmente en base a los criterios de Zwart (1962) puede ilustrarse por el hecho de que un
crecimiento sin a post-cinemático de estaurolita en las tres zonas consideradas no puede ser coetáneo con un reemplazamiento simultáneo de estaurolita por fibrolita y andalucita, i.e., también sin a post-cinemático, que indicaría su instabilidad durante ese mismo periodo. Esta inconsistencia es aún más evidente a toda vez que (1) los propios porfido-blastos aparentemente post-cinemáticos de estaurolita están reemplazados por andalucita, y (2) los procesos reaccionales de descomposición de estaurolita observados son consistentes con las predicciones de sistemas modelos bajo condiciones de descompresión (Capítulo 5.4). Es por lo tanto necesario concluir que la blastesis aparentemente sin a post-cinemática de la estaurolita es anterior a la blastesis sin D2 de fibrolita (y tardí a post-D3 de andalucita).

Esta situación contradictoria podría explicarse si se consideran modelos de partición de la deformación de crenulación D2 (en dominios de aplastamiento y dominios de cizalla) y, además, la deformación de crenulación D3 afectó a las rocas estudiadas en grado variable. Las varias relaciones S1/S2 de la estaurolita asignable a D2 indican la naturaleza heterogénea de evento deformacional a la escala de la lámina delgada, y por ende, a escalas mayores. Así, en las rocas de grado más bajo de la unidad de Torrox, los esquistos con St+Br+Gr+And, el menor desarrollo de S3 ha resultado en un mayor número de porfido-blastos con texturas de crecimiento aparentemente tardío (i.e., aparentemente post-foliación principal S2), aunque este crecimiento sería sin D2 según los criterios de Bell y Rubenach (1983) y Bell et al. (1986). En los esquistos con fibrolita y gneises pelíticos la situación es más complicada por la mayor transposición de S2 por D3. La reactivación de S2 en el sentido de Bell (1986) supone encontrar más raramente cristales de estaurolita aparentemente post-cinemáticos toda vez que están rotados en los microclastos lepidoblasticos donde la deformación se acomodaría esencialmente por cizalla simple, y no haber rotado y mantener apariencia precinemática en áreas cuarzoas, o donde la deformación se acomodara por aplastamiento (Bell et al., 1986). En los casos en que la estaurolita sobrecree la foliación principal externa sin generar S1 sinuosoide (e.g., Figura 3.1.2b) su blastesis debe asignarse igualmente a condiciones sin D2 (ver Rice y Roberts, 1988, y Lang y Dunn, 1999, para discusiones similares en relación con evidencias texturales contradictorias en granate y estaurolita) A pesar de que la blastesis sin D2 puede explicar la coexistencia de blastos aparentemente pre-, sin- y post-cinemáticos, algunos granitos deben considerarse pre-D2. Esto puede inferirse por las relaciones de blastesis-deformación y por el hecho de que la estaurolita se encuentra intercristalizada con distinta en venas de cuarzo precoces.

3.1.1.3. Silicatos de Al

Como se ha indicado más arriba, la distribución de los polimorfos de los silicatos de Al es la base para la definición de las tres zonas definidas en las metapelitas grafitosas. En las tres zonas distinguidas

Figura 3.1.3. (Página siguiente). Texturas estaurolita en la serie de metapelitas grafitosas. a) Porfido-blasto preS2 con bajas de aplastamiento en un esquisto con St+Br+Gr+And. b) Porfido-blasto preS2 con bajas de aplastamiento en un esquisto con St+Br+Gr+Fib+And (fisico paralelo), c) Imagenes de electrones retrodispersados de un porfido-blasto rotational sin S2 en un esquisto con St+Br+Gr+Fib+And. Notese el borde de crecimiento final donde S1 (gráfico) S2, y la presencia de inclusiones de granate. d) Imagen de electrones retrodispersados de un grano de estaurolita con inclusiones orientadas de línea fina (blanco) paralelamente a los bordes del cristal en un esquisto con St+Br+Gr+And. El grano se localiza en una zona de próxim de un porfido-blasto de granate preS2 e) y f) Granos de estaurolita con trazas convolutas y en forma de V de la foliación interna definida por grano en esquisto con St+Br+Gr+Fib+And. Notese que los S1 y S2 están en continuidad parcial (fisico paralelo). Excepto donde se indica, las barras de escala muescan 0.5 mm.
aparece andalucita. La fibrolita, y ocasionalmente, la disena, se une a la asociación de los esquistos con Sr+Br+Grt+And sin que se pierda ninguna otra fase. Finalmente la disena se une a la asociación de los esquistos con Sr+Br+Grt+Fib+And de la misma manera.

La andalucita (Figura 3.1.4) es muy abundante y se encuentra prácticamente todas las muestras examinadas. Grandes porfidoblastos prismáticos de andalucita (> 1 cm de diámetro) se localizan generalmente en dominios lepidobiácticos ricos en grafito (Figura 3.1.4a). Estos porfidoblastos incluyen comúnmente Br+Ilm (Figuras 3.1.4b y c), y más esporádicamente relictos de Grt y Ky (Figuras 3.1.2a), Fib y Ky, y desarrollan patrones de inclusión de tipo quiasmático (Figura 3.1.4b). Los bordes son a veces esqueletales, con inclusiones alargadas de cuarzo (Figura 3.1.4b). En el contacto con la matriz se localizan neoblastos de biotita, acumulaciones de grafito, y se pueden detectar halos de empobrecimiento en moscovita que ha sido reemplazada por biotita. En los dominios ricos en cuarzo la andalucita es menos abundante, generalmente en granos esqueletales y parches xenobiácicos.

Las texturas reaccionales donde está implicada la andalucita representan estados variables de reemplazamiento directo de estaurolita (Figuras 3.1.4e, g y h), moscovita (Figura 3.1.4f), y, en menor medida, granate (Figuras 3.1.1a y e, y 3.1.2a). Es muy común que la andalucita (+biotita+ilmenita) reemplace directamente a los porfidoblastos de estaurolita, respectando a veces los bordes idobiácticos de los prismas de estaurolita (Figuras 3.1.4g y h). Por otra parte, en algunas muestras de gneises pelíticos con abundante disena existen granos de andalucita que son el resultado de la inversión polimórfica directa Ky → And (ver más adelante).

Su crecimiento es esencialmente postcineítico. Los bordes de los porfidoblastos idiomorfas cortan limpiamente la foliación definida por el bandeadote tectónico (Figuras 3.1.4a y b), y desarrollan texturas helicíticas (en el sentido de Spry, 1969) con $S_1 = S_2$ (secuencias idobiácticos con fibrolita y gneises pelíticos). Sin embargo, no es raro que estos porfidoblastos presenten S_4 sigmoideal y microplegues de crenulación con plano axial paralelo a la crenulación externa S_2 (Figura 3.1.4a). Localmente la foliación de crenulación S_2 se acomoda a los bordes de los porfidoblastos, tanto en los esquistos sin fibrolita en zonas donde el acometimiento desarrolla crenulación diferenciada (estadios 3-4 de Bell y Rubenach, 1983), como en los esquistos con fibrolita y gneises pelíticos donde S_2, transplone S_4 (estadios 5-6 de Bell y Rubenach, 1983, Figura 3.1.4e). Se encuentran además blastos con hábitos sigmoideales que indican rociación y blastesis durante D_3 (Figura 3.1.4d). La débil crenulación asociada a las chanelas de pliegues P_1 afecta igualmente a estos porfidoblastos. Estas relaciones indican que la blastesis de andalucita comenzó en condiciones sin D_3, aunque mayoritariamente progresó en condiciones estáticas post-D_3 y pre-D_4.

La silimanita (Figura 3.1.4) aparece en los esquistos con fibrolita y en los gneises pelíticos exclusivamente en su variedad fibrolita. Esta distinción es importante dado que la más probable nucleación y crecimiento de fibrolita fuera del campo de estabilidad de la silimanita y la fibrolita misma (ver Kevrick, 1970). En la mayoría de los casos las madejas de prismas sincrómicos están interconectadas con biotita (Figuras 3.1.4i, j y k), y a veces asocian ilmenita, aunque en algunos casos las madejas son casi puras (Figura 3.1.4i). Cuando su abundancia modal es alta y forma maras gruesas, aumenta el tamaño de grano de los cristales aúlicos. Ocasionalmente, la fibrolita se encuentra reemplazando parcialmente a disena y porfidoblastos de granate, e incluida en porfidoblastos andalucita y plagioclasa. En los gneises pelíticos con cordierita la fibrolita es poco común.

En general las madejas están alargadas paralelamente a la foliación S_2, y a veces desarrolla microplegues intrafoliares y formas fuertemente convolutas asociados a D_3. En muestras donde la
transposición de S_2 por D_3 es evidente, puede observarse definiendo la foliación S_2, y a veces localizada en sombras de deformación asociadas a porfiroblastos precinémáticos respecto de D_3. Los bordes de otros blastos se adaptan a gran parte de estas marcas de fibrolita, por lo que pueden caracterizarse como del tipo armonico (i.e., *harmonious* de Vernon y Flood, 1977), lo que implica un cierto equilibrio textural. Sin embargo, las madajas de fibrolita presentan a veces en sus partes externas cristas alargadas a modo de agujas desorientadas que forman ángulos elevados con la foliación definida por el cuerpo principal de la madaja, y penetran los contactos de grano con cuarzo y porfiroblastos de plagioclasa. Este tipo de texturas representan desequilibrio textural (tipo disarmonico, i.e., *disharmonious* de Vernon y Flood, 1977) y pueden interpretarse como el resultado de un crecimiento post-cinématico respecto de D_3 (cf. Vernon, 1975; Vernon y Flood, 1977; Vernon, 1987). Es decir, este tipo de fibrolita ha debido crecer probablemente fuera del campo de estabilidad de la misma, dado que condiciones post-D_3 son abundantes análogas. Por lo tanto, la blastesis principal de fibrolita ha sido continua en condiciones sin-cinématicas respecto de D_3 y D_2, y de manera esporádica en condiciones metaebolicas respecto de análogas post-D_3.

La distensa (Figura 3.14) aparece sólo de manera esporádica en los esquistos con fibrolita, en 16 muestras de un total de cerca de 350 muestras examinadas petrográficamente (Figura 2.1.2.a). Por el contrario, en los gneises pelíticos es muy común y abundante (hasta 7-10% en vol estimado visualmente), y llega a ser el polimorfo más abundante de algunas muestras. En general se presenta en blastos de tamaño fino, comúnmente < 1 mm en su dimensión mayor, aunque en algunos casos pueden desarrollar prisms muy alargados con relaciones c/a mayores de 10, particularmente en los gneises pelíticos donde llegan a c/a = 30 (Figura 3.14n). Suelen aparecer paralelamenta a la foliación principal, y a veces llega a desarrollar formas curvas microplegadas (Figuras 3.14n y p). Puede encontrarse incrustada en plagioclasa, análoga y placas de moscovita y biotita, y en los gneises pelíticos suele incluir gramos de rutilo. A veces puede estar parcialmente reemplazada por moscovita y fibrolita, y en algunas muestras de gneises pelíticos aparece invertida total o parcialmente a análoga (Figuras 3.14o y p). No se han observado relaciones texturales

Figura 3.14. (Páginas siguientes). Texturas silicatas de Al en la serie de metamorfismos gráfitas. a) Porfiroblasto sin-D_3 de análoga crecido sobre el bandado lepidóblasto (S_3) rico en moscovita diáficamente microplegado en un esquistos con $St+Bt+Grt+And$ (niáglos paralelos). b) Blasto de análoga de tendencia quartzíctica en un gneiso pelítico con $St+Bt+Grt+Kyr+Fib+And$ (niáglos paralelos). Aunque no se aprecia bien en la imagen, las trazas perpendiculares a los bordes del cristal su interseccionan alargados de cuarzo. c) Blasto de análoga con inclusiones de biotita y alúmen en un gneiso pelítico con $St+Bt+Grt+Kyr+Fib+And$. La foliación externa (S_2) se adapta a los bordes del cristal (niáglos paralelos). d) Blasto alargado de análoga (parte en extinción) que forma un microplegado con plano axial obtuso a la foliación principal en un esquistos con $St+Bt+Grt+Kyr+Fib+And$ (niáglos paralelos). e) Atragado xenotéclico de análoga que reemplaza a estaurolita en un gneiso pelítico con $St+Bt+Grt+Kyr+Fib+And$ (niáglos paralelos). f) Atragado esquelítico de análoga +Bt+Im que reemplaza moscovita en un esquistos con $St+Bt+Grt+Fib+And$ (niáglos paralelos). g) y b) Pseudomorfia parcial de análoga sobre estaurolita que mantuvo la forma esquelética de esta última en un esquistos con $St+Bt+Grt+Fib+And$. Nótese la presencia de fibrolita intercristalina con biotita en la matriz foliada (g níáglos paralelos y b níáglos cruzados). f, g, j, k y l) Madajas de fibrolita intercristalina con biotita y paralelas a la foliación principal en i) un esquistos con $St+Bt+Grt+Fib+And$, j) un gneiso pelítico con $St+Bt+Grt+Kyr+Fib+And$ (nótese la presencia de estaurolita parcialmente pseudomorfizada por análoga), y k) un gneiso pelítico con $St+Bt+Grt+Kyr+Fib+And+Crd$. (niáglos paralelos). d) Madaja de fibrolita casi pura en un gneiso pelítico con $St+Bt+Grt+Kyr+Fib+And$. Nótese la presencia de distensa (niáglos paralelos). m) Cristalita de fibrolita en un esquistos con $St+Bt+Grt+Fib+And$. La análoga crece sobre la fibrolita y está última crece sobre distensa (niáglos paralelos). n) Cristalita alargadas y deformadas de distensa en un gneiso pelítico con $St+Bt+Grt+Kyr+Fib+And$ (niáglos cruzados). o) Cristalita de distensa del mismo gneiso pelítico que la Figura anterior parcialmente invertida a análoga (niáglos cruzados). p) Cristalita de distensa sin invertir (algunas de ellos deformados) y totalmente invertidos a análoga en el mismo gneiso pelítico que la Figura anterior (niáglos cruzados). Nótense las distensas análogas y en lamelas de los cristas de análoga. Las barras de escala marcan 0.5 mm.
que permitan deducir las reacciones responsables de la blastesis de distena, ya que presenta contactos limpios con granate (Figuras 3.1.1d e f) y estaurolita. No obstante, se puede sugerir que la distena procede de descomposición de estaurolita, lo cual es consistente con modelos teóricos (Capítulo 5.4), aunque no puede asegurarse petrográficamente. En los gneises pelíticos con cordierita la distena es escasa o inexistente, y puede encontrarse incluida dentro de porfídoblastos de andalucita. En las muestras en que está ausente, no está claro si no llegó a desarrollarse durante las condiciones de P intermedia o fue consumida por reacciones asociadas a la descompresión.

3.1.1.4. PLAGIÓCLASA

La plagioclasa aparece en la matriz, y más típicamente como porfídoblastos de hasta 5 mm de diámetro (Figura 3.1.5). Forma parte junto a Maf-Bra-Quz de la asociación que pseudomorfiza los porfídoblastos de granate, y los porfídoblastos suelen incluir granate del grupo II en los esquistos con fibrolita y gneises pelíticos (Figuras 3.1.2d, e y f). Las microestructuras encontradas en los porfídoblastos de plagioclasa registran estados de crecimiento múltiples, y sus relaciones S/S subson abundantes y claras en las rocas estudiadas.

En los esquistos presentan normalmente relaciones S/S que indican crecimiento pre- a sincinématico respecto de la deformación D2. En estos porfídoblastos queda registrado claramente el carácter de crenulación de la foliación S2, encontrándose estados variables del desarrollo de la misma (Figura 3.1.5a). En los esquistos con fibrolita, la presencia traza de S1 secante respecto de S2 (S3 que se acomoda a los porfídoblastos de andalucita) indica crecimiento prefácemático respecto de D3 (Figura 3.1.2d), tal y como lo sugiere el desarrollo de lamelas de deformación en muestras con deformación milonítica (D3) (Figura 3.1.5b). Sin embargo, un crecimiento más limitado post-cinématico respecto de D3 también viene indicado por blastos y sobrecrecimientos que incluyen a la foliación (Figura 3.1.5c).

En los gneises pelíticos se pueden identificar varios tipos de porfídoblastos de plagioclasa coexistentes:

a) Porfídoblastos xenomorfos tabulares no zonados o con zonación inversa que incluyen granate del grupo II (Figura 3.1.2f). Estos porfídoblastos presentan una S1 oblicua y en discontinuidad con S2, lo cual sugiere un crecimiento pre- a sin-D2. Este tipo de plagioclases es similar textural y composicionalmente a los porfídoblastos con inclusiones de granate de los esquistos con fibrolita.

b) Porfídoblastos de tendencia idiomorfa con zonados complejos oscilantes y sin inclusiones (Figuras 3.1.5d y e). Estos blastos no incluyen granate ni presentan S1, y la foliación principal se adapta a sus bordes. Los patrones de zonación suelen incluir un núcleo xenomorfo y bandas oscilantes cuyos límites son a veces idiomorfos, aunque los limites de los cristales son xenoblasticos. Cristales similares se encuentran en las capas más cuarzo-feldespáticas de los gneises pelíticos y en los segregados trondhjemiticos. En estos últimos la textura general es hipidiomorfa de tamaño de grano medio (ca. 1 mm), dominada por cristales tabulares de plagioclasa con zonación oscilatoria compleja y bordes de tendencia idiomorfa (Figura 3.1.5e), mientras que el cuarzo ocupa posiciones interfaciales o forma granos redondeados con extinción ondulante. A veces el cuarzo puede encontrarse con tendencia idiomorfa bipiramidal incluido en las plagioclases, aunque no llegan a desarrollar hábitos cristalográficos s.s. y se presenta más bien a modo de "gotas". La blastesis de este tipo de plagioclases, y por lo tanto la segregación trondhjemitica, ha debido proceder desde condiciones sin-D2 como lo sugieren las macroestructuras (Capítulo 2) y su compleja zonación.

c) Porfídoblastos tabulares sin zonación concentrada pero con zonado irregular en parches localizados en los contactos con interrecimientos dendríticos de cuarzo (Figura 3.1.5f). Este tipo de plagioclaza
ampoco presenta S_4 ni incluye granate, está debilmente deformada, y se encuentra sobre todo en los gneises pelíticos con cordierita donde pueden incluir blastos recristalizados de moscovita. Su textura blástica interfacciosada con cuarzo, la ausencia de zonado concéntrico y el hecho de que nunca incluye fases excepto blastos tardíos de moscovita, sugiere que este tipo de plagioclásas creció (o recristalizó) en las etapas finales de la evolución metamórfica de estas rocas, en condiciones post-D_2 y sin a post-D_3.

3.1.1.5. Micas

En las descripciones precedentes se han incluido las texturas más interesantes de las micas por su relación con el resto de las fases. En este apartado simplemente serán listadas y se señalarán algunas no descritas.

El paso de los esquistos con $S_2 + Bt + Grt + And$ a los esquistos con $S_2 + Bt + Grt + Fib + And + (K) + Ky$ supone un aumento y descenso paralelo en las cantidades modales de biotita y moscovita, respectivamente, lo cual hace que las rocas con fibrolita adquieran un aspecto más oscuro. Una parte sustancial de estos cambios modales en las micas deben interpretarse en términos del efecto del progreso de reacciones que involucran a estas fases, moscovita como reactante y biotita como producto, más que en términos de un cambio en la composición global de los sienitas (i.e., cambios composicionales originales de las rocas sedimentarias).

La biotita se presenta:

- orientada según las foliaciones S_2 y S_3 e interfacciosada con fibrolita,
- asociada a Ms, $Fib/And + Ilm$ y $Crd + Ilm$ en pseudomorfos de esaurolita y granate (Figura 3.1.6a),
- en los pseudomorfos parciales de granates en atollón incluidos en otros porfídoblastos,
- formando blastos decusados dispersos post-D_2 en los dominios lepidoblasticos y de tamaño de grano mayor que el resto de las placas (Figura 3.1.6b).

Este último tipo de biotita desarrolló hábito tabular no deformado y mimetiza la foliación. En bastantes casos los blastos miméticos presentan los planos de exfoliación (001) perpendiculares a la foliación de la roca, pero están alargados perpendiculares a los planos (001) y paralelamente a la foliación (Figura 3.1.6b). Aunque aislados en los dominios lepidoblasticos, estos blastos pueden relacionarse con la blastesis de tardía post-D_3 de andalucita, y por lo tanto con la descomposición de esaurolita y granate.

En los gneises pelíticos la biotita presenta un tamaño de grano mayor que en los esquistos, aunque presenta texturas similares. A veces se observa interfacciosada según los planos (001) en placas de moscovita (Figuras 3.1.6c y d). En los gneises pelíticos con cordierita la biotita es muy abundante en la matriz y aparece como blastos decusados y xenomorfos de tamaño de hasta 1 mm, con fuerte pleocroismo rojoz, y sin signos de deformación. Sólo en estas rocas es relativamente común encontrar blastos de la matriz parcialmente

Figura 3.1.5. (Página siguiente) Texturas de plagioclásas en la serie de metamórficas grafíticas. a) Porfídoblasto cuya traza S_2 (grafito) define pliegues P_2 con plano axial paralelo a la foliación S_2. b) Cristales de plagioclásas con lamelas de deformación y subgranos alargados producto de deformación de cinta (D2) en un esquisto con $S_2 + Bt + Grt + Fib + And$ (micelas cruzadas). c) Porfídoblastos de plagioclásas zonados y blastos cruzados sobre la foliación principal en un esquisto con $S_2 + Bt + Grt + Fib + And$ (micelas cruzadas). d) Cristal con zonación oscilante en un grafolio pelítico con $S_2 + Bt + Grt + Ky + Fib + And$ (micelas cruzadas). e) Cristal con zonación oscilante y cristal idéntico sin zonación en un grafolio pelítico con $S_2 + Bt + Grt + Ky + Fib + And$ (micelas cruzadas). f) Cristal con zonación en paquetes e interfacciosados de cuarzo en un grafolio pelítico con $S_2 + Bt + Grt + Ky + Fib + And$ (micelas cruzadas), Las barras de escala miden 0.5 mm.
reemplazadas por clorita. Cuando está intercalada con pírita y moscovita en los pseudomorfosis de granate, forma agregados redondeados sin límites precisos de varios mm de diámetro. Es de destacar que no se encuentra intercalada con fibrolita en este tipo de gneises.

La moscovita se forma parte de los microlitones lepidoblasticos que definen la foliación S2, aunque en los gneises pelíticos forma también blastos aislados de hasta 2 mm de tamaño (Figuras 3.1.6c, d y e). Estos blastos de tamaño de grano mayor presentan estados de deformación variable, desde fuertemente deformados con fábricas en huso o pez (Figura 3.1.6c) indicativos de componente rotacional de la deformación (e.g., Lister y Snokes, 1984), hasta decusados con deformación interna menos intensa (Figuras 3.1.6d y e). Independientemente del estado de deformación, a veces presentan finos (aunque escasos) intercruces de biotita (tejarz) paralelos a los planos (001) (Figura 3.1.6f). El tamaño de grano mayor de la moscovita de los gneises pelíticos indica que estas rocas han sufrido un proceso de recristalización que no se detecta en los esquistos gresiños. La recristalización de moscovita ha sido impedida en los dominios lepidoblasticos posiblemente debido a la presencia de abundante grafita, que es considerado un inhibidor del movimiento de límites de grano (e.g., Stry, 1969).

En los gneises pelíticos con cordierita, la moscovita aparece con una mayor variedad de texturas y tamaños de grano. Porfíroblastos aislados en la matriz (1-3 mm), deformados y constituyen probablemente relícticos no recristalizados de una fibra anterior, presentan típicamente inclusiones de biotita, pírita, cuarzo, e ilmenita orientadas paralelamente a los planos (001) (Figura 3.1.6g, y ver Capítulo 4.4.5.1). Estas texturas indican descomposición de moscovita, aunque no se han detectado intercruces de silicatos de aluminio y/o feldespato-K. Las moscovitas de la matriz son de tamaño más fino (0.1-0.5 mm) y decusadas sin evidencias de deformación interna. Además, placas de moscovita (+biotita+pírita) de tamaño fino se asocian a los reemplazamientos de granate y estaurolita (Figura 3.1.7c).

3.1.1.6. Oxidos de Fe-Ti

En la mayor parte de las muestras coexisten rutilo e ilmenita en las tres asociaciones de fases distinguidas en las metapelitas grasiotas. Aunque la ilmenita es más abundante que el rutilo, las cantidades de rutilo aumentan desde los esquistos con St+Bt+Grt+And a los gneises pelíticos, sin que por ello sea aparente una disminución de las cantidades de ilmenita. El tamaño de grano de ambas fases también aumenta desde los esquistos con St+Bt+Grt+And a los gneises pelíticos, donde llegan a encontrarse pequeños "porfíroblastos" de rutilo (< 0.5 mm) e ilmenita (< 1 mm). Ambas fases suelen encontrarse en la matriz foliada lepidoblastica, donde la ilmenita suele presentarse orientada paralelamente a la foliación principal. La ilmenita se encuentra como inclusiones dentro de porfíroblastos de estaurolita, granate y andalucita. El rutilo aparece más raramente como inclusiones, excepto en los gneises pelíticos donde se encuentra comúnmente en estaurolita, distena y más rara vez, en granate. Estos oxidos exhiben texturas reacionalles que indican pseudomorfosis de rutilo por ilmenita, que a veces se encuentran congeladas en los porfíroblastos de estaurolita. La asociación de ilmenita con Fib/And+Bt en los pseudomorfosis de St y Grt indica que el rutilo es fase reactante en las reacciones de descomposición de estaurolita y granate. En los esquistos con fibrolita es común encontrar manto de biotita decusada sobre gramos de ilmenita cuando esta fase se localiza en dominios lepidoblasticos. En los gneises pelíticos con cordierita sólo se ha detectado ilmenita, que aparece como granos aislados en la matriz, incluida en porfíroblastos de andalucita, y asociada a las coronas de de Bt+pírita/cordierita que reemplazan granate y estaurolita. En estas rocas es destacable la presencia de ilmenita como inclusiones orientadas en las placas deformadas de moscovita descompuestas (ver
más arriba), lo que sugiere su implicación como fase producta en las reacciones de descomposición de este tipo de moscovita.

3.1.1.7. Cordierita

Bisnagas de cordierita no alterados sólo se han encontrado en los gneises pelíticos, donde se asociaban junto con Bt+lima a pseudomorfosis de estaurolita (Figuras 3.1.7c y e). No obstante, en estas rocas el material de pináctico (Deer et al., 1962), que también pseudomorfiza granate (Figuras 3.1.1g y 3.1.7d), es más abundante que los cristales de cordierita no alterados. Este material es ópticamente isótopo, aunque bajo altos aumentos (x400) se puede apreciar un cierro parchado muy débilmente anisótropo. Imágenes de TEM realizadas por el Dr. A. Sánchez-Nava en el contexto de un trabajo, más detallado actualmente en progreso, revelan que los agregados son de muy baja cristalidad, y contienen cristalitos de cordierita y micros de tamaño de grano del orden del A que coexisten con áreas no cristalinas donde no se obtiene difracción de electrones. Este tipo de texturas ha sido encontrada en otros agregados pseudo-isótopos similares (e.g., Nédélec y Paquet, 1981). La descripción detallada de estos agregados está fuera del alcance del presente trabajo, aunque se considera que este material es cordierita alterada; una hipótesis alternativa es que representan material amorfo primario, esto es, una fase que faltó en su nucleación (ver Nédélec y Paquet, 1981, 1982; Clemens y McMillan, 1982; Marchant et al., 1982, para una discusión al respecto de texturas hasta cierto punto similares en gneises de grado alto).

En los esquistos no se ha detectado cordierita fresca en ninguna de las muestras estudiadas. Sin embargo, se encuentran ocasionalmente agregados irregulares de aspecto isótopo y baja cristalidad (donde se distinguen folisilicatos) que se disponen generalmente sobre los dominios lepidoblasticos ricos en moscovita y a veces pseudomorfizan granate y estaurolita (Figuras 3.1.7a y b). Los análisis de microsonda efectuados sobre esas zonas indican una composición heterogénea rica en Al y con una importante deficiencia de masa (10-20% en peso), posiblemente resultado de la presencia de fases hidratadas y la naturaleza policristalina de los agregados. Por correlación con productos similares encontrados en los gneises pelíticos con cordierita, se considera que estas zonas son producto de alteración de cordierita o de asociaciones de Cord+ Bt+And de baja cristalinidad.

3.1.1.8. Turmalina

Bisnagas de turmalina idiomórficas se presentan ocasionalmente en los esquistos sin fibroilita y con fibroilita. Suelen estar orientadas según la foliación y presentar zonación de color de pleocroismo. Esta fase no presenta texturas reaccionales de ningún tipo. En los gneises pelíticos la turmalina es más común.
especialmente en los gneises pelíticos con cordierita, donde aparece en cantidades y con tamaño de grano
apreciables, sin orientación preferente, ópticamente zonada, y con inclusiones de pequeños granos de granate
del grupo II (Figura 3.1.2b). La abundancia de turmalina en estas rocas sugiere la inmersión de fluidos,
posiblemente liberados de los gneises leucócratos, donde la turmalina es abundante.

3.1.2. COMPOSICIÓN DE LOS SISTEMAS Y REACCIONES DEDUCIDAS TEXTURALMENTE

Como se deduce de las descripciones anteriores, las metapelitas graníticas bajo-consideración se
caracterizan por presentar una notable abundancia y variedad de texturas reaccionales. De entre estas
texturas, las más abundantes son las que involucran estuviolita, granate y los silicatos de Al. Antes de
presentar las reacciones implicadas, así ilustrativo-considerar la composición de las rocas estudiadas y su
proyección en diagramas de fases.

3.1.2.1. PROYECCIÓN DE LOS SISTEMAS EN LOS DIAGRAMAS AFM Y AKF

Independientemente de los problemas derivados del estado de desequilibrio encontrado en las
metapelitas graníticas, las asociaciones de fases encontradas no pueden usarse estrictamente como
descriptoras de "fases minerales" indicativas de grado, en el sentido de Bowen (1940) y J.B. Thompson
(1957). Esto se debe a que no se encuentran combinaciones de fases suficientes para definir una topología
completa para una P-T, determinadas en diagramas de compatibilidad (e.g., Greenwood, 1975; Guidotti,
1983), lo que es una indicación de la constancia en la composición de los sistemas metapelíticos estudiados.

Los diagramas elegidos para proyectar las composiciones de rocas totales son el diagrama AFM de J. B
Thompson (1957) y el diagrama AKF (modificado) de Eskola (1939) (Figura 3.1.8). Los análisis de roca total
proyectados incluyen los análisis de Pinto (1986) más algunos análisis adicionales efectuados en este trabajo
que se presentan en el Apéndice I. Los componentes mayores analizados han sido Si, Ti, Al, Fe²⁺, Mn,
Mg, Ca, Na, K, P, y H₂O (pérdida por calcinación). El efecto de los componentes extra respecto del sistema
simple KFMASH sobre la proyección AFM ha sido tenido en cuenta proyectando las composiciones
siguiendo la metodología de Greenwood (1975, ver Capítulo 5.3 para detalles). Los puntos de proyección son
cuarzo (SiO₂), moscovita (K₂Al₂Si₃O₁₀(OH)₄), H₂O, albina (NaAlSi₂O₆), anortita (CaAl₂Si₂O₈), ilmenita
(FeTiO₃) y apatito, (Ca₅(PO₄)₃(OH)), que son componentes de fases saturados en las muestras (i.e., <i>μ</i>_e =
máximo a P y T fijos) excepto para el caso del H₂O ya que en estas rocas coexiste gráfico y la asociaciones
minerales pueden tamponar la composición del fluido (Capítulo 5.4). El vértice F está formado por los
componentes moleculares FeO_{total}+MnO. Para el diagrama AKF modificado los puntos de proyección son
cuarzo, H₂O, albina, anortita, ilmenita y apatito. El vértice K representa el componente molecular KAlO₂ y el
vértice F los componentes FeO+MnO+MgO, por lo que este diagrama no puede considerarse
termodinámicamente válido ya que los componentes significativos FeO y MgO no se consideran
independientemente (cf., Greenwood, 1975; Guidotti, 1983). De hecho, el cruce de <i>dielinea</i> en el diagrama
AKF es evidente, por lo que este diagrama no es útil para el análisis de las relaciones de fases.

Es importante señalar que las diagramas de la Figura 3.1.8 no representan diagramas de fases en
sentido estricto ya que las composiciones de las fases proyectadas no representan composiciones reales. No
obstante, las relaciones entre Si-Grt-Br-Ky a P intermedia y Br-And-Crd a baja P en el diagrama AFM son
representativas de condiciones de grado medio y reflejan las relaciones de partición Mg-Fe usualmente
registradas en otras áreas, i.e., $X_{Mg}^{Cr} > X_{Mg}^{Bt} > X_{Mg}^{St} > X_{Mg}^{Grt}$ (A.B. Thompson, 1976a). Estas relaciones no se encuentran en algunas de las rocas estudiadas, particularmente en los gneises pelílicos, donde $X_{Mg}^{St} < X_{Mg}^{Grt}$ (ver Capítulo 5.4). En el diagrama AKF se ha incluido el efecto de la sustitución tschermak ((Fe,Mg)SiAl$_3$) sobre la composición de las micas (e.g., J. B. Thompson, 1979; A.B. Thompson, 1982).

Todas las muestras de esquistos y cuarzo-esquistos con fibrolita son muy homogéneas, ricas en Fe y moderadamente aluminícas (Figura 3.1.8). El efecto de cantidades variables de cuarzo es mínimo en estos diagramas debido a su proyección desde cuarzo, aunque puede observarse una composición algo menos aluminíca en los cuarzo-esquistos. Esta homogeneidad tiene expresión real en las asociaciones de fases observadas, donde son raras aquellas que no contienen estaurolita o granate. Esto se representa en el diagrama AFM de la Figura 3.1.8 por su proyección en el campo trisfásico $Sr+Bt+Grt$ a P intermedia. La presencia ocasional de distena en estas rocas podría interpretarse debida al efecto de componentes extra (e.g., Mn y/o Ca en el granate, Ti en la biotita, Zn en la estaurolita), aunque como se muestra en los Capítulos 4 y 5 no existen diferencias sustanciales en la razón Mg/Fe de biotita, granate y estaurolita de rocas con y sin distena. Variaciones en la razón MgO/FeO molecular no son esperables de cantidades variables de Fe$_2$O$_3$ en las rocas dada la presencia de grafito en toda la serie y la consistencia de la asociación de óxidos de Fe-Ti (delta-magnesio; e.g., Chinner, 1960). No se dispone de análisis de roca total de los esquistos y cuarzo esquistos sin fibrolita. Sin embargo, de los análisis de Elorza (1979, 1982), y sobre todo por la homogeneidad en las asociaciones minerales observadas, puede deducirse con bastante seguridad que las variaciones composicionales de estas metapelitas tanpoco son importantes en términos de componentes significativos del sistema. Su proyección en el diagrama AFM debe corresponder con el campo trisfásico $Sr+Bt+Grt$ durante las condiciones de P intermedia, y por lo tanto deben ser rocas ricas en Fe y moderadamente aluminícas. Esto es igualmente consistente con la ausencia de clorita en estas asociaciones, aunque es bastante probable que pudiera coexistir en rocas más magnésicas para las condiciones sufridas por estas rocas.

La proyección de los gneises pelílicos indica por el contrario que existen variaciones significativas en los contenidos moleculares de Al$_2$O$_3$ (Figura 3.1.8). No obstante, las muestras de carácter pelílico son homogéneas y similares en términos de Al$_2$O$_3$ y MgO/FeO a las de los esquistos grafíticos, y en consecuencia se proyectan en el campo $Sr+Bt+Grt$ (a P intermedia). La presencia de distena en todas estas muestras no puede por lo tanto relacionarse con cambios en las proporciones de los componentes AFM respecto de los esquistos con fibrolita (e.g., en el sentido de Chinner, 1965 y Naggar y Atherton, 1970). Variaciones en otros componentes (aumentos de Na y Ca; Goel y Chaudhari, 1979; Ferguson y Al-Ameen, 1986), tampoco parecen relacionarse con la presencia de distena, ya que esta fase se presenta comúnmente en las capas de origen sedimentario de carácter más cuarzo-feldespático, que son menos aluminícas (se proyectan en el campo $Bt+Grt$) y presentan razones MgO/FeO similares. Los segregados trondhjemiticos presentan valores de Al$_2$O$_3$ molecular en la proyección muy elevados y muy bajos, lo cual refleja el hecho

Figura 3.1.7. (Página siguiente) Texturas de cordierita y agregados pelílicos en la serie de metapelitas grafíticas. a) Agregado criptocrítico de tipo pelílico desarrollado sobre el bandado lítido-bálsamico rico en mascovita en un esquisto con $Sr+Bt+Grt+And$ (nicolas paralelos). b) Agregado criptocrítico de tipo pelílico localizado a modo de coronas sobre un porfiroblasto de granate en un esquisto con $Sr+Bt+Grt+And$ (nicolas paralelos). c) Agregado de cordierita fresca + biotita + ilmenita + mascovita que pseudomorfiza estaurolita en un gneis pelílico con $Sr+Bt+Grt+And+Crd$ (nicolas paralelos). d) Agregados pelílicos que pseudomorfizan porfiroblastos de granate en un gneis pelílico con $Sr+Bt+Grt+And+Crd$ (nicolas paralelos). e) Agregado de cordierita fresca + biotita + ilmenita + mascovita que pseudomorfiza estaurolita en un gneis pelílico con $Sr+Bt+Grt+And+Crd$ (nicolas paralelos). Las barras de escala miden 0.5 mm.
Esquistos grafitosos

Gneises pelíticos

Figura 3.1.8. Diagramas AFM (proyección desde Qtz, Ms, H₂O, ah, an, ilm, Ap) y AKF (proyección desde Qtz, H₂O, ah, an, ilm, Ap) para la análisis de roca total de metapelitas grafitosas con fibrolita (Círculos muestras con SiO₂ < 70 % en peso; Aspas: muestras con SiO₂ > 70 % en peso), y gneises pelíticos (Triángulos: rocas; Muestras pelíticas y cuarzo-feldespáticas indiferenciadas; Cuadrados: rocas gneises pelíticos con cordierita; Triángulos vacíos: segregados prediferenciados) (analizados por Apéndice 1 y Pinto, 1986). Los topologías representadas son esquemáticas y reflejan las condiciones de P intermedias y P baja. Las t lectures que unen Si con el resto de las fases en el diagrama AFM representan condiciones de P intermedias para los gneises pelíticos son discontinuas debido a su posible ausencia en las asociaciones para estas condiciones (ver texto). Nótese la noción de rotación de las t lectures Si-Bt y Al-Bt hacia composiciones más ricas en Fe en la biotita desde las condiciones de P intermedia a baja.

de que pequeñas variaciones modales en las fases AFM accesorias inducen fuertes cambios en las proyecciones desde cuarzo y albita.

En consecuencia, la presencia de abundante distena en los gneises pelíticos puede haberse debido a relaciones de reacción entre St-Grt-Bt-Ky, y no al efecto de componentes extra. Existen evidencias, introducidas más adelante y discutidas ampliamente en el Capítulo 5.4, para considerar que los gneises pelíticos experimentaron condiciones PT superiores a la estabilidad de estaurolita durante las condiciones de P intermedias en el campo de estabilidad de distena. Por esta razón se ha representado con líneas de trazas las t lectures que unen estaurolita con el resto de las fases. La presencia de fibrolita y andalusita en toda la serie de metametalitas no es relacionable tampoco con la composición de las rocas sino con relaciones de reacción entre St-Grt-Bt-Als.

Dado que la evolución final a baja P de toda la serie metametalítica conlleva la estabilización de And+Bt(±Crd), deben darse cambios importantes en las topologías AFM respecto de las representativas de P intermedia (Figura 3.1.8). Independientemente de la aparición de fases nuevas como cordierita, puede predescirse que el campo difusivo And-Bt debe ampliarse en el diagrama AFM, y que debe producirse una rotación de las t lectures que unen a la biotita con el resto de las fases hacia el vértice FeO. Esta predicción es el
resultado de asumir un comportamiento cerrado (excepto para el H₂O) de los sistemas durante el metamorfismo, lo cual es bastante ajustado para los esquistos grafitícos, aunque no está claro hasta que punto ésto puede haber aplicado para los gneises pelícticos. En cualquier caso, la rotación de las tie-lines implica que la biotita debe cambiar sustancialmente su composición durante los procesos reacionales ligados a la descomposición, disminuyendo la razón MgO/FeO molar en la proyección. Esto no implica necesariamente que la relación MgO/FeO molar total de la biotita descienda, ya que su relación MgO/FeO en la proyección AFM depende de las variaciones en Al₂O₃, y de las variaciones de otros componentes tales como el Ti (como ilustraron Fletcher y Greenwood, 1979, no es igual que el punto de proyección del Ti sea ilmenita que rutilo). Por otra parte, dado que la mayoría de las asociaciones de baja P se proyectarían en el campo difásico And+Ms, la composición de la biotita en equilibrio con andalusita no estaría fija a P y T constantes. Todo lo anterior hace que se puedan predecir composiciones ricas en Fe, aunque heterogéneas, en las biotitas de las muestras estudiadas, como de hecho así ocurre (Capítulos 4.5 y 5.4).

Debido a la rotación de las tie-lines que unen biotita con el resto de las fases hacia composiciones ricas en Fe, algunas muestras algo más magnésicas y/o aluminas podrían proyectarse en el campo trifásico Crd+Ms+And a baja P. Esto puede observarse en el caso de los gneises pelícticos con cordierita (T348 y T498 en el Apéndice I), que presentan composiciones algo más ricas en Mg que el resto de las rocías pelícticas de los gneises pelícticos (Figura 3.1.8). En estas rocías, la composición de la biotita en equilibrio con andalusita y cordierita debería ser constante y con relaciones MgO/FeO molares en la proyección mayores que las de las asociaciones sin cordierita. Sin embargo, como se muestra en el Capítulo 5.4, esto no es así. Por ejemplo, la composición de la biotita de la muestra T348 es extremadamente variable, superando la heterogeneidad composicional de las biotitas de los gneises pelícticos sin cordierita a pesar de que todos los tipos texturales distinguidos en la muestra T348 son tardios (ver Capítulo 4.5).

3.1.2.2. REACCIONES PRECOCESES

Las escasas texturas donde los porfiroblastos de granate aparecen aparentemente reemplazados por biotita y dióxido, en los gneises pelícticos, pueden probablemente relacionarse con estadios precoces de la evolución metamórfica de estas rocías. Esta inferencia resulta del modelo de evolución supuesto, que implica estadios precoces en el campo de estabilidad de la dióxido, aunque dado que no existen criterios microestructurales que la confirmen, es muy especulativa. En términos del sistema simple KFMASH, la inestabilidad de granate para generar Ky+Ms puede modelizarse mediante la reacción divariantes:

\[\text{Grt} + \text{Ms} = \text{Ky} + \text{Qtz}\] (3.1)

que procede hacia la derecha por descensos de P y aumentos de T (A.B. Thompson, 1976a) o descenso de P y T (Spear y Silverstone, 1983). En el sistema KFMASH la reacción (3.1) es metaestable bajo las condiciones de estabilidad de estaurolitita. Sin embargo, existen evidencias para considerar que esta reacción (o su equivalente en un sistema complejo como KNaCaFMsMnMATISHC) pudo haber operado en los gneises pelícticos bajo condiciones P-T superiores a la estabilidad de estaurolitita durante los estadios iniciales de la descompresión a P intermedia (Capítulo 5.4).

Las texturas encontradas en las inclusiones de granate de los porfiroblastos de plagioclasa y estaurolitita de los esquistos con fibrolita y los gneises pelícticos permiten deducir claramente reacciones anteriores a la fábrica actual de las metapelitas estudiadas. Entre estas texturas destacan los granates en atolón, que registran
CAPÍTULO 3: TÍPLOGÍA ROCOSAS. ASOCIACIONES MINERALES Y TEXTURAS

la inestabilidad de granate durante la blástesis de las fases que los incluyen, ya que estaurolita y plagioclasa (±Br±Ms) se encuentran dentro de sus núcleos reabsorvidos. En el caso de los granates incluidos en porfiroblastos de plagioclase no es problema asignar un carácter precoz al proceso reaccional, dado que la blástesis de estos porfiroblastos de plagioclase es, al menos en parte, precinemática respecto de la foliación principal. Más incierto y umbre hay en el caso de los granates incluidos en estaurolita, debido a las evidencias de crecimiento sin-D2 de esta fase. En cualquier caso, las texturas encontradas permiten deducir la inestabilidad de granate en ese periodo, que podría descomponerse mediante una reacción como (no balanceada):

\[\text{Grt} + \text{Ms} + H_2O = \text{St} + \text{Bt} + \text{Pl} (±\text{Qtz}) \]

(3.2)

Aunque no se encuentran óxidos de Ti asociados a los reemplazamientos de estos granates, la presencia de pseudomorfosis de rutilo por ilmenita incluidos en porfiroblastos de estaurolita sugiere la inclusión de estas fases en la reacción (3.2):

\[\text{Grt} + \text{Ms} + \text{Rt} + H_2O = \text{St} + \text{Bt} + \text{Pl} + \text{Ilm} (±\text{Qtz}) \]

(3.3)

Estas reacciones pueden dar cuenta de parte de la blástesis de estaurolita en las rocas estudiadas, lo cual supone incluir a los granates porfiroblásticos como fases reactantes dada la abundancia modal de estaurolita. Esto es consistente con la presencia de biotita y estaurolita sin a tardi-D2 asociadas a los bordes de granates porfiroblásticos en los esquistos con St+Grt+Bt+And. No obstante, en los esquistos con fibrolita y gneises pelíticos no se han observado texturas que permitan deducir la descomposición de granates porfiroblásticos para dar estaurolita.

En el sistema simple KFMASH, la inestabilidad de Grt+Ms para generar estaurolita puede modelizarse por la reacción:

\[\text{Grt} + \text{Ms} + H_2O = \text{St} + \text{Bt} + \text{Qtz} \]

(3.4)

que progresa hacia la derecha por descenso de T y/o descenso de P (A. B. Thompson, 1976a y b). Esta reacción describe las relaciones del campo trífásico St+Bt+Grt en el diagrama AFM (Figura 3.1.8). Por tanto, estas texturas de descomposición de granate pueden relacionarse con los estados iniciales de la descompresión, lo cual no contradice la blástesis sin-D2 de estaurolita en todos los tipos de rocas.

3.1.2.3. REACciones TARDÍAS

Bajo este epígrafe se incluyen aquellas reacciones generadas durante o con posterioridad al desarrollo de la fábrica de las rocas (S2 y S3). Estas reacciones se deducen a partir de texturas en las que está implicada la generación de fibrolita, andalucita y cordierita, y la desestabilización de estaurolita y granate preexistentes.

En muestras individuales de los tres tipos de metapeitas grafitosas distinguidas es muy común encontrar desde porfiroblastos de estaurolita sin signos de reemplazamiento, hasta pequeños relictos de estaurolita en continuidad óptica incluidos dentro de porfiroblastos de andalucita. En todos los casos la asociación neoformada incluye And+Bt+Ilm. En los esquistos sin fibrolita, que presentan abundante moscovita, la andalucita (±Bt+Ilm) crece, además, claramente a expensas de moscovita en los dominios lepidoblasticos. En los esquistos con fibrolita y gneises pelíticos, donde los microlitos lepidoblasticos son
más ricos en biotita (+Fib), el crecimiento de andalucita (+Br+Ilm) a expensas de moscovita es también claro, aunque es posible que la biotita haya sido disuelta ya que en algunos casos no hay moscovita en los alrededores próximos de los porfidoblastos de andalucita. Las texturas de reemplazamiento de granate por andalucita, particularmente evidenciadas en los relictos de granate incluidos en los porfidoblastos de andalucita, indican igualmente la inestabilidad de granate a baja P. El hecho de que estos granates presenten texturas en acción con Br±Ms±And en los núcleos reemplazados no tiene porque relacionarse con las reacciones deducidas, anteriormente a partir de las texturas similares encontradas en los porfidoblastos de estaurolita y plagioclasa. Esto es así porque el granate, porfidoblastico o como granos de tamaño de grano fino, persiste en la matriz durante la blastesis de andalucita, como se demuestra por su existencia actual en las láminas delgadas estudiadas. Por lo tanto, es concebible que parte del granate que no hubiese reaccionado previamente lo hiciera durante la blastesis de andalucita. Además, los porfidoblastos de granate se encuentran pseudomorfonizados por agregados de And±Br y agregados disectos de Br±Ms±Pl±Qtz, que pueden relacionarse también con la blastesis de andalucita. Todas estas texturas de reemplazamiento permiten afirmar que el proceso reacional macroscópico que dio lugar a la blastesis de andalucita implicó la inestabilidad de Sr±Ms±(Br±Qtz) y generó la asociación And±Br±Ilm, mediante la reacción (no balanceada):

\[
\text{Sr} + \text{Grt} + \text{Ms} + \text{Re} = \text{And} + \text{Br} + \text{Ilm} + \text{Pl} + \text{H}_2\text{O} (n\text{Qtz})
\]

Las texturas reaccionales más comunes que involucran biotita son igualmente corriencas de estaurolita por agregados orientados y no orientados de Fib±Br±Ilm. Texturas reaccionales que implican granate y fibroilita no son tan comunes, aunque pueden observarse algunas medias de fibrolita que reemplazan los bordes de los granates. Sin embargo, la disolución de los porfidoblastos de granate paralelamente a las superficies de foliación sugiere que una parte significativa de la fibrolita procede de la descomposición de granate. Estas texturas, y el hecho de que las cantidades de fibrolita sean inversamente proporcionales a las de estaurolita y granate, permiten relacionar la blastesis principal de fibrolita con reacciones de descomposición del granate y estaurolita similares a las asociadas a la blastesis de andalucita:

\[
\text{Sr} + \text{Grt} + \text{Ms} + \text{Re} = \text{Fib} + \text{Br} + \text{Ilm} + \text{Pl} + \text{H}_2\text{O} (n\text{Qtz})
\]

Este proceso reacional tendría lugar antes que el asociado a la blastesis de andalucita, dado el carácter sin-D_2 de la fibrolita. Las relaciones texturales indican además que el granate comenzó a desestabilizarse antes que la estaurolita, y ambos comenzaron a desestabilizarse durante el desarrollo de D_2 y claramente durante D_3, lo cual es consistente con el progreso de la reacción (3,3) antes que la reacción (3,6) y ésta antes que la reacción (3,5).

Considerando el sistema simple KFMASH, las reacciones modelo que describen la inestabilidad de Sr±Ms y Grt±Ms para generar silicatos de Al y biotita son los equilibrios divariantes:

\[
\text{Sr} + \text{Ms} + \text{Qtz} = \text{Br} + \text{Sil} + \text{H}_2\text{O} \quad (3,7)
\]

\[
\text{Grt} + \text{Ms} = \text{Br} + \text{Sil} + \text{H}_2\text{O} \quad (3,8)
\]

\[
\text{Sr} + \text{Ms} + \text{Qtz} = \text{Br} + \text{And} + \text{H}_2\text{O} \quad (3,9)
\]

\[
\text{Grt} + \text{Ms} = \text{Br} + \text{And} + \text{H}_2\text{O} \quad (3,10)
\]
que progresan hacia la derecha con aumentos de T y/o descenso de P (A.B. Thompson, 1976a; ver Capítulo 5.4). Las reacciones (3.7) y (3.9) describen las relaciones del campo trífásico Sc+Br+Als en el diagrama APF (Figura 3.1.8), y su operatividad con posterioresidad a la reacción (3.4) es consistente con la rotación de las haces en el diagrama APF hacia composiciones más ricas en Fe durante la descomposición. Debe tenerse en cuenta que las reacciones (3.7) y (3.8) no son realmente operativas en las rocas estudiadas tal como se han escrito ya que involucran sillimantita, cuyas propiedades termodinámicas son diferentes a las de fibrolita (ver Kerrick, 1982). Además, las reacciones (3.8) y (3.10) son metastables en el sistema KFMASH bajo condiciones de estabilidad de estaurolita, por lo que no pueden usarse como equilibrios de fases en un sentido estricto en el sistema simple KFMASH. No obstante, cualquier reacción que pueda escribirse entre partes de los componentes de fase de un sistema puede utilizarse con fines estimativos de las condiciones PT sufridas, y en cualquier caso, el uso de las reacciones (3.8) y (3.10) es útil desde el punto de vista cinético, esto es a efectos descriptivos de procesos reacionales más simples implicados en el progreso de las reacciones (3.5) y (3.6) y que explican el desarrollo de pseudomorfosis de granate.

Las reacciones de producción de cordierita sólo pueden evaluarse en los gneises péliticos con cordierita, donde esta fase aparece en abundancia y en bastantes casos sin alterar. En estas rocas, la clorita es claramente retragada por lo que no puede implicarse en la generación de cordierita. Feldespato-K tampoco se ha observado, por lo que deben excluirse reacciones con esta fase. De hecho, las texturas observadas indican que la blastesis de esta fase tuvo lugar por descomposición de estaurolita, granate y moscovita, pudiendo escribirse la reacción (no balanceada):

\[
\text{Sc} + \text{Grt} + \text{Ms} + \text{Rt} \rightarrow \text{Crd} + \text{Br} + \text{Ilm} + \text{H}_2\text{O} (\pm \text{And} \pm \text{Qtz} \pm \text{Pl})
\] (3.11)

De las descripciones anteriores queda claro que los gneises péliticos con cordierita presentan asociaciones minerales similares, aunque más evolucionadas textural y mineralógicamente, que el resto de los gneises péliticos sin cordierita. Su textura blastica indica que sufrieron una importante recristalización a baja P, lo que sugiere que el desarrollo de las asociaciones con And+Crd+Br+Ilm pudo estar también favorecido por controles cinéticos favorables que facilitan el progreso de reacciones no detectadas en otras rocas, en combinación con el efecto composicional del sistema (razones Mg/Fe mayores, Figura 3.1.8). Como se discute en el Capítulo 5.4, la modelización de las reacciones de crecimiento de cordierita en términos de los sistemas KFMASH y KNaCaFMnAtiSith entra en conflicto con las texturas reacionales observadas, lo que sugiere que la blastesis de cordierita es el resultado de la operatividad de reacciones metastables. En cualquier caso, estas rocas registran la misma evolución reacional, i.e., una desestabilización progresiva de la asociación de P intermedia St+Grt+Bt+Ky para dar And+Bt, y finalmente And+Crd+Bt. Por lo tanto, el análisis de las reacciones de generación de cordierita debe tener en cuenta la historia reacional previa registrada en otros gneises péliticos.

3.2. GNEISES LEUCOCRATOS Y METAPELITAS ASOCIADAS

3.2.1. TIPOLÓGÍAS ROCASAS Y TEXTURAS

En este apartado se presentan las descripciones pretrográficas de los gneises leucocratos y las metapelitas intercaladas. Como ya se ha indicado en el Capítulo 2, las evidencias de campo indican un
estado parcialmente fundido en el complejo gneisico de Torrox, al menos durante el progreso de las deformaciones D₂ y D₃, con desarrollo de venas y bolsadas graníticas y aplastegmatíticas que muestran relaciones de corte con el bandead y foliación principales. A pesar de la elevada temperatura sufizida, las texturas reaccionales son abundantes, tanto en rocas fuertemente deformadas y con escasos indicios de fusión parcial como en las aplitas y segregados granitoídes tardo. Estas texturas son indicativas de una fuerte descomposición sin-D₃, desde condiciones de estabilidad de disteno hasta andalucita, al igual que en las metapelitas grafíticas. Esto es importante ya que indica que la mayor parte de las asociaciones minerales, composiciones minerales y texturas, deben considerarse el resultado de la recristalización alpínea, aunque no puede excluirse que el complejo de gneises de Torrox represente un complejo gneisico prealpíneo re-fundido.

Dada la heterogeneidad litológica que presenta el complejo de gneises de Torrox, las descripciones que siguen se harán por tipos litológicos, aunque todos los litotipos presentan transiciones texturales y composicionales debido en parte, a la fuerte deformación y procesos de fusión parcial sufridos. Esto hace que la distinción de variedades que sigue pueda ser subjetiva, si bien estos tipos "extremos", que se corresponden con los introducidos en el Capítulo 2, se han diferenciado en términos de criterios texturales, asociaciones minerales, composición global, y estructura.

3.2.1.1. GNEISES BANDEADOS CON MOSCOVITA+BIOTITA+GRANATE

Este es el tipo de gneis más abundante en el complejo de Torrox. La asociación mineral está constituida por cuarzo y feldespatos en proporciones graníticas, moscovita en mayor proporción que biotita, granate, y apatito, además turmalina y silicatos de Al como fases accesorias y ocasionales. Se encuentran formado capas continuas de hasta algunos m de potencia, fuertemente deformados y con abundantes estructuras de deformación no coaxial tales como colas de deformación en los feldespatos y granos de moscovitas con forma fusiforme, y reducción del tamaño de grano. Gran parte de sus variaciones estructurales y texturales son debidas a variaciones en la intensidad de la deformación, aunque presentan características minerales que impiden considerarlos como el producto de deformación de los gneises graníticos porfiroïdes descritos más adelante tal, como sugieren Cuenas et al. (1989).

Estas rocas son de tamaño de grano medio, aunque pueden contener cristales de tamaño muy grueso de feldespatos K, posiblemente por rotura de fencoclastos anteriores. Los porfiroclastos presentan colas de deformación sigmoidales y simétricas, en todos los casos aplastadas y con formación de agregados policristalinos. Su estructura es bandead, observándose a la escala de la lámina delgada alternancias ricas en moscovita y en cuarzo+feldespatos. Si bien este bandead es de origen tectónico, el hecho de encontrar a escala de aforamiento alternancias de bandas isotrópicas aplastegmatíticas y exquisitos moscovíticos de grosor variable sugiere la existencia de un bandead litológico previo y/o desarrollado por procesos de fusión parcial antes o durante la deformación principal. De hecho, los segregados aplastegmatíticos descritos en el Capítulo 2 se localizan preferentemente en este tipo de gneises.

Figura 3.2.1. (Página siguiente) Texturas en gneises bandeados con M+B+Gri. a) Granate parcialmente pseudomorfizado por agregados de M+B+Gri (níctido paralelos). b) Feo cristal de granate parcialmente reemplazado por Pl+Qtz, y biotita retragada en los bordes. Nótese la forma redondeada de los gneises de rociamiento donde se aloja Pl+Qtz (níctidos paralelos). i) Inclusiones de cristales de plagioclase idiomórfos y zonados (con núcleo anumáforo) dentro de un fenocristal de feldespato-K (níctidos paralelos). d) Cristal mixto de feldespato-K y plagioclase (níctidos cruzados). e) Cristal de muscovita primaria deformado con abundantes intercristalinos de biotita y cuarzo (níctidos paralelos). f) Cristales de apatito con incluyentes de circon y muscovitas con intercristalinos de biotita. Las barras de escala marcan 0.5 mm.
Los peridiclastos de feldespato-K pueden estar débilmente exsustos, sin apenas mallas de inversión, e incluyen moscovita, cuarzo, granate y cristales idiomorfos de plagioclasa (Figura 3.2.1c). La plagioclasa no suele ser porfírica, y se presenta en la matriz como pequeños cristales de tendencia idiomorfía no zonados. Las inclusiones de plagioclasa en feldespato-K presentan zonaciones inversas y núcleos xenomorfos (Figura 3.2.1e). En algunos casos se observan intercrecimientos esqueletales de feldespato-K y plagioclasa (Figura 3.2.1d). La matriz de feldespatos y cuarzo muestra deformación interna limitada, con desarrollo de cristales alargados, contactos serrados y recristalización de subgranos.

La moscovita aparece como cristales de tamaño de hasta 1 mm que definen la foliación, aunque su grado de deformación y orientación es variable (Figura 3.2.1e y f). Los granos mayores más deformados se encuentran asociados a agregados decusados de grano más fino y con menor deformación interna que son el producto de la recristalización de los granos mayores rotos. Por oposición a las moscovitas recristalizadas, estos cristales de moscovita de tamaño de grano medio se denominan primarias, en el sentido de que no presentan relaciones texturales con los feldespatos u otras fases aluminicas que sugieran un origen retrogrado, tienen tendencia al idiomorfismo (aunque deformadas), y han podido estar en equilibrio con un fundido (cf., Miller et al., 1981). Las texturas de las nicas sugieren que la deformación tuvo lugar a alta T, existiendo una graduación en las características texturales de granos primarios y recristalizados de la matriz; de hecho, algunos granos primarios se encuentran frecuentemente decusados y a veces con escasa evidencia de deformación interna. Las moscovitas primarias presentan abundantes intercrecimientos constituidos por biotita, cuarzo y, en muy escasa cantidad, rutilo, cristalograficamente orientados según los planos (001) de la moscovita. Estos intercrecimientos, son mucho menos abundantes en las moscovitas recristalizadas, son observables a escala óptica y de TEM (decenas de micras a decenas de μm). Su generación está relacionada con la descomposición de moscovitas primarias fengíticas durante la deformación y descomposición de los gneises (ver Capítulo 4.4.1, y García-Casco et al., 1993). Localmente pueden observarse algunos agregados de grano fino secundarios sobre los feldespatos, que incluyen llegar a recristalizar a cristales de moscovita primarios.

Ocasionalmente, estos gneises contienen también grandes cristales de moscovita de tamaño de grano muy grueso, de hasta 5 cm de largo. Estos cristales están deformados y orientados según la foliación, y se presentan en una estructura pegmatítica concéntrica de tipo augen compuesta en los bordes por agregados de feldespato-K, albita y cuarzo de tamaño de grano fino y por un único cristal de moscovita (r turmalina) en el núcleo. Esta misma estructura existe sin núcleos de moscovita. Además, estos cristales pegmatíticos de moscovita son importantes desde el punto de vista petrográfico ya que tienen una composición distinta de las moscovitas de los gneises bandeados que las engloban y se encuentran parcialmente reemplazados por Fib+And+Kfs+Bt, indicativo de inestabilidad de Ms+Qz a baja presión (Figura 3.2.2). La sillimanita fibrolítica se asocia a feldespato-K en bordes de reacción limos alrededor de los cristales de moscovita (Figura 3.2.2b), mientras que la andulcita forma intercrecimientos en d amore junto con feldespato-K (biotita) desarrollados en el interior de los cristales (Figuras 3.2.2a y c). Estos intercrecimientos de And+Kfs+Bt cortan los planos (001) de los cristales pegmatíticos de moscovitas, aunque el crecimiento de los productos de reacción sigue esos planos en los bordes de los agregados, lo que es particularmente evidente en el caso de las escasas lamelas de biotita (Figuras 3.2.2c y d). Es importante subrayar que estas texturas no se encuentran en las moscovitas de la matriz gneisica.

La biotita es escasa (< 5 %). Además de los intercercimientos con moscovita, se presenta en cristales de tamaño de grano fino alados o en pequeños agregados que siguen la foliación. Cristales de biotitas retrógrados, con pleiotroismo en tonos de verde, se asocian a los bordes de algunos cristales de granate. El
granate aparece como cristales aislados de tamaño de grano fino a medio (0.1-1 mm), con frecuencia pseudomorfizados parcialmente por agregados de Pl+Qtz, Ms+Bs, y biotita retrograda (Figura 3.2.1a y b). En los casos en que el reemplazamiento tiene lugar por agregados de Pl+Qtz, se desarrollan golpes de corrosión redondeados que podrían sugerir una desestabilización precoz del granate en estado parcialmente fundido, como también lo sugiere el hecho de que la biotita no se asocie a estas texturas (Figura 3.2.1b). El apatito es abundante y de tamaño de grano medio (hasta 1 mm de diámetro), y contiene abundantes inclusiones de prismas alargados de circon (Figura 3.2.1a). Los polimorfos de los silicatos de Al son escasos, y además de la presencia ocasional de diutina incluida en feldespatos y de andalucita asociada a los pseudomorfos de moscovita pegmatítica, aparecen como agregados esqueletales de And+Qtz y fibrolita tardios reemplazando a los feldespatos o en la matriz. La turmalina aparece como fase accesoria. Circones tetragonales (neoforrados), ilmenita, y dumortierita, han sido observados en algunas muestras. La ilmenita se presenta en bandas de composición política (moscovita-biotita-cuarzo-apatito) intercaladas.

3.2.1.2. GNEISES POREÍRITICOS DE GRANO GRUESO CON MOSCOVITA+BIOTITA

Estas rocas se presentan en bandas y lentejuelas de tamaño métrico, y presentan un desarrollo variable de fábrica planar. Las rocas menos deformadas tienen aspecto gránítico, con megacrístales de feldespatos-K de hasta 10 cm de longitud mayor según c. En ocasiones, sin embargo, desarrollan fábricas planares definidas por agregados orientados de biotita y moscovita, con evidencias de fuerte deformación (e.g., agregados de fibrolita orientados, porfíricos de feldespatos rojos). Como ya se ha indicado en el Capítulo 2, estos gneises se encuentran a veces aparentemente intrusivos en capas potentes de esquistos mesocuíticos, y contienen enclaves aluminosos de origen restrito que serán descriptos más adelante. Estas rocas contienen igualmente segregados pegmatíticos constituidos por cuarzo, feldespatos (con intercrecimientos gráficos), moscovita y turmalina de tamaño centimétrico a decimétrico. Estos segregados forman bolsadas pequeñas e irregulares con límites difusos con el gneis encajante, y no aparecen tan deformados e incluso cortan a la foliación de estas rocas. Su segregación es sin- a tardiocinética respecto de la deformación principal. Estas relaciones apuntan, no sólo a la naturaleza heterogénea de la deformación, sino también a un registro variable de la misma en función de la tasa de fusión parcial de las rocas.

Además de esta textura granitoide porfírica, las características distintivas de este tipo de gneises desde el punto de vista de las asociaciones de fases y texturas presentes son la presencia de agregados de biotita+apatito+circon (Figura 3.2.1a y b) y la ausencia de granate, excepto como relíctos incluidos en

Figura 3.2.2. (Página siguiente) Imágenes ópticas y de electrones retrodispersados (BSE) de las texturas de descomposición de moscovitas pegmatíticas en los gneises asociados con Ms+Bs+Grt (muestra T506). (a): Imagen óptica (níquel cruzado) de los intercrecimientos esqueletales de feldespatos-K (negro y gris oscuro) y andalucita (gris y gris claro) localizados en el interior del cristal pegmatítico de moscovita (blanco). La continuidad óptica parcial se detecta por la ausencia simultánea de distintas áreas de feldespatos-K. (b): Imagen óptica (níquel paralelo) que muestra el desarrollo de fibrolita + feldespatos-K en los contactos del cristal pegmatítico de moscovita con los agregados de cuarzo externos. Nótese como el intercrecimiento de And+Kfs localizado dentro del cristal no se relaciona aparentemente con la continuidad de Fib+Kfs. (c) y (d): Imágenes BSE de los intercrecimientos esqueletales mostrados en (a). La andalucita (negra) espectralmente aparece en "blocos" prismáticos intercristalinos con feldespatos-K (gris claro) y localmente biotita (blanco) en las áreas centrales del intercrecimiento (c). Hacia los bordes del mismo (d), las lamelas de biotita y de feldespatos-K se orientan paralelamente a las planas (001) de la moscovita (gris oscuro), lo que causa una imagen fuertemente quebrada de las límites entre la moscovita reactante y los productos de reacción. Nótese la presencia de parches irregulares de moscovita no consumida dentro de los agregados producto de reacción que se asocian a "blocos" de andalucita (flechas blancas más gruesas).
feldesparos. La textura porfiritica de estas rocas se define fenocrísticos de feldespato-K y plagioclasa. El feldespato-K de tamaño de grano grueso a muy grueso (> 0,5 cm) es de tendencia idiomórfica y puede estar recubierto por albita. Está orientado paralelamente a la foliación y presenta fracturación perpendiculares a la misma donde se localizan productos de transformación constituidos por agregados de plagioclasa, moscovita ± fibroilita ± andalucita. Partículas y maclas polisíméticas (de inversión y/o deformación) son escasas, aunque si es frecuente el nucladado según la ley de Carlssen. Suelen contener inclusiones de granos cuarzo, moscovita, plagioclasa, biotita, graneo, distena, stilinanita, andalucita (Figura 3.2.3d). La plagioclasa forma fenocrísticos sin zonación apreciable y sin desarrollo abundante de maclas-polisíméticas. Puede incluir distena y stilimanita (Figura 3.2.3h). El grado de recristalización de plagioclasa albítica sobre fenocrísticos de feldespato-K puede ser a veces tan grande que la mayor parte del fenocrístico mixto está formado por la primera. Cuando la plagioclasa recrudece a, o se encuentra incluida, en feldespato-K es frecuente que presenten texturas sintácticas.

Es muy característica la presencia de inclusiones orientadas de cristales de moscovita de tamaño de grano muy fino y alargados dentro de fenocrísticos de feldespato-K y plagioclasa (Figura 3.2.3c). La orientación preferente de estos cristales de moscovita suele ser bimodal o de mayor oriente, y aunque no sigue estrictamente planos de foliación o de macla, puede decirse que en gran parte está controlada por direcciones cristalográficas de los feldespatos (Figura 3.2.3c), por lo que estas texturas se interpretan como reemplazamientos tardíos subsólidos controlados por la estructura de los feldespatos. Las texturas de reemplazamiento también incluyen agregados desorientados de moscovita de tamaño de grano muy fino (±Fibl±And) tardías que siguen fracturas irregulares en los feldespatos o se localizan en sus bordes.

El resto de fases mayoritarias, i.e., cuarzo, biotita, moscovita, y apatito forman la matriz de estas rocas, junto con los feldespatos. Las texturas presentes indican que, incluso en las muestras menos deformadas, la tasa de deformación ha sido suficiente para inducir recristalizaciones de los grana deformados y rotos. Así, se encuentran agregados policristalinos de feldespatos de tamaño de grano muy fino interpretados como el resultado de reducción del tamaño de grano por deformación interna y recristalización de granos mayores, agregados alargados de subgranos de cuarzo, y agregados de placas decussadas de biotita recristalizada (0,1-0,5 mm) paralelas a la foliación principal, que incluyen placas de tamaño grueso a muy grueso deformadas (Figura 3.2.3b). Estos agregados de biotita son ricos en apatito (±circon ± ilmenita ± rutilo) y presentan moscovitas recristalizadas y deformadas predominantemente en sus bordes. Las moscovitas recristalizadas son de tamaño de grano fino a muy fino, presentan un híbrido bastante alargado, y están sobrecristalizadas por finas placas de biotita. Las placas de moscovitas de tamaño de grano medio (i.e., primarias) presentan intercruceos orientaciones de biotita y cuarzo según sus planos (001) similares a los de las moscovitas primarias de las gresitas bandeadas con Ms+Bt+Grn.

Turmalina (en la matriz), circon (generalmente como inclusiones en apatito), distena, fibroilita, stilimanita, andalucita, granate (incluidos en feldespatos y en los agregados de biotita), rutilo e ilmenita (en los agregados de biotita) son fases accesorias y no siempre presentes. De ellas, las más interesantes desde el punto de vista textural y petrográfico son los polimorfos de los silicatos de Al, que, aunque en general son escasos, pueden llegar a ser muy abundantes en algunas muestras.

La distena se ha encontrado como prismas incluidos en fenocrísticos de feldespato-K y plagioclasa (Figuras 3.2.3e-h) y como prismas cortos de tamaño fino asociados a agregados policristalinos de plagioclasa. Cuando la distena está incluida en fenocrísticos, pueden observarse también inclusiones de granate y biotita aislados o en agregados (Figura 3.2.3g), con texturas similares a los encontrados en enclaves restíticos que se
describen más adelante. Las texturas sugieren en algunos casos un origen primario, i.e., de inclusión por crecimiento en estado parcialmente fundido, destacando las inclusiones de prismas de disena en plagioclases idiomorfas que a su vez están incluidas en megacrastos de feldespato-K que también incluyen disena (Figura 3.2.3c y f). Así mismo, puede destacarse la presencia de madejas de cristales aciculares de silicatos de Al (determinación con la microsonda) incluidas en los feldespatos (Figura 3.2.3h), que podrían ser de disena o similamina (la determinación óptica ha sido imposible por su tamaño de grano). La distribución de las madejas es aleatoria, concentrándose en algunas áreas, y las texturas no parecen indicar reemplazamiento sino inclusión (Figura 3.2.3h).

En estas rocas existe similamina prismática como inclusiones en fenocristales de feldespato-K y plagioclase. Sin embargo, la forma más común de la similamina es como típicas matas de fibrolita, orientadas según la foliación y adaptándose a los bordes de los fenocristales de feldespato. (el tipo armónico de Vernon y Flood, 1977). También se localizan en fracturas de tensión dentro de fenocristales de feldespato-K y como agregados de agujas desmejoradas que cortan los contactos de grano entre el cuarzo y los feldespatos de la matriz (tipo disarmónico, Vernon y Flood, 1977) resultantes de descomposición de feldespato.

La andalucita se encuentra (1) como megacrystalitos centimétricos de tendencia idiomorfa, (2) en la matriz con formas esqueletales e intercercada con cuarzo, frecuentemente reemplazando a los feldespatos, (3) como agregados esqueletales muy compactos intercercados con cuarzo/ briotita localizados en la matriz y asociados a los agregados de biotita (Figura 3.2.3a), (4) y como inclusiones xenomórficas orientadas intercercadas con cuarzo dentro de megacrystalitos de feldespato-K (Figura 3.2.3d). Los megacrystalitos de andalucita se asocian a termalina, y están afectados por la deformación puesto que la foliación definida por las mieles se adapta a sus bordes. Desarrollan hábito sectorial de tipo quiasmático en secciones (601), y podrían interpretarse como cristales de origen pegmatítico. Sin embargo, los sectores están formados por una miriada de subgranos alargados en discontinuidad óptica que producen una textura palmeada dificilmente interpretable como producto de cristalización directa, sino más bien por deformación interna de los cristales pegmatoides.

Los agregados esqueletales intercercados con cuarzo pueden considerarse producto de crecimiento blástico relacionados con descomposición de feldespatos y biotita, como lo sugieren los agregados de andalucita e moscovita en fracturas tensionales de fenocristales de feldespato-K. Las texturas blásticas de andalucita pueden por lo tanto relacionarse claramente con las de fibrolita. Más problemática resulta la interpretación de los intercercimientos de andalucita y cuarzo orientados dentro de megacrystalitos de feldespato-K (Figura 3.2.3d). En estos casos, los intercercimientos, junto con plagioclasa, cuarzo y moscovita de grano muy fino, se orientan según las caras de crecimiento del feldespato-K, lo que sugiere relaciones de inclusión durante el crecimiento primario de aquél (e.g., Vernon, 1986). Sin embargo, este tipo de andalucita no se ha encontrado en la matriz, donde es esqueletal o no existe, lo cual plantea la posibilidad de un origen blástico por reemplazamiento del propio feldespato-K, o más probablemente de las inclusiones de

Figura 3.2.3 (Página siguiente) Texturas en graneo porfiroïdés con Ms+Bt. a) Agregado de biotita y apatito al que se asocian agregados compactos de andalucita+cuarzo (núcleos paralelos). b) Agregado de placas diseminadas (recristalizadas) de biotita y apatito (núcleos paralelos). c) Inclusiones orientadas de finas lamelas de muscovita retrógrada en un cristal de feldespato-K (núcleos cruzados). d) Agregados de And+Qtz y Pl+Qtz+Ms incluidos en un megacrystal de feldespato-K y orientados paralelamente a sus bordes (núcleos cruzados). e) Inclusiones de disena en un cristal de plagioclase incluido a su vez en un megacrystal de feldespato-K (núcleos cruzados). f) Inclusiones de disena en un megacrystal de feldespato-K (núcleos paralelos). g) Agregados de Bt+Cpl+Rt+Ms+Kp en un megacrystal del feldespato-K (núcleos paralelos). h) Madejas de disena o similamina incluidas en un megacrystal de plagioclase (núcleos paralelos). Las barras de escala marcan 0.5 mm.
plagioclase+zucarzo dado que estas se encuentran alteradas por moscovitas de grano muy fino.

El análisis petrográfico sugiere que la fibrolita, y parte de la andalucita, encontradas en estas rocas son de origen secundario, posiblemente resultantes de la desestabilización de los feldespatos por procesos de (auto)metasomatismo ácido o base cation-leaching (Wintsch, 1975; Wintsch y Andrews, 1988; Vernon, 1979; Vernon et al., 1987). Al mismo tiempo, las texturas de los prismas de distena, sellarita y andalucita sugieren su estabilidad en coexistencia con un fundido, dadas sus relaciones de inclusión con los fenocristales de feldespatos. Si esto es así, la presencia de un fundido parcial en estas rocas debe extenderse hasta condiciones de P-interna. En cualquier caso, las texturas de los polimorfos de Al₂SiO₅ sugieren una trayectoria P-T consistente con la de las metapelitas grafíticas suprayacentes, i.e., una discompreión desde el campo de la distena hasta el de la andalucita.

3.2.1.3. ENCLAVES RESTÍTICOS CON BIOTITA+RUTIL+DISTENA+GRANATE

Los gneises porfíricos con Ms+Bi contienen pequeños enclaves muy aluminíferos, alargados según la foliación y deformados (Figura 3.2.3). La asociación mineral completa consiste en Br+Ky+Sí+And+Ms+Gtt+Rt+Ilm+Ap+Circón+Grafito(1Turmalina), y se interpretan como enclaves de origen restítico.

Es importante indicar que no se han encontrado masas apreciables de este material, ni englobados en los gneises ni como bandas metapelíticas, lo que sugiere una alta movilidad (i.e., fracción de fundido) de los gneises porfíricos que los engloban. Las texturas y asociación de fases de estos enclaves indican condiciones de grado alto, al mismo tiempo que una evolución dominada por discompreión desde el campo de estabilidad de la distena.

Estos enclaves están formados esencialmente por grandes placas de biotita de hasta 2-3 mm de longitud mayor, que están deformadas y paralelizadas a la foliación del gneis encajante (Figura 3.2.4a). Su pleoecrismo es rojizo y son muy ricas en Ti (ver Capítulo 4.5). El resto de las fases están incluidas en estas placas. La distena aparece como prismas disreces idiomórfos que contienen inclusiones de rutilo, y a su vez pueden estar incluidos en granos gruesos de rutilo (Figura 3.2.4e). Existen igualmente agregados de cristales prismáticos de tamaño muy fino y alto relieve de difícil determinación óptica, si bien es muy probable que sean de distena (Figuras 3.2.4b, i, j y k). Análisis de XRD sobre muestras pulidas indican la presencia de abundante distena, lo que dificilmente puede explicarse por la abundancia de los prismas más gruesos, aunque también se encuentran picos de menor intensidad que podrían ser asignados a sellarita. La andalucita presenta una gran variedad de texturas. Cristales hipidomórficos de tamaño de grano medio englobados dentro de las placas de biotita están sobrecrecidos por intercrecimientos marméteicos de andalucita + cuarzo que reemplazan a la biotita (Figuras 3.2.4f, l, m y n). Se considera que ambos tipos de andalucita son producto de desestabilización de biotita ya que se encuentran restos de biotita y neoblastos de ilmenita de tamaño de grano muy fino incluidos en los cristales de andalucita de grano medio. Existen además agregados palmeados y agregados de tamaño de grano muy fino de andalucita asociados a los agregados de distena (Figuras 3.2.4h, i, y j) cuyas relaciones texturales sugieren el reemplazamiento de distena por andalucita. Este reemplazamiento puede ser el resultado de procesos de disolución de los agregados de tamaño de grano fino de distena y recristalización de andalucita, y de procesos de inversión polimórfica, aunque los prismas gruesos de distena no están inventados.

La moscovita se presenta como cristales blásticos escasamente deformados, asociados a biotita y a los agregados de silicatos de Al (Figuras 3.2.4 i, j y k). Si bien su origen secundario es claro, la composición de
Evolución metamórfica del Complejo Gneisico de Torrox y Series Adyacentes

Estas moscovitas son tan ricas en Ti (Capítulo 4.4.4.3) que deben suponerse condiciones de temperatura elevada. El rutilo aparece como cristales relativamente gruesos (hasta más de 1 mm) englobados en la matriz de biotita (Figuras 3.2.4c, f y g). Los granos de rutilo están parcialmente pseudomorfizados por ilmenita, que se localiza en los bordes en contacto con la biotita, y desarrollan una textura reaccional de la que puede deducirse una reacción entre rutilo-biotita (Figuras 3.2.4g). La ilmenita también aparece asociada a los blastos de andalucita que pseudomorfizan biotita (Figuras 3.2.4l, m y n). El granate se presenta en cristales de tamaño de grano fino que tienden a disponerse en el contacto entre el enclave y el gneis encajante a modo de borde de reacción (Figuras 3.2.4a, b, c, y d). Su localización en el borde de los enclaves en contacto con feldespatos y cuarzo sugiere que en la reacción podría estar involucrada una fase fundida. El apatito es abundante, de tamaño de grano fino a medio y hábito xenomórfico redondeado (Figura 3.2.4f), e incluye pequeños cristalitos prismaticos alargados de una fase de alto relieve y birrefringencia que podría ser circon. El circon es también abundante, y forma granos gruesos redondeados no recocidos que desarrollan amplios halos metamórficos sobre biotita. El granoite se presenta en placas cristalinas (Figura 3.2.4h).

3.2.1.4. GNEISES APLÍTICOS Y SEGREGADOS GRANITOIDES CON MOSCOVITA>BOTIT/A>GRANATE

Bajo este epígrafe se incluyen los gneises aplíticos que mayoritariamente siguen la foliación principal y están deformados, y las bolsadas y cuerpos discordantes de material granítico que generalmente presentan texturas pegmatíticas. Los gneises aplíticos están comúnmente asociados a bandas de esquistos moscovíticos (descritos más adelante). Esta relación es clara en la zona de transición del complejo de gneises leucocratos con los gneises pegmatíticos, donde los esquistos moscovíticos son abundantes. Hacia el interior del complejo gneisico de Torrox, asociaciones de ambos tipos de rocas aparecen intercaladas en los gneises graníticos, particularmente en los gneises bandeados. En la banda de gneises de Rompealbardas, los gneises aplíticos concordantes constituyen el tipo de gneis más abundante.

Los gneises aplíticos presentan un color blanco muy distintivo y son rocas muy leucocráticas que pueden llegar a no contener fases ferromagnesianas. Con frecuencia, presentan segregados pegmatíticos compuestos por moscovita, turmalina y granate. La composición en términos de proporción de feldespatos oscila desde granítica a tronjémica (ver más adelante), pudiendo llegar a faltar el feldesparto potásico aunque no la moscovita. Presentan un estado de deformación muy variable a pesar de estar paralelizados con la foliación del complejo. En algunos casos la foliación está poco definida y los granos minerales no presentan deformación interna ópticamente. En otros casos, desarrollan micro y meso bandeados teciométrico como resultado de la reducción del tamaño de grano y redistribución de clastos a lo largo de las bandas, lo cual afecta también a los cristales pegmatíticos de turmalina y granate.

Figura 3.2.4. (Página siguiente) Texturas en enclaves rutilíticos con Bi+Rt+Kry+Grt. a) y b) Imágenes de bajo aumento que muestran la abundancia de biotita y albititas de Al (níñoles paralelos). i) y d) Coronas de granate sobre enclaves biotíticos en contacto con c) cuarzo y d) feldespato-K del granito porfírito que los rodea (níñoles paralelos). i) Grano mixto de rutilito-ilmenita con inclusiones de dióxido (níñoles paralelos) y Grano de rutilito-ilmenita y apatito (níñoles paralelos). g) Imagen de luz roja que muestra el reemplazamiento de rutilo por ilmenita. b) Placas de grano (luz reflejada). i) y b) Agregados de prismas finos de dióxido y andalucita paralelizados (i) níñoles paralelos, j) níñoles cruzados). k) Detalle de i) que muestra los agregados de prismas de grano fino de dióxido y platos de moscovita blásticas crecidas sobre estos agregados (níñoles paralelos). l) Cristales de andalucita y agregados simplectíticos de andalucita+cuarzo que reemplazan a las placas de biotita (níñoles paralelos). m) y n) Detalles de los agregados simplectíticos de andalucita+cuarzo. Las barras de escala miden 0.5 mm.
La matriz es de tamaño de grano fino a medio, de tendencia hiperdiagonal a xenomorfía, y está compuesta por cuarzo, plagioclasa sodica no zonada, feldespatos K y placas subidiomorfas de moscovita. En los tipos más graníticos el feldespato-K puede llegar a formar fenocristales que incluyen plagioclase y están débilmente o no exfoliados. Fases accessorias, y no siempre presentes, son turalina, granate, dumorterita, biotita, andalucita, apatito redondeado y circon idiomorfo (reformado). En las muestras menos deformadas pueden encontrarse texturas gránicas ígneas, tales como cristas idiomorfas de albita y moscovita, y subóldas, como micromeritas en los feldespatos. La turalina de la matriz y pegmatítica está óptica y composicionalmente zonada. Los granates de la matriz son redondeados de tamaño de grano fino a medio (<0,5 mm), y están débilmente pseudomorfizados por placas muy finas de biotita. Estos granates son almandinitos y ricos en petrarlarita, lo que contrasta con los granatos pegmatíticos que son espesartinitos (Capítulo 4.6.4). La andalucita es escasa, aunque se encuentra en pseudomorfosis de moscovitas primarias junto con feldespatos K y biotita similares a los descritos en las moscovitas pegmatíticas de los gneises bandeados con Ms+Bi+Gr, y en la matriz con texturas esqueléticas indicativas de crecimiento subóldida. No se han encontrado cristas idiomorfas de ninguno de los polimorfos de Al₂SiO₅ que puedan ser interpretables como resultado de cristalización a partir de un fundido.

Parte de los diques discordantes que cortan a la foliación son rocas graníticas pegmatíticas, que contienen cristas pegmaticas de cuarzo, feldespatos, moscovita, y a veces biotita. Es común que en las zonas internas de los diques se encuentren zonas irregulares muy alteradas de tamaño de grano fino ricas en moscovita y cuarzo. Su aspecto sugiere que estas zonas son el resultado de alteración hidrotermal, ya sea de la propia pegmatita o de fragmentos de gneises englobados en las fracturas abiertas. De hecho, algunas fracturas verticales tardías que se encuentran dentro de los gneises están constituidas por moscovita y cuarzo que se interpretan como el resultado de la transformación alteración hidrotermal de los gneises debido a su similitud con asociaciones de tipo greisen. En otros casos las venas pegmatíticas son heterogéneas, y presentan texturas micrograníticas mezcladas irregularmente con zonas pegmatoides. Las zonas micrograníticas presentan fenocristales de cuarzo redondeado y feldespatos en una matriz granítica de grano fino con biotita y moscovita idiomorfas.

El criterio de selección de muestras para el estudio de las fases minerales de este tipo de rocas es un condicionado por la variedad de estructuras de campo y texturas que presentan. Las cuatro muestras seleccionadas corresponden a (ver Capítulo 4): (1) finas bandas aplíticas (menos de 20 cm de potencia), concordantes, de tamaño de grano fino a medio localizadas en gneises bandeados masivos y alternantes con bandas de esquistos moscovíticos (muestra T472a), (2) bandas aplio-pegmatíticas concordantes de mayores dimensiones (0,5-1 m de potencia), que en el caso seleccionado presenta fuerte transposición textónica con bandas de esquistos moscovíticos (T335), (3) masas aplio-pegmatíticas más irregulares y con escasa deformación, aunque de tendencia concordante, y con placas de moscovita pegmatoide (T495), y (4) un dique de microgranito subvertical discordante respecto de la foliación milonítica principal (aunque asociado a zonas de cisalla subverticales, Capítulo 2; Figura 2.2.6), de unos 20 cm de potencia máxima y con áreas pegmatoides difusas (T494).

Respecto de la asociación mineral y texturas, las tres muestras de apliopegmatíticas concordantes presentan un cierto número de características diferenciales. Son rocas de composición leucogranítica en las que coexisten dos feldespatos y cuarzo. La moscovita es abundante en todas ellas (ca. 10-15% modal), presenta tamaños de grano fino a medio en la matriz, habitos de tendencia idiomorfia, escasa deformación interna, y, en las muestras T335 y T493 tamaños pegmatoides centimétricos. En la muestra T335 la
moscovita presenta texturas de intercambio con turmalina, indicativas de crecimiento simultáneo y/o reemplazamiento parcial (moscovita por turmalina y viceversa), lo que sugiere un origen igneo tardío (Figura 3.2.5a y b). En todas las muestras coexiste biotita en cantidades muy bajas, menos del 1% modal. En la muestra T335 la abundancia de biotita llega incluso a menos de una decena de placas muy finas. Esta muestra contiene abundante turmalina y granate esparsítico con tamaños pegmatíticos (Figura 3.2.5c), y cristales de grano fino de dumortierita. La muestra T493 contiene turmalina con tamaño pegmatítico, pero el granate es de grano fino, almandínico y rico en Ca y pobre en Mn y Mg (ver Capítulo 4.6.4). En la muestra T472a no hay fases con tamaño de grano pegmatítico, y tampoco presenta granate.

En todos los casos, las características texturales y composicionales de las mescovitas de este tipo de gneises aplopegmatíticos concordantes coinciden con las de moscovitas primarias, i.e., de origen igneo o en equilibrio con un fundido (Miller et al., 1981). En las placas primarias de las muestras T472a y T493 se encuentran intercambios de lamelas finas de biotita (Figura 3.2.5d), similares a los descritos en las moscovitas primarias de los gneises bandeados. Las placas de la muestra T493 presentan además pseudomorfosis parciales o totales constituidos por agregados de andalucita + feldespato-K + biotita (Figuras 3.2.5e y f), similares a los descritos en las moscovitas pegmatíticas de los gneises bandeados. Las texturas con intercambios de Br+Qtz y And+Kfs+Bi indican procesos de descomposición de moscovita distintos ya que la presencia de intercambios de finas lamelas de biotita dispersas es independiente de la presencia de pseudomorfosis de And+Kfs+Bi. Esto es consistente con las evidencias composicionales de estas moscovitas descritas en el Capítulo 4.4.4.4, y con las texturas y procesos reaccionalles que afectan a las moscovitas de los gneises bandeados. Sin embargo, y a pesar de sus similitudes globales con las respectivas texturas de reacción encontradas en moscovitas primarias y pegmatíticas de gneises bandeados, existen diferencias texturales significativas. Así, los finos intercambios dispersos consisten casi exclusivamente de biotita (las lamelas de cuarzo son muy escasas), y, por otra parte, la abundancia de placas de biotita en los pseudomorfosis de And+Kfs+Bi es mucho mayor en este caso. Ambas características son explicables por la composición de estas moscovitas primarias, que como se verá en el Capítulo 4.4.4.4, presentan composiciones ricas en Si, Fe, y Mg (y Ti) a pesar de su aparente origen primario en equilibrio con un fundido. En contraste con estas texturas, las placas idiomorfas de la muestra T335 están limpias de todo tipo de intercambios de Br+Qtz, lo cual es explicable por su composición más pobre en Si, Fe y Mg, y tampoco presentan pseudomorfosis de And+Kfs+Bi.

Figura 3.2.5. Texturas en gneises aplisólicos con MixBi+Grt (Rígido siguiente). a) y b) Placas de moscovita primaria intercambiada con turmalina en la muestra T335 (núcleos paralelos). c) Granate pegmatítico (rosco en episóptico) de la muestra T335 (núcleos paralelos). d) Placas de moscovita primaria de tendencia idiomorfa con abundancias intercambios de biotita (T472a, núcleos paralelos). e) Placas de moscovita primaria con intercambios de biotita y pseudomorfosis pegmatíticas por And+Kfs+Bi (T491, núcleos paralelos). f) Imágenes de electrones retrodispersados del área marcada en el que muestra los texturas de descomposición de moscovitas primarias del gneis aplisólico T491. Pueden apreciarse las finas lamelas de biotita (blanco brillante) dispersas dentro del cristal de moscovita primaria (gris oscuro), y el pseudomorfosis parcial (zona inferior izquierda) constituido por intercambios de andalucita (roja), feldespato-K (gris claro) y placas mayores de biotita. Nótese que el agregado de And+Kfs+Bi está retenido: las placas de biotita se localizan en contacto con la moscovita, el feldespato en posición intermedia, y la andalucita en las zonas más alejadas de la moscovita. Las finas lamelas de biotita intercambiadas a lo largo de todo el cristal de moscovita se consideran debidas a los agregados de reemplazamiento formados por And+Kfs+Bi. g) Cristal de moscovita con lamelas de biotita sobrecristaladas e intercambiadas (símbolo de microgranito T491). La moscovita se encuentra incluida en un feldespato de feldespato-K (núcleos paralelos). h) Cristal de moscovita primaria del dique de microgranito T491 sin lamelas de biotita sobrecristaladas pero con abundantes intercambios de biotita (núcleos paralelos). Excepción donde se indica, las barras de escala marcan 0.5 mm.
La asociación mineral del dique de microgranito analizado está formada por Qz+Pl+Kfs+Ms+Bi+Ag. El hecho de que esta roca no presente óxidos de Fe-Ti (fusílocos en los gneises apláticos) es importante dado las características composicionales de la moscovita de esta muestra, muy rica en Ti (Capítulo 4.4.4.3). Las moscovitas forman crasas aisladas de grano fino a medio (0.1-0.5 mm), a veces incluidas en feldespatos, y con formas hipédromas y idiomórficas bien desarrolladas que sugieren un origen por cristalización a partir del fundido granítico (Figuras 3.2.5g y f). Existen agregados de placas de similar tamaño y tendencia idiomórfica, más o menos decaídas y concentradas alrededor de finos agregados de biotita + apatita. La deformación interna de los cristales es muy escasa. Por otra parte, el dique presenta zonas pegmatoides irregulares adyacentes a las paredes del mismo. En estas zonas se encuentran placas pegmatíticas de biotita que se disponen perpendicularmente a estos bordes.

Las moscovitas primarias presentan finos intercrecimientos orientados constituidos por lamelas de biotita y escaso cuarzo, similares a los descritos en las moscovitas de apiópegmatitas concordantes (Figuras 3.2.5g y f). Sin embargo, y como característica distintiva, estas moscovitas presentan sobrecrecimientos bien desarrollados y cristalográficamente orientados de biotita que pseudomorfizan los cristales idiomórficos de moscovita desde su periferia (Figura 3.2.5g). Estas texturas de reemplazamiento se encuentran también en las placas de moscovitas aisladas incluidas en feldespatos (Figura 3.2.5g), lo que sugiere un origen supersolidio para estas texturas. Los reemplazamientos tienen lugar con un fuerte control estructural, y no parecen implicar crecimiento de biotita más allá de los límites originales de los cristales de moscovita, cuyos gramos ascienden desde casi completamente pseudomorfizados (Figura 3.2.5g) a granos en los que no se observan este tipo de reemplazamientos aunque sí los intercrecimientos finos de biotita (Figura 3.2.5f). Como en el caso anterior de apiópegmatitas concordantes, se encuentran también finas placas idiomórficas (<0.1 mm) asociadas a los cristales primarios que de nuevo pueden ser consideradas moscovitas secundarias que no presentan texturas reaccionales.

3.2.1.5. ESQUIASTOS MOSCOVÍTICOS CON MOSCOVITA+BIOTITA+GRANAT+FELDSPATH-K

Bandas de composición pelítica se encuentran en toda la sección expuesta del complejo gneisico de Torrox, si bien parece que disminuyen en abundancia en profundidad. El tipo más abundante, tanto en Torrox como en la banda de gneises de Rompepalabras, lo constituyen esquistos moscovíticos (o blastitas) de grano fino a medio, cuya composición es rica en cuarzo y moscovita y pobre en feldespatos (particularmente en feldespato-K). Este tipo de roca forma la transición a los gneises pelíticos suprayacentes y se encuentra en todo el macizo intercalada en gneises bandeadas, generalmente asociado los gneises apláticos. La moscovita se presenta en placas de tamaño de grano medio a fino, con intercrecimientos de biotita a cuarzo similares a los de moscovitas primarias de los gneises (Figuras 3.2.6a y b). Otras fases en cantidades apreciables son biotita, granate, ilmenita, apatito (con inclusiones de circon), circon, grafito, turmalina (a veces muy abundante, Figura 3.2.6c), fibrolita y andalucita esquelital. No se ha detectado la presencia de diatexa, y a veces aparece un agregado criptocrystalino similar al ya descrito en las metapelitas grastosas que podría ser cordierita alterada. Es bastante común encontrar pequeñas venas y bandas de coloraciones de tamaño centimétrico a veces muy ricas en plagioclasas y sin feldespato-K. Estas observaciones, y la abundancia de composiciones tonalítidas en los gneises apláticos, sugieren una posible relación genética entre los gneises pelíticos y los esquistos moscovíticos.

Otros tipos de rocas pelíticas minoritarias son metapelitas y gneises pelíticos pobres en moscovita y feldespatos, y con cantidades variables de granate, biotita, distena, fibrolita, andalucita, ilmenita, grafito.
turmalina, aparato y circon. Aunque similares a los esquistos muscovíticos, en estas rocas existe una mayor proporción de biotita y silicatos de Al. Su escasez y estado de alteración ha impedido un estudio detallado de las mismas, si bien pueden interpretarse como rocas metapelíticas originales de la serie que han podido sufrir procesos de fusión parcial y representar residuos de fusión (ver Pinto, 1986).

3.2.2. COMPOSICIÓN DE LOS SISTEMAS Y REACCIONES DEDUCIDAS TEXTURALMENTE

3.2.2.1. COMPOSICIÓN DE LOS GNEISES LEUCOCRATOS EN TÉRMINOS DEL SISTEMA GRANÍTICO Qtz-Ab-An-Or-H2O

En este trabajo no se pretende abordar el estudio de los procesos de fusión parcial en los gneises leucocratos. Sin embargo, es interesante presentar algunos diagramas que permiten relacionar las características composicionales de estas rocas con los datos experimentales de fusión húmeda en el sistema granítico, i.e., definido por los componentes Qtz-Ab-An-Or-H2O (e.g., Tuttle y Bowen, 1958; Luth, 1976; Winkler, 1979). En la Figura 3.2.7 se presentan las composiciones de los gneises leucocratos y esquistos muscovíticos del complejo de gneises de Torrox y gneises de Rompealbardas proyectadas en los diagramas Qtz-Ab-Or (% en peso) y An-Ab-Or (% molecular). Los análisis utilizados se presentan en el Apéndice I, excepto tres análisis de metapelitas intercaladas entre los gneises de Torrox que se han tomado de Pinto (1986). Para la construcción de estos diagramas se ha procedido a recalcular las composiciones por métodos algebraicos, transformando la base en % en peso de oxígeno en la base molecular constituida por Qtz, Kfs, Ab, An, Ilm, Al2O3, FeO, MnO, MgO, Apat y H2O (ver Capítulo 4.3 para el procedimiento). El diagrama Qtz-Ab-Or se ha construido recalcular la composición molecular Qtz-Kfs-Ab en términos de % en peso usando las moléculas SiO2 (peso molecular = 240.34), NaAlSi3O8 (262.225) y KAlSi3O8 (287.337) (cf. A. B. Thompson, 1988a). En este diagrama se han proyectado también las líneas cotécicas y puntos eutécticos ternarios a distintas presiones que definen la composición del líquido granítico resultante de fusión en el sistema Qtz-Ab-Or saturado en H2O (Luth, 1976; Wyllie, 1977). El diagrama An-Ab-Or se ha construido proyectando directamente las composiciones en términos de porcentajes moleculares. En este diagrama se incluyen los campos de algunas rocas graníticas tomados de Ring (1972) y las determinaciones experimentales de las líneas cotécicas a distintas presiones de Winkler (1979) y recopiladas por A. B. Thompson (1988a).

En ambos diagramas es claro que la composición de los gneises bandeados y porfiroides es similar y característica de granitos en sentido amplio. Aunque su composición no se corresponde aparentemente con fundidos "mínimos", si puede considerarse coticética a baja P. Esto mismo puede decirse de dos de las muestras de pegmatitas discordantes (la tercera presenta una composición muy rica en Kfs que puede deberse a la heterogeneidad inducida por el tamaño de grano). Pero quizás más interesante es la fuerte heterogeneidad composicional de los gneises aplíticos, que muestran composiciones desde graníticas a trondhjemíticas, en consonancia con sus características petrográficas. Puede sorprender además el hecho de

Figura 3.2.6 (Página siguiente). Testos en esquistos muscovíticos con Ms+Bt+Grz+Kfs. (Página Siguiente) a) Placas de muscovita deformadas con abundantes intercristales de biotita y pequeños granos de la matriz (núcleos paralelos). b) Ángulo general de un esquisto muscovítico que muestra la abundancia de Ms+Bt, y en menor medida, Br+Grz (núcleos paralelos). c) Bloques de granito que incluyen metamórficos en un esquisto muscovítico rico en turmalina (núcleos paralelos). La barra de escala marca 0.5 mm.
Figura 3.27. Diagramas Qtz-Ab-An (% en peso) y An-Ab-Or (% moleculares) para la analítica de rocas total de gneises leucocráceos (Círculos: gneises bandeados con Ms+Br+Grs, Triángulos: gneises porfiroídes con Ms+Br, Cuadrados: gneises aplíticos con Ms+Br+Grs, Estrellas: disyuntos pegmatíticos con Ms+Br) y metapelitas intercaladas (Diamantes: ecuestros monomineríticos con Ms+Br+Grs+Kfs, Doble círculo: Esquistas metasedimentarias de Fięto, 1986). (Análisis en el Apéndice I y Fięto, 1986). Ver el texto para el método de cálculo de los componentes. Las líneas cotécticas a distintas presiones son de Wyllie (1977) para el sistema Qtz-Ab-Or saturado en \(H_2O \) y de Winkler (1979) para el sistema Qtz-Ab-An-Or-\(H_2O \). La ubicación del diagrama An-Ab-Or o de Killine (1972). Nótese la dispersión de los gneises aplíticos y el carácter trodiplasmítico de bastantes muestras de este tipo de rocas.

que estas composiciones no se corresponden con fundidos mínimos ni eutécticos, a pesar de ser rocas muy leucocráticas. En el diagrama Qtz-Ab-Or las desviaciones mayores de las líneas cotécticas se deben a altos contenidos en Qtz. Aunque no se dispone de una justificación irrefutable, pude argumentarse que el cálculo efectuado es impreciso, ya que todo el \(P_2O_5 \) se ha asignado al aparato (y en consecuencia la cantidad de anortita es menor) y los componentes FeO, MsO y MgO no han sido incluidos en composiciones de silicatos (e.g., biotita, granate, tormalina), dejando una cierta cantidad de SiO\(_2\) en exceso. También es posible que el componente SiO\(_2\) haya sido enriquecido en los sistemas por procesos hidrotermales, o que estas rocas representen líquidos resultantes de fusión seca de composiciones no graníticas (metapelitas intercaladas en los gneises leucocráceos). No obstante, la abundancia de composiciones ricas en Ab es consistente con procesos de fusión parcial húmeda de composiciones graníticas a altas presiones, puesto que los puntos eutécticos y líneas cotécticas se desplazan hacia composiciones más ricas en Na al aumentar la presión (e.g., Wyllie, 1977). Aunque las desviaciones composicionales de los gneises aplíticos de las líneas cotécticas en el sistema Qtz-Ab-Or saturado en \(H_2O \) son problemáticas, estas rocas se consideran el resultado de la cristalización de líquidos parciales o totales dadas las evidencias de campo y texturales a este respecto.
3.2.2.2. REACCIONES DEDUCIDAS TEXTURALMENTE

Las texturas reaccionales encontradas en los distintos tipos de rocas gneisicas, graníticas y metapelíticas de los gneises de Torrox y Roncealbendas, descritas en los apartados anteriores, permiten deducir tres tipos de reacciones:

- Reacciones que necesitan de la participación de un fundido. Además de las texturas de cristalización ígnea, las evidencias al respecto incluyen el reemplazamiento de moscovita primaria por biotita en el dique de microgranito T494, y posiblemente las "coronas" de granate en los bordes de reacción de los rellenos esticticos de gneises porfiroioides y los granates con golpes de corrosión reemplazados por Pl+Qz+ en gneises bandedos.

- Reacciones que pueden describirse como procesos reaccionales entre especies moleculares sin necesidad de incluir una fase fundida. Dentro de este tipo de reacciones se incluyen las inferidas de texturas como las inclusiones de Bt+Qz orientadas paralelamente a los planos (001) de moscovitas de gneises y esquisto moscovíticos, reemplazamientos de And+Bt+Kfs en moscovitas pegmatíticas de gneises bandedos, moscovitas primarias de gneises aplíticos y moscovitas de la matriz de esquistos moscovíticos, inversión α reemplazamiento Ky → Sil y Ky → And en gneises porfiroioides y enclaves esticticos, y el reemplazamiento de granate por Mus+Bt en gneises y esquistos moscovíticos.

- Reacciones que pueden describirse como procesos reaccionales entre especies moleculares e iónicas en disolución en un fluido. Entre estas deben considerarse las responsables del desarrollo de mirmecitas, los reemplazamientos controlados estructuralmente de feldespatos por moscovita, los reemplazamientos en los bordes o fracturas de feldespatos por moscovita, fibrolita y andalucita+cuarzo esqueletales, los reemplazamientos de biotita por andalucita+cuarzo (ilmenita) esqueletales en enclaves esticticos y posiblemente también el reemplazamiento de rutilio por ilmenita en enclaves esticticos.

Es posible que las reacciones moleculares puedan ser descritas con mayor precisión en términos de reacciones iónicas. En cualquier caso, la introducción de estos procesos en los gneises leucocratos y metapelíticas asociadas se postpone hasta el Capítulo 5.5, dado que es necesario tener en cuenta las variaciones composicionales de las fases implicadas (Capítulo 4), diagramas de fases que relacionen las actividades de especies iónicas en el fluido, y la distribución de reacciones de fisión y subsolidas apropiadas en el espacio PT. En la Figura 3.2.8 se presentan las composiciones de los gneises leucocratos y metapelíticas intercaladas proyectadas en diagramas AFM y AKF cuyas topologías son representativas de las compatibilidades de fases apropiadas para estas rocas. En esta figura se ofrecen dos diagramas AFM, donde las composiciones se han proyectado desde moscovita (Figura 3.2.8a) y desde feldespato-K (Figura 3.2.8b), respectivamente, mas Qz, H2O, Ab, An, Ilm y Atp en ambos casos. Aunque no es termodinámicamente válido (cf. Greenwood, 1975; Guidotti, 1983), el diagrama AKF es interesante para los gneises leucocratos ya que permite la visualización de las relaciones de fase entre moscovita fengítica, feldespato-K, Al2SiO5, biotita y granate.

El diagrama AFM proyectado desde moscovita no es satisfactorio para los leucogneises y diques granitoides dado que no pueden apreciarse correctamente las relaciones entre el feldespato-K (proyección en el infinito) y moscovita (punto de proyección). En el tetraedro AKFM, estas rocas graníticas se proyectan en el espacio definido por el punto de proyección feldespato-K y el plano paralelo al plano AFM que pasa por el punto de proyección de moscovita (cf. J.B. Thompson, 1957, su Figura 1), lo cual indica su carácter...
Gneises leucocratos

Figura 3.2.8. Diagramas AFM (proyección desde Qtz, Ms, H$_2$O, Ab, An, Ilm, Apf), A'FM (proyección desde Qtz, Kfs, H$_2$O, Ab, An, Ilm, Apf) y A'KF (proyección desde Qtz, H$_2$O, Ab, An, Ilm, Apf) para los análisis de roca total gneises leucocratos y metamórficas intercaladas (símbolos como en la Figura 3.2.7). Las topologías representadas son esquemáticas. Ver el texto.

peraluminico. La proyección desde moscovita supone que estas rocas se proyectan a través del infinito (i.e., negativamente) sobre el plano AFM (ver Capítulo 5.3). Por lo tanto, estas rocas se proyectan en el campo definido por Al$_2$O$_3$ positivo y FeO y MgO negativos en coordenadas bariétricas, aunque en coordenadas cartesianas el signo de Al$_2$O$_3$ es negativo y los de FeO y MgO son positivos (cf. J.B. Thompson, 1982a; Spear et al., 1982a; ver Capítulo 4.3). En esta proyección las metamórficas intercaladas, donde el Kfs no coexiste o es muy escaso, se proyectan directamente sobre el plano AFM. Aunque en los diagramas de la Figura 3.2.8 las composiciones de las fases que definen las topologías son aproximadas, puede observarse como el diagrama AFM predice que en algunas de las muestras de esquistos moscovíticos el feldespato-K puede ser una fase coexistente, tal y como se observa. En todas las muestras de esquistos moscovíticos el granate es una fase presente, a pesar de que la topología presentada puede no predecir su coexistencia. Esto es debido al carácter cualitativo de la topología y, posiblemente también, al efecto de componentes extra, particularmente el Ca (Capítulo 4.6.4). Pero el hecho más relevante desde el punto de vista petrogenético es que la estaurolita no es una fase presente, ni siquiera en aquellas muestras con composición factible para su coexistencia, lo que puede indicar que el campo de estabilidad de la misma ha sido superado en estas rocas.

El diagrama AFM proyectado desde el feldespato-K ilustra mejor las relaciones de fase en los gneises leucocratos y rocas graníticas. En el diagrama de la Figura 3.2.8b se han incluido las relaciones de fases de
moscovita, que no se proyecta sobre el vértice A' debido a su predicable composición fengítica (e.g., Zen, 1988) por coexistir con feldespato-K (e.g., Velde, 1965, 1967, J. B. Thompson, 1979, Miyashiro y Shido, 1985; Massonne y Schreyer, 1987). En este diagrama puede observarse como los gneises bandeados con Ms+Bt+Grt y los gneises porfiríticos con Bt+Ms son muy homogéneos composicionalmente, mientras que los gneises aplíticos con Ms+Be+Grt son algo más aluminios, y presentan razones molares MgO/FeO más variadas, incluyendo valores muy bajos. A pesar de las limitaciones impuestas por el hecho de que la topología es esquemática (i.e., la composición de las fases no es real), puede apreciarse como el diagrama A’FM predice bastante bien las asociaciones presentes. Así, los gneises aplíticos se proyectan en campos sin biotita y campos sin granate, como de hecho ocurre en las muestras estudadas. Sin embargo, el salto de las composiciones de gneises bandeados con Ms+Bt+Grt y porfiríticos con Ms+Bt sugiere que no existe un efecto composicional de los sistemas que justifique la diferencia en las asociaciones de fases presentes. El efecto de componentes extra, tales como Ca, Mn y Ti no puede invocarse para explicar esta diferencia ya que sus abundancias son similares en ambos tipos de gneises (Apéndice I). Las causas de este contraste en las asociaciones de fases encontradas podrían ser muy variadas, aunque pueden sugerirse dos:

- Ambas rocas contienen grano, aunque su presencia en los gneises bandeados se debe a su persistencia metaestable mientras que los gneises porfiríticos lo habrían perdido por reacciones relacionadas con la descompresión. En este caso, los gneises porfiríticos debieron presentar menos problemas cinéticos que los bandeados para la desapariación del granate, lo que podría relacionarse con la existencia de porcentajes significativos de fundidos parciales en los gneises porfiríticos (Capítulo 2.2.2).
- Sólo los gneises bandeados contienen granate originalmente, que persistiría (metaestablemente) durante la descompresión. Esto implica que los gneises porfiríticos se formaron a menor presión, i.e., representan fundidos parciales alpinos segregados durante la descompresión.

El hecho de que los fencroixiales de feldespato de los gneises porfiríticos incluyan localmente granate y diotita sugiere que estas rocas han sufrido condiciones de alta P, por lo que la segunda hipótesis no parece válida. Además, los enclaves restíticos incluidos en los gneises porfiríticos contienen Bt+Ky como asociación A’FM de alta P, y el granate crece a modo de borde de reacción en los contactos con el gneis porfirítico encajante. Todo ello sugiere que el granate debió ser estable en los gneises porfiríticos coexistiendo con biotita y un fundido a alta P, por lo que la primera hipótesis parece más factible.

El diagrama A’KF ilustra las relaciones de fases de moscovita y biotita incluyendo sus variaciones de Al (i.e., desviaciones composicionales por la sustitución tachemak, (Fe, Mg)SiAl₂). En este diagrama, la mayoría de gneises leucocratos s.s. se proyecta en el campo trifásico Kfs+Msv+Bt (Figura 3.2.8c) aunque algunas variedades, particularmente de gneises aplíticos, se proyectan por encima de las isótas de la moscovita y biotita, lo cual es reflejo de su pobreza en feldespato-K (i.e., carácter troilométrico). Los efectos de la descompresión sobre las topologías A’KF implican una restricción de la solubilidad del componente tachemak (i.e., fengítico en sentido amplio) en la moscovita, lo cual supone un aumento de su contenido en Al y descenso de Fe y Mg (e.g., Massonne y Schreyer, 1987). De hecho, las texturas de intercambio de Bt+Qtz en la mayoría de moscovitas primarias de todos los tipos de gneises y metapelitas intercaladas se relaciona con este descenso en la solubilidad de los componentes fengíticos (Capítulo 4.4 y García-Canás et al., 1993). Además, puesto que las moscovitas pegmatíticas de gneises bandeados y gneises aplíticos presentan pseudomorfosis de Kfs+Bt+And, las topologías finales a baja P en los diagramas A’FM y A’KF deberían incluir la desaparición de moscovita, permitiendo la coexistencia de feldespato-K, biotita y andalucita.
4 Quimismo Mineral

4.1. INTRODUCCIÓN

En este Capítulo se presentan los datos y resultados analíticos obtenidos sobre fases minerales en muestras seleccionadas que cubren todos los tipos litológicos de la unidad de Torrox excepto los carbonatos. Los criterios para la selección de las muestras de metapelitas fueron la presencia del mayor número de fases no retrógradas posibles (i.e., baja varianza), y la representatividad de la variedad textural de las fases significativas como granate y micas. La selección de los gneises leucocratos se basó esencialmente en la necesidad de tener representados los distintos tipos de gneises y metapelitas del complejo gneisico de Torrox, y en las texturas reaccionales encontradas. En total se han estudiado 37 muestras de pertenecientes a la unidad de Torrox (Figura 2.1.2), listadas a continuación en base a la asociación mineral presente:

16 muestras de metapelitas grafitosas:

7 esquistos con St+Grt+Bt+And T88-1, T2611-4, T447, T448, T197-14, T307-1, T2610-1
7 esquistos con St+Grt+Bt+Fib+And T2610-4, T2710-11, T307-2, T320, T329, T450, T466
2 esquistos con St+Grt+Bt+Ky+Fib+And... T2610-14, T18-17

7 muestras de gneises pelíticos:

5 gneises pelíticos con St+Grt+Bt+Ky+Fib+And............. T23, T312, T327, T328, T330
2 gneises pelíticos con St+Grt+Bt+Ky+Fib+And+Crd..... T348, T498®

14 muestras de gneises leucocratos y metapelitas intercaladas:

4 gneises bandeados con Ms+Grt+Bt................... T313, T316, T336, T506
2 gneises porfíricos con Ms+Bt.......................... T337, T376#
1 enclave restitico con Bt+Ky+Grt+Rt.............. T376#
3 gneises aplíticos concordantes con Ms+Bt+Grt.... T335, T493, T472a
1 microgranito discordante con Ms+Bt................. T494
4 esquistos moscovíticos con Ms+Bt+Grt+Pl+Kfs. T471d, T472b, T481, T499b®

® Muestras de la banda de gneises de Rompealbardas. # La lamina delgada incluye el enclave y el gneis plagiocristalino que lo engloba.
EVOLUCIÓN METAMÓRFICA DEL COMPLEJO.Configure, DE TORROX Y Zonas Adjacentes

No se han analizado específicamente segregados trondhjemíticos, aunque en algunas muestras existen dominios de estas características a la escala de la lámina delgada, donde la composición de las fases no difiere sustancialmente de las de las zonas pelíticas. Además, se ha analizado una filita gneisitosa sin exaurilita (con Grt+Bi, sin clorita prograda) de la unidad de Salares cercana a los esquistos con exaurilita de la unidad de Torrox (muestras T88-2, Figure 2.1.2).

Todos las fases presentes en las muestras seleccionadas han sido analizadas, excepto el cuarzo, apatito, circón y, en algunas muestras, los polimorfos de los silicatos de Al. Los análisis tratados en este trabajo se presentan en el Apéndice II. En todos los casos, los análisis se obtuvieron teniendo en cuenta la variedad de texturas de crecimiento, disolución, reemplazamiento y/o recristalización que desarrollan las fases presentes. Dado el estado de desequilibrio textural y composicional de las muestras estudiadas, es importante distinguir la escala a la que se dan las heterogeneidades composicionales. Como se apreciará más adelante, determinadas fases presentan heterogeneidades a la escala de la lámina delgada e incluso dentro de cristales individuales (i.e., debidas a procesos reaccionales) del mismo orden de magnitud que las encontradas en un conjunto de muestras con la misma asociación mineral y que las encontradas en el conjunto de todas las muestras (i.e., debidas a efectos composicionales de los sistemas y a variaciones en el grado metamórfico). Esto supone que las variaciones composicionales debidas a variaciones en el grado no pueden ser evaluadas de manera precisa.

4.2. MÉTODOS INSTRUMENTALES

La mayor parte de las composiciones minerales se han obtenido mediante una Microsonda electrónica automática CAMEBAX SX50 en el Servicio de Análisis Elemental por Microsonda Electrónica, Servicios Técnicos de la Universidad de Granada. En este aparato, la reducción de los datos y las correcciones de fluorescencia, número atómico y absorción se realizan en línea mediante el programa PAP proporcionado por el fabricante (ver Pouchoir y Phichoir, 1985) en un microordenador PDP 11/33. Las condiciones instrumentales más comúnmente usadas fueron 20 keV de potencial de aceleración y 20 nA de corriente de sonda y 25 μm de diámetro de sonda. Los análisis se realizaron con rutinas analíticas distintas según el mineral analizado con el fin de evitar complicaciones derivadas de las variables intensidades de los picos y de posibles interferencias, disfrazando esencialmente en los tiempos de conteo, tamaño de la sonda, y posiciones de medida del fondo. En el caso de las micas y feldespatos se optimizaron los tiempos de conteo para evitar o minimizar las pérdidas de elementos alcalinos, que no fueron observadas después de varios análisis sobre el mismo punto (Figura 4.2.1). Los tiempos de conteo oscilaron entre 15-20 segundos para los elementos mayoritarios y 40-60 segundos para los elementos minoritarios. Los estándares utilizados fueron óxidos sintéticos simples (Al₂O₃, Fe₂O₃, Cr₂O₃, MnO, TiO₂, MgO) y silicatos (albita, orthoclara, wollastonita). En los casos de placas de micas de gneises leucocárticos y pelíticos con abundantes intercrecimientos de biotita y cuarzo (y localmente cordierita) se utilizaron sondas con un diámetro nominal de 0.25 μm y 5 nA de corriente de sonda para el análisis de los intercrecimientos y zonas discretas de los cristales de moscovita que los abarcan. En estos casos, se detectó cierta pérdida de elementos alcalinos (y presumiblemente volátiles), tal y como podrá comprobarse más adelante (Figura 4.2.1 y García-Casco et al., 1993). Los elementos analizados en cada fase corresponden a aquellos detectados mediante barridos detallados de longitud de onda, aunque el F y P no han podido ser analizados con suficiente precisión (de ahí la ausencia de análisis de apatita y de F en micas). Otros detalles, limitaciones, y/o precauciones, incluyendo las estimaciones de las
Figura 4.21. Diagramas que muestran el efecto de la duración del bombardeo de electrones sobre las intensidades de rayos-X medidas para el Na y K en muestras. Los diagramas representan el porcentaje de variación en el conteo (cuentas/segundo) durante intervalos consecutivos de 10 y 20 segundos respecto del conteo en los 10 primeros segundos. Las mediciones se observaron durante un análisis continuo único sobre el mismo punto para cada muestra (muestras T313, gases bandeados con Mo+Br+Or) usando un potencial de aceleración de 20 kV. En los diagramas se comparan los resultados obtenidos usando densidades de corriente de 0.8 nC/mm² (i.e., 20 nA y 5 μm de tamaño de sonda, símbolos círculos) y 20 nC/mm² (i.e., 5 nA y 0.5 μm de tamaño de sonda, símbolos rectángulos). Los resultados obtenidos indican que no se dieron volatilizaciones de cationes alcalinos durante los primeros 50 segundos cuando se usan densidades de corriente moderadas. Para la biotita se aplicó hasta densidades de corriente mucho mayores, lo que permitió utilizar sondas pequeñas para analizar cristales muy finos, como los intercristalinos orientados en placas de muscovita primarias de gresos tectónicos.

razones Fe³⁺/Fe²⁺ y de las cantidades de H₂O en las fases hidratadas, se discutirán específicamente para cada mineral.

Dadas las heterogeneidades composicionales encontradas en muestras y cristales individuales de ciertas fases, es importante tener en cuenta la precisión analítica, la cual ha sido estimada a partir de las
desviaciones estándar sobre los análisis de fases y/o cristales homogéneos. En todos los casos la precisión de aparato es muy buena. Por ejemplo, en el caso de las micas, que pueden considerarse las fases analíticamente más problemáticas entre las estudiadas, se han obtenido precisiones cercanas al 1 % en peso relativo para los óxidos de Si y Al, entre 1-5 % en peso relativo para K, Ti, Fe, Mg, y Na y entre 10-50 % en peso relativo para Cr, Mn y Ca. En casos de fases anhidras como el granate, la repetitividad de los análisis puede calificarse de excelente. La calidad de los análisis también se ha evaluado contrastando análisis realizados sobre gramos individuales homogéneos y sobre los mismos puntos utilizando rutinas distintas (e.g., rutina de micas sobre granate y estáurolita). En todos los casos, las desviaciones estándar de los elementos mayores son inferiores a 5 % en peso relativo. La exactitud analítica, estimada en base a análisis efectuados sobre patrones internos (utilizados o no en los calibrados) es similar en términos absolutos a los valores obtenidos para la precisión.

Parte de los muestras se analizaron en una Microsonda electrónica semiautomática JEOL JCMX733 en la Universidad de St Andrews (Escocia). Las condiciones analíticas fueron 15 keV y 20 nA; usando una combinación de metales puros, óxidos y minerales como patrones y aplicando las correcciones de fluorescencia, número atómico y absorción (ZAF) (Bence y Albee, 1968). Se utilizó una única rutina analítica para todas las fases, y aunque se tuvo especial precaución al respecto de la pérdida de alcalinos, en este caso no se realizaron experimentos para estimarlo. Por comparación con los análisis realizados con la CAMEBAX SX50 de la Universidad de Granada, es probable que los análisis de micas obtenidos en St. Andrews sean de menor calidad.

Las imágenes de electrones retrodispersados (backscattered electron images, o imágenes BSE) y las transversales elementales cualitativas a lo largo de fases zonadas se realizaron con los mismos aparatos y bajo condiciones analíticas similares.

Las imágenes de microscopia electrónica de transmisión (transmission electron images, o imágenes TEM) presentadas en este trabajo han sido obtenidas por el Dr. Antonio Sánchez-Navas (Universidad de Granada) con un microscopio ZEISS EM10C en la Universidad de Granada. Las condiciones analíticas fueron 100 keV y una apertura de objetivo de 40 μm para conseguir un compromiso entre el contraste de fase y contraste de amplitud en las imágenes. Las muestras de TEM fueron seleccionadas de láminas delgadas preparadas con resinas termoplásticas y adelgazadas usando técnicas de bombardeo con Ar para obtener bordes transparentes a la sonda electrónica.

4.3. EL ESPACIO COMPOSICIONAL: VECTORES DE INTERCAMBIO Y TÉRMINOS EXTREMOS. TRATAMIENTO ALGEBRÁICO Y ESTADÍSTICO

Un gran número de problemas petrológicos y mineralógicos que tratan con variables composicionales de sistemas físico-químicos homogéneos y heterogéneos son, en la práctica, problemas matemáticos que pueden ser resueltos mediante el uso de los métodos del álgebra lineal. Las transformaciones de la composición global de una roca a una norma o de la composición de una fase a su fórmula estructural, el tratamiento gráfico de la composición de fases y sistemas heterogéneos, el cálculo de términos extremos de soluciones sólidas, o el análisis de los procesos reaccionales que pueden tener lugar en un sistema, pueden abordarse de manera rigurosa por métodos algebraicos, esto es, en términos de sistemas de ecuaciones (e.g., Kozlowski, 1959; Greenwood, 1967, 1968, 1975; Brady y Strong, 1980; J.B. Thompson, 1982a y b; Spear et al., 1982a y b). No se pretende en este apartado discutir con detalle los procedimientos de casos particulares, sino introducir la metodología, enfatizando su aplicabilidad al estudio y representación gráfica de las soluciones sólidas complejas. El lector familiarizándose con estos aspectos puede pasar directamente al Capítulo 4.4. El problema de balance de reacciones químicas se trata en el Capítulo 5.3.
4.3.1. EL ESPACIO COMPOSIONAL

El problema es la manipulación numérica y gráfica de un número de componentes químicos en términos de los cuales son expresados las composiciones de fases y sistemas rocosos. En la casuística más común, estos componentes deben ser linealmente independientes, i.e., ningún componente puede ser descrito por combinaciones lineales de los restantes. La definición de los componentes (i.e., su fórmula química y su unidad de medida) dependerá del problema a resolver (Brady y Stout, 1980); la utilización de óxidos expresados en unidades de masa normalizada a la masa total (i.e., % en peso) no suele ser útil para los propósitos más comunes, utilizando unidades molares, atómicas, equivalentes de oxígeno o de otro elemento, etc (Brady y Stout, 1980; J.B. Thompson, 1982a). La expresión numérica de una composición cualquiera en términos de n componentes es equivalente a decir que la composición está contenida en el hiperspacio definido por un sistema de n coordenadas, o espacio composicional (J.B. Thompson, 1982a). El sistema de coordenadas puede ser cartesiano, i.e., de ejes ortogonales en el espacio, o bariétrico, i.e., tal que la suma de los componentes de cualquier composición sea igual a 1 \(\Sigma X_i = 1 \), donde \(X_i \) es la concentración normalizada del componente i (ver Spear et al., 1982a). En este último caso, la composición del sistema necesita ser normalizada, por lo que se pierde la información concenestante a las cantidades absolutas de los componentes, aunque manteniéndose las proporciones de los mismos. Así, todas las composiciones que se proyectan sobre una misma línea que parte por el origen de coordenadas en un sistema cartesiano se proyectan en un mismo punto en un sistema bariétrico. Un sistema de tres componentes se representa por tres ejes ortogonales en un sistema de coordenadas cartesianas, y por un triángulo en un sistema de coordenadas bariétrico. Por lo tanto, la representación bariétrica de n componentes implica que la dimensión del espacio donde están representadas las composiciones será n-1 dimensional (debido a la constancia \(\Sigma X_i = 1 \)). Gráficamente, no pueden ser tratados sistemas químicos con más de 4 componentes (i.e., proyección bariétrica en un tetraedro, o espacio de 3 dimensiones). No obstante, esta limitación no lo es tal y que el tratamiento algebraico de n componentes aplicado con criterios termodinámicos, provee de medios de proyección legales en subespacios del mismo (Greenwood, 1975).

La transformación del sistema de coordenadas cartesianas a bariétrico puede considerarse como una proyección geométrica sobre un plano (o línea) desde el origen de coordenadas cartesianas, y se realiza simplemente mediante la normalización de los componentes (i.e., haciendo \(\Sigma X_i = 1 \)). Las construcciones geométricas de la proyección, sin embargo, implican ciertas complicaciones gráficas puesto que determinadas composiciones pueden no encontrar proyección directa sobre el plano en cuestión, lo cual se da en los casos en que algún componente tenga valor negativo y la suma de las coordenadas cartesianas sea menor de cero (ver Figura 3 y Tabla 1 de Spear et al., 1982a). En estos casos la proyección sobre el plano se realiza a través del infinito, lo cual supone que las coordenadas bariétricas cambian de signo respecto de las cartesianas en esa proyección. Un ejemplo de esta casuística ha sido ya presentado en la proyección AFM de las composiciones de los gases leucocratos de la Figura 3.2.8. Cuando las coordenadas cartesianas suman cero, la proyección en el sistema bariétrico se encuentra en el infinito.

En el tratamiento de fases cristalinas en las que existen construcciones estesiométricas, los componentes seleccionados deben ser, además de linealmente independientes, variables independientemente (J.B. Thompson, 1982a). Según la definición de J.B. Thompson, c componentes estarán variables independientemente si están conectados entre sí en el sistema homogéneo que describa por cambios continuos en composición y propiedades físicas del sistema (i.e., fase). Por ejemplo, el olivino pueden descubrirse por el sistema de componentes linealmente independiente \(\text{SiO}_2\cdot\text{MgO}\cdot\text{FeO} \), aunque da la estesiometría de la fase \((\text{Mg,Fe})_2\text{SiO}_4 \), sólo dos componentes linealmente independientes y variables independientemente se necesitan para definidos (e.g., \(\text{MgSiO}_3 \) y \(\text{FeSiO}_3 \)), que están conectados entre sí y con cualquier olivino definible por este sistema por cambios continuos en composición y propiedades físicas de la fase. Una sustentación para sólo tener un componente, puesto que las variaciones son sólo posibles en una dirección (e.g., \(\text{MgSiO}_3 \), \(\text{MgSiO}_3 \)). Los c componentes variables independientemente así definidos, o componentes de fase, describen la parte del espacio composicional aplicable a la fase en cuestión, o su región de fase. Debido a la constante de mantener la estesiometría de una fase, cualquier región de fase necesita c-1 componentes para ser definida completamente.

Por otra parte, un sistema heterogéneo se define por variables composicionales linealmente independientes o componentes del sistema (i.e., system components, J.B. Thompson, 1982a; Spear et al., 1982a) cuyo número es el considerado en la regla de las fases. Puesto que los componentes de fase variables independientemente lo son también de un sistema heterogéneo en el que la fase en cuestión esté presente, en los casos más generales en que al menos una fase del sistema
4.3.2. Vectores de Intercambio y Componentes Aditivos

El ejemplo del olivino sugiere que los componentes de fase coinciden con los términos externos de soluciones sólidas. Sin embargo, esto no siempre es así, ya que pueden definirse componentes físicamente no realizables (e.g., moléculas con subíndices negativos) o inexistentes (e.g., molécula Tschernok en los anfiboles). Por otra parte, aunque la definición de componentes de fase puede hacerse de manera que abarquen el espacio composicional físicamente accesible de la fase en cuestión, en casos complejos puede no ser así, con lo que al menos un componente presentará valores negativos.

Bragg (1937) señaló las ventajas de la descripción de fases minerales complejas en términos de un componente molecular físicamente realizable y un conjunto de componentes moleculares linealmente independientes que describen intercambios iónicos y presentan uno o más subíndices negativos en su fórmula, tal como FeMg$_4$ o Al$_2$Si$_2$Mg$_4$. Estas moléculas tienen representación en el espacio composicional cartesiano por lo que pueden definirse sin problema alguno como componentes de fase variables independientemente. En los espacios bidimensionales también encuentran representación, aunque muchas veces se proyectan en el infinito. Por ejemplo, en el caso anterior del olivino se puede definir el sistema mediante la molécula de forsterita y el componente FeMg$_4$, que se proyecta en el infinito en el diagrama SiO$_2$-MgO-FeO si se usan unidades moleculares (ver Figura 2 de J.B. Thompson, 1982a). Estos componentes explican igualmente el sistema de los olivinos ya que:

$$\text{FeMg}_4 = \frac{1}{2}(\text{Fe}_2\text{Si}_3\text{O}_8 + \text{Mg}_2\text{Si}_2\text{O}_4)$$

(4.1)

Fórmulas físicamente posibles, realizables o no, se denominan componentes aditivos, mientras que fórmulas como FeMg$_4$ se denominan componentes de intercambio o vectores de intercambio (cualquier componente es un vector en el espacio composicional). Los vectores de intercambio son componentes de fase variables independientemente ya que explican variaciones continuas en composición y propiedades físicas sin modificar el número de celdillas unidad consideradas. La operatividad de un vector de intercambio (o sustitución) en una fase puede describirse como una reacción homogénea. Como es lógico, la aplicación de un vector de intercambio en una cantidad determinada sobre un componente aditivo genera otro componente aditivo de la región de fase (e.g., en el ejemplo anterior, aplicando dos moléculas de FeMg$_4$ sobre un mol de forsterita se genera un mol de fayalita). Por lo tanto, cualquier fase con c componentes variables independientemente, por complicadas que sea, puede ser descrita por un mol de componente aditivo que contiene un número determinado de celdillas unidad, más $c-1$ vectores de intercambio que no modifican tal número de celdillas unidad. Las cantidades de los vectores de intercambio para una composición dada se rán en términos moleares, el número de mol de componente de fase por mol de componente aditivo.

La definición de un vector de intercambio no tiene por que ser tan simple como la anterior, ya que puede involucrar sustituciones acopladas complejas. Por ejemplo, el vector Al$_2$Si$_2$Mg$_3$ explica las desviaciones composicionales de anfiboles del componente aditivo Ca$_2$Mg$_2$Si$_2$O$_6$[OH]$_2$ hacia la molécula tachekita Ca$_2$Mg$_2$Al$_2$Si$_2$O$_8$[OH]$_2$ o el vector SiK$_4$Al$_4$ en moscovita explica las desviaciones de moscovita de la molécula de moscovita (K$_2$Al$_2$Si$_2$O$_6$[OH]$_2$) hacia la de pirofilita (Al$_2$Si$_2$O$_6$[OH]$_2$) (nótese que estos vectores no modifican el número de celdillas unidad consideradas). Estas sustituciones pueden describirse de manera más compleja, teniendo en cuenta las diferentes posiciones estructurales de iones y vacantes. En este caso, los vectores anteriores serían [SiK$_4$Al$_4$]$_0$[K$_2$Al$_2$Si$_2$O$_6$[OH]$_2$]$_0$ y [SiK$_4$Al$_4$]$_0$[K$_2$Al$_2$Si$_2$O$_6$[OH]$_2$]$_0$ donde los números romanos IV, VI y XII representan las posiciones estructurales tetradríadas, octaedrías y de coordinación 12, respectivamente (en todos los casos se localizan a la izquierda del componente al que aplican), y (a) es posición vacante. El uso de este tipo de vectores es irrelevante desde el punto de vista algebrico, ya que se incrementan los componentes que definen una composición, pero solo incrementan en igual número las constricciones estereométricas y de balance de masa en la fase. Aunque el uso de vectores de intercambio es similar al uso de componentes aditivos (i.e., términos extremos), en el primer caso la suma de componentes no tiene que ser igual a 1, mientras que en el segundo caso la suma de componentes es igual a 1 si no se modifica el número de celdillas unidad.
El uso vectorial de intercambio como componentes de fases es igualmente aplicable en el estudio del espaciado racional de sistemas heterogéneos. Como se ha indicado antes, el número de reacciones heterogéneas linealmente independientes queda determinado una vez se han fijado los componentes del sistema y los componentes de fase. Si parte de estos últimos son vectores de intercambio que afectan a más de una fase (e.g., MgFe, en fases ferromagnéticas), las reacciones pueden escribirse en términos de componentes aditivos de las fases que sufren desplazamientos compositacionales con el progreso de la reacción, lo cual es muy útil para describir reacciones heterogéneas, i.e., reacciones de intercambio y reacciones de transferencia neta (o net transfer reactions, J.B. Thompson, 1979, 1982b). Las reacciones de intercambio suelen involucrar un componente de intercambio simple o complejo, pero no implican cambios significativos en las cantidades de las fases reactante y producto, mientras las reacciones de transferencia neta suelen involucrar uno o más componentes complejos y si modifican significativamente las cantidades de las fases reactante y producto.

El análisis de los datos composicionales de los minerales en términos de componentes aditivos y de intercambio (o componentes aditivos generados, pasados) permite abordar el estudio del espaciado racional del sistema con criterios relativos al impacto que ejercen determinadas reacciones sobre las asociaciones de fases durante el metamorfismo. Esto es importante en el presente caso ya que todas las rocas analizadas presentan estados variables de descomposición de las asociaciones previas de presión intermedia durante la descomposición de la seccuencia, por lo que es necesario detectar las sustituciones acopladas que definen los vectores de intercambio y las variaciones composicionales mayores.

4.3.3. RESOLUCIÓN ALGEBRÁICA: TRANSFORMACIONES DE BASES

La manipulación de componentes necesita de transformaciones de unos sistemas de coordenadas a otros. En el caso más común, la metodología se reduce a establecer n ecuaciones linealmente independientes que relacionen n componentes “nuevos” con n componentes “antiguos”. Por lo tanto, la transformación de los sistemas de coordenadas implica resolver un sistema de n ecuaciones con n incógnitas. Para el caso del olivino (con Si constante por construcción esquemática):

\[\begin{align*}
1 \text{Fo} & = 2 \text{Mg} + 0 \text{Fe} \\
1 \text{Fa} & = 0 \text{Mg} + 2 \text{Fe}
\end{align*} \]

o en forma matricial:

\[\begin{bmatrix}
\text{Fo} \\
\text{Fa}
\end{bmatrix} =
\begin{bmatrix}
2 & 0 \\
0 & 2
\end{bmatrix}
\begin{bmatrix}
\text{Mg} \\
\text{Fe}
\end{bmatrix} \]

Para cualquier caso general puede escribirse en forma abreviada (ver ecuaciones 8 y 8a de J.B. Thompson, 1982a):

\[[\text{U}] = [\Lambda] [\text{U}] \]

donde \([\text{U}]\) y \([\text{U}]\) son las matrices columna que contienen los componentes nuevos (variables dependientes, e.g., forsterita y fayalita) y antiguos (variables independientes, e.g., Mg y Fe en el olivino), respectivamente, y \([\Lambda]\) es la matriz de coeficientes de transformación que definen los nuevos componentes en términos de los antiguos. La transformación de una composición cualquiera de su expresión en el sistema de coordenadas “antiguo” al “nuevo”, puede escribirse mediante el siguiente sistema de ecuaciones (ecuación 10 de J.B. Thompson 1982a):

\[\begin{align*}
\text{u}_1 & = v_{11} \text{u}_1 + v_{12} \text{u}_2 \\
\text{u}_2 & = v_{21} \text{u}_1 + v_{22} \text{u}_2 \\
\text{u}_3 & = v_{31} \text{u}_1 + v_{32} \text{u}_2
\end{align*} \]

donde \(n_i\) representa el número de unidades de los componentes antiguos en la composición investigada, \(n_j\) el número de unidades de los componentes nuevos en la composición investigada, y \(v_{ij}\) los coeficientes de transformación, i.e., las
unidades del componente i antiguas necesarias para generar una unidad de i nuevo. Este sistema de ecuaciones puede escribirse en notación matricial:

\[[N] = [A]^T [N'] \] \hspace{1cm} (4.6)

donde \([N]\) y \([N']\) son las matrices columna de \(n_i\) y \(n_i'\), respectivamente, y \([A]^T\) es la matriz de coeficientes \(v_{ij}\) tal y como se han escrito en la ecuación (4.5). Esta matriz \([A]^T\) es la matriz transpuesta de la matriz de coeficientes de transformación en la ecuación (4.4) que relaciona los componentes nuevos con los antiguos (ver Greenwood, 1975 y J.B. Thompson, 1982a para más detalles). Puesto que las incógnitas (valor del análisis en el sistema de coordenadas nuevo) están contenidas en la matriz columna \(N'\), el sistema puede resolverse mediante la ecuación:

\[[N'] = [A]^T [N] \] \hspace{1cm} (4.7)

donde \([A]^T\) es la matriz inversa de la transpuesta de \(A\).

En el caso de que existan dependencias lineales entre los componentes, la matriz de componentes será singular (i.e., determinante igual a cero), por lo que no puede invertirse y no puede resolverse el sistema de ecuaciones (4.7). En estas circunstancias, el sistema de coordenadas es degenerado, lo cual puede constituir una información valiosa acerca del sistema investigado o puede querer simplemente que no se han seleccionado los componentes nuevos adecuadamente. Si es sistema es realmente degenerado, debe reducirse el número de componentes "nuevos", y el sistema de ecuaciones tendrá más ecuaciones que incógnitas, por lo que la ecuación (4.7) no puede ser aplicada ya que la matriz de coeficientes no es cuadrada, y se debe recurrir a otros métodos matemáticos. De hecho existen otros métodos de resolución del sistema de ecuaciones (ver Spear et al., 1982a), tanto para sistemas no degenerados como degenerados, aunque en este trabajo se ha utilizado exclusivamente la ecuación (4.7) para evaluar los sistemas homogéneos (fase) ya que en la casuística más común, el número de componentes nuevos y antiguos es el mismo, y no deben existir dependencias lineales. En los distintos apartados que siguen se especifican las matrices de transformación utilizadas.

Las transformaciones de componentes pueden generar valores negativos en los componentes "nuevos". Esto es común en el caso de la descripción de soluciones sólidas complejas como anfítes de micas, lo cual significa que (1) el espacio composicional accesible para esas fases no puede ser abarcado por el conjunto de términos extremos linealmente independientes seleccionado (i.e., Perry, 1968, Spear et al., 1982a) o (2) que el espacio composicional de la fase no ha sido correctamente definido, debido a que algunas variables analíticas tales como la ausencia de estimaciones independientes de Fe\(^{2+}\) y Fe\(^{3+}\) (García-Casco et al., 1993). El tratamiento de valores negativos de componentes (incluso vectores de intercambio) no presenta problema interpretativo alguno, como puede ejemplificarse con el cálculo de una norma CIPW (una transformación de componentes fácilmente realizable), donde valores negativos de SO\(_4\) simplemente indicarían que la composición de la roca está subsupersaturada en silice (i.e., disipado normativamente).

En sistemas heterogéneos los métodos algebraicos son utilizados para investigar el espacio reacional. El problema es similar al descrito anteriormente para sistemas homogéneos ya que una fase se expresa como combinación lineal del resto de las fases, lo cual es en mismo una reacción. No obstante, en sistemas naturales el sistema de ecuaciones puede estar infranormalizado o sobreestimado, por lo que los métodos de resolución difieren de la ecuación (4.7). En el Capítulo 5 se introducirán con más detalles estos aspectos junto con el análisis proyectivo de sistemas heterogéneos, en el que la transformación de componentes debe además cumplir ciertos requisitos adicionales.

4.3.3.1. APLICACIÓN DE LOS MÉTODOS ALGEBRAICOS EN LA DESCRIPCIÓN DE SOLUCIONES SÓLIDAS

En este trabajo, y para los propósitos de describir las variaciones composicionales de algunas de las fases estudiadas (particularmente las micas), los sistemas de coordenadas originales se expresan en términos de cantidades atómicas normalizadas a una célula unidad determinada, esto es, en términos de las fórmulas estructurales. Esta elección es conveniente ya que permite operar guiados por criterios cristalquímicos de manera que las variaciones en la composición química puedan ser explicadas por sustituciones iónicas coherentes con las estructuras cristalinas, sin modificar el número de células unidad consideradas. De esta manera pueden evaluarse efectos cristalquímicos y efectos físico-químicos sobre las variaciones composicionales. Para la identificación de sustituciones operativas y definición de vectores de intercambio ha sido necesario tener en cuenta las distintas posiciones estructurales que puede ocupar un mismo elemento químico (e.g.,
[\text{Al}] vs. [\text{SiAl}] y las posibilidades de que las sustituciones involucren vacantes en algunas fases, particularmente las micas. Este tipo de análisis se ha demostrado especialmente aplicable para el caso de fases complejas como antiboles (e.g., Thompson, 1981) o micas (Labocka, 1983; Hewitt and Abrecht, 1986, García-Casco et al., 1993), donde el número de sustituciones y términos extremos posibles son elevados, y no siempre "fácilmente" calculables directamente a partir de la fórmula estructural.

Un primer problema que resulta inmediato de lo anteriormente expuesto es que la normalización estructural seleccionada condiciona totalmente los resultados. Así, la evaluación de hipotéticos cambios en las vacantes octaédricas de las biotitas no podría llevarse a cabo si los análisis se normalizan a 14 cationes tetraédricos-octaédricos (como recomienda, por ejemplo, Essene, 1989, p. 7, para usos termobarométricos). Sin embargo, y aunque es muy probable que existan vacantes octaédricas en las biotitas, es posible que una normalización estructural en base a 20 átomos de oxígeno y 4 (OH) infraestime la ocupación octaédrica (e.g., Dymek, 1983). Este problema es insalvable cuando se dispone exclusivamente de datos analíticos, particularmente cuando de microsonda electrónica, y sólo puede resolverse si además se dispone de refinados de estructuras. Por lo tanto, en todas las descripciones que siguen de las fases analizadas se hará especial referencia al impacto de la normalización estructural elegida sobre los resultados obtenidos.

En la evaluación de una sustitución soluble por métodos algebraicos se deben considerar dos vías distintas, aunque no excluyentes. Por una parte, se puede cuantificar cada análisis individualmente, i.e., transformando la base catiónica en una base de vectores de intercambio simples o de términos extremos con los métodos algebraicos introducidos anteriormente. Esta aproximación permite evaluar cuantitativamente cada análisis. Por otra parte, se puede evaluar la base de datos en su conjunto, de manera que se cuantifiquen las cantidades de cada vector de intercambio necesarias para generar la heterogeneidad composicional observada, lo que es independiente de las cantidades absolutas de los componentes. Dicho de otro modo, en este último caso no se evalúa la posición de los análisis en el espacio composicional, sino incrementos composicionales relativos de los componentes vectoriales. Comenzaremos con el primer caso.

Siguiendo a Labocka (1983) y Hewitt y Abrecht (1986), por analogía con la regla de las fases la varianza del sistema (i.e., de las fases) es igual al número de variables composicionales (i.e., a componentes "antiguos", definidos por todos los tipos de iones y vacantes presentes) menos el número de ecuaciones linealmente independientes que relacionan tales variables, entre las cuales hay que incluir las derivadas de las constricciones estesiométricas de la fase adyacente de las que sirven para definir el nuevo sistema de coordenadas. La definición del componente aditivo seleccionado llena implicita todas las constricciones estesiométricas, por lo que la elección de los vectores de intercambio que definen el sistema de ecuaciones para la transformación del sistema de coordenadas es arbitraria, siempre que (1) todos los componentes iniciales estén incluidos, (2) los vectores sean linealmente independientes, y (3) se mantenga el balance de carga. El conjunto de vectores podría estar definido, total o parcialmente, por intercambios de elementos con la misma carga y posición estructural (e.g., FeMg, MnMg, ZnMg, NaK), aunque en algunos casos sólo queda definir vectores bien-valentes más complejos como AlSi(Mg)

Una vez elegido un componente aditivo, la elección de los vectores de intercambio en base a un punto analítico aislado o una nube de puntos isótopa en el espacio composicional resulta difícil, puesto que no puede demostrarse que las sustituciones elegidas sean petrogenéticamente representativas, si bien no existe limitación alguna desde el punto de vista del análisis del espacio composicional siempre que se mantenga la independencia lineal de conjunto de vectores (J.B. Thompson, 1982). Por ejemplo, para describir la desviación composicional en términos de Ti de un determinado análisis de biotita a partir del componente aditivo flogopita, pueden aplicarse cualquiera de los siguientes vectores de intercambio (e.g., Dymek, 1983; Labocka, 1983; Hewitt y Abrecht, 1986; Abrecht y Hewitt, 1988, y ver más adelante):

\[
\begin{align*}
[\text{Si}] &- [\text{Al}_2] \\
[\text{Si}] &- [\text{Mg}] \\
[\text{Si}] &- [\text{Al}] \\
[\text{TiO}_2] &- [\text{Al}](\text{OH})_2 \\
[\text{TiO}_2] &- [\text{Al}] (\text{OH})_2
\end{align*}
\]
Evolución Metafísica del Complejo Geológico de Torrox y Series Adjacentes

Sin embargo, no está garantizado que la elección se corresponda a una sustitución realmente operativa, y por lo tanto las conclusiones al respecto pueden ser inexactas en términos cristalinoquímicos (e.g., sustitución del Mg y/o Fe y/o [PO₄]Al por Ti, introduciendo o no vacantes en las posiciones octahédricas). La elección de una reacción de sustitución determinada es importante por sus implicaciones en la consideración de la estabilidad de una fase en sistemas naturales. Por lo tanto, es deseable una elección lo más ajustada posible del conjunto de vectores que definen las variaciones dentro del espacio composicional de la fase en cuestión. Hewitt y Abrecht (1986) ofrecen tres tipos de criterios aplicables a la elección de un determinado conjunto de reacciones de sustitución significativas:

- La existencia natural de composiciones extremas relacionadas con el componente adsorvido por un vector de intercambio simple y único.
- La existencia de cambios de composición en fases zonadas o en secuencia petrogenética descriptibles mediante vectores de intercambio que relacionan composiciones iniciales y finales.
- La demostración experimental de la operatividad de determinadas sustituciones, i.e., de la persistencia de la fase dentro del espacio composicional definido por un determinado vector de intercambio.

Estos criterios son los que se utilizarán más adelante para seleccionar el conjunto de vectores. De entre ellos, el segundo es particularmente interesante puesto que la operatividad de determinadas reacciones de sustitución puede deducirse en ciertos casos a través del análisis de una población heterogénea resultante de cambios en las variables intensivas del sistema (e.g., por ejemplo en una secuencia metamórfica), o de heterogeneidades composicionales del sistema (e.g., en una serie cogenética de rocas igneaes). Este punto permite introducir el segundo de los problemas mencionados más arriba: la evaluación de cambios en las composiciones, y no de posiciones absolutas en el espacio composicional.

Si se encuentran aspectos composicionales amplios y buenas correlaciones entre los componentes en las fórmulas estructurales, el espectro composicional puede cuantificarse mediante uno o varios vectores de intercambio múltiple (VIM) que serán función (i.e., combinación lineal) de los vectores de intercambio simples anteriores. Los coeficientes que multiplican a cada vector más simple representan las proporciones de los mismos necesarias para pasar de un extremo del espectro composicional al otro. Para encontrar el VIM, las bases de datos se pueden someter a la técnica estadística del Análisis de Componentes Principales (Harman, 1976; Davis, 1986; Wilkinson, 1990).

No se van a considerar con detalle las bases teóricas del análisis factorial y la técnica del Análisis de Componentes Principales. Brevemente, esta técnica se basa en el cálculo de los valores propios de una matriz cuadrada simétrica [A] y de la base de vectores propios asociados. Esta matriz cuadrada es la matriz de correlación o, más comúnmente, la matriz de covarianza. Los valores propios de una matriz son aquellos que satisfacen la relación:

\[[A]X = \lambda X, \] (4.8)

Esta expresión describe un sistema de ecuaciones, de manera que la matriz de coeficientes [A] por el vector propio [X] es igual al valor propio \(\lambda \) por el vector de propio asociado. Resolviendo la ecuación (4.8), tenemos:

\[([A] - \lambda[I])X = [0] \] (4.9)

donde [I] es una matriz identidad de la misma dimensión que [A]. Para que esta ecuación tenga solución, [X] ≠ 0, por lo que:

\[|([A] - \lambda[I])| = 0 \] (4.10)

Dado que se conocen los coeficientes de [A], esta relación puede utilizarse para conocer los valores de \(\lambda \). El número de valores de \(\lambda \) que satisfacen esta relación es igual a la dimensión de la matriz de coeficientes [A]. De los n valores de \(\lambda \), algunos pueden ser cero, y, para el caso de matrices simétricas (como es el caso que nos ocupa), todos serán reales. Además, la suma de los valores de \(\lambda \) es siempre igual a la suma de la diagonal de la matriz de coeficientes [A].

Los valores propios de una matriz cuadrada simétrica de dimensión n pueden considerarse como las magnitudes de los ejes principales de una superficie cuadrática. Sustituyendo los n valores de \(\lambda \) en la igualdad (4.9) y resolviendo para [X] en cada caso, por ejemplo, por inversión de matrices, los n vectores de coeficientes resultantes se denominan vectores...
propios. Por lo tanto, se disponen de tantos vectores propios como valores propios; esto es, de un número igual a la dimensión de la matriz de coeficientes original \(A \). Por ser \(A \) simétrica puede encontrarse una base formada por \(n \) vectores propios ortonormales. Si se forma una matriz con los componentes de los \(n \) vectores propios como columnas se obtiene una matriz \(P \) que resulta ser la matriz de cambio de base de la base de los vectores propios en la base canónica. Esta matriz de cambio de base se puede considerar por tanto como una matriz de casenos directores que da la orientación para la cual el sistema de coordenadas de referencia coincide con los ejes principales de la superficie cuadrática asociada a la matriz \(A \). Los Componentes Principales son los \(n \) vectores propios de una matriz de covarianza de una base de datos con \(n \) variables.

La suma de las covarianzas individuales de las variables de una base de datos puede considerarse como la varianza total del sistema, por lo que cada variable explicará cierta proporción de la varianza total. Dado que la varianza total se obtiene de sumar los elementos de la diagonal de la matriz de covarianza, que es igual a la suma de valores propios de la matriz de covarianza, es también posible asignar una proporción de la varianza total del sistema a cada vector propio en función de la magnitud del valor propio asociado. Se obtiene por lo tanto una relación clara entre la varianza del sistema y magnitud de los ejes de la superficie cuadrática asociada a la matriz de covarianza. Necesariamente, al menos uno de los vectores propios explican una proporción mayor de la varianza total que cualquier variable original, y correspondientemente, al menos uno de los vectores propios explican una proporción menor de la varianza total que cualquier variable original. El Análisis de Componentes Principales se basa por lo tanto en transformar las \(n \) variables originales de un sistema en otras \(n \) variables compuestas (vectores propios) que explicarán la misma varianza total del sistema. Estas nuevas variables serán ortonormales, al igual que las antiguas. La transformación se realiza proyectando las observaciones (i.e., casos) sobre los ejes (o componentes) principales, o en notación matricial:

\[
[X][U] = [S]\tag{4.11}
\]

donde \([X] \) es la matriz \(n \times m \) (variables antiguas) de observaciones originales, \([U] \) es la matriz cuadrada que contiene los \(m \) vectores propios ordenados en \(m \) columnas y definidos por coeficientes \((loadings) \) sobre las \(m \) variables originales, y \([S] \) es la matriz \(n \times m \) (variables nuevas) de coeficientes en la nueva base de componentes principales (scores). Este método permite evaluar una base de datos mediante variables que son combinaciones de las antiguas variables y, si en una base de datos se dispone de un número elevado de variables antiguas, este procedimiento permite además excluir parte de las variables nuevas sin perder una parte importante de la información (i.e., aquellas que explican una escasa proporción de la varianza total).

Sin embargo, a mi entender, la aplicación más potente de este método en la evaluación de los cambios compuestos de soluciones sólidas no es la transformación de variables en sí, sino en la identificación misma de los componentes. Hay que tener en cuenta que las nuevas variables son construidas con la matriz de covarianza de \(n \) variables, que no son totalmente independientes debido a las constricciones estereoquímicas. Por lo tanto, los vectores (propios) pueden interpretarse como definidores de cambios compuestos complejos, de manera que son elementos individuales (i.e., coordenadas en el espacio compuesto antiguo) representarían incrementos concretos en las variables antiguas (i.e., elementos de las fórmulas estructurales) a lo largo del vector, y explicarían una parte sustancial de la varianza total (i.e., variaciones composicionales). Cuando se trata de composiciones minerales, los vectores (propios) identificados en el espacio compuesto antiguo son en sí mismos vectores de intercambio múltiples (VIM) que describen la variabilidad de los datos analíticos en términos de significación estadística. Más aún, estos vectores de intercambio múltiples pueden utilizarse para deducir la importancia relativa de sustituciones simples si se descomponen cuantitativamente en vectores de intercambio más simples. La significación de esta descomposición depende lógicamente de la varianza explicada por el componente principal pertinente, que en todos los casos debe ser el primer componente principal. De hecho, para encontrar un VIM significativo cristalquímicamente, es necesario que represente balances de masa y carga, lo cual sólo se consigue si el mismo explica gran parte de la varianza total de los datos (por ejemplo, si explica más del 90% de la varianza total). Obviamente, el balance de carga y masa debe encontrarse dentro de los límites de error y redondeo, ya que las bases de datos no son analíticamente exactas (i.e., errores analíticos, normalizaciones estructurales simplificadas, no consideración de elementos menores, etc.).

Finalmente, debe indicarse que en el caso del estudio de fases minerales no es conveniente incluir todas las variables (i.e., cationes y vacantes) en el Análisis de Componentes Principales. Esto se debe a las dependencias lineales existentes entre las variables resultantes de la estereou-equilibración de la fase, lo cual implica que existirá un valor propio = 0 por cada constripción.
estesimétrica (e.g., Si4+Al = ñ en las micas). Esto permite reducir la dimensión de la matriz de covarianza, aunque los resultados dependen de las variables excluidas. De esta manera se asegura el balance de masa cuantitativa que sea la significación estadística del componente principal, pero no necesariamente el balance de carga; y el que depende de la selección de variables originales. En algunos casos esto no ha sido tenido en cuenta (ver el primer vector dado por Labotka, 1983, para biotitas donde se presenta balance de masa, pero no de carga) y puede significar que la normalización estructural elegida es deficiente (e.g., por problemas de Fe3+/Fe2+). En casos donde se consiguen balances de carga y masa puede concluise que los errores de la normalización estructural son de importancia menor o se encuentran balanceados. Por otra parte, en algunos casos, la significación estadística del segundo componente también puede ser suficiente como para ser tenido en cuenta. En tales casos, la cuantificación de las sustituciones simples se complica ya que debe tenerse en cuenta los valores propios asociados a cada componente. Algunos usos de esta técnica en Mineralogía y Petrología pueden encontrarase en Webb y Briggs (1957), Saxena (1969b), Saxena y Ekstrom (1970), Griffin y Ribbe (1973), y Labotka (1983).

En las descripciones que siguen se puede comprobar la utilidad de los métodos de cuantificación de soluciones sólidas complejas introducidos más arriba, sobre todo si se tiene en cuenta el estado de desequilibrio composicional encontrado. Esto ofrece la oportunidad de describir no sólo la evolución composicional de las fases en relación con los cambios de grado de metamorfismo y de composición de los sistemas (i.e., petílicos vs. gneisicos), sino que además se puede describir la evolución composicional dentro de una misma muestra en relación con los procesos reacciones ocurridos en las rocas estudiadas durante la descompresión de la secuencia.

4.4. MOSCOVITA

4.4.1. INTRODUCCIÓN

Debido a su amplia presencia en muchas rocas ígneas y metamórficas, la solución sólida de la moscovita es importante en la descripción e interpretación de los sistemas naturales. Las mayores desviaciones de la composición ideal, K\textsubscript{2}Al3+Si\textsubscript{3}O\textsubscript{10}(OH)\textsubscript{2}, se deben generalmente a dos series de solución sólida, la serie de la paragonita-moscovita, descrita por el intercambio NaK\textsubscript{1} en las posiciones interlaminares de coordinación 12, y la serie de la celadonita o fengita, descrita por el intercambio acoplado tschermak SiMg2+Al\textsubscript{1-}2+Al\textsubscript{1} junto con los vectores de intercambio simples FeMg\textsubscript{1} y Fe3+Mg\textsubscript{2}. Ambas series de solución sólida están fuertemente influenciadas por los parámetros intensivos (P, T\textsubscript{H2O}), y presentan un comportamiento antipatético en muestras naturales (e.g., Guidotti y Sassi, 1976). Dicho de otra manera, los componentes de intercambio que definen ambas series de solución están implicados en reacciones heterogéneas de intercambio y/o reacciones de transferencia neta fuertemente influenciadas por las variables intensivas, por lo que la composición de la moscovita puede utilizarse en la evaluación de las condiciones P-T sufridas. Existen expresiones analíticas que permiten estimar las variables P-T\textsubscript{H2O} en base a la composición de la moscovita y el resto de fases participantes en estas reacciones que describen la asociación limitante (i.e., limiting assemblage o asociación divaricante en sistemas modelo), e.g., Ghent (1975); Cheney y Guidotti (1979); Fletcher y Greenwood (1979); Pigage y Greenwood (1982), para Na en moscovita coexistente con Pl+Al\textsubscript{3}+Qtz+H\textsubscript{2}O, Powell y Evans (1983); Bucher-Nurminen (1987), para el llamado barómetro de la fengita en la asociación Qtz+Kfs+Ms+Br+H\textsubscript{2}O.

Los estudios experimentales, teóricos y las evidencias naturales han señalado un consistente descenso de los componentes celadoníticos al aumentar la temperatura y/o descender la presión bajo condiciones de grado bajo a alto. En rocas metamórficas de grado alto, las cantidades de componentes fengíticos en la moscovita son muy bajos (e.g., Guidotti, 1978b), de acuerdo con los datos experimentales (Veld2, 1967; Massonne y Schreyer, 1987). Variaciones en las cantidades de componentes celadoníticos se detectan comúnmente en moscovitas de rocas anácticas y granitoides peraluminícos de "tipo-S", incluso dentro de

Desviaciones adicionales significativas de la solución sólida moscovita en muestras naturales incluyen componentes de Ti, trioctádricos, componentes que involucran vacantes en la posiciones interlaminares, y variaciones en las cantidades de H y O. Todos estos componentes pueden describirse mediante reacciones de sustitución acopladas y heterovalentes que modifican las relaciones en los sistemas simples moscovita-paragonita y moscovita-celadonita. Los análisis de sistemas naturales y experimentales han demostrado una dependencia de T de estas sustituciones (ver más adelante), particularmente evidentes en el caso del Ti que aumenta con el grado metamórfico. El efecto de P ha sido sugerido sólo para las sustitución trioctádrica (e.g., Massonne y Schreyer, 1987), que haría aumentar la ocupación octádrica al aumentar P.

Los análisis de moscovita disponibles en todos los tipos de rocas investigadas en este trabajo muestran un espectro composicional extremadamente amplio, tanto a escala de grupos de rocas como de muestras individuales, como se muestra en la Figura 4.4.1 en términos de Si y Ti, dos elementos sensitivos a las variaciones de P y T en las moscovitas. Las causas de esta heterogeneidad composicional son (1) los efectos debidos a condiciones P-T de equilibrio progrado, (2) los efectos composicionales de los sistemas y (3) las modificaciones composicionales inducidas por procesos reaccionales activados durante la descompresión. Esta última causa es la más importante en la explicación de las heterogeneidades encontradas, como lo demuestra el hecho de que espectros composicionales amplios, similares a los mostrados por todas las muestras, se encuentran en muestras individuales de algunos tipos de rocas, y, en algunos casos, incluso en un solo cristal individual. Puede establecerse una estrecha relación entre los tipos texturales y la composición de la moscovita en muestras individuales, por lo que puede deducirse que su equilibrio tuvo lugar bajo distintas condiciones P-T. Además, los cristales texturalmente precoces de un gran número de muestras, particularmente de gneises leucocratos, presentan heterogeneidades composicionales relacionadas directamente con el desarrollo de texturas reaccionales que, como se ha indicado en el Capítulo 3, se caracterizan por la presencia de intercambios formados por biotita, cuarzo, feldespato-K, fibrolita, andalucita, rutilo, y en algunos casos, cordierita, lo que indica su inestabilidad durante el cambio de condiciones intensivas sufridas.

En base a estas heterogeneidades composicionales y texturas puede inferirse que los procesos reaccionales implican la descomposición de ciertos componentes de la solución sólida, y demostrarse sin ambigüedades el estado de desequilibrio textural y químico de las rocas analizadas. Se mostrará que la inestabilidad de la moscovita en distintos sistemas y condiciones de P-T se debe esencialmente a cambios de P, dadas las cantidades de componentes celadoníticos que presentan las áreas relictas de los cristales precoces. Este hecho ofrece la oportunidad de evaluar el efecto de P en la composición de la moscovita en el contexto de condiciones de T media a alta. Los datos disponibles sugieren que las reacciones de descomposición tuvieron lugar bajo condiciones alejadas del equilibrio. De hecho, las heterogeneidades composicionales y texturas reaccionales asociadas encontradas en las rocas estudiadas (particularmente los gneises leucocratos) son únicas en la literatura relativa a la petrogenésis de metapelitas y gneises de grado medio a alto. Por esta
Figura 4.4.1. Espectro composicional de la moscovita en las muestras estudiadas en términos de dosis de Si y Ti (ppm normalizados a 20 O y 4(OH)). Círculos: moscovitas de la matriz (en metaelite) y primaria (en gneises leucocratos; triángulos: bastos de dosis de la matriz (en metaelite) y moscovitas pegmatíticas (en gneises leucocratos); trapezoides: isoquímicos de pseudomorfosis de granito y esotenia; cuadrados: gramos reacondicionadas (en las gneises leucocratos): cruces: gramos incluidos en plagioclasa y/o feldespato K; estrellas: moscovita del entorno residual T376. Nótese la fuerte heterogeneidad composicional en las gneises leucocratos.

razón, el estudio de detalle de las mismas constituye una parte importante de la presente memoria, y han sido objeto ya de publicaciones independientes (García-Casco et al., 1993).

Las moscovitas de los gneises bandeados con Ms+Bt+Grt del complejo de gneises leucocratos de Torrox (García-Casco et al., 1993) ilustran bien el tipo de procesos reacionales sufridos, por lo que las heterogeneidades composicionales encontradas en estas moscovitas se han tomado como patrón de comparación con el resto de las muestras de metaelite grafitosas y gneises leucocratos.
4.4.2. FÓRULA ESTRUCTURAL Y LIMITACIONES ANALÍTICAS

En este trabajo, las composiciones de moscovita se han normalizado a una fórmula estructural basada en 20 oxígenos y 4 (OH,F), expresando todo el Fe como Fe$^{2+}$ (Apéndice II Tabla M). Los elementos analizados han sido Si, Ti, Al, Cr, Fe, Mn, Mg, Ca, Ba, Na, K y F. Las concentraciones de los elementos Cr, Mn, Ca y Ba son muy bajos y los errores analíticos asociados son correspondientemente altos, por lo que estos elementos no se tendrán en cuenta en las descripciones que siguen. Los análisis de F presentan errores analíticos altos tanto de precisión como exactitud, por lo que tampoco se usarán. Por lo tanto, los componentes a considerar son:

- componentes en posiciones de coordinación 12 interlaminares: K, Na y $^{\text{[Na]}}$;
- componentes en posiciones de coordinación 6 octádricas: $^{[\text{Al}]}$Fe$^{2+}$, Mg, Ti, y $^{[\text{exc}]}$;
- componentes en posiciones de coordinación 4 tetraédricas: Si, $^{[\text{Al}]}$;
- aniones: O y OH,

donde $^{[\text{exc}]}$ = $^{[\text{Na}]}$ (cations - 4) es el exceso de ocupación octádrica sobre 4 átomos pfu, y $^{[\text{Na}]}$ ($=2$K-Na) es la vacancia interlaminar. El número de componentes es 12, y deben encontrarse otras 12 ecuaciones linealmente independientes que relacionan tales componentes para definir completamente la composición del sistema (i.e., varianza = 0; Labotka, 1983; Hewitt y Atrecht, 1986).

Una inspección rápida del conjunto de análisis indica que existen importantes variaciones en todos los cationes y posiciones estructurales, incluyendo la ocupación octádrica en exceso y las vacantes interlaminares (Apéndice II Tabla M). Como se ha indicado anteriormente, se tuvo especial cuidado de localizar la sonda en zonas "limpias", donde los intercambios de otras íases aparecían ausentes en imágenes ópticas y de BSE, particularmente en las moscovitas de los gneises leucocratos donde existen abundantes intercambios de biotita y cuarzo. Dado que también existen intercambios submicroscópicos a escala de imágenes de TEM que no pueden ser observados (García-Casco et al., 1993; Capítulo 5.6.2.2), los análisis fueron ulteriormente seleccionados en base a criterios de consistencia cristalquímica interna. En función de estos criterios, algunos análisis con cantidades excesivamente elevadas de Fe, Mg, Ti y, consecuentemente, de ocupación octádrica, fueron rechazados dado que representan análisis mezcla de moscovita más biotita. En la base de datos restante las fórmulas estructurales muestran buena concordancia con la fórmula teórica dioctádrica, presentando contenidos en la ocupación octádrica de Sum VI < 4.1 átomos por fórmula unidad (pfu) en la mayor parte de los casos (Apéndice II Tabla M). Estos valores de ocupación son consistentes con las estimaciones de "valores normales" en otras moscovitas (Guidotti, 1981, p.373), y demuestran que los análisis seleccionados representan composiciones libres de intercambios de biotitas (más aún si se tiene en cuenta que todo el Fe ha sido expresado como Fe$^{2+}$). Se considera que otras fuentes de incertidumbre son de mayor magnitud que los efectos de intercambios no reconocidos en los análisis usados (555 análisis puntuales), como lo sugiere el hecho de que análisis comparables (excepto en los cationes alcalinos) se obtienen con sondas de 0.5 μm. En consecuencia, la base de datos seleccionada puede utilizarse con bastante grado de seguridad en el estudio de las variaciones composicionales, mecanismos de sustitución y procesos reactivos sufriéndose por estas moscovitas.
Existen evidencias de que parte del Fe debe estar presente como Fe$^{3+}$, particularmente en los gneisos leucocratos donde no coexiste grafito. Este hecho introduce ciertas incertidumbres al respecto de la generalización de los resultados obtenidos ya que las relaciones Fe$^{3+}$/Fe$^{2+}$ no pueden ser estimadas, y además es muy probable que varén con la composición de la moscovita, por lo que las fórmulas estructurales presentan una imprecisión no sistemática. La normalización estructural considerando Fe$_{total}$ = Fe$^{2+}$ supone sobreestimar todos los cationes (excepto [Al$^{3+}$]). No obstante, los errores inducidos son de escasa importancia en todos los componentes excepto Fe$^{2+}$ y [Al]$^{3+}$ (ver García-Casco et al., 1993, para más detalles), por lo que gran parte de las características composicionales descritas a continuación son consideradas muy próximas a las reales. Sin embargo, la incertidumbre asociada a la significación de los valores absolutos y variaciones de la ocupancia octaédrica es elevada puesto que todos los cationes están sobreestimados. En el contexto del presente trabajo este hecho es importante ya que se observan fuertes variaciones en la ocupancia octaédrica (i.e., componente triocádrico) que podrían implicar variaciones en la razón Fe$^{3+}$/Fe$^{2+}$ al variar las cantidades de Fe$_{total}$ de las moscovitas o variaciones en el componente triocádrico. Por otra parte, la no consideración de cantidades variables de los componentes H y O induce ulteriores incertidumbres en las fórmulas estructurales ya que las variaciones de estos componentes tienen especial efecto sobre la ocupancia interlaminar (e.g., Dyar et al., 1991a; Louks, 1991). Por lo tanto, las fuertes variaciones en la ocupancia interlaminar observadas en las micas analizadas podrían ser en parte "ficticias", i.e., corresponder a variaciones en las cantidades de H. Esto supone que el mecanismo de sustitución que explica las variaciones en la ocupancia interlaminar tampoco puede resolverse con certidumbre (ver más adelante y García-Casco et al., 1993).

4.4.3. Variaciones Composicionales y Vectores de Intercambio

4.4.3.1. Espectro Composicional

Los aspectos generales de la composición de las moscovitas analizadas pueden apreciarse en las Figuras 4.4.1, 4.4.2 y 4.4.3, y en las Tablas 4.4.1 y 4.4.2. En el diagrama multicañónico R2-R3 (Tracy, 1978; Guidotti, 1984) de las Figuras 4.4.2 y 4.4.3 se han proyectado los análisis de metapelitas grafitosas (esquistos y gneisos pelíticos) y gneisos leucocratos y rocas asociadas, respectivamente, junto con algunos componentes moleculares dioctáedricos y triocádricos significativos. Este diagrama ilustra el grado de desviación de la solución sólida moscovita de los términos extremos trisilikícitos moscovita (ms, K$_2$[Al$_4$Si$_3$O$_{9+}$(OH)$_2$] más, implícitamente, paragonita (pa, Na$_2$[Al$_4$Si$_3$O$_{9+}$(OH)$_2$]), en función de los cationes octaédricos y tetraédricos. Dado que las cantidades de Ti y Sum VI suelen ser bajas en moscovitas metamórficas de grado medio a alto, Tracy (1978) y Guidotti (1984) utilizaron este diagrama para ilustrar cualitativamente las desviaciones de moscovitas hacia términos extremos celadoníticos (representados por la molécula tetrasilikícita de leucófilita, lcp, K$_2$[(Fe,Mg)$_2$][Al$_2$Si$_3$O$_{9+}$(OH)$_2$]), Figuras 4.4.2a y 4.3a). Puede observarse que la fuerte heterogeneidad composicional de las moscovitas analizadas implica mayoritariamente componentes dioctádricos, aunque la ocupancia octádrica aumenta a medida que las desviaciones dioctádricas del término moscovita son mayores. El conjunto de muestras de gneisos leucocratos presenta mayores desviaciones del componente moscovita, aunque en ambos grupos se encuentran composiciones cercanas a este término extremo. En las Figuras 4.4.2c y 4.4.3c se evidencia que
Determinadas rocas y grupos de rocas muestran espectros composicionales del mismo rango que los espectros globales.

La proyección de los análisis en diagramas binarios catiónicos (Figuras 4.4.4 y 4.4.5) muestran una mayor complejidad que los diagramas R2-R3 anteriores. En estas figuras puede observarse (1) los amplios rangos de variación en todos los componentes, incluidos Sum VI y Sum XII, (2) la existencia de tendencias de variación dentro de los dos grupos de rocas (metapelitas grafíticas y gneises leucocratos) que no se observan en los diagramas R2-R3 y (3) las mayores desviaciones composicionales de las moscovitas de los gneises leucocratos que muestran además unas tendencias de variación particularmente complejas. Al considerar muestras individuales de todos los tipos de rocas, los cristales texturalmente precoces son heterogéneos, aunque ricos Si, Fe, Mg, Ti y Sum VI (Figura 4.4.1), mientras que los cristales tardíos (e.g., pseudomorfos y recristalizados) presentan composiciones más próximas al término moscovita.

Tabla 4.4.1. Estadística básica y coeficientes de correlación Pearson para las moscovitas de los esquistos y gneises pelíticos de la unidad de Toreox. Número de observaciones=196.

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>[Mg]</th>
<th>Ti</th>
<th>Fe</th>
<th>Mg</th>
<th>Sum VI</th>
<th>Na</th>
<th>K</th>
<th>Sum XII</th>
<th>Mg/Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mi</td>
<td>6.08</td>
<td>6.52</td>
<td>6.30</td>
<td>0.090</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Me</td>
<td>6.52</td>
<td>6.52</td>
<td>6.76</td>
<td>0.099</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>da</td>
<td>3.17</td>
<td>3.17</td>
<td>3.72</td>
<td>0.108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>0.02</td>
<td>0.18</td>
<td>0.06</td>
<td>0.02</td>
<td>0.44</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>0.02</td>
<td>0.22</td>
<td>0.15</td>
<td>0.030</td>
<td>0.74</td>
<td>0.75</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>0.06</td>
<td>0.43</td>
<td>0.18</td>
<td>0.073</td>
<td>0.91</td>
<td>0.94</td>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum VI</td>
<td>0.20</td>
<td>4.17</td>
<td>4.06</td>
<td>0.062</td>
<td>0.20</td>
<td>0.17</td>
<td>0.10</td>
<td>0.46</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>0.02</td>
<td>0.25</td>
<td>0.16</td>
<td>0.01</td>
<td>0.22</td>
<td>0.12</td>
<td>0.03</td>
<td>0.21</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>1.35</td>
<td>1.73</td>
<td>1.66</td>
<td>0.052</td>
<td>0.36</td>
<td>0.17</td>
<td>0.13</td>
<td>0.13</td>
<td>0.46</td>
<td>0.04</td>
</tr>
<tr>
<td>Sum XII</td>
<td>1.57</td>
<td>1.86</td>
<td>1.78</td>
<td>0.05</td>
<td>0.45</td>
<td>0.24</td>
<td>0.16</td>
<td>0.22</td>
<td>0.76</td>
<td>0.04</td>
</tr>
<tr>
<td>Mg/Fe</td>
<td>0.56</td>
<td>2.66</td>
<td>2.12</td>
<td>0.33</td>
<td>0.82</td>
<td>0.18</td>
<td>0.01</td>
<td>0.23</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>Na/K</td>
<td>0.01</td>
<td>0.25</td>
<td>0.14</td>
<td>0.027</td>
<td>0.17</td>
<td>0.09</td>
<td>0.06</td>
<td>0.18</td>
<td>0.33</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Tabla 4.4.2. Estadística básica y coeficientes de correlación Pearson para las moscovitas de todas las muestras analizadas en los complejos de gneises leucocratos de Toreox y Rompueblades. Número de observaciones=359.

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>[Mg]</th>
<th>Ti</th>
<th>Fe</th>
<th>Mg</th>
<th>Sum VI</th>
<th>Na</th>
<th>K</th>
<th>Sum XII</th>
<th>Mg/Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mi</td>
<td>6.12</td>
<td>6.66</td>
<td>6.39</td>
<td>0.105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Me</td>
<td>6.39</td>
<td>6.40</td>
<td>6.40</td>
<td>0.174</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>da</td>
<td>3.05</td>
<td>3.05</td>
<td>3.05</td>
<td>0.215</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>0.08</td>
<td>0.26</td>
<td>0.16</td>
<td>0.05</td>
<td>0.46</td>
<td>0.26</td>
<td>0.18</td>
<td>0.18</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>0.16</td>
<td>0.45</td>
<td>0.25</td>
<td>0.06</td>
<td>0.64</td>
<td>0.74</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>0.04</td>
<td>0.69</td>
<td>0.28</td>
<td>0.05</td>
<td>0.88</td>
<td>0.15</td>
<td>0.69</td>
<td>0.69</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>Sum VI</td>
<td>3.99</td>
<td>4.16</td>
<td>4.02</td>
<td>0.25</td>
<td>0.66</td>
<td>0.58</td>
<td>0.04</td>
<td>0.53</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>0.04</td>
<td>0.20</td>
<td>0.13</td>
<td>0.02</td>
<td>0.34</td>
<td>0.14</td>
<td>0.06</td>
<td>0.06</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>1.55</td>
<td>1.79</td>
<td>1.76</td>
<td>0.10</td>
<td>0.49</td>
<td>0.15</td>
<td>0.06</td>
<td>0.16</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Sum XII</td>
<td>1.64</td>
<td>1.87</td>
<td>1.83</td>
<td>0.24</td>
<td>0.75</td>
<td>0.59</td>
<td>0.37</td>
<td>0.37</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>Mg/Fe</td>
<td>0.22</td>
<td>2.63</td>
<td>1.70</td>
<td>0.33</td>
<td>0.45</td>
<td>0.48</td>
<td>0.13</td>
<td>0.64</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Na/K</td>
<td>0.01</td>
<td>0.25</td>
<td>0.09</td>
<td>0.014</td>
<td>0.70</td>
<td>0.13</td>
<td>0.08</td>
<td>0.32</td>
<td>0.32</td>
<td></td>
</tr>
</tbody>
</table>

Para una mejor comprensión de estos cambios composicionales es necesario una consideración independiente de los distintos tipos de rocas analizadas. No obstante, antes de intentar introducir algunos aspectos sobre los mecanismos de balance catiónico (i.e., sustituciones o vectores de intercambio) que permiten explicar las desviaciones y variaciones composicionales. Los vectores más significativos en el contexto del presente trabajo, discutidos a continuación, se han proyectado en los diagramas binarios catiónicos de las Figuras 4.4.4 y 4.4.5.
Figura 4.4.2. (a): Diagrama multicomponente R2-R3 con la proyección de todos los análisis de muscovita de esquistos grafíticos y gruítas polícticas; se han proyectado términos extremos moleculares relevantes para mostrar el espectro composicional global y la naturaleza continua de las sustancias eutróficas implícitas que lo explican. Las abreviaturas corresponden a mus: muscovita; pri: pirólita; lep: leucogranito; fl: flagopita; ast: astenita. Sus fórmulas se definen en el texto, excepto flagepita: K2[Al2Mg2Fe]3Al2Si02(OH)8 la proyección del extremo más alto de muscovita asociado con la de paragonita. (b): Sección ampliada del diagrama (a) con los análisis disociados en función de las variaciones AFM diferenciadas en las metapelitas grifíticas (todos incluyen Bi>Mv>And) y la regresión sobre todos los datos. (c): Proyección de los análisis de una muestra esquistos grifítica con fibroblastos (T329) y una muestra de gruita polyclítica con cordiaterita (T348), que ilustran las fases principales composicionales dentro de muestras individuales.

Figura 4.4.3. (a): Diagrama esquemático R2-R3 con la proyección de todos los análisis de muscovita de gneiscos leucocráticos y metapelitas intercaladas; los términos extremos como en la Figura 4.4.2. (b): Sección ampliada del diagrama (c) con los análisis disociados y la regresión sobre todos los datos. Nótese que las variaciones del término extremo muscovita llegan a ser significativamente mayores que las de las muscovitas metapelíticas y gneiscos polícticos (particularmente si se excluyen de éstos los análisis de la muestra T348). (c): Proyección de los análisis de las 4 muestras de gneiscos leucocráticos con Mt+VGr (T311, T316, T336 y T505) diferenciadas en función del tipo petrográfico de mica (primaria, recriada y pegmatítica, ver Capítulo 5.), que ilustra variaciones composicionales dentro de muestras individuales del mismo orden de magnitud que el conjunto de datos de leucogranitos y metapelitas asociadas.
Figura 4.4.4. Diagramas de variación binarios (base cátionica) que muestran el espectro composicional de las minerales de las meteoritas grafíticas. Símbolos como en la Figura 4.4.1. Los símbolos rellenos corresponde a los análisis de la muestra T34R, un gráfico polar catedrático cuya muestra muestra fuertes variaciones composicionales (ver Figura 4.4.24). Las líneas continuas son líneas de regresión sobre los datos de meteoritas de la matriz de grises basadas con Ms+Ul+Grt (Garcia-Casco et al., 1993; ver más adelante) representadas a efectos comparativos. Las líneas de puntos son vectores de sustitución representativos (en el diagrama Na vs. Si, el vector que representa la sustitución Np-pyrofilita no intercita el espacio composicional definido por los ejes de coordenadas, por lo que se ha representado desplazado).
Figura 4.4.5. Diagramas de variación binaria (bases catiónicas) que muestran el espectro composicional de las moscovitas de los granos isoclásticos y rocas asociadas. Símbolos como en la Figura 4.4.1, y líneas continuas y de puntos como en la Figura 4.4.4.

4.4.3.2. VECTORES DE INTERCAMBIO

La solución sólida de la moscovita se caracteriza por un gran número de componentes y sustituciones catiónicas potencialmente posibles (ver Guidotti, 1984 para una revisión). Dado que el número de componentes a definir para describir la fase moscovita es 12, deben encontrarse 12 ecuaciones finalmente
independientes que relacionan tales componentes. De las 12 ecuaciones, 6 están definidas por las constricciones estéquiométricas que determinan la cristalquímica de las moscovitas:

\[
\begin{align*}
K + Na + \frac{1}{2}Al(O) &= 2 \\
[\nu]Al + Fe + Mg + Ti - \frac{1}{2}Al(O) &= 4 \\
Si + [\nu]Al &= 8 \\
OH &= 4 \\
O &= 20 \\
\text{Suma de cargas positivas} &= \text{Suma de cargas negativas} = 44
\end{align*}
\]

Estas constricciones se satisfacen con la elección del componente aditivo moscovita (ms). Por lo tanto, se necesitan 6 constricciones adicionales, lo que es lo mismo, 6 componentes de fase linealmente independientes y variables independientemente que expliquen la región de fase de la moscovita (nótese que el número de componentes variables independientemente es igual al número total de elementos que pueden variar, i.e., 7: Si, Ti, Al, Fe, Mg, Na, y K). Estos 6 componentes de fase pueden definirse como vectores de intercambio o, alternativamente, como componentes moleculares relacionados con el componente moscovita por vectores de intercambio.

Sustitución Paragonita

El diagrama R2-R3 ilustra el grado de desviación de la solución sólida moscovita de los términos extremos trisilicicos moscovita más paragonita (pa) que están relacionados por el vector:

\[
NaK_3
\]

Ambos componentes se proyectan en el mismo punto en el diagrama R2-R3 al estar construido con los cationes tetraédricos y octaédricos (Figuras 4.4.2a y 4.4.3a). La identificación de este vector implicaría la existencia de correlaciones negativas entre Na y K, lo cual no se observa claramente en la Figura 4.4.4, donde sólo un grupo de composiciones de las metapelitas grafíticas muestra tendencias de correlación negativas paralelas al vector NaK₃. En los greises leucocratos es clara la ausencia de correlación negativa entre Na y K (Figura 4.4.5, Tabla 4.4.2).

Las relaciones entre la solubilidad del Na en la moscovita y la temperatura han sido extensivamente investigadas en el sistema KNASH (e.g., Eugster y Yoder, 1955, Eugster et al., 1972, Blenner y Luth, 1973; A.B. Thompson, 1974, Chatterjee y Froese, 1975. Thompson y Thompson, 1976, Flux y Chatterjee, 1986; Chatterjee y Flux, 1986). A baja T, existe un domo de inmiscibilidad entre moscovita y paragonita cuya causa es la diferencia significativa en el radio iónico del Na (1.39 Å) y K (1.64 Å) (todos los radios iónicos de Shannon y Prewitt, 1969, 1970, revisados por Shannon, 1976, y compilados por Henderson, 1986), y cuya asimetría se debe a las mayores distorsiones introducidas por la sustitución de K por Na en la paragonita que Na por K en la moscovita (Radoslović, 1960). Los resultados de los trabajos anteriores indican que los contenidos de Na se incrementan a medida que T aumenta a lo largo del solvus donde moscovita y paragonita coexisten. El cierre de este solvus no ha podido investigarse ya que el límite-superior de estabilidad de la paragonita (que implica un cambio topológico con la coexistencia de Pl+Ala) se ha encontrado por debajo de la temperatura crítica bajo todas las condiciones de presión investigadas. A partir
de la desaparición de paragonita (i.e., grado bajo), las cantidades de Na en la muscovita sucesivamente coexistente con Pl+AlSiO₃+H₂O y Kf+Al₂SiO₅+H₂O descenden progresivamente con la temperatura. A lo largo del sistema de inmiscibilidad la solubilidad del componente paragonita debe descender al aumentar la presión debido al volumen de mezcla positivo para la muscovita (Chatterjee y Froese, 1975, Blencoe, 1977; ver Guidotti, 1984 y Guidotti et al., en prensa). A partir de la desaparición de paragonita, la solubilidad de paragonita en muscovita coexistente con las asociaciones anteriores debe aumentar al aumentar la presión (A.E. Thompson, 1974; Chatterjee y Froese, 1975; Guidotti y Sass, 1976).

Sustitución Tschermak y de Fe³⁺

Un gran número de moléculas dioctádricas describen importantes desviaciones del término extremo muscovita. Este es el caso de las desviaciones encontradas en muscovitas fengíticas ricas en Si, que se explican por el vector tschermak (en este caso, y en otros que siguen, los vectores y moléculas que incluyen cationes divalentes se escriben con Mg, aunque igualmente incluyen Fe³⁺):

\[\text{MgSi}^{[n]}\text{Al}^{[n]}\text{Al}^{[n]} \] (4.13)

El vector tschermak (tk) relaciona la muscovita con el término extremo tetrasilico leucofilita (lcp) (Wise y Eugster, 1964; ver Guidotti, 1984, para una discusión sobre el uso terminológico de las moléculas "fengíticas"). Como puede observarse en las Figuras 4.4.2 a 4.4.5, el vector de intercambio tschermak explica una parte sustancial de las desviaciones y variaciones composicionales de las muscovitas estudiadas en ambos grupos de rocas. Sin embargo, las muscovitas fengíticas naturales incluyen también desviaciones hacia términos de Fe³⁺ (Ernst, 1963; Velde, 1965), que pueden describirse mediante los vectores (y moléculas correspondientes):

ferri-muscovita (Fe³⁺-m): \[[\text{Fe}^{3+}] [\text{M}]\text{Al}^{[n]} \]

\[\text{K}_2\text{Fe}^{3+}\text{Al}_2\text{Si}_2\text{O}_{10}\text{(OH)}_4 \] (4.14)

ferri-tschermak (Fe³⁺-tk): \[\text{[M]} [\text{M}] [\text{Fe}^{3+}] [\text{Si}] [\text{M}] \text{Mg} \]

\[\text{K}_2\text{MgFe}^{3+}\text{Al}_2\text{Si}_2\text{O}_{10}\text{(OH)}_4 \] (4.15)

Fe-oxi-fengita: \[\text{Fe}^{3+}\text{O}^2\text{Fe}^{2+}_{1,0}\text{(OH)}_{1,0} \]

\[\text{K}_2\text{Fe}^{2+}\text{Fe}^{3+}\text{Al}_2\text{Si}_4\text{O}_{10}\text{(OH)}_2 \] (4.16)

La importancia de estas desviaciones no puede valorarse al carecer de análisis independientes de Fe³⁺ (y H). No obstante, los contenidos en Fe³⁺ y Si de las muscovitas naturales suelen correlacionarse positivamente (Guidotti, 1984), lo cual sugeriría la operatividad de la sustitución ferri-muscovita (4.14) ya que el vector ferri-tschermak (4.15) implicaría correlaciones negativas entre Si y Fe³⁺. No obstante, el vector (4.15) debe aplicarse directamente sobre leucofilita para generar moléculas con subíndices positivos ya que es combinación lineal de los vectores tschermak y ferri-muscovita, por lo que se considera que describe mejor las composiciones naturales (Guidotti, 1984) intermedias en el sistema muscovita-leucofilita-celadonita (cel, \(\text{K}_2\text{Mg}_3\text{Fe}^{3+}_2\text{Si}_4\text{O}_{10}\text{(OH)}_6 \)).

Las desviaciones de la muscovita de su composición ideal debido a sustituciones fengíticas han sido ampliamente investigadas en sistemas naturales, experimentales y teóricos. Un aumento en los contenidos de Si ha sido reconocido en muscovitas naturales a medida que P aumenta y/o T desciende (e.g., Ernst, 1963; Cipriani et al., 1971; Guidotti and Sass, 1976; Guidotti, 1984). Por otra parte, la composición del sistema y la asociación de fases ejerce un control importante en el grado de solución de componentes celadoníticos.
Bajo condiciones de P-T comparables, las moscovitas estables en sistemas fuertemente aluminícos que presentan una o más fases saturadas en Al (e.g., silicatos de Al, estaurolita) contienen cantidades mayores de Al y menores de Si que las moscovitas pertenecientes a sistemas de composición peralumínica donde el feldespato potásico puede coexistir (Guidotti, 1973; Miyashiro and Shido, 1985). Este comportamiento de los sistemas naturales ha sido corroborado por estudios experimentales. Vede (1965, 1967), Monier y Robert (1986a) y Massonne y Schreyer (1987) han investigado experimentalmente los límites de solubilidad de las componentes fengíticas en la moscovita en equilibrio con la asociación limitante Bt+Qtz+Kfs+H₂O en el sistema K(Mg)ASH, y han calibrado la superficie P_H₂O-T-X₅₆ de este equilibrio (la formulación del mismo se presenta más adelante). Sus resultados indican bajas pendientes dP/dT positivas para las islopetas de Si, y por lo tanto un fuerte efecto de la presión en la solubilidad de los componentes fengíticos, en buen acuerdo con las observaciones sobre sistemas naturales. Este equilibrio está influenciado también por a_H₂O, aunque el análisis termodinámico del mismo indica que no se producen fuertes desplazamientos de los límites de reacción (i.e., islopetas) en el espacio P₀T₀-T (Vede, 1967; Massonne y Schreyer, 1987). Esto ha supuesto la aplicación del contenido en Si de las moscovitas fengíticas como geobarómetro, aunque la aplicación de los resultados experimentales P-T-X₅₆ de estos autores con fines barométricos debe realizarse sobre asociaciones con Bt+Kfs+Qtz en las que la moscovita presenta las cantidades máximas de componentes celadoníticos para unas condiciones dadas de P-T (Guidotti y Sassi, 1976; Miyashiro y Shido, 1985; Monier y Robert, 1986a; Massonne y Schreyer, 1987). En cualquier otro caso, la presión no está fijada a T fija, por lo que los resultados del baúlmetro deben considerarse como estimaciones de P mínima.

Además de consideraciones sobre las composiciones de equilibrio, la presencia de texturas de descomposición en moscovitas naturales puede ayudar considerablemente a desvelar secciones particulares de trayectorias P-T (Massonne y Schreyer, 1987). Dada la geometría de las islopetas de Si, la presencia de texturas de reacción, incluyendo asociaciones producto de descomposición de moscovitas fengíticas (Bt+Qtz+Kfs), y de heterogeneidades composicionales asociadas, están normalmente restringidas a rocas sujetas a condiciones de metamorfismo de alta P/ baja T (fácies de esquistos azules y eclogitas) que han sufrido procesos de descompresión más o menos rápidos (e.g., Heinrich, 1982; Saliot y Vede, 1982; Frey et al., 1983; Ladeaux et al., 1983; Franz et al., 1986; Evans y Patrick, 1987). Texturas indicativas de instabilidad en moscovitas fengíticas de alta T no son comunes. Ferrow et al. (1990) han presentado evidencias de TEM para la exfoliación de un filosilicato a 10 Å en moscovitas graníticas, aunque favorecen la exfoliación de celadonita (como fase) más que intercuentros de biotita. La ausencia de texturas de descomposición en moscovitas de alta T puede ser debida a una combinación de:

- condiciones cinéticamente favorables bajo cambios de P-T lentos y/o la disponibilidad de fluidos, que excluirían la posibilidad de observar evidencias de desequilibrio
- los bajos contenidos en Si (i.e., componentes celadoníticos) de las moscovitas de alta-T, que oscilan entre 6.1 a 6.3 átomos f.u (normalización a 22 oxígenos) en ambientes metamórficos (e.g., Guidotti, 1973, 1978b; Tracy, 1978; Fletcher y Greenwood, 1979; Aparicio et al., 1979; Tyler y Ashworth, 1982; López Ruiz et al., 1980; Holdway et al., 1988) e igneos (e.g., Guidotti, 1978a; Aparicio et al., 1980; Miller et al., 1981; Lec et al., 1981; Kistler et al., 1981; Price, 1983; Sevigny et al., 1989).
- las bajas pendientes positivas dP/dT de las islopetas de reacción, en combinación con trayectorias P-T dominadas por enfriamiento.
En cualquier caso, el hecho de que poblaciones heterogéneas se encuentran comúnmente en muestras individuales, e incluso cristales individuales de moscovita de cuerpos plutónicos (e.g., Miller et al., 1981; Speer, 1984; Montier et al., 1984; Ronings et al., 1988) indica que el equilibrado de la moscovita es un proceso lento aún en condiciones de temperatura media a alta.

Dado que las cantidades máximas de leucofilita en moscovita se dan en asociaciones limitantes con Kfs (i.e., Kfs+Qtz+Bt+H₂O), no es de extrañar que los gneises leucocratos presenten cantidades significativamente mayores de Si que las metapelitas grafitosas (Figura 4.4.1) —las moscovitas de algunas metapelitas grafitosas (gneis pelítico con cordirita T348) y esquistos moscovíticos intercalados en los gneises donde no coexiste Kfs también presentan cantidades elevadas de Si (Figura 4.4.1), lo cual puede asignarse a altas presiones de equilibrio. De hecho, el incremento en Si detectado al considerar los valores máximos de Si en la serie de metapelitas grafitosas desde los esquistos con St+Bt+Grt+And hasta los gneises pelíticos con St+Bt+Grt+Kfs+Pl+And(t+Crd) sugiere incrementos de P en sentido "progrado", aunque las cantidades de componentes celadónicos no están fijadas dado que la serie de metapelitas grafitosas presenta asociaciones saturadas en Al sin Kfs. Por otra parte, las variaciones compositacionales relacionadas con el vector tschermak (ΔSi = 6.66–6.04 átomos fórmula) sugieren cambios significativos de presión relacionables con las texturas reaccionales detectadas en las moscovitas estudiadas.

A este respecto es interesante señalar la correlación negativa de Na y Si observable en parte de las muestras de metapelitas grafitosas y en los gneises leucocratos (Figuras 4.4.4 y 4.4.5). Relaciones antiparalelas entre Na y Si (o Fe+Mg) se detectan en un gran número de moscovitas naturales y son consistentes con los escasos contenidos en Na de fengitas y con las débiles desviaciones hacia términos celadónicos de paragonitas naturales (e.g., Franz y Althaus, 1976; Karagas y Baltrazis, 1980, Grambling, 1984; Guidotti et al., manuscrito). Como indica Guidotti (1984, p.409), la relación inversa entre las solubilidades de leucofilita y paragonita en moscovita debe explicarse por efecto del volumen de mezcla positivo de la solución sólida moscovita-paragonita y/o por efectos cristalquímicos derivados de las sustituciones celadónicas. En este sentido, el factor cristalquímico más importante que condiciona el comportamiento del Na es el valor del ángulo de rotación tetraédrico α, que mide las desviaciones de la estructura de la simetría hexagonal ideal (e.g., Radoslovich y Norrish, 1962; Zussman, 1979). Estas desviaciones son debidas a la ausencia de un ajuste perfecto entre las capas tetraédricas (mayores en sus dimensiones laterales) y octaédricas (menores) de las micas dioctáedricas y trioctáedricas, lo que debe compensarse por deformaciones internas de la estructura tales como rotación tetraédrica, basculamiento, y aplastamiento más estramamiento de los octaedros. En general, a medida que el desajuste es mayor aumenta en ángulo de rotación de los tetraédros en el plano (001). Este aspecto de la cristalquímica de las micas condiciona también la composición de las micas trioctáedricas. En el caso de las micas dioctáedricas, los valores de α oscilan entre ca. 16° en la paragonita, ca. 13° en la moscovita y 6-11° en las fengitas (Zussman, 1979, su Tabla III). En las moscovitas, se registra un descenso de α a medida que los componentes celadónicos aumentan. La razón de ello es el incremento y descenso respectivos en las dimensiones laterales de la capa octaédrica y tetraédrica (i.e., descenso del desajuste) que tienen lugar al sustituirse Al³⁺ octaédrico (radio iónico de 0.535 Å) por los cationes con mayor radio íonico Mg²⁺ (0.72 Å), Fe²⁺ (0.78 Å) y Fe³⁺ (0.645 Å), y el Al³⁺ tetraédrico (0.39 Å) por Si⁴⁺ (0.26 Å). Estas modificaciones del valor de α implican también distorsiones en la geometría de las posiciones de coordinación 12, de manera que α disminuye, las dimensiones de las posiciones interlaminares (i.e., las distancias interatómicas medias K-O) aumentan. Al aumentar la presión y favorecerse las sustituciones celadónicas (esencialmente tschermak), α desciende, y el poliedro de coordinación XII se
expande haciendo más inestable la presencia del catión Na⁺ (1.39 Å) de radio iónico menor que el K⁺ (1.64 Å). Este comportamiento ha sido definido por Guidotti (1984) como efecto pinza ("pincher effect").

Sustitución Di-Trioctahédrica

Como ya se ha indicado, una consecuencia importante de la operatividad de las reacciones de sustitución que involucran Fe³⁺ es la sobreestimación de todos los cationes y, particularmente, en la ocupación octaédrica al expresar \(\text{Fe}_{\text{tot}} = \text{Fe}^{2+} \). Aunque este hecho podría servir como un indicador cuantitativo de las cantidades de Fe³⁺ en micas dioctahédricas, el hecho de que puedan darse sustituciones trioctaédricas (distri, e.g., M. D. Foster, 1956, 1960a; Radtkevich, 1963; Massonne y Schreyer, 1986):

\[
K[\text{Fe}_{5}^{3+}\text{M}_{2}^{2+}]\text{Al}_{2}^{3+}\text{M}_{1}^{2+}\text{O}_{10}^{2-}\]

que describe las desviaciones hacia el término extremo trioctaédrico flogopita (phi, \(K_2\text{Fe}_{5}^{3+}\text{M}_{2}^{2+}\text{Al}_{2}^{3+}\text{Si}_{20}^{4+}\text{O}_{40}^{2-}\)), excluye cualquier posibilidad de una estimación rigurosa del Fe³⁺.

Los estudios experimentales sobre las desviaciones celadoníticas referidos anteriormente han mostrado desviaciones inversas de la estructura puramente dioctaédrica, aunque Velde (1965, 1967) sólo reconoció sustituciones de tipo celadonítico en sus cargas experimentales. Monier y Robert (1966a) y Massonne y Schreyer (1986, 1987) detectaron cantidades variables de ocupación octaédrica en exceso sobre la teórica (4 átomos p/u) relacionadas con la asociación de fases coexistente en condiciones de P-T constantes. Según los resultados de estos autores, la presencia de Br+Kfs en sistemas saturados en SiO₂ implica composiciones desviadas hacia términos trioctaédricos, en oposición a asociaciones sin biotita donde la moscovita sería puramente dioctaédrica en los sistemas investigados (e.g., Figura 9 de Massonne y Schreyer, 1987). Sin embargo, a pesar de que las cargas experimentales se sometieron a condiciones amplias en el campo P-T. Massonne y Schreyer (1986, 1987) no pudieron establecer relaciones cuantitativas entre las ocupaciones octaédricas y P y/o T, aunque sugieren un incremento con la presión. Monier y Robert (1966a) indicaron un descenso de las sustituciones trioctaédricas al aumentar la temperatura en experimentos isobáricos a 2 kbar. Estas relaciones sugieren que el comportamiento de la solución hacia términos trioctaédricos es similar al de términos feníticos bajo asociaciones limitantes con feldespatos-K presente. Descensos de P y/o aumentos de T implican por lo tanto una reducción de la región miscible en el campo ternario moscovita-Mg-leucosfilita-flogopita. A altas presiones (P ≥ 10 kbar, a 600 °C), Massonne y Schreyer (1987) sugieren relaciones inversas respecto de P, aunque en cargas sometidas a altas presiones (20-35 kbar, 800-1000 °C) se han sinterizado micas de composición intermedia que parecen presentar solución sólida hacia biotita pero no hacia moscovita ya que éstas últimas no presentaron desviaciones trioctaédricas significativas (Green, 1981; Green y Hellman, 1982).

En las moscovitas analizadas en este trabajo, se reconocen variaciones en Sum VI (Figuras 4.4.4. y 4.4.5) que se muestran particularmente claras en las moscovitas de los gneises leucoxétricos cuando se analizan individualmente los distintos tipos de muestras (ver más adelante). No obstante, estas variaciones composicionales pueden indicar la operatividad del vector distri y/o variaciones en la razón Fe³⁺/Fe²⁺ al variar las cantidades de Fe₉₀. Dadas las evidencias experimentales anteriormente discutidas, es muy probable que estas moscovitas presenten componentes trioctaédricos y de Fe³⁺ (toda vez que en los gneises leucoxétricos no coexista grafito). En este caso, los errores inducidos por la expresión de Fe₉₀ como Fe²⁺ en las fórmulas estructurales pueden ser importantes si se tiene en cuenta que la relación molar \([\text{Fe}]/(\text{Fe},\text{Mg})^{44}(\text{Si}) \)
3:1 en el vector de intercambio direccional (4.17). Miller et al. (1981) indicaron que aproximadamente un 70% del Fe total es Fe³⁺ (rango total 27-85%, espectroscopía Mössbauer) en la mayoría de las moscovitas de rocas graníticas, lo que implica que recalculando las fórmulas estructurales en base a relaciones Fe³⁺/Fe²⁺ apropiadas los valores de las sumas totales de cararones octaédricos se aproximan muchísimo al valor teórico de 4 átomos p/u (i.e., de 4.08±4.20, para a 4.04±0.04). La conclusión de estos autores es que las cantidades de componente trioxaédrico en moscovitas graníticas son muy bajas. En los génesis bandeados con Ms+Br+Grt descritos más adelante, García-Casco et al. (1993) concluyeron que la no-consideración de Fe³⁺ puede llevar a calcular valores negativos del componente leucofilita cuando Fe+Mg presenta valores bajos, en cuyo caso es necesario concluir que existen razones Fe³⁺/Fe²⁺ elevadas. Esto es fácilmente ilustrable ya que si Sum VI = 4.1 átomos p/u y Fe_total = Fe²⁺, entonces 0.3 átomos de Fe+Mg deben asignarse al componente trioxaédrico, lo cual es un valor ciertamente elevado. Una manera indirecta de deducir si parte de los excesos en la ocupación octaédrica se debe a la presencia de relaciones Fe³⁺/Fe²⁺ significativas es si Fe total (expresado como Fe²⁺) y la razón Fe/Mg presentan correlaciones positivas con Sum VI.

Como se muestra más adelante, la incertidumbre al respecto de la presencia de Fe³⁺ no introduce complicaciones excesivas en algunos casos, aunque si en aquellos en que el vector direccional (4.17) explica gran parte de las heterogeneidades composicionales. Este último es el caso de los génesis aplíticos y esquistos moscovíticos con Ms+Br+Grt+Kfs, donde las variaciones composicionales aparentemente debidas a la sustitución dióxida o trioxaédrica son más importantes que las debidas a la sustitución tschermak, y parecen explicar el desarrollo de texturas reaccionales (intercercimientos de Br). Este hecho es importante ya que, hasta donde llegan los conocimientos del autor, no existen descripciones en la literatura al respecto de la "exclusión" de biotita por inestabilidad del componente trioxaédrico en moscovitas naturales (ver Capítulo 5.6.2.4).

Sustituciones de Ti

El diagrama R2-R3 describe bien las desviaciones debidas al vector tschermak siempre que las cantidades de Ti sean bajas y K+Na sean altas, como es el caso de moscovitas metamórficas de grado medio a alto (Tracy, 1978, Guidotti, 1984). No obstante, el Ti y las "vacantes" interlaminas son componentes muy importantes en las moscovitas estudiadas en este trabajo, que presentan cantidades absolutas elevadas y fuertes variaciones de ambos componentes, sobre todo en los génesis leucocritos (Figuras 4.4.1, 4.4.4 y 4.4.5, Tablas 4.4.1 y 4.4.2). Dado que estas variaciones pueden no guardar relación directa con las variaciones en Si, las buenas correlaciones próximas al join mslcp en las Figuras 4.4.2 y 4.4.3 son sólo indicativas de que la estructura dióxida no está significativamente modificada por las sustituciones operativas (tal y como se deduce de las bajas cantidades totales de cararones octaédricos, y ninguna información puede extraerse de la naturaleza y extensión de las sustituciones que describen las variaciones de estos componentes.

La consideración del papel del Ti en las moscovitas está condicionada por presupuestos considerados en sus estados de oxidación y coordinación. Quizás debido a las bajas concentraciones de Ti en moscovitas naturales, en la inmensa mayoría de los casos menores de 0.16 átomos p/u (Guidotti, 1984), no se han realizado estudios experimentales detallados al respecto. En las biotitas existen algunas evidencias experimentales contradictorias, si bien la mayor parte de los autores acepta una coordinación octaédrica y una valencia de 4+ (ver Capítulo 4.5.3.2 para más detalles). Este mismo criterio (i.e., [Ti⁴⁺]) se asume por la mayor parte de los investigadores que han tratado el Ti en moscovitas, (e.g., Guidotti, 1973, 1978 y b, 1984; Guidotti et al., 1977; Tracy, 1978; Holdaway, 1980; Monier y Robert, 1986b; Holdaway et al., 1988; García-
Casco et al., 1993), y será seguido en este trabajo. Como puede observarse en la Figura 4.4.5 y Tabla 4.4.2, algunas moscovitas de los gneises leucocratos y rocas asociadas presentan cantidades muy elevadas de Ti, mayores de 0.20 átomos pfu., que contradicen la sugerencia de Guidotti (1984, p. 372) de que "the highest reliable values of Ti are approximately 0.16 per 4 octahedral site". En algunas de estas moscovitas (microgranito T494) las heterogeneidades composicionales asociadas a procesos de descomposición por inestabilidad del Ti en la solución sólida indican una coordinación octaédrica para el Ti.

Las posibilidades de sustitución del \(^{8}Ti^{6+}\) en moscovitas son muy variadas, incluyendo sustituciones directas sobre el término aditivo moscovita, como:

\[
\text{vector Ti-spinel} \quad (T_{sp}) \quad [^{8}Ti^{6+}]^{8}Mg^{2+}[^{8}Al]\quad \quad (4.18)
\]

(Guidotti, 1978b; Tracy, 1978; Holdaway, 1980; Monier y Robert, 1986b; Holdaway et al., 1988) que relaciona la moscovita con la molécula \(K_{2}Mg_{2}Ti_{3}[Al_{2}Si_{6}]O_{20}(OH)_{4}\).

\[
\text{vector: } [^{8}Al][^{8}Al]_{4}Si_{4} \quad (4.19)
\]

(e.g., Guidotti, 1978b; Tracy, 1978) que relaciona la moscovita con la molécula \(K_{2}Ti_{4}[Al_{2}Si_{6}]O_{20}(OH)_{4}\). El vector (4.19) es combinación lineal de los vectores Ti-spinel y tschermak (i.e., (4.19) = (4.18) - (4.13)).

De hecho, existe una gran variedad de sustituciones de Ti posibles que se obtendrían como combinaciones lineales de las anteriores sustituciones de Ti y las sustituciones tschermak o ditri. Las más interesantes son:

\[
\text{vector Ti-Al-vacante (Ti-Al-vac): } [^{8}Al]^{8}Mg_{4} \quad (4.20)
\]

que resulta de (4.20) = 3.(4.18) - (4.17), y que relaciona la moscovita con la molécula subdioctaédrica \(K_{2}Ti_{3}[Al_{2}Si_{6}]O_{20}(OH)_{4}\).

\[
\text{vector Ti-tschermak (Ti-tk): } [^{8}Al]_{2}Mg_{4}Si_{4} \quad (4.21)
\]

que resulta de (4.21) = (4.18) - 2.(4.13), y relaciona la leucosilita con la molécula \(K_{2}Ti_{2}[Al_{2}Si_{6}]O_{20}(OH)_{4}\).

\[
\text{vector Ti-vacante (Ti-vac): } [^{8}Al]^{8} \quad (4.22)
\]

(Guidotti, 1978b) que resulta de (4.22) = (4.18) - (4.17) y relaciona la flogopita con la molécula subdioctaédrica \(K_{2}Ti_{3}[Al_{2}Si_{6}]O_{20}(OH)_{4}\), idéntica a la generada por el vector Ti-Al-vacante.

El hecho de que algunas moléculas se hayan definido por aplicación de los vectores respectivos a moléculas distintas de moscovita no es problema desde el punto de vista algebraico, ya que se pueden expresar por combinaciones lineales a partir de moscovita, y en consecuencia describen igualmente el espacio composicional de la solución sólida moscovita. Las sustituciones (4.18), (4.19) y (4.21) mantienen la estructura dioctaédrica, por lo que describen desviaciones a lo largo de la línea mls-lcp en el diagrama R2-R3. Las sustituciones Ti-Al-vacante (4.20) y Ti-vacante (4.22) introducen vacantes en posiciones octaédricas, por lo que relacionan la moscovita con moléculas subdioctaédricas desplazadas del join mls-lcp en el diagrama R2-R3. Estas sustituciones son posibles sólo si la solución sólida presenta desviaciones trioctaédricas, ya que compensarían parte de la sobrecapacidad introducida por la sustitución diocctoédrica (4.17). Esto se
explica porque las sustituciones (4.20) y (4.22) son combinación lineal de la sustitución dióxido y Ti-espínela. De hecho, en algunos casos naturales la sustitución Ti-vacante parece describir el comportamiento de la moscovita (e.g., Guidotti, 1978b), aunque la sustitución Ti-Al-vacante no ha sido propuesta hasta la fecha en moscovitas. En este trabajo se presentan evidencias de que la sustitución Ti-Al-vacante es operativa en el balance del Ti de algunas moscovitas con contenidos muy altos de Ti (> 0.20 átomos pfu), lo cual es importante ya que necesariamente se requiere la operatividad de la sustitución dióxido. No obstante, como puede observarse en las Figuras 4.4.4 y 4.4.5, el vector que explica el balance del Ti en sus variables en la mayor parte de las moscovitas estudiadas de ambos tipos de rocas es el vector Ti-espínela. La mayoría de los trabajos que hacen referencia al balance del Ti en moscovitas metamórficas e igneas favorecen la sustitución Ti-espínela, y en menor medida el vector (4.19). Estas sustituciones contrastan con las comunes en biotitas, i.e., Ti-schermak y Ti-vacante (e.g., Forbes y Flower, 1974; Guidotti et al., 1977, 1988; Dynne, 1983; Abrecht y Hewitt, 1988).

A pesar de que las cantidades de Ti usuales en moscovitas de rocas metamórficas e igneas comunes son relativamente bajas, prácticamente todos los investigadores que han estudiado muestras naturales han mostrado que las cantidades Ti aumentan con la temperatura de equilibrio, tanto en ambientes metamórficos como igneos (e.g., Guidotti, 1973, 1978a, 1984, Guidotti et al., 1977, Tracy, 1978; Fletcher y Greenwood, 1979; Miller et al., 1981, Tyler y Ashworth, 1982; Monier et al., 1984, Speer, 1984; Monier y Robert, 1986b; Holdaway et al., 1988). Miller et al. (1981) consideran el valor de 0.08 átomos pfu como indicativo de moscovitas ignea primarias, mientras Guidotti (1984) indica que valores mayores de 0.10 átomos pfu son típicos de moscovitas metamórficas de grado alto. En las muestras estudiadas el Ti aumenta en sentido progresivo, desde los esquistos con Sr+Bt+Grt+And hasta los gneises pelíticos con Sr+Bt+Grt+Ky+Fi+Fy+And+Crtr donde se llega hasta valores cercanos a 0.10 átomos pfu, aunque se detecta una fuerte heterogeneidad en todos los tipos de rocas (Figura 4.4.1). Al pasar de los gneises pelíticos a los esquistos moscovíticos y gneises leucocratos se observa un fuerte aumento en las cantidades de Ti, que sobrepasa ampliamente los 0.10 átomos pfu, y una extremada heterogeneidad en muestras individuales. (Figura 4.4.1, Tabla 4.4.2). Las concentraciones más elevadas se detectan en moscovitas texturalmente precoces de gneises bandeados, porfiroídes, aplíticos, diques graníticos y esquistos moscovíticos (Figura 4.4.1), lo que indica altas temperaturas de equilibrio.

Los trabajos anteriormente citados generalmente también refieren un descenso de Si a medida que Ti aumenta, resultado de un comportamiento antipático del Ti respecto de las sustituciones fengíticas. Sin embargo, no existen evidencias naturales ni estudios experimentales específicos sobre el comportamiento de Ti en moscovita respecto de la presión. La comparación con las evidencias experimentales que indican menor solubilidad del Ti en biotitas con aumentos de presión (e.g., Robert, 1976b; Foley, 1990) no puede hacerse ya que la sustitución de Ti se lleva a cabo mediante reacciones distintas y los efectos cristalquímicos son distintos para ambas fases. Della Ventura et al. (1991) señalan, sin embargo, que a pesar de que las sustituciones de Ti son distintas en micas y anfiboles, el comportamiento del Ti en estos silicatos respecto de Ti y P es similar.

La síntesis experimental de moscovitas fengíticas en cargas a alta presión de sistemas naturales con Ti investigadas por Green y Helman (1982) ofrece algunas indicaciones interesantes. De los análisis de estos autores se deduce que las variaciones en los contenidos de Ti y Si son antipáticos, de acuerdo con un gran número de estudios de muestras naturales. Sin embargo, los datos de Green y Helman son inconclusivos respecto del establecimiento de las relaciones P₅X₂₆ y P₅X₆₈ en las fengítas, aunque parcialmente indican
correlaciones negativas y positivas, respectivamente (ver la Tabla 3, composición A a 20-35.5 kbar y 900 ºC de Green y Helman, 1982). Tal inconsistencia en los efectos observados de P sobre las cantidades de Si respecto de los "normales" (ver más arriba) puede ser debida a las elevadas presiones de los experimentos. Massonne y Schreyer (1987) detectaron la presencia de un fluido rico en Si coexistente con fengitas a presiones superiores de 22 kbar, que podría ser el causante de la inversión en las relaciones P-X5 de las fengitas de Green y Helman (1981). En cualquier caso, los datos de Green y Helman (1982) son ilustrativos puesto que muestran un posible efecto-positivo de P en la solubilidad del Ti en moscovitas, al menos a muy alta P (> 20 kbar), ya que a presiones más bajas los mecanismos de sustitución del Ti pueden ser diferentes y por lo tanto no estrictamente comparables. Estas relaciones, sin embargo, no parecen deducirse claramente del estudio de muestras naturales en terrenos de alta P (e.g., Baroz et al., 1987).

La concentración del Ti en moscovitas también está controlada por la composición del sistema y la naturaleza de las fases coexistentes. Guidotti (1974) indica que bajo el mismo grado metamórfico las cantidades de Ti en moscovitas son menores en sistemas pelíticos saturados en Al que en sistemas carecentes de fases saturadas en Al. Esto puede considerarse como una indicación indirecta de que el Ti y [SiAl] se sustituyen en la moscovita. Otro efecto importante del sistema es la coexistencia o no de fases saturadas en Ti (e.g., rutilo e ilmenita), que aseguran condiciones de saturación del Ti en la solución sólida para las condiciones de equilibrio (Guidotti, 1973, 1974, 1984; Guidotti et al., 1977; Pużewicz y Koepke, 1991). Esto puede aplicarse a las muestras de metapelitas grafitosas estudiadas (Figura 4.4.1), donde coexisten ilmenita + rutilo, por lo que debe encontrarse una explicación para la fuerte heterogeneidad composicional detectada en muestras individuales. Si consideramos exclusivamente las cantidades máximas de Ti en cada muestra, características de los cristales texturalmente precoces, el incremento detectado al pasar de esquistos con St+Bi+Grt+And a gneises pelíticos con St+Bi+Grt+Ky+Fib+And(tCrD) puede relacionarse directamente con incrementos en la temperatura de equilibrio, ya que en todas coexisten fases saturadas en Al (estauroclita y silicatos de Al).

El caso de los gneises leucocratos y rocas asociadas es más complejo debido a la heterogeneidad composicional de los sistemas. El fuerte incremento de Ti detectado en los esquistos moscovíticos intercalados en los gneises leucocratos (Figura 4.4.1) puede asignarse esencialmente a temperaturas de equilibrio mayores que los gneises pelíticos, ya que en todos los casos coexiste ilmenita y no coexiste Kfs, aunque debe haber un cierto efecto composicional de los sistemas debido a su carácter menos aluminico. Las elevadas cantidades de Ti en las moscovitas de los gneises leucocratos, particularmente en los gneises pelíticos y el dique de microgranito T494 (Ti max = 0.23 átomos pfu) pueden sorprender ya que en estas rocas no coexisten ilmenita o rutilo, aunque existen explicaciones alternativas.

Excluyendo los análisis de moscovitas anteriores a 1971 (i.e., compilación de Cipriani et al., 1971), muchos de ellos efectuados sobre separados minerales (100 % moscovita) con métodos analíticos convencionales por vía húmeda (e.g., Saxena, 1966), los únicos datos conocidos por el autor que contradicen la aseveración de Guidotti (1984) al respecto de la solubilidad máxima de Ti en moscovita (< 0.16 átomos pfu) son los de Monier y Robert (1986b), que encontraron cantidades de Ti entre 0.20-0.25 átomos pfu, con un valor extremo de hasta 0.34 átomos de Ti pfu, en moscovitas de algunos leucogranitos del Sistema Central francés, si bien señalan que el límite de 0.15 átomos pfu raramente se alcanza. Estos autores sugirieron efectos de fraccionamiento en sistemas ígneos para justificar tales concentraciones de Ti en las moscovitas de estos leucogranitos, que en su mayor parte no contienen fases saturadas en Ti. Así, puesto que el Ti se distribuye preferentemente en la biotita, (K\text{biotita} > 1, Guidotti et al., 1977; Monier y Robert, 1986b),
se pueden esperar elevadas concentraciones de Ti en moscovitas cristalizadas antes de la cristalización de biotita en sistemas graníticos pobres en Ti (lo cual aseguraría la no coexistencia de fases saturadas en Ti, que fraccionarían fuertemente este elemento). Esta explicación podría aplicarse a algunos de los gneises estudiados en este trabajo, particularmente al caso del dique de microgranito.

Sustituciones Pirofilita y de Hidronio

Además de la sustitución de paragonita NaK$_4$, existen otras posibles sustituciones en las posiciones de coordinación 12 de moscovitas. De entre estas, las variaciones en las vacantes interlaminares observadas (Δ Sum XIII = 1.94±1.597, Tablas 4.4.1 y 4.4.2, Figuras 4.4.4 y 4.4.5) sugieren balances entre los cationes K y/o Na y cationes tetraédricos y/o octaédricos que suponen la modificación de las relaciones estequiométricas Na+K = 2. La presencia de deficiencias catiónicas en las posiciones A son prácticamente una constante en las fórmulas estructurales calculadas a partir de todo tipo de análisis de moscovitas de todos los ambientes P-T (Guidotti, 1984). En el presente caso, las cantidades de los cationes divalentes Ca y Ba son muy bajas, generalmente por debajo del límite de detección, y no justifican la introducción de cantidades significativas de vacantes. Errores analíticos, tales como la volatilización de cationes alcalinos en análisis por microsonda electrónica, no son considerados como la causa de tales deficiencias, al menos en los análisis obtenidos en la Universidad de Granada que son la mayoría (ver Introducción de este Capítulo, Figura 4.2.1). Por lo tanto, las deficiencias catiónicas interlaminares deben asignarse a (1) vacantes reales debidas a sustituciones acopladas con los cationes octaédricos y/o tetraédricos, o (2) vacantes ficticias debido a la ausencia de análisis independientes de H. En el caso de que las vacantes sean reales, los vectores más importantes son:

\[
\begin{align*}
\text{vector pirofilita:} & \quad [\text{Mg}]_{4}^{\text{[m]}}[\text{Al}]_{1}^{\text{[m]}}[\text{Si}]_{4}^{\text{[m]}}[\text{O}]_{4}^{\text{[m]}}[\text{K}]_{1}^{\text{[m]}} \\
\text{vector:} & \quad [\text{Mg}]_{4}^{\text{[m]}}[\text{Al}]_{1}^{\text{[m]}}[\text{Si}]_{4}^{\text{[m]}}[\text{O}]_{4}^{\text{[m]}}[\text{K}]_{2}^{\text{[m]}}
\end{align*}
\]

(4.23) (4.24)

La sustitución pirofilita relaciona la moscovita con el término extremo deficiente en cationes alcalinos pirofilita (prl, Al$_2$Si$_2$O$_10$(OH)$_4$), y no modifica las relaciones dióctadeicas de la solución, sólo como se muestra en las Figuras 4.4.2a y 4.4.3a. La coliniearidad de los términos extremos leucofilita-pirofilita-moscovita en el diagrama R2-R3 implica que las desviaciones debidas a la sustitución pirofilita se suman a las debidas a la sustitución tschermak en las Figuras 4.4.2 y 4.4.3. El vector (4.24) balancea la introducción de vacantes en las posiciones interlaminares con sobreocupancia octaédrica, dando la molécula [\text{Mg}]_{4}^{\text{[m]}}[\text{Al}]_{1}^{\text{[m]}}[\text{Si}]_{4}^{\text{[m]}}[\text{O}]_{4}^{\text{[m]}}[\text{SiO}]_{4}^{\text{[m]}}[\text{O}]_{4}^{\text{[m]}}[\text{K}]_{3}^{\text{[m]}}[\text{intermedia entre di y trioctadéca}].

En el caso de que las vacantes sean ficticias, la sustitución más importante es la sustitución de cationes hidronio H$_2$O$^-$:

\[H_2O^-K_1 \]

(4.25)

que produce la molécula hidratada $(H_2O^-)_2$[^{\text{[m]}}][\text{Al}]_{4}^{\text{[m]}}[\text{Al}$_2$Si$_2$O$_10$(OH)$_4$] o $[^{\text{[m]}}][\text{Al}]_{4}^{\text{[m]}}[\text{Al}$_2$Si$_2$O$_10$(OH)$_4$]$. La operatividad de esta sustitución genera deficiencias de masa aparentes si no se analiza el H independientemente, por lo que se detectarían descensos en la ocupancia interlaminar y aumentos en la ocupancia octaédrica aparentes al normalizar de las composiciones a 20 oxígenos y 4(OH). Esto supondría que las sustituciones (4.23) y (4.24) serían un artefacto de la no consideración de cantidades de H superiores a los 4 átomos teóricos (cf. Loucks, 1991). Por lo tanto, las variaciones en la ocupancia interlaminar, que de
nuevo se muestran particularmente claras en las moscovitas de los gneises leucocratos (Figuras 4.4.5), pueden indicar la operatividad del vector pirofilita y/o el vector $\text{H}_2\text{O}^{\text{[\text{Si}]}}\text{K}$. La sustitución pirofilita ha sido propuesta por una gran cantidad de autores en ambientes diagenéticos-metamórficos-hidrotermales de T muy baja a baja (ver Velde, 1977, 1985; y Loucks, 1991 para revisiones), y en ambientes metamórficos de grado bajo a medio (e.g. Fletcher y Greenwood, 1979; Holdaway, 1980; Wang y Banno, 1987; Holdaway et al., 1988; Baldelli et al., 1989) e igneos (e.g., Konings et al., 1988). Esta sustitución también ha sido investigada experimentalmente por Velde (1969), Velde y Weir (1979) y Rosenberg (1987). La sustitución (4.24) ha sido sugerida por Guidotti (1984), aunque este mismo autor ha indicado que dadas las bajas cantidades de vacantes interlaminares y sobreocupación octaédrica en las moscovitas naturales, el error analítico ocurre en las relaciones previstas por esta sustitución. La sustitución de hidronio (4.25) en moscovitas ha sido propuesto por Evans y Guidotti, (1966), Eugster et al. (1972), Forbes (1972) y Loucks (1991).

En muestras de baja temperatura, los análisis de ilitas demuestran altas deficiencias de cationes interlaminares, lo cual ha sido relacionado con importantes grados de sustitución pirofilítica (e.g., Velde, 1977, 1985) y la presencia de intercambios entre pirofilita y moscovita (e.g., Jiang et al., 1990). Recientemente Loucks (1991) ha puesto de manifiesto la importancia de la sustitución de $\text{H}_2\text{O}^{\text{[\text{Si}]}}$ (y/o moléculas neutras de H_2O) mediante análisis estadísticos de "análisis de alta calidad" en micas blancas de baja T ($< 450 \degree\text{C}$). Bajo condiciones de temperatura más alta, la mayor parte de los análisis aportados en la literatura se han realizado con microsonda, por lo que no se puede excluir que gran parte de las deficiencias observadas se correspondan con "vacantes ficticias". Todos los estudios sobre muestras naturales han mostrado el aumento de la ocupación interlaminal con el aumento del grado metamórfico (e.g., Guidotti, 1978b; Wang y Banno, 1987; Holdaway et al., 1988). El análisis estadístico de Cipriani et al. (1971) sobre un gran número de moscovitas metamórficas muestra correlaciones negativas entre las cantidades de Si y los cationes alcalinos, apoyando la operatividad de la sustitución pirofilítica. A pesar de ello, y de que es previsible que las micas estén "deshidratadas" en condiciones de grado medio a alto, estudios recientes sobre biotitas han demostrado la operatividad de la sustitución de hidrogeniones y su sensibilidad con la temperatura, por lo que las vacantes interlaminares pueden ser en gran parte ficticias (Dyar et al., 1991a).

Sin embargo, la demostración experimental de la operatividad de la sustitución pirofilítica en el sistema simple KASH por Velde (1969) y Velde y Weir (1979) a baja T y Rosenberg (1987) a alta T impone serie dudas al respecto de la asignación de todas las vacantes interlaminares a la sustitución de hidronio. Estos autores favorecieron la asignación pirofilítica como la reacción homogénea estable que controla las variaciones en las vacantes interlaminares, aunque también detectaron la sustitución de hidronio (favorecida por Eugster et al., 1972, en el sistema KNaASH) que fue relacionada por Rosenberg (1987) con problemas de equilibrio en las cargas experimentales. Los datos de Rosenberg (1987) indican un límite de solubilidad del componente pirofilítico en moscovitas muy elevado, cercano a 20 \% molar a 650 \degree\text{C} y 2 \text{kb}ar (en el sistema KASH). Debe notarse además, que la presencia de una fase natural (pirofilita) cuya composición está relacionada directamente con el término aditivo seleccionado (moscovita) a través de una sustitución simple (4.23) es una fuerte indicación de que la fase moscovita puede mostrar desviaciones composicionales consistentes con esta sustitución (cf. Hewitt y Abrecht, 1986).

El efecto de la composición del sistema y asociaciones de fases coexistentes con moscovita sobre las cantidades de vacantes en las posiciones interlaminares es importante, y permite consideraciones ulteriores sobre la operatividad o no de la sustitución pirofilítica. Como muestran Guidotti (1973, su Tabla 1) y Wang
y Banno (1987), bajo condiciones de grado constante la ocupancia interlaminar en moscovitas de metapelitas no saturadas en Al donde el feldespato-K puede coexistir es mayor que en sistemas saturados en Al. Wang y Banno (1987) rechazan la operatividad de la sustitución de hidronio para explicar estas relaciones. Por su parte, Holdaway (1980, p 713) indica que "Saturation with Al and Si consistently produces excess charge in the combined octahedral and tetrahedral sites of mica which necessitates small 12-fold site deficiencies. Such deficiencies are minor or absent in micas from rocks which are not Al-saturated". Holdaway (1980) sugiere que esto es una evidencia en contra de la sustitución de K por H_2O^+.

Tanto al observar las muestras en su conjunto como individualmente (ver más adelante), es evidente que las variaciones en Sum XII son consistentes con la operatividad de la sustitución pirofilítica (nótese la correlación negativa entre Sum XII y Si en las Figuras 4.4.4 y 4.4.5). En algunos casos, tanto de gneises (García-Casco et al., 1993) como de metapelitas graníticas ocurre que (1) las variaciones relativas de Na y K no pueden describirse mediante la sustitución NaK_{m}, (2) se detecta un exceso de Si respecto del previsto por las sustitución tschermak, y (3) las variaciones de K (y Na) muestran correlaciones negativas con Si. Más aún, las rocas pelíticas donde no coexiste Kf muestran cantidades menores de ocupancia interlaminar, de acuerdo con las evidencias antes mencionadas (los análisis con Sum XII más bajos en metapelitas y gneises de las Figuras 4.4.4 y 4.4.5 corresponden a muestras analizadas en St Andrews, y no son considerados). En estas figuras puede observarse que este aumento en Sum XII de los gneises se debe a una mayor cantidad de K (las cantidades de Na son similares), lo cual es consistente la presencia de Kf ya que en este caso la moscovita debe estar saturada en K. No obstante deben tenerse en cuenta también las probables diferencias en las condiciones P-T$_{a\text{H}_2\text{O}}$ de equilibrio entre las moscovitas de ambos tipos de rocas. Más adelante volveremos sobre este aspecto.

En la revisión bibliográfica realizada en este trabajo se han encontrado evidencias sobre la dependencia de los contenidos en las vacantes interlaminares con la presión. La inspección de los análisis publicados de moscovitas de terrenos de alta P (e.g., Heinrich, 1982, Frantz et al., 1986, Baroz et al., 1987) y de síntesis experimental a alta P (e.g., Green y Hellmann, 1982) no muestran variaciones sistemáticas en las cantidades de vacantes, encontrándose al mismo tiempo análisis con contenidos cercanos a 2 átomos pfu y con bajos contenidos menores de 1.6 átomos pfu (e.g., Baroz et al., 1987). Wang y Banno (1987) encontraron una situación similar, y de su discusión se deduce que la presión no afecta significativamente a la ocupancia interlaminar. Sin embargo, los datos de Heinrich (1982) indican núcleos féniticos equilibrados en facies de eclogita con mayores cantidades de vacantes interlaminares que los bordes empobrecidos en Si equilibrados a menor P en facies de anfibolitas. García-Casco et al. (1993) observan esto mismo en las moscovitas con texturas de descomposición "fénítica" de los gneises bandeados (ver líneas de regresión en las Figuras 4.4.4 y 4.4.5) y, como veremos a continuación, este hecho también se detecta en moscovitas descompuestas de gneises pelíticos. Si se acepta la sustitución pirofilítica, estos datos sugerirían un aumento de la solubilidad de la misma a aumentar la sustitución tschermak y la presión. Esto puede justificarse por consideraciones cristalquímicas ya que la operatividad de la sustitución pirofilítica debe disminuir el ángulo de rotación tetaédrica α al sustituirse el Al tetaédrico por Si, y por otra parte puede favorecer el progreso de la sustitución tschermak (que igualmente implica un descenso de α) puesto que la distorsión de las posiciones de coordinación 12 está tan limitada por la necesidad de mantener la estabilidad estructural de la estequiometría interlaminar (i.e., 2 átomos pfu) al introducirse vacantes.

De la discusión anterior puede concluirse que es muy probable que la sustitución pirofilítica justifique el balance de, al menos, parte de las vacantes interlaminares de las moscovitas estudiadas, aunque quedá
incertidumbre al respecto de la importancia de la sustitución de hidróxido si no se disponen de análisis independientes de H. Ambas sustituciones no son excluyentes, al igual que las sustituciones di-tri y las que balancean el Fe\(^{2+}\). La sustitución pirofilita parece además sensible a cambios de las variables P-E-A\(_{H2O}\). Ante el desconocimiento de las cantidades de H presentes en los análisis, los valores de las vacantes interlaminares, y consecuentemente del componente pirofilita, deben ser considerados representativos de máximos grados de solución del mismo.

"Partición" Fe-Mg y Na-K en las Sustituciones

Un gran número de los vectores presentados anteriormente incluyen términos externos de Mg y de Fe\(^{2+}\), si bien todos han sido descritos mediante el término de Mg. Este hecho no presenta ningún problema ya que las desviaciones hacia los términos extremos ferrosos correspondientes pueden describese desde el punto de vista algebraico mediante el vector extremo de Mg y el vector de intercambio:

\[
\text{FeMg}_4
\]

Por ejemplo, la desviación hacia el término extremo ferroso de leucosilita se describen mediante el vector Fe\(^{2+}\)[\(\alpha\)Al\(_1\)\(\beta\)Al\(_1\)], o lo que es lo mismo mediante la combinación lineal MgSi\(^{2+}\)[\(\alpha\)Al\(_1\)\(\beta\)Al\(_1\)] + FeMg\(_4\). Esto mismo ocurre al utilizar el vector NaK\(_4\), ya que en su selección quedan implícitos vectores potencialmente operativos como (denominado Na-pirofilita en este trabajo):

\[
[\text{Si}^{2+}\text{Na}(0)\text{Al}_1\text{Na}_1]\]

(4.27)

\((= \text{MgSi}(0)\text{Al}_1\text{K}_1 = \text{NaK}_4\)). La utilización de los vectores de intercambio FeMg\(_4\) y NaK\(_4\) como operadores matemáticos es muy interesante ya que permite condensar el sistema (J. B. Thompson, 1982a), lo que resuelve el problema de selección entre los términos extremos de Fe y Mg, y de Na y K de una gran variedad de vectores y moléculas potencialmente significativos. Como se ha indicado más arriba, para describir el sistema moscovita deben seleccionarse, además del término aditivo moscovita, sólo 6 constricciones o vectores adicionales, por lo que esta técnica excluye de esta selección todos los términos de Fe\(^{2+}\) y de Na de los vectores potenciales.

A pesar de las ventajas que presenta la selección de estos vectores de intercambio en la descripción algebraica de la solución sólida, este procedimiento implica la pérdida de cierta información de un alto valor cristalquímico. Esto es así porque no puede describirse el indudable comportamiento diferencial de estos cationes durante los procesos de cambio composicional. Por ejemplo, tanto los estudios experimentales (Velde, 1965, 1967; Monier and Robert, 1986a) como el análisis de datos naturales en sistemas reducidos (e.g., con gráficos presente, Guidotti, 1984) indican que la moscovita participa preferentemente el Mg respecto del Fe\(^{2+}\) al operar el vector tschermak. Guidotti (1984) indica valores comunes de la razón Mg/Fe\(^{2+}\) próximos a 2.1 en muestras naturales de sistemas reducidos. La mayoría de las sustituciones de Ti también implican Mg y Fe, aunque la consideración de las relaciones entre estos cationes no suele hacerse en los casos consultados de la literatura. Quizás el único trabajo donde se aborda el problema sea en Guidotti et al. (1977), quienes indican un aumento en Mg/Fe al aumentar el Ti en la moscovita. Esto favorecería los términos extremos de Mg de las sustituciones de Ti, particularmente del vector T-huespina (4.18) que es el más comúnmente implicado en el balance del Ti. No obstante, de la discusión de Guidotti et al. (1977) no
queda claro si el Ti influye las razones Mg/Fe o si la razón Mg/Fe impuesta por otras constrictiones influencia la solubilidad del Ti en las moscovitas. Más adelante se vuelve sobre estos aspectos. Razonamientos similares pueden aplicarse a la sustitución diatriactítica.

En el presente caso, las razones Mg/Fe son generalmente menores de 1, sobre todo en las moscovitas de algunos tipos de gneises leucocratos (Figuras 4.4.4 y 4.4.5, Tablas 4.4.1 y 4.4.2), lo cual está en contradicción con las solubilidades relativas de Fe$^{3+}$ y Mg determinadas experimentalmente en el sistema K$^{+}$Fe$^{3+}$Fe$^{5+}$MASH si todo el Fe fuese Fe$^{2+}$. De lo expuesto más arriba puede deducirse que la presencia de cantidades elevadas de Fe$^{3+}$ puede explicar valores de la razón Mg/Fe$_{total} < 1$. Independientemente de este problema, la partición Mg/Fe en las sustituciones que explican la composición y variaciones composicionales de la solución sólida moscovita no puede ser resuelta en muestras naturales debido a las dependencias lineales entre estas y el vector FeMg$_{1}$.

Respecto al comportamiento del Na vs. K no existen descripciones muy detalladas en la literatura, aunque como se ha indicado anteriormente se ha observado un descenso preferencial en las cantidades de Na al aumentar las cantidades de componentes celadoníticos (ver Guidotti, 1984). Dado que la sustituciones celadoníticas no involucran componentes de la capa interlaminar, esta observación es asignable a los efectos de otras sustituciones concurrentes. La sustitución NaK$_{1}$ puede implicarse siempre que se observe un incremento de K y un descenso de Na con el incremento en Si. Como se ha indicado antes, esto no es así en gran parte de las muestras estudiadas, donde K y Na presentan correlaciones negativas con Si. Por lo tanto, es posible que las sustituciones pirofilita y Na-pirofilita sean operativas conjuntamente, dadas los efectos acoplados de las sustituciones tschermak y pirofilita sobre la estructura de la moscovita y el menor radio iónico del Na$^{+}$ respecto del K$^{+}$. La sustitución pirofilita en su término extremo de Na no ha sido involucrada para explicar las variaciones de Na en moscovitas, posiblemente porque la hipotética partición Na-K en la sustitución pirofilita no puede resolverse si se implica también la sustitución NaK$_{1}$ debido a las dependencias lineales existentes entre ellas. Argumentos similares aplicarían a la sustitución de K y Na por H$_2$O$^{-}$.

Por las razones anteriores, y aunque es más conveniente desde el punto de vista algebraico condensar el sistema utilizando los vectores FeMg$_{1}$ y NaK$_{1}$ (e.g., García-Casco el al., 1993), en las descripciones que siguen se tendrá en cuenta el comportamiento diferencial de estos cationes.

4.4.4. GNEISES LEUCOCRATOS Y ROCAS ASOCIADAS

La heterogeneidad encontrada en las moscovitas de los gneises leucocratos y rocas asociadas de Torrox y Rompealbardas (359 análisis, Apéndice II Tabla M) es extremo (Figura 4.4.5, Tabla 4.4.2). Estas moscovitas presentan las desviaciones mayores del término extremo moscovita de todas las muestras estudiadas, con los valores más elevados de Si (6.68 átomos p.f.u) y Ti (0.23 átomos p.f.u) (Figura 4.4.1) y, al mismo tiempo, composiciones muy próximas al término extremo moscovita. La proyección de todos los análisis de moscovita de estas rocas es poco significativa, aunque de los diagramas binarios catiónicos de la Figura 4.4.5 se deduce que en parte son consistentes con las variaciones que presentan las moscovitas de los gneises bandeados con Mt+Br+Gr (también proyectadas en los diagramas) y en parte divergen, particularmente en el Ti. Puede observarse que a medida que desciende Si, descienden Ti, Fe, Mg, Sum VI y [M](o) y aumentan [M]$_{Al}$, [M]$_{Al}$, Na y K (Figura 4.4.5). En gran parte estas variaciones son el resultado de cambios composicionales intramuestra, que presentan rangos de variación similares al del conjunto de gneises...
Los gneises son donde más claramente se puede constatar que las composiciones súlidos son ricas en Si y Ti. No obstante, el comportamiento de la solución sólida es variable según los tipos de rocas.

4.4.4.1. Gneises Bandeados con Moscovita+Biotita+Granate

De este tipo de rocas se han analizado 4 muestras (T313, T316, T336 y T506), en las cuales se han encontrado fuertes heterogeneidades composicionales en la moscovita (Figuras 4.4.1, 4.4.3c, 4.4.6, Tabla 4.4.2). La asociación de fases de la matriz es homogénea, constituida por Qtz+Kfs+Pl+(oligoclasa débilmente o no zonada)+Ms+Br+Grt (coroidea)+Apt+Tur (Capítulo 3.2.1.1). Las moscovitas analizadas se presentan en el Apéndice II Tabla M, junto con una indicación de su tipo petrográfico (49 análisis de moscovitas primarias, 12 de granos recristalizados y 5 de moscovitas pegmatíticas), una vez excluidos los análisis que posiblemente representen mezcla de moscovita más biotita.

Tabla 4.4.3. Estadística básica (n=66) y coeficientes de correlación Pearson (excluyendo moscovitas pegmatíticas, n=61) para las moscovitas de gneises bandeados con Ms+Br+Grt del complejo de gneises leucocratos de Torrons (muestras T313, T316, T336, y T506).

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
<th>Media</th>
<th>σ</th>
<th>[Al]</th>
<th>Ti</th>
<th>Fe</th>
<th>Mg</th>
<th>Sum VI</th>
<th>Na</th>
<th>K</th>
<th>Sum XII</th>
<th>Mg/Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>6.124</td>
<td>6.641</td>
<td>6.409</td>
<td>0.156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Al]</td>
<td>1.329</td>
<td>1.876</td>
<td>1.591</td>
<td>0.156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Mg]</td>
<td>3.102</td>
<td>3.550</td>
<td>3.523</td>
<td>0.196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>0.009</td>
<td>0.135</td>
<td>0.076</td>
<td>0.042</td>
<td>0.813</td>
<td>0.888</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>0.103</td>
<td>0.438</td>
<td>0.243</td>
<td>0.070</td>
<td>0.765</td>
<td>0.911</td>
<td>0.674</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>0.608</td>
<td>0.334</td>
<td>0.194</td>
<td>0.083</td>
<td>0.972</td>
<td>0.985</td>
<td>0.854</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum VI</td>
<td>4.000</td>
<td>4.058</td>
<td>4.040</td>
<td>0.024</td>
<td>0.822</td>
<td>0.898</td>
<td>0.715</td>
<td>0.663</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>0.101</td>
<td>0.200</td>
<td>0.139</td>
<td>0.033</td>
<td>0.859</td>
<td>0.848</td>
<td>0.671</td>
<td>0.863</td>
<td>0.104</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>1.616</td>
<td>1.728</td>
<td>1.655</td>
<td>0.037</td>
<td>0.518</td>
<td>0.521</td>
<td>0.275</td>
<td>0.195</td>
<td>0.543</td>
<td>0.506</td>
<td>0.214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum XII</td>
<td>1.744</td>
<td>1.942</td>
<td>1.835</td>
<td>0.047</td>
<td>0.814</td>
<td>0.649</td>
<td>0.538</td>
<td>0.819</td>
<td>0.600</td>
<td>0.680</td>
<td>0.893</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg/Fe</td>
<td>0.271</td>
<td>1.280</td>
<td>0.793</td>
<td>0.238</td>
<td>0.519</td>
<td>0.482</td>
<td>0.438</td>
<td>0.586</td>
<td>0.418</td>
<td>0.502</td>
<td>0.509</td>
<td>0.625</td>
<td></td>
</tr>
<tr>
<td>Na/K</td>
<td>0.064</td>
<td>0.115</td>
<td>0.082</td>
<td>0.013</td>
<td>0.716</td>
<td>0.825</td>
<td>0.827</td>
<td>0.677</td>
<td>0.818</td>
<td>0.130</td>
<td>0.991</td>
<td>0.086</td>
<td>0.519</td>
</tr>
</tbody>
</table>

No se encuentran lagunas composicionales significativas entre las moscovitas primarias que definan la foliación y presentan abundantes intercristales de Br+Qtz y granos recristalizados. El grupo de moscovitas primarias se caracteriza por presentar un espectro composicional más amplio y mayores desviaciones del término extremo moscovita (Figura 4.4.6). Estas características se encuentran en crustales individuales. Los gramos recristalizados presentan un rango composicional más restringido y menores desviaciones del término extremo moscovita, siendo homogéneos a la escala de cristales individuales dentro de la incertidumbre analítica. Desde los gramos primarios a los recristalizados, el espectro composicional continuo registrado es bastante amplio en todos los componentes (Figuras 4.4.6, Tabla 4.4.3), y supone un descenso en Si (6.66-6.14 amos pfa), Fe (0.46-0.10), Mg (0.33-0.05), Ti (0.13-0.01) y un incremento en [Al] (1.34-1.86), [Mg] (3.17-3.84), Na (0.100-0.20), K(1.62-1.75) y en la ocupación interlaminar total (1.74-1.94). En ambos grupos de moscovitas el exceso de ocupación octádrica es bajo y decrece en las moscovitas primarias a medida que éstas se hacen más pobres en Fe+Mg (4.10-4.00) (Figura 4.4.6). Sin embargo, lo gramos recristalizados presentan una ocupación octádrica algo mayor (medida de 4.03) que la esperada de sus contenidos en Fe+Mg, lo que es probablemente debido a que presentan razones Fe²⁺/Fe³⁺ comparativamente mayores.
Figura 44.6. Diagramas de variación binarias (base cationica) que muestran el espectro composicional de las moscovitas de las 4 muestras de gneisses bandeados (T313, T316, T328 y T306) del complejo de gneises leucocristales de Tornas. Círculos: cristales primarios cuadrados; granos recristalizados, triángulos: cristales pegmatíticos. Líneas de correlación y vectores como en la Figura 4.4.4 (las rectas de regresión no incluyen las moscovitas pegmatíticas). Nótese las bajas correlaciones que indican la importancia de la sustitución intercambial en la generación de la heterogeneidad composicional, y las correlaciones negativas de Na y K con Si que sugieren la sustitución perflúrida.

Las heterogeneidades composicionales de los gramos primarios de moscovita están asociadas a los intercercimientos de Bt+Qtz. Estas relaciones pueden observarse en las imágenes BSE y barridos cualitativos.
de la Figura 4.4.7. En estas imágenes se identifican las abundantes lamelas intercristalinas de biotita (zonas brillantes blancas) y cuarzo (zonas oscuras alargadas) paralelas a los planos (001) de la moscovita que las hospeda. Esta última aparece con tonos de grises variables como reflejo de composiciones heterogéneas (paso atómico medio, Z), particularmente de los iones pesados Ti y Fe. Cerca de las lamelas se detectan halos más oscuros (Figura 4.4.7a y b), con menor Z medio, donde la moscovita está empobrecida en Si, Ti, Fe, y Mg, y enriquecida en Al (Figura 4.4.7c, d, e, y f). El empobrecimiento de estos componentes alrededor de los intercristales indica que la textura se formó por descomposición de los componentes fúngicos en la moscovita primaria. Hacia los bordes se detectan igualmente zonas empobrecidas con distribución discontinua irregular y en forma de parches, que también se encuentran en el interior del grano. Estas zonas aparecen igualmente relacionadas con la formación de intercristales de Be+Qtz, y con procesos de reducción de tamaño de grano y recristalización en los bordes (y en el interior) de los cristales primarios (Figura 4.4.7a y b). Los granos recristalizados muestran tonos de grises similares a las zonas empobrecidas de los granos primarios, y contienen escasos intercristales.

Puesto que los granos recristalizados son el producto final de la tendencia composicional de las moscovitas primarias (Figuras 4.4.3c y 4.4.6), sus composiciones pueden ser relacionadas directamente con la misma reacción continua de descomposición que afecta a los granos primarios. Debe notarse que sólo se ha podido identificar cuarzo y biotita (y a veces algún prisma alargado de rutilo) en la asociación intercristalada dentro de las moscovitas primarias, y no se ha detectado la presencia de feldespatos y/o silicatos de Al a pesar de haberse explorado extensivamente bastantes gramos con métodos ópticos, de BSE y EPMA.

Las moscovitas pegmatíticas aparecen como un grupo composicional homogéneo (Figuras 4.4.3c y 4.4.6). Su composición se solapa con la de las moscovitas recristalizadas, aunque presentan valores algo menores de Si (media de 6.13 átomos pfu), y sus contenidos en Fe (0.17), Mg (0.06) y de ocupación octádrica (4.07) son mayores que los esperados como continuación de la tendencia formada por las moscovitas primarias y recristalizadas (Figura 4.4.6, diagrama Fert+Mg vs Sun VI). Esto puede explicarse por unas razones Fe³⁺/Fe²⁺ particularmente altas, aunque no todo el Fe puede ser Fe³⁺ en estas moscovitas, ya que las fórmulas estructurales recalculadas en base a ese supuesto son subhidratadas, i.e., la ocupación octádrica es menor de 4 átomos pfu. Por esta razón, y para mantener la consistencia interna de los análisis, las fórmulas estructurales utilizadas se han calculado en base a Fe²⁺ total.

Las texturas reaccionales asociadas a las moscovitas pegmatíticas son también distintivas (Figura 3.2.2). La moscovita se encuentra reemplazada por la asociación de baja P And+Fl+Kfs+Bi lo que indica que se ha superado el límite máximo de estabilidad de Ms+Qtz. Sin embargo, en las imágenes de BSE de estas moscovitas no se han detectado heterogeneidades composicionales, lo que está de acuerdo con la homogeneidad de los análisis.

Quantificación de las Sustituciones y Componentes

Extrapolando los cambios globales en composición relacionados con la descomposición y recristalización de moscovitas primarias (Figuras 4.4.3c y 4.4.6), el producto final teórico sería una moscovita cuya composición se aproximaría al join moscovita-paragonita. Desde el punto de vista de la descripción composicional de una solución sólida compleja, esto es una ventaja ya que el término aditivo seleccionado, moscovita, coincide con un término extremo simple al que tiende el espectro composicional, lo cual no es siempre así (ver Capítulo 4.5). Por lo tanto, la identificación de los 6 vectores de intercambio necesarios a
partir del espectro composicional tiene el interés adicional de ser indicativo de procesos petrogenéticos (i.e., descomposición de la moscovita).

Las buenas correlaciones encontradas entre los valores de Si, Mg, Fe, Fe+Mg y [Al] de las moscovitas primarias y recristalizadas (Figura 4.4.6, Tabla 4.4.3) indican que la sustitución tschermak (4.13) es responsable de gran parte de la heterogeneidad composicional observada. De hecho, el conjunto de datos se proyecta en un nube alargada paralela al vector tk observable en el diagrama Si vs Fe+Mg de la Figura 4.4.6, donde además puede observarse cómo la línea de regresión sobre los puntos es prácticamente coincidente con el vector tk. Los términos extremos a considerar serían por lo tanto Mg- y Fe2+-teucofilita.

Es muy posible que sustituciones fengiticas que involucran Fe3+ también estén implicadas en la evolución composicional, como lo sugiere el hecho de que el Fe muestra correlaciones más pobres que el Mg con Si y [Al] y mejores que el Mg con Sum VI (Tabla 4.4.6). Dadas las cantidades de Sum VI y Fe+Mg de los tres tipos de moscovitas, las razones Fe3+/Fe2+ deben aumentar progresivamente a medida que evoluciona la composición desde las moscovitas primarias. Esto explica las razones Mg/Fe < 1 de gran parte de los análisis de moscovitas primarias y de todos los de granos recristalizados y pegmatíticos, y la inconsistencia con las evidencias experimentales (Veíde, 1965, 1967; Monier and Roben, 1986a; ver más arriba). Por lo tanto, las sustituciones de Fe3+ deben considerarse implícitas en la sustitución trióctacítica (4.17).

Las cantidades de Ti también son muy variables. Este elemento muestra buena correlación positiva con Fe y Mg, y negativa con [Al] (Figura 4.4.6, Tabla 4.4.3), lo cual favorece la sustitución Tiespinela (4.18) como el mecanismo que explica la variación del Ti. No existen criterios unívocos para evaluar la importancia relativa de las sustituciones Mg- y Fe2+espinela, por lo que, en principio, deben considerarse dos términos extremos de Ti-moscovita (K2[Fe,Mg]2Ti2Al2Si4O20(OH)4). La correlación positiva con Si excluye las sustituciones (4.19) y Ti-tschermak (4.21) (Figura 4.4.6 y Tabla 4.4.3), e indica que las sustituciones Tiespinela y tschermak operan paralelamente, i.e., ambas implican descono de los componentes respectivos en el mismo sentido. Esto no coincide con las observaciones hechas en áreas metármicas progresadas (ver referencias al respecto del balance del Ti más arriba), donde se señalan correlaciones positivas entre ambos cationes, i.e., a medida que aumenta la temperatura desciende las cantidades de Si y aumentan las de Ti. Es interesante señalar que las cantidades de Ti observadas en las moscovitas primarias de los gneises bandeados (máximo de 0.135 átomos p.f.u) estan de acuerdo con su alta temperatura de formación, y no contradicen su posible equilibrio con un fundido (Miller et al., 1981; Guidotti, 1984).

Las cantidades de vacantes interlaminares oscilan entre 0.236 y 0.058 átomos p.f.u (Tabla 4.4.3). Las correlaciones negativas de Si con K, Na y las vacantes interlaminares (Figura 4.4.6, Tabla 4.4.3) sugieren la operatividad de la sustitución pirofilita (4.23) que implicaría además al Na (4.27). Esto está apoyado por la

Figura 4.4.7. (Página siguiente) Imágenes de electrones retrodispersados (BSE) y transversales elementales cualitativas en un cristal heterogéneo de moscovita primaria con abundantes intercristalinos de Bi+O. (a) Imagen general del cristal que muestra la abundancia de intercristalinos de biotita (zonas blancas brillantes) y cuarzo (zonas alargadas oscuras) paralelas a las planas (001) de la moscovita. La moscovita muestra un tamaño irregular (tamaño de grano), en parches asociados a los intercristalinos y en los bordes del cristal. Granos recristalizados de moscovita aparecen en el interior del cristal con ángulos de contacto alba y asociados a los bordes del cristal primario. (b), (c) y (d): Arca ampliada señalada con una flecha en (a) y perfil cualitativo que muestra balas de empobrecimiento (gris oscuro) en Fe y Mg de la moscovita primaria cercana a las lamelas exfoliadas de biotita (blanco), y un grano fino de moscovita producido de recristalización. (e) y (f): Arca ampliada señalada con una flecha en (a) y perfil cualitativo que muestra intercristalinos de cuarzo (negro) y biotita (blanco), y el empobrecimiento en Si y enriquecimiento en Al de la moscovita primaria (gris) cercana los mismos. En las Figuras (b)(f) los perfiles elementales cualitativos se expresan en cantidades por segundo.
La presencia de un exceso de Si que no puede balancearse por el resto de sustituciones (ver más adelante). Es posible que parte de la variación en Sum XII se deba a la operatividad de la sustitución de hidronio (4.25) (ver Capítulo 5), por lo que las cantidades de piофилита deben interpretarse como máximas para un análisis dado. Como el resto de sustituciones, los componentes leucofilita y piофилита decrecen hacia las masonovitas recristalizadas.

Las buenas correlaciones encontradas en los componentes de las fórmulas estructurales... y el comportamiento paralelo interdependiente de todas las sustituciones anteriores, sugieren que las variaciones composicionales pueden cuantificarse mediante un vector de intercambio múltiple (VIM) que puede expresarse como combinación lineal de los vectores de intercambio simples anteriormente seleccionados. Para encontrar el VIM, la base de datos de moscovitas de estos gneis (excluyendo las pegmatíticas por los problemas analíticos derivados de las probables altas razones Fe$^{3+}$/Fe$^{2+}$) se ha sometido a la técnica estadística del Análisis de Componentes Principales (ACP, ver Capítulo 4.3). En lugar de someter todas las variables composicionales al ACP, las constricciones eutérmicas de la fase fuerzan a usar sólo 7 variables independientes de entre Si, Ti, [Al], [Al], Fe, Mg, [exc], Na, K y [o], manteniendo así el balance de masa (no necesariamente de cargas). La selección de los componentes debe hacerse con criterios cristalográficos que reflejen sustituciones operativas, y los valores de las distintas variables no deben ser muy diferentes entre sí en términos de magnitud por necesidades estadísticas (Davis, 1986). En el presente caso esto se consigue mediante la selección de las siguientes variables: exceso de Si (Si-O), Fe, Mg, Ti, [exc] (Sum VI-4), Na, y [o] (2-Sum XII). Nótese que no se incluyen [Al], [Al] y K, esto es, se excluye una variable por cada constricción eutérmica de la fase que afecta a los cationes. Sin embargo, como se ha indicado antes es conveniente condensar el sistema KNaMAsSi en el sistema KNaMAsSi mediante la proyección desde FeMg+, debido a la incertidumbre al respecto de la participación FeMg+ de las sustituciones implicadas. Esto es equivalente a tratar el Fe y Mg como una única variable Fe+Mg, por lo que el número de variables independientes a tratar se reduce a 6 en este caso.

La Tabla 4.4.4 da la matriz de covarianza de estos componentes, los tres primeros componentes principales y la varianza total explicada por cada uno de ellos para el caso del sistema condensado. Como era esencial que el análisis gráfico anterior, el componente principal I (CPI) explica gran parte de la varianza total de las bases de datos, en un 91.5 %, lo que implica que puede construirse un VIM que explica la mayor parte de la variación composicional observada. Para construir el VIM se incluyen ahora los componentes no considerados en el ACP, [Al], [Al] y K, de manera que se cumplan las constricciones de balance de masa en el VIM (i.e., [Al] = Si, [Al] = (Fe+Mg+Ti)-[exc], y K = [o]-[Na]). El vector resultante representa material intercambiado desde un extremo de la nube de datos a otro, y puede escribirse como (normalizado a 1 átomo de [Al] intercambiado, y notando que [exc] = -[o]):

$$[Al]_{0.735}^{[Al]} + [Al]_{0.056}^{[exc]} + [K]_{0.108}^{[exc]} + [Na]_{0.108}^{[exc]} + [Si]_{0.751}^{(Mg+Fe)}_{0.819} + [Ti]_{0.177}^{[exc]} + [Fe]_{0.245}$$

Si evaluamos los datos considerando las variables Fe y Mg independientemente, el resultado final no es sustancialmente distinto en lo que se refiere a las cantidades totales de los elementos en el vector de intercambio múltiple, como puede apreciarse por el VIM calculado de la misma manera que el anterior (86.7 % de la varianza);
\[[\text{Na}]_{0.776}[\text{K}]_{0.041}[\text{Fe}^{3+}]_{0.015} + [\text{Si}]_{0.107} + [\text{Na}]_{0.107} - [\text{Si}]_{0.776} + [\text{Mg}]_{0.432} + [\text{Fe}]_{0.432} + [\text{Ti}]_{0.181} + [\text{K}]_{0.322} \]

(4.29)

<table>
<thead>
<tr>
<th>Matriz de Covarianza</th>
<th>Componentes Principales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si,6</td>
<td>Ti,1</td>
</tr>
<tr>
<td>0.019</td>
<td>2.930</td>
</tr>
<tr>
<td>0.004</td>
<td>-0.813</td>
</tr>
<tr>
<td>[Na]</td>
<td>0.218</td>
</tr>
<tr>
<td>[K]</td>
<td>0.001</td>
</tr>
<tr>
<td>[O]</td>
<td>0.001</td>
</tr>
<tr>
<td>[Fe, Mg]</td>
<td>0.001</td>
</tr>
<tr>
<td>% de la varianza total explicada</td>
<td>91.482</td>
</tr>
</tbody>
</table>

Dada la buena estadística asociada a estos vectores, el balance de cargas también se mantiene (Δcarga = 0.002 en el caso de (4.28)), por lo que puede ser descompuesta en un conjunto de reacciones de intercambio simples cristalquímicamente significativas. El número máximo de vectores simples linealmente independientes en los que pueden ser descompuestos estos VIM es igual al número de variables en las ecuaciones (4.28) y (4.29) menos 4 constricciones: tres estroquimétricas y una de balance de cargas. En el caso del VIM (4.29) este número es 6, i.e., el mismo que el número de vectores de intercambio linealmente independientes que operan sobre el componente aditivo moscovita para describir completamente el espacio composicional de la fase. Aunque cualquier otra selección podría valer, estos 6 vectores deben seleccionarse de entre las sustituciones operativas en las moscovitas analizadas, i.e., Mg, Fe, Mg-di-tri, Fe-di-tri, Mg-Ti-espinela, Fe-Ti-espinela, pirolilita, y Na-pirolilita. Sin embargo, debe notarse que Na y K se localizan en el mismo lado de las ecuaciones de balance de masa (4.28) y (4.29), por lo que no es apropiado incluir el vector NaK, en la decomposición de los VIM aunque, no obstante, es posible desde el punto de vista algebraico. Condensando el sistema por proyección desde FeMg, la decomposición del VIM (4.29) excluyendo NaK, es:

- uschermaks: \([\text{Na}]_{0.554} + [\text{Na}]_{0.554} = [\text{Si}]_{0.554} + [\text{Mg}]_{0.554}\)
- distriocladica: \([\text{Na}]_{0.644} + [\text{Na}]_{0.644} = [\text{Si}]_{0.644} + [\text{Mg}]_{0.644}\)
- Ti-espinela: \([\text{Na}]_{0.015} = [\text{Ti}]_{0.181} + [\text{Mg}]_{0.181}\)
- Na-pirolilita: \([\text{Na}]_{0.107} + [\text{Na}]_{0.107} = [\text{Si}]_{0.107} + [\text{Na}]_{0.107}\)
- pirolilita: \([\text{Na}]_{0.115} + [\text{Na}]_{0.115} = [\text{Si}]_{0.115} + [\text{Na}]_{0.115}\)
- FeMg.4: \([\text{Mg}]_{0.432} = [\text{Fe}]_{0.432}\)
Esta descomposición es equivalente a la descomposición del VIM (4.28), lo cual no es de extrañar dadas las similitudes entre ambos VIM. No obstante, la descomposición implica una ecuación menos, dado que se había condensado implícitamente el sistema al considerar Fe+Mg en el ACP:

- **tschermak:**
 \[[\text{Al}]_{0.536} + [\text{M}]_{0.536} = \text{Si}_{0.536} + (\text{Mg}+\text{Fe})_{0.536} \]
- **distriocédrica:**
 \[[\text{Al}]_{0.112} + [\text{M}]_{0.056} = (\text{Fe}+\text{Mg})_{0.168} \]
- **Tiespinela:**
 \[[\text{Al}]_{0.354} = \text{T}_{0.177} + (\text{Mg}+\text{Fe})_{0.177} \]
- **Na-pirofilita:**
 \[[\text{Al}]_{0.106} + \text{Na}_{0.106} = \text{Si}_{0.106} + [\text{M}]_{0.106} \]
- **pirofilita:**
 \[[\text{Al}]_{0.109} + \text{K}_{0.109} = \text{Si}_{0.109} + [\text{M}]_{0.109} \]

Si se implica la sustitución NaK, el sistema puede considerarse proyectado desde este vector y, por lo tanto, condensado. La descomposición de los VIM respectivos es idéntica excepto que Na-prl y prl se sustituyen por:

- **pirofilita:**
 \[[\text{Al}]_{0.222} + \text{K}_{0.222} = \text{Si}_{0.222} + [\text{M}]_{0.222} \]
- **NaK,1:**
 \[\text{Na}_{0.107} = \text{K}_{0.107} \]

para el VIM (4.29), y por:

- **pirofilita:**
 \[[\text{Al}]_{0.215} + \text{K}_{0.215} = \text{Si}_{0.215} + [\text{M}]_{0.215} \]
- **NaK,1:**
 \[\text{Na}_{0.104} = \text{K}_{0.104} \]

para el VIM (4.28). Como puede apreciarse, la condensación del sistema KNaFeMgTiSH al sistema KMgTiSH es ventajosa por cuanto retira la incertidumbre al respecto de la partición de Fe-Mg y Na-K entre las sustituciones que los involucran, pero se pierde información.

Escritos en términos porcentuales, los VIM (4.28) y (4.29) pueden escribirse como (en el sistema condensado):

\[
\begin{align*}
4.28 & = 54.5\% \text{tk} + 18.0\% \text{Ti}-\text{sp} + 5.7\% \text{distri} + 21.8\% \text{prl} (10.8\% \text{Na-prl} o \text{NaK,1}) \\
4.29 & = 55.5\% \text{tk} + 18.1\% \text{Ti}-\text{sp} + 4.1\% \text{distri} + 22.2\% \text{prl} (10.7\% \text{Na-prl} o \text{NaK,1})
\end{align*}
\]

lo que implica que la sustitución tschermak explica más del 50% de la variación composicional, pero las sustituciones pirofilita y Tiespinela explican cada una cerca del 20% de las variaciones. Estos valores de los vectores de intercambio en los VIM respectivos son independientes de las cantidades absolutas de componentes moleculares que representan, ya que explican los cambios o incrementos de composición. Por lo tanto, están directamente relacionados con el efecto de distintas reacciones de transferencia neta que describen la descomposición de las mosecovitas primarias. La reacción que implica la sustitución tschermak y describe la descomposición del componente leucofilita puede escribirse como (sistema KMASH):

\[
3\text{K}_2\text{Al}_5\text{Si}_8\text{O}_{20}(\text{OH})_4 [\text{ms}] + 6\text{SiMg}[\text{Al}]_{1.1} = 4\text{K}_2\text{Mg}_6\text{Al}_5\text{Si}_8\text{O}_{20}(\text{OH})_4 [\text{phill}] + 4\text{KAISi}_3\text{O}_8 [\text{Kfs}] + 6\text{SiO}_2 [\text{q tutte}] + 4\text{H}_2\text{O}
\]
Reacciones similares describen la descomposición del resto de los componentes, que en conjunto permiten cuantificar el proceso reacional sufrido por estas moscovitas. Esta modelización se presenta en el Capítulo 3.5.1.3, aunque por el momento puede señalarse que la inexistencia de feldespato-K en los intercercimientos, predecible de las relaciones de fases en sistemas modelo y de balances de masa puede interpretarse como el resultado del efecto de la descomposición de otros componentes de la moscovita y de la difusión de K hacia la matriz.

Los vectores seleccionados (FeMg, NaK, Ti, KFe, H, P, Al) deben usarse para describir la composición individual de las moscovitas estudiadas. Para ello, la base catiónica (antigua) se ha transformado en componentes moleculares (nueva), incluyendo paragonita ya que NaK puede relacionarse con directamente moscovita y paragonita, resolviendo para cada análisis las 7 ecuaciones linealmente independientes que relacionan las bases catiónicas y moleculares mediante los métodos matriciales descritos en el Capítulo 4.3 (Greenwood, 1975; J.B. Thompson, 1982a). La Tabla 4.4.5 presenta la matriz de coeficientes aplicable a la ecuación (4.7), y los resultados incluidos en el Apéndice II Tabla M y representados en la Figura 4.4.8.

| Tabla 4.4.4. Matriz de coeficientes para la transformación de los análisis en coordenadas moleculares (abreviaciones en el texto). |
|---|---|---|---|---|---|---|---|---|
| Si | FeMg | Ti | Al | MgFe | Fe | Na | K | prl |
| 6 | 8 | 6 | 6 | 6 | 8 |
| 0 | 2 | 0 | 0 | 0 | 0 |
| 6 | 2 | 2 | 2 | 2 | 6 |
| 0 | 2 | 2 | 2 | 2 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 2 | 2 | 2 | 2 | 0 |
| Nota: Esta matriz representa [A⁻¹] en la ecuación (4.7). Para realizar la transformación, la inversa de esta matriz debe multiplicarse por la matriz de los análisis expresados en términos catiónicos. |

En la Figura 4.4.8 puede apreciarse que la descomposición de los componentes leucifilita, Ti-moscovita, pirofilita y trioctaédrico en las moscovitas férreas primarias genera el espectro composicional formado por las moscovitas primarias y recristalizadas, y que tal descomposición conlleva un aumento de los componentes moscovita y paragonita en solución. De lo anterior, el aumento de paragonita puede ser debido a la operatividad del vector NaK (SiFe²⁺(o)NaK²⁺Al₃) y no al vector NaK, aunque el resultado es el mismo, i.e., aumento de paragonita en la solución. En esta figura puede observarse además que la transformación molecular elegida es apropiada para las moscovitas pegmatíticas, que presentan valores negativos de leucofilita y valores compаратivamente elevados de componente trioctaédrico, como consecuencia de sus probables altas razones de Fe²⁺/Fe³⁺.

Una observación particularmente interesante de la Figura 4.4.8 es que el componente pirofilita llega a suponer hasta ca. 13% molar de la solución en moscovitas primarias, lo que implica que existe un exceso de Si sobre el asignable a la sustitución isométrica de hasta un 39%. Esto sugiere que parte de las vacantes interlíminares, y por lo tanto del componente pirofilita, debe ser real a pesar de la posible presencia de
cantidades de H superiores a las estequiométricas y de la operatividad de la sustitución de hidronio (ver más arriba). Si esto es así, la sustitución Na-pirofilítica es posible, como lo indica el coeficiente negativo del Na en los VIM anteriores resultante de las correlaciones negativas de Na con Si, Fe, Mg y positiva con $[^{40}\text{K}]$. Estos resultados sugieren que el comportamiento antipatético detectado de manera general entre los componentes leucofilita y paragonita en la solución sólida moscovita, explicable por consideraciones cristalquímicas y/o propiedades termodinámicas de la fase (ver más arriba y Guidotti, 1984), puede modelizarse estrictamente por la sustitución Na-pirofilítica, y que es probable que las sustituciones K-pirofilítica y Na-pirofilítica sean sensibles a cambios de presión dado el comportamiento paralelo de las mismas y la sustitución tschermak (i.e., ambas aumentan el contenido en Si).

Figura 4.4-8: Diagrama de variación lineal (base molecular) para los análisis de las moscovitas de granas bandeadas expresados como componentes extremos significativos (simbolos como en la Figura 4.4-6, ver el texto para el procedimiento de cálculo y abreviaciones). Las líneas de regresión no incluyen los análisis de moscovitas pegmatíticas, donde los valores calculados de la molécula de leucofilita son negativos y que las moléculas cristalquímicas y de Termocorrosion implican valores mayores de Fe-Mg que los presentes en las fórmulas estructurales. En estos casos, valores altos en las razones Fe$^{3+}$/Fe$^{2+}$ son la probable causa de la sobrestimación del componente cristalquímico al expresar todo el Fe como Fe$^{2+}$.
Finalmente, cabe comentar que el conjunto de características texturales y composicionales de las moscovitas descritas son suficientemente explicativos sobre el estado de desequilibrio que presentan. En el Capítulo 3.6.2.2 se presentan imágenes de TEM de los intercambios que permiten describir los procesos cinéticos que han condicionado el progreso de la descomposición fengítica de las moscovitas primarias. Todas las evidencias indican un fuerte sobrepaso de las superficies P-T-X de equilibrio debido a una rápida descomposición.

4.4.4.2. Gneises Porfiroïdes con Moscovita-Biotita

Las moscovitas analizadas de este tipo de gneises (T337, T376) corresponden a los tres tipos texturales distinguidos en el Capítulo 3.2.1.2: (1) cristales relictos de moscovitas primarias, deformados, con intercambios de biotita; (2) agregados más o menos orientados de moscovitas recristalizadas de grano fino que generalmente se asocian a los agregados de biotita; (3) placas muy finas y alargadas incluidas dentro de cristales de feldespato-K y plagioclasa, con parones de orientación preferente e interpretadas texturalmente como producto de alteración secundario de feldespatos o retrogradada.

Las características composicionales de las moscovitas de la matriz de este tipo de rocas son muy similares a las encontradas en los gneises bandeados descritos anteriormente, tanto en valores absolutos de los distintos componentes como en las tendencias de variación (Figura 4.4.9). La importante recristalización que han sufrido estas rocas queda reflejada por la escasez de placas de moscovita primarias con composiciones fengíticas. Las moscovitas recristalizadas presentan composiciones más próximas al término extremo moscovita características de baja presión (i.e., 8.3-6.2 átomos de Si pFU). Los resultados de la cuantificación de la solución sólida en este caso es similar a los resultados obtenidos para las moscovitas de los gneises bandeados, por lo que no se describe en detalle. Además, los recaídos de moscovitas primarias presentan intercambios de biotita y cuarzo similares, por lo que se concluye que estas micas han sufrido el mismo proceso de descomposición (Figura 4.4.10). Esto es interesante, ya que demuestra que la presencia de granate en los gneises bandeados no controla la descomposición fengítica de las moscovitas, lo cual será tenido en cuenta más adelante.

Sin embargo, las moscovitas retrogradadas, en placas orientadas finas incluidas en los feldespatos, presentan composiciones que las individualizan de las tendencias formadas por las moscovitas primarias y recristalizadas (Figuras 4.4.9 y 4.4.10, cruces). Estas moscovitas presentan contenidos relativos altos de Si (6.28-6.54 átomos pFU, Tabla 4.4.6), Fe (0.14-0.22) y Mg (0.145-0.249), comparables con términos intermedios de moscovitas primarias, pero presentan valores muy bajos en Ti (0.008-0.055). Estas características son indicativas de su origen secundario de baja temperatura (Miller et al., 1981; Speer, 1984; Monier et al., 1984). Las cantidades de K, Na, y vacantes interlaminares son similares a la de las moscovitas primarias de composición comparable en Si (Figura 4.4.9 y Tabla 4.4.6). A pesar de esta peculiaridad composicional y a su origen probablemente secundario, los vectores de intercambio deducidos para las moscovitas de la matriz de estos gneises y los gneises bandeados parecen aplicar también a estas moscovitas (Figuras 4.4.9 y 4.4.10). La sustitución Ti espinela, aunque no demostrada, puede utilizarse con fines comparativos, ya que no existe ningún criterio que pueda favorecer otra sustitución para el balance del Ti.
Figura 4.4.9. Diagramas de variación binaria (bar raíz) para las monocromáticas de grano postesidos con M+6A (T317, T376) y nucleólicos con Fa+K+R+Gt (T376) del complejo de gruiones inóculo de Torras. Círculos: grano primarios; Cuadrados: grano reconsolidados; Círculos: crque reconsolidados; Estrellas: monocromáticas del molde reconsolidado T376. Las líneas de regresión y vectores como en la Figura 4.4.4. Nótese las desviaciones en Ti de las monocromáticas reconsolidadas y de los ambientes respecto de las monocromáticas de la matriz de los grano postesidos (a baseados).
4.4.4.3. RESTITAS CON BIOTITA+ RUTILO+ DISTENA+ GRANATE

La muestra analizada de gneis porfiroide T376 contiene también un enclave restitico con Bt+Rt+Ky+Grt (+IIm+And+Ap) y grafito. En el enclave, la moscovita se presenta en placas escasamente deformadas, asociada a las grandes placas de biotita y sobre los agregados distena (Capítulo 3.2.1.3, Figura 3.2.4). Estas moscovitas forman un conjunto bastante homogéneo que se desvía sustancialmente de las tendencias de variación definidas por las moscovitas primarias y recristalizadas del gneis porfiroide encajonante (Figura 4.4.9). En particular, presentan valores de Si bajos (6.16-6.31 átomos p.f.u., Tabla 4.4.6), cantidades
ellevadas de Mg (0.214-0.31), Fe (0.124-0.23) y Ti (0.18-0.20) y muy bajas en [V]Al (3.35-3.48), por comparación con las moscovitas de la matriz con composición similar en Si de los gneisés.

<table>
<thead>
<tr>
<th>Resinas</th>
<th>Retrógradas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>6.161</td>
</tr>
<tr>
<td>[V]Al</td>
<td>1.692</td>
</tr>
<tr>
<td>[V]Al</td>
<td>3.351</td>
</tr>
<tr>
<td>Ti</td>
<td>0.177</td>
</tr>
<tr>
<td>Fe</td>
<td>0.124</td>
</tr>
<tr>
<td>Mg</td>
<td>0.214</td>
</tr>
<tr>
<td>Na</td>
<td>4.008</td>
</tr>
<tr>
<td>K</td>
<td>0.122</td>
</tr>
<tr>
<td>NaCl</td>
<td>1.715</td>
</tr>
<tr>
<td>MgFe</td>
<td>1.837</td>
</tr>
<tr>
<td>NaK</td>
<td>1.139</td>
</tr>
<tr>
<td>Na</td>
<td>0.071</td>
</tr>
</tbody>
</table>

Las peculiaridades de la composición de estas micas hay que analizarlas en el contexto del sistema en el que se encuentran, fuertemente fénico, hiperaluminoso (abundancia de sílicatos de Al y ausencia de feldespatos), subsaturados en SiO₂ (no coexiste cuarzo, excepto en intercrios: simplectitas con andalucita), muy ricas en Ti (abundancia de rutilo e ilmenita), y reducidas (presencia de grafito) de estos enclaves. Ello supone que los componentes celadoníticos (esencialmente leucofílita, dadas las bajas razones Fe³⁺/Fe²⁺) no están saturados en la solución para las condiciones de equilibrio (e.g., Miyashiro y Shido, 1985; Massonne y Schwrey, 1987), lo cual explica las bajas cantidades de Si. Por el contrario, la presencia de fases saturadas en Ti asegura que el componente de Ti está saturado para las condiciones de equilibrio (e.g., Guidotti et al., 1977; Guidotti, 1978b), lo cual explica los altos contenidos en Ti a 0.20 atmósferas pú, por comparación con los máximos de 0.14 en las moscovitas de gneisés gisantulenes y 0.13 en las de gneisés bandoces. Además, las elevadas cantidades de Ti que presentan, controlan el escaso contenido en Al que presentan (ya que el sistema es hiperaluminoso), y la elevada concentración en Mg (Mg/Fe > 1). No obstante, la comparación entre los contenidos de Ti de las moscovitas de los gneisés y de los enclaves no puede relacionarse exclusivamente con la presencia de fases saturadas en Ti. Como se ha indicado en el apartado 4.5.3.2, en sistemas saturados en Al (i.e., enclaves fénico) las cantidades de Ti en moscovitas son menores que en sistemas no saturados en Al (i.e., gneisés), lo cual es explicable por la operatividad de la sustitución Ti→espuela en el balance del Ti. Por lo tanto, las cantidades de Ti detectadas en las moscovitas de este enclavo no son las máximas posibles para las condiciones de equilibrio.

El hecho de que estas placas de moscovita no presenten texturas reacionales indicativas de descomposición indica que el escaso rango de variación que presentan se debe a problemas de balance de masa locales durante su blastesis. En el enclave analizado existen texturas de reemplazamiento que afectan al rutilo (→ ilmenita), biotita rica en Ti (→ And+Qz+Ilm+Ms), y distena (→ moscovita y andalucita), lo que sugiere un posible efecto cinético como responsable de las variaciones composicionales y de las elevadas cantidades de Ti que presenta la moscovita de este enclavo. Esto es, si se libera Ti en el balance de masa global de estas reacciones y este elemento presenta una baja tasa de difusión, puede entrar "forzado" en la
estructura de la moscovita neoformada. Estas consideraciones no impiden afirmar, sin embargo, que estas moscovitas han debido de cristalizarse/eqilibrarse bajo condiciones de T elevadas, si se tiene en cuenta los valores >0.10 átomos f/u sugeridos por Guidotti (1984) para moscovitas de rocas metamórficas de grado alto (saturadas en Ti, Si y Al). La no coexistencia de cuarzo y feldespato K en la asociación invalida cualquier consideración al respecto de la presión de equilibramiento.

Las relaciones entre Ti, Mg y [6]Al (Figura 4.4.9) sugieren que el balance del Ti en la estructura se efectúa a través de la sustitución Trespinela (4.18), con una mayor operatividad del término extremo magnésico, y que el Ti no entra en la capa tetraédrica en sustitución de Si (i.e., TiSi₄). Sin embargo, las relaciones composicionales de estas minas podrían ser consistentes con un balance tetraédrico del Ti mediante la sustitución [6]Ti[6]Mg[6]Al₄[6]Al₄, que implicaría la sustitución de Al por Ti en la capa tetraédrica. Esta sustitución, que podría justificar la entrada "forzada" de Ti en la moscovita sugerida anteriormente, no ha sido considerada en el apartado 4.4.3.2 ya que no se ha encontrado citada en ningún trabajo consultado y las evidencias contrarias al respecto de la coordinación octaédrica del Ti en biotitas (referencias más arriba). En los escasos trabajos en los que se considera la posibilidad del Ti tetraédrico en biotitas u otros silicatos como granatos o anfiboles se implica sustitución de Si por Ti, no Al por Ti (e.g., Kunitzy, 1936; Harman, 1969; Waychunas, 1987; Della Ventura et al., 1991). Por ello, y ante la ausencia de evidencias en contra de la sustitución Trespinela que puede describir igualmente las características composicionales de estas minas, en este trabajo no se considera operativa la sustitución de [6]Al por Ti anterior. Monier y Robert (1986b) también consideraron la sustitución Trespinela como responsable del balance del Ti en sus moscovitas ricas en Ti (>0.16 átomos f/u).

Las altas cantidades de Ti que presentan estas moscovitas parecen haber controlado los valores elevados en la razón Mg/Fe, que en todos los casos es mayor de 1 (Figura 4.4.8, Tabla 4.4.6), lo cual es consistente con la correlación positiva entre la razón Mg/Fe y Ti observada por Guidotti et al., (1977, p. 440) en moscovitas de metalespasas saturadas en Ti (con ilmenita y/o rutilo) y reducidas (con grafito). Guidotti et al., (1977) no ofrecieron explicaciones ulteriores sobre este hecho (el trabajo incide sobre el comportamiento del Ti en las biotitas). Por su parte, Monier y Robert (1986b), ni siquiera mencionan la posible existencia de tales relaciones, aunque de su Tabla 1, donde ofrecen 7 análisis representativos de tres muestras, puede deducirse en todo caso una correlación negativa entre Mg/Fe y Ti en muestras individuales. De los datos obtenidos en el presente trabajo, parece claro que la razón Mg/Fe de la moscovita está fuertemente controlada por las cantidades de Ti debido a la partición preferente del Mg en la sustitución Trespinela. Las cantidades de Ti sin embargo no pueden balancear todo el Mg de estas moscovitas ya que las razones Ti/Mg son menores de 1, por lo que parte del Mg debe balancearse mediante otras sustituciones, particularmente la tschermak.

Por otra parte, es interesante el efecto que los altos contenidos en Ti parecen tener sobre otros componentes, apreciable especialmente en los cationes interlaminares. Así, respecto de las moscovitas de los gneises con cantidades comparables de Si, se detecta un empobrecimiento en Na y enriquecimiento en K (Figura 4.4.9). Es posible que esto pueda explicarse por la deficiencia en Na del sistema, donde no coexiste plagioclasa, aunque es también probable que las altas cantidades de Ti en las posiciones octaédricas puedan afectar al desajuste intercapa, modificando el valor del ángulo de rotación tetraédrica α y, por lo tanto, afectando a la estabilidad del Na en la estructura. Dados los radios iónicos del Ti (0.665 Å), Mg (0.720 Å), Fe (0.780 Å) y Al (0.535 Å) en posiciones octaédricas, el balance del Ti por sustitución Trespinela supone un aumento en las dimensiones de la capa octaédrica, y por lo tanto una reducción del desajuste intercapa y del
ángelo o, lo cual debe inestabilizar el Na en la estructura. El descenso de Na parece compensarse en este caso por un incremento directo en las cantidades de K, ya que las cantidades totales de vacantes interlaminares son comparables con las de moscovitas de la matriz de los gneises con valores similares de Si. Por lo tanto, la introducción de Ti parece implicar la disminución de las cantidades de Na mediante la operatividad acoplada de la sustitución paragonita NaK,, y no hay evidencias para considerar la sustitución Na-profilita (4.27). Hasta donde llegan los conocimientos del autor, estas relaciones entre Ti y Na no han sido descritas en moscovitas naturales. Más adelante se reconsiderarán estas observaciones respecto a la partición Mg:Fe en la sustitución Tiespinela y el posible efecto estructural del Ti.

4.4.4. MOSCOVITAS CON MOSCOVITAS Biotitas GRANATE

Las moscovitas primarias de este tipo de rocas (T335, T472a y T493) muestran características composicionales distintivas. Todas ellas pueden caracterizarse desde el punto de vista textural como moscovitas ignes (Miller et al., 1981; Speer, 1984, ver Capítulo 3.2.1.4.), a pesar de que en algunas muestras pueden estar algo deformadas. Esto hace que su descripción sea de especial interés ya que sus composiciones pueden asignarse a condiciones supersólidas en un contexto en que se han producido fuertes cambios de presión. De hecho, las moscovitas de las muestras T472a y T493 presentan texturas de descomposición similares a las encontradas en las moscovitas primarias de gneises bandeados y glandulares, aunque formadas mayoritariamente por biotita y en mucha menor medida por cuarzo (ver Capítulo 3.2.1.4. más adelante). Las placas de la muestra T493 presentan además pseudomorfosis parciales constituidas por agregados de And+Kfs+Bi similares a los descritos en las moscovitas pegmatíticas de los gneises bandeados, pero con mayor cantidad de biotita (Figura 3.2.5). Las moscovitas de la muestra T335 son idiomorfas y no presentan texturas reaccionales, aunque se encuentran intercristalinas con turmalina (Figura 3.2.5). Esta dualidad, en lo referente a la presencia o ausencia de texturas reaccionales, se muestra también en sus composiciones (Figura 4.4.11). Las moscovitas primarias de las muestras T472a y T493 (con texturas de descomposición) presentan cantidades elevadas en Mg, Ti, y Sum VI y bajas en [Al y Na, mientras que las moscovitas primarias de la muestra T335 (sin texturas de descomposición) muestran características opuestas (Figura 4.4.11). Es significativo que las cantidades de Si de ambos grupos de moscovitas sean similares (6.32-6.50, Figura 4.4.11, Tabla 4.4.7). En estas rocas existen también placas de tamaño de grano muy inferior, modalmente minoritarias y que pueden calificarse de origen subsólidos, recristalizadas o secundarias. En la muestra T472a se han analizado también crasitas tubulares idiomorfas incluidos en gramos gruesos de feldespato-K que no presentan características texturales de moscovitas secundarias, aunque para distinguírlos se han representado con cruces en las Figuras 4.4.11 y 4.4.12.

Las composiciones ricas en Ti de estas moscovitas indican elevadas temperaturas de equilibrio, de acuerdo con su origen supersólido. Sin embargo, las cantidades de Si que presentan son comunes en moscovitas de origen igneo, que se caracterizan por valores en torno a 6.2-6.3 átomos pfu (e.g., Miller et al., 1981). Estas características sugieren un efecto de la presión sobre la composición de la moscovita en condiciones supersólidas, conclusión ya sugerida al considerar la composición de las moscovitas de los gneises bandeados. La menor concentración en Si en estas moscovitas respecto a los gneises bandeados puede explicarse por (1) el efecto de la asociación de fases presente durante la cristalización de la moscovita, que coexistiría con un fundido ± Kfs ± Bi, por lo que las cantidades de Si podrían no corresponder a la de saturación, y (2) una menor presión de equilibrio (i.e., segregación del fundido durante la descomposición). El efecto de la asociación sobre la solubilidad de leucosfilita es necesario ya que permite
explicar la escasa variación de Si en las moscovitas con texturas de descomposición, que indica una contribución limitada de la sustitución isomórfica (o componente leucofilita) en el desarrollo de la heterogeneidad composicional dentro de muestras individuales. Si las cantidades de leucofilita no corresponden a las de saturación para unas condiciones P-T dadas no existe razón para su descomposición durante estadios iniciales de la descomposición. Esto supone una diferencia sustancial respecto del comportamiento de las moscovitas primarias de los gneises bandeados y porfiroïdes, y es consistente con la escasez de intercambios de cuarto. Por lo tanto, el proceso reaccional de descomposición sufrido por estas moscovitas es distinto del descrito para las moscovitas de los gneises bandeados (ver Capítulo 5.5.2.3).

<table>
<thead>
<tr>
<th>Tabla 4.4.7</th>
<th>Estadística básica y coeficientes de correlación Pearson para las moscovitas de gneises aplicadas con MuxBezGet del complejo de gneises litoestratos de Torrox (T335, T472a y T493). (n=79).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>6.317</td>
</tr>
<tr>
<td>[M]M</td>
<td>1.505</td>
</tr>
<tr>
<td>[M]Al</td>
<td>3.250</td>
</tr>
<tr>
<td>Ti</td>
<td>0.024</td>
</tr>
<tr>
<td>Fe</td>
<td>0.122</td>
</tr>
<tr>
<td>Mg</td>
<td>0.117</td>
</tr>
<tr>
<td>SumVI</td>
<td>3.997</td>
</tr>
<tr>
<td>Na</td>
<td>0.112</td>
</tr>
<tr>
<td>K</td>
<td>1.162</td>
</tr>
<tr>
<td>SumXII</td>
<td>1.764</td>
</tr>
<tr>
<td>Mg/Fe</td>
<td>0.659</td>
</tr>
<tr>
<td>Na/K</td>
<td>0.048</td>
</tr>
</tbody>
</table>

De las relaciones observables en la Figura 4.4.11 es claro que las variaciones de Fe y Mg implican variaciones en Ti y en la ocupación octádrica total. Las buenas correlaciones de Sum VI, positivas con Fe y Mg, y negativas [M]M (Tabla 4.4.7, Figura 4.4.11), sugieren la operatividad de la sustitución di-triocádrica para balancear variaciones en Fe y Mg. La proyección de las composiciones en el diagrama Sum VI vs Fe+Mg define una tendencia de variación que presenta una pendiente prácticamente paralela a la definida por el vector distri. La covariación entre Sum VI y Fe+Mg está controlada por la población de moscovitas heterogéneas de alto Ti (T472a y T493), por lo que de ser operativa la sustitución triocádrica sería indicativa de variaciones intra-muestra (las moscovitas homogéneas de bajo Ti de la muestra T335 presentan contenidos en Sum VI muy bajos, y se proyectan por debajo de la línea continua de regresión sobre las moscovitas de los gneises bandeados en la Figura 4.4.11).

La operatividad de la sustitución distri indica que el proceso de descomposición que da lugar a los intercambios finos de biotita implica la exfoliación del componente triocádrico, salvo que parte del Fe total estuviese en forma de FeO, y que la razón FeO/FeO varía a lo largo de la secuencia composicional. Existen, sin embargo, evidencias que favorecen la operatividad del vector distri en el proceso de descomposición. No existen razones paragenéticas para considerar que el estado de oxidación de la muestra T335 fuese distinto del de las muestras T472a y T493, al no coexistir en ninguna de ellas óxidos de Fe ni grafito. La muestra T335 es extremadamente pobre en biotita, que se encuentra como unas pocas placas de grano fino que parecen de origen tardo respecto de las placas de moscovita primaria, lo cual puede explicar el bajo valor de Sum VI (< 4.02) ya que la moscovita no estaría saturada en el componente triocádrico (Monter y Robert, 1986a; Massone y Schreyer, 1987). Esto es consistente con el hecho de que en esta muestra no se detectan texturas de descomposición.
Figura 4.4.11. Diagramas de variación binarias (base cationica) para las minerales de gases apilados concordantes con MzHizGrO (T335, T472a, T483) del complejo de gases tetracoton de Toros. Circulos: cristales primarios; Cuadrados: cristales secundarios; Cruz: inclusiones no integradas en feldespato-K. Los símbolos rectangulares corresponden a la muestra T335, cuya muestra no presenta texturas reaccionales. Líneas de regresión y vectores como en la Figura 4.4.4. Nótese las fuerzas de tensión respecto de las tendencias formadas por las minerales de la matriz de los gases basados, y la buena correlación entre Sum VI y Fe+Mg.
Figura 4.4.12. Diagramas de variación biatría (base molecular) para las moscovitas de los giros aplacónematíticos concordantes del Complejo de giros leucíticos de Torrox expresados en términos de las componentes deducidas para las moscovitas de los giros leucíticos (simbolos como en la Figura 4.4.11 y abreviaturas como en la Figura 4.4.8; ver el texto para el procedimiento de cálculo). Las líneas de regresión incluyen todos los análisis proyectados. Nótese la escala variación del componente leucofilita y el comportamiento antipatético de las componentes biotita y Ti-moscovita en las moscovitas heterogéneas de alta-1 Ti con intercambios de biotita.

En el caso de que las variaciones en Sum VI reflejasen variaciones en Fe³⁺, el cambio composicional debería asignarse al vector Feoxi-fengita (4.16). Esto es así porque la escasa variación en Si (Figura 4.4.12) excluye la sustitución ferrischoemak (4.15), e indirectamente, la sustitución ferri-moscovita Fe³⁺[M][Al] ya que esta sustitución no parece describir bien los cambios composicionales en moscovitas fengíticas naturales (Guidoni, 1984), que suelen mostrar más claramente las variaciones en el componente leucofilita debidas a la

1 No conozco referencia alguna que implique la operatividad de esta sustitución en moscovitas, aunque es común su referencia en estudios de biotita. Forbes (1972), hace referencia a ella en micas al generalizar reacciones de sustitución cation-hidroxi en biotitas. Tampoco conozco ningún caso en que se haya descrito la descomposición del componente Fe-oxi-fengita en moscovita.
sustitución isométrica. La descomposición del componente Fe-oxi-fengita mediante un proceso redox para dar componentes apropiados de biotita (anita y/o oxianita) implica igualmente la formación de cuarzo (y Kfs), lo que daría lugar a variaciones significativas en Si:

\[
3 \text{K}_2\text{Fe}^{3+}\text{Al}_2\text{Si}_6\text{O}_{20}(\text{OH})_2 \rightarrow \text{K}_2\text{Fe}^{3+}\text{Al}_2\text{Si}_6\text{O}_{20}(\text{OH})_2 + 6 \text{SiO}_2 + 4 \text{KAlSi}_3\text{O}_8
\]

(4.33)

\[
3 \text{K}_2\text{Fe}^{3+}\text{Al}_2\text{Si}_6\text{O}_{20}(\text{OH})_2 \rightarrow \text{K}_2\text{Fe}^{3+}\text{Al}_2\text{Si}_6\text{O}_{20}(\text{OH})_2 + 6 \text{SiO}_2 + 4 \text{KAlSi}_3\text{O}_8
\]

(4.34)

Con los datos disponibles es especulativo excluir totalmente estas reacciones y la operatividad de la sustitución Fe-oxi-fengita en la generación del espectro composicional de las moscovitas descompuestas de estas rocas, pero la reacción de exfoliación del componente trioctáedrico en moscovita:

\[
\text{K}_2\text{Al}_2\text{Si}_6\text{O}_{20}(\text{OH})_2 + 2 \text{Mg,Fe}_2\text{Al}_2\text{Si}_6\text{O}_{20}(\text{OH})_2 \rightarrow \text{K}_2\text{Al}_2\text{Si}_6\text{O}_{20}(\text{OH})_2 + 2 \text{Mg,Fe}_2\text{Al}_2\text{Si}_6\text{O}_{20}(\text{OH})_2
\]

(4.35)

puede explicar igualmente el proceso reacional sufrido y justificar, al menos en parte, la buena correlación negativa entre Mg y [Mg/Al] (Tabla 4.4.7), que dificilmente puede explicarse en términos de la descomposición de los componentes Fe-oxi-fengita y isométrico exclusivamente.

Respecto de las variaciones de Ti, las buenas correlaciones de este elemento, positivas con Mg y negativas con [Mg/Al] y la ausencia de correlación del Ti con Fe (Figuara 4.4.11, Tabla 4.4.7), sugieren la operatividad del vector Ti-spinela que participaría preferentemente al Mg de la misma manera que en el caso de las moscovitas de las restos. Las altas relaciones Mg/Fe de las muestras T472 y T493 respecto de la muestra T335 parecen, por lo tanto, debidas a las cantidades relativamente altas de Ti (máximo de 0.18 átomos p.f.u) en las primeras (Figuara 4.4.11). También se detecta un control del Ti sobre la composición de la capa interlaminal, dadas las buenas correlaciones entre Na y Na/K con el Ti (y [Mg/Al], Mg y Mg/Fe) y las mayores cantidades de Na de las moscovitas de bajo Ti (Figuara 4.4.11, Tabla 4.4.7). Puesto que las cantidades totales de Mg exceden generalmente en más del doble a las de Ti, gran parte de los contenidos absolutos de Mg deben balancearse por otras reacciones. Consideraciones de balance de masa indican que la sustitución trioctáedrica no balancea todo el exceso de Fe y Mg, por lo que la sustitución isométrica debe considerarse en la descripción de las desviaciones composicionales de las muestras, a pesar de que las relaciones entre Si y Fe y Mg no indican que esta sustitución pueda explicar las variaciones composicionales. Esto es, el componente leucolítico es necesario para describir estas moscovitas, aunque prácticamente no varía (Figuara 4.4.12).

Las correlaciones negativas de Na y Sum XII con Si (Figuara 4.4.11) se deben exclusivamente a las variaciones intra-muestras en las moscovitas de alto Ti con intercambios de biotita, y podrían explicarse por la operatividad de la sustitución Na-pirolfitita. Sin embargo, las variaciones inter-muestras en Na y K pueden modelizarse mediante el vector NaK, como se aprecia por la proyección de las moscovitas de la muestra T335 respecto de T472 y T493 en el diagrama K vs Na de la Figura 4.4.11. Esto puede explicarse, además de por el posible efecto del Ti, por el efecto de la composición de los sistemas (i.e., variaciones en el contenido total en Na) ya que los feildespars (Kfs y Pl) de la muestra T335, cuyas moscovitas son muy ricas en Na, presentan cantidades de Na más elevadas de todos los gneises leucretatos (ver Capítulo 4.8.3).
Las relaciones anteriores justifican la operatividad de las sustituciones Ti-espinela y paragonítica para explicar variaciones inter-muestra, por contraposición con la operatividad de las sustituciones trioctáédrica y pirofilita que justifican las variaciones intra-muestra en las moscovitas heterogéneas de alto Ti con intercrecimientos de biotita. La sustitución del Ti relacionable con la descomposición de estas moscovitas no está clara, ya que no se aprecian bien las relaciones entre el Ti y Fe, Mg, y \text{M}_{Al} (Figura 4.4.11). Al menos en parte, esto se debe al efecto de enmascaramiento de la sustitución trioctáédrica, complicándose aún más la situación si se consideran las posibles variaciones de Fe3+. Las relaciones entre Ti, Fe+Mg y Sum VI muestran que los descensos de Sum VI suponen incrementos de Ti, como se observa en la Figura 4.4.12, en claro contraste con lo detectado en las moscovitas primarias de los gneises bandeados. Esto indica que, o bien las sustituciones Ti-espinela y trioctáédrica operan en sentidos contrarios en lo referente al balance de Fe y Mg., o la sustitución Ti-espinela no es operativa en la descomposición de estas moscovitas. Los datos presentados no permiten decidir a este respecto.

4.4.4.5. DIQUE DE MICROGRANITO T494

Las placas primarias de moscovita del dique de microgranito T494 presentan fuertes heterogeneidades composicionales entre las que destacan las variaciones en Ti. Estas variaciones composicionales se observan en relación con las texturas descomposición descritas en el Capítulo 3.2.1.1, que incluyen intercrecimientos y sobrecrecimientos orientados de biotita.

Las características texturales de las placas primarias y su inadulde origen igneo fueron las principales razones en la selección de esta muestra, con el fin de relacionar características composicionales y procesos reaccionales supersólidos, y de comparar estas texturas y variaciones composicionales con las de otros gneises deformados en los que la presencia de una fase fundida no es totalmente demostrable. Sin embargo, y a pesar de la presencia de intercrecimientos de biotita similares a los de las moscovitas primarias de los gneises aplíticos y bandeados, las relaciones composicionales de las moscovitas de este dique son distintivas, destacando variaciones muy importantes y discontinuas en las cantidades de Ti (Figuras 4.4.13 y 4.4.14). Dadas las complejidades composicionales encontradas, además de los análisis por cristal efectuados en varios cristales primarios de la muestra (35 análisis), se ha realizado un estudio composicional muy detallado del cristal primario heterogéneo que se muestra en la Figura 4.15 (59 análisis). En este cristal los valores absolutos y variaciones composicionales de todos los componentes son del mismo orden de magnitud que los registrados a la escala de la lámina delgada (Tabla 4.4.9a y b). El Ti oscila en este cristal entre 0.05 y 0.23 átomos de Ti por unidad (Figuras 4.4.13 y 4.4.14) lo cual supone, hasta donde llegan los conocimientos del autor, la mayor variación composicional en términos de Ti detectada en un cristal de moscovita (cf. Monier y Robert, 1986b). Para facilitar la comparación con el resto de moscovitas de los gneises de Torrox, en la Figura 4.4.13 se han representado todos los análisis de esta muestra en los mismos diagramas que las figuras anteriores, si bien a efectos de discusión se presenta además la Figura 4.4.14 donde las escalas se han modificado.

En las Figuras 4.4.13 y 4.4.14 puede observarse que el espectro composicional formado por las placas de moscovita primaria no es continuo, aunque existen bastantes similitudes con las moscovitas de alto Ti de los gneises aplíticos. La discontinuidad en el espectro es clara en términos de los valores absolutos de Ti, distinguiéndose un grupo de alto Ti (0.15-0.23 átomos por unidad) y un grupo de bajo Ti (0.05-0.10 átomos por unidad). Estos dos grupos de composiciones han sido distinguidos en la Figura 4.4.13 y 4.4.14 para facilitar su identificación en diagramas de variación que no incluyen Ti. En la Figura 4.4.14 puede apreciarse que el espectro composicional de las moscovitas primarias de la lámina coincide con el del cristal de la Figura
4.4.15. Entre estos dos grupos existe una laguna composicional en Ti significativa, si se exceptúan 3 análisis que presentan contenidos de Ti intermedios, y que se interpretan como composiciones "mezcla" entre los dos grupos anteriores. Estos 3 análisis son representativos de unos 10 análisis más de las mismas características (i.e., mezclas de zonas de alto y bajo Ti) que, aunque correctos analíticamente, se eliminaron de la base de datos, y no serán tenidos en consideración en la descripción que sigue.

Tabla 4.48. Estadística básica de las moscovitas del dique de microgranito (T494) del complejo gneisico de Torrox.

(a) Moscovitas primarias (*n=97*).

<table>
<thead>
<tr>
<th></th>
<th>Si [Al]</th>
<th>Ti</th>
<th>Fe</th>
<th>Mg</th>
<th>Sum VI</th>
<th>Na</th>
<th>K</th>
<th>Sum XII</th>
<th>Mg/Fe</th>
<th>Na/K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>6.243</td>
<td>0.835</td>
<td>0.052</td>
<td>0.192</td>
<td>0.151</td>
<td>4.004</td>
<td>0.106</td>
<td>1.954</td>
<td>1.777</td>
<td>0.237</td>
</tr>
<tr>
<td>Max</td>
<td>6.411</td>
<td>1.357</td>
<td>0.026</td>
<td>0.201</td>
<td>0.234</td>
<td>4.993</td>
<td>0.157</td>
<td>1.744</td>
<td>1.895</td>
<td>0.150</td>
</tr>
<tr>
<td>Media</td>
<td>6.374</td>
<td>1.066</td>
<td>0.138</td>
<td>0.225</td>
<td>0.261</td>
<td>4.045</td>
<td>0.130</td>
<td>1.703</td>
<td>1.836</td>
<td>1.175</td>
</tr>
<tr>
<td>σ</td>
<td>0.040</td>
<td>0.064</td>
<td>0.070</td>
<td>0.027</td>
<td>0.018</td>
<td>0.074</td>
<td>0.014</td>
<td>0.015</td>
<td>0.013</td>
<td>0.005</td>
</tr>
</tbody>
</table>

(b) Moscovitas secundarias (*n=9*).

<table>
<thead>
<tr>
<th></th>
<th>Si [Mg]</th>
<th>Ti</th>
<th>Fe</th>
<th>Mg</th>
<th>Sum VI</th>
<th>Na</th>
<th>K</th>
<th>Sum XII</th>
<th>Mg/Fe</th>
<th>Na/K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>6.116</td>
<td>3.605</td>
<td>0.037</td>
<td>0.110</td>
<td>0.090</td>
<td>4.038</td>
<td>0.155</td>
<td>1.849</td>
<td>1.834</td>
<td>0.257</td>
</tr>
<tr>
<td>Max</td>
<td>6.396</td>
<td>3.789</td>
<td>0.081</td>
<td>0.161</td>
<td>0.134</td>
<td>4.050</td>
<td>0.181</td>
<td>1.733</td>
<td>1.896</td>
<td>0.097</td>
</tr>
<tr>
<td>Media</td>
<td>6.286</td>
<td>3.745</td>
<td>0.063</td>
<td>0.127</td>
<td>0.168</td>
<td>4.045</td>
<td>0.165</td>
<td>1.704</td>
<td>1.870</td>
<td>0.087</td>
</tr>
<tr>
<td>σ</td>
<td>0.037</td>
<td>0.027</td>
<td>0.057</td>
<td>0.016</td>
<td>0.014</td>
<td>0.008</td>
<td>0.001</td>
<td>0.002</td>
<td>0.002</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Tabla 4.49. Estadística básica y matrices de correlación Pearson para los grupos de composiciones de (a) alto Ti y (b) bajo Ti del cristal individual de moscovita del dique de microgranito (T494) mostrado en la Figura 4.15 (se han eliminado los análisis interpretados como "mezcla" de ambas composiciones).

(a) Ti<0.15 átomos pfu (*n=39*).

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>Al</th>
<th>Mg</th>
<th>Fe</th>
<th>Sum VI</th>
<th>Na</th>
<th>K</th>
<th>Sum XII</th>
<th>Mg/Fe</th>
<th>Na/K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>4.633</td>
<td>6.946</td>
<td>3.999</td>
<td>0.013</td>
<td>3.583</td>
<td>1.628</td>
<td>1.601</td>
<td>0.016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>3.207</td>
<td>3.441</td>
<td>3.281</td>
<td>0.057</td>
<td>2.348</td>
<td>3.228</td>
<td>3.281</td>
<td>0.057</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>4.512</td>
<td>4.440</td>
<td>3.439</td>
<td>0.047</td>
<td>2.453</td>
<td>3.381</td>
<td>3.258</td>
<td>0.050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>0.219</td>
<td>0.235</td>
<td>0.184</td>
<td>0.092</td>
<td>0.182</td>
<td>0.164</td>
<td>0.140</td>
<td>0.081</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) Ti>0.15 átomos pfu (*n=28*).

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>Al</th>
<th>Mg</th>
<th>Fe</th>
<th>Sum VI</th>
<th>Na</th>
<th>K</th>
<th>Sum XII</th>
<th>Mg/Fe</th>
<th>Na/K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>4.637</td>
<td>4.384</td>
<td>3.838</td>
<td>0.013</td>
<td>3.457</td>
<td>1.757</td>
<td>1.653</td>
<td>0.022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>3.457</td>
<td>3.690</td>
<td>3.541</td>
<td>0.070</td>
<td>2.720</td>
<td>3.690</td>
<td>3.541</td>
<td>0.070</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>4.510</td>
<td>4.077</td>
<td>3.665</td>
<td>0.066</td>
<td>3.417</td>
<td>4.510</td>
<td>3.665</td>
<td>0.066</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>0.192</td>
<td>0.217</td>
<td>0.154</td>
<td>0.054</td>
<td>0.255</td>
<td>0.217</td>
<td>0.154</td>
<td>0.054</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

127
Figura 4.4.13. Diagramas de variación binarias (base cúbica) para las microcristas del dique de microgranito T494 del complejo de gneis domacutros de Toroax. Círculos: grúas primarias (círculos rellenos: composiciones con Ti > 0,15 átomos peso; círculos vacíos: composiciones con Ti < 0,15 átomos peso). Cuadrados: grúas secundarias. Líneas de regresión y vectores como en la Figura 4.4.4. Las diferencias respecto de las tendencias formadas por las microcristas de la matrix de los granitos breccios y megabreccias son similares a las detectadas en microcristas primarias de gneis aplíticos. Nótese los dos grupos de composiciones de alto y bajo Ti en las microcristas primarias, y que las microcristas secundarias son similares al grupo de composiciones primarias de bajo Ti aunque presentan menos Fe, Mg y Si.
Figura 4.4.14. Diagramas de variación lineal seleccionadas (básica cationica) para las moscovitas del dique de minerales T494 del Complejo de gneisses leucócticos de Torxia donde se han diferenciado los dos grupos de composiciones primarias. Círculos: moscovitas primarias de alto Ti (>0.15 átomos p.f.u). Triángulos: moscovitas primarias de bajo Ti (<0.15 átomos p.f.u). Cuadrados: moscovitas secundarias/metasomáticas. Los diagramas de la segunda incluyen todos los análisis efectuados en la laboratorio excepto los realizados sobre el cristal heterogéneo de la Figura 4.4.15, que se representa en los diagramas de la derecha. Ambos grupos de composiciones desarrollan tendencias composicionales paralelas no superpuestas particularmente observables en los diagramas Fe-Mg vs Ti y Fe-Mg vs Si. Nótese la moderada variación en las cantidades de Si de las composiciones primarias y que las moscovitas secundarias se encuentran con el extremo más evolucionado (es decir, pobre en Fe-Mg y rico en Ti).
Ambos grupos de composiciones siguen tendencias de variación paralelas, aunque separadas, en los diagramas binarios, como se observa en el diagrama ^{16}Al vs. $Fe+Mg$ (Figura 4.4.14). Las moscovitas de alto Ti presentan contenidos en ^{16}Al menores que las de bajo Ti (3.21-3.44 vs. 3.41-3.70, respectivamente), y los rangos de variación de ambos grupos se solapan en el resto de los componentes a pesar de formar tendencias de variación independientes. No obstante, el grupo de alto Ti presenta cantidades algo mayores en Fe (0.17-0.30 vs. 0.11-0.30), Mg (0.22-0.33 vs. 0.15-0.30), y Si (6.34-6.45 vs. 6.24-6.39), y algo menores en SiO_2 (4.00-4.08 vs. 4.02-4.09). Las razones Mg/Fe varían en ambos grupos, aunque los rangos respectivos se solapan igualmente (Figura 4.4.14, Tabla 4.4.9). Las amplias variaciones composicionales en Fe, Mg, Si y SiO_2 (4.00-4.08 vs. 4.02-4.09) de cada grupo, que son independientes de cambios mayores en Ti (particularmente en el grupo de composiciones de bajo Ti donde este elemento prácticamente no varía), es lo que produce las tendencias composicionales paralelas.

Las moscovitas secundarias presentan composiciones relativamente homogéneas (Tabla 4.4.8b), aunque conectadas con el grupo de composiciones de bajo Ti de las moscovitas primarias (Figuras 4.4.13 y 4.4.14). Presentan los menores contenidos en Si (6.12-6.20 atomos pfu, Tabla 4.4.8b) y Mg (0.1-0.13), y los mayores en ^{16}Al (3.69-3.79) y Na (0.16-0.18). Sus contenidos en Fe son algo elevados (0.11-0.16) respecto de las moscovitas primarias más evolucionadas, lo cual sugiere un incremento en las razones Fe$^3+/Fe^2+$ que también viene indicado por sus menores razones Mg/Fe y su ocupación octaedrica total (Figuras 4.4.13 y 4.4.14, diagrama Fe$^3+/Fe^2+$ vs SiO_2). Los contenidos en Ti son similares a los del grupo de bajo Ti de moscovita primaria (0.06-0.08), y ninguna distinción puede hacerse en términos de K.

La distribución de las heterogeneidades composicionales de las moscovitas primarias se ilustra en las Figuras 4.4.15-4.18. Las imágenes de electrones retrodispersados muestran cristales de moscovita que presentan un zonado en parches e irregular indicado por diversos tonos de grises. La distribución de elementos a través de las transiciones de grises indican que este zonado refleja diferencias en las cantidades de Ti. Las áreas de bajo Ti suelen encontrarse adyacentes a:

- lamelas de biotita intercristalinas, formando bandas alargadas según los planos (001) de la moscovita,
- placas de biotita sobreimpregnadas con orientaciones de los planos (001) variables respecto de los de las placas de moscovita, formando áreas mayores cuyos límites aparecen estructuramente controlados en...
algunos casos y en otros no (Figuras 4.4.15-4.17).

- bordes que están en contacto directo con la matriz cuarzo-feldespatica (Figura 4.4.15a y 4.4.16a).

Estas relaciones indican que el desarrollo de las áreas empobrecidas en Ti (tMg+Fe+Si) y enriquecidas en Al es el resultado de la descomposición de las áreas de moscovita relativas de alto Ti y del crecimiento de biotita. A pesar de ello, es de notar que los cristales de biotita neoformados presentan contactos directos con áreas de moscovita ricas en Ti según límites de grano que siguen los planos (001) (e.g., Figura 4.4.15a). La complejidad de la distribución de las áreas empobrecidas en Ti puede observarse en la Figura 4.4.17b-f, donde se aprecia una morfología esqueletal, formada por áreas ricas y pobres en Ti cuyos límites cortan y siguen los planos (001), desarrollada entre las lamelas de biotita que reemplazan a la moscovita. En las Figuras 4.4.15a y 4.4.16a puede notarse que en las zonas amplias de bajo Ti se detectan escasos intercrecimientos de biotitas por comparación con las áreas de alto Ti, y que lamelas de cuarzo son muy escasas.

Transiciones Composicionales

La naturaleza de las transiciones de las zonas de alto Ti a las zonas de bajo Ti es compleja porque:

- no se ha encontrado un patrón definido que describa los cambios composicionales que ocurren al variar las cantidades de Ti
- la geometría de las superficies que definen las transiciones es variable.

La única generalización que puede hacerse es que los cambios mayores en Ti van siempre acompañados de cambios mayores en Al (Figuras 4.4.15-4.4.18).

Transiciones abruptas. Los perfiles elementales que atraviesan zonas amplias de alto y bajo Ti se caracterizan por una meseta de alta concentración en Ti, una transición abrupta con fuerte pendiente, y una zona plana de baja concentración en Ti (Figuras 4.4.15, 4.4.17, y 4.4.18). La Figura 4.4.18 muestra perfiles elementales cualitativos y cuantitativos paralelos a los planos (001) de la moscovita que intersectan dos áreas empobrecidas en Ti localizadas a ambos lados del núcleo relicto de alto Ti. Los cambios composicionales detectados en la zona empobrecida mayor de la izquierda, localizada en el borde del cristal de moscovita y asociada lateralmente con placas sobrecristalizadas de biotita, implican que el Ti pasa de 0.22 a 0.07 átomos pfu (i.e., un incremento de 0.15 átomos pfu), y que el \([\text{M}_2\text{Al}]\) pasa de 3.25 a 3.45 (medidas en las líneas de puntos de la Figura 4.4.18c), pero los cambios en otros elementos son menores o inexistentes (Fe de 0.27 a 0.27; Mg de 0.29 a 0.27; Si de 6.40 a 6.39; y K de 1.72 a 1.74). Estos incrementos de Ti y \([\text{M}_2\text{Al}]\) son consistentes con la operatividad del vector Ti-\(\text{Al}\)-vacante \(\text{Ti}_3^{[\text{M}_2\text{Al}]}\). No obstante, los casos registrados de este tipo de transiciones abruptas entre áreas de moscovita relictas y áreas amplias empobrecidas muestran que los cambios composicionales que acompañan a los fuertes cambios en Ti son variables, aunque mimetizan los cambios en Ti. Así, sólo se detectan incrementos en Al en los casos ilustrados en las Figuras 4.4.15 y 4.4.18 (secciones izquierdas de los perfiles en ambas figuras), pero el Mg desciende también en el caso de la Figura 4.4.17c-f al mismo tiempo que el Fe es constante, y tanto Mg como Fe descienden en el caso de la Figura 4.4.17g-h. Por lo tanto, los cambios composicionales a lo largo de los perfiles no son consistentes con una única sustitución, y deben implicarse tres vectores de intercambio, i.e., \(\text{Ti}_3^{[\text{M}_2\text{Al}]}\) (Ti-Al-vac: Figura 4.4.15), \(\text{Mg}^{[\text{M}_2\text{Al}_2]}\) (Ti-Mg-sp; Figuras 4.4.17c-f y 4.4.17g-h), y \(\text{Fe}^{[\text{M}_2\text{Al}_2]}\) (Ti-Fe-sp; Figura 4.4.17g-f). El comportamiento
diferencial de Mg y Fe ilustrado en la Figura 4.4.17 es ciertamente extraño si se tiene en cuenta que ambos elementos muestran un comportamiento similar en otros perfiles (ver más adelante).

La amplitud espacial de las transiciones abruptas en Ti, Al, Mg y Fe es, en la mayor parte de los casos, del orden de unas micras o menor. En el caso de la Figura 4.4.15 (sección izquierda de los perfiles), la extensión de la transición en Ti medida casi perpendicularmente a (001) es menor de 2 micras, esto es, menor de la resolución de la microsonda. En opinión del autor es muy probable que la extensión real de la transición en Ti sea mucho menor, como lo sugiere el neto control estructural de la transición. No obstante, dificultades en la difusión paralelamente a (001) son también claras, ya que dimensiones similares se observan en los perfiles medidos paralelamente a (001) de la Figura 4.4.17. Esto encuentra difícil explicación si se tiene en cuenta las mayores tasas de difusión paralelamente a (001) generalmente admitidas para las micras (e.g., Fortier y Gilet, 1991), más aún en el caso de los perfiles abruptos desarrollados por Fe y Mg ya que esos elementos son considerados móviles en procesos de difusión en silicatos (Dowey, 1980), y particularmente en biotita (Spear, 1991).

A veces las transiciones abruptas medidas paralelamente a los planos (001) son algo más amplias (hasta algunas decenas de μm). En el caso mostrado en la Figura 4.4.18b y c (sección izquierda de los perfiles) la dimensión de la transición en Ti es mayor que la transición controlada estructuralmente en el mismo cristal (Figura 4.4.15b) al menos en un orden de magnitud, tanto perpendicular (ca. 10 micras) como paralelamente (ca. 30 micras) a los planos (001) (Figura 4.4.18). Estas dimensiones son sin embargo muy pequeñas si se tienen en cuenta los fuertes cambios en Ti que tienen lugar a lo largo de este tipo de transiciones hacia zonas mayores empobrecidas.

La operatividad de las sustituciones anteriores en el balance del Ti a lo largo de las transiciones entre áreas relícticas en Ti y áreas empobrecidas en Ti necesita de la aceptación de que el Ti es octaédrico. Esto parece que es así, ya que de otra manera los casos en que los cambios composicionales implican sólo al Ti y Al (i.e., secciones izquierdas de los perfiles en las Figuras 4.4.15 y 4.4.18b y c) se deberían a sustituciones como [\(\text{[Ti]}^{[\text{Al}]}\) o \(\text{[Ti]}^{[\text{Al}]}\) en lugar de la sustitución Ti-Al-vacante. Esto supondría que el titanio es trivalente que la ocupación de la capa tetraédrica no es total, lo que en ambos casos es considerado poco probable (ver Apartado 4.4.3). Otras sustituciones, como \(\text{[Ti]}^{[\text{Al}]}\) o \(\text{[Ti]}^{[\text{Al}]}\) en (K,Na)\(_2\), no son posibles ya que se deberían observar variaciones en Si o los cationes interlaminares del mismo orden de magnitud que los cambios en Ti, que no se detectan (Figura 4.4.18c). Por lo tanto, debe concluirse que el Ti debe ser octaédrico, y posiblemente tetravalente.

La operatividad de la sustitución Ti-Al-vacante detectada en el cristal individual de la Figura 4.4.15 puede explicar los diagramas binarios de la Figura 4.4.14, ya que permite generar una composición neoformada pobre en Ti, pero rica en Fe y Mg, a partir de una composición relicta rica en Ti, Fe y Mg. Estos dos polos composicionales definen los extremos de las nubes de puntos de los grupos de composiciones de

Figura 4.4.16. (Páginas siguientes) (a) Imagen BSE de una zona de margarita primaria que presenta abundantes intercambioes de biotita y áreas menores empobrecidas en Ti en las bordes del cristal. (b) Zona ampliada de (a) que ilustra el control estructural sobre las zonas empobrecidas en Ti adyacentes a las bandas intercambiadas de biotita, y la presencia de pequeños granes de cristales empobrecidos (negros). (c), (d), y (e) Perfiles cuantitativos (cuotas por segunda) a lo largo de la transversal mostrada en (b) (muestras de fotografías están rotadas 15º). Las perfiles muestran exclusivamente zonas empobrecidas en Ti adyacentes a las bandas de biotita intercambiadas. La distribución del Ti muestra dos zonas controladas por difusión (tipo 5) adyacentes a la placa de biotita de laseguridad, y dos áreas amplias y parcialmente empobrecidas adyacentes a la placa de biotita central que se interpretan como partes de perfiles de tipo 2 modificadas por procesos de difusión posteriores. Nótese que las variaciones en Ti no se acompañan de variaciones en Mg (o Fe no mostrado).
alto y bajo Ti, respectivamente, en la Figura 4.4.14. Si la sustitución Ti-Al-vacante es operativa, el descenso de Ti implica aumentar la ocupación octádrica sin modificar las cantidades de Fe y Mg, lo cual se deriva en el diagrama Fe+Mg vs Sra VI de la Figura 4.4.14. Los incrementos absolutos de la ocupación octádrica son constantes con la operatividad de la sustitución Ti-Al-vacante, ya que un cambio en ca. 0,15-0,18 átomos de Ti implicaría el incremento observado de ca. 0,05-0,06 átomos en la ocupación octádrica (ver Figura 4.4.14). Estas variaciones no pueden deberse a variaciones en las razones Fe²⁺/Fe³⁺ por la operatividad de las sustituciones de Fe³⁺, ferritoschermak, ferri-moskovita y/o Fe-oxi-fergita, puesto que no se detectan cambios significativos en Si ni en Mg. Sin embargo, la sustitución $^{[4]}[\text{Al}]^{[6]}[\text{Fe}^{3+}]^{[2]}$ permite variar la razón Fe³⁺/Fe²⁺ y, consecuentemente, la ocupación octádrica cuando la fórmula estructural se calcula a 22 O y Fe total = Fe²⁺, sin variar las cantidades de Fe total. Por ello, esta sustitución, que implicaría una oxidación de la moscovita durante su descomposición, podría explicar el hecho de que en algunas transiciones no se observen variaciones en Fe, y si en Mg (Figura 4.4.17e-f). Es posible que las elevadas cantidades de Ti y su inestabilidad en estas moscovicas sean el resultado de que (1) la estructura diocidadrca ha sufrido importantes modificaciones por el balance del Ti mediante la sustitución Ti-Al-vacante y/o (2) las condiciones redox del sistema sufrirían importantes variaciones. La ausencia de análisis de Fe³⁺ no permite evaluar la importancia relativa de las sustituciones Ti-Al-vacante y $^{[4]}[\text{Ti}]^{[4]}[\text{Fe}^{3+}]^{[2]}[\text{Al}]^{[6]}[\text{Fe}^{3+}]^{[2]}$, aunque este trabajo se hará referencia a la sustitución Ti-Al-vacante simplemente porque puede modelizarse con la normalización estructural elegida.

Transiciones suaves. Algunos de los perfiles elementales sobre otras áreas empobrecidas en Ti no implican transiciones abruptas. En el ejemplo ilustrado en la Figura 4.4.18b y c, el perfil de Ti incluye una sección de unas 50 µm de extensión donde se registra un descenso gradual desde la meseta de alto Ti hasta la zona de bajo Ti localizada a la derecha en contacto con la placa de biotita sobrecristalizada. Esta sección registra un aumento gradual en Al, y descensos graduales en Fe y Mg, pero las longitudes de onda de estos cambios (>160 µm) son mayores que la asociada al perfil de Ti. Esto supone que existe una zona dentro de la meseta de alto Ti donde se produzcan variaciones composicionales sin que se registren variaciones en Ti, lo cual explica las variaciones composicionales dentro del grupo de alto Ti en las Figuras 4.4.13 y 4.4.14, de las variaciones en Si a lo largo de esta transición no son importantes, aunque se detecta un cierto descenso muy suave hacia la zona empobrecida en Ti, Fe y Mg en consistencia lo observado en las Figuras 4.4.13 y 4.4.14. Este tipo de perfiles más suaves son indicativos de un proceso distinto al desarrollo de la zonación empobrecida en Ti, ya que los tramos composicionales son más estables que el modelo de difusión volumétrica que no pueden aplicarse para los tramos más abruptos (ver Capítulo 5.6.2.3). No obstante, la zonación en Ti no coincide con la zonación en Fe y Mg, lo cual sugiere menores coeficientes de difusión para el Ti.

En las áreas de bajo Ti, como la localizada a la izquierda en la Figura 4.4.18c, se detectan cambios antipatéticos en Al y Fe y Mg, y Si. Estas variaciones son similares a las anteriormente descritas en el área amplia de alto Ti de la misma figura, aunque en este caso las cantidades de Ti son constantes (0,05-0,07 átomos psf). Correspondientemente, estas relaciones explican las variaciones composicionales del grupo de bajo Ti de las Figuras 4.4.13 y 4.4.14, y el hecho de que estas variaciones sean paralelas a las del grupo de alto Ti (exceptuando al Ti). Por lo tanto, el desarrollo de las tendencias composicionales es independientes dentro de cada grupo de composiciones, que involucran Si, $^{[4]}[\text{Al}]$, $^{[6]}[\text{Al}]$, Ti, Fe y Mg, y la ocupación octádrica total (Figuras 4.4.13 y 4.4.14), se debe a las modificaciones de las dos composiciones extremas, originales de
altos Ti y bajos Ti, respectivamente, que se relacionan con transiciones abruptas. Los espacios y vacantes interlaminares presentan escasa variación (Tablas 4.4.9a y b), por lo que no se tendrán en cuenta.

Cambios en Ti, Al, Fe y Mg también se detectan en los perfiles que atraviesan las zonas alargadas de moscovita empobrecida, en Ti que se asocian a las lamas de biotita intercaladas (Figuras 4.4.15c-f, sección derecha de los perfiles, y Figura 4.4.16, todos los perfiles). En estos casos, la forma de los perfiles es abrupta perpendicularly a los planos (001) (Figuras 4.4.15c-f, pero también es suave paralelamente a los planos (001) (Figura 4.4.16c-f). Este comportamiento indica que la difusión hacia las lamas de biotita intercaladas ocurrió esencialmente a lo largo de los planos (001). Sin embargo, la morfología y naturaleza de los perfiles dentro de las zonas empobrecidas alargadas es variable. En el caso ilustrado en las Figuras 4.4.15c-f (sección derecha de los perfiles), los cambios en Ti a través de los planos (001) van acompañados de cambios en Al, Mg y Fe, que son probablemente debidos a estágeos variables de crecimiento de las lamas de biotita adyacentes. En el caso ilustrado en la Figura 4.4.16c (las dos secciones de los perfiles adyacentes a la lámula central de biotita), los cambios en Ti no están acompañados de cambios en Fe y Mg, lo cual es de nuevo debido a la difusión ulterior hacia las lamas de biotita y desde la zona de alto Ti localizada arriba y abajo de la banda empobrecida. Estos cambios en las áreas estrechas empobrecidas adyacentes a las lamas de biotita no han sido registrados en la base de datos analíticos debido a problemas de resolución durante los análisis cuantitativos, por lo que no se aprecian en las Figuras 4.4.13 y 4.4.14.

Quantificación de las Sustituciones

Los mecanismos de sustitución que explican las variaciones composicionales observadas en los dos grupos de composiciones son los mismos, si bien en el grupo de alto Ti se detectan débiles variaciones en Ti ausentes en el grupo de bajo Ti. Las correlaciones positivas del Ti con Fe y Mg, y la correlación negativa con [Al] en el grupo de alto Ti (Figuras 4.4.12 y 4.4.14, Tabla 4.4.9a) sugieren la operatividad de la sustitución Ti-Ca, aunque parcialmente en importancia respecto a otras sustituciones que involucran Fe y Mg. En la Figura 4.4.19, donde se han proyectado las composiciones recalcadas en base a los términos extremos deducidos para las moscovitas de los gneises bandeados (Tabla 4.4.5) puede observarse que las composiciones de alto Ti muestran débiles variaciones en el componente Ti-moscovita que no se observan en las composiciones de bajo Ti.

Figura 4.4.17. (Página siguiente) (a) Imagen BSE de dos cristales de moscovita primaria empobrecida por biotita en ácido grado. Nótese que la placa de biotita sobrepone que reemplaza a la moscovita original con las lamas intercaladas a medida que el reemplazamiento progresa. (b) Área ampliada de (a) que muestra una distribución equitativa de las zonas de moscovita que han reaccionado. Adjacentes a las lamas de biotita, las zonas pobres y ricas en Ti se distribuyen irregularmente dando un aspecto especkled a la zona que no está estructuralmente controlada ya que las transiciones cortan los planos (001). Un área empobrecida empieza a aparecer en la parte inferior de la Figura adjacente a una placa de biotita mayor, desarrollando límites con las zonas ricas en Ti que siguen y cortan parcialmente los planos (001) de la moscovita. (c), (d), y (e) Profil de calibrado (media por segundo) de Ti, Al, Mg y Fe paralelo a los planos (001) que atraviesan las áreas de moscovita con zonas empobrecidas mostradas en (a). Nótese que Ti, Al y Mg muestran un perfil abrupto, pero el Fe no muestra variación. (f), (g), y (h) Profil de calibrado de Ti, Al, Mg y Fe paralelos a los planos (001) que atraviesan la transición abrupta mostrada a (001) cortada de la zona empobrecida empobrecida mostrada en (b). En todos los casos las transiciones tienen lugar en menos de 2 sec de amplitud (por debajo del límite de resolución de la microsonda) a pesar de ser medido paralelamente a (001).
Figura 4.4.18. (a) Esquema del cristal de moquevita de la Figura 4.4.15 que muestra las trazas de perfiles elementales cualitativos (líneas de puntos) y cuantitativos (líneas discontinuas) mostradas en (b) y (c), respectivamente, paralelas a (001) y que intersectan zonas empobrecidas en Ti. Todos los perfiles cuantitativos se han evaluado a 0.3 diímas p/a para mostrar mejor la extensión relativa de los distintos cambios composicionales. Las secciones izquierdas de los perfiles presentan una zona amplia empobrecida de ca. 250 pí. y una transición abrupta de ca. 30 pí. Nótese que no se detectan cambios significativos en Fe, Mg, Si, y K en esta transición. Las secciones derechas de los perfiles se caracterizan por cambios graduados en Al, Fe, Mg, y, en cierta medida, Si, que presentan una longitud de onda mayor que los cambios graduales en Ti, lo que implica cambios composicionales en el vientro homogéneo en Ti.
Por otra parte, las cantidades de Si desciden ligeramente en ambos grupos de composiciones desde 6.45 a 6.36 en las de alto Ti y 6.39 hasta 6.24 átomos p.f.u en las de bajo Ti. El Si muestra correlaciones positivas con Fe y Mg, lo que sugiere la operatividad de la sustitución tsermak, aunque el escaso rango de variación en ambos grupos de composiciones implica una contribución limitada de este vector en el proceso de cambio composicional como se aprecia en la Figura 4.4.19.

Las relaciones elementales ilustradas en las Figuras 4.4.13 y 4.4.14 y Tablas 4.4.9a y b permiten inferir una situación similar a la descrita en las moscovitas con texturas de descomposición de los gneises aplíticos, esto es, la sustitución trioctádrica balancea las variaciones en Fe+Mg en los dos grupos de composiciones (diagrama Sum V vs. Fe+Mg de la Figura 4.4.13), y el exceso de estos componentes respecto de las cantidades predecibles si todo el Si estuviera balanceado por la sustitución tsermak. Además, en este caso las variaciones en las razones Mg/Fe en ambos grupos de composiciones son paralelas y aumentan muy suavemente (1-1.5, Tablas 4.4.9a y b) a medida que Fe y Mg descienden; lo cual está en contra de incrementos en la razón Fe²⁺/Fe⁴⁺ (i.e., variaciones aparentes en Sum VI) a medida que Fe y Mg descienden.

Por todo ello, y puesto que se considera muy probable la variabilidad en la ocupancia octádrica de estas micas en relación con el proceso de zonación mayor (transiciones abruptas descritas por la sustitución Ti-AI vacante Ti₂⁺[Mg]₀[Al₂]₀), se considera muy probable que las variaciones en Sum VI de ambos grupos de composiciones se deban a la operatividad de la sustitución trioctádrica. Por lo tanto, la exfoliación del componente trioctádrico parece responsable de la formación de (1) las lamelas intercristalinas de biotita en las moscovitas de los gneises aplíticos y del dique de microgranito, (2) las áreas alargadas según los planos (001) empobrecidos en Ti, Fe, y Mg, a adyacentes a estas lamelas, y (3) a las transiciones suaves de las moscovitas del dique de microgranito, que son más consistentes con procesos de difusión.

Siguiendo el mismo procedimiento introducido para las moscovitas de los gneises bandedados, los vectores de intercambio múltiples (VIM), deducidos del Análisis de Componentes Principales, que explican las variaciones composicionales asociadas a este proceso de descomposición trioctádrica dentro de las áreas de alto y bajo Ti del cristal de moscovita de la Figura 4.4.15, serían (componentes principales I respectivos normalizados a 0.25 átomos de Fe+Mg intercambiados, ver Figuras 4.4.14 y 4.4.18, Tablas 4.4.9 y 4.4.10):

\[
\text{Alto Ti: } [\text{Al}]₀[\text{Al}]₀ + [\text{Al}]₀[\text{Al}]₀ = \text{Si}_0 + \text{Ti}_0 + (\text{Fe}+\text{Mg})₀,
\]

\[
\text{Bajo Ti: } [\text{Al}]₀[\text{Al}]₀ + [\text{Al}]₀[\text{Al}]₀ = \text{Si}_0 + (\text{Fe}+\text{Mg})₀.
\]

Tabla 4.4.10. Componentes principales normalizados a su módulo de obtenidos con los análisis de alto Ti (>0.15 átomos p.f.u) y bajo Ti (<0.10 átomos p.f.u) del cristal heterogéneo de moscovita de la Figura 4.4.15 (dique de microgranito, T494).

<table>
<thead>
<tr>
<th></th>
<th>Alto Ti (n=39)</th>
<th>Bajo Ti (n=26)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>Si</td>
<td>0.192</td>
<td>0.201</td>
</tr>
<tr>
<td>Ti</td>
<td>0.140</td>
<td>0.113</td>
</tr>
<tr>
<td>Fe+Mg</td>
<td>0.954</td>
<td>0.853</td>
</tr>
<tr>
<td>Sum V</td>
<td>0.981</td>
<td>0.974</td>
</tr>
<tr>
<td>Qt</td>
<td>92.998</td>
<td>95.146</td>
</tr>
</tbody>
</table>

136
Figura 4.4.19. Diagramas de variación binaria (base molecular) para las moscovitas del dique de microgranito T494 del Complejo de guaiás amazonitas de Torres expresadas en términos de los componentes debidos para las moscovitas de las series bandeadas (índices como en la Figura 4.4.13, y abreviaturas como en la Figura 4.4.8; ver el texto para el procedimiento de cálculo). Las líneas de regresión incluyen todos los análisis proyectados. Nótese la diferenciación de las composiciones primarias en dos grupos de alto y bajo Ti cuyas contenidas en el componente Tmowstonia son relativamente constantes y que muestran evoluciones independientes en las cantidades del componente triotectórico.

Ambos vectores múltiples son similares, aunque para las composiciones de bajo Ti no se ha incluido el Ti dado la ausencia de aumentos significativos y por esta misma razón no se han incluido en ambos casos los cationes y vacantes interlaminares. Esto supone que los vectores anteriores no están cristalquímicamente ajustados ya que presentan desbalances de cargas, a pesar de que implican el 92% de la varianza de las bases de datos respectivas (Tabla 4.4.10). La inclusión de todos los componentes necesarios para describir la composición de las moscovitas permite obtener vectores balanceados en masa y carga (dentro de los límites de error) en los que los coeficientes de los componentes seleccionados en la Tabla 4.4.10 no se modifican sustancialmente, aunque si la varianza explicada, que se reduce a ca. 80% y ca. 85%, respectivamente. Por lo tanto, los VM (4.36) y (4.37) son representativos de los cambios más importantes detectados, y aunque no balanceados en carga, permiten cuantificar los cambios composicionales mayores...
Asociados a la descomposición de las dos composiciones de moscovitas primarias. Si se asume que los cambios en Si, Ti y la ocupación octaédrica se deben a las sustituciones isométricas, Ti-espínula y triocádrica, la contribución respectiva de las mismas sería: Tc/Ti: 37:28:35 para los núcleos de alto Ti, y Tc/Ti: 56:44 para las zonas empobrecidas en Ti.

Estas relaciones suponen una contribución relativa similar de las sustituciones Tc y Ti en ambos casos. Sin embargo, dadas sus respectivas relaciones estereocimétricas, la sustitución Ti en es developing 3 veces más efectiva que Tc en la reducción de las cantidades de Fe+Mg, o dicho de otra manera, la exhalación de componente octaédrico genera 3 veces más moles de biotita que el componente leucotita. Esto puede explicar la abundancia de lamelas de biotita y escasez de cuarzo en los intercambios de los núcleos de alto Ti de estas micas (y en las moscovitas descompuestas de los gneises aplícticos). No obstante, la escasez de lamelas de biotita intercambiadas en las zonas de bajo Ti sólo puede explicarse por una mayor capacidad de difusión de los productos de descomposición hacia los bordes de los cristales y la matriz y/o hacia placas de biotita sobrecrecidas cercanas.

Las moscovitas secundarias se conectan con las composiciones más evolucionadas del grupo de composiciones de bajo Ti (e.g., diagrama Fe+Mg vs [4]AL de la Figura 4.4.13 y 4.4.14, y Figura 4.4.19). Sus cantidades distintivamente menores en Si son consistentes con un origen de baja temperatura. La mayor parte de sus variantes composicionales pueden describirse por la sustitución Tschermak ya que los cambios en Si explican los cambios en Fe, Mg y [4]AL. En estas micas sin embargo, el incremento en la ocupación octaédrica respecto de las composiciones de moscovitas primarias del grupo de bajo Ti más pobres en Fe+Mg sugiere que presentan razones Fe⁹⁺/Fe²⁺ mayores, por lo que no cabe inferir incrementos en el componente triocádrico como podría deducirse de la Figura 4.4.19.

Conclusiones

De toda la discusión anterior puede concluirse que el proceso de zonación en estas moscovitas primarias de alto Ti ocurrió mediante dos procesos de descomposición superpuestos manifestados por variaciones composicionales distintas (i.e., sustituciones catiónicas) y el crecimiento de biotita-cuarcita.

La sustitución Ti-Al-vacante, Ti-Mg-espínula y Ti-Fe-espínula explíca lo sustancial del proceso de descomposición que tiene como producto la generación de amplias zonas de moscovitas primarias empobrecidas en Ti (i.e., transiciones abruptas), y el desarrollo de placas de biotita externas que pseudomorfizan la moscovita primaria. Dadas las texturas generadas, la ausencia de otras fases de Fe, Mg, y/o Ti, y la imposibilidad de generar biotita a partir de la mera excolación del Ti de la moscovita, debe concluirse que este proceso implicó la reacción de las moscovitas primarias de alto Ti con un fundido. Los resultados de este proceso incluyen:

- el desarrollo de funciones muy pendientes en la distribución de elementos en las transiciones abruptas, que pueden o no mostrar control estructural respecto de los planos (001) de la moscovita (incluyendo distribuciones esqueletales) y que no pueden ser descritas por procesos de difusión volumétrica (Capítulo 5.6.2.5),
- fuertes cambios composicionales en estas transiciones abruptas, que implican un salto composicional de ca. 0.18 átomos de Ti por en unas pocas micras (o incluso menos), similar al contenido máximo de Ti registrado en moscovitas igneas y metamórficas (Miller et al., 1981; Monier et al., 1984; Guidotti, 1984; Monier y Robert, 1986b).
• la operatividad independiente de tres vectores: (Ti-Al-vacante, Ti-Mg-espinela y Ti-Fe-espinela) que describen las transiciones abruptas, de manera que las cationes Fe y Mg pueden o no estar implicados,
• la posible operatividad del vector Ti-Al-vacante, hasta la fecha no descrito en moscovitas.

Todas estas características son interpretables en el contexto del progreso irreversible del proceso reactivo de descomposición de la moscovita de alto Ti, debido a un fuerte overstepping de la superficie de reacción apropiada. Si la sustitución de oxidación $[\text{Ti}^{IV}]^{2+}\text{Fe}^{III}^{0}\text{Al}^{3+}\text{Fe}^{3+}$ no es operativa, la operatividad del vector Ti-Mg-espinela al mismo tiempo que el Fe se mantiene constante en otras transiciones (Figura 4.4.17c-f) puede considerarse como una evidencia de procesos irreversibles, ya que, aunque es previsible un comportamiento diferencial del Mg y Fe en el balance según esta sustitución, no existen razones cristalquímicas para que el Fe no varíe.

Las sustituciones isométrica y triclinica (a-Ti-espinela) explican lo sustancial del proceso de descomposición que tiene como producto:

• el crecimiento de finas lamelas de biotita (esquezó) intercercadas dentro de los núcleos de alto Ti
• el desarrollo de zonas empobrecidas en Fe+Mg y Ti y alargadas según (001) asociadas a estas lamelas
• el desarrollo de zonas ampollos en Mg y Fe en las áreas restantes de alto Ti y los bordes de bajo Ti.

Este proceso es posterior al desarrollo de las transiciones abruptas y de las áreas empobrecidas en Ti asociadas, como se deduce de que Al, Fe y Mg están afectados por procesos de difusión en las zonas de alto y bajo Ti donde Ti es constante. Esto permite explicar el desarrollo independiente de las dos tendencias de variación paralelas de los dos grupos de composiciones (Figuras 4.4.13 y 4.4.14), y es consistente con el hecho de que las moscovitas secundarias se conectan con el extremo composicionalmente más evolucionado de las composiciones de moscovitas primarias de bajo Ti.

Todas estas conclusiones relativas a la evolución de biotita pueden extenderse a las moscovitas de las aplopegmatitas concordantes que presentan lamelas de biotita intercercadas (T472a y T493). Este proceso de descomposición de las moscovitas de gneises aplíticos difiere del deducido para los gneises bandeados en la menor contribución de la sustitución isométrica (i.e., de la descomposición de leucofilita), consistente con la escasez de intercercamientos de cuarzo en estas moscovitas primarias. En este caso, sin embargo, no se detecta un control del Ti sobre la composición de las moscovitas similar a los ya descritos en las moscovitas de alto Ti de restitas y aplitas. Así, las composiciones ricas en Ti no presentan cantidades de Mg y razones Mg/Fe elevadas, aunque contienen algo menos de Na que las composiciones pobres en Ti (Figura 4.4.14).

Por otra parte, los altos contenidos en Ti de las moscovitas primarias de aplopegmatitas concordantes (máximo de 0.18 átomos pfu) y discordantes (máximo de 0.23 átomos pfu) son consistentes con su origen igneo de alta Ti, a pesar de lo cual cantidades de Si son relativamente elevadas (máximo de 6.4 átomos pfu en el microgranito) por comparación con otras moscovitas ignicas (Millet et al., 1981; Speer, 1984; Guidotti, 1984; Monier et al., 1984; Monier y Robert, 1986b). Esto sugiere que la presión ejerce un control sobre la composición de las moscovitas supersólidas similar al detectado en condiciones sub-sólidas (cf. Massonne y Schreyer, 1987) y consistente con el descenso de Si asociado a los procesos de descomposición sufriéndos por estas moscovitas y con los bajos contenidos en Si de las placas de moscovita secundarias. El comportamiento composicional detectado sugiere que la ocupación octaedrática desciende al descender la presión, de acuerdo con los datos experimentales de Massonne y Schreyer (1987), aunque la probable presencia de cierta cantidad de Fe$^{3+}$ oscurece esta conclusión.
También teniendo en cuenta que el límite de 0.16 átomos Ti p/fu raramente sobrepasado en moscovitas de alto grado de ignea (Guidotti, 1984; Monier y Robert, 1986), las cantidades de Ti en las moscovitas del dique de microgranito pueden considerarse excepcionalmente altas (aunque no únicas, Monier y Robert, 1986b). Dado que no coexisten fases saturadas en Ti en ninguna de las muestras de gneises aplíticos y el dique de microgranito, supera no sólo el elevado contenido de Ti en las moscovitas, sino también las energías de variaciones entre los máximos de Ti de las cuatro rocas analizadas, que no pueden relacionarse exclusivamente con las temperaturas de cristalización ya que éstas han debido diferir en unas decenas de grados. Puziewicz y Koepke (1991) consideran que la coexistencia de fases saturadas en Ti (ilmenita esencialmente) supone un mayor contenido en las cantidades de Ti de moscovitas primarias graniticas. Este sin embargo no parece ser el caso de los gneises aplíticos y díque de microgranito estudiados en este trabajo, que se aproxima más al caso estudiado por Monier y Robert (1986b) en leucogranitos del Macizo Central francés. Estos autores sugirieron que el coeficiente de parición del Ti entre biotita y moscovita se aproxima a 1 a medida que el contenido en Ti de la roca granítica aumenta, de manera que cuando la biotita se satura en Ti, los contenidos en Ti de la moscovita se incrementan dramáticamente (> 0.16 átomos p/fu). El presente caso puede resolverse de la misma manera, dado que los contenidos en TiO₂ del microgranito analizado son mayores (0.22-0.50 wt%), que los de las aploepegmatitas concordantes (T472a = 0.04 %, T335 = 0.07 %, y T493 = 0.12 %; Apéndice I) y en ningún caso coexisten óxidos de Ti. Esto puede indicar que el Ti ha debido entrar en la estructura de la moscovita "forzado", tanto en el microgranito donde coexiste con biotita abundante como en las aploepegmatitas concordantes, donde las cantidades de TiO₂ son muy bajas pero la biotita es muy escasa. En estos últimos, la moscovita ha cristalizado antes que la biotita, por lo que es conceivable que los contenidos en Ti de las moscovitas (> 0.16 átomos p/fu) independientemente de las condiciones de T.

4.4.4.6. ESQUISTOS MOSCOVÍTICOS CON MOSCOVITA+BIOTITA+GRANATE+FELDESPTO-K

En estas rocas la moscovita forma placas de tamaño de grano medio, afectadas por la deformación y con abundantes intercristatinas de biotita y cuarzo (subordinado). La deformación ha llevado a romper algunos gramos sobre los que se forman moscovitas recristalizadas de tamaño de grano más fino y con cantidades menores de intercristatinas. En la muestra T481 se han analizado también placas finas xenomorfas que pseudomorfolizan parcialmente al granate (4 análisis, Figura 4.4.20).

Las cantidades de Si son relativamente elevadas (4.4-6.6 átomos p/fu), aunque destaca de nuevo la moderada variación en Si y la fuerte variación en la ocupación octaédrica acompañada de cambios en Fe+Mg y [Al] (Figura 4.4.20, Tabla 4.4.11). Así mismo, áreas empobrecidas en Ti, Fe y Mg alargadas según los planos (001) se asocian a los intercristatinas de biotita (Figura 4.4.21). Estas características compósicionales y texturales son similares a las encontradas en las moscovitas de los gneises aplíticos y el dique de microgranito, lo que sugiere la inestabilidad del componente trioctádrico y, en menor medida, leucófilita (Figura 4.4.22). Es interesante recordar que en estas rocas coexiste grafito e ilmenita (Capítulo 3.2.1.5), por lo que se infiere que las variaciones en la razón Fe³⁺/Fe²⁺ de estas moscovitas deben ser más moderadas. Las cantidades de Ti son bastante altas (máximo de 0.21 átomos p/fu), y aunque en el conjunto de análisis se observan fuertes descensos hasta 0.05 átomos p/fu, existe un grupo de composiciones de alto Ti (ca. 0.20 átomos p/fu) donde no se detectan cambios en este elemento a pesar de que si se detectan variaciones de [Al], Fe y Mg (Figura 4.4.20). Este comportamiento es similar al grupo de alto Ti de las moscovitas del dique de microgranito, aunque en las moscovitas de estos esquistos moscovíticos no se ha detectado la compleja zonación de aquellas. No obstante, el hecho de que no se haya registrado variación en Ti puede explicarse si
la longitud de onda de los cambios en Y asociados a las áreas empobrecidas alargadas según los planos (001) es menor que la de los cambios de Fe, Mg y Al.

Figura 4.4.20. Diagramas de variación binario (base cristalina) para los miembros de los grupos monominerales con M+Be+Gr (Kf
escece) del complejo de granos monocristales de Torras (T431d, T432h, T431) y sample de Ramheterod (T439h). Corte en plans de
minora a la matriz con intervenciones de biotita. Cuadrados grano normalizados Tríángulos invertidos, pseudomorfos de grano, lina
s de regresión y testes como en la Figura 4.4.4. Nótes las similitudes con las tendencias formadas por las miembros de los grupos
afín y el aplitos de T439.
Las placas recristalizadas y pseudomorfos parciales de granate presentan, en general, características composicionales evolucionadas, i.e., más pobres en Si, Ti, Fe y Mg (Figura 4.4.20). Dadas las elevadas cantidades de Fe, Mg, Si, y Ti de algunos análisis de cristales menores identificados ópticamente como recristalizados, es posible que (1) existan errores en la asignación del tipo petrográfico, (2) el proceso de recristalización no haya logrado equilibrar totalmente la composición de las placas originales, o (3) este proceso haya tenido lugar en condiciones PT variables. Las dos últimas posibilidades son factibles dado que las moscovitas que pseudomorfizan al granate, consideradas petrográficamente tardías, también presentan composiciones variables.

<table>
<thead>
<tr>
<th>Tabla 4.4.11.</th>
<th>Estadísticas básicas y coeficientes de correlación Pearson para las moscovitas de los esquistos moscovíticos de complejos de gráesi leucocratos de Torrox (muestras T471d, T472b, T48l) y Rompealbardas (T499b). (n=56).</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>PAl</td>
<td>6.253</td>
</tr>
<tr>
<td>PAl</td>
<td>1.409</td>
</tr>
<tr>
<td>PAl</td>
<td>3.093</td>
</tr>
<tr>
<td>Ti</td>
<td>0.054</td>
</tr>
<tr>
<td>Fe</td>
<td>0.142</td>
</tr>
<tr>
<td>Mg</td>
<td>0.132</td>
</tr>
<tr>
<td>Sum VI</td>
<td>4.005</td>
</tr>
<tr>
<td>Na</td>
<td>0.004</td>
</tr>
<tr>
<td>K</td>
<td>1.358</td>
</tr>
<tr>
<td>Mg/Fe</td>
<td>1.934</td>
</tr>
<tr>
<td>Mg/Al</td>
<td>0.025</td>
</tr>
<tr>
<td>Mg/Na</td>
<td>0.021</td>
</tr>
</tbody>
</table>

Las similitudes entre el comportamiento de las moscovitas de estas rocas y las de gneises aplíticos y el microgranito contrasta con la diferente naturaleza de la moscovita (blástica vs ignea) y con las asociaciones minerales de ambos tipos de rocas. Respecto de la asociación de fases presentes, los aspectos más importantes son la presencia en los esquistos moscovíticos de ilmenita, que asegura saturación en Ti, de grafito, que asegura un sistema reducido, y la ausencia de feldespato-K (en ninguna de las muestras analizadas se ha encontrado feldespato-K con métodos ópticos y microscopía electrónica), que indica que las moscovitas no están saturadas en Si. No es de extrañar por lo tanto que las cantidades de Ti sean mayores que en los gneises (exceptuando el microgranito) y similares a las de las moscovitas de las restitas, y que las cantidades de Si sean menores que las máximas detectadas en los gneises bandeados. La ausencia de Kfs parece haber controlado el proceso de reajuste composicional en estas moscovitas si se comparan con las de los gneises bandeados y glandulares (donde si coexiste Kfs), rocas con las que guardan mayores similitudes composicionales y de asociaciones de fases que con los gneises aplíticos y el microgranito. Dado que las cantidades de Si no corresponden a las de saturación, no existe razón para que este componente varie sustancialmente durante la descomposición de la moscovita. En cambio, el componente trioxaédrico sí estaría

Figura 4.4.21. (Página siguiente) Imágenes de electrones resecodispersa (BSE) y transversales elementales cualitativas en un cristal heterogéneo de moscovita con recristalización de Bi"; (a) y (b) Imagen en enfoque de detalle de la muestra T471b-1; (c) y (d) Imagen general del cristal y detalle que muestra la abundancia de intercristalinas de biotita (zonas blancas brillantes) paralelas a los planos (001) de la moscovita, mientras que el cuarzo (zonas alargadas oscuro) está escaso (i), (d) (e) y (f) Atras ampliada y perfil cualitativo recortadas por segundo) que muestra las bandas de empobrecimiento (crescece) en Fe, Mg y Ti y enriquecimiento en Al de la moscovita. Nótese que estas zonas empobrecidas se asocian a los contornos de grano perlácticos a (001) intermoscovita y biotita, aunque son alargadas según esta dirección; en las muestras primeras de los gneises bandeado las zonas empobrecidas son más amplias y se muestran a los contornos de grano paralácticos a (001).
saturado debido a la coexistencia de biotita, por lo que es posible que su inestabilidad controle el proceso de

descomposición. Como ya se ha indicado, esto es consistente con las evidencias experimentales de Massonne
y Schreyer (1987) que indican un descenso de la solubilidad del componente tri octaédrico con descensos de

presión.

![Diagrama de variación binaria](image)

Figura 4.4.22. Diagramas de variación binaria (base molécular) para las micas verdes de los esquistos moscovíticos con Ms+Bl+Grt (Kfs

asociado) del complejo de gneises tonoríticos de Torroa (T411, T412b, T411) y bandas de Rombaldon (T419b) expresados en términos de

las componentes deducidas para las micas verdes de los gneises buldizados (símbolos como en la Figura 4.4.21) y abreviaturas como en la

Figura 4.4.8, respectivamente; ver el texto para el procedimiento de cálculo. Las líneas de regresión incluyen todos los análisis proyectados.

 Nótese fuerte variación del componente basto y la acusa variación del componente Ten en el grupo de composiciones de alto Ti.

4.4.5. METAPELITAS GRAFITOSAS

La composición de las moscovitas de las metapelitas grafitosas y gneises pelíticos difiere bastante de la

de las moscovitas de los esquistos moscovíticos intercalados en el complejo de gneises leucocratos de Torroa

143
y banda de Rompealbardas, y de las de los propios gneises leucocratos. Estas diferencias son debidas, en gran parte, a la composición global rica en Al de las metapelitas grafitosas, donde coexisten fases saturadas en Al y no coexiste feldespato-K. Las desviaciones del término extremo moscovita son más limitadas (Figura 4.4.2), y las heterogeneidades composicionales son menores importantes (Figura 4.4.4 y Tabla 4.4.1). La inspección de la Figura 4.4.4 muestra que los espectros composicionales de las moscovitas de los distintos tipos de rocas (i.e., esquistos con St+Bt+Grt+And, esquistos con St+Bt+Grt+Fib+And(±Ky), y gneises pelíticos con St+Bt+Grt+Ky+Fib+And(±Crd) se solapan, y que gran parte del espectro total observado se debe a variaciones detectadas dentro de los gneises pelíticos, particularmente en la muestra T348, un gneis pelítico con cordierita donde apenas quedan relictos de fases de P intermedia (Ky, St, y Grt, e incluso Fib). Excluyendo los análisis de esta muestra, todas las composiciones presentan cantidades de Si y Ti menores de 6.4 y 0.10 bmos pfo, respectivamente (Figura 4.4.1). Conviene por tanto analizar los distintos tipos de rocas independientemente y comenzar con los gneises pelíticos.

4.4.5.1. GNEISES PELÍTICOS CON ESTAUROLITA + BIOTITA + GRANATE + DISTENA + FIBROLITA + ANDALUCITA ±CORDIERITA

En las moscovitas de los gneises pelíticos pueden distinguirse dos grupos composicionales en base a las asociaciones de fases presentes, correspondientes a las muestras con cordierita (pinatizada o no, muestras T348 y T498), y al resto de las muestras analizadas donde no coexiste cordierita (Figura 4.4.23). En conjunto ambos grupos forman tendencias composicionales únicas para la mayoría de los elementos, excepto para los alcalinos, particularmente el Na. Debido a que se tiene más información de la muestra T348, y a que es posible que los análisis de la muestra T498 (realizados en la microsonda de la Universidad de St Andrews) sufran de errores analíticos derivados de volatilización de elementos alcalinos, las referencias al primer grupo de composiciones se referirán exclusivamente a la muestra T348.

La composición de las moscovitas de los gneises pelíticos con St+Bt+Grt+Ky+Fib+And es bastante homogénea por comparación con las moscovitas de los gneises con cordierita y los gneises bandeados con Ms+Bt+Grt (comárese la Tabla 4.4.12 con las Tablas 4.4.13 y 4.4.43). Las variaciones dentro de muestras individuales son escasas, de menor entidad que las del conjunto de muestras. Quizás el aspecto más sobresaliente de su heterogeneidad composicional es la variación global en Si, [M]Al y Mg (Figura 4.4.23), que indica la operatividad de la sustitución tschermak. El Ti no muestra relaciones claras, y la correlación negativa entre Na y K (Figura 4.4.23) sugiere que las variaciones entre los cationes interlaminares están controladas por la sustitución paragonita NaK2.

Esta relativa homogeneidad composicional se corresponde con la escasez o ausencia de texturas reaccionales en estas placas de moscovita de grano medio. Aunque en algunos casos se detectan lamelas de biotita intercereadas, su presencia es local y su abundancia muy subordinada (Capítulo 3.1.1.5, Figura 3.1.6), por lo que su desarrollo puede relacionarse con una limitada descomposición del componente leucofílico durante la descompresión. Sin embargo, por comparación con porfidosbásticos relictos de la muestra T348 que se describen a continuación, es posible que la composición de estas moscovitas represente condiciones alejadas de las máximas presiones alcanzadas.

Las moscovitas del gneis pelítico con cordierita T348 presentan fuertes desviaciones del término extremo moscovita así como un espectro composicional más amplio (Figuras 4.4.1, 4.4.2c y 4.4.24 y Tabla 4.4.13). Los tipos texturales de moscovitas analizados (Figura 4.4.24, Apéndice II Tabla M) son:
porfídobilas de tamaño de grano medio deformados y fuertemente desestabilizados, con desarrollo de abundantes intercambios de biotita, cuarzo, cordierita pinñotizada e ilmenita paralelos a los planos (001) de la moscovita (Figura 4.4.25).

- placa menor dispersas en la matriz, no deformadas y con desarrollo limitado de intercambios de finas lamelas de biotita,
- placa finas y alargadas asociadas a pseudomorfos de granate,
- placa de construcción recristalizada, libres de intercambios y de deformación interna que están asociadas a porfídobilas de plagioclasa no zonadas en las bandas ricas en esta fase.

Esta distinción petrográfica se corresponde con características composicionales distintivas. Los porfídobilas descompuestos presentan un espectro muy amplio en todos los componentes, dentro del cual se engloban las placas menores con finos intercambios de biotita y las moscovitas que pseudomorfizan al granate (Figura 4.4.24). Las moscovitas asociadas a porfídobilas de plagioclasa se diferencian del resto por sus contenidos en Ti extremadamente bajos (Figura 4.4.24), lo cual apunta a un origen tardío.

Las tendencias de variación de los porfídobilas indican un proceso de descomposición dominado por la sustitución tschermak similar a la de las moscovitas primarias de los gneises bandeados con Mas+Bit+Grn del complejo de gneises leucocratos de Torrox. A medida que descienden las cantidades de Si desde 6.56 a 6.13 átomos f/u, las cantidades de Fe, Mg, Ti, Sum VI, y Ti\(^{(0)}\) (o) desciden, y aumentan las cantidades de \(\text{[^{Al}]}\) y K (Figura 4.4.24). Estas variaciones composicionales pueden describirse por la operatividad de las mismas sustituciones, i.e., tschermak, dióxida de titanio, Ti-espinela, y pirofilita (Figura 4.4.24), y por lo tanto el proceso de descomposición implica la inestabilidad de los componentes leucofíticos, biotita, Ti-moscovita y pirofilita (Figura 4.4.26).

Tabla 4.4.12. Estadística básica de las moscovitas de los gneises polícitos con St+Grn+Kgn+Fe+And sin cordierita de la unidad de Torrox. (Número de observaciones=80).

<table>
<thead>
<tr>
<th>Si</th>
<th>[^{Al}]</th>
<th>[^{Al}]</th>
<th>Ti</th>
<th>Fe</th>
<th>Mg</th>
<th>Sum VI</th>
<th>Na</th>
<th>K</th>
<th>Sum XII</th>
<th>Mg/Fe</th>
<th>Na/K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>6.149</td>
<td>1.558</td>
<td>3.493</td>
<td>0.057</td>
<td>0.103</td>
<td>0.095</td>
<td>4.029</td>
<td>0.158</td>
<td>1.511</td>
<td>1.763</td>
<td>0.804</td>
</tr>
<tr>
<td>Max</td>
<td>6.432</td>
<td>1.378</td>
<td>3.778</td>
<td>0.058</td>
<td>0.181</td>
<td>0.351</td>
<td>4.055</td>
<td>0.251</td>
<td>1.658</td>
<td>1.842</td>
<td>1.946</td>
</tr>
<tr>
<td>Media</td>
<td>6.264</td>
<td>1.738</td>
<td>3.674</td>
<td>0.027</td>
<td>0.129</td>
<td>0.175</td>
<td>4.061</td>
<td>0.199</td>
<td>1.583</td>
<td>1.782</td>
<td>1.349</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>0.048</td>
<td>0.048</td>
<td>0.038</td>
<td>0.009</td>
<td>0.012</td>
<td>0.017</td>
<td>0.013</td>
<td>0.030</td>
<td>0.036</td>
<td>0.026</td>
<td>0.015</td>
</tr>
</tbody>
</table>

Tabla 4.4.13. Estadística básica y coeficientes de correlación Pearson para las moscovitas de la muestra T148 (gneis polícito de Torrox con St+Grn+Gcd+And). (n=24).

<table>
<thead>
<tr>
<th>Min</th>
<th>Max</th>
<th>Media</th>
<th>Si</th>
<th>[^{Al}]</th>
<th>Ti</th>
<th>Fe</th>
<th>Mg</th>
<th>Sum VI</th>
<th>Na</th>
<th>K</th>
<th>Sum XII</th>
<th>Mg/Fe</th>
<th>Na/K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>6.125</td>
<td>6.562</td>
<td>6.342</td>
<td>0.143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[^{Al}]</td>
<td>1.438</td>
<td>1.875</td>
<td>1.638</td>
<td>0.143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[^{Al}]</td>
<td>3.319</td>
<td>3.856</td>
<td>3.610</td>
<td>0.180</td>
<td>-0.961</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>0.001</td>
<td>0.118</td>
<td>0.069</td>
<td>0.056</td>
<td>0.639</td>
<td>-0.801</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>0.074</td>
<td>0.223</td>
<td>0.148</td>
<td>0.049</td>
<td>0.936</td>
<td>-0.928</td>
<td>0.710</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>0.072</td>
<td>0.452</td>
<td>0.235</td>
<td>0.121</td>
<td>-0.270</td>
<td>-0.970</td>
<td>0.646</td>
<td>0.971</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum VI</td>
<td>4.928</td>
<td>4.136</td>
<td>4.668</td>
<td>0.022</td>
<td>0.070</td>
<td>-0.714</td>
<td>0.318</td>
<td>0.788</td>
<td>0.830</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>0.082</td>
<td>0.140</td>
<td>0.109</td>
<td>0.019</td>
<td>-0.976</td>
<td>0.943</td>
<td>0.673</td>
<td>-0.933</td>
<td>0.937</td>
<td>0.672</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>1.608</td>
<td>1.718</td>
<td>1.660</td>
<td>0.031</td>
<td>-0.903</td>
<td>0.924</td>
<td>-0.702</td>
<td>-0.917</td>
<td>-0.927</td>
<td>-0.793</td>
<td>0.885</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum XII</td>
<td>1.699</td>
<td>1.845</td>
<td>1.770</td>
<td>0.049</td>
<td>-0.955</td>
<td>0.956</td>
<td>0.708</td>
<td>-0.948</td>
<td>-0.956</td>
<td>-0.766</td>
<td>0.955</td>
<td>0.983</td>
<td></td>
</tr>
<tr>
<td>Mg/Fe</td>
<td>0.794</td>
<td>2.167</td>
<td>1.492</td>
<td>0.346</td>
<td>0.502</td>
<td>-0.843</td>
<td>0.465</td>
<td>0.816</td>
<td>0.917</td>
<td>0.748</td>
<td>-0.862</td>
<td>-0.845</td>
<td>-0.876</td>
</tr>
<tr>
<td>Na/K</td>
<td>0.050</td>
<td>0.083</td>
<td>0.064</td>
<td>0.010</td>
<td>-0.963</td>
<td>0.931</td>
<td>-0.637</td>
<td>-0.921</td>
<td>-0.924</td>
<td>-0.649</td>
<td>0.998</td>
<td>0.557</td>
<td>0.933</td>
</tr>
</tbody>
</table>
Figura 4.4.23. Diagramas de variación binarias (base cátionica) que muestran el espectro composicional de las muscovitas de gneises pelíticos con St+Bi+Grt+Kfs+Fib+And+Crd de la unidad de Torxes. Circulos: placas de la matriz; Triángulos: blastos derivados de la matriz; Triángulos inverificados: placas que pseudomorfizan granito y natriofilita; Croce: blastos incluidos en perfibrolitos de plagioclase. Líneas de regresión y vectores como en la Figura 4.4.4. Los análisis de la muestra T348 se han distinguido con símbolos rellenos (ver Figura 4.4.24).
Figura 4.4.24. Diagramas de variación binaria (hasta catiónico) que muestran el espectro composicional de la muestra T348, un gneis policrín con cordierita. Símbolos como en la Figura 4.4.23, y líneas de correlación y vectores como en la Figura 4.4.4.

Las texturas reaccionales que muestran estos porfídrolitos son particularmente distintivas e interesantes (Capítulo 3.1.1.5). Los intercrecimientos de biotita, cuarzo y cordierita presentan un fuerte control estructural (Figura 4.4.26) según los planos (001) de la moscovita. Es de notar la abundancia modal y tamaño de grano de los intercrecimientos, particularmente de la cordierita que se encuentra pinitizada, lo cual puede explicar su heterogeneidad (ver perfiles de Si y Mg en la Figura 4.4.26). Estos granos de cordierita
incluyen a su vez lemelas de biotita, y presentan fracturas de apariencia concebida típicas de materiales amorfos. La moscovita presenta halos de empobrecimiento alargados que se asocian a los contactos de grano paralelos a (001), en una disposición similar a los halos de las moscovitas de los gneises bandeados. Aunque estas texturas y las tendencias composicionales asociadas sugieren un proceso de descomposición fúngica, los tamaños y cantidades de estas fases intercristalinas son lo suficientemente elevados como para considerar por criterios de balance de masa que estas fases han debido de generarlos por reacción entre la moscovita y otras fases de la muestra (granato y estaurolitas). La ausencia de silicatos de Al (e.g., andalucita) y feldespato K en los intercristalinos indica que la reacción de descomposición no se corresponde con la inestabilidad sobresaliente de Ms+Qtz.

A pesar de las similitudes composicionales con las moscovitas de los gneises bandeados, existen algunas diferencias notables entre las que destacan las razones Mg/Fe > 1, y el fuerte descenso en Mg y en la razón Mg/Fe a medida que la descomposición progresa (Figura 4.4.24, Tabla 4.4.13). Razones Mg/Fe > 1 son consistentes con las solubilidades relativas de estos componentes a través de la sustitución tschermak (Velde, 1965, 1967; Monier y Robert, 1986a) y Ti-spinel (según se ha deducido anteriormente), por lo que es probable que gran parte del Fe sea Fe³⁺ en estas moscovitas, lo cual es coherente con el carácter reducido del sistema (grafito presente). Dado que pueden descartarse fuertes interferencias de las variaciones en Fe³⁺, los descensos en Sum VI detectados se asignan al descenso de solubilidad del componente trióxido al progresar la descomposición (Figura 4.5.26). Es probable que los altos valores en la razón Mg/Fe original de estas moscovitas hayan favorecido la producción de cordierita dentro de los intercristalinos dado que las biotitas intercristalinas presentan razones Mg/Fe < 1 (ver apartado 4.5.4).

Las diferencias en las cantidades de Na y K de las moscovitas de la muestra T348 respecto de las de los otros gneises pelíticos no parecen relacionables con problemas analíticos o volatilización de elementos alcalinos. Todas las muestras excepto la T498 se analizaron en la microsonda de la Universidad de Granada con las mismas rutinas analíticas. Exceptuando la muestra T498 (4 análisis), la ocupación interlaminar sigue una misma tendencia de variación en todas las muestras de gneises pelíticos, aunque como ya se ha indicado las cantidades de Na son menores y de K mayores en el gneis pelítico con cordierita T348. Estas diferencias pueden explicarse por el reconocido comportamiento antipático de la sustitución tschermak y el Na (ver apartado 4.4.3.2). Así, las moscovitas originales menos evolucionadas del gneis pelítico con cordierita T348 son ricas en leucofilita y pobres en paragonita, lo cual es explicable por el efecto de la sustitución tschermak sobre la reducción del ángulo de rotación tetraédrico y la consiguiente inestabilidad del Na (nótese que las cantidades de Ti no son lo suficientemente elevadas como para explicar diferencias sustanciales en las cantidades de Na entre las muestras). Dado que en las moscovitas de la muestra T348 el K está en cantidades mayores que en el resto de los gneises pelíticos, las variaciones originales en Na y K entre muestras deben balancearse por la sustitución NaK³⁺, lo cual es consistente con valores de Sum XII originales similares. Sin embargo, el aumento de Na y K dentro de la muestra T348 al descender el grado de sustitución tschermak durante la descomposición debe balancearse por la sustitución pisofilita y Na-pisofilita.
respectivamente. Esto es consistente con la correlación positiva entre el Na y K (Figura 4.4.24, Tabla 4.4.13) y con lo detectado en los gneises bandedos, aunque queda la incertidumbre relacionada con las posibles variaciones de H por la sustitución de hidronio. En la Figura 4.4.26, estas diferencias en Na entre las distintas moscovitas de gneises pelíticos quedan marcadas claramente. Por otra parte, las diferencias en las cantidades totales de ocupancia interlaminar existentes entre los gneises pelíticos y gneises bandedos, mayores en estos últimos (compárese las Figuras 4.4.23 y 4.4.24 con la Figura 4.4.6), indican un claro efecto composicional de los sistemas (Guidotti, 1973; Holdaway, 1980; Wang y Banno, 1987 y ver más arriba el Capítulo 4.4.3.2).

Figura 4.4.25. Diagramas de variación binaria (base molecular) para las moscovitas de los gneises pelíticos con St+Pl+Grt+Kfs de la unidad de Torre. Todas las muestras están representadas por círculo (moscovitas de la matriz), excepto la muestra T348 donde se han distinguido postdeblastos (círculos rellenos), blastos asociados a plagioclasa (rojos), granos de cristal de la matriz (triángulos rellenos) y pseudomorfos de grano (triángulos invertidos rellenos). Las líneas de regresión incluyen todos los análisis (ver el texto para diferenciación y el procedimiento de cálculo).
Las cantidades de Si máximas detectadas en estas moscovitas (6.56 átomos pfu) y en las del resto de gneises pelíticos (ca 6.4 átomos pfu) no son las máximas posibles dado que la asociaciones de fases no incluyen feldespato-K. Por lo tanto, efectos composicionales de los sistemas y/o de las asociaciones de fases presentes pueden inducir variaciones en la composición de las moscovitas, lo cual es el resultado de que el potencial químico del componente leucofilita no está fijado a lo largo del espacio composicional considerado. Así, la probable ausencia origin de disena (cf. Miyashiro y Shido, 1983) o una menor actividad de H2O en la muestra T348 (cf. Masonne y Schreier, 1987) podrían resolver estas diferencias. Sin embargo, es más probable que los porfídblastos de la muestra T348 representen composiciones relictas de mayor presión, como lo sugiere la presencia de texturas reaccionales ausentes en las moscovitas del resto de gneises pelíticos. En este caso, las moscovitas del resto de los gneises pelíticos analizados representarían restos recristalizados o completamente neoformados durante la descomposición. En cualquier caso, las cantidades de Si son altas si se comparan con valores "normales" de rocas pelíticas de grado medio en series de facies de P intermedias (ver más adelante).

4.4.5.2. Esquistos Grafitosos

Las moscovitas de los esquistos grafitosos con St+Bt+Grt+And y St+Bt+Grt+Fib+And(tzKx) muestran composiciones menos desviadas del término extremo moscovita que los gneises pelíticos y leucocritos. En términos generales, los espectros composicionales respectivos son muy restringidos (Tablas 4.4.14-4.4.16) y presentan tendencias de variación similares a las de los gneises pelíticos. Destacan los desvicios continuos en Si, Mg, Ti y Mg/Fe (Figuras 4.4.27 y 4.4.29). El aumento paralelo de Na y K al descender la Si es incoherente con la operatividad del vector NaK1, y sugiere la operatividad de la sustitución pirofilita (y/o hidronico) para explicar las variaciones en Na, K y las vacantes interlaminares (Figuras 4.4.27 y 4.4.29). Nótese que en los esquistos con fibrolita existen dos poblaciones de datos con alto y bajo Na (e.g., Na vs Si en Figura 4.4.29), correspondientes a los análisis obtenidos con las microsondas de las Universidades de Granada y St. Andrews, respectivamente. A pesar de que es previsible una cierta pérdida de cationes alcalinos por volatilización en los análisis de la Universidad de St. Andrews, la tendencia de variación es consistente con la obtenida con los análisis de la Universidad de Granada, y por lo tanto es considerada representativa. Aunque estas moscovitas no presentan texturas reaccionales, parece probable que al menos en parte el espectro composicional se deba a un proceso de equilibramiento controlado por la descomposición, esto es, a la inestabilidad de los componentes leucofilita, biotita, Ti-moscovita y pirofilita (Figura 4.4.28 y 4.4.31). Esto es consistente con las variaciones detectadas dentro de muestras individuales (e.g., esquisito T329 con St+Grt+Fib, Tabla 4.4.17) donde las moscovitas de pseudomorfos de estaurolita y granate presentan características composicionales evolucionadas, i.e., con menores contenidos en Si y Ti (Figuras 4.4.27, 4.4.29 y 4.4.30).

Un comportamiento similar ha sido detectado por Fletcher y Greenwood (1979) en moscovitas de pseudomorfos de estaurolita considerados de origen progrado, aunque Guidotti (1963, 1968) no encontró diferencias composicionales significativas entre las moscovitas de la matriz y las de pseudomorfos (progrados) de estaurolita (ver también Lang y Dunn, 1990). Si bien las menores cantidades en Ti podrían explicarse si se tiene en cuenta que el granate y estaurolita son fases con escaso Ti, y que la biotita (presente en los pseudomorfos) participa preferentemente este componente, las diferencias en el resto de componentes son más coherentes con un crecimiento durante la descomposición a pesar de que la moscovita es una fase reactante, ver Capítulo 5.4). En cualquier caso, estos procesos reaccionales asociados a la
decompresión son la causa más importante en la generación del espectro composicional de la mosaico de estos metamorfos.

<table>
<thead>
<tr>
<th>Tabla 4.4.14.</th>
<th>Estadística básica de las mosaicoes de la muestra de la unidad de Solares T882 (Bt+Grt, sin extroversión). (N=22).</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_i)</td>
<td>[4.215 \quad 1.764 \quad 3.639 \quad 0.036 \quad 0.223 \quad 0.201 \quad 0.123 \quad 0.128 \quad 1.562 \quad 1.658 \quad 0.894 \quad 0.079]</td>
</tr>
<tr>
<td>(M_i)</td>
<td>[6.286 \quad 1.785 \quad 3.638 \quad 0.034 \quad 0.222 \quad 0.246 \quad 0.174 \quad 0.138 \quad 1.633 \quad 1.676 \quad 1.567 \quad 0.070]</td>
</tr>
<tr>
<td>Ti</td>
<td>[6.236 \quad 1.764 \quad 3.648 \quad 0.045 \quad 0.229 \quad 0.224 \quad 0.148 \quad 0.103 \quad 1.582 \quad 1.724 \quad 0.976 \quad 0.084]</td>
</tr>
<tr>
<td>Fe</td>
<td>[0.029 \quad 0.029 \quad 0.014 \quad 0.013 \quad 0.000 \quad 0.001 \quad 0.035 \quad 0.014 \quad 0.001 \quad 0.001 \quad 0.001 \quad 0.001]</td>
</tr>
<tr>
<td>Mg</td>
<td>[0.47 \quad 0.47]</td>
</tr>
</tbody>
</table>
| \(\sigma \) | \[
| Tabla 4.4.15. | Estadística básica y coeficientes de correlación Pearson para las mosaicoes de esquistos con St+Bt+Grt+And de la unidad de Torrox. (N=22). |
| \(S_i \) | \[0.084 \quad 0.084 \] |
| \(M_i \) | \[0.084 \quad 0.084 \] |
| Ti | \[0.084 \quad 0.084 \] |
| Fe | \[0.084 \quad 0.084 \] |
| Mg | \[0.084 \quad 0.084 \] |
| \(\sigma \) | \[
| Tabla 4.4.16. | Estadística básica y coeficientes de correlación Pearson para las mosaicoes con St+Bt+Grt+Fib+And (1 Ky) de la unidad de Torrox. (N=64). |
| \(S_i \) | \[0.084 \quad 0.084 \] |
| \(M_i \) | \[0.084 \quad 0.084 \] |
| Ti | \[0.084 \quad 0.084 \] |
| Fe | \[0.084 \quad 0.084 \] |
| Mg | \[0.084 \quad 0.084 \] |
| \(\sigma \) | \[
| Tabla 4.4.17. | Estadística básica y coeficientes de correlación Pearson para las mosaicoes de la muestra T329 (esquistos con St+Bt+Grt+Fib+And) (n=22). |
| \(S_i \) | \[0.084 \quad 0.084 \] |
| \(M_i \) | \[0.084 \quad 0.084 \] |
| Ti | \[0.084 \quad 0.084 \] |
| Fe | \[0.084 \quad 0.084 \] |
| Mg | \[0.084 \quad 0.084 \] |

151
Figura 4.4.27. Diagramas catiónicos de variación binaria (base catiónica) que muestran el espectro composicional de las muestras de esquistos gneisíticos con Si=Bi=Gr+And de la unidad de Torrox y esquistos Gr+Fl de la unidad de Sácaro (índices rellenos). Círculos: platos de la matriz; Triángulos invertidos: pseudomorfos de granadita y astrocilitita. Líneas de correlación y vectores como en la figura 4.4.4.
Figura 4.4.28. Diagramas de variación binario (base molecular) para las minerales de espato grafitos con Si+Be+Gr+And de la unidad de Tarra y espato con Gr+Be de la unidad de Sabares (símbolos rectangulares). Símbolos como en la Figura 4.4.27. Las líneas de regresión incluyen todos los análisis (ver el texto para abreviaturas y el procedimiento de cálculo).
Figura 4.4.29. Diagramas de variación binarios (base cationica) que muestran el espectro composicional de las mesocristales de esquistos gneisitos con St+Bs+Grt+Fib+And±Xy de la unidad de Torrejón. Círculos: platas de la matriz; Triángulos invertidos: pseudomorfos de grano-x y asterocristita. Líneas de correlación y vectores como en la Figura 4.4.4.
Figura 4.4.30. Diagramas de variación binarias (bas cátions) que muestran el espectro composicional de la muestra T329, en un esquema gráfico con Si+Bt+Grt+Fib+And. Símbolos como en la Figura 4.4.29 y líneas de correlación y vectores como en la Figura 4.4.4.
4.4.5.3. VARIACIONES RELACIONADAS CON EL GRADO METAMÓRFICO

Los espectros composicionales de los esquistos, gneises pelíticos y gneises leucocratos son lo suficientemente amplios como para no poder evaluar con precisión las tendencias composicionales inducidas por el grado metamórfico. Sin embargo, de lo dicho anteriormente puede considerarse que las composiciones menos evolucionadas (i.e., más desviadas del término extremo moscovita) dentro de cada grupo son las más cercanas a las composiciones originales previas a los reequilibrios inducidos por la descompresión. En este caso, las tendencias composicionales detectadas a lo largo de la secuencia: esquistos con Grt+Br, esquistos con St+Br+Grt+And, esquistos con St+Grt+Br+Fib+And(±Ky), gneises pelíticos con St+Grt+Br+Ky+Fib+And, y gneis pelítico con cordierita incluyen aumentos en las cantidades de Si (máximos
La tendencia del Ti es particularmente consistente con el incremento en el grado metamórfico si se tiene en cuenta que todas las rocas analizadas presentan fases saturadas en Ti (femina y rutilo), y se compara con otras secuencias progradadas (e.g., Guidotti, 1973, 1974, 1978b, 1984; Guidotti et al., 1977, Tracy, 1978, Fletcher y Greenwood, 1979; Holdaway et al., 1988). Sin embargo, los incrementos del Si con el grado metamórfico son contrarios a lo comúnmente observado en estas mismas secuencias, donde las cantidades de Si disminuyen hasta valores menores de 6.15 átomos pfu en rocas de la parte más alta del grano medio. Las asociaciones de fases de estas metapelitas y muchos de los ejemplos anteriores no son asociaciones limitantes (i.e., divariantes en sistemas modelado) debido a la no coexistencia de feldespatos-K, y por lo tanto las cantidades de Si no están fijadas para PT y aH2O constantes (cf. Miyashiro y Shido, 1985; Massonne y Schreier, 1987). Sin embargo, el comportamiento del Si en estas moscovitas sugiere incrementos de presión significativos a lo largo de la secuencia, suficientes para intersectar isopletas de mayor XSi⁺⁺ a medida que T aumenta, aunque estas isopletas no correspondan al equilibrio entre M2+K₂Si₂+B₂+Q₉₂+H₂O. De no ser así, no es posible interpretar las cantidades mayores de Si en los gneises pelíticos con St+Gr+Qtz+Fib+And por comparación con los esquistos con St+B+C2+K₂+Q₉₂+And+(Ky), ya que la presencia de disten en los primeros durante las condiciones de equilibrio a P intermedia minimizaría las cantidades de leucofilita presentes respecto de los segundos donde no coexiste disten en la mayor parte de las muestras, y la fibrolita se interpreta como una fase desarrollada durante la descompresión (ver Capítulos 3.1.2.3 y 5.4). Los contenidos en Si de los porfiroblastos del gneis pelítico T348 (6.56 átomos pfu) que coexisten con St y Gt (y anteriormente Ky?), son sorprendentemente altos por comparación con los de otras moscovitas de metapelitas de grado medio (referencias más arriba), e indicarían condiciones de P bastante elevadas.

Por otra parte, la comparación con los gneises leucocratos no es inmediata ya que los sistemas son composicionalmente distintos. En el caso de las rutilas, los máximos de 6.31 y 0.20 átomos de Si y Ti pfu, respectivamente, indican condiciones de temperatura más elevadas, aunque no necesariamente menores condiciones de P dado que en la rutila analizada (T376) no coexiste cuarzo ni feldespatos-K. Respecto de los esquistos moscovíticos intercalados, los máximos de 6.59 y 0.21 átomos de Si y Ti pfu, respectivamente, indican condiciones de T elevadas, aunque no necesariamente presiones más elevadas a pesar de prever más Si, ya que en estas rocas no coexisten silicatos de Al. Respecto de los gneises leucocratos donde coexisten dos feldespatos, sus mayores cantidades de Si (máximo de 6.66 átomos pfu) respecto de las metapelitas son esencialmente debidas a los efectos composicionales de estos sistemas ya que para estas rocas las cantidades de Si corresponden a las de saturación por la coexistencia de Kfs (cf. Miyashiro y Shido, 1985; Massonne y Schreier, 1987).

4.4.6. RESUMEN

Las heterogeneidades y variaciones composicionales detectadas en las moscovitas se deben a:

- los efectos debidos a condiciones P-T de equilibrio originales (i.e., progradadas) distintas,
- los efectos composicionales de los sistemas (e.g., hiperalumínicos vs peralumínicos),
- los procesos de fraccionamiento magmático y,
las modificaciones de las composiciones iniciales debidas a los procesos reaccionales activados por la descompresión.

Estos últimos son los más interesantes de todos, pues que los distintos procesos reaccionales sufridos por estas moscovitas permiten una buena caracterización de las variaciones composicionales asociadas y de los efectos que ejercen distintos componentes sobre la estructura de la moscovita.

En general, las variaciones composicionales debidas al progreso de los procesos de descomposición de moscovita implican descensos en Si, Ti, Fe y Mg en el sistema VI y x de (o) y aumentos en (Mg, Al, Na y K. Estas variaciones pueden considerarse indicativas de que los procesos reaccionales están fuertemente influenciados por pérdida de P, toda vez que se detecta un progresivo descenso en la solubilidad del componente leucofilita con el progreso de la descomposición de las moscovitas de gneises leucócratos y pelíticos. Valores de Si = 6.66 átomos pfu en moscovitas de gneises de grado alto no han sido descritos hasta la fecha. Aunque ésta pueda ser una característica subsólidos, el hecho de que las moscovitas de origen claramente supersólidos de gneises aplíticos y diques graníticos discordantes presenten cantidades de Si de hasta 6.5 átomos pfu, supone que la solubilidad del componente leucofilita también está fuertemente influenciada por la presión bajo condiciones supersólidos.

Hasta donde llegan los conocimientos del autor de este trabajo, no existen estudios experimentales que permitan deducir el comportamiento de la solución sólida moscovita en condiciones supersólidos, pero el hecho de que las moscovitas igneas de los gneises aplíticos no presenten variaciones sustanciales en Si durante los procesos de descomposición puede deberse a que la cristalización de moscovita en condiciones supersólidos no asegura la saturación en Si, ya sea por la inexistencia de Kfs y/o Bt, y/o por la mera presencia de la fase fundida. En este caso, los procesos de descomposición subsólidos no afectan sustancialmente a los contenidos de leucofilita. Por lo tanto, y por comparación con los sistemas subsólidos, las cantidades de Si de las moscovitas primarias de los gneises aplíticos tampoco estarían saturadas en Si para las condiciones de cristalización, pudiendo justificar su menor cantidad de Si.

Los valores de la razón Mg/Fe en todas las muestras estudiadas son variables, oscilando en conjunto desde menos de 0.5 a 2 tanto en las metapelitas gráfíticas como en los gneises leucócratos y roca asociada (Tabla 4.4.1 y 4.4.2). En general se observa que las composiciones relictas con alto Si y Ti presentan los valores más altos cercanos a 2. En las muestras con grafito, esto está de acuerdo con la sugerencia de Guidotti (1984) de que los valores comunes de la razón Mg/Fe²⁺ en muestras naturales de sistemas reducidos son próximos a 2:1, aunque estos valores también se encuentran en muestras de gneises que no contienen grafito. Considerando Fe₂⁺ la existencia de razones Mg/Fe < 1 en un gran número de composiciones de moscovita de metapelitas con grafito y gneises leucócratos está en contradicción con las solubilidades relativas de Fe³⁺ y Mg determinadas experimentalmente (Velde, 1965, 1967; Monier and Robert, 1968). Estos valores pueden explicarse si parte de Fe es Fe³⁺, lo cual constituye una fuente de incertidumbre importante, al respecto de la adecuación de la normalización estructural elegida. Los errores inducidos por la expresión de Fe₂⁺ como Fe²⁺ en la cuantificación de la solución sólida pueden ser importantes si se tiene en cuenta que las relaciones molares (Ox(Fe,Mg))/Ox(o) son 3:1 en el vector de intercambio O-Ox. Esta situación puede llevar a generar valores negativos de componentes leucofilita particularmente cuando Fe+Mg presente valores bajos, en cuyo caso es necesario concluir que existen razones Fe³⁺/Fe²⁺ elevadas. Sin embargo, en algunos casos existen evidencias de que la solubilidad del componente trióctaedrico es importante a pesar de la incertidumbre debida al desconocimiento de las razones Fe³⁺/Fe²⁺. De hecho, la descomposición del componente trióctaedrico llega a controlar el proceso de descomposición de moscovitas de aplíta,
microgranito y esquistos moscovíticos, como lo sugiere el hecho de que en la aplita T335, donde parece no haber coexistido biotita durante la cristalización de la moscovita, no se detectan texturas reaccionales y variaciones de fiamita. Teniendo en cuenta que, al igual que para la solubilidad del componente leucofilita, los estudios experimentales han demostrado que la solubilidad del componente trioctádrico desciende con descensos de P y aumentos de T (Monier y Robert, 1986a; Massonne y Schreyer, 1986, 1987), los resultados obtenidos en este trabajo implican que la presión debe ejercer una fuerte influencia sobre la solubilidad del componente trioctádrico incluso bajo condiciones supersólidas.

No existen evidencias de que la solubilidad del Ti descienda con los descensos de P, por lo que los fuertes descensos en Ti detectados en todos los tipos de rocas pueden asignarse a (1) descensos de T durante la descomposición de las moscovitas y/o (2) un fuerte efecto de la partición de este componente entre la biotita "exigua" y la moscovita reequilibrada considerando las placas de moscovita como sistemas cerrados. En este trabajo se favorece la segunda posibilidad ya que la trayectoria PT inferida implica una fuerte descompresión con descensos menores de T (Capítulo 5).

Las elevadas concentraciones en Ti de las moscovitas de las restitas, aplias, diques graníticos y esquistos moscovíticos (Ti > 0,2 átomos pf) son consistentes con condiciones de grado alto, y contradicen el límite normal de solubilidad de este componente sugerido por Guidotti (1984). Dado que esto se detecta en moscovitas blásticas de enclaves y esquistos moscovíticos, no es posible explicar estas elevadas cantidades de Ti por el efecto de procesos de fracacionamiento magmático, que por otra parte pueden aplicarse a las aplias y el dique de microgranito. Es posible que parte de este Ti en exceso de los 0,16 átomos pf sugeridos por Guidotti (1984) pueda justificarse por la desviación de estas moscovitas de la estructura dioctádrica, aunque su balance tiene lugar por la sustitución Ti-espinela. Esto parece más claro en el caso de las moscovitas del microgranito, donde las texturas de descomposición descritas (transiciones composicionales abruptas) son el resultado de la inestabilidad del componente de Ti, lo que parece haber modificando las cantidades de ocupación octádrica mediante la sustitución Ti-Al-vacante (además de Ti-Mg-espinela y Ti-Fe-espinela). No obstante, existe cierta incertidumbre a este respecto dada la posible operatividad de la sustitución 16Ti56Fe24Mg16Al1Fe23. En cuyo caso las variaciones en Sum Vi deberían asignarse a variaciones en Fe$^{2+}$/Fe$^{3+}$.

El balance del Ti en la estructura mediante la sustitución Ti-espinela parece ejercer un fuerte control sobre la razón Mg/Fe (Figura 4.4.32) y las cantidades de Na, favoreciendo composiciones ricas en Mg y pobres en Na al aumentar las cantidades de Ti. Esto puede interpretarse por el efecto del Ti sobre el ángulo de rotación α, aunque es evidente que otras sustituciones como tschermak y diotrioctádrica también juegan un papel al respecto. No obstante, el hecho de que en las moscovitas de alto Ti de los enclaves restiticos las cantidades de leucofilita y componente trioctádrico sean bajas (por comparación con el resto de las moscovitas de gneises) favorece que el Ti ejercite un importante control estructural sobre la composición de la moscovita. Esto no se detecta en las moscovitas del dique de microgranito debido al peculiar proceso de descomposición irreversible que han sufrido, que supone la operatividad de reacciones posiblemente metaestables.

Las variaciones de los cationes y vacantes interlaminares no pueden ser evaluadas de manera precisa debido a la ausencia de determinaciones de H. No obstante, parece claro que las variaciones del Na no están controladas por la sustitución paragonita NaK$_4$ en la mayor parte de los casos (particularmente los casos bien caracterizados en términos de texturas reaccionales), sino por las sustituciones Na-pirofilita y/o
NaH₂O₄. En parte, esto es explicable por el efecto que ejercen otros componentes sobre la estructura, particularmente los componentes leucocita y de Ti.

![Diagramas de variación binaria Mg/Fe en Ti en las muestras estudiadas](image)

Figura 4.4.3. Diagramas de variación binaria Mg/Fe en Ti en las muestras estudiadas (moléculas de Ti-moscovita especificada en la Tabla 4.4.1) para los distintos tipos de rocas estudiadas (símbolos como en la Figura 4.4.1). Nótese la disminución de incremento en Mg/Fe al aumentar Ti en las moscovita del dique de mirogranito T494, en contraste con el resto de muestras estudiadas.

4.5. BIOTITA

4.5.1. INTRODUCCIÓN

Al igual que la moscovita, la biotita de las muestras estudiadas presenta un espectro composicional muy amplio (Figura 4.5.1). Este espectro composicional de la base de datos total resulta de una combinación de (1) variaciones inter-muestra debidas a condiciones de equilibrio prograded P-T-PH₂O distintas, (2)
Efectos de la composición de los sistemas, y (3) variaciones intra-sistema debidas a problemas de equilibrado durante la descompresión.

<table>
<thead>
<tr>
<th>Esquisto gráfico</th>
<th>Al (pfu)</th>
<th>Ti (pfu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>1.00</td>
<td>1.25</td>
<td>0.30</td>
</tr>
<tr>
<td>1.50</td>
<td>0.00</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Figura 4.5.1. Espectro composicional de la biotita en las muestras estudiadas en términos de dímeros de [\(\text{MA}^+\)] y Ti (pfu) (normalizadas a 2O y 4OH). Círculos: plata de la matriz; Triángulos: bloques asociados a bordas de granate, comúnmente producto de descomposición del mismo; Triángulos invertidos: bloques asociados a bordas de estaurolita, comúnmente producto de descomposición de la misma; Estrellas: blancos transformados de la matriz y asociados a andalusa ± ilmenita ± cordierita; Cruces: bloques incluidos en plagioclasa y estaurolita, indicando la localización en los núcleos de grano de tipo II incluidos en estas fases. Asspas: lamelas incluidas en gramos precoces de micas (ver Tabla 4.5.1).

En general, las reacciones heterogéneas inducidas por la descompresión han resultado en la descomposición de fases AFMTi precoces (granate, estaurolita, rutilo y moscovita) y neoformación de biotita. Existen claras relaciones entre la composición de las biotitas neoformadas y las fases a las que se asocian, lo cual puede explicarse por balances de masa locales en microdominios entre los que existen fuertes dificultades en la difusión de ciertos componentes. Como se apreciará a continuación, el resultado de estos balances de masa locales es que las tendencias de evolución composicional relacionadas con la blastesis y
reequilibrio a baja P ocurren simultáneamente en varias direcciones del espacio composicional. Por lo tanto, a las complejidades normalmente encontradas en el estudio de las variaciones composicionales de las biotitas en secuencias progradadas (e.g., Guidotti, 1984; Hewitt y Abrecht, 1986; Guidotti et al., 1988; Guidotti y Dyar, 1991), en este caso hay que añadir las complicaciones resultantes del estado de desequilibrio. Esto dificulta la identificación de los cambios composicionales asociados a las condiciones de equilibramiento progradada en el conjunto de la secuencia metamórfica, y tiene importantes implicaciones en la estimación de las condiciones P-T del metamorfismo dado que un gran número de equilibrios termobarométricos implican componentes de esta fase (Capítulo 5.2).

A pesar de estos inconvenientes, es de interés analizar los cambios sufridos durante los procesos de descomposición, dada la abundancia de investigaciones relativas a los cambios progradados en la composición de las biotitas (e.g., Guidotti, 1974; Schmid y Wood, 1976; Guidotti et al., 1977, 1988; López-Ruiz et al., 1978; Dymek, 1983; Labotka, 1983; Holdaway et al., 1988).

4.5.2. FORMULA ESTRUCTURAL Y LIMITACIONES ANALÍTICAS

4.5.2.1. FORMULA ESTRUCTURAL

Los elementos analizados en las biotitas han sido Si, Ti, Al, Cr, Fe, Mn, Zn, Mg, Ca, Na, K, y F. Los elementos Cr, Zn, y Ca presentan concentraciones muy bajas y por lo tanto los errores analíticos son muy altos, por lo que no han sido considerados en las descripciones que siguen. Al igual que para el caso de la moscovita, los análisis de F presentan errores analíticos de precisión y exactitud altos debido a problemas de calibrado, por lo que este elemento tampoco se considerará. Siguendo los criterios más aceptados sobre la cristalquímica de biotitas (e.g., Hazen and Burham, 1973; Bailey, 1984a, y b; Hewitt y Abrecht, 1986), las fórmulas estructurales usadas en este trabajo han sido calculadas sobre la base de balance a 44 cargas negativas (20 Oxígenos y 4 (OH)), asumiendo ocupación tetraédrica total por Si y Al, y considerando Fe total \(\approx \) Fe\(^{3+}\) y Ti como tetravalente y ocupando posiciones octaédricas (Apéndice II Tabla B). Esta normalización de los análisis permite ocupaciones octaédricas e interlamina menores de los teóricos 6 y 2 átomos pfu, respectivamente. Aunque estas características son comunes en biotitas de todo tipo de ambiente de formación, su aceptación como rasgos cristalquímicos no está exenta de incertidumbres, al menos en lo que respecta a las cantidades absolutas de vacantes si las normalizaciones se hacen sobre análisis de microsonda (por regla general, las vacantes calculadas son mayores que las reales, ver más adelante). Según esta normalización, los componentes a considerar son:

- componentes en posiciones de coordinación 12 interlaminares: K, Na y \([\text{vac}]_{(o)}\).
- componentes en posiciones de coordinación 6 octaédricas: Fe\(^{2+}\)\(_{\text{total}}\), Mg, Mn, \([\text{vac}]\)\(_{\text{Al}}\), Ti y \([\text{vac}]_{(o)}\).
- componentes en posiciones de coordinación 4 tetraédricas: Si y Al.
- aniones: O y OH.

donde \([\text{vac}]_{(o)}\) y \([\text{vac}]\)\(_{\text{Al}}\) representan las vacancias octaédrica e interlaminar, respectivamente. El número de componentes es por lo tanto igual a 3. Para definir completamente el espacio composicional de las biotitas en función de vectores de intercambio y/o términos aditivos, deben encontrarse otras 13 ecuaciones linealmente independientes que relacionen los componentes nuevos y antiguos de manera que la varianza del sistema de ecuaciones sea 0 (J.B. Thompson, 1982a, Labotka, 1983; Hewitt y Abrecht, 1986).
4.5.2.2. ERRORES E INCERTIDUMBRES ANALÍTICAS

La descripción de la solución sólida de la biotita presenta incertidumbres debidas a (1) la complejidad cristalquímica de las biotitas naturales y (2) las deficiencias analíticas resultantes de las limitaciones de las técnicas de microscopía electrónica. Por tanto, antes de describir las características composicionales de las biotitas, es necesario hacer algunos comentarios sobre la calidad de los análisis e incertidumbres analíticas.

Deficiencias de Masa y Cationes Alcalinos

En general, los análisis de biotitas de las muestras analizadas presentan sumas de los óxidos relativamente bajas, significativamente menores de 100 % en peso una vez sumada la cantidad de H₂O calculada sobre la base de 4 OH. La suma total de óxidos, incluido el procentaje en peso de H₂O calculado, oscila entre 92 y 100% (Apéndice II Tabla B), aunque en general son superiores a 97 %. Los valores más bajos se dan en las biotitas de esquistos con Sr+Bi+Grt+And (Figura 4.5.2), aunque las causas de estos bajos totales varían según el tipo de roca analizada.

Figura 4.5.2. Diagramas binarios en d que se representan las suma total de óxidos (incluyendo d % en peso calculado de H₂O sobre la base de 4 (OH) y la suma total de cationes en posición de coordinación XII para a) esquistos con Sr+Bi+Grt+And (incluyendo la muestra 7882 con Grt+Bi), b) esquistos con Sr+Bi+Grt+Fib+And+Zpy, c)gneiss polínicos con Sr+Bt+Grt+Ks+Fib+And+Grd, y d) gneiss leucocráticos y rocas asociadas. Nótese la evidencia de cloritización en los esquistos con Sr+Bi+Grt+And.
- Pérdida de alcalinos: La presencia de cantidades bajas en cationes alcalinos parece estar relacionada con las deficiencias de masa (Figura 4.5.2). Las cantidades de Sum XII oscilan entre 1.2 y 2 átomos pfo, aunque la mayor parte de los análisis presentan valores mayores de 1.6 átomos pfo que pueden considerarse valores "normales" por comparación con otros análisis de biotitas de rocas metamórficas similares (cf. Guidotti, 1984 y referencias en el Capítulo 5.5.1). El error instrumental debido a volatilización de cationes alcalinos no se considera importante para los análisis realizados en la Universidad de Granada, donde se optimizaron las rutinas analíticas (Figura 4.2.1). De hecho, la rutina analítica usada para el análisis de biotitas dió buenos resultados con moscovitas, otras fases hidratadas (esfayrolita) y anhidras (fedespato, granates), y patrones internos. Los análisis realizados en la Universidad de St. Andrews son de peor calidad, aunque en lo concerniente a los elementos alcalinos se obtuvieron valores similares a los de la Universidad de Granada. Por lo tanto, una deficiencia de masa apreciable no es asignable a esta fuente de error instrumental.

- Intercrecimientos de clorita: La correlación positiva entre la suma total de óxidos y la suma de elementos alcalinos detectada en las biotitas de esquistos grafitos con St+Bt+Grt+And (Figura 4.5.2a) sugiere la presencia de intercrecimientos de clorita. Aunque no se ha realizado un estudio de TEM que pueda discernir la naturaleza de estos intercrecimientos, es bastante probable que su origen esté relacionado con procesos de retrogresión de la biotita, dada la ausencia de cristales individuales de clorita a la escala óptica en la mayor parte de las muestras. En la muestra T307-1 existe clorita secundaria asociada a una fractura tardía, y la mayor parte de las biotitas de la roca presentan totales muy bajos (Apéndice II Tabla B). Por contra, la ausencia de correlación entre la suma total de óxidos y la suma de elementos alcalinos en las biotitas de los esquistos con St+Bt+Grt+Fib+And+Kry, gneises politos y gneises leucocratos (Figura 4.5.1b y c) indica que la presencia de clorita intercrecida no es la causa mayor del déficit de masa en estas biotitas. Sustituciones particulares y/o cierta pérdida de alcalinos por irradiación podría explicar la debil correlación positiva mostrada por los gneises leucocratos (Figura 4.5.2d), aunque el déficit absoluto de masa debe explicarse por otras causas.

- Iones hidronio: La sustitución de los cationes alcalinos por iones H₂O⁺ (Brown and Norrish, 1952; Foster, 1960a y b.; White and Burns, 1963; Evans and Guidotti, 1966; Forbes, 1972; Dyar, 1988; Herbig y Peacock, 1989; Guidotti y Dyar, 1991; Dyar et al., 1991a) puede justificar parte de las vacantes interlaminares (i.e., vacantes "ficticias") y la deficiencia de masa, dado que la cantidad total de H⁺ y O₂⁻, no analizables con la microsonda, aumenta, y las fórmulas estructurales no presentarían valores fijos de átomos de O. Este tipo de sustitución puede explicar parte de la variación composicional observada en los elementos alcalinos, puesto que ha sido demostrada su sensibilidad a las condiciones de metamorfismo (ver más adelante y Dyar et al., 1991a). Abordar cuantitativamente estas consideraciones es imposible en el presente estudio dada la ausencia de análisis independientes de H₂O⁻, pero es muy probable su operatividad.

- Modificaciones físicas: Durante las sesiones analíticas en la microsonda de la Universidad de Granada se observó que, dentro de una misma muestra, los análisis obtenidos al localizar la sonda en cristales con secciones prismáticas próximas a la zona [001] presentaban deficiencias de masa sistemáticas respecto de aquellos localizados sobre secciones basales. Esto se interpreta como el resultado de una exfoliación inducida por la sonda electrónica según los planos (001) de la biotita, lo que resulta en un volumen analizado menor que el volumen de irradiación y por lo tanto, en una cantidad de masa aparentemente menor. Este efecto se considera la causa mayor del déficit de masa en los análisis de biotitas de esquistos con fibrolita, gneises politos y gneises leucocratos. Sin embargo, la comparación entre análisis de secciones
basales y prismáticas de cristales adyacentes sin evidencias de retrogradación indica que la precisión (y exactitud) de los análisis no se ve significativamente afectada por esta fuente de error, ya que las variaciones compuestas se mantienen dentro de los rangos del error analítico. De hecho, puede demostrarse que las heterogeneidades compuestas más claras dentro de muestras individuales proceden del estado de desequilibrio de las mismas.

- **Presencia de Fe$^{3+}$**: Otra fuente de incertidumbre analítica que también influye en la obtención de bajos totales en las biotitas analizadas es el contenido en Fe$^{3+}$. La presencia de cantidades significativas de Fe$^{3+}$ en las biotitas es conocida por la abundancia de análisis por vía húmeda (ver Foster, 1960a y b; Guidotti, 1984), y estudios espectroscópicos (Royman, 1984, para una revisión, y Dyar, 1990; Dyar y Burns, 1986; Guidotti y Dyar, 1991). Las cantidades de Fe$^{3+}$ y las razones Fe$^{3+}$/Fe$^{2+}$ en las biotitas varían en función del estado de oxidación del medio (fO$_2$, e.g., Wones, 1963; Wones y Euster, 1963). En su revisión de micas metamórficas y basándose en los análisis publicados por vía húmeda, Guidotti (1984) considera que en biotitas de metapelitas donde los valores de fO$_2$ son bajos debido a la presencia de grafito e ilmenita, en torno al 10% de Fe$_{total}$ es Fe$^{3+}$, que llegaría hasta el 20% de Fe$_{total}$ en biotitas que coexisten con magnetita. Guidotti y Dyar (1990) encontraron cantidades de Fe$^{3+}$ cercanas al 12% del total de Fe en biotitas de sistemas metapelíticos reducidos (con grafito e ilmenita), aunque no detectaron variaciones significativas con el grado (zona del granate hasta zona de sillimanita-feldespar-K con desarrollo de migmáticas). Las variaciones más sustanciales se relacionan con el estado de oxidación del sistema, que aumentan hasta ca. 22% del total de Fe en asociaciones con magnetita, y hasta 46% con hematíes. Según estos resultados de Guidotti y Dyar (1990), podría asumirse que entre 10-15% del Fe$_{total}$ puede estar oxidado en las biotitas analizadas de las metapelitas con grafito e ilmenita, lo cual implicaría aumentar las sumas totales de óxidos en torno a 0.2-0.3%. En las muestras de gneises leucocratos, la ausencia de grafito hace suponer valores más elevados de Fe$^{3+}$ en las biotitas (aunque no coexisten con magnetita).

De todo lo anteriormente expuesto pueden concluirse una serie de aspectos relativos a la calidad, precisión y exactitud de los análisis que serán tenidos en cuenta en todo momento de la presentación y discusión de los datos, así como más adelante en los Capítulos dedicados a los procesos reacionales y condiciones físicas del metamorfismo:

- Se han rechazado los análisis de biotita de los esquistos grafíticos con St+Bi+Grt+And con sumas totales de óxidos menores de 97% y Sum XII < 1.6 átomos pfu ya que posiblemente representan análisis de biotita cloritizada. En las biotitas de esquistos grafíticos con St+Bi+Grt+Fib+And+K, gneises pelíticos y leucocratos se han seleccionado los análisis con Sum XII > 1.7 átomos pfu.
- Se considera que las diferencias de masa dentro de la base de datos restante son en su mayor parte debidas a problemas analíticos relacionados con la tendencia a la expansión volumétrica de la biotita según los planos de exfoliación (001). Esta fuente de error analítico no modifica sustancialmente la precisión de los análisis, por lo que no induce heterogeneidades compuestas mayores dentro de la base de datos seleccionada.
- Se considera que los efectos debidos a (1) la presencia de H y O en forma de iones OH$^-$ o H$_2$O$^+$ en cantidades mayores de las teóricas (22 O y 4 OH), (2) a la volatilización de elementos alcalinos, y (3) a la presencia eventual de intercambios submicroscópicos de clorita, suponen una fuente de incertidumbre relativamente elevada en la exactitud de los análisis de K y Na. Por ello, se tendrá una cautela especial en la evaluación de las posiciones de coordinación 12.

165
Efectos Cristalquímicos Debidos a la Presencia de Fe$^{3+}$

La presencia de Fe$^{3+}$ en la biotita tiene importantes implicaciones cristalquímicas que no pueden ser evaluadas con análisis basados en técnicas analíticas de microsonda. Los resultados de espectroscopía Mössbauer (referencias más arriba) indican que la asignación esencial del Fe$^{3+}$ no es exclusivamente octaédrica, tal y como es común asumirlo en la normalización estructural de los análisis (e.g., Foster, 1960b; Dodge et al., 1969; Guidotti, 1984), sino que una parte del mismo ocupa posiciones tetraédricas en sustitución del $^{[6]}$Al. En biotitas de metapelitas con grafito, donde las cantidades totales de Fe$^{3+}$ están minimizadas, las cantidades de este cation en posiciones tetraédricas son cercanas al 8% del total de Fe, encontrándose el 4% restante en posiciones octaédricas (Dyar, 1990; Dyar y Burns, 1986; Guidotti y Dyar, 1991). En las biotitas de sistemas no reducidos, las cantidades de Fe$^{3+}$ en posiciones tetraédricas son similares a las anteriores a pesar de las mayores cantidades de Fe$^{3+}$. Guidotti y Dyar (1991) interpretan esta constancia en las cantidades de $^{[6]}$Fe$^{3+}$ en base a construcciones cristalquímicas relativas a la estabilidad de la estructura, y rechazan efectos debidos al grado metamórfico y a las asociaciones de fases. El efecto cristalquímico consistiría en que la presencia de vacantes octaédricas adyacentes a tetraédros distorsionados favorecería la introducción de Fe$^{3+}$ en estas posiciones tetraédricas distorsionadas.

De estos resultados puede deducirse que los errores derivados de la presencia de Fe$^{3+}$ serán de entidad variable según se trate de muestras con grafito y sin grafito. En el primer caso, puede considerarse que tales errores serán de entidad menor, aunque significativa. Un 8% del total de Fe implica implica ca. 0.2 átomos puf de $^{[6]}$Fe$^{3+}$ (normalización a 22 oxígenos), lo cual supone reducir las cantidades de $^{[6]}$Al y aumentar las de $^{[4]}$Al en las fórmulas estructurales. Sin embargo, si en las rocas con grafito las cantidades de Fe$^{3+}$ y $^{[6]}$Fe$^{3+}$ son constantes, los errores serán de la misma entidad en todas las muestras, por lo que pueden evaluarse los cambios compositacionales sobre la base de Fe$^{2+} = Fe_{total}$ para identificar y cuantificar sustituciones operativas. Hay que indicar que de la discusión de Guidotti y Dyar (1991) se deduce que las cantidades de $^{[6]}$Fe$^{3+}$ pueden variar en respuesta a cambios en las cantidades de vacantes octaédricas (y Ti y $^{[4]}$Al, ver más adelante) por lo que en ese caso existirían incertidumbres en sustituciones que afecten a los cationes tetraédricos, aunque puede especularse que éstas no afectarán sustancialmente a los resultados, entre otras razones, por los escasos contenidos en $^{[4]}$Fe$^{3+}$.

En las muestras de gneises leucosecianos donde no existe grafito es probable que la razón Fe$^{3+}$/Fe$^{2+}$ de las biotitas varíe entre muestras y dentro de muestras individuales. Esto induce incertidumbres a mayores en la evaluación y cuantificación de las sustituciones que controlan las vacantes octaédricas, ya que las composiciones normalizadas sobre la base de Fe$^{2+} = Fe_{total}$ tendrán asociados errores distintos (mayores al aumentar Fe$^{3+}$/Fe$^{2+}$). Si las cantidades de $^{[6]}$Fe$^{3+}$ son constantes e independientes de las variaciones de la razón Fe$^{3+}$/Fe$^{2+}$, es posible interpretar las variaciones en los posiciones tetraédricas sin grandes problemas. Sin embargo, si las cantidades de $^{[6]}$Fe$^{3+}$ varían al hacerlo las cantidades de vacantes octaédricas, Ti y $^{[4]}$Al y la razón Fe$^{3+}$/Fe$^{2+}$, la incertidumbre en la evaluación de las sustituciones puede ser muy alta.

Dada la importancia del Fe$^{3+}$ en las biotitas (y otras fases) por sus implicaciones cristalquímicas y petrográficas, existen en la literatura intentos de cálculo a partir de análisis de microsonda (e.g., Droop, 1987; Giaramita y Day, 1990). Quizás el método más interesante para la estimación del Fe$^{3+}$ en la biotita desde el punto de vista cristalquímico sea el ofrecido por Dyck (1983), que se basa en la asignación de vacantes octaédricas en proporción a las cantidades de Ti ($^{[4]}$Al en exceso) sobre fórmulas estructurales normalizadas a 14 cationes (8 tetraédricos más 6 octaédricos). Como es común en este tipo de cálculos, el
defecto de carga positiva sobre las teorías de cargas negativas se asigna a Fe\textsuperscript{$^{3+}$}. Este método necesita de la demostración de que todo el Ti se balancee en la estructura mediante la sustitución Ti\textsuperscript{$^{3+}$}FeMg\textsubscript{2} (Ti-vacante), y de que el exceso de Al sobre el Ti\textsuperscript{$^{3+}$}Asignable a la sustitución tschermak, debe balancearse mediante la sustitución Al\textsuperscript{$^{3+}$}FeMg\textsubscript{3} (distriacostática). Puede suponerse que este tipo de cálculo es muy impreciso debido a estos requisitos. La complejidad cristalquímica de las biotitas suele implicar que las cantidades de Ti no puedan balancearse en la estructura mediante una única sustitución (ver más adelante y Hewitt y Abrecht, 1986; Abrecht y Hewitt, 1988; Brigati et al., 1991), por lo que habría que asignar las vacantes una vez ponderadas las distintas sustituciones de Ti. Además, el balance de las vacantes octacédricas puede implicar simultaneamente otras sustituciones que no involucran al Ti (ver más adelante y Roben, 1976a). El cálculo del exceso de Al es igualmente muy impreciso ya que es función del Al\textsuperscript{$^{3+}$}, que se supone balanceado mediante las sustituciones tschermak y taylor, esto es, asumiendo que todas las vacantes interlaminares son reales, cuando lo más probable es que en gran parte sean ficticias (Dyar et al., 1991a). Además, si existen otras sustituciones que involucran al Al\textsuperscript{$^{3+}$} todo el cálculo es erróneo. Finalmente, existen incertidumbres no resolubles, tales como las derivadas de las cantidades de Fe\textsuperscript{$^{3+}$} tetraédrico no determinable, que implicarían modificar las cantidades de Al\textsuperscript{$^{3+}$} y por lo tanto las cantidades totales de Al\textsuperscript{$^{3+}$}. Por todas estas razones, el autor de este trabajo no considera apropiada la aplicabilidad de este tipo de cálculos a fases tan complejas como la biotita, como se mostrará más adelante.

Resumiendo todos los aspectos anteriores relativos a las incertidumbres analíticas, se concluye que las heterogeneidades composicionales detectadas pueden analizarse con cierta garantía de representar los resultados de problemas de equilibrio, aunque se presentarán incertidumbres no resolubles con los datos de microsonda disponibles, particularmente en los gneises leucocratos sin grafito. Sin embargo, la información obtenida del estudio composicional que sigue será al menos indicativa de los procesos reacionales sufridos en el sistema homogéneo biotita, lo cual puede ayudar a entender el conjunto de reacciones heterogéneas sufridas por las rocas.

4.5.3. Variaciones Composicionales y Vectores de Intercambio

4.5.3.1. Espectro Composicional

En la Introducción a este apartado se ha indicado que los espectros composicionales dentro de grupos de muestras pueden relacionarse con los procesos reacionales ligados a la descompresión, existiendo claras correlaciones entre el tipo textural de biotita y su composición. No obstante, estas relaciones son complejas, como también lo son las texturas reacionales a las que se asocian las biotitas, por lo que se requiere un estudio detallado de los tipos texturales descritos y analizados. Como muestra la Tabla 4.5.1, se han distinguido hasta 16 tipos texturales de biotitas (indicados en el Apéndice II Tabla B), lo cual complica extremadamente el análisis por tipos petrográficos. Después de analizar los grupos individualmente y observar que existe bastante grado de solape entre los rangos composicionales de ciertos tipos individuales, se ha considerado conveniente agrupar los tipos por sus relaciones con determinadas fases, tal y como se especifica en la Tabla 4.5.1, lo cual permite un análisis más racional.
Tabla 4.5.1. Tipos texturales (ver Apéndice II Tabla B) y composicionales de biotitas y símbolos utilizados en las Figuras.

<table>
<thead>
<tr>
<th>Tipo Textural</th>
<th>Sr+Be+Grt +And</th>
<th>Sr+Be+Grt +Fib+And</th>
<th>GPE</th>
<th>GL</th>
<th>Tipo Composicional (y símbolo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>matriz foliada</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1</td>
<td>(círculos)</td>
</tr>
<tr>
<td>contacto con Grt</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>2</td>
<td>(triángulos)</td>
</tr>
<tr>
<td>contacto con St-Grt</td>
<td>x</td>
<td></td>
<td>x</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>producto de Grt</td>
<td>x</td>
<td></td>
<td>x</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>contacto de St</td>
<td>x</td>
<td></td>
<td>x</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>producto de St</td>
<td>x</td>
<td></td>
<td>x</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>contacto Rt</td>
<td></td>
<td></td>
<td>x</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>contacto Ilm</td>
<td></td>
<td></td>
<td>x</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>contacto And-IIm</td>
<td></td>
<td></td>
<td>x</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>contacto And</td>
<td></td>
<td></td>
<td>x</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>contacto Crd-IIm</td>
<td></td>
<td></td>
<td>x</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>decusados</td>
<td></td>
<td></td>
<td>x</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>incluido en St</td>
<td>x</td>
<td></td>
<td>x</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>incluido en Pl</td>
<td></td>
<td></td>
<td>x</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>incluido en Kfs</td>
<td></td>
<td></td>
<td>x</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>producto de Grt incluido en Pl</td>
<td>x</td>
<td></td>
<td>x</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>producto de Grt incluido en St</td>
<td>x</td>
<td></td>
<td>x</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>intercruzado con Ms</td>
<td></td>
<td></td>
<td>x</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>contacto con Ms</td>
<td></td>
<td></td>
<td>x</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Notas: GPE: gneises pelíticos con Sr+Be+Grt+Ky+Fib+And+Crd; GL: gneises leucocratos y rocas asociadas.

Los aspectos generales de la composición de las biotitas analizadas en los distintos tipos de rocas se muestran en las Figuras 4.5.1 y 4.5.3, y en las Tablas 4.5.2-4.5.5, donde puede apreciarse el amplio rango de variación detectado, que es particularmente amplio en Al y Ti. Las variaciones intracrustal son del mismo orden de magnitud que las detectadas entre muestras de un mismo grupo. Puede destacarse además que los espectros composicionales aumentan con el grado, haciéndose especialmente amplios en el caso de los gneises leucocratos.

Un aspecto importante es el hecho de que las cantidades de Al en torno a 1 átomo pfu, aunque gran número de análisis exceden este valor en cantidades apreciables, acercándose a valores de 1.5 átomos pfu en los gneises leucocratos (Tablas 4.5.2-4.5.5). En su revisión del quimismo de biotitas metamórficas, Guidotti (1984) señaló que la inmensa mayoría de los análisis publicados hasta la fecha (incluyendo esquistos de grado mediano a alto saturados en Al) presentan cantidades de Al menores de 1 átomo pfu, y sólo en contados casos los valores se acercan a 1.1 átomos pfu (ver Figura 35 de Guidotti, 1984). Aunque no están proyectadas en las Figuras 4.5.1 y 4.5.3, las biotitas clorizadas de esquistos grafítosos con Sr+Be+Grt+And presentan también cantidades elevadas de Al (>1.2 átomos pfu, Figura 4.5.1) y Mg/(Fe+Mg) (>0.4). Si bien este hecho podría sugerir una notable clorización de las biotitas en todos los tipos de rocas, las elevadas cantidades de Al en algunos análisis no se explican por esta causa ya que no se observan cantidades bajas de cationes alcalinos ni correlaciones entre Al y Na, K y Sum XII. Los alta valores de Al de las biotitas analizadas en este trabajo son por ende excepcionales si se comparan con la base de datos utilizada por Guidotti (1984), y su explicación es de importancia fundamental en la descripción composicional de estas biotitas.
Figura 4.5.3. Composición de las biotitas proyectadas en el “plano ideal de la biotita” (Deer et al., 1965; Galeotti, 1984). a) Especies con St+Grt+Bi+And (incluyendo la muestra T382 con Grt+Bi), b) especies con St+Grt+Bi+Fib+And+Kf, c) grúnicas televisas con St+Bi+Grt+K f+ Fib+And+Cr, y d) grúnicas lucentes y otras suálditas. Las abreviaturas de términos mineralógicos se dan en el texto.

Tabla 4.5.2. Estadística básica y matriz de correlación Pearson para las biotitas de esquistos gneisíticos con Grt+Bi y St+Bi+Grt+And (análisis con total óxidos > 97% en peso y Sum XII > 1.6). (n=12).

<table>
<thead>
<tr>
<th></th>
<th>n/a</th>
<th>Max</th>
<th>Media</th>
<th>o</th>
<th>[Fe]Al</th>
<th>[Mg]Al</th>
<th>Ti</th>
<th>Fe</th>
<th>M n</th>
<th>Mg</th>
<th>Sum VI</th>
<th>Na</th>
<th>K</th>
<th>Sum XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>5.296</td>
<td>5.470</td>
<td>5.309</td>
<td>0.060</td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>2.530</td>
<td>2.714</td>
<td>2.651</td>
<td>0.060</td>
<td></td>
</tr>
<tr>
<td>V/Al</td>
<td>0.915</td>
<td>1.231</td>
<td>1.108</td>
<td>0.102</td>
<td>-0.143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>0.086</td>
<td>0.306</td>
<td>0.244</td>
<td>0.071</td>
<td>0.155</td>
<td>0.676</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>2.423</td>
<td>2.809</td>
<td>1.599</td>
<td>0.125</td>
<td>0.502</td>
<td>0.150</td>
<td>0.441</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.005</td>
<td>0.028</td>
<td>0.014</td>
<td>0.007</td>
<td>0.333</td>
<td>0.048</td>
<td>0.005</td>
<td>0.476</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>1.249</td>
<td>1.843</td>
<td>1.446</td>
<td>0.203</td>
<td>0.183</td>
<td>0.496</td>
<td>0.793</td>
<td>0.348</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum VI</td>
<td>5.463</td>
<td>5.722</td>
<td>5.615</td>
<td>0.070</td>
<td>0.428</td>
<td>0.075</td>
<td>0.616</td>
<td>0.207</td>
<td>0.274</td>
<td>0.704</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>0.028</td>
<td>0.109</td>
<td>0.068</td>
<td>0.022</td>
<td>0.150</td>
<td>0.111</td>
<td>0.350</td>
<td>0.144</td>
<td>0.259</td>
<td>0.183</td>
<td>0.623</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>3.587</td>
<td>3.111</td>
<td>1.729</td>
<td>0.699</td>
<td>0.694</td>
<td>0.000</td>
<td>0.091</td>
<td>0.265</td>
<td>0.126</td>
<td>0.169</td>
<td>0.109</td>
<td>0.314</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum XII</td>
<td>6.668</td>
<td>7.904</td>
<td>5.795</td>
<td>0.073</td>
<td>0.545</td>
<td>0.057</td>
<td>0.037</td>
<td>0.181</td>
<td>0.010</td>
<td>-0.203</td>
<td>0.268</td>
<td>0.590</td>
<td>0.959</td>
<td></td>
</tr>
<tr>
<td>Mg/Fe</td>
<td>0.463</td>
<td>0.739</td>
<td>0.673</td>
<td>0.101</td>
<td>-0.213</td>
<td>-0.083</td>
<td>-0.902</td>
<td>-0.894</td>
<td>0.473</td>
<td>0.981</td>
<td>0.503</td>
<td>-0.104</td>
<td>-0.218</td>
<td>0.120</td>
</tr>
</tbody>
</table>
Tabla 4.5.3. Estadística básica y matriz de correlación Pearson para las biotitas de esquistos grafitíticos con St+Get+Bl+Fib+And+Ky (análisis con total óxidos > 97% en peso). (n= 100).

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
<th>Media</th>
<th>σ</th>
<th>[M]Al</th>
<th>[M]Ox</th>
<th>Ti</th>
<th>Fe</th>
<th>Mg</th>
<th>Mn</th>
<th>Sum VI</th>
<th>Na</th>
<th>K</th>
<th>Sum XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>5.264</td>
<td>5.611</td>
<td>5.374</td>
<td>0.076</td>
<td></td>
</tr>
<tr>
<td>[Al]</td>
<td>2.389</td>
<td>2.756</td>
<td>2.626</td>
<td>0.076</td>
<td></td>
</tr>
<tr>
<td>[Ox]</td>
<td>0.940</td>
<td>1.183</td>
<td>1.043</td>
<td>0.049</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4.5.4. Estadística básica y matriz de correlación Pearson para las biotitas de gneises pelíticos estratificados con St+Get+Ky+Fib+And+Opx (análisis con total óxidos > 97% en peso). (n=150).

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
<th>Media</th>
<th>σ</th>
<th>[M]Al</th>
<th>[M]Ox</th>
<th>Ti</th>
<th>Fe</th>
<th>Mg</th>
<th>Mn</th>
<th>Sum VI</th>
<th>Na</th>
<th>K</th>
<th>Sum XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>5.253</td>
<td>5.565</td>
<td>5.409</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>[Al]</td>
<td>2.435</td>
<td>2.741</td>
<td>2.581</td>
<td>0.077</td>
<td></td>
</tr>
<tr>
<td>[Ox]</td>
<td>0.787</td>
<td>1.293</td>
<td>1.026</td>
<td>0.095</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4.5.5. Estadística básica y matriz de correlación Pearson para las biotitas de gneises leucocráceos, esquistos moscovíticos asociados y enclaves reticulados (análisis con total óxidos > 97% en peso). (n=183).

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
<th>Media</th>
<th>σ</th>
<th>[M]Al</th>
<th>[M]Ox</th>
<th>Ti</th>
<th>Fe</th>
<th>Mg</th>
<th>Mn</th>
<th>Sum VI</th>
<th>Na</th>
<th>K</th>
<th>Sum XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>5.270</td>
<td>5.638</td>
<td>5.435</td>
<td>0.087</td>
<td></td>
</tr>
<tr>
<td>[Al]</td>
<td>2.362</td>
<td>2.730</td>
<td>2.565</td>
<td>0.087</td>
<td></td>
</tr>
<tr>
<td>[Ox]</td>
<td>0.703</td>
<td>1.536</td>
<td>1.104</td>
<td>0.128</td>
<td></td>
</tr>
</tbody>
</table>

Las Figuras 4.5.4-4.5.7 muestran diagramas de variación binarios donde se han proyectado además las rectas correspondientes a los vectores de sustitución referidos más adelante, la mayoría de los cuales son considerados comúnmente operativos en biotitas (ver Dymek, 1983; Guidotti, 1984; Hewitt y Abrecht, 1986; Abrecht y Hewitt, 1988). Independientemente de las sustituciones operativas, estos diagramas ilustran que los cambios en las cantidades de Ti controlan la evolución composicional de estas biotitas, particularmente en lo que respecta a las cantidades de [M]Al y de la ocupación octaedrica. Esto es particularmente evidente en el caso de los esquistos con fibrolita, gneises pelíticos y gneises leucocráceos.
Figura 4.54. Diagramas de variación binaria (base catiónica) que muestran el aspecto composicional de las biotitas de esquistos gráficos con St+Bt+Grt+Kfs de la unidad de Toror y esquistos con Bt+Grt+Tbb2 de la unidad de Salaza. Las líneas continuas son vectores de sustitución que pasan por el vértice extremo inviolado (fisiográfico), mientras que las líneas de puntos son vectores que no intersectan el espacio composicional definido por los ejes de coordenadas y se han representado desplazadas. Símbolos como en la Figura 4.5.1 y Tabla 4.5.1.
Figura 4.33. Diagramas de variación binarias (base cuantitativa) que muestran el espectro composicional de las biotitas de esquistos graníticos con St+Be+Grt+Fl+Ft+And+Ky de la unidad de Tarraz. Los vectores como en la Figura 4.34. Símbolos como en la Figura 4.5.1 y Tabla 4.5.1.
Figura 4.5.6. Diagnósticos de variación binaria (base cationica) que muestran el espectro composicional de las bióticas de gresas polvocinas con Sr+Br+Grt+Ky+Fsp+And+Opx de la unidad de Ñorox. Los vectores como en la Figura 4.5.4. Símbolos como en la Figura 4.5.1 y Tabla 4.5.1.
Figura 4.5.7. Diagramas de variación binario (base catiónica) que muestran el espectro composicional de las biotitas de gisceres hornositos y rocas asociadas de los complejos de gisceras de Torrox y Ronda. Los texturas como en la Figura 4.5.4. Símbolos como en la Figura 4.5.1 y Tabla 4.5.1.
Contrariamente al comportamiento de la mica, las tendencias composicionales de las biotitas neoformadas de las metapeliteas grafitosas no evolucionan hacia el mismo sentido del espacio composicional. Esto se demuestra por el hecho de que las biotitas texturalmente tardías presentan cantidades de Ti muy variables, y definen los extremos de menor y mayor concentración en este elemento de las nubes de puntos. Por ejemplo, las biotitas decussadas asociadas a pseudomorfos de granate y estaurolita presentan cantidades de Ti menores que las asociadas a $\text{And} + \text{Ilm} + \text{CrD}$, que presentan cantidades de Ti elevadas (ver Figura 4.5.1, e.g., T329 -esquist con fibrolita, T312 -gneis pelítico con $\text{St} + \text{Bt} + \text{Grt} + \text{Ky} + \text{Fib} + \text{And} + \text{T348}$-gneis pelítico con cordierita). Esto implica que las hipotéticas composiciones relictas asociadas a condiciones de P intermedia estarían localizadas en el interior de las nubes de puntos (si es que están representadas en los análisis obtenidos), y que las composiciones de biotitas neoformadas tienden hacia polos distintos no necesariamente colineales en el espacio composicional. Aunque la base de datos "fiable" de esquistos con $\text{St} + \text{Grt} + \text{Bt} + \text{And}$ (i.e., excluyendo los análisis con Total oxídos < 97 % en peso y Sum XII < 1.6) es mucho menor que el resto de grupos de rocas, parece que los problemas de equilibrio son también la causa del espectro composicional del Ti (Figura 4.5.4). Así, las biotitas asociadas a bordes de porfisoblastos de granate de la muestra T447 presentan menos Ti que las de la matriz, que a su vez presentan menos Ti que las asociadas a andalucita ± ilmenita de la muestra T448 (Apéndice II Tabla B, Figuras 4.5.1 y 4.5.4). Ambas muestras tienen la misma asociación mineral y textura, y se encuentran a menos de 50 mts. de distancia (Figura 2.1.24). Este hecho no ocurre en los gneises leucocretos que no presentan oxídos Fe-Ti, por lo que el estudio de las variaciones composicionales de las biotitas de estas rocas es, en este sentido, más simple.

La discusión anterior demuestra el estado de desequilibrio en las rocas analizadas y evidencia que el estudio composicional de estas biotitas es bastante complejo. Es obvio que en estas rocas es imposible evaluar los cambios composicionales de la biotita relacionados con las condiciones progradas de P intermedia, aunque se ofrezcan algunas evidencias al respecto.

4.5.3.2. VECTORES DE INTERCAMBIO

Hasta este momento, toda la discusión sobre el quimismo de las biotitas se ha centrado en los inconvenientes existentes para su correcta caracterización (i.e., limitaciones y errores analíticos, complejidad debida al estado de desequilibrio,...). Desafortunadamente, al introducir los aspectos relativos a los mecanismos de variación composicional y a su cristalquímica, es necesario seguir en la misma línea ya que esta selección sólida presenta una elevada complejidad. Por ello, y por las particularidades de estas biotitas al respecto de los mecanismos que explican sus variaciones composicionales, es necesario hacer una revisión de los vectores de sustitución comúnmente implicados en las variaciones composicionales de las biotitas. Muchos de ellos se habían presentado en el Capítulo 4.4.3 dedicado a la mica.

De las 13 ecuaciones necesarias para definir el sistema biotita, 8 de ellas resultan de la necesidad de mantener su integridad cristalquímica en base a los criterios estiequiométricos previamente asumidos:

\[
\begin{align*}
K + Na + \text{[Ca]}_{(0)} &= 2 \\
\text{Mg} + \text{Fe}^{2+} + \text{Mn} + \text{Ti} + \text{[Al]} + \text{[Ca]}_{(0)} &= 6 \\
\text{Si} + \text{[Al]} &= 8 \\
\text{OH} &= 4 \\
O &= 20 \\
\text{Suma de cargas positivas} &= \text{Suma de cargas negativas} = 44
\end{align*}
\]
que quedan automáticamente satisfechas al seleccionar el componente aditivo flogopita (phl, K₂Mg₃Al₂Si₃O₁₀(OH)₈). Las 7 constricciones restantes serán vectores de intercambio (o componentes aditivos) significativos, cuya elección es arbitraria desde el punto de vista algebraico siempre que se cumplan las tres constricciones especificadas en el Capítulo 4.3.31 (página 87). Como en el caso de la moscovita, es importante realizar la elección considerando la operatividad real de las sustituciones en la base de datos disponible y según los criterios de Hewitt y Abrecht (1986), al menos por lo que respecta a los elementos mayoritarios en los que el error analítico está minimizado.

Del conjunto de 7 vectores de intercambio más un componente aditivo necesario para definir el 'devaluado' espacio composicional de las biotitas presentado en el Capítulo 4.5.2, parte podría definirse por intercambios simples de elementos isomórficos y, ocupantes de una misma posición estructural, que en nuestro caso serían (eligiendo flogopita como componente aditivo): FeMg₄, MnMg₄, NaK₄. Estos vectores definen las moléculas de anita (anh, K₂Fe₂Al₂Si₃O₁₀(OH)₈), Mn-biotita (Mn-Bt, K₂Mg₃Al₂Si₃O₁₀(OH)₈), y Na-flogopita (Na-phl, Na₂Mg₃Al₂Si₃O₁₀(OH)₈), respectivamente. Como en el caso de la moscovita, estos vectores, pueden utilizarse para describir variaciones composicionales y como operadores matemáticos con el fin de condensar el sistema. No obstante, se harán referencias a la "partición" Fe-Mg ya que estos elementos se comportan de manera distinta en las sustituciones en que están implicados. El resto de los vectores hasta un número de 4, no son inmediatos, y pueden elegirse de entre un número elevado de sustituciones posibles.

Sustitución Tschermak: El Plano Ideal de la Biotita.

El diagrama de la Figura 4.5.3, denominado plano ideal de la biotita por Guidotti (1984), ilustra las variaciones composicionales de las biotitas debidas a las dos sustituciones principales de la solución sólida, i.e., el intercambio FeMg₄ y la sustitución Tschermak (tk) [K₄Al₄Al₄Si₁₀O₃∥O₃]₄, que permiten definir los componentes estonita² (es: K₂Mg₄, Al₂₄[Al₄Si₁₀O₃∥O₃]₄), y sidérolita (sid: K₂Fe₂[Al₄Si₁₀O₃∥O₃]₄). Nótese que el vector Tschermak se ha escrito con signo contrario al definido para la moscovita ya que las desviaciones composicionales del join phl-anitimilican aumentos de Al.

Como puede apreciarse en la Figura 4.5.3, las biotitas se desvían de las relaciones ideales Si₄[Al₂] = 6:2 característicos del join flogopita-anita, y son ricas en Fe y moderadamente a muy aluminosas. Estudios experimentales en sistemas simples con fO₂ tamponada han demostrado que la sustitución Tschermak es el

² Los términos estonita y sidérolita han sido utilizados para describir moléculas distintas. Deer et al. (1962, 1966) utilizan para definir moléculas con [K₄Al₄] = 1. Hewitt y Wones (1975) utilizan los términos Al-flogopita y Al-anita para describir moléculas con [K₄Al₄] = 2, i.e., equivalentes a los componentes estonita y sidérolita descritos en el texto. Bailey (1984a) no considera válido este término estonita, y usa sidérolita para describir la misma molécula que Al-anita de Hewitt y Wones (1975), i.e., con [K₄Al₄] = 2 (nótese que en la Tabla 1 de Bailey, 1984a, existe una errata en la fórmula de la sidérolita ya que las relaciones teta-técnicas deben ser Al₂Si₆O₁₅ y no Al₂Si₆O₁₂). Guidotti (1984) sigue a Bailey (1984a) en la no utilización del término estonita y en el uso del término sidérolita con [K₄Al₄] = 2, reemplazando los términos estonita y sidérolita utilizados por Deer et al. (1962) como Al-flogopita y Al-anita, en contra del uso dado por Hewitt y Wones (1975). Guidotti (1984) define el plano ideal de la biotita limitado por los términos phl, an, Al-phl y Al-an, i.e., en los mismos términos que Deer et al. (1962), aunque en sus Figuras 34 y 35 excede el campo a las moléculas con [K₄Al₄] = 2, i.e., en los mismos términos que Hewitt y Wones (1975). En el presente trabajo se utilizan los términos sidérolita y estonita para definir las moléculas con [K₄Al₄] = 2 por convencuencia, a pesar de su aparente ausencia en la naturaleza. Según Strunz (1970) en la localidad tipo de la estonita, Easton, Filadelfia, el material original es un intercambio de flogopita y vermiculita (ver Dymek, 1983). Existen evidencias naturales y experimentales que indican la inestabilidad de las moléculas de anita y sidérolita como fases naturales (Hazen y Wones, 1978; Hewitt y Wones, 1975). La ausencia de un componente como fase natural no es un inconveniente para definir un término extremo, aunque indica que la sustitución que daría lugar a tal término (en este caso la sustitución tk) no está favorecida, no ocurre como tal, o debe compensarse con otras sustituciones acopladas en las fases naturales (cf. Hewitt y Abrecht, 1986).
mecanismo más importante de enriquecimiento de Al en la biorita (e.g., Hazen and Wones, 1972, 1978; Hewitt and Wones, 1975; Robert, 1976a). Sin embargo, las variaciones composicionales ilustradas en las Figuras 4.5.4-4.5.7 no indican la operatividad de la sustitución tschermak en la explicación de las variaciones composicionales, aunque la sustitución tschermak debe explicar las fuertes desviaciones absolutas hacia términos aluminicos. Existe un desbalance en términos absolutos entre las cantidades de 57Al y 56Al respecto de lo esperable si ambos componentes estuvieran controlados por la sustitución ts. Este desbalance se refleja por un exceso de 57Al, que es común en-bioritas metamórficas, particularmente en las pertenencias a asociaciones con moscovita presente (Foster, 1960a y b; Labotka, 1983; Dynek, 1983; Guidotti, 1984), lo cual indica que otras sustituciones deben modificarse sustancialmente las relaciones 56Al debidas a la sustitución tschermak. Debido a que las cantidades de 57Al son anómalas en las bioritas analizadas, las sustituciones que explican el balance de este componente en la estructura tienen una importancia esencial en su descripción cristalquímica.

Sustituciones en Posiciones Octaédricas

El exceso de 57Al respecto del esperable según la sustitución ts podría explicarse por la sustitución di-octaédrica (dtri, Foster, 1960a, y b) 56Al57O56Mg, que define el componente moscovita (ms, K$_2$Al$_4$[Si$_8$O$_{20}$(OH)$_4$]), y que permite balancear las vacantes octaédricas. Robert (1976a) modelizó el balance de las vacantes octaédricas en flogopitas aluminicas sintéticas mediante la sustitución (denominada en este trabajo Si-vacante, Si-vac):

$$ Si_2^{56}[O]^{57}Al_2Mg_1 $$

que define el componente K$_2$Mg$_3$Si$_8$O$_{20}$(OH)$_4$ libre de Al. La síntesis de este término extremo en el sistema KMSH por Seifert y Schreyer (1971) y las evidencias experimentales de Rutherford (1973) sobre el limitado rango de sustitución dioctaédrica sobre anita (menos de 10 % molar), sirvieron a Robert (1976a) para favorecer la sustitución Si-vac en lugar de la sustitución dtri. Sin embargo, las evidencias de muestras naturales sugieren que la sustitución dioctaédrica debe estar maximizada en sistemas con moscovita (e.g., Dynek, 1983; Labotka, 1983), fase no coexistente en los experimentos de Rutherford (1973) y Robert (1976a). La inspección de las Figuras 4.5.4-4.5.7 y las correlaciones de las Tablas 4.5.2-4.5.5 sugieren que el vector dioctaédrico no está implicado en la explicación de las variaciones composicionales debido a la ausencia de correlación, o correlaciones contrarias a las esperables, entre 57Al y Sum VI. Por el contrario, en todos los grupos de muestras se observan correlaciones positivas entre Fe y 56Al que son consistentes con la operatividad del vector Si-vac. Esto contradice las evidencias anteriores sobre el comportamiento de la biorita en sistemas donde coexiste moscovita.

Uno de los componentes extraños al plano ideal de la biorita más importantes en las bioritas naturales, y en las analizadas en el presente trabajo, es el Ti. Como se ha introducido para el caso de la moscovita, la consideración del papel del Ti en cualquier solución sólida está condicionada por presupuestos conocimientos a su estado de oxidación y coordinación.

Engel y Engel (1960) sugirieron que Ti$^{3+}$ sustituye a Al en posiciones octaédricas, y Evans y Raftery (1980) concluiron en base a espectroscopía fotoelectrónica de RX que el Ti es trivalente en las bioritas estudiadas por ellos, si bien más tarde (Evans y Raftery, 1982) reinterpretaron los resultados favoreciendo Ti$^{4+}$. Las interpretaciones de bandas de absorción del espectro visible sugieren que el Ti presenta valencia 4+.
e interacción con Fe²⁺, aunque estos estudios son inconclusivos respecto a la presencia de Ti⁵⁺ (Peye, 1968a, b; Robbins y Strens, 1972; Rossmann, 1984). En base a las evidencias anteriores, el estado de oxidación 4⁺ para el Ti es el comúnmente aceptado, tanto en biotitas (cf. Dyck, 1983; Abrecht y Hewitt, 1988), como en otros silicatos comunes (moscovita, anfiboles, piroxenos, granate).

Por otra parte, la mayoría de los autores aceptan además una coordinación octáédrica del Ti en la biotita (e.g., Dahl, 1970; Dallmeyer, 1974b; Forbes y Flower, 1974; Robert, 1976b; López-Ruiz et al., 1978; Bohlen et al., 1980; Dyck, 1983; Guidotti, 1984; Troumbis et al., 1985; Abrecht y Hewitt, 1988; Foley, 1990; Brigatti et al., 1991). Aunque la presencia de Ti en coordinación tetraédrica es un hecho controvertido en la literatura (e.g., Kunitz, 1936; Hartman, 1969; ver Waychunas, 1987), sólo algunos silicatos como el granate (Waychunas, 1987) o anfiboles riechertícicos ricos en Ti (e.g., Della Ventura et al., 1991), parecen presentar cantidades significativas de [⁶⁰Ti⁴⁺]. En las biotitas naturales, sólo en los casos en que existen deficiencias de cationes típicamente tetraédricos (i.e., Si, Al, Fe³⁺) se admite la entrada parcial de Ti⁴⁺ en posiciones tetraédricas, como es el caso de algunas biotitas de kimberlitas y xenolitos mantélicos en las que Si-Al[subf] < 8 (e.g., Dawson y Smith, 1977; Delaney et al., 1980; Farmer y Boetcher, 1981; Saxena [1966]) consideró igualmente la posibilidad de cierta cantidad de [⁶⁰Ti⁴⁺] en biotitas de metapelitos ricos en Ti.

En este trabajo se seguirá el criterio más aceptado por la mayor parte de los investigadores que han tratado el Ti en biotitas, i.e., [⁶⁰Ti⁴⁺]. El balance de [⁶⁰Ti⁴⁺] puede producirse a partir de una variedad de sustituciones que involucren a los cationes octaédricos, incluyendo [⁶⁰Al], y por lo tanto pueden modificar las relaciones debidas a la sustitución tschermak. Además, su presencia en la estructura puede implicar la introducción de vacantes octaédricas dada la carga significativamente mayor de éste elemento respecto al resto de los cationes octaédricos. Dyck (1983), Guidotti (1984) y Abrecht y Hewitt (1988) han tratado el problema y ofrecido una gran variedad de sustituciones posibles entre las que destacan Tschermak (Tt-K): [⁶⁰Al₁₂Ti₅Si₄Mg₁₂], Tivacante (Tt-V): Ti[subv]⁵⁺[o]Mg₂, vector Ti[subv][⁶⁰Al][⁶⁰Al]₄Si₄, Ti-espínela (Tt-E): Ti₂Mg[⁶⁰Al]₂, y T-Al-vacante (Tt-Al-V): Ti[subv]⁵⁺[o][⁶⁰Al]₄. Como en el caso de las moscovitas, este conjunto de vectores no es linealmente independiente si se consideran también los vectores δt, δt₂ y δv.

La mayor parte de las evidencias obtenidas del análisis de muestras naturales y de estudios experimentales apoyan las sustituciones Tschermak y Tivacante como las sustituciones principales en el balance del Ti en la estructura de la biotita. Como se recordará, estas sustituciones no parecen operativas en el balance del Ti en moscovitas naturales. Los estudios de sistemas experimentales de Robert (1976b) y Abrecht y Hewitt (1988), y naturales de Guidotti et al. (1977) y Tracy (1978) favorecen la inoperatividad de la sustitución Tt-K, mientras que los estudios de sistemas experimentales de Holdaway y Lee (1977), Abrecht y Hewitt (1988) y Foley (1990) y naturales de Dyck (1983), Holdaway et al. (1988), Guidotti y Dyr (1991) favorecen la sustitución Tt-V. Estudios cristalquímicos sobre muestras naturales (e.g., Brigatti et al., 1991) han demostrado la validez simultánea de ambas sustituciones en el balance del Ti. Un hecho importante a tener en cuenta es el reconocido enriquecimiento preferente de Ti en biotitas ricas en Fe, tanto líneas como metamórficas (e.g., Ganser y Wones, 1973; Dallmeyer, 1974b; Guidotti et al., 1977, 1988; Dyck, 1983; Abrecht y Hewitt, 1988) y sintetizadas experimentalmente (Abrecht y Hewitt, 1988; Foley, 1990). Esto implica un comportamiento diferencial del Ti al sustituirse por Fe y Mg mediante las sustituciones Tt-K y Tt-V, e implica evaluar los cationes divalentes octaédricos de manera independiente al considerar el balance del Ti en las biotitas.

La inspección de los diámetros binarios de las Figuras 4.5.1.4-4.5.7 y de las correlaciones elementales de las Tablas 4.5.2-4.5.5 indica que la sustitución Tschermak no puede explicar las desviaciones absolutas ni
las variaciones composicionales en Ti de las muestras estudiadas en este trabajo. Las buenas correlaciones entre Sum VI y Ti sugieren la operatividad de la sustitución Ti-vacante, aunque la sustitución Ti-Al-vacante puede igualmente explicar las variaciones observadas en todos los tipos de rocas debido a las fuertes correlaciones entre Na-Al y Ti. De hecho, las pendientes de las rectas de puntos en los diagramas Sum VI vs Ti son más próximas a la esperada según el vector Ti-Al-vacante que según el vector Na-Al vacante (Figuras 4.5.4-4.5.7). En algunos trabajos se han reconocido correlaciones negativas entre el Ti y Al (e.g., Dallmeyer, 1974b; Labotka, 1983; Guidotti et al., 1988), aunque la sustitución Ti-Al-vacante ha sido implicada explícitamente sólo por Labotka (1983). En opinión del autor de este trabajo, en el estudio composicional de biotitas naturales no es probable que una única sustitución justifique por sí sola el balance del Ti. De hecho, algunos autores (e.g., Holdaway, 1980; Labotka, 1983) han propuesto sustituciones complejas en muestras naturales que, aunque involucran la introducción de vacantes a medida que aumenta el Ti, son difícilmente reducibles a vectores simples como los descritos anteriormente. Foley (1990) sugiere igualmente una sustitución compleja (TiSiFe(Fe,Mg)O(3),Mg2) en biotitas magnéticas sintetizadas experimentalmente en sistemas lamproíticos (nótese que esta sustitución parece erróneamente definida si Mg es octaédrico).

La implicación de más de una sustitución en el balance del Ti en los grupos de muestras o muestras individuales estudiadas en el presente trabajo parece justificada al considerar las correlaciones entre el Ti y la razón Mg/Fe (Figuras 4.5.4-4.5.7). En el caso de las metapelitas graníticas, las correlaciones negativas entre Ti y Mg/Fe (Figuras 4.5.4-4.5.6) son consistentes con las observaciones en otras biotitas naturales (referencias más arriba). Por lo tanto, además de la ya sugerida implicación de la sustitución Ti-Al-vacante (que no afecta a los cationes Fe y Mg), estas correlaciones sugieren que parte de las variaciones en Ti deben balancearse mediante el vector Ti-vacante. En el caso de los gneises leucocratos, las correlaciones positivas entre Ti y Mg/Fe contradicen todas las evidencias sobre muestras naturales indicadas anteriormente, lo cual es otra característica significativa de las muestras estudiadas en el presente trabajo. Una explicación de este comportamiento se ofrecerá más adelante al tratar muestras individuales.

Otras sustituciones que involucran componentes octaédricos, pero no analizables en el presente estudio debido a las limitaciones analíticas ya discutidas son: Ferri-ischermak: [Fe3AlMg]Fe2Si1Mg3, que define el componente ferri-ischermak (K2Fe2SiMg2[AlSiO]O(OH)2), vector Fe oxi-annita Fe3O3Fe3O(OH)2 (identico al vector Fe oxi-hornfels en moscovita), que representa una reacción de deshidroxilación y define el componente oxi-annita (K2Fe2SiO(OH)2) y:

vector Ti oxi: TiO2Mg6(OH)2 (4.39)

similar a la anterior, y que define el componente Ti oxi-flogopita (K2Ti2Mg4[AlSiO]O(OH)2). Como discute más adelante, es muy probable que estas sustituciones estén implicadas en la explicación del espectro composicional de algunas muestras, particularmente de los gneises leucocratos.

Por otra parte, en sistemas de composición pelítica saturados en Si, Al, y Ti, a medida que aumenta el grado metamórfico aumenta la cantidad de Ti en las biotitas en equilibrio con óxidos de Fe-Ti (e.g., Kwik, 1968; Guidotti et al., 1977, 1978; Tracy, 1978; López-Ruiz et al., 1978; Fletcher y Greenwood, 1979; Holdaway et al., 1988) en consistencia con las evidencias experimentales (Robert, 1976b; Abrecht y Hewitt, 1988; Foley, 1990). Las evidencias experimentales indican menor solubilidad del Ti en biotitas con aumentos de presión (e.g., Robert, 1976b; Foley, 1990), si bien este efecto no ha sido comprobado con muestras naturales (a menos el autor no ha encontrado referencias al respecto).
Sustituciones en Posiciones Interlaminares

Además de la sustitución directa NaK₁, las variaciones en las posiciones interlaminares pueden estar controladas por sustituciones acopladas con los componentes de las capas tetraédrica y octaédrica. Excluyendo las sustituciones que implican al Ca, que en nuestro caso no es un componente importante, la característica composicional de la posición interlaminar más importante de las biotitas naturales es la posible presencia de vacantes en cantidades apreciables. La introducción de vacantes en las posiciones de coordinación 12 puede verificarse mediante la sustitución talco (t(v) M₄Si₅O₁₄(OH)₂, (idéntico al vector parafilita en moscovita), que define el término talco (Mg₆Si₄O₁₂(OH)₄). Como ya se ha indicado, la asignación de las vacantes interlaminares calculadas a la sustitución talco es problemática, puesto que es bastante probable la presencia de cationes H₂O⁺ en sustitución de los iones alcalinos a través de la sustitución de hidronio (H₂O⁺)K⁺.

La sustitución talco podría parecer importante en las biotitas analizadas, dadas las cantidades apreciables de vacantes octaédricas (Apéndice II: Tabla B). Sin embargo, las incertidumbres provenientes de la posible presencia de iones H₂O⁺, de volatilización de alcalinos, y de un grado indeterminado de cloritización hacen muy especulativa su operatividad real. Existen, sin embargo, criterios crasalquímicos que sugieren la operatividad de las sustituciones NaK₁ y talco en relación con el grado de distorsión de la capa tetraédrica para ajustarse a las expansiones/contracciones de la capa octaédrica concurrentes con otros cambios composicionales (ver más adelante).

4.5.4. METAPELITAS GRAFITOSAS

Los espectros composicionales de las biotitas en los tres tipos de metapelitas grafítosas son similares (Figuras 4.5.4-4.5.6), lo cual refleja la homogeneidad de la composición de los sistemas estudiados. Existen algunas diferencias en términos de Ti y la razón Mg/Fe que podrían relacionarse con el grado metamórfico, aunque como se discute más adelante es muy probable que esto no sea así. En los gneises pelíticos pueden establecerse diferencias entre aquellos que presentan cordierita, y son algo más magnésicos y menos aluminícos (T348 y T498), y los gneises pelíticos comunes con St+Grt+Bt+Ky (Capítulo 3.1.2). En la Figura 4.5.1 puede observarse cómo las biotitas de gneises pelíticos con St+Grt+Bt+Ky presentan espectros composicionales relativamente limitados por comparación con las de la muestra con cordierita T348 (nótese que una situación similar se registra en la moscovita de estas muestras).

Para facilitar la interpretación de las variaciones composicionales en las metapelitas, los diagramas binarios para las muestras T329 (esquistos con fibrolita) y T348 (gneise pelítico con cordierita) se presentan en las Figuras 4.5.8 y 4.5.9 (Tablas 4.5.6 y 4.5.7). En estas muestras se dispone de análisis de los distintos tipos texturales de biotita, incluyendo lamelas interccedidas en placas de moscovita de la muestra T348 que se han analizado con una sonda de 0.5 μm debido a su pequeño tamaño (aspa en la Figura 4.5.9). Puede apreciarse que uno de estos análisis es deficiente en cationes alcalinos, por lo que puede existir cierta volatilización por irradiación. Estos análisis se han excluido de la Tabla 4.5.7 para no influir en las correlaciones.

En ambas muestras, las variaciones en Ti son muy amplias (0.15-0.35 en T329 y 0.04-0.52 en T348). Los valores extremos los presentan granos texturalmente tardíos, i.e., los asociados a And+Ilm+Crd (los más altos) y los asociados a pseudomorfos de granate y espatula (Ti variable pero incluyendo los valores más
bajos), mientras las placas de la matriz presentan composiciones intermedias. Esta situación es explicable en términos de balances de masa locales en microdominios3 durante el progreso de las reacciones de descomposición de fases precursoras (Si, Grt, Ms, Rf), de manera que la composición de las biotitas neoformadas está controlada por la disponibilidad de Ti en los microdominios donde crece. Por lo tanto, es previsible que el rutilo no esté implicado como fase reactante en los pseudomorfosis de grano y estaurolita donde las mixin están decaídas y no se observa ilmenita como producto de reacción, mientras que el rutilo debe ser fase reactante cuando estaurolita y grano se descomponen en Fib+Bt, And+Bt, y Crd+Bt, como lo indica la presencia de ilmenita asociada a los productos de reacción. Por lo tanto, las cantidades de Ti accesible a la biotita parecen controlar su quimismo, y es previsible que la composición más aproximada al equilibrio bajo condiciones de baja P pueda representarse por el extremo composicional más rico en Ti. Esto es consistente con la blastesis de ilmenita a baja P (según Guidotti et al., 1977), las cantidades de Ti en la biotita son mayores en el caso de coexistir con ilmenita que con rutilo, y con las evidencias experimentales al respecto (Robert, 1976b; Foley, 1990). Nótese que la concentración de Ti en las biotitas de los agregados de Crd ilm que pseudomorfizan estaurolita de la muestra T348 es mayor de 0,5 átomos p.f.u., lo que constituye la concentración máxima en el conjunto de muestras analizadas, incluyendo los gneises leucocratos y rocas asociadas a los mismos. Estos valores son elevados respecto de otras metapelitas de grado medio.

| Tabla 4.5.6. Estadísticas básicas y matriz de correlación Pearson para los análisis de la muestra T329 (esquisto con St+Br+Grt+Fib+And) (n=40). |
Min	Max	Media	e	[V]F	[Al]F	Ti	Fe	Mn	Mg	Sum VI	Na	K	Sum XII
5.259	5.568	5.429	0.050										
2.632	2.671	2.671	0.050										
0.978	1,130	1.047	0.019	0.033									
0.145	0,407	0.278	0.043	0.032	0.711								
2.612	2.822	2.728	0.055	0.640	0.152	0.403							
0.015	0.021	0.024	0.004	0.042	0.008	0.027	0.037						
1.550	1.659	1.583	0.090	0.092	0.135	0.541	0.023	0.033					
5.753	5.772	5.766	0.041	0.614	0.123	0.701	0.801	0.020	0.054				
0.042	0.122	0.066	0.017	0.072	0.145	0.023	0.211	0.274	0.332				
1.507	1.648	1.573	0.031	0.541	0.209	0.024	0.166	0.203	0.356	0.136	0.272		
1.569	1.692	1.645	0.083	0.533	0.071	0.049	0.218	0.306	0.676	0.101	0.180	0.389	
0.541	0.624	0.589	0.019	0.532	0.167	0.015	0.613	0.061	0.723	0.073	0.221	0.054	0.193

| Tabla 4.5.7. Estadísticas básicas y matriz de correlación Pearson para los análisis de la muestra T346 (gneis pélico con St+Br+Grt+And+Crd), excluyendo los análisis hechos con un tamaño de soma de 0.5μm (n=33). |
Min	Max	Media	e	[V]F	[Al]F	Ti	Fe	Mn	Mg	Sum VI	Na	K	Sum XII
5.269	5.487	5.376	0.048										
2.513	2.794	2.624	0.048										
0.789	1.293	1.009	0.152	0.356									
0.945	0.924	0.905	0.167	0.837	0.974								
2.412	2.966	2.768	0.094	0.758	0.065	0.215							
0.929	0.032	0.021	0.004	0.196	0.341	0.496	0.338						
1.356	1.733	1.570	0.117	0.159	0.557	0.072	0.187	0.347					
3.105	3.856	3.671	0.112	0.631	0.591	0.761	0.489	0.495	0.719				
0.948	0.075	0.091	0.006	0.198	0.191	0.204	0.284	0.166	0.366	0.106			
1.545	1.627	1.593	0.021	0.197	0.791	0.272	0.120	0.426	0.420	0.278	0.048		
1.413	1.654	1.588	0.021	0.211	0.719	0.491	0.181	0.361	0.509	0.662	0.228	0.957	
0.477	0.635	0.570	0.049	0.352	0.704	0.642	0.543	0.173	0.926	0.485	0.427	0.463	0.365

3 En este trabajo se utiliza el término "balances de masa en microdominios" en lugar de "equilibrios en microdominios" o en mezcla" ya que este último concepto implica que, aunque el sistema considerado en conjunto está en desequilibrio, existe equilibrio en cada región elemental considerada independientemente (Korzinskii, 1959, p. 19). Esto no puede asegurarse en las rocas estudiadas, particularmente por lo que respecta a la composición de las biotitas.
Figura 4.5.8. Diagramas de variación binarias (base cationica) que muestran el espectro composicional de la biocita de la muestra T329 (apartado con Sr+Bi+Crt+Fib). Los vectores como en la Figura 4.5.4. Símbolos como en la Figura 4.5.1 y Tabla 4.5.1.
Figura 4.5.9. Diagramas de variación binaria (base catiónica) que muestran el espectro composicional de las бікситы de la muestra T348 (pruebas con Gr+And+Crd). Los círculos como en la Figura 4.5.4. Símbolos como en la Figura 4.5.1 y Tabla 4.5.1. Los análisis de las tomas intercasadas en placas de monocristal (ver Figura 4.4.26) se obtuvieron con una sonda de 0.5 μm.
Considerando el conjunto de variaciones, puede concluirse que todos los componentes octaédricos y el [Al] aumentan a medida que el Ti desciende (Figuras 4.5.8 y 4.5.9). En la presentación de las sustituciones comúnmente operativas en las biotitas ya se adelantaron algunas conclusiones al respecto de los vectores operativos en las metapelitas. Estas pueden resumirse como sigue:

- **Capa tetraédrica**: Las correlaciones positivas entre [Al] y Fe, las correlaciones mal definidas entre [Al] y Mgx, y [Al] y [Al], y las correlaciones positivas entre [Al] y Sum VI, excluyen la operatividad de la sustitución tschermak en la explicación de las variaciones composicionales, y favorecen en su lugar la sustitución Si-vacante. La correlación positiva entre [Al] y Fe puede no parecer evidente en el caso de los esquistos con fibrolita (Tabla 4.5.3 y Figura 4.5.5), pero si se detecta cuando las muestras se analizan individualmente (Figuras 4.5.8 y 4.5.9). No obstante, la sustitución tschermak es necesaria para justificar las suertes de variaciones absolutas del yon flogopita-annita (Figuras 4.5.3-4.5.6) y debe involucrarse en el balance de las cantidades absolutas de [Al] en las biotitas estudiadas. La sustitución Si-vacante no ha sido implicada en ningún trabajo consultado para explicar las variaciones composicionales en biotitas de metapelitas y gneises.

- **Vacantes octaédricas**: Las relaciones existentes entre [Al] y Sum VI indican que el exceso de [Al] podría estar controlado por la sustitución dioctádrica (distri) ya que las biotitas analizadas se proyectan sobre la línea representativa del vector distri (Figuras 4.5.4-4.5.6, 4.5.8 y 4.5.9). Sin embargo, las correlaciones del [Al] con Fe, Mg y Sum VI son malas, y en cualquier caso serían positivas con Sum VI (Figuras 4.5.5, 4.5.6, 4.5.8 y 4.5.9), lo que sugiere que el [Al] y las vacantes octaédricas no varían mediante la sustitución distri. Parte de la ocupación octaédrica varía según el vector Si-vacante.

- **Ti**: Las malas correlaciones entre Ti y [Al] indican que la sustitución Ti-chermak no puede explicar las cantidades absolutas de Ti ni sus variaciones (Figuras 4.5.4-4.5.6 y 4.5.8-4.5.9). Las correlaciones negativas del Ti con el resto de componentes octaédricos sugieren que el balance del Ti controla las vacantes octaédricas en las biotitas analizadas mediante las sustituciones Ti-vacante y/o Ti-Al-vacante. Ambas sustituciones parecen necesarias ya que en la Figura 4.5.9 es evidente que las variaciones en Mg y [Al] están controladas por las sustituciones Ti-Chermak y Ti-Al-vacante, respectivamente. Esto explica que estos cationes muestran una correlación positiva (Tabla 4.5.7) explicable por el vector Ti-[Al]/Mg-[Al], que no es sino el resultado de la combinación lineal 1/2-Ti-vac + 1/2-Ti-Al-vac. No obstante, la pendiente de las rectas de regresión en los diagramas Sum VI vs Ti es más próxima a la del vector Ti-Al-vacante, lo que indica que esta última sería responsable de gran parte de las variaciones de Ti y [Al]. La operatividad de la sustitución Ti-Al-vacante explica el hecho de que las correlaciones entre [Al] y Mg, Fe, y Mg no sugieren la operatividad de la sustitución chermak en la explicación de las variaciones composicionales.

- **Variaciones en Mg/Fe**: Las relaciones anteriores indican que las variaciones en Mg están preferentemente controladas por las variaciones en Ti mediante la sustitución Mg-Ti-vacante. Sin embargo, las variaciones en Ti no controlan las variaciones en Fe, que están relacionadas con las de [Al] (que no muestra relación alguna con el Ti) mediante la sustitución Si-vacante. Por lo tanto, Fe y Mg no se comportan de la misma manera ante las variaciones de Ti, por lo que estos cationes no son equivalentes en la reacción de sustitución Ti-vacante. Estas relaciones son consistentes con la evidencia experimental aportada por Abrecht y Hewitt (1938), que indica una partición preferente del Mg en la sustitución Ti-vacante, y con la correlación negativa entre el Ti y la razón Mg/Fe, correlación que es generalmente observada en biotitas metamórficas (ver referencias más arriba). Sin embargo, destaca el hecho de que los fuertes aumentos en Ti se corresponden con descensos muy débiles en la razón Mg/Fe (Figuras 4.5-4.5.6 y 4.5.8-4.5.9), lo cual es el
resultado de la operatividad de la sustitución Ti:Al-vacante ya que gran parte de los átomos de Ti se balancearían con átomos aumentarán en [\(\text{[\text{Al]}_6\text{Mg]}\)], y en menor medida con aumentarán en Mg a través de la sustitución Ti-vacante.

- **Capa interlaminar.** Aunque las correlaciones positivas entre Sum XII y [\(\text{[\text{Al]}_6\text{Mg]}\)] detectadas en las metapelitas grafitosas (Figuras 4.5.4-4.5.6) podrían sugerir la operatividad de la sustitución talco, no se detectan correlaciones entre Sum XII y [\(\text{[\text{Al]}_6\text{Mg]}\)] en muestras individuales con espectros composicionales amplios (e.g., T329, T348, Figuras 4.5.8 y 4.5.9), lo cual excluye la operatividad de esta sustitución y de procesos de cloritización significativos. En algunas muestras el K presenta buenas correlaciones positivas con Ti y negativas con [\(\text{[\text{Al]}_6\text{Mg]}\)], Mg y Sum VI, sugiriendo la operatividad de sustituciones complejas como [\(\text{O}_6\text{K[}\text{[\text{Al]}_6\text{Mg]}\text{]}\text{]}_6\text{K}]. Ya sean estas sustituciones realmente operativas o representan cierta cloritización de las biotitas, en este trabajo se prefiere la sustitución talco en la modelización de las biotitas ya que es un vector comúnmente utilizado en otros casos (e.g., Dynek, 1983). Sin embargo, se mantiene el valor cristalquímico real de las vacantes interlaminares y sus relaciones con el resto de los componentes son cuestiones no resolubles sin análisis independientes de H (Dyar et al., 1991a), en este trabajo consideraremos la sustitución talco exclusivamente para mantener las construcciones algebraicas necesarias de la integridad cristalquímica de esta fase. Por otra parte, la ausencia de cloritización significativa indica que los altos contenidos en [\(\text{[\text{Al]}_6\text{Mg]}\)] son una característica cristalquímica de estas biotitas, más aún si se tiene en cuenta que la presencia de cierta cantidad de Fe\(^{\text{3+}}\) en posiciones ultradólicas (Guidotti y Dyar, 1991) haría aumentar aún más las cantidades de [\(\text{[\text{Al]}_6\text{Mg]}\)].

De las descripciones anteriores es evidente que poco puede decirse de las variaciones composicionales relacionalles con el grado metamórfico. Contrariamente al caso de las moscovitas, y a efectos de comparar biotitas de distintas muestras, no existe criterio de selección de valores de Ti, tal como media, máximo o mínimo, ya que las tendencias de variación relacionadas con la descompresión tienden hacia polos opuestos. No obstante, en el caso de tomar los valores máximos como indicativos de las condiciones de equilibrio de al vacío, las cantidades de Ti aumentan en la secuencia Grt+Br → Sr+Br+Grt+And → Sr+Br+Grt+Al—as+Ky → Sr+Br+Grt+Ky+Al—as+Cr (Tablas 4.5.2-4.5.4 y Figura 4.5.1). Esto es interesante, ya que sugiere que durante la descompresión se mantuvo la estructura térmica heredada de las condiciones de P intermedia que, como se deduce de la composición de las moscovitas, supone incrementos de temperatura en el mismo sentido que el especificado anteriormente.

Por otra parte, la tendencia de variación de la razón Mg/Fe en las biotitas con el grado metamórfico no es única y depende de las asociaciones de fases silicadas presentes. En el caso de asociaciones donde no coexiste clorita (e.g., asociaciones disociativas Sr+Br+Grt o Sr+Br+Al—as en el sistema KFMASH) ni fases que "secesten" Fe como sulfuros (e.g., Guidotti, 1970, 1974; Mohr y Newton, 1983; Guidotti et al., 1988), la razón Mg/Fe desciende con el grado metamórfico (Chinner, 1965; Guidotti, 1978; Guidotti, 1984; Guidotti et al., 1988; Holdaway et al., 1988). Las variaciones en la razón Mg/Fe de las metapelitas analizadas en este trabajo desciende en el sentido del aumento del grado hasta considera valores mínimos, máximos o medios (Tablas 4.5.2-4.5.4). Sin embargo, no puede asegurarse que estas variaciones sean las existentes durante las condiciones de P intermedia, esto es, que la composición de la biotita en equilibrio con las fases de P intermedia (granate y estaurolit) esté representada en los rangos observados para cada muestra. Como se describe en el Capítulo 5.4, las variaciones en la razón Mg/Fe de las biotitas con el grado deben interpretarse en el mismo sentido que las de Ti, i.e., que representan la tendencia al equilibrio a baja P.
4.5.5. GNEISES LEUCOCRATOS Y ROCAS ASOCIADAS

Gran parte de la heterogeneidad composicional de las biotitas de los gneises leucocratos es debida al efecto composicional de los sistemas analizados. Sin embargo, en la mayor parte de las muestras se detectan variaciones no menos importantes (Figura 4.5.1), particularmente en aquellas en que coexisten fases AFMTi procesos desestabilizados, como granate (e.g. gneises bandeados, T336), rutilo (e.g., enclave restitico, T376) o moscovita (e.g., dique de microgranito T494).

Los aspectos composicionales más sobresalientes de estas biotitas son similares a los ya descritos en las biotitas de las metapelitas gráfítosas, i.e., las elevadas cantidades de \([^{6}Al]\), que en un gran número de análisis superan 1 átomo pfa y llegan hasta casi 1,5 átomos pfa, y un rango de variación del Ti muy amplio (0.039 y 0.531 átomos pfa) que parece controlar las variaciones del resto de los componentes (Tabla 4.5.4, Figuras 4.5.1 y 4.5.7). Es importante recordar que en casi todas las muestras estudiadas de gneises leucocratos no coexisten grafito ni óxidos de Ti, por lo que las biotitas no están saturadas en Ti para las condiciones de equilibrio y pueden contener cantidades apreciables de Fe\(^{3+}\). En todas las muestras se detectan cantidades de Ti elevadas (Figura 4.5.1), lo cual es esperable en biotitas de rocas de grado alto. Las cantidades menores en Ti las presentan las biotitas asociadas a los pseudomorfos de granate, y las cantidades más altas los análisis de biotita del enclave restitico (T376), de acuerdo con la coexistencia de rutilo e ilmenita.

Considerando todos los datos, las correlaciones elementales (Tabla 4.5.4, Figura 4.5.7) no son muy significativas debido a la combinación de efectos composicionales de los sistemas y los problemas de equilibrio interno en las muestras. Sin embargo, la mayor parte de las observaciones hechas anteriormente al respecto de las variaciones en las biotitas de las metapelitas gráfítosas aplican igualmente a las de los gneises leucocratos:

- ausencia de correlación entre \([^{6}Al]\) y \([^{4}Al]\), que no favorece la operatividad de la sustitución tk
- correlación positiva entre Fe y \([^{6}Al]\), que favorece la operatividad de la sustitución Si-vac
- correlación positiva entre \([^{4}Al]\) y Sum VI, que no favorece la operatividad de la sustitución di-tri
- correlaciones negativas entre Ti y \([^{6}Al]\) y Sum VI, que sugieren la operatividad de la sustitución Ti-Al-vac
- escaso rango de variación de las vacantes interlaminares, que sugiere la ausencia de clarización

Sin embargo, por comparación con las metapelitas gráfítosas, los rangos de variación de Fe, Mg y Mg/Fe son bastante más amplios. En parte esto es debido a la consideración de sistemas distintos, ya que las biotitas con Mg/Fe > 0.5 pertenecen al enclave restitico (T376) y un gran número de gneises presentan biotitas con razones Mg/Fe < 0.5. No obstante, rangos amplios de variación en Mg/Fe también se detectan en muestras individuales. Además, existe una clara correlación positiva entre Ti y Mg, y una correlación negativa entre Ti y Fe que resulta en la correlación positiva entre Mg/Fe y Ti. Estas relaciones impiden considerar la operatividad de la sustitución Ti-vacante en el balance de las variaciones de Mg (por contraposición a las metapelitas), aunque esta sustitución sí podría balancearse parte de las variaciones en Fe. Esto es contrario a las evidencias experimentales al respecto de la partición Fe-Mg en la sustitución Ti-vacante (e.g., Abrech y Hewitt, 1988; ver también Brigatti et al., 1991). La fuerte correlación negativa entre Fe y Mg sugiere que gran parte de los cambios en estos elementos pueden balancearse por la sustitución FeMg, lo cual puede explicar el hecho de que la pendiente de la correlación entre Fe y \([^{6}Al]\) no es paralela al vector Su.
vacante (i.e., existe un exceso de Fe respecto de 37Al en Figura 4.5.7). Estos resultados se confirmaron al considerar las muestras individualmente, aunque el comportamiento de la solución sólida es variable según el tipo de roca. A pesar de la inadecuación de las sustituciones tschermak y tacon para explicar las variaciones compósitionales, estos vectores son necesarios para explicar las posiciones absolutas de los análisis en el espacio compósitional. En los apartados que sigue se presentan los datos de algunas muestras representativas.

4.5.5.1. GNEISOS BANDEADOS CON MOSCOWITA+BIOTITA+GRANATE

De las 4 muestras analizadas de este tipo de gneises, en este apartado se presentan los resultados de la muestra T336 dado que se dispone de un mayor número de análisis de todos los tipos texturales de biotita: placas de la matriz afectadas por la deformación, placas decuosadas que pseudomorfizan al granate y las lamelas intercruzadas producto de descomposición fengítica de moscovitas primaria (Figura 4.5.10, Tabla 4.5.8). Estas últimas fueron analizadas con una sonda de 0.5 μm debido a su tamaño muy fino, aunque no se observan pérdidas significativas de los elementos alcalinos (Figura 4.5.10). Respecto de las biotitas de las metamórficas, es de destacar la composición más rica en Fe, aunque las cantidades de Al son similares a pesar de que no coexisten fases que saturadas en Al. Las cantidades de 37Al llegan a ser particularmente elevadas en esta muestra (máximo de 1.375 átomos p.f.u.).

Tabla 4.5.8. Estadística básica y matriz de correlación Pearson para los análisis de biotita de la muestra T336 (gneis bandeado con Bi+Ms+Grt) incluyendo los análisis de lamelas intercruzadas en moscovita lixivio con una sonda de 0.5 μm. (n=37).

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>37Al</th>
<th>Ti</th>
<th>Fe</th>
<th>Mn</th>
<th>Mg</th>
<th>Sum VI</th>
<th>Na</th>
<th>K</th>
<th>Sum XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>5.284</td>
<td>5.563</td>
<td>5.277</td>
<td>0.064</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>2.437</td>
<td>2.716</td>
<td>2.635</td>
<td>0.064</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medio</td>
<td>0.898</td>
<td>1.375</td>
<td>1.112</td>
<td>0.128</td>
<td>0.345</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>0.099</td>
<td>0.400</td>
<td>0.219</td>
<td>0.124</td>
<td>-0.436</td>
<td>-0.330</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37Al</td>
<td>2.957</td>
<td>3.840</td>
<td>3.366</td>
<td>0.245</td>
<td>0.578</td>
<td>0.785</td>
<td>-0.939</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>0.074</td>
<td>0.644</td>
<td>0.076</td>
<td>0.068</td>
<td>0.481</td>
<td>0.793</td>
<td>-0.520</td>
<td>0.832</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>0.606</td>
<td>3.139</td>
<td>0.900</td>
<td>0.129</td>
<td>-0.410</td>
<td>-0.937</td>
<td>0.391</td>
<td>-0.931</td>
<td>0.839</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.664</td>
<td>5.443</td>
<td>3.302</td>
<td>0.093</td>
<td>0.562</td>
<td>0.743</td>
<td>-0.928</td>
<td>0.950</td>
<td>0.845</td>
<td>-0.814</td>
</tr>
<tr>
<td>Mg</td>
<td>0.664</td>
<td>5.443</td>
<td>3.302</td>
<td>0.093</td>
<td>0.562</td>
<td>0.743</td>
<td>-0.928</td>
<td>0.950</td>
<td>0.845</td>
<td>-0.814</td>
</tr>
<tr>
<td>Sum VI</td>
<td>0.664</td>
<td>5.443</td>
<td>3.302</td>
<td>0.093</td>
<td>0.562</td>
<td>0.743</td>
<td>-0.928</td>
<td>0.950</td>
<td>0.845</td>
<td>-0.814</td>
</tr>
<tr>
<td>Na</td>
<td>0.664</td>
<td>5.443</td>
<td>3.302</td>
<td>0.093</td>
<td>0.562</td>
<td>0.743</td>
<td>-0.928</td>
<td>0.950</td>
<td>0.845</td>
<td>-0.814</td>
</tr>
<tr>
<td>K</td>
<td>0.664</td>
<td>5.443</td>
<td>3.302</td>
<td>0.093</td>
<td>0.562</td>
<td>0.743</td>
<td>-0.928</td>
<td>0.950</td>
<td>0.845</td>
<td>-0.814</td>
</tr>
<tr>
<td>Sum XII</td>
<td>0.664</td>
<td>5.443</td>
<td>3.302</td>
<td>0.093</td>
<td>0.562</td>
<td>0.743</td>
<td>-0.928</td>
<td>0.950</td>
<td>0.845</td>
<td>-0.814</td>
</tr>
<tr>
<td>Mg/Fe</td>
<td>0.161</td>
<td>0.028</td>
<td>0.272</td>
<td>0.065</td>
<td>-0.478</td>
<td>-0.874</td>
<td>0.945</td>
<td>0.664</td>
<td>-0.843</td>
<td>0.991</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Las variaciones pueden modelizarse en función de las cantidades en Ti (rango de 0.04 a 0.40 átomos p.f.u.), que son más bajas en las placas que pseudomorfizan al granate y mayores en las lamelas intercruzadas en moscovita, mientras que las placas de la matriz foliada presentan valores intermedios (Figura 4.5.10). Nótese que los dos primeros tipos de biotita son texturalmente raudos y relacionables con los procesos reaccionales ligados a la descomposición, por lo que de nuevo se detectan balances de masa locales en microdomínios. El elevado contenido en Ti de las lamelas de biotita intercruzadas en placas de moscovita primaria son consistentes con el elevado contenido en Ti de estas últimas (máximo de 0.13 átomos p.f.u, Capítulo 4.4.4.1). Dado que la descomposición de las moscovitas fengíticas induce reajustes menores en los cristales de la matriz, los cambios composicionales mayores en las biotitas de estas muestras han sido inducidos casi exclusivamente por la descomposición de granate. Por ello, en este caso, puede considerarse que el polo compósitional rico en Ti de las biotitas de la matriz representa la composición precoz previa a los reajustes compósitionales.
Figura 4.5.10. Diagramas de variaciones bivariados (base catorciás) que muestran el espectro composicional de las biotitas de la muestra T336 (espesas basadas en Mfs+Bt+Grt). Los vectores como en la Figura 4.5.4. Símbolos como en la Figura 4.5.1 y Tabla 4.5.1. Las dos anáforas de fases intercambiables en placa de mica hasta primaria se obtuvieron con tamaños de 0.5 μm, aunque en este caso no se observaron pérdidas apreciables de elementos alcalinos.
Los valores absolutos y correlaciones de los componentes (Figura 4.5.10) son consistentes con todos los puntos señalados anteriormente para el conjunto de greises leucocratos (i.e., operatividad de los vectores Ti-Al-vacante, Si-vacante, y FeMg₄, e inoperatividad de la sustitución Ti-Mg-vacante), por lo que no se insistirá en ellos. No obstante, más adelante se volverán a analizar cuantitativamente los cambios composicionales de estas biotitas.

4.5.5.2. Restitas con biotita + rutilo + distena + granate

Las heterogeneidades composicionales de biotita en la muestra T376 son también notables (Figura 4.5.11, Tabla 4.5.9), a pesar de que sólo existe un tipo petrográfico de biotita (placas de grano medio a grueso) que forma la mayor parte del enclavío. Las variaciones composicionales están asociadas a procesos reaccionales que implican la pseudomorfosis parcial del rutilo por ilmenita, la descomposición de la propia biotita para formar And+Qz+Ilm, y el reemplazamiento de granate en los bordes por biotita. En la Figura 4.5.11 se distinguen los análisis de placas de biotita en contacto con granate e ilmenita (menos de 100 μm de distancia) del resto de los análisis de áreas de las mismas placas más alejadas. Puede apreciarse que los análisis de biotita en contacto con ilmenita que pseudomorfose parcialmente al rutilo son similares a los análisis de áreas más alejadas, si bien los análisis de las áreas próximas a granate son claramente distinguibles.

Tabla 4.5.9. Estadística básica y matriz de correlación Pearson para los análisis de las muestras T376 (enclavio restítico con Br-Ky+Rt+Gre). (n=30).

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
<th>Media</th>
<th>o</th>
<th>[Na]</th>
<th>[Al]</th>
<th>Ti</th>
<th>Fe</th>
<th>Mn</th>
<th>Mg</th>
<th>Sum VI</th>
<th>Na</th>
<th>K</th>
<th>Sum XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>5.311</td>
<td>5.613</td>
<td>5.497</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>[Fe]</td>
<td>2.387</td>
<td>2.689</td>
<td>2.503</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>[Al]</td>
<td>0.703</td>
<td>1.313</td>
<td>0.928</td>
<td>0.144</td>
<td>0.462</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>0.049</td>
<td>0.531</td>
<td>0.358</td>
<td>0.115</td>
<td>0.669</td>
<td>-0.883</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>2.716</td>
<td>3.198</td>
<td>2.721</td>
<td>0.279</td>
<td>0.786</td>
<td>0.364</td>
<td>-0.649</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.033</td>
<td>0.041</td>
<td>0.039</td>
<td>0.003</td>
<td>0.240</td>
<td>0.485</td>
<td>-0.536</td>
<td>0.187</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>1.209</td>
<td>1.857</td>
<td>1.509</td>
<td>0.178</td>
<td>0.672</td>
<td>-0.479</td>
<td>0.650</td>
<td>-0.919</td>
<td>-0.149</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum VI</td>
<td>5.278</td>
<td>5.748</td>
<td>5.529</td>
<td>0.096</td>
<td>0.864</td>
<td>0.543</td>
<td>-0.343</td>
<td>0.362</td>
<td>0.370</td>
<td>-0.676</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>0.053</td>
<td>0.098</td>
<td>0.078</td>
<td>0.008</td>
<td>0.637</td>
<td>0.423</td>
<td>-0.428</td>
<td>-0.123</td>
<td>0.316</td>
<td>0.249</td>
<td>-0.195</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>1.577</td>
<td>1.791</td>
<td>1.714</td>
<td>0.044</td>
<td>0.347</td>
<td>-0.170</td>
<td>0.028</td>
<td>0.132</td>
<td>0.012</td>
<td>0.062</td>
<td>0.032</td>
<td>-0.153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum XII</td>
<td>1.671</td>
<td>1.429</td>
<td>1.794</td>
<td>0.043</td>
<td>0.381</td>
<td>0.039</td>
<td>-0.053</td>
<td>0.112</td>
<td>0.102</td>
<td>-0.037</td>
<td>0.194</td>
<td>0.058</td>
<td>0.976</td>
<td></td>
</tr>
<tr>
<td>Mg/Fe</td>
<td>0.369</td>
<td>0.823</td>
<td>0.547</td>
<td>0.127</td>
<td>0.686</td>
<td>0.433</td>
<td>0.624</td>
<td>-0.963</td>
<td>-0.184</td>
<td>0.583</td>
<td>0.747</td>
<td>0.194</td>
<td>0.047</td>
<td>-0.636</td>
</tr>
</tbody>
</table>

Los análisis de las placas de biotita que no están próximas a granate destacan por los elevados contenidos en Ti (máximo de 0.531 átomos pfu), lo cual no es de extrañar dada la presencia de fases que saturan al Ti, y la elevada razón Mg/Fe (máximo de 0.823) por comparación con el reto de biotitas analizadas de metapelitas grafitosas y greises leucocratos. Los análisis cercanos a granate presentan contenidos menores, aunque variables, en Ti (mínimo de 0.049 átomos pfu) y en la razón Mg/Fe, y de nuevo estas composiciones pobres en Ti son ricas en [Na] (que supera 1.23 átomos pfu (Figura 4.5.11).

Las variaciones composicionales detectadas en estas biotitas son similares a las de las biotitas de los gneises bandeados consideradas más arriba, aunque su posición absoluta está desplazada en el espazo composicional. Las variaciones del Ti controlan las variaciones en [Al] y Sum VI (sustitución Ti-Al-vacante), existe una fuerte correlación negativa entre Mg y Fe (sustitución FeMg₄) y positiva entre Ti y Mg (lo que excluye la sustitución Ti-vacante), y existe una correlación positiva entre Fe y [Al] (sustitución Si-vacante; nótese que la correlación negativa entre Mg y [Al], que podría sugerir la operatividad de la sustitución tschermak, puede explicarse por el efecto de la sustitución FeMg₄).
Figura 4.5.11. Diagramas de variación binaria (baso latitos) que muestran el espectro composicional de las biotitas de la muestra T376 (endice restituo con Br+Rt+Ky+Grt). Los vectores como en la Figura 4.5.4. Símbolos como en la Figura 4.5.1 y Tabla 4.5.1.
Los cambios composicionales de estas placas de biotita deben a su implicación en texturas reaccionales puede observarse en las Figuras 4.5.12 y 4.5.13, que representan transversales elementales sobre cristales individuales desde gramos de rutilo pseudomorfizados hasta agregados de And+Qtz+Ilm. En la Figura 4.5.12 puede observarse el descenso en Ti y aumento en [\\text{M}Al en las áreas próximas a los pseudomorfos de And+Qtz+Ilm, y las similitudes entre las áreas en contacto con ilmenita y las zonas algo más alegadas. No obstante, en la zona inmediatamente en contacto con ilmenita se detecta un débil descenso en Ti y aumento en [\\text{M}Al. El resto de los componentes, particularmente Fe, Mg y [\\text{M}Al, presentan un comportamiento aparentemente errático de difícil interpretación. Nótese que el Fe y [\\text{M}Al mantienen una estrecha relación que sugiere la operatividad del vector Si-vacante, y que no puede ser interpretada como el resultado de cloritización ya que en las zonas donde se observan los incrementos en Fe y [\\text{M}Al no se observan descensos en Ti ni aumentos en [\\text{M}Al. Igualmente puede observarse un comportamiento antiparético entre Fe y Mg (i.e., FeMg) no relacionable con variaciones en Ti.

Figura 4.5.12. Perfiles elementares (base catiónica) a lo largo de una placa de biotita de la muestra T376 (ensayo reactivo con Be+Rt+K+Gr) desde el contacto con ilmenita producto de pseudomorfosis parcial de rutilo (estrella, a la izquierda de los perfiles) hasta un área donde se encuentra parcialmente reemplazada por agregados de And+Qtz+Ilm (derecha de los perfiles).
El hecho de que la variación en Ti pueda modelizarse por la sustitución Ti-Al-vacante se ilustra en la Figura 4.5.13, donde la variación en Sum VI a lo largo de la transversal compara mejor con la modelización según este vector que según el vector Ti-vacante (que predice un fuerte aumento final en Sum VI no detectado). La interferencia del vector Si-vacante, que también afecta a las variaciones en Sum VI, puede explicar los saltos en esta variable a lo largo de la transversal coincidiendo con los saltos en Fe y $^{\text{[Al]}}$, pero no invalida la operatividad del vector Ti-Al-vacante como mecanismo de balance del Ti y $^{\text{[Al]}}$, como se indica por el buen ajuste entre la variación detectada en $^{\text{[Al]}}$ y el modelo según la sustitución Ti-Al-vacante (Figura 4.5.13).

En resumen, las relaciones existentes entre Ti, Fe y Mg permiten concluir de nuevo que la correlación positiva entre Ti y Mg/Fe no es debida al balance del Ti, ya que este componente varía mediante la sustitución Ti-Al-vacante, sino que deriva de cambios composicionales concurrentes que implican la operatividad de los vectores Mg/Fe y Si-vacante. Este comportamiento aparentemente anómalo del Ti permite el rápido incremento en $^{\text{[Al]}}$ al operar la sustitución Ti-Al-vacante, lo cual puede explicar las anómalas cantidades de $^{\text{[Al]}}$ de estas muestras por comparación con otras muestras naturales.
4.5.5.3. Gneises Aplíticos con Moscovita>Biotita>Granate y Dique de Microgranito T494

La biotita es muy escasa en los gneises aplíticos, por lo que el número de análisis es muy limitado (Apéndice II Tabla B). Además, en algunos casos como en la muestra T335 (sólo dos granos analizados) no son de buena calidad, ya que presentan fuertes deficiencias de masa. Por esta razón, las conclusiones extraíbles de estas biotitas son limitadas. No obstante, es interesante mostrar las relaciones de la muestra T493, en la que se dispone de análisis de lamelas intercruzadas con AnodiKfs que pseudomorfizan las placas de moscovita y de granos de la matriz asociados a bordes de granate (Figura 4.5.14). Puede observarse la clara distinción composicional mostrada por los mayores contenidos en Ti y menores contenidos en $^{[6]}$Al de las lamelas intercruzadas en las placas de moscovita primarias. Todas las consideraciones al respecto de los vectores que permiten describir las variaciones composicionales en los gneises buneados son aplicables a esta muestra, donde también se observa la correlación positiva entre Ti y Mg/Fe.

En el dique de microgranito (Figura 4.5.15) pueden distinguirse las placas de la matriz de las lamelas de biotita que sobreequilibran (reemplazan) las placas de moscovita ignea (ver Capítulo 4.4.4.5). Aunque los contenidos en Al de ambos tipos de biotita son similares, las placas que sobreequilibran moscovita son más ricas en $^{[6]}$Al (hasta 1.20 átomos p.f.u) y más pobres en $^{[8]}$Al (y Fe, Mg y Sum VI) (Figura 4.5.15). Los contenidos en Ti de ambos grupos se solapan (ca. 0.33 átomos p.f.u), y el rango de variación este elemento es muy limitado por comparación con el resto de muestras analizadas. Por lo tanto, los mayores contenidos en $^{[6]}$Al de las placas sobreequilibras no pueden relacionarse con la operatividad de la sustitución Ti-Al-vacante. Este hecho y las diferencias composicionales entre los dos tipos de biotitas de esta muestra pueden relacionarse con los procesos reaccionales que afectan a las placas de moscovita ignea, y sugieren la intervención de una fase líquida en la reacción dado que no existen otras fases AFMTi como granate y óxidos de Fe-Ti.

La menor ocupación octádrica de las biotitas sobreequilibras en placas de moscovita es consistente con su origen por descomposición de moscovita, ya que es previsible un aumento en la solubilidad del componente dioctádrico moscovita. De hecho, la correlación positiva entre Sum VI y $^{[6]}$Al en esta muestra, es distintiva respecto de las correlaciones negativas observadas en el resto de las muestras tratadas hasta ahora, y sugiere la operatividad del vector distioctádrico para explicar una parte sustancial de las variaciones composicionales. Por lo tanto, las variaciones en las vacantes octádricas y $^{[6]}$Al no parecen controladas en este caso por las variaciones en Ti, al menos dentro del grupo de composiciones de biotitas sobreequilibras sobre moscovita (Figura 4.5.15). Una observación similar puede hacerse al reconsiderar la muestra T493 (Figura 4.5.14), ya que las lamelas intercruzadas en placas de moscovita presentan una ocupación octádrica menor que las asociadas a granate. Sin embargo, al considerar todo el conjunto de análisis para esta muestra, la correlación positiva entre Sum VI y $^{[6]}$Al haría excluir la operatividad del vector distioctádrico. Esto sugiere que, en este caso, los vectores que describen variaciones composicionales entre granos de distinto origen pueden no tener significación cristalquímica, a pesar de encontrarse en la misma roca, lo cual puede interpretarse como el resultado del aislamiento, respecto de la matriz, de las lamelas intercruzadas de biotita en las placas de moscovita. En este sentido, Guidotti et al. (1975, p. 853) notaron “the dangers of trying to infer crystallochemical relationships in rock-forming solid solutions using data based on specimens from many different parageneses”.
Figura 4.5.14. Diagramas de variación binaria (base calcítica) que muestran el espectro composicional de las bocetas de la muestra T493 (fotía asfítica con Ms+En+Grt). Los vectores como en la Figura 4.5.4. Simbolos como en la Figura 4.5.1 y Tabla 4.5.1.
Figura 4.5.15. Diagnósticos de variación binarios (base utópinos) que muestran el espectro composicional de las biotitas de la muestra T944 (dique de microgranito con Nor+Bt). Los vectores como en la Figura 4.5.4. Símbolos como en la Figura 4.5.1 y Tabla 4.5.1.
4.5.5.4. CORRELACIÓN POSITIVA ENTRE Ti y Mg/Fe

Como ya se ha indicado, este comportamiento es anómalo por comparación con otras biotitas naturales de ambientes metamórficos e igneos (ver referencias más arriba). No obstante, Monier y Robert (1986b) describen un comportamiento similar en biotitas de leucogranitos no saturados en Ti donde no coexisten óxidos de Fe-Ti y presentan moscovitas con altos contenidos en Ti. Aunque Monier y Robert (1986b) no ofrecen explicación alguna a este fenómeno, sugieren que es debido a un efecto de la composición de los sistemas, de manera que los magmas leucograníticos más ricos en Ti presentan los valores de Mg/Fe más altos.

Cabe resaltar que el estudio de Monier y Robert (1986b) y todos los estudios citados anteriormente han tratado de variaciones composicionales entre muestras, por lo que las variaciones composicionales son asignables a cambios en las variables intensivas o a cambios en las composiciones de los sistemas. En el presente caso y dado que el espectro composicional se presenta en muestras individuales que pudieron contener cierta proporción de fundido durante las reacciones de descomposición de fases precursoras (gneises aplíticos y gneissoides), no es simple relacionar las variaciones en la composición de las biotitas con equilibrios de compuestos con un fundido cuya razón Mg/Fe varíase. En estas rocas, este comportamiento debe asignarse más bien al efecto de la descomposición de las fases AFM sin intervención de fases saturadas en Ti (zafundido) y a la posible metaestabilidad de las composiciones de biotita generadas dadas sus elevadas cantidades de [M4Al], aunque también es posible que pueda influir variaciones en la razón Fe3+/Fe2+ en sistemas donde fO2 no se encuentran tamponada. Estos aspectos se tratarán a continuación.

4.5.6. CUANTIFICACIÓN DE LOS CAMBIOS COMPOSICIONALES MEDIANTE VECTORES DE INTERCAMBIO

En este apartado se modelizan los cambios composicionales en las biotitas de las muestras T348 (gneis peltítico con cordierita) y T336 (gneis banado con Ms+Bt+Grt) ya que presentan espectros composicionales particularmente amplios que pueden relacionarse directamente con procesos reacionales determinados entre las fases coexistentes. Además, estas muestras presentan correlaciones entre Ti y Mg/Fe distintas, negativa y positiva, respectivamente. La variación composicional tan extrema de estas muestras individuales parece anormal al comparar con otros casos naturales, lo que hace de estas muestras casos muy interesantes.

4.5.6.1. VECTORES DE INTERCAMBIO MÚLTIPLES

La cuantificación de los vectores de intercambio se ha realizado mediante el Análisis de Componentes Principales. Como es de esperar, los resultados son estadísticamente satisfactorios para las muestras seleccionadas debido a las buenas correlaciones y fuertes covarianzas existentes entre los distintos componentes catiónicos (Tabla 4.5.10). El análisis se ha realizado para las dos muestras de dos maneras: (A) sin excluir ningún componente de la fórmula estructural, y (B) excluyendo un componente de la capa tetraédrica (Si) y otro de la octaédrica (Fe para T348, y Mg para T336) para satisfacer las constricciones de balance de masa, además de los componentes minoritarios (Mn, Na) e interlaminares (K, [M3M1O]) (Tabla 4.5.10, ver Labotka, 1983). Nótese que en el segundo tipo de cálculo las constricciones de balance de masas en las capas tetraédrica y octaédrica están satisfechas, aunque el balance de cargas es peor, mientras que en el
primer tipo de cálculo no existen constricciones de balance de cargas y masa, pero el ajuste de las cargas es mejor. El procedimiento A no es correcto desde el punto de vista estadístico y algebraicado dados las dependencias lineales existentes en las variables, lo que supone que debe excluirse 1 variable por cada constricción equimembranaria de balance de masa como se ha hecho en el caso B. Sin embargo, los resultados de los cálculos (B) dependen fuertemente del componente octaédrico que se excluye del análisis. Por lo tanto, los cálculos A se utilizarán a efectos comparativos respecto de los cálculos B. En la Tabla 4.5.10 puede apreciarse que los resultados son mejores desde el punto de vista estadístico en el caso B, debido esencialmente a la exclusión de los componentes interlaminares que muestran escasa variación y correlaciones más deficientes. No obstante, los vectores de intercambio múltiples deducibles en ambos casos son muy similares.

Tabla 4.5.10. Tres primeros Componentes Principales y % varianza total explicada para los análisis de biotita de las muestras T348 (gneis pelítico con cordierita) y T336 (gneis bandado con Ms+Be+Grt).

<table>
<thead>
<tr>
<th></th>
<th>T348</th>
<th></th>
<th></th>
<th>T336</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>(\text{Si}^\text{IV}/\text{Al})</td>
<td>0.080</td>
<td>0.305</td>
<td>-0.252</td>
<td>0.037*</td>
<td>0.377*</td>
<td>-0.312*</td>
</tr>
<tr>
<td>(\text{Mg}/\text{Al})</td>
<td>0.080</td>
<td>0.305</td>
<td>0.232</td>
<td>0.076</td>
<td>0.377</td>
<td>0.312</td>
</tr>
<tr>
<td>(\text{Mg}/\text{Al})</td>
<td>0.552</td>
<td>0.128</td>
<td>-0.553</td>
<td>0.551</td>
<td>0.073</td>
<td>-0.653</td>
</tr>
<tr>
<td>(\text{Ti})</td>
<td>-0.603</td>
<td>0.030</td>
<td>0.101</td>
<td>-0.607*</td>
<td>0.124*</td>
<td>0.005</td>
</tr>
<tr>
<td>(\text{Fe})</td>
<td>0.065</td>
<td>-0.793</td>
<td>-0.019</td>
<td>0.051*</td>
<td>4.345*</td>
<td>0.374*</td>
</tr>
<tr>
<td>(\text{Mn})</td>
<td>0.007</td>
<td>-0.007</td>
<td>0.009</td>
<td>-0.289</td>
<td>-0.311</td>
<td>0.073</td>
</tr>
<tr>
<td>(\text{Mg}/\text{Al})</td>
<td>0.386</td>
<td>0.365</td>
<td>0.659</td>
<td>0.354</td>
<td>0.640</td>
<td>0.385</td>
</tr>
<tr>
<td>(\text{Na})</td>
<td>0.004</td>
<td>0.018</td>
<td>0.028</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(\text{K}/\text{Al})</td>
<td>-0.639</td>
<td>-0.009</td>
<td>0.144</td>
<td>-0.075</td>
<td>0.065</td>
<td>0.414</td>
</tr>
<tr>
<td>(\text{Fe}^\text{III}/\text{Al})</td>
<td>0.065</td>
<td>-0.000</td>
<td>0.141</td>
<td>-0.097</td>
<td>0.045</td>
<td>-0.470</td>
</tr>
<tr>
<td>(\Delta\text{carga})</td>
<td>0.025</td>
<td>0.018</td>
<td>0.099</td>
<td>0.063</td>
<td>-0.018</td>
<td>0.133</td>
</tr>
<tr>
<td>(\Delta\text{mass})</td>
<td>0.000</td>
<td>0.006</td>
<td>0.015</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>% Var</td>
<td>80.237</td>
<td>15.437</td>
<td>2.335</td>
<td>91.289</td>
<td>5.646</td>
<td>2.409</td>
</tr>
<tr>
<td></td>
<td>87.409</td>
<td>7.134</td>
<td>2.847</td>
<td>90.639</td>
<td>6.516</td>
<td>2.556</td>
</tr>
</tbody>
</table>

Nota: * En B, Si y Fe (T348), y Si y Mg (T336), son dependientes del resto de componentes tetraédricos y octaédricos. Ver el texto para la justificación de los cálculos A y B.

En la Tabla 4.5.10 puede observarse que los componentes principales I (CP-I) afectan mayoritariamente a las variaciones en la capa octaédrica, específicamente Ti, \(\text{Mg}/\text{Al}\) y \(\text{Mg}/\text{Al}\), mientras que los CP-II afecta a la capa tetraédrica, Fe y \(\text{Mg}/\text{Al}\).

El vector de intercambio múltiple (VIM) para la muestra T348 deducido del CP-I (normalizado a 0.5 átomos intercambiados de Ti) es:

\[
0.063 \text{Si} + 0.5 \text{Ti} + 0.327 \text{Mg} = 0.063 \text{[Ti]} + 0.460 \text{Mg} + 0.042 \text{Fe} + 0.325 \text{Mg} \tag{4.40}
\]

que compara bien con el VIM deducido del CP-II:

\[
0.066 \text{Si} + 0.5 \text{Ti} + 0.330 \text{Mg} + 0.049 \text{K} =
\]

\[
= 0.066 \text{[Ti]} + 0.458 \text{Fe} + 0.054 \text{Fe} + 0.006 \text{Mn} + 0.320 \text{Mg} + 0.003 \text{Na} + 0.046 \text{Mg} \tag{4.41}
\]
Es evidente el control de las vacantes por el Ti, aunque este elemento no puede balancearse exclusivamente por una sustitución y necesita de las sustituciones Ti-vacante (con Mg) y Ti-Al-vacante. Asumiendo todo el Mg y $^{\text{[6]}}\text{Al}$ balanceados por estas sustituciones, la descomposición del VIM-IIB en vectores más simples es:

\[
\begin{align*}
\text{Ti-vac}: & \quad 0.163 \text{ Ti} + 0.163 \text{ [6]Mg} = 0.325 \text{ Mg} \\
\text{Ti-Al-vac}: & \quad 0.345 \text{ Ti} + 0.115 \text{ [6]Al} = 0.460 \text{ [6]Al}
\end{align*}
\]

quedando un resto de:

\[
0.007 \text{ Ti} + 0.063 \text{ Si} + 0.04 \text{ [6]Mg} = 0.063 \text{ [6]Al} + 0.042 \text{ Fe}
\]

que puede considerarse bastante ajustado a la sustitución Si-vacante. No obstante, el segundo componente principal puede interpretarse como reflejo de esta sustitución. El VIM-IIIB resultante del CP-IIB (normalizado a 0.35 átomos de Fe intercambiados) es:

\[
0.154 \text{ Si} + 0.033 \text{ Ti} + 0.019 \text{ [6]Al} + 0.176 \text{ Mg} + 0.122 \text{ [6]Mg} = 0.154 \text{ [6]Al} + 0.350 \text{ Fe}
\]

(4.42)

que puede descomponerse en:

\[
\begin{align*}
\text{Si-vac}: & \quad 0.154 \text{ Si} + 0.077 \text{ [6]Mg} = 0.154 \text{ [6]Al} + 0.077 \text{ Fe} \\
\text{y un resto de:} & \quad 0.033 \text{ Ti} + 0.019 \text{ [6]Al} + 0.176 \text{ Mg} + 0.045 \text{ [6]Mg} = 0.273 \text{ Fe}
\end{align*}
\]

que no puede sino interpretarse como evidencia del intercambio MgFe$_4$:

\[
0.176 \text{ Mg} = 0.176 \text{ Fe}
\]

y las sustituciones Ti-Fe-vacante y di-trióxida (en escasa proporción):

\[
\begin{align*}
0.033 \text{ Ti} + 0.033 \text{ [6]Mg} = 0.066 \text{ Fe} \\
0.019 \text{ [6]Al} + 0.012 \text{ [6]Mg} = 0.031 \text{ Fe}
\end{align*}
\]

Por lo tanto, puede concluirse que el balance en la capa tetraédrica mediante la sustitución Si-vacante va acoplado con el intercambio directo MgFe$_4$. La importancia cuantitativa de este intercambio es sin embargo limitada, ya que ha sido detectado en el segundo componente principal que explica sólo el 5.6 % de la varianza de la base de datos para la muestra T348. Esto se traduce en la ausencia de correlación entre [6]Al y Mg/Fe (Figura 4.5.9, Tabla 4.5.7).

Estos resultados permiten confirmar la operatividad de las sustituciones Si-vacante (con Fe), Ti-vacante (con Mg) y Ti-Al-vacante en el balance de las variaciones composicionales de las capas tetraédrica y octaédrica. No obstante, indican que la dirección de sustitución mayoritaria en la capa tetraédrica, Si-vacante (VIM-IIB), no es totalmente consistente con las direcciones de las sustituciones en la capa octaédrica (VIM-
IB) ya que las biotitas con contenidos en Ti altos y bajos presentan todas contenidos altos en Fe. Es probable que la fuente de estas inconsistencias se deba a las variaciones en \(^{3+}\text{Fe} \) no evaluables.

El mismo tipo de análisis para la muestra T336 da un VIM-IB (normalizado a 0.4 átomos de Ti):

\[
0.118 \text{ Si} + 0.400 \text{ Ti} + 0.497 \text{ Mg} + 0.295 \text{ Mn} = \\
0.118 [^{3+}\text{Al}] + 0.365 [^{6+}\text{Al}] + 0.803 \text{ Fe} + 0.023 \text{ Mn} \tag{4.43}
\]

que compara bien con el VIM-IA:

\[
0.115 \text{ Si} + 0.400 \text{ Ti} + 0.508 \text{ Mg} + 0.290 \text{ Mn} + 0.010 \text{ Na} + 0.030 \text{ K} = \\
0.115 [^{3+}\text{Al}] + 0.372 [^{6+}\text{Al}] + 0.802 \text{ Fe} + 0.023 \text{ Mn} + 0.038 [^{2+}\text{Mg}] \tag{4.44}
\]

y afecta a las capas octaédrica y, en menor medida, a la tetraédrica. Las diferencias más importante respecto al VIM-IB calculado para la muestra T348 son la localización de Mg en el mismo lado de la ecuación que el Ti y \([^{6+}\text{Al}] \), y los fuertes incrementos en Fe. Esto demuestra que las variaciones en Mg no pueden modelizarse por la sustitución Ti-vacante, y que los cambios en Fe no pueden balancearse mayoritariamente por la sustitución Si-vacante. Además, las cantidades de Mg intercambiado son lo suficientemente elevadas como para considerar que gran parte del mismo debe balancearse mediante la sustitución directa MgFe\(_2\). Teniendo esto en cuenta, y el hecho de que el [^{6+}\text{Al}] debe balancearse por la sustitución Ti-Al-vacante, la mejor selección para la descomposición del vector anterior en vectores simples es:

Si-vacante: \(0.118 \text{ Si} + 0.059 [^{6+}\text{Al}] = 0.118 [^{3+}\text{Al}] + 0.059 \text{ Fe} \)

Ti-Al-vacante: \(0.274 \text{ Ti} + 0.091 [^{6+}\text{Al}] = 0.365 [^{3+}\text{Al}] \)

Ti-vacante: \(0.126 \text{ Ti} + 0.126 [^{6+}\text{Al}] = 0.252 \text{ Fe} \)

que se ajusta muy bien al intercambio MgFe\(_2\). Por lo tanto, las variaciones composicionales pueden describirse por las mismas sustituciones que la muestra T348, i.e., Si-vacante, Ti-vacante, y Ti-Al-vacante, aunque en este caso la sustitución Ti-vacante involucra al Fe y el balance del Mg debe relacionarse directamente con el intercambio MgFe\(_2\). Estas diferencias en el comportamiento del Mg implican que la razón Mg/Fe descienda a descender las cantidades de Ti. No obstante, dado que en esta muestra no coexisten grano e ilmenita, es muy probable que los efectos no considerados de razones Fe\(^{3+}\)/Fe\(^{2+}\) variables tengan una importancia fundamental en la explicación de las correlaciones negativas entre Fe y Ti, invalidando la operatividad de los cálculos anteriores, particularmente en lo referente al vector Ti-vacante con Fe.
4.5.6.2 Transformación de la Base Catiónica en Base de Vectores de Intercambio

De la discusión anterior, puede concluirse que gran parte de las variaciones composicionales de las biotitas analizadas pueden explicarse por la operatividad de cuatro sustituciones simples que afectan a las capas tetraédrica y octaédrica y que escritas en el sentido de disminución del Ti serían: Ti-vacante Mg₂Ti₂⁺⁶⁺ri₂⁺⁶⁺, Ti-Al-vacante Al₄Ti₃⁺⁶⁺ri₂⁺⁶⁺, Si-vacante Al₂MgSi₂⁺⁶⁺ri₂⁺⁶⁺ y FeMg⁺. La elección de estos vectores está condicionada por las correlaciones y covarianzas observadas entre los distintos componentes, y no por las cantidades absolutas de los mismos en el espacio composicional. Por esta razón, estos vectores se consideran representativos de los procesos reaccionales ligados a la descompresión ya que éstos son los causantes de la heterogeneidad composicional de la biotita en muestras individuales. Nótese que estos vectores se han escrito considerando flogopita como término aditivo, pero la sustitución Ti-vacante debe implicar tanto a Fe como Mg, y la sustitución Si-vacante debe implicar mayoritariamente a Fe. En el caso de los gneises bandeados con M₃+Br+Grt y las restrías, gran parte de la variación en Mg debe balancearse mediante la sustitución FeMg⁺, mientras que este vector debe considerarse como un operador matemático en el caso de las metapelitas grafitosas debido a su limitada implicación en los VIM, y en el caso de los gneises aplíticos y el dique de microgranito, es conveniente incluir el vector di-tri-cәédrica. El vector MgMn⁺ describe parte de las variaciones composicionales en los gneises con M₃+Br+Grt (nótese la correlación negativa entre Mg y Mn, Tabla 4.5.8), aunque su baja concentración en el resto de las muestras estudiadas hace que estas correlaciones no se observen y que su uso sea meramente como operador. Por otra parte, para la modelización de la solución sólida es apropiado (aunque no necesario) incluir las sustituciones tscherma, NaK⁺ y talco, dados las fuertes desviaciones absolutas de las flogopita-anhídras. Teniendo esto en cuenta, el número de vectores significativos es 9 (Ti-vac, Ti-Al-vac, Si-vac, FeMg⁺, MnMg⁺, distri, tk, NaK⁺ y tlc), de entre los que hay que elegir 7 linealmente independientes (más el componente aditivo flogopita) para describir totalmente el sistema homogéneo biotita.

En las dos muestras seleccionadas T348 y T336, el vector distri puede excluirse, por lo que para describir el sistema debe elegirse entre los vectores Ti-vacante y Ti-Al-vacante. En este trabajo se ha considerado más oportuno seleccionar el vector Ti-Al-vacante ya que explica mejor las variaciones composicionales observadas. No obstante, el análisis anterior apunta a la necesidad de implicar ambas sustituciones en el balance del Ti. La matriz de transformación de la base catiónica en base vectorial se muestra en la Tabla 4.5.11.

Nótese que esta transformación de componentes supone describir una composición dada en función de las desviaciones del componente flogopita, i.e., el valor de este componente será en todos los casos =1. Por ejemplo, la molécula de sidérofilita se describe en esta base como: 1-phl + 4-FeMg⁺ + 2-tk, y la molécula K₂₂Ti₂₂Mg₂₆[Al₆Si₄]O₂₆(OH)₂₆⁻ 1-phl + 2-tk + 0.5-Ti-Al-vac. Por lo tanto, las desviaciones composicionales se explican exclusivamente por los vectores de intercambio. Más aún, el uso de los vectores FeMg⁺, MnMg⁺ y NaK⁺ permite condensar el sistema y considerar exclusivamente los cambios en función del resto de vectores, lo cual es apropiado dado que no es posible discernir el 'reparto' de estos cationes en las sustituciones heterovalentes acopladas. En la Tabla 4.5.12 se presentan la matriz de correlación de estas variables nuevas para los datos de las muestras T348 y T336. Puede apreciarse la fuerte interrelación entre los vectores tk, Si-vac y Ti-Al-vac. En la Figura 4.5.16 se ilustran las variaciones composicionales de ambas muestras T348 y T336 en términos de los vectores seleccionados en la Tabla 4.5.11. En esta figura puede apreciarse la la utilidad de este tipo de transformaciones en la evaluación de los cambios composicionales.
por comparación con las bases catiónicas. No obstante, las deducciones que siguen son totalmente dependientes de la elección del sistema de vectores elegido.

Figura 4.5.16. Diagramas de variación binarios para las muestras T348 (gris polícico con cordierita) y T336 (gris bandado con Ms+Bt+Grt) proyectadas en términos de los vectores de intercambio deducidos en base a las variaciones catiónicas respecto del vector isométrico (Tabla 4.5.11). Símbolos como en la Figura 4.5.1 y Tabla 4.5.1.
Tabla 4.5.11. Matriz de coeficientes para la transformación de los análisis de biotitas en coordenadas moleculares de vectores de intercambio seleccionados para las biotitas. Para realizar la transformación, la inversa de esta matriz debe multiplicarse por la matriz de los análisis expresados en términos catiónicos.

<table>
<thead>
<tr>
<th>phî</th>
<th>FeMg1</th>
<th>MnMg1</th>
<th>NaK1</th>
<th>tk</th>
<th>Si-vac</th>
<th>Ti-Al-vac</th>
<th>tlc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>6</td>
<td>-0</td>
<td>-0</td>
<td>1</td>
<td>-2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Ti</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Al</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-4</td>
<td>-1</td>
</tr>
<tr>
<td>Fe</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mn</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mg</td>
<td>6</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Na</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

Tabla 4.5.12. Estadísticos básicos y coeficientes de correlación Pearson para las biotitas de las muestras T348 y T336 expresadas en términos de los vectores de la Tabla 4.5.11.

A. Muestra T348, excluyendo los análisis hechos con un tamaño de sonda de 0.5 μm (número de observaciones: 35).

<table>
<thead>
<tr>
<th>Mín</th>
<th>Máx</th>
<th>Media</th>
<th>σ</th>
<th>FeMg1</th>
<th>MnMg1</th>
<th>NaK1</th>
<th>tk</th>
<th>Si-vac</th>
<th>Ti-Al-vac</th>
<th>tlc</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeMg1</td>
<td>2.612</td>
<td>2.966</td>
<td>2.766</td>
<td>0.094</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnMg1</td>
<td>0.012</td>
<td>0.032</td>
<td>0.022</td>
<td>0.004</td>
<td>0.338</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NaK1</td>
<td>0.049</td>
<td>0.075</td>
<td>0.064</td>
<td>0.006</td>
<td>0.284</td>
<td>0.166</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tk</td>
<td>1.292</td>
<td>1.562</td>
<td>1.419</td>
<td>0.078</td>
<td>-0.465</td>
<td>-0.579</td>
<td>-0.202</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si-vac</td>
<td>0.229</td>
<td>0.250</td>
<td>0.205</td>
<td>0.062</td>
<td>-0.611</td>
<td>-0.507</td>
<td>-0.016</td>
<td>0.937</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Ti-Al-vac</td>
<td>0.013</td>
<td>0.128</td>
<td>0.102</td>
<td>0.054</td>
<td>-0.213</td>
<td>-0.446</td>
<td>-0.250</td>
<td>0.936</td>
<td>0.865</td>
<td>1.00</td>
</tr>
<tr>
<td>tlc</td>
<td>0.207</td>
<td>0.388</td>
<td>0.342</td>
<td>0.022</td>
<td>0.194</td>
<td>0.169</td>
<td>-0.224</td>
<td>-0.549</td>
<td>-0.610</td>
<td>-0.702</td>
</tr>
</tbody>
</table>

B. Muestra T336 (número de observaciones: 37).

<table>
<thead>
<tr>
<th>Mín</th>
<th>Máx</th>
<th>Media</th>
<th>σ</th>
<th>FeMg1</th>
<th>MnMg1</th>
<th>NaK1</th>
<th>tk</th>
<th>Si-vac</th>
<th>Ti-Al-vac</th>
<th>tlc</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeMg1</td>
<td>2.957</td>
<td>3.840</td>
<td>3.366</td>
<td>0.245</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnMg1</td>
<td>0.014</td>
<td>0.044</td>
<td>0.026</td>
<td>0.008</td>
<td>0.352</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NaK1</td>
<td>0.032</td>
<td>0.077</td>
<td>0.037</td>
<td>0.012</td>
<td>-0.279</td>
<td>-0.372</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tk</td>
<td>1.214</td>
<td>1.545</td>
<td>1.306</td>
<td>0.065</td>
<td>-0.828</td>
<td>-0.613</td>
<td>0.239</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si-vac</td>
<td>0.279</td>
<td>0.433</td>
<td>0.301</td>
<td>0.059</td>
<td>-0.850</td>
<td>-0.740</td>
<td>0.434</td>
<td>0.832</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Ti-Al-vac</td>
<td>0.013</td>
<td>0.133</td>
<td>0.073</td>
<td>0.041</td>
<td>-0.939</td>
<td>-0.860</td>
<td>0.158</td>
<td>0.696</td>
<td>0.745</td>
<td>1.00</td>
</tr>
<tr>
<td>tlc</td>
<td>0.122</td>
<td>0.279</td>
<td>0.183</td>
<td>0.036</td>
<td>0.259</td>
<td>0.462</td>
<td>-0.163</td>
<td>-0.034</td>
<td>-0.321</td>
<td>-0.410</td>
</tr>
</tbody>
</table>

Las correlaciones positivas entre los vectores Ti-Al-vacante y Si-vacante indican que a medida que las composiciones están más desviadas hacia términos de Ti se necesitan mayores cantidades del componente Si-vacante, lo que implica disminuir los contenidos en [56]Al y Fe (i.e., en FeMg1) ya que estos componentes presentan signo negativo en el vector Si-vacante, en concordancia con las observaciones hechas en el análisis de las variaciones de los componentes catiónicos. Sin embargo, la interpretación de las variaciones del vector tschermak no es tan inmediata. Nótese que del análisis de la base catiónica se dedujo que esta sustitución no era significativa en la explicación de las variaciones composicionales, y sin embargo en la Tabla 4.5.12 y Figura 4.5.16 se observan bueas correlaciones con el resto de componentes que habrían deducir su operatividad. Destacan las correlaciones positivas entre Ti-Al-vac y tk que contrastan con las correlaciones negativas entre Ti y [56]Al (Tablas 4.5.7 y 4.5.8). Esto debe interpretarse en el contexto del uso del vector tschermak como operador matemático, ya que en este caso sus variaciones reflejan los cambios necesarios...
balancear el resto de los cambios composicionales (nótese que el 39Al debe balancearse mediante los vectores tk y Ti-Al-vac). Por lo tanto, las correlaciones positivas entre tk y Ti-Al-vac no indican que aumenten las desviaciones hacia los términos casadi en las composiciones ricas en Ti, sino que mayores cantidades de Al$_2$Si$_2$Mg$_4$ son necesarias para balancear los contenidos de Ti$_2$Al$_4$ en estas composiciones debido a las necesidades de balance de masas impuestas por el signo negativo del Al en la sustitución Ti-Al-vac y positivo en la sustitución tk. Otra lectura de esta relación es que la estabilización de composiciones ricas en Ti "consume" componente tchmack, mientras que las composiciones pobres en Ti presentarían unas cantidades de componente tk próximo al valor real $(tk = ^{39}$Al cuando Ti = 0), que no obstante serían elevadas por comparación con otras biotitas naturales (i.e., $tk = 1.2$-1.3, Tabla 4.5.12).

La importancia de las sustituciones Ti-Al-vacante y Si-vacante en la explicación de los espectros composicionales observados en las muestras estudiadas contrasta con su escaso reconocimiento en otros estudios de biotitas. El autor de este trabajo no ha encontrado referencias de casos naturales donde se implique a la sustitución Si-vacante (generalmente se admite la operatividad de la sustitución divacante, excluida en el presente caso), y sólo ha encontrado una referencia explícita en Labotka (1983) para la sustitución Ti-Al-vacante ya que en la mayor parte de los casos en que se ha detectado un control del Ti sobre las vacantes octáédricas se ha implicado la operatividad de la sustitución Ti-vacante (ver referencias más arriba). La explicación de estas divergencias se encuentra en el estado de desequilibrio de las muestras estudiadas, esto es, en la posible composición metaestable de las biotitas ricas en Al resultante de un control cinético (i.e., limitada difusión de los elementos).

4.5.7. VARIACIONES COMPOSICIONALES: EFECTOS ESTRUCTURALES, CONTROL CINÉTICO Y METAESTABILIDAD

4.5.7.1. EFECTOS ESTRUCTURALES DE LAS VARIACIONES COMPOSICIONALES

Teniendo en cuenta las anomalías composicionales encontradas, es interesante evaluar los cambios composicionales en términos de sus efectos sobre la estructura. Es conocido desde hace tiempo que existen diferencias significativas entre las dimensiones laterales de las capas tetraédricas (mayor) y octaédricas (menor) de las micas (dioctáédricas y trioctáédricas), lo que impide un ajuste preciso de las mismas según un modelo ideal de cristal exento de deformaciones (e.g., Donnay et al., 1964a y b; Radoslovich y Norrish, 1962; Hazen y Wones, 1972; Zussman, 1979; Bailey, 1984b). Esta característica ha sido considerada fundamental por numerosos autores en la explicación de los límites de solubilidad de distintos componentes y de las variaciones composicionales observadas en la solución sólida biotita (e.g., Hazen y Wones, 1972; 1978; Guidotti et al., 1975, 1977). El desajuste de ambas capas puede acomodarse en los cristales reales mediante distorsiones estructurales, tales como modificación de las distancias interatómicas de las capas ideales, corrugación de la capa tetraédrica (i.e., los oxígenos basales de las capas tetraédricas no serían coplanares), aplastamiento de la capa octaédrica (i.e., modificación de los ángulos de enlace), y/o rotación de los los tetraedros (Radoslovich y Norrish, 1962). Hazen y Wones (1972), tras hacer una revisión estructural de tales mecanismos, concluyen que la deformación por rotación de los tetraedros dentro del plano de las capas es el mecanismo más importante para acomodar el desajuste de ambas capas, lo que produce una distorsión de la simetría hexagonal ideal (ver Figura 8 de Hazen y Wones, 1972 o Figura 4 de Zussman, 1979).

203
Efectos Estructurales en el Plano Ideal de la Biotita

El ángulo de rotación tetraédrica α varía en función de la composición de las capas tetraédrica y octaédrica (Radoslovich y Norrish, 1962) o lo que es lo mismo, de las distancias interatómicas medias (Donnay et al., 1964a; Hazen y Wones, 1972, 1978). Partiendo de la estructura de la flogopita (α = 7.8°, Bailey, 1984b), a medida que el Fe²⁺ (de radio iónico r = 0.78 Å) sustituye al Mg²⁺ (r = 0.72 Å) la capa octaédrica se expande y el ángulo de rotación disminuye (Hazen y Burham, 1973) hasta el límite teórico de 0°, donde la simetría de la capa tetraédrica será la hexagonal ideal. Bajo condiciones de presión atmosférica (ver Hazen, 1977, y Hazen y Wones, 1978, para el efecto de P sobre el ángulo de rotación tetraédrica), este límite coincide con biotitas de composición Mg/(Fe+Mg) ca. 0.33 dentro del join flogopita-anuita (Hazen y Wones, 1978). Esto implica que, puesto que la capa tetraédrica no puede expandirse más por rotación (i.e., el ángulo de rotación no puede ser menor de cero; Hazen y Wones, 1972), el término externo anuita es inestable (la anuita no existe como fase natural ni ha sido sintetizada). Biotitas más ricas en Fe solo son posibles si se modifican las relaciones Si[(M)Al] = 6:2 de la capa tetraédrica, y/o si entran en la capa octaédrica iones más pequeños como Fe³⁺ (r = 0.645 Å), Al³⁺ (r = 0.535 Å), o Ti⁴⁺ (r = 0.605 Å), lo cual promovería la sustitución adicional de Mg²⁺ por Fe²⁺.

En el caso de modificarse las relaciones Si[(M)Al] = 6:2 mediante la sustitución tschermak, se modifican las dimensiones de las capas tetraédrica y octaédrica. La sustitución de Si (r = 0.26 Å) por [(M)Al] (r = 0.39 Å), aumenta el tamaño medio de los tetraedros y se expande lateralmente la capa tetraédrica, y al sustituirse Mg y/o Fe por [(M)Al] disminuye la dimensión media de los octaedros y la capa octaédrica se contrae lateralmente. Por tanto, el avance de la sustitución tsck supone un incremento en las diferencias de las dimensiones laterales de ambas capas, aumentando la distorsión y el ángulo de rotación tetraédrica cualquiera que sea el punto composicional del join flogopita-anuita considerado (Hewitt y Wones, 1975; Hazen y Wones, 1978; Circione et al., 1991), aunque de lo dicho anteriormente se deduce que el desajuste será menor en biotitas ricas en Fe²⁺. Esta es la razón por la que, manteniendo otros factores constantes, ha sido reconocido un enriquecimiento generalizado en Al a medida que las biotitas se hacen más ricas en Fe (Guidotti et al., 1975; Hazen y Wones, 1978; Guidotti, 1984).

Dentro del sistema definido por el plano ideal de la biotita existen limitaciones a la cantidad de sustitución tsck (i.e., a la cantidad de [(M)Al]) impuestas por el grado de rotación tetraédrica. Los estudios experimentales llevados a cabo dentro del plano ideal de la biotita (Crowley y Roy, 1964; Rutherford, 1973; Hewitt y Wones, 1975; Robert, 1976a) han identificado sistemáticamente la imposibilidad de sintetizar biotitas con composiciones dentro del join easonita-siderofilita [(M)Al] = 2. El límite superior para la sustitución tsck se ha encontrado en 1.5 átomos pfu de [(M)Al]. Hewitt y Wones (1975) relacionan este límite con la rotación tetraédrica máxima posible para mantener en la estructura los átomos de K en las posiciones interlaminares. A medida que el ángulo de rotación tetraédrica aumenta (i.e., aumento de la sustitución tsck), las dimensiones de las posiciones interlaminares disminuyen, y pasan de una coordinación 12 con α = 0°, a una coordinación 6 (empaquetamiento compacto) con α = 30° (Donnay et al., 1964b), lo que genera una disminución la distancia media interatómica media K-O. Los cálculos de Hewitt y Wones (1975) indican que las cantidades máximas de [(M)Al] (1.3 y 1.5 átomos pfu para los sistemas magnésico y ferroso, respectivamente) suponen ángulos de rotación máximos (14.7° y 12°, respectivamente), y distancias interatómicas K-O mínimas (2.77 Å y 2.89 Å, respectivamente) para mantener la estructura de las K-biotitas estables. Sin embargo, Hewitt y Wones (1975) demostraron que la sustitución de K⁺ por iones más pequeños
de Na⁺ en las posiciones interlaminares, permite la incorporación de mayores cantidades de Al, y por lo tanto de mayor rotación tetraédrica. Aunque usualmente este hecho no es identificado o tenido en cuenta en el estudio de muestras naturales, en algunos casos ha podido demostrarse una correlación positiva entre las razones Fe/Mg y K/Na (Dymek, 1983), de manera que biotitas más ricas en Mg (i.e., con ángulos de rotación tetraédrica probablemente mayores) presentan mayores cantidades de Na. No obstante, cabe también la posibilidad teórica de relacionar la introducción de vacantes en las posiciones interlaminares a través de la sustitución talco en biotitas aluminosas (i.e., con ángulos de rotación tetraédrica elevados), ya que se reduciría la cantidad de [M]Al, ayudando a contrar la capa tetraédrica y disminuir el ángulo de rotación tetraédrica. En este caso, la introducción de Al no tendría que suponer necesariamente la sustitución de K por Na.

Recientemente, Circone et al. (1991) han sintetizado micas triaxiales en el join ph-elas con cantidades de sustitución tschermak superiores a las indicadas por Hewitt y Wones (1975), con cantidades de [M]Al de 1.9 átomos pfu (i.e., easonita casi pura, Xₚₖ₆=0.92) y valores del ángulo de rotación tetraédrica α de 15.7°. Circone et al. (1991) sugieren que las discrepancias con los resultados de Hewitt y Wones (1975) se deben a una probable sobreestimación de las cantidades de [M]Al y de los valores calculados de α (que suelen exceder en 2-3° a los observados experimentalmente, Weiss et al., 1987) en las muestras de estos últimos, lo cual implicaría incrementar las distancias interlaminares K-O mínimas estables (2.77 Å) que sirvieron de base a Hewitt y Wones para establecer el límite de solubilidad de easonita en Xₚₖ₆ = 0.67. Circone et al. (1991) concluyen que los límites propuestos por Hewitt y Wones (1975) para la sustitución de [M]Al pueden ser precisos en términos de los parámetros estructurales limitantes (i.e., α, dado que sus propios valores calculados estarían sobreestimados en 2-3°), pero no en las cantidades máximas de [M]Al. No obstante, en un estudio posterior de las propiedades termodinámicas de las biotitas sintetizadas por Circone et al. (1991), Circone y Navrotsky (1992) predicen la existencia de una región de inmiscibilidad en el join ph-elas, y concluyen que parte de las composiciones flogopitas aluminosas sintetizadas por estos autores son metaestables. La región de inmiscibilidad calculada es consistente con las composiciones de biotitas magnésicas naturales de rocas metamórficas de grado medio y alto (datos de Guidotti, 1984), y sugieren una reducción de la región inmiscible en sistemas ricos en Fe, en concordancia con las cantidades mayores en [M]Al de biotitas ricas en Fe naturales. Por otro lado, los resultados de Circone et al. (1991, su Tabla 2) no indican variaciones en la ocupación interlaminal del K, que se acerca mucho a los teóricos 2 átomos pfu incluso en composiciones muy aluminicas. Aunque Circone et al. (1991) no llegan a discutir tal hecho, puede deducirse de tales datos que la sustitución talco no parece operar en sus composiciones más aluminicas a pesar de la dificultad en acomodar el K. Estos autores justifican tal acomodamiento por desplazamientos del K en la estructura y aumento de α.

Por lo tanto, los resultados de Circone et al (1991) no invalidan los límites de solubilidad de [M]Al por la sustitución tschermak propuestos por Hewitt y Wones (1975) y sugeridos por numerosos autores (Crowley y Roy, 1964; Rutherford, 1973, Robert, 1976a) en base a construcciones estructurales. No obstante, este límite de solubilidad no parece alcanzarse en la naturaleza dado que los valores máximos de [M]Al encontrados por numerosos autores no suelen superar 1 átomo pfu (Guidotti, 1984), valor que es menor que los valores máximos sugeridos por Hewitt y Wones (1975), por lo que es probable que otros componentes modifiquen la región de inmiscibilidad.
Efectos Estructurales Debidos a Sustituciones Extranjas al Plano Ideal de la Biotita

Las cantidades de $[M]$Al y $[M]$Al pueden aumentar respecto de los valores sugeridos por Hewitt y Wones (1975) si se producen desviaciones composicionales fuera del plano ideal de la biotita, esto es, si $[M]$Al y/o $[M]$Al están controlados por otras sustituciones además de la sustitución tschermak. Robert (1976a), en un estudio experimental de la dependencia de T sobre la sustitución de $[M]$Al y $[M]$Al en biotitas magnéticas identificó cantidades no balanceables de estos componentes por la sustitución tk. El defecto en $[M]$Al fue interpretado como el resultado de la introducción de vacantes octaédricas a través de la sustitución Si2_2[M](o)$[M]$Al2_2$[M]$Mg$_1$ (Si-vacante). El límite de solubilidad encontrado a 600 °C y 1 kbar en el sistema magnético fue de 1.63 átomos de $[M]$Al, que cabe suponer algo más amplio en el sistema ferroso. Aunque no es posible deducir con seguridad el efecto de la sustitución Si-vacante sobre el ángulo de rotación tetraédrico, cabe inferir una reducción en la dimensión de la capa tetraédrica y un aumento en dimensión de la capa octaédrica ya que es probable que la vacante tenga un radio iónico mayor que el Mg (r$_{Mg}$ = 0.64 Å en moscovita, Güven, 1971), por lo que α disminuiría. Por lo tanto, esta sustitución se verá favorecida en biotitas aluminicas con fuertes desajustes intercapa (e.g., composiciones magnéticas ricas en Al), justificando la introducción de vacantes octaédricas y desbalance tschermak entre $[M]$Al y $[M]$Al para reducir el valor de α.

El efecto de la sustitución diotocádrica (Al2_2[M](o)Mg$_1$) puede ser contrario al anterior ya que el aumento de la dimensión de la capa octaédrica por la introducción de una vacante puede no compensar el descenso debido a la sustitución de 2 de los 3 átomos de Mg-Fe por 2 átomos de $[M]$Al. De hecho, el ángulo de rotación tetraédrica es mayor en moscovita (ca 13°, Zusmann, 1979) que en flogopita, annta y en las composiciones límite aluminicas respectivas detectadas en estudios experimentales (ver más arriba). De este comportamiento puede predicirse que la sustitución diotocádrica no está favorecida en biotitas puesto que en todos los casos tendrá que aumentar el desajuste estructural, lo cual está de acuerdo con los resultados de Robert (1976a) en el sistema magnético. No obstante, la solubilidad de moscovita debería aumentar en composiciones ferrosas ya que tendría un efecto similar al de Fe$^{3+}$ y la sustitución tschermak en la estabilización de composiciones con Mg/(Mg+Fe) < 0.33 (ver más arriba).

Por lo que respecta a la introducción de $[M]$Ti$^{4+}$, su menor radio iónico comparado con Fe$^{3+}$ y Mg$^{2+}$ induce, en principio, una disminución en las dimensiones laterales de la capa octaédrica y un aumento consiguiente del ángulo de rotación tetraédrico. Por lo tanto, las constricciones anteriores sobre el límite superior de sustitución tk no se ven modificadas por la presencia de Ti en la estructura. Sin embargo, dependiendo de la sustitución particular que tenga lugar, el efecto de la introducción de Ti sobre el ángulo de rotación tetraédrica es variable. La sustitución que produciría mayores distorsiones sería Tschermak, puesto que además de reducir la dimensión de la capa octaédrica, aumentaría la de la capa tetraédrica por la sustitución de Si por $[M]$Al. Los resultados experimentales de Abrecht y Hewitt (1988) sugieren que la sustitución Ti-vac en su término extremo magnético está favorecida sobre el término ferroso, mientras que la Ti$^{4+}$ operaría en todo el rango Mg-Fe de las biotitas. La sustitución Ti$^{4+}$ sobre annta (teóricamente inestable ya que tendría un valor de α negativo) estabiliza la estructura a pesar de la introducción de $[M]$Al ya que posibilita un valor positivo de α, de la misma manera que la sustitución tk. Aunque estos autores no explican cómo es posible tal sustitución en biotitas magnéticas, cabe suponer que no esté favorecida, puesto que el ángulo de rotación tetraédrica aumentaría, lo cual justifica, al menos en parte, el hecho comúnmente observado de que el Ti aumenta en biotitas con relaciones Mg/Fe menores. Por otra parte, el hecho de que la introducción de Ti a través de la sustitución Ti-vac esté favorecida en biotitas magnéticas parece deberse a la
facilidad de las mismas para acomodar los cambios en la capa octaédrica y a un posible efecto de expansión de esta última con esta sustitución (Abrecht y Hewitt, 1988). La sustitución Ti-vac puede aumentar la dimensión lateral de la capa octaédrica puesto que el tamaño menor del \(^{4+}\text{Ti}\) respecto de Mg se compensaría por el tamaño mayor de la vacante (de la misma manera que en la sustitución Si-vacante anteriormente discutida), que tenderá a expandirse dada la alta carga del Ti. Esta sustitución no sería posible individualmente en las Fe-biotoritas, dado que éstas no pueden expandir la capa octaédrica (Hazen y Wones, 1972), mientras que la rotación tetraédrica puede expandir la capa octaédrica en las Mg-biotoritas y por lo tanto acomodar al Ti y la vacante en sustitución de dos átomos de Mg (Abrecht y Hewitt, 1988). El efecto de la sustitución Ti-Al-vacante no puede estimarse ya que no se conocen las dimensiones de la vacante octaédrica, aunque de lo dicho más arriba puede predecirse un aumento de la dimensión de la capa octaédrica ya que por cada 4 átomos de \(^{8}\text{Al}\) se intercambian 3 átomos de Ti de radio iónico mayor y se introduce una posición vacante posiblemente de radio iónico también mayor. Por lo tanto, composiciones ricas en Ti balanceado por la sustitución Ti-Al-vacante tenderán a disminuir el valor de \(\alpha\), y no debería estar favorecida en composiciones de biotita ricas en Fe por las mismas razones que la sustitución Ti-Mg-vacante.

Brigatti et al. (1991) han puesto de manifiesto la "preferencia" del Ti sobre las posiciones octaédricas M1, mayores y más distorsionadas que las M2. Estudios estructurales en biotoritas favorecen una "preferencia" del Fe por las posiciones M1 y del Mg por las posiciones M2 (e.g., Bohlen et al., 1980; Brigatti et al., 1991), si bien algunos estudios sugieren lo contrario (e.g., Takeda y Ross, 1975; ver también Bailey, 1984b para más detalles). Si el Ti está "ordenado" en la estructura, no es de extrañar el comportamiento diferencial en la partición Mg/Fe en los dos tipos de sustituciones. No obstante, suele considerarse la ausencia de ordenamiento en las biotoritas igneas y metamórficas de alto grado (e.g., Bohlen et al., 1980).

4.5.7.2. Control Cinético y Metastabilidad

Estas consideraciones sobre los efectos de las sustituciones sobre la estabilidad estructural son interesantes para las inferencias que siguen al respecto de las variaciones composicionales detectadas en el presente trabajo. Aunque los valores de Mg/(Fe+Mg) de estas biotoritas, próximos a 0.33 (Figura 4.5.3) sugerirían que \(\alpha = 0\), esta cifra no es significativa debido a las fuertes desviaciones del país flogopita-annita de las biotoritas analizadas, tanto en componentes iqueméricos como en otros componentes. En el análisis que sigue se analiza el efecto de las variaciones composicionales inducidas por los balances de masa locales sobre la distorsión de la estructura.

Metapelitas Grafitosas

En las biotoritas de metapelitas grafitosas, donde la variación en Mg/Fe es limitada, todos los cambios composicionales concurrentes al disminuir el Ti tienden previsiblemente a aumentar \(\alpha\) respecto del valor original (i.e., el descenso de Ti mediante las sustituciones Ti-Al-vacante y Ti-Mg-vacante, y el aumento de Mg por la sustitución Fe-Mg4, tienden a disminuir la dimensión de la capa octaédrica, y el aumento de Fe y \(^{8}\text{Al}\) mediante la sustitución Si-vacante tiende a disminuir la dimensión de la capa octaédrica y aumentar la dimensión de la capa tetraédrica, ver más arriba). Por el contrario, las composiciones ricas en Ti deben presentar un valor de \(\alpha\) menor, puesto que todos los cambios composicionales tienden a minimizar el valor de \(\alpha\) sobre todo por expansión de la capa octaédrica. Si las sustituciones que operan tanto en la capa tetraédrica como octaédrica lo hacen interaccionando de manera compleja para minimizar la distorsión
Evolución metamórfica del Complejo Genésico de Torrox y Series Adjacentes

tetraédrica y estabilizar la estructura, puede concluirse que las composiciones ricas en Ti y más pobres en Al de las biotitas de las metapelitas estudiadas son las composiciones estructuralmente más estables, y que las composiciones pobres en Ti y ricas en Al son metaestables bajo las condiciones de blastesis a baja P. Como se ha indicado más arriba, esto es consistente con las inferencias sobre las asociaciones de fases en el sistema KFMATISH, esto es, coexistencia de ilmenita a baja P (cf. Guidotti et al., 1977), y con el efecto de P sobre la solubilidad del Ti en la biotita detectado experimentalmente (Robert, 1976b; Foley, 1990). Esto concuerda con las conclusiones de Guidotti et al. (1977, p. 446) al respecto del efecto de otras sustituciones en biotitas magnésicas: "The important point is that the Ti, Si, and (Na^+Al substitutions are exactly those required to achieve a better fit between tetrahedral and octahedral sheets, and thus minimize the amount of tetrahedral rotation otherwise required by high Mg/Fe-zn an aluminoous biotite". Debe tenerse en cuenta que la metaestabilidad inferida de las composiciones ricas en Al y pobres en Ti bajo las condiciones de baja P lo es por comparación con las composiciones ricas en Ti. La presencia de estas composiciones metaestables sólo se explica por el efecto cinético de la limitada difusión de Ti y Al en los sistemas considerados.

Si se consideran las relaciones composacionales entre los distintos tipos petrográficos definidos en las metapelitas gírasolitas (Tabla 4.5.5), los aumentos en Fe, [Mg]Al, [Mg^2+] y descensos en Ti se observan en las biotitas decusadas de los agregados de Be±Ms±Pl±Qtz que pseudomorfoizan granate y esaurolita, i.e., fases reactantes ricas en Fe y Al y pobres en Ti. La liberación de Al asociada a la descomposición de estas fases debe acomodarse esencialmente en la biotita neoformada mediante la sustitución ischermak. Sin embargo, el análisis del espacio reacional en estas rocas predice que la descomposición de estas fases implica la formación de silicato de Al (ver Capítulo 5.4), que no existe en estas áreas de reacción, por lo que es previsible un exceso de Al que debe acomodarse en la biotita mediante un proceso ulterior de la sustitución ischermak si la difusión de Al es limitada. Esto implica una sobreexplotación en Al de estas biotitas, esto es, una composición es metaestable, aunque está claro que no es posible acomodar todo el Al en exceso en la biotita, lo cual implica la blastesis de moscovita (que es fase reactante) en los pseudomorfos. Esta sobreexplotación en Al respecto de la concentración en equilibrio justifica que su composición se acerque a los valores máximos de [Mg^2+]Al sugeridos por Hewitt y Wones (1975) y este fuera del rango detectado por Guidotti (1984) (i.e., [Mg^2+]Al > 1.25 átomos por fórmula). Sin embargo, las biotitas asociadas a And±Ilm neoformadas, resultantes de la descomposición de esaurolita y granate pero implicando también rutilo como reactante (ver Capítulo 5.4), presentan contenidos de Ti mayores y de Al menores. En este caso, el Al puede acomodarse en el silicato de Al neoformado, por lo que la composición de la biotita no está sobreexplotada en este componente, de acuerdo con sus menores cantidades de [Mg^2+]Al (< 1 átomo por fórmula).

La predicable distorsión de la estructura de las biotitas ricas en Al y pobres en Ti debe implicar la operatividad de sustituciones que tiendan a una mayor estabilidad estructural. Para evaluar esto es necesario partir de una estructura fuertemente distorsionada (α elevada) en la que los balances de los elementos están dominados por la sustitución ischermak. Comparando este polo de bajo Al y alto Ti (stable a baja P) con el polo de alto Al y bajo Ti (metaestable), el efecto de los cambios composacionales mayores (i.e., Ti-vac y Si-vac) es reducir la fuerzas desviaiones hacia composiciones aluminicas que se dan en las composiciones pobres en Ti. Dicho de otra manera, las composiciones ricas en Ti "consumen" el componente ischermak en exceso de las composiciones ricas en Al y pobres en Ti mediante la sustituciones Ti-vac y Si-vac, de acuerdo con lo deducido anteriormente en la cuantificación de los vectores de intercambio. La operatividad de estas dos sustituciones en lugar de la sustitución ischermak para explicar los cambios composacionales debe
entenderse en el contexto de su mayor efectividad en la reducción de α, lo cual es previsiblemente debido a la implicación de vacantes octaédricas de radio iónico mayor que los cationes octaédricos.

Estas relaciones apoyan el fuerte control de los balances de masa locales durante las reacciones de descomposición de las fases precoces y de la difusión de los componentes entre las áreas reactivas sobre la composición de las biotitas neoformadas. Puesto que las variaciones de Fe y Mg no son muy amplias en las biotitas de estas rocas, es obvio que la difusión de estos elementos debió ocurrir sin dificultad. Sin embargo, en la descripción de procesos de difusión, un componente elemental no puede considerarse aisladamente sino que debe implicarse como componentes de intercambio debido a las necesidades estequiométricas de las fases implicadas (Brady, 1975). Por lo tanto, los vectores Ti-Al-vacante y Si-vacante (y FeMg_{1/2}), que explican la heterogeneidad composicional de las biotitas de las metapelitas grafitosas, pueden entenderse como componentes que describen la limitada difusión de Al y Ti entre distintas áreas o microdominios (posiblemente no mayores de 1-2 mm en términos de difusión efectiva) de estas rocas durante la descomposición de esaurolita y granato. En otras palabras, el problema fundamental en la reequilibración de la biotita es la limitada difusión del Ti y Al, que controlan las variaciones de Mg_{1/2}, Al y Mg mediante el vector Ti-Al-vacante y Mg_{1/2}Al y Fe mediante el vector Si-vacante. La operatividad de estos vectores puede considerarse como un proceso metaestable ya que relacionan la composición estable rica en Ti con la composición metaestable rica en Al y pobre en Ti.

Existe cierta controversia relativa al efecto que el Ti puede ejercer en la razón Mg/Fe de las biotitas, que puede justificarse por consticciones de estabilidad cristalquímica. Dahl (1969) y Daimeller (1974a y b) sugirieron que el contenido de Ti influye la razón Mg/Fe de las biotitas (y por lo tanto los coeficientes de reparto Mg/Fe entre esta y otras fases ferromagnesianas, específicamente granato, lo cual influye en las temperaturas calculadas a partir del mismo; ver Indares y Martignole, 1985). Por el contrario, Guidotti et al. (1977, 1988) consideran que la razón Mg/Fe impuesta por otras consticciones (estructurales y de asociaciones de fases) controlan las cantidades de Ti en la biotita. En el presente caso, las variaciones de la razón Mg/Fe son bajas, y se correlacionan negativamente con el Ti, que muestra fuertes variaciones. Esto sugiere que el Ti no controla las cantidades de Fe y Mg en las biotitas, lo cual favorece la interpretación de Guidotti et al. (1977, 1988) ya que se pueden considerar a los microdominios dentro de muestras individuales como sistemas con saturación en Ti variable (dependiendo de la presencia o no de fases saturadas en Ti en las reacciones locales).

Gneises Leucocratos

En el caso de las biotitas de los gneises leucocratos, la situación es similar a la discutida anteriormente excepto por el hecho de que en estas biotitas existe un descenso en Mg y aumento en Fe al descender las cantidades de Ti que es anómalo por comparación con otros casos naturales. Este hecho implica que, en las biotitas de los gneises leucocratos, el efecto de las sustituciones Ti-Al-vacante y Si-vacante sobre la distorsión tetraédrica (aumento de α al proceder hacia las composiciones ricas en Al y pobres en Ti) tienden a compensarse con los efectos debidos al descender las cantidades Mg y aumentar las cantidades de Fe por el intercambio FeMg_{1/2} (descenso de α) ya que la variación en Mg/Fe es bastante amplia. Por lo tanto, parece que las distintas sustituciones no tienen como efecto último minimizar el valor de α en estas biotitas ya que los efectos sobre la distorsión tienden a cancelarse mutuamente. Esto puede entenderse si se considera que, en este caso, las composiciones ricas en Ti y pobres en Al no son neoformadas sino relicas de las condiciones de P intermedia.
En cualquier caso, el efecto cinético de tasas de difusión limitadas de Ti y Al en la matriz de estas rocas puede justificar las composiciones de la biótita ricas en Al y pobres en Ti producidas por reacciones asociables a la descompresión. En el caso de las gneises bandeadas, las variaciones composicionales de las biótitas de la matriz son debidas a la liberación de Fe y Al durante la descomposición del granate, de manera que tienden hacia un polo pobre en Ti y Mg, y rico en Fe, [Fe]Al y [Al]Al. Las elevadas cantidades de Al de estas composiciones sugieren sobresaturación en Al de estas biótitas, y pueden considerarse también metaestables ya que el intercambio con las moscovitas y biótitas de la matriz ricas en Ti debería haber producido compuestos más ricos en este componente y más pobres en Al (las lamelas de biótita asociadas a procesos de descomposición de moscovitas primarias presentan cantidades de Ti mayores que las de la matriz). Por lo tanto, el desequilibrio composicional es igualmente el resultado de, balance, de masa locales en microdominios, en un contexto con fuertes problemas en la difusión de Ti y Al, aunque en este caso también deben implicarse tasas de difusión de Fe y Mg limitadas dadas las fuertes variaciones en estos componentes en muestras individuales. Estas limitaciones en la difusión de Ti, Al, Fe y Mg en la matriz, que explican la operatividad de las sustituciones Ti-Al-vacante, Si-vacante y Fe-Mg, deben extenderse también a la difusión volumétrica en el interior de cristales de biótita, ya que las composiciones de placas de biótita adyacentes a pseudomorfosis de And+Qz en los enclaves rítmicos son ricas en Al y pobres en Ti por comparación con las áreas que no han reaccionado.

El fuerte control de los balances de masa locales durante las reacciones de descomposición de las fases precoces y de la difusión de Ti, Al, Fe y Mg entre las áreas reactantes sobre la composición de las biótitas neofórmadas puede explicar la anómala correlación positiva entre Ti y Mg/Fe. Sin embargo, existen ciertas incertidumbres de la posible variación de la razón Fe\(^{3+}/Fe^{2+}\) en las biótitas debido a la inexistencia de asociaciones que tamponen Fe\(^{2+}\) en estas rocas. De hecho, la operatividad de la sustitución TiFe-vacante, necesita en el balance de los cambios composicionales de las biótitas de los gneises bandeados con Ms+Bl+Grt (ver el análisis de componentes principales más arriba), contradice las evidencias experimentales de Abrecht y Ewitt (1988) y las inferencias sobre el comportamiento de estos componentes en biótitas naturales (referencias más arriba). Es por tanto probable que la sustitución TiFe-vacante sea aparente y que refleje otras sustituciones como TiO\(^{2-}\)Fe\(^{2+}\)\(_2\)(OH)\(^{-}\)\(_2\) (Tioxi) y TiO\(^{2-}\)Fe\(^{3+}\)\(_2\)(OH)\(^{-}\)\(_2\) (no descrita más arriba), que tendrían efectos similares sobre las variaciones en Fe e indicarían cambios en la razón Fe\(^{3+}/Fe^{2+}\) en las biótitas ricas en Al y pobres en Ti respecto de las composiciones relícticas. Debe notarse que la correlación positiva entre Mg/Fe\(_{total}\) y Ti en los enclaves rítmicos con grafito se debe esencialmente a la presencia de composiciones ricas en Fe equilibradas con granate, que se localiza en los bordes del enclave analizado T376 donde no se observa grafito, y que posiblemente haya interaccionado con el gneis porfiroide encayente. En las composiciones asociadas a las texturas reaccionales del interior del enclaves (i.e., Rt → Ilm y Bt → And+Ilm+Qz) las variaciones en Ti no parecen controlar la razón Mg/Fe. Desafortunadamente no se pueden ofrecer explicaciones ulteriores debido a la ausencia de estimaciones independientes de Fe\(^{3+}\), aunque se sugiere un aumento significativo en Fe\(^{3+}/Fe^{2+}\) de las biótitas pobres en Ti de los gneises leucocratos. Esto es consistente con el hecho de que un aumento significativo en Fe\(^{3+}/Fe^{2+}\) se detecta igualmente en las moscovitas recristalizadas de baja P de los gneises bandeados con Ms+Bl+Grt (ver Apartado 4.4 y García-Casco et al., 1993).
4.5.8. CONCLUSIONES

Las heterogeneidades composicionales detectadas en las biotitas pueden describirse mediante complejas interacciones entre los componentes que afectan esencialmente a las capas tetraédrica y octaédrica, modificando sustancialmente la ocupación octaédrica. El análisis de estas variaciones mediante métodos gráficos, algebraicos y estadísticos revelan que los cambios composicionales se describen mediante vectores de intercambio complejos cuya descomposición en vectores simples es difícil y no exenta de incertidumbre (cf. Holdaway, 1980; Labocka, 1983). No obstante, las sustituciones simples que parecen ejercer mayor influencia son la sustitución Ti-Al-vacante, Si-vacante, Ti-vacante y FeMg. Las dos primeras sustituciones son comúnmente consideradas responsables de los balances de masa en los cambios composicionales detectados en otras biotitas naturales. A pesar de los fuertes cambios detectados en la capa tetraédrica, y los fuertes desvíos hacia composiciones aluminícas, el análisis anterior no favorece la operatividad de la sustitución tschermak en la explicación de los cambios composicionales, posiblemente debido a la efectividad de las sustituciones Ti-Al-vacante y Si-vacante en la modificación de la distorsión tetraédrica y en implicar vacantes octaédricas, de rango iónico mayor que los cationes octaédricos. No obstante, la sustitución tschermak es necesaria para explicar la posición absoluta de los análisis en el espacio composicional. Es muy probable que las reacciones homogéneas Ti-Al-vacante y Si-vacante hayan progresado metaestablemente respecto a otras sustituciones como tschermak, Ti-vacante, Ti-tschermak, y distroctaédrica.

La operatividad metaestable de las sustituciones anteriores se considera relacionada con los procesos reacionales en desequilibrio (i.e., balances de masa locales y limitada difusión en Ti y Al, \pmFe \pmMg) que han sufrido estas rocas. Esto explica las tendencias composicionales hacia polos opuestos del espacio composicional cuando se consideran las composiciones resultantes de estas reacciones a baja P. En las metapelitas griformes, las últimas variaciones en Ti no parecen controlar la razón Mg/Fe de las mismas, lo que sugiere que la difusión de los cationes Mg y Fe no es tan limitada como la del Ti. Estos resultados son consistentes con las inferencias de Guidoni et al. (1977). En estas rocas, los menores cantidades de Ti y mayores de Al en las biotitas de pseudomorfos de granate no es relacionable con temperaturas de formación más bajas, sino con la sobresaturación en Al y substauración en Ti debido a la disponibilidad de estos elementos en las áreas reactivas donde no están implicados silicatos de Al ni óxidos de Fe-Ti. Por el contrario, las generadas junto con andalucita-ilmenita (o cordierita-ilmenita en los GPE) presentan cantidades mayores de Ti y menores de Al, de acuerdo con implicación de rutilo en las reacciones y la presencia de ilmenita y andalucita en los pseudomorfos. Dado que las asociaciones de baja P incluyen ilmenita, las biotitas asociadas a texturas reacionales con And+Ilm+Crd deben representar composiciones cercanas al equilibrio a baja P para el sistema saturado en Ti, de acuerdo con las limitadas evidencias experimentales disponibles que indican una mayor solubilidad del Ti a baja P y con las inferencias al respecto de la minimización de la distorsión tetraédrica que estaría maximizada en las composiciones (metaestables) de las biotitas de bajo Ti y alto Al de los pseudomorfos de granate. Las biotitas de la matriz, con cantidades de Ti intermedias, podrían reflejar hasta cierto punto las composiciones de equilibrio anteriores a las reacciones de descompresión, aunque este no parece ser el caso de las biotitas de los gneises pelícos si se tiene en cuenta las relaciones de partición Fe-Mg entre estas biotitas de la matriz (que definen el foliación) y el granate coexistente. Aunque las biotitas de los distintos tipos de metapelitas se solapan composicionalmente, los contenidos en Ti tienden a aumentar, y la razón Mg/Fe tienden a descender con el
Evolución metadórfica del Complejo Cretácico de Tumbes y series adyacentes

...lo cual es asignable a diferencias en la temperatura de equilibrio de a bajo P (heredadas de las condiciones de P intermedia previas a la descompresión).

La correlación positiva entre Ti y Mg/Fe detectada en las biotitas de los gneises leucocratos (inter-muestra e intra-muestra) es totalmente anómala si se compara con prácticamente todos los estudios que han tratado el problema en biotitas igneas y metamórficas (e.g., Guidotti, 1984; Abrecht y Hewitt, 1988, y referencias más arriba). Es probable que este comportamiento esté relacionado con limitaciones en la difusión de Fe y Mg en estas rocas y con variaciones sustanciales en la razón Fe\(^{3+}/Fe^{2+}\) de estas biotitas, que tendría a aumentar al descender las cantidades de Ti.

4.6. GRANATE

4.6.1. INTRODUCCIÓN

En el presente apartado se presentan las características composicionales de los granates de las rocas analizadas, poniendo especial énfasis en la descripción de distintos patrones de zonación encontrados mediante transversales elementales, mapas de isoconcentración y diagramas binarios y triangulares. Los elementos analizados en los granates han sido Si, Ti, Al, Cr, Fe, Mn, Mg y Ca. Las sumas de los óxidos de estos elementos expresados en % en peso indican que no existen deficiencias de masas significativas atribuibles a otros elementos no analizados (Apéndice II Tabla G). En todos los casos se presentan los análisis normalizados a 12 oxígenos y Fe\(_{\text{total}} = \text{Fe}^{2+} + \text{Fe}^{3+}\). Se considera que las fórmulas son más precisas sin el Fe\(^{3+}\) calculado por estequiometría ya que la leve desviación de la suma total de cationes de los teóricos 8 átomos pfu es indicativa de la ausencia de Fe\(^{3+}\). Además las cantidades calculadas de Fe\(^{2+}\) por estequiometría son positivas y negativas, lo cual indica que la dispersión analítica sería la causa mayor de variación en las cantidades de Fe\(^{2+}\) calculado. Por lo tanto, no existen complicaciones derivadas de problemas analíticos y/o métodos de normalización de las fórmulas estructurales.

La ausencia de cantidades significativas de Ti y Cr (que se encuentran por debajo del límite de detección, Apéndice II Tabla G) justifica igualmente considerar las desviaciones de Al de las cantidades estequiométricas (2 átomos pfu) como el resultado de dispersión analítica. Por lo tanto, la solución sólida puede modelizarse exclusivamente en términos de las variaciones en las posiciones cúbicas distorsionadas de coordinación 8 (o posiciones X). De esta manera, los componentes linealmente independientes y variables independientemente de los granates analizados son 4: Fe\(^{2+}\)\(_{\text{total}}\), Mg, Mn y Ca. La normalización molar de estos 4 componentes (i.e., \(x_i = n_i / \Sigma n_i\)) es equivalente a transformar los análisis en términos de los correspondientes componentes moleculares almandino (a/m, Fe\(_3\)Al\(_2\)Si\(_3\)O\(_{12}\)), piropo (prp, Mg\(_3\)Al\(_2\)Si\(_3\)O\(_{12}\)), espinelina (sp, Mn\(_3\)Al\(_2\)Si\(_3\)O\(_{12}\)) y gresularia (grs, Ca\(_3\)Al\(_2\)Si\(_3\)O\(_{12}\)) (Apéndice II Tabla G), que son los componentes típicos de granates almandínicos de secuencias metamórficas (e.g., Hane y Henley, 1966; Hollister, 1966; Atherton, 1968). Hay que señalar que esta modelización molecular no es totalmente equivalente a la modelización algebraica basada en 8 componentes (Si, Ti, Al, Cr, Fe, Mn, Mg y Ca) ya que en las fórmulas estructurales no existen las constricciones Al = 2 y Si = 3, aunque las diferencias numéricas en los resultados son mínimas.

212
4.6.2. LA ZONACION DEL GRANATE EN METAPELITAS

Desde el advenimiento del uso de la microonda electrónica con fines analíticos, la mayor parte de los estudios sobre rocas metamórficas ha mostrado la presencia de zonación en el granate (e.g., Hollister y Albee, 1965; Hollister, 1966; Hart y Henley, 1966; Atherton y Edmunds, 1966; Evans y Guidotti, 1966; Atherton, 1968). Esta característica de desequilibrio es el resultado de una difusión intransicional excepcional para homogenizar granos individuales (excepto en el grado alto), por lo que los patrones de zonación de los granates pueden utilizarse para deducir la evolución del metamorfismo (e.g., Tracy et al., 1976; Thompson et al., 1977b; Spear y Silverstone, 1983; Spear et al., 1984, 1990; Robinson, 1991), aunque con igual limitaciones debidas a la importancia de los procesos de difusión (e.g., Spear, 1988b, 1991; Florence y Spear, 1991).

Los patrones de zonación de granates detectados desde los años 60 son muy variados, dependiendo de los tipos de rocas, asociaciones de fases, historia reacional, etc. En el caso de metapelitas y rocas aluminosas pobres en Ca, la variabilidad en la zonación del granate es extrema, característica que llevó a Tracy (1982, p. 392) a señalar que "one is still struck by the variety of patterns that emerge from seemingly similar garnets taken from seemingly similar rocks" y a Robinson (1991, p. 1782) a calificarla de "can of norms" al proyectar la composición de granates de rocas acadienses de Massachusetts en el diagrama ternario Mn-Mg-Fe. No obstante, a pesar de esta variabilidad, un gran número de granates de rocas aluminosas presentan patrones de zonación similares que muestran descensos en Mn y Fe/Mg, y aumentos en Fe y Mg del núcleo al borde de los cristales (Hollister, 1966). Este patrón, denominado zonado normal, se considera relacionado con crecimiento progrado, ya que tanto los análisis de microonda como análisis por vía húmeda de concentrados de granate han demostrado un consistente descenso en Mn y Fe/Mg de esta fase con el grado metamórfico (Goldschmidt, 1921; Miyashiro, 1953; Hart y Henley, 1966; Atherton, 1968; Hollister, 1969a; Miyashiro y Sudo, 1973). Las variaciones en Ca han sido generalmente pocas descritas, quizás debido a las bajas concentraciones de este elemento en granates almandinos y al desarrollo de patrones de zonación del Ca comúnmente más aleatorios que los de Mn, Mg y Fe, con los que a veces muestra relaciones claras (e.g., Hart y Henley, 1966; Atherton, 1968; Brown, 1969; Hollister, 1969a; Crawford, 1974, 1977; Olaimp y Anderson, 1978; Hickmott y Spear, 1992). En algunos casos las cantidades de Ca descienden hacia los bordes (e.g., Hart y Henley, 1966; Atherton, 1968; Tracy et al., 1976; Thompson et al., 1977b), lo cual ha sido considerado como una característica de zonados normales (de Béthune et al., 1975; Spear, 1988b).

Por otra parte, en metapelitas de grado medio y alto se detectan inversiones de la zonación normal, que en la mayor parte de los casos involucran aumentos en Mn y Fe/Mg y descensos en Mg hacia los bordes (e.g., Evans y Guidotti, 1966; Crawford, 1966; Hollister, 1969a; Grant y Weiblen, 1971; Guidotti, 1974; Tracy et al., 1976; Tracy, 1982; Spear, 1982; Roll, 1987). Estas inversiones se describen como zonación inversa, aunque no siempre se detectan variaciones paralelas en Mn y Fe/Mg, y se suelen relacionar con procesos retrógrados, tanto de crecimiento como de difusión.

4.6.3. METAPELITAS GRAFITOSAS

Los granates de las muestras de metapelitas grafitosas analizadas en este trabajo exhiben una variedad de patrones de zonación, incluyendo patrones normales e inversos, incluso en cristales de una misma muestra. Dado que la preservación de patrones de zonación variados en muestras individuales es muy
Evolución metamórfica del Complejo Grésico de Torrox y serie adyacentes

interesante al ser potencialmente informativa de la historia reacional sufrida por estas rocas, es importante correlacionar los tipos texturales de granate encontrados con las características composicionales (cf. Robinson, 1991).

Los distintos tipos texturales de granates diferenciados en los esquistos y gneises pelíticos se pueden agrupar en dos grandes grupos (Capítulo 3.1.1.1, Tabla 3.1.1): El grupo I está constituido por porfídoblastos (abreviados ‘pd’, Apéndice II Tabla G) de tamaño de grano fino a medio (0.25-1 mm de radio) con grado de pseudomorfosis variable por agregados orientados o decussados de biotita y moscovita ± plagioclase ± cuarzo ± cordierita. Debido a las posibles modificaciones y complicaciones composicionales derivadas de los procesos de descomposición, los porfídoblastos de tendencia idioblastica se han diferenciado de los blastos moderada a fuertemente pseudomorfizados (abreviados ‘pd’, Apéndice II Tabla G). El grupo II incluye una gran variedad de tipos de granate de tamaño de grano muy fino (r < 0.125 mm), generalmente incluidos en porfídoblastos de plagioclase y estaurolita (abreviados ‘inc R’ y ‘inc St’, respectivamente, Apéndice II Tabla G) y con texturas de reemplazamiento de tipo atolón en cuyo núcleo se encuentran micas (biotita, y en menor medida, moscovita) y la fase que los aloja, i.e., plagioclase o estaurolita. En este grupo también se incluyen los blastos de granate incluidos en porfídoblastos de moscovita y turmalina (abreviados ‘inc Ms e ‘inc Tu’, respectivamente, Apéndice II Tabla G) que se encuentran en los gneises pelíticos, y blastos de tamaño de grano fino (r < 0.25 mm) que aparecen dispersos o en agregados en la matriz (abreviados ‘mix’, Apéndice II Tabla G). Como se apreciará a continuación, este grupo II presenta características composicionales distintivas que no son fáciles de correlacionar con el crecimiento de los porfídoblastos del grupo I, lo cual es en parte debido a que estos blastos se encuentran incluidos en porfídoblastos de fases cuyo crecimiento fue diacrónico. Por esta razón, y aunque la lógica más común haría describir las características composicionales de los granates en función de los tipos de asociaciones de fases presentes, en este caso es más conveniente proceder a su descripción por grupos texturales.

4.6.3.1. GRUPO I: PORFÍDOBlastOS

Esquistos con Estaurolita+Biotita+Granate+Andulcita

Todos los cristales analizados de las rocas investigadas con la asociación St+Bt+Grt+And son porfídoblastos con estado de pseudomorfosis variable, pero en general limitado. Presentan zonación normal, con descenso de Mn, Ca y Fe/Mg, y aumento de Mg y Fe de núcleo a borde (Figuras 4.6.1, 4.6.2 y 4.6.3). Los valores absolutos de los distintos componentes son similares en todos los casos, y gran parte de las leyes diferencias encontradas pueden asignarse a problemas de corte. La disposición de la zonación es regular y concéntrica (Figura 4.6.3), aunque presenta débiles disconformidades respecto de los bordes idioblasticos aún en los cristales mejor conservados. No existen discontinuidades ni inversiones en la zonación. Las recurrencias observadas en la transversal T447a (Figura 4.6.1) se deben a los efectos del crecimiento rotacional (Figura 4.6.3), como lo demuestra el hecho de que la transversal T447b (Figura 4.6.1), que corresponde a otro porfídoblasto aparentemente no rotacional de la misma muestra, presenta un patrón de zonación idéntico sin tales recurrencias. A pesar de que el porfídoblasto rotacional de la muestra T447 no presenta evidencias de reemplazamiento, ha debido sufrir procesos de disolución en los bordes paralelos a la foliación principal ya que la distribución de la zonación es cortada en estos bordes (Figura 4.6.3, ver Figura 3.1.1a). Esto puede extenderse a otros porfídoblastos de otras muestras, y corroborar la inestabilidad de granate durante el desarrollo de D2 en estos esquistos.

214
Figura 4.6.1. Perfiles de zonación de porfídoblastos de granate de los equipos grafíticos con Sr-Ba-Grt-And. Símbolos: Circulos: almandino, Triangulos: esfalerita, Triangulos invertidos: pirita, Cuadrados: grenalita, Cruz: Fe(Fe+Mg). La escala de Fe(Fe+Mg) se representa en la ordenada derecha. Los dos perfiles de la muestra T447 corresponden a un grano rotacional con inclusiones (T447a) y a un grano con S$_2$ relativamente a S$_1$ aparentemente no relacionada (T447b).
Figura 4.6.2. Diagramas ternarios spal-myrp y gral-myrp para los perfibolastos de granate de los esquistos grafíticos con Sr+Bt+Gr+And. Las flechas apuntan hacia el borde.

T447

Fe Mn

Mg Ca

0.75 mm

Figura 4.6.3. Líneas de isoconcentración de Fe, Mn, Mg y Ca que muestran la zonación concrentrica en el perfibolasto rotacional de granate de la muestra T447 (Figura 3.1.1a). Las flechas marcan el perfil T447a en la Figura 4.6.1. Nótese que el zonado aparente débilmente influido por el crecimiento rotacional, y que los bordes laterales superior izquierdo e inferior derecho (paralelos a la foliación principal) corresponden a la zonación en contraposición con los bordes superior derecho (idioblastico) e inferior izquierdo.
Una característica importante de estos granates es la alta concentración de Ca, que en todos los casos es el segundo componente más abundante en la mayor parte del volumen total de los cristales (0.2-0.25 moles de grs en los núcleos). Sólo en las últimas 100 μm cerca de los bordes se puede observar que la concentración de Mg es mayor que la de Ca, aunque el Mn siempre se mantiene en concentraciones menores que las de Ca. La distribución antipatética de Mn+Ca y Fe+Mg no permite concluir si existen relaciones de sustitución específicas entre los cationes de cada par. No obstante, es significativo que las recurrencias en Ca del perfil T447a estén compensadas por Fe (Figura 4.6.1), no que indica que el vector CaFe4+ es significativo en el desarrollo de la zonación. Por contra, los porfiroblastos de la muestra con la asociación Grt+Bi (T88.2) muestran una zonación menos acusada aunque también es normal, con parones planos para el Ca y débil enriquecimiento en Mn en los núcleos (Figuras 4.6.1 y 4.6.2).

Esquistos con Estaurolita+Biotita+Granate+Fibrolita+Andalucita+Distena

Todas las muestras analizadas de rocas que presentan esta asociación contienen granate, aunque en la mayor parte de ellas son granates del grupo II. Sólo las muestras T329 (sin distena) y T2610-14 (con distena) presentan granate porfiroblastico (Figuras 4.6.4, 4.6.5 y 4.6), si bien el grado de reemplazamiento es mayor que en los esquistos sin fibrolita (Figura 4.6.6). Es por lo tanto probable que la ausencia de granate porfiroblastico en un gran número de estas muestras se deba a reacciones de descomposición del mismo que hubieran progresado hasta su completa desaparición.

217
Figura 4.6.5. Diagramas ternarios sps alm prp y grs alm prp para los parábolanos de granate de los espacios gránulos con St+Bt+Grt+Fib+And+Kfs. Las flechas apuntan hacia el borde. Nótese el bajo contenido en espesorarina de parábolano de la muestra T329 y su elevada concentración en granularia.

Figura 4.6.6. Curtas de isoconcentración en 90° de alm, sps, prp, y grs que muestran la zonación en el parábolano de granate de la muestra T329 fuertemente pseudomorfizado. Las flechas marcan los perfiles en la Figura 4.6.4. Nótese que el zonado aparece cortado en los bordes y la fuerte variación en alm y grs.
En el caso de la muestra T2610-14, la zonación de los porfídoblastos es bastante irregular, aunque tendente a normal y similar a la de los porfídoblastos de los esquistos con St+Bt+Grt+And, aunque presentan inversiones (i.e., aumentos) en Ca y Mn en los bordes (Figura 4.6.4). En el caso de la muestra T329, el cristal está fuertemente desestabilizado y parcialmente reemplazado por biotita, como lo demuestra la disconformidad de la zonación con los bordes del cristal (Figura 4.6.4 y 4.6.6). En este cristal destaca el bajo contenido en Mn que se considera característico del núcleo a pesar del estado de disolución avanzado que presenta este cristal ya que los valores de Fe/(Mg+Fe) = 0.9 son similares a los del núcleo del cristal de la muestra T2610-14 (Figuras 4.6.4, 4.6.5 y 4.6.6). Nótese que el Mn muestra un enriquecimiento en el borde que no es correspondido por aumentos en la razón Fe/(Mg+Fe) (Figuras 4.6.4 y 4.6.5), lo cual puede relacionarse con el proceso de reemplazamiento. Los contenidos en Ca de estos porfídoblastos, que llegan hasta ca. 0.3 moles de gotsularia en el núcleo, también son muy altos. Los patrones de zonación del Ca y Fe antipatrónicos en los dos casos descritos indican la importancia del intercambio CaFe₃ en la explicación de la zonación. Esto es claramente observable en el caso del cristal de la muestra T329 donde el Mn y Mg prácticamente no varían.

Gneises Pelíticos con Estaurolita+Biotita+Granate+Distema+Fibrolita+Andalusita+Cordierita

Prácticamente todas las muestras de gneises pelíticos contienen granates porfídoblasticos, aunque por constante con las rocas anteriores, los patrones de zonación son más heterogéneos. Se han detectado los siguientes casos:

- **Patrones normales.** Son similares a los encontrados en los esquistos grafitos con St+Bt+Grt+And (e.g., T327, Figuras 4.6.7, 4.6.8 y 4.6.9), tanto en cantidades absolutas de todos los componentes en los núcleos y bordes como en la ausencia de recurrencias y de inversiones en los bordes. No obstante, presentan razones Fe/(Mg+Fe) de los bordes más bajas que en los anteriores, lo que sugiere condiciones de formación de grado más alto (ver más adelante), y parece que existe una débil inversión de la zonación en Fe/(Mg+Fe) hacia la zona externa, como puede observarse en el diagrama alm-prp-grs (de la Figura 4.6.8). La zonación está débilmente truncada por los bordes, aunque no parece que el porfídoblasto de la Figura 4.6.9 haya sufrido disolución (ver Figura 3.1.1d). Destacan las fuertes variaciones en Ca y Fe que en gran parte se compensan (i.e., CaFe₃), y las cantidades elevadas de Ca de los núcleos (ca. 0.25 moles de grs, Figuras 4.6.7 y 4.6.9).

- **Patrones normales con zonación oscilante en Ca.** Estos porfídoblastos se han detectado en la muestra T312, donde presentan una clara zonación textural definida por inclusiones de cuarzo alrededor de los núcleos limpios de inclusiones y por bordes interrecreados con cuarzo (Figura 3.1.1e). En este caso, las cantidades absolutas de los componentes difieren de las encontradas en los porfídoblastos con zonación normal de los gneises pelíticos y de los esquistos (T312 en las Figuras 4.6.7 y 4.6.8). Los núcleos presentan cantidades mayores de Mn (ca. 0.2 moles de sps) y Fe (> 0.70 moles de alm) y cantidades menores y homogéneas de Ca (ca. 0.05 moles de grs). En el caso del porfídoblasto #12 (Apéndice II Tabla G, Figura 4.6.7), se encuentran fuertes oscilaciones en Ca coincidiendo con los bordes sobrecrecidos, que suponen un brusco incremento que llega hasta X_{pr} > 0.1 seguido de un brusco descenso hasta X_{pr} = 0.02 y finalmente de un incremento más suave hasta X_{pr} = 0.05 hacia el borde. Este zonado se encuentra en otros porfídoblastos de la misma muestra, aunque no de manera tan completa ya que faltan los incrementos finales en X_{pr}. Los bordes presentan valores bastante elevados de la razón Mg/Fe (> 0.2). En las últimas decenas de micras de los
bordes pueden observarse muy ligeras inversiones en la zonación en términos de Fe/Mg, pero no son sistemáticas en todos los bordes ni de entidad cuantitativa importante.

Figura 4.6.8. Diagramas ternarios spal-almp-grm para los perfisoblastos de granato de los gneissos policromos con Sr+Bl+Gr+Ky+Fe+And(xCa). Las flechas apuntan hacia los bordes. Ver el texto para los distintos tipos de zonación.
De nuevo se observa una estrecha relación entre la peculiar zonación oscilatoria del Ca y la del Fe, que muestra que ambos componentes presentan un comportamiento antipático representable por el vector CaFe. Las bajas cantidades de Ca en los núcleos (por comparación con los porfídoblastos anteriormente descritos) parecen haber favorecido la elevada concentración de Fe en los núcleos. Las variaciones en Mn parecen compensarse con las de Mg, sugiriendo el intercambio MnMg. Estas conclusiones son igualmente aplicables a los porfídoblastos con zonación normal, a pesar de que las variaciones de Ca y Mn ocurran en el mismo sentido.

- **Patrones irregulares con núcleos pobres en Ca.** En todos los casos registrados los cristales son xenoblasticos y presentan estadios de reemplazamiento importantes (Figuras 4.6.10-4.6.13). En las muestras T498 y T348 el granece está reemplazado por agregados piníticos εβt εMn, y su zonación aparece truncada por los bordes de los granos (Figuras 4.6.11 y 4.6.13). Los cristales de la muestra T23 no presentan coronas de reacción, pero el truncamiento tan claro de la zonación sugiere igualmente un proceso de disolución importante que ha afectado sobre todo al borde sobrecrecido (Figura 4.6.12).

La zonación observada en estos cristales es diferenciable de las anteriores ya que las cantidades de Ca son muy bajas y no muy variables ($X_{gr} < 0.05$), excepto en los bordes de algunos cristales donde se detectan fuertes incrementos de X_{gr}, como es el caso del cristal de la muestra T23 mostrado en la Figura 4.6.12 (hasta $X_{gr} = 0.15$) y en el caso de relictos incluidos en las corona de agregados piníticos de la muestra T348 (no mostrado en los perfiles pero identificables en la Figura 4.6.8). Por otra parte, los valores de la zonación Mg/Fe en los bordes de estos granes es elevada, mayor en todos los casos de 0.2 y hasta 0.87 en el caso de la muestra T498 (Figura 4.6.10). En esta muestra se registran inversiones de la zonación en Mg/Fe que coinciden con incrementos en Ca detectados en relictos dentro de los agregados piníticos (Figuras 4.6.10, 4.6.11). Estas características sugieren que estos granates son similares a los porfídoblastos con zonación oscilante en Ca.
aunque la ausencia de incrementos oscilantes en Ca quizás se deba a la importante disolución que han sufrido. Por otra parte, las relaciones composicionales sugieren el acople de los pares Ca-Fe y Mn-Mg en la expulsión de la zonación.

Figura 4.6.10. Perfiles sobre porfiroblastos de granate con zonación irregular y cantidades bajas en Ca de greises polícticas con Sr+Cpx+Opx+Fe+And+Ord. Símbolos: Circulos: aplanita, Triángulos: espinañosa, Triángulos invertidos: piróxeno, Cuadrados: granoblástico. Círculos: Fe/(Fe+Mg). La escala de Fe/(Fe+Mg) se representa en la ordenada derecha (refleja el cambio de escala para la muestra T29). En todos los casos los porfiróblastos están parcialmente pseudomorfizados, y los perfiles son de bordo a bordo.

222
Figura 4.6.11. Curvas de isoconcentración en % de alm, sps, prp, y grs que muestran la zonación en el porfido blasts de granate de la muestra T498 (gnesis pélitico con cordierita). Las flechas marcan el perfil T498a en la Figura 4.6.10. Nótese la baja concentración en Ca.

Figura 4.6.12. Curvas de isoconcentración en % de alm, sps, prp, y grs que muestran la zonación en el porfido blasts de granate de la muestra T23 (gnesis pélitico con cordierita). Las flechas marcan el perfil en la Figura 4.6.10. Nótese la fuerte zonación (particularmente Ca) detectada hacia el borde inferior izquierdo que está ausente en el resto de los bordes.
Figura 4.6.13. Curvas de inoconcentración en % de alm, sps, prp y grs que muestran la zonaación en el perfidoblasto de granate de la muestra T348 (piedra pelítica con cordierita). Las flechas marcan el perfil T348b en la Figura 4.6.10.

4.6.3.2. GRUPO II: GRANATES DE TAMAÑO FINO E INCLUSIONES

Los granates del grupo II son similares en los esquistos con St+Bt+Grt+Fib+Ands+Ky (Figura 4.6.14) y en los gneises pelíticos con St+Bt+Grt+Ky+Fib+Ands+Crd (Figura 4.6.15), aunque en los primeros solo se encuentran en la matriz e incluidos en estaurolita y plagioclase mientras que en los segundos también están incluidos en moscovita y turmalina (Tabla 3.1.1). No existen diferencias en función de la fase en la que están alojados, e.g., nótese las similitudes entre T330 inc Pl, T327 inc St, y T327 inc Ms, así como que los patrones de Ca en los granates incluidos en plagioclase son muy variables (Figuras 4.6.14 y 4.6.15), con fuertes variaciones en algunos cristales a pesar del tamaño de grano tan pequeño (e.g., T307-7 inc Pl, Figura 4.6.14, T23 inc Ms, Figura 4.6.15). A pesar de la heterogeneidad composicional y del tamaño de grano tan fino que presentan (radio menor de 100 μm), los patrones de zonación de estos cristales son distintivos en cuanto que la mayor parte de ellos son inversos en todo el volumen de los cristales, con aumentos en Mn y Fe/(Mg+Fe), y descenso en Mg de núcleo a borde (Figuras 4.6.14 y 4.6.15). En estas figuras puede observarse que (1) los valores de Mn y Fe/Mg tienden a ser bajos, en general similares a los de los bordes de los granates perfidoblasticos y (2) las cantidades de Ca son variables y se distribuyen de manera normal (i.e., descendiendo hacia los bordes), inversa o irregular.

Aunque no existe un patrón de zonación constante en Ca, de nuevo puede observarse como las variaciones de Ca y Fe están claramente acopladas, con patrones de zonación antipatéticos. Así es particularmente claro en los casos en que los patrones de Fe y Ca son aleatorios o tendentes a planos (e.g., T450 inc Pl -Figura 4.6.14, T312 mtx, y T327 mtx -Figura 4.6.15), y en los casos en que los patrones de Mg y Mn son planos (e.g., T18-17 inc Pl -Figura 4.6.14, T328 inc Pl -Figura 4.6.15). Sin embargo, en los casos en
que el patrón de Mn es constante y el de Mg varía (e.g., T22 inc Ms, Figura 4.6.15) o viceversa (e.g., T327 inc Ms, T327 inc S1, Figura 4.6.15), puede observarse que las variaciones en Ca también se compensan con variaciones antipátricas en Mg (i.e., CaMg1) y Mn (i.e., CaMn1), respectivamente. La heterogeneidad de la zonación en Ca de este tipo de granates sugiere que su cristalización corresponde a etapas diferentes durante la evolución PT. A este respecto, los granos incluidos en placas de moscovita del gneis pelítico T23 difieren claramente de los granos incluidos en dominios lepidoblasticos de moscovita de los gneises pelíticos T327 y T328. Estos últimos son similares a los incluidos en estaurolita de las mismas muestras, donde existen además evidencias texturales (discutidas en el Capítulo 3.1.1.1) que indican que los granates del grupo II de los dominios lepidoblasticos crecieron con anterioridad a la estaurolita y fueron incluidos posteriormente por la misma.

![Figura 4.6.14. Perfiles sobre granitos de grupo II de equiositos grafíticos con Sr+R+(Ct+Ct+Pl)+And(Sk). Todos los perfiles son de izquierda a derecha, excepto T28-17 inc Pl que es de arriba a abajo. Símbolos: Círculos: almandino. Triángulos: apatita. Triángulos intermedios: tiempo, Cuadrados: granulitas, Círculos: Fe(Fe+Mg). La escala de Fe/(Mg+Fe) se representa en la ordenada derecha. Nótese la magnitud mayor y la heterogeneidad en los patrones de zonación, incluso en gramos incluidos en la misma fase.](image)

La comparación de la zonación y composición de los porfido blastos y los granos del grupo II en rocas individuales no permite establecer relaciones claras al respecto de estadios de crecimiento comunes (Figura 4.6.16). Por ejemplo, las cantidades relativamente elevadas en Ca dificultan la comparación de estos granates con los porfido blastos con zonación irregular de los gneises pelíticos. Tampoco pueden establecerse relaciones con los porfido blastos con zonación normal ya que, aunque la composición del borde es similar en términos de todos los componentes, los núcleos presentan cantidades significativamente mayores en Fe y Mg y menores en Mn y Fe/Mg. El único tipo de porfido blastos con el que se pueden establecer analogías es el que presenta patrones oscilantes en Ca de la muestra T312, en particular con la zona intermedia donde se registran las oscilaciones en Ca. Nótese que gran parte de las composiciones de los granates del grupo II se alinean verticalmente en valores de Fe/(Fe+Mg) = 0.9, al igual que la zona con oscilaciones en Ca de los porfido blastos de la muestra T312, aunque la razón Fe/(Mg+Fe) no es constante.
(Figura 4.6.16). Las cantidades absolutas de Mn son consistentes con esta relación, ya que son igualmente bajas en la zona intermedia de los porfidooblástos con zonación oscilante en Ca.

Figura 4.6.15. Perfiles sobre ganas de granate del grupo 11 de grámas polícitos con St-Bt-Grt-Ky-Fs(And+Zw). Todos los perfiles son de bordes a bordes. Símbolos: Círculos: albúmina, Triángulos: escagritina, Triángulos invertidas: pirito, Cuadrados: granulina, Cruz: Fs(Fx+Fy). La escala de Fs(Mg+Fex) se representa en la ordenada derecha. Nótese la zonación inversa y la heterogeneidad en los patrones de zonación, incluso en granas incrustadas en la misma fase.
Figura 4.6.16: Diagramas de variación binarias que muestran las diferencias entre los granates de los grupos I y II en los gneises pelíticos con St+Br+Grt+Ky+Fib+And(#Cr). Los símbolos distintos en las figuras a y b representan cristales individuales. Los símbolos en las figuras c, d, e y f representan los distintos tipos petrográficos. Los símbolos rellenos representan bordes de algunos granos. Las flechas apuntan hacia los bordes.

4.6.3.3. RESUMEN

Las características anteriormente descritas en los distintos tipos de granates estudiados pueden resumirse como sigue:

- Los porsidoblastos de las asociaciones de grado menor (esquistos con St+Br+Grt+And) se encuentran en toda la secuencia de metapelitas grafíticas hasta la cota de mayor grado (gneises pelíticos), aunque en un gran número de muestras de esquistos con fibrolita y gneises pelíticos han podido ser totalmente reabsorvidos. Estos porsidoblastos están caracterizados por patrones de zonación normal s.s. y altos contenidos en Ca en los núcleos.
- Sin embargo, la mayor parte de los porsidoblastos de las asociaciones de mayor grado (los gneises pelíticos) presentan características composicionales, como cantidades más bajas de Ca y patrones de zonación oscilantes y planos en Ca, distintivos respecto de los porsidoblastos de asociaciones de menor grado. La razón Mg/Fe de los bordes de los porsidoblastos de los gneises pelíticos es mayor que la de los porsidoblastos de los esquistos grafíticos con y sin fibrolita.
- Los granates del grupo II forman un grupo heterogéneo, diferenciable de los porsidoblastos. Generalmente presentan zonación inversa en Mn y la razón Fe/Mg, y no se encuentran diferencias en
función de la fase que los aloja ni en función de la asociación de fases de la matriz (i.e., esquistos grafitos con FizKys vs gneises políticos con Kys). Todas las evidencias apuntan a un origen independiente, aunque posiblemente relacionable con el crecimiento de la zona intermedia de los porfidioblastos con zonación oscilante en Ca.

- Las cantidades de Ca son elevadas, sobre todo en los porfidioblastos con zonación normal, y en todos los casos el intercambio CaFe es significativo en la explicación de todos los patrones de zonación. Esta característica sugiere que equilibrios con plagioclase tuvieron un papel relevante en el crecimiento del granate en estas rocas.

4.6.4. GNEISES LEUCOCRATOS Y ROCAS ASSOCIADAS

Los cristales de granate de los gneises bandeados con Ms+Bt+Gr nos omenorforos de tamaño fino a medio (r < 1.5 mm) y reemplazados parcialmente por Ms+Bt+Pl+Qtz (abreviados 'péd' en el Apéndice II Tabla G). Presentan patrones de zonación planos en los núcleos, que son ricos en Ca (hasta 0.3 moles de grosularia) y muy pobres en Mg y Mn (Figuras 4.6.17.4.6.19). En algunos bordes se observan fuentes descensos en Ca y aumentos antipatéticos en Fe (i.e., CaFe), y cierto aumento en Mn, mientras que la razón Mg/Fe desciende. En el cristal ilustrado en la Figura 4.6.19 puede observarse que esta zonación es cortada por los bordes xenomorfos del cristal, aunque la distribución de la zonación no es concéntrica alrededor del núcleo rico en Ca. Este fenómeno, que es común a otros cristales de la misma lámina, sugiere cierta modificación difusional de la zonación (ver más adelante). Esto explica que los granos de tamaño de grano más finos de la misma lámina presenten cantidades menores de Ca.

Granates texturalmente similares a los anteriores caracterizan los esquistos moscovíticos con Ms+Bt+Gr+Kfs intercalados en los gneises, aunque suelen presentar un tamaño de grano más fino (abreviados 'mtrx' en el Apéndice II Tabla G). Las características composicionales de la mayor parte de estos granates son también comparables, i.e., presentan cantidades altas de Ca y bajas de Mn (Figura 4.6.17). Las variaciones entre distintas muestras son de rango mayor que las detectadas dentro de muestras individuales, como puede apreciarse en la razones Mg/Fe (Figura 4.6.17). Destacan por su heterogeneidad los granates de la muestra T499b (Figuras 4.6.17 y 4.6.18), un esquitl moscovítico con abundante turmalina que llega a estar incluida en los porfidioblastos de granate. En este caso se registran concentraciones muy bajas en Ca sin apenas variación (< 0.05 moles de grosularia) y fuertes incrementos en Mn los bordes, aunque de nuevo las variaciones en la razón Fe/Mg son prácticamente nulas (Figuras 4.6.17 y 4.6.18).

En los gneises aplícticos el granate aparece con tamaño de grano pegmatítico (abreviados 'pegm' en el Apéndice II Tabla G) y con tamaño de grano fino (abreviados 'mtrx' en el Apéndice II Tabla G). Los granates pegmatíticos son únicos por su elevado contenido en Mn, que llega hasta 0.55 moles de espesartina en los núcleos (superando la concentración en almandino), mientras que las cantidades de grosularia y pirophi son muy bajas (Figuras 4.6.17 y 4.6.20). El patrón de zonación es plano en la mayor parte del volumen de los cristales, y en los bordes desciende el Mn (0.35 moles de espesartina) y aumentan Fe y Ca (Figura 4.6.20). No existen variaciones significativas en la razón Mg/Fe (Figura 4.6.17 y 4.6.20). Los granates de tamaño de grano fino son similares en composición a los de los gneises bandeados, particularmente en lo referente a las elevadas cantidades de Ca (hasta 0.25 moles de grosularia) y bajos contenidos en Mn, aunque los valores de la razón Mg/Fe son los más altos detectados del conjunto de muestras de gneises leucocratos y rocas asociadas analizadas (Figura 4.6.17).
En el enclave restítico T376 con Bt+Ksy+Rt+Grt, el granate se localiza en los bordes del enclave, formando una especie de manto o corona compuesta de granos xenotípicos de grano muy fino que limita el enclave (aunque de manera discontinua). Esta textura sugiere que estos cristales son el resultado de procesos reacionales entre la biotita del enclave y el gneis glandular encajante, por lo que este tipo ha sido denominado 'corona' en el Apéndice II Tabla G. La composición de estos granates no es homogénea a pesar de que su tamaño de grano. Presentan fuertes variaciones en la razón Mg/Fe y en Ca, mientras el Mn es escaso y aumenta al descender la razón Mg/Fe (Figura 4.6.17 y Tabla 4.6.1). Las correlaciones elementales indican que gran parte de las variaciones en Ca son balanceadas por Fe (i.e., CaFe₄) y en menor medida por Mg (i.e., CaMg₄), mientras que las variaciones en Mn parecen balancearse con Mg (i.e., MnMg₄).

La fuerte variación en la razón Fe/Mg en los granates de esta muestra contrasta con las observadas en el resto de los granates de los gneises leucocráceos y rocas asociadas. Esto es claramente observable en el diagrama ternario sps-prp-dlm de la Figura 4.6.17, donde la distribución de las composiciones forma una curva alargada casi paralela al join prp-dlm y débilmente cóncava hacia el vértice sps. Tendencias similares a ésta, con cantidades de Mn muy bajas correlacionadas negativamente con Mg/Fe han sido descritas en granates de grado alto que han sufrido retrogresión (e.g., Tracy et al., 1976; Roll, 1987; Robinson, 1991).

Figura 4.6.19. Líneas de isoconcentración en % de alm, sps, prp y grs que muestran la zonación en un cristal de granita fuertemente pseudomorfizado por P+Qtz de la muestra T336 (granos bandeados). Las flechas marcan el perfil T336 en la Figura 4.6.18.

Tabla 4.6.1. Estadística básica y coeficientes de correlación Pearson para los análisis de granate del enclavado rostitico T376 con Bt+Kp+Rt+Grt (n = 20).

<table>
<thead>
<tr>
<th>Min</th>
<th>Max</th>
<th>Med</th>
<th>σ</th>
<th>α</th>
<th>slm</th>
<th>ρsl</th>
<th>ρpp</th>
<th>grs</th>
<th>Fe/Fe+Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.093</td>
<td>0.821</td>
<td>0.772</td>
<td>0.036</td>
<td>1.000</td>
<td>0.010</td>
<td>0.026</td>
<td>0.014</td>
<td>0.004</td>
<td>0.594</td>
</tr>
<tr>
<td>0.039</td>
<td>0.173</td>
<td>0.138</td>
<td>0.025</td>
<td>0.109</td>
<td>0.518</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.020</td>
<td>0.170</td>
<td>0.073</td>
<td>0.047</td>
<td>0.876</td>
<td>0.268</td>
<td>0.572</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.821</td>
<td>0.899</td>
<td>0.849</td>
<td>0.023</td>
<td>0.152</td>
<td>0.579</td>
<td>0.965</td>
<td>0.340</td>
<td>1.000</td>
<td></td>
</tr>
</tbody>
</table>

4.6.5. SIGNIFICADO DE LOS PATRONES DE ZONACION Y ORIGEN DE LOS GRANATES

Como ya se ha indicado, la variedad de texturas y patrones de zonación encontrados en los granates estudiados permiten extraer información cualitativa de los procesos reaccionales y de la evolución P-T sufridos en la serie de metapelitas.

4.6.5.1. Metapelitas Grafítosas

Patrones Normales

La interpretación de la zonación del granate está fuertemente condicionada por la forma clásica de campana en los perfiles de Mn. Hollister (1966) y Atherton (1968) ofrecieron modelos alternativos basados...
en el concepto de fraccionamiento durante el crecimiento de los cristales, asumiendo que (1) no existe difusión intracrystalina en el granate, (2) la matriz es homogénea y por lo tanto la difusión en la misma es perfecta y (3) el coeficiente de fraccionamiento global entre el granate y el resto de la roca (i.e., fases coexistentes) es una constante, esto es, que el proceso es isotérmico. La naturaleza física de estos modelos implica considerar que el elemento fraccionado se retira del sistema, por lo que sólo la capa más externa del cristal está en equilibrio con la matriz y el interior no es accesible para reaccionar con el sistema. Aunque empíricos, estos modelos demuestran ser apropiados para describir la zonación en Mn del granate, ya sea en condiciones implícitamente isotérmicas (i.e., coeficiente de fraccionamiento constante) o politérmicas (i.e., coeficiente de fraccionamiento variable a lo largo del perfil; Atherton, 1968). Sin embargo, existe un número de argumentos para desecha el modelo de fraccionamiento isotérmico durante el crecimiento (Tracy, 1982; Loomis y Nimick, 1982; Loomis, 1982). La alternativa a los modelos de fraccionamiento isotérmico son los modelos de partición por reacción, que consideran la zonación como el resultado de (1) procesos de crecimiento en equilibrio en los que la composición del borde está controlada en todo momento por equilibrios multivariantes entre las distintas fases coexistentes, y/o (2) procesos de crecimiento en desequilibrio (por sobrecreció) en los que la composición está controlada además por la difusión intracrystalina y/o la cinética de reacción en la superficie de los cristales (Brown, 1969; Kretz, 1973; Trzcinski, 1977; Loomis, 1982; Loomis y Nimick, 1982; Cygan y Lasaga, 1982; Lasaga, 1983; Spear, 1988c; Florence y Spear, 1991).

Clásicamente se considera que la clorita es la principal fuente de Mn que finalmente resulta concentrado en el granate, por lo que equilibrios con clorita en condiciones de grado bajo son comúnmente considerados responsables de la zonación en Mn, Fe y Mg (aunque Tracy et al., 1976, no recurren a la clorita sino a otras fases como estauroilita). Los modelos de crecimiento en equilibrio son satisfactores en la descripción de los perfiles de zonación del Mn y de los elementos mayores Fe y Mg (que no pueden modelizarse mediante fraccionación Rayleigh), implementando constricciones termodinámicas que permiten evaluar el equilibrio continuo entre el granate y otras fases ferromagnesianas mediante diagramas TX (o PX) pseudobinarios o pseudoternarios y explicar las discontinuidades en la zonación por la operatividad de una o varias reacciones multivariantes programadas de generación y/o consumición de granate (A.B. Thompson, 1976a; Tracy et al., 1976; Thompson et al., 1977b; Loomis y Nimick, 1982; Tracy, 1982; Spear y Selverstone, 1983, Karabinos, 1985; Spear, 1988c; Spear et al., 1990b; Robinson, 1991). Los resultados de todas las modelizaciones anteriores indican que la zonación normal del granate, caracterizada por un descenso en Mn y un aumento en la razón Mg/Fe de núcleo a borde, es el resultado de crecimiento programado. La zonación en Ca, aunque no ha sido tan estudiada como las zonaciones en Fe-Mg-Mn, también ha sido explicada por reacciones de reacción entre el granate y fases cálizas como epidotitas o plagioclasa (e.g., Brown, 1969; Crawford, 1974, 1977; Olimpio y Anderson, 1978; Spear et al., 1990b). Las variaciones en Ca no pueden ser directamente relacionadas con la P y T, excepto si se consideran los equilibrios pertinentes con el resto de fases coexistentes, particularmente plagioclasa. Las modelizaciones de Spear et al. (1990b) para metamórficos con Gt+Bt+Chl+Qz+Ms+Pl+H2O predicen formas de campo para la zonación en Ca similares a la zonación normal en Mn bajo condiciones de crecimiento programado isotórmico, o con débiles variaciones de P. En condiciones de fuertes incrementos de P (±ΔT) el patrón resultante es inverso (i.e., aumenta el Ca hacia el borde).

Si la zonación del granate resulsa del progreso de distintos equilibrios operativos durante el metamorfismo programado, las secciones más internas de los patrones de zonación de granates de rocas de mayor grado deberían ser similares a los patrones de zonación de los granates de rocas de menor grado en
secciones estructuralmente continuas. Sin embargo, esto no es siempre así, como fue apuntado por Hollister (1969a), quien observó que los núcleos de granates de metapelitas con Chl+St no comparan en términos de Mn y Mg/Fe con los bordes de los granates de metapelitas con clorita y sin estaurolita (de grado más bajo), y que la razón Mg/Fe de los núcleos de los granates de distintas zonas aumentaba al aumentar el grado. Hollister interpretó estas relaciones como el resultado de un sobrepaso de la reacción de formación de granate (Chl + Ms + Qtz = Grt + Bi + H2O) en las rocas de grado mayor, por lo que la temperatura de nucleación habría sido mayor en estas últimas. El metamorfismo de las rocas estudiadas por Hollister (1969a) es de contacto, y por lo tanto las posibilidades de sobrepaso de reacciones son elevadas. Los modelos de crecimiento en desequilibrio (e.g., Loomis, 1982) permiten explicar estas características, en consonancia con consideraciones relativas a las velocidades de nucleación y crecimiento de granate (Kretz, 1973). A pesar de que las posibilidades de fuerte sobrepaso de las reacciones de formación de granate son menores durante el metamorfismo regional (e.g., Walther y Wood, 1984; Spear, 1988c), patrones de zonación no correlacionables en rocas de grado distinto se han observado también en secuencias metamórficas regionales (e.g., Tracy et al., 1976; Fletcher y Greenwood, 1979). Dada la similitud composicional de las metapelitas estudiadas, Tracy et al. (1976, p. 767) concluyeron que "the higher grade assemblage did not pass through the whole prograde sequence, but followed independent PT trajectories". Estos autores indicaron, no obstante, que los patrones de zonación de granates en metapelitas de grado medio a alto eran consistentes con reacciones continuas específicas dentro de cada zona metamórfica diferenciada.

De todo lo anterior puede concluirse que los porfidioblastos de las metapelitas descritos anteriormente son consistentes en general con crecimiento progrado. La presencia de porfidioblastos con patrones de zonación normal similares en toda la serie de metapelitas grafíticas y las composiciones similares de los núcleos sugiere que los presentes en las rocas de mayor grado (i.e., gneises pelíticos) son relictos de menor grado, aunque estos últimos han podido experimentar un crecimiento a mayor temperatura ya que la razón Mg/Fe es mayor en sus bordes. Las fuertes variaciones en Ca en los porfidioblastos con zonación normal no pueden considerarse exclusivamente en términos de variaciones de P ya que igualmente pueden ser el resultado de crecimiento isobárico (e.g., Spear et al., 1990b). El crecimiento de los núcleos de estos granos posiblemente implicase la decomposición de clorita y plagioclasa (componente anortita) dada la elevada cantidad de Mn y Ca en los núcleos. Otras fases cálcicas, como epidotas, son también posibles, aunque no se han observado relictos de las mismas en las rocas de grado más bajo.

Sin embargo, el hecho de que los perfiles de los porfidioblastos con zonación oscilante en Ca y de los porfidioblastos con patrones irregulares y cantidades bajas en Ca de los gneises pelíticos no puedan relacionarse con los perfiles de los porfidioblastos con zonación normal de las asociaciones de grado menor no es fácilmente explicable por modelos de metamorfismo progrado. La existencia de granates en los gneises pelíticos similares a los de los esquisto con St+Bi+Grt+And, excluye los modelos de sobrepaso de las reacciones de generación de granate de Hollister (1969a) y de trayectorias PT independientes de Tracy et al. (1976). El hecho de que los valores de Mn sean elevados y los de Mg/Fe sean bajos en los núcleos de los porfidioblastos con zonación oscilante en Ca sugiere que éstos crecieron inicialmente a partir de fases como clorita en grado bajo. Las bajas cantidades en Ca de estos núcleos deben explicarse por una composición global de los sistemas, más rica en Na en este caso, que ha favorecido la mayor abundancia de plagioclasa por lo que el Ca se encontraba "secuestrado" durante la cristalización de los núcleos de granate. Sin embargo, el crecimiento de los bordes de los porfidioblastos con zonación oscilante en Ca y de aquellos con patrones irregulares en Ca (que aumenta hacia los bordes) deben ser el resultado de reacciones progradas de grado más
alo sufrieron exclusivamente por algunos de los gneiscs pelíticos. Como se discute en el Capítulo 5.4., los incrementos finales de Ca en estos porfiroblastos puede relacionarse con la desestabilización de estaurolita en condiciones progradas de P intermedia (campo de estabilidad de disena).

Patrones Inversos

Es bien conocido el hecho de que a medida que la temperatura aumenta, la disolución intracrystalina aumenta. En el caso del granate, este hecho tiende a modificar la zonación de crecimiento, como ha sido mostrado en casos naturales, por modelizaciones teóricas y datos experimentales (e.g., Anderson y Buckley, 1973; Loomis, 1975b; Yardley, 1977c; Lasaga et al., 1977; Loomis, 1978a y b; Lasaga, 1983; Loomis et al., 1985; Elphick et al., 1985; Spear, 1988c, 1991; Florence y Spear, 1991; Chakraborty y Ganguly, 1992). Los modelos de zonación por disolución volumétrica han sido generalmente aplicados a rocas de grado medio a alto para explicar (1) la relación y homogeneización de los perfiles generados durante el crecimiento progrado y (2) la inversión del zonado normal en los bordes de los cristales (i.e., aumento de Mn y descenso de Mg/Fe) por reequilibramiento retrógrado (e.g., Grant y Weiblen, 1971; de Béthune et al. (1975); Tracy et al., 1976; Tracy, 1978; Anderson y Olimpio, 1977; Woodworth, 1977; Yardley et al. 1980; Tracy y Dietsch, 1982; Dempster, 1985; Lindström et al., 1991). En algunos casos, particularmente en rocas de grado alto, se interpreta que las reacciones responsables de las inversiones en la zonación son reacciones retrógradas simples de intercambio catiónico con las fases de la matriz (e.g., FeMg$_4$ [Grt] \rightarrow FeMg$_4$ [Bt]). Este tipo de reacciones no explican los incrementos en Mn asociados a las inversiones, sobre todo si la mayor parte del Mn ha sido previamente fraccionado en los núcleos del granate, por lo que en otros casos se implican reacciones complejas de transferencia neta en las que el granate se produce o se consume. En el caso de que el granate crece, es previsible un descenso en Mn hacia el borde, acompañado de un aumento en la razón Mg/Fe si la reacción es prograda o de un descenso de la misma si la reacción es retrógrada (Roll, 1987). Esto es debido a la partición preferente del Mn en el granate respecto del resto de las fases comunes en rocas aluminosas (Robinson, 1991). En el caso de que el granate se consume, al mismo tiempo que sufre disolución intracrystalina, es previsible un aumento en Mn en el borde ya que este componente se empobrecería menos que el Fe y Mg durante el progreso de la reacción debido a su fuerte partición en el granate (e.g., Karabinos, 1983). En este caso, la razón Mg/Fe se comportaría de manera similar al caso anterior en función de que la reacción sea prograda o retrógrada. Estas inferencias permiten esquematizar el origen de las distintas combinaciones de patrones de variación en Mn y Mg/Fe, tal y como sigue:

- Descenso de Mn y aumento de Mg/Fe hacia el borde implica crecimiento progrado.
- Descenso de Mn y descenso en Mg/Fe implica que el borde es de crecimiento retrógrado.
- Aumento de Mn y descenso de Mg/Fe implica que el borde ha sufrido disolución retrógrada.
- Aumento de Mn y aumento de Mg/Fe implica que el borde ha sufrido disolución prograda.

aunque las inferencias derivadas sólo son aplicables siempre que otras fases ricas en Mn no participen en las reacciones. Así, Hollister (1969a) interpretó la inversión de la zonación en Mn y Fe/Mg en granates de la zona de la estaurolita como el resultado de la operatividad de reacciones progradas en las que la ilmenita es fase reactante, que liberaría Mn y Fe (ver también Evans y Guidotti, 1966; Tracy et al., 1976). Ejemplos de disolución del granate son comunes en rocas de grado medio (incluso con clorita presente) a alto, donde reacciones como Grt + Ms = Bt + Sil + Qtz (Evans y Guidotti, 1966) y Grt + Kfs + H$_2$O \rightarrow Bt + Sil + Qtz...
(Tracy et al., 1976) han sido aplicadas en sentido retrogrado para explicar las inversiones en Mn y Mg/Fe de la zonasión. Las modelizaciones de homogeneización dinámica del granate predicen modificaciones retrogradas observables en cristales con radio de ca. 1000 μm y menores bajo condiciones típicas de grado medio, i.e., 550-600 °C, y velocidades de enfriamiento moderadas, i.e., dT/dt = -10 °C/Ma (ver Spear, 1988c, 1991; Florence y Spear, 1991). En la literatura no han sido investigadas específicamente las modificaciones dinámicas en la zonasión de granates naturales debidas a cambios de presión. Los resultados experimentales de difusión Fe-Mg-Mn en granate de Chakraborty y Ganguly (1992) indican que descensos de P implican un ligero aumento en los coeficientes de difusión, aunque el efecto es menor comparado con los efectos de la temperatura (i.e., ΔP = -40 kbar a 1200 °C suponen variaciones positivas menores de un orden de magnitud en los coeficientes de difusión de Fe, Mg y Mn, mientras que ΔT = -500 °C supone variaciones negativas de hasta 3 órdenes de magnitud, ver Figura 6 de Chakraborty y Ganguly, 1992). En cualquier caso, a temperaturas suficientemente elevadas (> 550 °C) para que la difusión volumétrica en el granate sea efectiva, el progreso de reacciones di- o multivariantes en sentido progrado (i.e., deshidratación) o retrogrado (i.e., rehidratación) por cambios de presión produce modificaciones difusionales en la zonasión del granate que deben ser consistentes con los cambios composicionales predecibles de los equilibrios heterogéneos.

Según las evidencias anteriores, la zonasión inversa de los granates del grupo II de las metapelitas grafitosas podría interpretarse como el resultado de modificaciones difusionales retrogradas, que habrían sido operativas incluso para condiciones de dT/dt elevadas y a temperaturas entre 550-600 °C debido al escaso tamaño de grano de los cristales (radio menor de 125 μm; ver Florence y Spear, 1991). Sin embargo, este no parece ser el caso, ya que las relaciones texturales de estos granates sugieren que el proceso que dio lugar a la inversión de la zonasión debe relacionarse con el proceso de reemplazamiento que dio lugar a las texturas en atollón y la blastesis de los porfírobolastos donde se encuentran alojados los granates, i.e., estaurolita, plagioclasa, moscovita, y turmalina, que son fases "progradas". Es concebible que los núcleos habrían sufrido una menor modificación dinámica, por lo que estarían más desplazados del equilibrio que los bordes y se disolverían preferencialmente. Además, la relación entre la modificación dinámica y la disolución de estos granates es consistente con el hecho de que, en general, la zonasión inversa afecta tanto al Mn como a la razón Mg/Fe (ver más arriba). En los casos en que no existen texturas de reemplazamiento, el desarrollo de la zonasión inversa debe asignarse igualmente a procesos reaccionales entre el granate y la matriz previos a la blastesis de los porfírobolastos, ya que aunque posibles intercambios tardíos con estaurolita y turmalina podrían explicar las inversiones de la zonasión, esto es imposible para el caso de los cristales incluidos en plagioclasa y, probablemente, en moscovita. Por lo tanto, todas estas relaciones texturales y composicionales de los granates del grupo II indican que el proceso de disolución y modificación dinámica debió ser relativamente precoz, toda vez que se encuentran incluidos en porfírobolastos de plagioclasa y estaurolita, y no relacionado con el enfriamiento final de la secuencia metamórfica.

Existen evidencias, en relación con la inversión de la partición Fe-Mg entre granate y estaurolita (que se presentan en el Capítulo 5.4), que indican que los bordes de los porfírobolastos de granate del grupo I y los núcleos de los granates del grupo II no están en equilibrio con estaurolita, particularmente en las rocas de mayor grado (geneles politicos). Según el modelo presentado en el Capítulo 5.4, la blastesis de los granates del grupo II estuvo asociada a procesos de descomposición de estaurolita bajo condiciones alpinas progradas a P intermedia (campo de estabilidad de distancia), y su modificación dinámica y reemplazamiento no tuvo lugar bajo condiciones retrogradas (i.e., ΔT), sino que reflejan los estados iniciales de la descompresión en
condiciones de P intermedia bajo las que creció nuevamente la estaurolita. Esto es consistente con (1) los bajos valores de Mn y altos de Mg/Fe de los núcleos de estos granates, que sugieren temperaturas elevadas, (2) que su blastesis puede relacionarse con los bordes con zonación oscillante en Ca, y (3) el hecho de que la modificación de la zonación es variable en distintos gramos, de manera que la zonación normal hipotéticamente original se preserva en algunos crístales (e.g., T307-7 inc Pl, Figura 4.6.14). Además, los efectos de la modificación disfusional de las patrones de zonación de estos granates (aumento de Mn y descenso de Mg/Fe hacia los bordes) son consistentes con los cambios composicionales predecibles del efecto de -δP en la asociación de fases St+Gr+Br+Qtz+Mts+H2O en el sistema modelo KFMASH y sistemas de multicomponentes de dimensión mayor. Las reacciones responsables de tales efectos son anteriores a las responsables del reemplazamiento de granate y estaurolita por Eib+Br+IIm y And+Br+IIm.

La ausencia de inversiones significativas de la zonación en los porfídoblastos aparentemente bien conservados de las metapelitas grafitosas (e.g., T327, T312) puede explicarse por su mayor tamaño de grano respecto de los granates del grupo II, aunque es indicativa de que el proceso reacional fue rápido respecto de la difusión intracrystalina, y debió implicar esencialmente disolución (e.g., Hollocher, 1987). Aunque es probable que algunos perfiles de los porfídoblastos de granate no estén completos debido a procesos de disolución durante la descompresión de la sequencia, en los casos en que se preserven bordes idiomórficos la composición es similar en distintos puntos de los mismos y tampoco se detectan inversiones (e.g., T447 - Figura 4.6.3, T327 - Figura 4.6.9), por lo que se sugiere que la ausencia de zonación inversa en los bordes es una característica original de los porfídoblastos de estas rocas. Esto sugiere una evolución metamórfica postcrecimiento de los porfídoblastos rápida y marcada por débiles cambios en T durante la descompresión, dado que las condiciones de temperatura en los gneises pelíticos debieron ser próximas o mayores de 600 °C (Capítulo 5.4), i.e., posiblemente suficientes para permitir procesos disfusionales más amplios en los porfídoblastos aparentemente bien conservados, con radios cercanos a 500 μm (al menos en los gneises pelíticos). Estas inferencias son consistentes con otras evidencias independientes, tales como las texturas de descomposición de morgocita descritas anteriormente (Capítulos 4.4, 5.6.2; Garcia-Casco et al., 1993) y la escasa dispersión de las edades de enfriamiento (Capítulo 5.6.1).

Hipótesis pre-alpina

Dado que los granates del grupo II se encuentran incluidos en porfídoblastos de plagioclasa y estaurolita, que pudieran considerarse precoces, es posible considerar la posibilidad de que su blastesis no esté relacionada con un ciclo metamórfico alpino que generó las asociaciones actuales. En este caso, estos granates evidenciarían un ciclo metamórfico alpino precoz o pre-alpino, y su zonación inversa podría explicarse por el reequilibramiento de cristales preexistentes durante el metamorfismo progrado alpino bajo condiciones de T menores que las sufrieron durante su blastesis (nótese que las cantidades de Mn y razones Mg/Fe de estos granates indican temperaturas más elevadas que las de los núcleos de los porfídoblastos). Existen sin embargo evidencias contrarias a esta interpretación alternativa. En primer lugar, permanece inexplicado el porqué los granates del grupo II presentan cantidades tan bajas de Mn, toda vez que serían relictos donde el Mn debería estar fraccionado. Más aún, si estos granates pertenecen a un evento metamórfico anterior, es concebible que hubieran servido de puntos de nucleación de grano neoformado alpino, i.e., deberían haber sido recluidos por granate de composición similar a la de los núcleos de los porfídoblastos, algo que no ha sido observado (ver Rumble y Finnerty, 1974, para evidencias de politetramorfismo en la zonación de granate) y que es particularmente evidente en los granates del grupo II.
presentes en la matriz (e.g., T312 y T327, Figura 4.6.15). Por otra parte, su escaso tamaño de grano hubiera sido suficiente como para haber permitido un reequilibramiento y homogeneización durante el metamorfismo alpino, al menos en los granates de la matriz no incluidos en porfídoblastos de los gneises pelíticos. Sin embargo, los granates del grupo II de la matriz y los incluidos en estaurolitas, plagioclasas, moscovitas, y turmalina de los gneises pelíticos no están en equilibrio con esta fase, como lo evidencia la inversión en la partición Fe-Mg (ver Capítulo 5.4.), que también se observa al considerar los bordes de los porfídoblastos de granate coexistentes en las mismas muestras. Esta característica hace necesario considerar que ambos grupos de granates son representativos de procesos reaccionales asociados al ciclo alpino. Además, no existe justificación clara para que se encuentren exclusivamente en las metamétricas de grado (alpino) mayor, i.e., esquistos con fibrolita y gneises pelíticos. Por todas estas razones y por la consistencia entre los hechos observacionales y las predicciones del análisis termodinámico de los sistemas sometidos a descomposición, en este trabajo se considera probable la hipótesis pre-alpina en la explicación de la naturaleza de los granates del grupo II.

4.6.5.2. GNEISES LEUCOCRATOS

Respecto de la composición de los granates de los gneises leucocratos y rocas asociadas, puede concluirse que la presencia de patrones de zonación dominantemente planos indica condiciones de temperatura elevada. La ausencia de zonaciones normales similares a las encontradas en los esquistos puede explicarse por un crecimiento a T y P constante y/o a procesos homogeneización por difusión volumétrica durante el crecimiento o con posterioridad al mismo (e.g., Florence y Spear, 1991). En cualquier caso, parece claro que el descenso en Ca y aumento en Mn y Fe/Mg en cristales individuales y en rocas individuales de gneises bandeados, gneises aplíticos y esquistos moscovíticos indican procesos de reequilibramiento posteriores al pico de T y P. Al igual que en los granates del grupo II de las metamétricas gráfíticas, este reequilibramiento debe relacionarse con la disolución del grano durante la descomposición de la secuencia, tal y como indican las composiciones y texturas reaccionales de moscovitas y biotitas. La mayor temperatura sufrida por estas rocas (> 650 °C, Capítulo 5.5) ha condicionado este comportamiento diferencial respecto del de los porfídoblastos de grante de las metamétricas gráfíticas durante su disolución debido a la descomposición, ya que en estos últimos no se observan modificaciones difusionales importantes.

Cristalización Ígnea vs Blástica

Granates espesartínicos. Un origen ígneo es claro para el caso de los granates espesartínicos de tamaño pegmatítico de algunos gneises aplíticos (cf., Miller y Stoddard, 1980; Clarke, 1981; Kistler et al., 1981; Baldwin y Knorrting, 1983; du Bray, 1988; Harrison, 1988; Sevigay et al., 1987; Speer y Becker, 1992, y referencias contenidas en los mismos). En base a síntesis experimentales, Green (1976, 1977) sugiere que el componente espesartina estabiliza el grano en equilibrio con líquidos silicicos a baja P (hasta 3 kbar para 20-25 % molar de espesartina). En general, la zonación de los granates ígneos ricos en espesartina implica aumentos de Mn hacia la periferia de los cristales, lo que se interpreta como el resultado del proceso de fraccionamiento magnético que hace aumentar la razón Mn/(Fe+Mg+Mn) en el líquido debido probablemente a la cristalización de otras fases ferromagnesianas además del grano (i.e., biotita) (cf Miller y Stoddard, 1980). El enriquecimiento en Mn del líquido durante la cristalización fraccionada es considerado como la causa de la cristalización ígnea tardía de granate (e.g., Abbot, 1985; Speer y Becker, 1992), aunque también se
Evolución metacrónica del Complejo Grésico de Torrox y Serres Adjacentes

ha sugerido la influencia de fluidos ricos en este componente (Harrison, 1988). La zonación normal de los granates espesartínicos de la muestra T335, con descensos en Mn y aumentos en Mg/Fe, Fe y Ca hacia los bordes (Figura 4.6.20), es contraria a la observada en otros casos de granates ígneos. Para explicar esta zonación es necesario asumir que la cristalización del granate implicó la fraccionación del Mn y la evolución del líquido hacia composiciones más pobres en Mn/(Fe+Mg+Mn), por lo que se supone que la cristalización de turmalina (con tamaños de grano pegmatítico) fue diacrónica a la del granate, posiblemente anterior (la fraccionación de biotita no se considera ya que aparece en cantidades extremadamente bajas). La baja concentración en Ca de estos granates puede correlacionarse con el comportamiento antipatético del Ca y Mn durante los procesos de diferenciación magmática, y con contrastado efecto de la presión sobre la concentración de estos componentes en granites ígneos (cf. Green, 1977). Se considera que esto es indicativo de que la cristalización de estos granates ocurrió a baja presión, lo cual está de acuerdo con escasa desviación de las moscovitas coexistentes hacia composiciones tetrasilicas (ver Figura 4.4.12, muestra T335).

Granates ricos en moscovita. La baja concentración en Mn y alta concentración en Ca de los granates de tamaño de grano fino de las aplitas y gneises bandeados es consistente con una cristalización a alta P a partir de un líquido pobre en Mn (Green, 1976, 1977; Zen, 1988), de acuerdo con las relaciones texturales ya los granates se encuentran incluidos en fenocristales y porfiridolastos de feldespatos. Sin embargo, las cantidades de moscovita son extremadamente elevadas (hasta 25% molar en los núcleos) por comparación con otros granates de granitos y anatectitas que se suponen cristalizados/equlibrados en condiciones supersólidas bajo presiones intermedias (referencias anteriores y Anderson y Rowley, 1981; Paterson et al., 1982; Seale y Fryer 1986; Montel et al. 1992; Whitney, 1992). Dadas las fuerzas desviaciones de las moscovitas de estas muestras hacia composiciones tetrasilicas por comparación con otras moscovitas de grado alto e igneas (Capítulo 4.4), la fuerzas concentraciones en Ca de los granates de estas rocas pueden interpretarse en términos de las altas presiones sufridas por estas rocas bajo condiciones supersólidas (ver Capítulo 5.5). Las composiciones más pobres en Ca de los bordes pueden interpretarse como el resultado de la tendencia al reequilibramiento durante la descompresión, ya sea por crecimiento o, más probablemente, por modificación difusional de granates homogéneos de alta T y ricos en Ca debido al progreso de equilibrios con plagioclase (ver Capítulo 5.2). Este tipo mismo tipo de equilibrios ha controlado la composición de los granates blásticos de los esquistos moscovíticos, aunque en el caso de la muestra T459b las cantidades de moscovita son bajas debido a la composición pobre en Ca de la roca y la consecuente ausencia de plagioclase.

Granates del enclave restítico. Las texturas de estos granates, su distribución periférica, sus relaciones con la biotita del enclave y su composición sugieren que el granate creció por incompatibilidad entre la biotita del enclave y la asociación granítica del gneis porfiroide que lo engloba, y que posteriormente sufrió un proceso de reequilibramiento difusional y fue parcialmente reemplazado por biotita. Su crecimiento debió ser precoz, quizás con la participación de un fundido ya que el gneis glandular contiene biotita en la matriz claramente estable y fragmentos de estos enclaves con Grt y Br se encuentran incluidos dentro de cristales porfiroïdes de feldespato-K. Además, la elevada concentración en Ca de las composiciones originales indica la participación de una fase cálcica. La única fase cálcica del enclave es apaño, que se encuentra dispuesto en en interior del mismo sin relaciones texturales con el granate de los bordes, por lo que difícilmente deben estar implicados en las reacciones entre biotita y granate. Las fases del gneis glandular que están directamente en contacto con el granate del enclave son cuarzo y feldespato-K, no habiéndose detectado plagioclase en contacto directo con granate, lo que podría favorecer la participación de una fase
líquida. Los modelos presentados en el Capítulo 5.5 sugieren además la participación de especies iónicas. El incremento en Mn y descenso de Mg/Fe que muestran estos granates indican un proceso de reequilibramiento a partir de una composición original pobre en Mn y rica en Mg/Fe alto (Figura 4.6.17). El fuerte descenso en Mg/Fe es explicable desde el punto de vista de balances de masa en reacciones de intercambio si se tiene en cuenta el tamaño fino de los cristales de granate y la elevada razón volumétrica Br/Grt. El fuerte descenso en Ca, compensado fundamentalmente por un incremento en Fe, indica que cantidades significativas de otras fases cálcicas debieron estar implicadas en las reacciones de reequilibramiento de granate, quizás un fundido y/o especies iónicas.

4.7. ESTAUROLITA

4.7.1. INTRODUCCIÓN

Como ya se ha indicado, la estaurolita es una fase común en la serie de metapelitas gráfíticas (Apéndice II Tabla S). Por el contrario, es inexistente en el complejo granítico de Torrox y en la banda de Rompeblabadas, incluso en rocas de composición apropiada (i.e., blastitas, esquistos, restitas). En la zona de transición entre los gneises pelíticos y gneises leucocratos de Torrox, no obstante, existen pequeños blastos en rocas metapelíticas ricas en micas de similar composición al esquisto intercalados con los leucogranitos. En las metapelitas gráfíticas la estaurolita se presenta como porfiroblastos de tamaño de grano fino a grueso, parcialmente pseudomorfizados por And+Br+Ilm, y, a partir de los esquistos con St+Br+Grt+Fib+And(Ky), por Fib+Br+Ilm. En los gneises pelíticos cordieríticos se encuentra además parcialmente pseudomorfizada por Crd+Br+Ilm.

4.7.2. FORMULA ESTRUCTURAL Y ERRORES E INCERTIDUMBRES ANALÍTICAS

A pesar de ser una fase cuya solución sólida es relativamente limitada dentro del sistema FMASH, la estaurolita presenta unas características cristalquímicas bastante complejas, y aún en la actualidad existen bastantes problemas no solucionados o bien caracterizados incluso en lo referente a su fórmula estructural (Griffen y Ribbe, 1973; Ribbe, 1982; Holdaway et al., 1986b). Su estructura monoclinica (Náray-Szabó y Sasvári, 1958) puede considerarse formada por capas alternantes a lo largo de [010] con estructura de sistema de composición constante y con las posiciones estructurales totalmente ocupadas [(Fe)Al₂Si₂O₆], y monocapas de un átomo de grosor de composición aproximada [Fe]Al₂[Fe₂(OH)₃] (cf. Ribbe, 1982). El conocimiento impreciso de la cristalquímica de esta monocapa (denominada de hidróxido de Fe) es la fuente de las incertidumbres relativas a la cristalquímica de la estaurolita, dado que todas las variaciones composicionales tienen lugar en las posiciones estructurales de esta capa (4 tetraedros [Fe]₄, 2 octaedros Al(3A), Al(3B), U(1) y U(2), y 4 posiciones de protones P(1A) y P(1B)), incluyendo posiciones vacantes en cantidades variables (Tabla 4.7.1, Smith, 1968; Ribbe, 1982; Holdaway et al., 1986b, 1991).

Juturinen (1956) postuló la fórmula simplificada H₄Fe₄Al₂Si₄O₄₆ (nótese que no está balanceada, a menos que la mitad del Fe sea trivalente) en base a seis análisis químicos, y Ganguly (1972) sugirió la estequiometría ideal Fe₄Al₂Si₄O₄₆(OH)₂. Sin embargo, datos cristalográficos y químicos sobre muestras naturales (e.g., Smith, 1968; Griffen y Ribbe, 1973; Griffen et al., 1982) han permitido establecer que el número de cationes en la estructura, incluido el H, no es fijo, aunque si el número de aniones, i.e., 48 O, lo
que permite normalizar las cationes a 96 cargas negativas. Smith (1968) sugirió la fórmula \([\text{Fe}]_{5}^{4}[\text{Al}]_{1-4}\text{Si}_{6}\text{O}_{10}\text{H}_{4-x} \) donde Fe y Al ocupan predominantemente las posiciones tetraédricas y octaédricas de la monocapa, respectivamente, aunque ambos elementos ocupan también otras posiciones. Griffin et al. (1982), en base a estudios estadísticos sobre un número elevado de muestras naturales, sugirieron la fórmula \((\text{Fe},\text{Mg},\text{Zn})_{25-4.1,25-4.5}\text{Al}_{1,5-8.2}\text{Si}_{16.2-6.5}\text{O}_{50}\text{H}_{1-x} \) (16.6 ≤ x ≤ 18.6).

<table>
<thead>
<tr>
<th>Posición de distena (8°Al₂SiO₃)</th>
<th>Ocupación (%)</th>
<th>Ocupación (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Smith (1968)</td>
<td>Holdaway et al. (1986b)</td>
</tr>
<tr>
<td>Si</td>
<td>93Si, 6Al, 1(ơ)</td>
<td>96Si, 4Al</td>
</tr>
<tr>
<td>Al(1A)</td>
<td>93Al, Si, 2(ơ)</td>
<td>100Al</td>
</tr>
<tr>
<td>Al(1B)</td>
<td>93Al, 5Si, 2(ơ)</td>
<td>100Al</td>
</tr>
<tr>
<td>Al(2)</td>
<td>93Al, 5Si, 4(ơ)</td>
<td>100Al</td>
</tr>
</tbody>
</table>

Monocapa de hidróxido de Fe \(= 2\text{Fe}_2\text{O}_2\text{Al}_3\text{Si}_2\text{O}_10\text{H}_2\)

\[
[\text{Fe}]_4: \quad 4(99\text{Fe}, 29\text{Al}, 4\text{Ti}, 8(ơ)) \quad 64\text{Fe}, 23\text{Mg}, 3\text{Ti}, 2\text{Li}, 12\text{Zn}, 7(ơ) \\
[\text{Al}]_3: \quad 2(28\text{Al}, 14\text{Fe}, 5\text{Si}) \quad 68\text{Al}, 13\text{Fe}, 19(ơ) \\
[\text{U}]_2: \quad 2(19\text{Al}, 9\text{Fe}, 72(ơ)) \quad - \\
[\text{P}]_4: \quad 2(3\text{Fe}, 1\text{Mn}, 96(ơ)) \quad - \\
[\text{P}(1A)]_4: \quad 3\text{Fe}, 52(ơ) \quad 7\text{H}, 93(ơ) \\
[\text{P}(2A)]_4: \quad 48\text{H}, 52(ơ) \quad 76\text{H}, 24(ơ)
\]

Independientemente de los problemas cristalquímicos de detalle derivados del refinado de estructuras, uno de los aspectos que confiere mayor imprecisión en el cálculo de la fórmula estructural de la estaurolita es la variabilidad en las cantidades de H (e.g., Lonker, 1983). Siguiendo a Takéuchi et al. (1972), Lonker (1983) y Holdaway et al. (1986a) han establecido que las cantidades de H en la estaurolita oscilan entre 1.8 a 4.2 átomos pfu en función de la asociación de fases (los valores más altos en asociaciones con Fe₂O₃ elevados) y de las condiciones de metamorfismo (los valores menores a temperaturas mayores). Evidentemente, en ausencia de análisis independientes de H, si se asume una cantidad de H fija (el valor de 4 H es el más comúnmente utilizado) pueden generarse variaciones composicionales que son un artefacto de tal normalización estructural.

Problemas añadidos son (1) la ausencia de determinaciones de Fe³⁺ (y su asignación a posiciones [Fe] o [Al(3)], y (2) la ausencia de determinaciones de Li. Respecto del primer problema, los datos analíticos (e.g., Juurinen, 1956) y los estudios de espectroscopía Mössbauer (e.g., Dyar et al., 1991b y referencias contenidas en el mismo trabajo) indican que la mayor parte del Fe es Fe²⁺ en la estaurolita. Las cantidades medias de Fe³⁺ estimadas por Dyar et al. (1991b) y Holdaway et al. (1991) son ~3.5% y ~7% del total del Fe en estaurolitas de rocas reducidas (coexistentes con ilmenita con (Xₚ)ᵣ > 0.1) y oxidadas (coexistentes con ilmenita con (Xₚ)ᵣ > 0.1, y/o magnetita), respectivamente. Dyar et al. (1991b) sugirieron una asignación tetraédrica para este Fe³⁺, ya sea en las posiciones [Fe] o, más probablemente, sustituyendo a Al en las posiciones Al(2) de la capa de distena. Es de notar que estos autores no detectaron Fe³⁺ en 13 de las 23 muestras de estaurolitas naturales analizadas, entre las cuales se encuentra la única muestra en que el grafito
es una fase coexistente (muestra 203, Tabla 2 de Dyar et al., 1991b y Tabla 1 de Holdaway et al., 1991). Para estas muestras, Dyar et al. (1991b) asignaron un valor de Fe\(^{3+}\) de 3% del total del Fe, dado que el límite de resolución en espectroscopía Mössbauer es 4%. Es pues probable, que las cantidades de Fe\(^{3+}\) de estaauloritas coexistentes con gráfico sean menores del 3% del total del Fe, y en cualquier caso, expresar Fe\(_{total}\) como Fe\(^{2+}\) no implica cometer errores sustanciales en el cálculo de la fórmula estructural para este tipo de muestras.

Mayoría problemas se derivan de la ausencia de estimaciones de Li, dado que las cantidades de este cation suelen ser relativamente altas (en torno a 0.2 átomos pfu sobre 96 cargas negativas, analizado con sonda iónica por Dutrow et al., 1986 y Holdaway et al., 1986b), lo cual supone frecuentemente proporciones atómicas de Li mayores que las del Zn y del mismo orden de magnitud que las del Mg. Dutrow et al. (1986), Holdaway et al. (1986b, 1991), y Dutrow (1991) proponen que la incorporación de Li en la estaaulorita se verifica en las posiciones tetraédricas \[^6\text{Fe}\], sustituyendo primariamente al Fe\(^{2+}\). La no consideración del Li puede por lo tanto oscurecer las variaciones composicionales de un determinado grupo de estaauloritas.

En base a las variaciones composicionales observadas en 31 análisis completos (aunque sin Fe\(^{3+}\)) de estaauloritas de metapelitas de composiciones normales (i.e., excluyendo estaauloritas de esquistos hornblédicos y estaauloritas magnéticas), Holdaway et al. (1986b) hicieron dos sugerencias en caso de no disponerse de análisis de H y/o Li (en cualquier caso, la normalización debe hacerse a 96 cargas negativas): (1) para rocas donde la estaaulorita coexiste con granate y biotita, asumir una cantidad media de H y Li de 3.06 y 0.2 átomos pfu, respectivamente, y (2) en rocas reducidas (e.g., con grafito presente), asumir que Si + Al\(_{total}\) = 25.53. Ambas sugerencias son aplicables a todas las muestras analizadas en el presente estudio. Posteriormente, en base a los análisis de Fe\(^{3+}\) por espectroscopia Mössbauer de Dyar et al. (1991), que incluían parte de las 31 muestras de Holdaway et al. (1986b), Holdaway et al. (1991) sugirieron normalizar a Si + Al\(_{total}\) - 1/3 Li + 2/3 Ti + Fe\(^{3+}\) = 25.55 átomos pfu.

Holdaway y colaboradores han insistido en todos los trabajos publicados recientemente en que las variaciones composicionales observadas al normalizar a 44 O y 4(OH) son un artefacto de la normalización. Así, la correlación negativa entre Al\(^{3+}\) (Al\(_{total}\) - [\(^6\text{Al}\) en posiciones Si]) y Fe(\(^{2+}\)Mn)\(^{2+}\)Zn\(^{2+}\)Mg observada por Grifffen et al. (1982) no sería real (ver más adelante). Siguiendo la normalización de Holdaway et al. (1986b) no existe posibilidad de correlación entre el Al\(^{3+}\) y el resto de los cationes puesto que las cantidades del primero están fijadas a 17.53 átomos pfu. No obstante, las variaciones composicionales se "transfieren" a otras variables, específicamente el H\(^{+}\) calculado. Otros autores ha utilizado normalizaciones de tipo intermedio entre las dos anteriores, tales como la basada en 45 O y 3(OH) de Gräiman y Day (1991a y b).

Debido a estos problemas, en este trabajo se presentan los análisis normalizados a (1) 44 O y 4(OH), ya que es la normalización más común en la literatura para los cálculos de indicative de Smith (1968) y Grifffen y Ribbe (1973) (e.g., Fletcher Greenwood, 1979; Labotka, 1980; Yardley, 1981; Grifffen et al., 1982; Pigage y Greenwood, 1982; Pigage, 1982; Bickle y Archibald, 1984; Delor et al., 1984; McLellan, 1985; Lang y Rice, 1985a y b), y (2) a Si + Al\(_{total}\) = 25.53 siguiendo la normalización original de Holdaway et al. (1986b), que se ha considerado más adecuada que la normalización de Holdaway et al. (1991) dada la ausencia de análisis de H y Fe\(^{3+}\). En ambos casos, se asume Fe\(_{total}\) = Fe\(^{2+}\), ocupación tetraédrica completa por Si y Al, y que el Ti es tetravalente y ocupa posiciones Al(3) o [\(^6\text{Fe}\). En el caso de la normalización a Si + Al\(_{total}\) = 25.53, las cantidades de H son, lógicamente, variables. Más adelante se analizaran las particularidades asociadas a cada normalización.
4.7.3. VARIACIONES COMPOSIONALES

Los análisis de estaurolita de todas las muestras investigadas presentan sumas de los óxidos entre 96 y 99.1%, con una media de 97.7% en peso (Tabla 4.7.2). Por lo tanto, si la deficiencia de masa sobre 100% fuese representativa de las cantidades de H₂O no analizado, estas oscilarían entre 4 y 0.9% en peso, con una media de 2.3% en peso. Holdaway et al. (1986a, y b, 1991) han presentado evidencias para suponer que las variaciones en H de las estaurolitas de composición normal están controladas por reacciones de sustitución que implican al Fe²⁺, particularmente:

\[\text{Fe}^{2+} + 2\text{H} = \text{Fe}^{2+} + \text{H}_2 \]

(abreviada FeH₂). Al margen de los problemas relativos al estado de oxidación del Fe, que en el presente caso no son particularmente graves debido a la presencia de grafito (ver más arriba), variaciones composicionales debidas a esa sustitución se detectarían, en muestras donde el H no ha sido analizado, por la existencia de correlaciones positivas entre el Fe y la suma total de óxidos, tal y como puede apreciarse en la Tabla 4.7.2. No obstante, la correlación entre ambos variables no es buena (r = 0.505, Tabla 4.7.2a), lo que indica que parte de la variación en el total de óxidos es debida a dispersión analítica (especialmente para los casos con totales más bajos). Por lo tanto, puede asumirse que existe cierta variación en las cantidades de H de las estaurolitas analizadas, lo cual justifica la evaluación de los análisis normalizados a Si + Al_total = 25.53 para permitir variaciones en H (Tabla 4.7.2b).

En la Tabla 4.7.2a puede observarse que los rangos de variación de los cationes son pequeños y las correlaciones, en general, malas. Quizás de manera particular destaquen las variaciones del Al (total y Al⁠', que muestran correlaciones negativas con todos los cationes divalentes, especialmente con el Fe y la suma de estos cationes (FMZM = Fe + Mn + Zn + Mg), tal y como se ilustra en la Figura 4.7.1a. Independientemente de las diferencias entre los distintos grupos de estaurolitas (proyectadas en función de las asociaciones de fases diferenciadas), este tipo de relación implicaría que las variaciones de [⁠'Al deben ser compensadas por variaciones en los cationes divalentes, aunque no necesariamente en las mismas posiciones estructurales. De hecho puede observarse que las correlaciones del Mn y Mg con [⁠'Al son malas. Estas relaciones indicarían que las sustituciones mayores son Fe₃Al₂ y Zn₂Al₂, ya sea en las posiciones [⁠'Fe (cf. Smith, 1968) como en las octaedricas Al₃ (cf. Smith, 1968, y Holdaway et al., 1986b). Griffin et al. (1982) encontraron correlaciones similares al analizar un conjunto de 82 estaurolitas naturales normalizadas a 44 O y 4(OH) (Figura 4.7.1a), y llegaron a conclusiones similares relativas a los mecanismos de sustitución.

Como ya se ha indicado, Holdaway y colaboradores consideran que las variaciones composicionales observadas al normalizar a 44 o y 4 (OH), y específicamente la correlación negativa entre Fe(⁠+Mn) + Zn + Mg y Al' observada anteriormente y por Griffin et al. (1982), no sería real sino un artefacto de la normalización (cf. Holdaway et al., 1986a, p. 1135). No obstante, la normalización de Holdaway et al. (1986b), aunque posiblemente más correcta, supone que el H' presenta correlaciones negativas con todos los cationes, excepto, Al_total y Al' (que no varía, Tabla 4.7.2b). Esto sugeriría que las variaciones composicionales más importantes están controladas por reacciones de sustitución como FeH₂ (Holdaway et al., 1991), como se aprecia en la Figura 4.7.1b, aunque éstas también pueden ser un artefacto de la normalización.
Table 4.7.2. Estadísticas básicas y matriz de correlación Pearson para todos los análisis de esfaleritas. Número de observaciones=198.

a) Normalización a 44 O y 4(OH).

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>Si</th>
<th>Al</th>
<th>Al<sub>tot</sub></th>
<th>Fe<sup>2+</sup></th>
<th>Mn</th>
<th>Zn</th>
<th>Mg</th>
<th>Si+Al</th>
<th>FMZM</th>
<th>Mg/Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>7.312</td>
<td>7.835</td>
<td>7.667</td>
<td>0.109</td>
<td>0.115</td>
<td>0.468</td>
<td>0.333</td>
<td>0.109</td>
<td>17.200</td>
<td>17.726</td>
<td>17.451</td>
</tr>
<tr>
<td>Max</td>
<td>17.416</td>
<td>18.321</td>
<td>17.764</td>
<td>0.173</td>
<td>-0.841</td>
<td>0.811</td>
<td>0.123</td>
<td>0.068</td>
<td>0.914</td>
<td>0.268</td>
<td>0.155</td>
</tr>
<tr>
<td>Media</td>
<td>9.600</td>
<td>0.139</td>
<td>0.077</td>
<td>0.023</td>
<td>0.240</td>
<td>0.223</td>
<td>0.280</td>
<td>-0.071</td>
<td>0.488</td>
<td>0.416</td>
<td>0.155</td>
</tr>
<tr>
<td>σ</td>
<td>0.921</td>
<td>0.591</td>
<td>0.531</td>
<td>0.046</td>
<td>0.171</td>
<td>0.299</td>
<td>0.281</td>
<td>0.024</td>
<td>0.014</td>
<td>0.267</td>
<td>0.254</td>
</tr>
<tr>
<td>S+Al</td>
<td>25.200</td>
<td>25.726</td>
<td>25.451</td>
<td>0.101</td>
<td>-0.356</td>
<td>1.000</td>
<td>0.811</td>
<td>0.489</td>
<td>0.532</td>
<td>0.223</td>
<td>-0.488</td>
</tr>
<tr>
<td>FMZM</td>
<td>3.279</td>
<td>4.010</td>
<td>3.699</td>
<td>0.123</td>
<td>-0.003</td>
<td>0.870</td>
<td>0.503</td>
<td>0.180</td>
<td>0.045</td>
<td>0.283</td>
<td>-0.870</td>
</tr>
<tr>
<td>Mg/Fe</td>
<td>0.127</td>
<td>0.213</td>
<td>0.168</td>
<td>0.017</td>
<td>0.255</td>
<td>0.615</td>
<td>0.604</td>
<td>0.021</td>
<td>0.077</td>
<td>0.021</td>
<td>0.003</td>
</tr>
<tr>
<td>Total</td>
<td>95.992</td>
<td>99.343</td>
<td>97.870</td>
<td>0.565</td>
<td>-0.205</td>
<td>0.156</td>
<td>0.028</td>
<td>0.054</td>
<td>0.503</td>
<td>-0.040</td>
<td>0.274</td>
</tr>
</tbody>
</table>

b) Normalización a 48 O y Si + Al = 25.53 átomos pfo.

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>Si</th>
<th>Al</th>
<th>Al<sub>tot</sub></th>
<th>Fe<sup>2+</sup></th>
<th>Mn</th>
<th>Zn</th>
<th>Mg</th>
<th>Si+Al</th>
<th>FMZM</th>
<th>Mg/Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>7.239</td>
<td>7.923</td>
<td>7.691</td>
<td>0.124</td>
<td>0.077</td>
<td>0.712</td>
<td>0.309</td>
<td>0.124</td>
<td>17.530</td>
<td>17.530</td>
<td>17.530</td>
</tr>
<tr>
<td>Max</td>
<td>17.607</td>
<td>18.242</td>
<td>17.834</td>
<td>0.124</td>
<td>-1.000</td>
<td>0.077</td>
<td>0.152</td>
<td>0.435</td>
<td>0.152</td>
<td>0.152</td>
<td>0.152</td>
</tr>
<tr>
<td>Media</td>
<td>9.600</td>
<td>0.213</td>
<td>0.146</td>
<td>0.006</td>
<td>0.052</td>
<td>0.021</td>
<td>0.056</td>
<td>0.180</td>
<td>0.025</td>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td>σ</td>
<td>0.090</td>
<td>0.139</td>
<td>0.077</td>
<td>0.023</td>
<td>0.275</td>
<td>0.021</td>
<td>0.275</td>
<td>0.009</td>
<td>0.023</td>
<td>0.023</td>
<td>0.023</td>
</tr>
<tr>
<td>S+Al</td>
<td>25.200</td>
<td>25.726</td>
<td>25.451</td>
<td>0.101</td>
<td>-0.356</td>
<td>1.000</td>
<td>0.811</td>
<td>0.489</td>
<td>0.532</td>
<td>0.223</td>
<td>-0.488</td>
</tr>
<tr>
<td>FMZM</td>
<td>3.279</td>
<td>4.010</td>
<td>3.699</td>
<td>0.123</td>
<td>-0.003</td>
<td>0.870</td>
<td>0.503</td>
<td>0.180</td>
<td>0.045</td>
<td>0.283</td>
<td>-0.870</td>
</tr>
<tr>
<td>Mg/Fe</td>
<td>0.127</td>
<td>0.213</td>
<td>0.168</td>
<td>0.017</td>
<td>0.255</td>
<td>0.615</td>
<td>0.604</td>
<td>0.021</td>
<td>0.077</td>
<td>0.021</td>
<td>0.003</td>
</tr>
<tr>
<td>Total</td>
<td>95.992</td>
<td>99.343</td>
<td>97.870</td>
<td>0.565</td>
<td>-0.205</td>
<td>0.156</td>
<td>0.028</td>
<td>0.054</td>
<td>0.503</td>
<td>-0.040</td>
<td>0.274</td>
</tr>
</tbody>
</table>

Nota: FMZM = Fe²⁺_{tot} + Mn + Zn + Mg. Total = Suma de cationes en % en peso. H⁺ estimado por diferencia de cargas sobre 96 cargas negativas. Cargas+ no incluye las cantidades de H⁺ calculadas.

Para investigar el grado de consistencia de los dos tipos de normalizaciones estructurales se ha sometido la base de datos disponible al Análisis de Componentes Principales. Los resultados se presentan en las Tablas 4.7.3a y b para los cationes (localizados en la monocaña (las variaciones composicionales en la capa de distensión, i.e., [M]₀, no son mínimas, y por lo tanto no modifican sustancialmente los resultados). Puede apreciarse que para la normalización a 44 O y 4 OH (Tabla 4.7.3a), la varianza explicada por el componente principal I (CP-I) es de sólo el 59%, mientras que en la normalización a Si+Al_{tot} = 25.53 átomos pfo (Tabla 4.7.3b) la varianza explicada por el CP-I aumenta hasta el 91%. Según estos resultados las variaciones composicionales pueden explicarse mejor siguiendo esta última normalización estructural. Sin embargo, en ambos casos no se observa que las sumas de cationes con cosenos directores negativos (i.e., Al y H, respectivamente) y positivos presenten las proporciones estequiometricas resultantes de las sustituciones Fe₃Al₂ o Fe_H (note que los vectores de intercambio múltiples resultantes de los CP-I no están balanceados de carga; esto es en parte el resultado de no incluir en el análisis factorial las variaciones en la capa de distensión, aunque al hacerlo esta discrepancia tampoco se solventa).
Figura 4.7.1. a) Al' (*Al\text{total}^{f[2]}\text{Al} en posiciones de Si) vs. Fe\text{Mn}+Zn+Mg (normalización a 44 O y 4 GH) y b) H calculado vs Fe\text{Mn}+Zn+Mg (normalización a Si + Al\text{total} = 25.53 átomos y 96 cargas negativas) para todas las esquistolitas analizadas de metapélitas gneisicas (los esquistos con St+Bl+Grt+Fl+FhKs han diferenciado en términos de la presencia de Ky). Las líneas continuas representan regresiones y las líneas discontinuas la regresión obtenida por Griffin et al. (1982). Nótese la semejanza entre ambos tipos de diagramas, resultante de la 'transferencia' de las heterogeneidades composicionales de Al' a H según la normalización estructural.
Figura 4.7.2. Diagramas de variación binaria (normalización a Si+Al_{total} = 25.53) que muestran el espectro composicional para todas las entecléitas analizadas. Círculos: esquistos grafíticos con St+Bi+Gr+r+And; triángulos invertidos: esquistos grafíticos con St+Bi+Gr+r+Ky+r+And; cuadrados: gisés pelíticos con St+Bi+Gr+r+Ky+r+And+Cr.

Resultados similares a estos se obtienen en el caso de someter al análisis subconjuntos de la población de datos, tales como análisis de muestras con una misma asociación de fases, análisis de una misma muestra o análisis de un solo cristal (ver más adelante). Esto es indicativo de que para explicar las limitaciones...
variaciones composicionales de las estaurolitas analizadas se necesitan (1) cambios composicionales tanto en Al como en H y/o (2) fuertes cambios en Li u otros componentes no analizados.

Los datos disponibles no permiten profundizar más. La selección de la normalización estructural es un problema de elección arbitraria, ya que ambos modelos inducen heterogeneidades composicionales que son un artefato de los mismos. No obstante, la normalización a 44 O y 4 OH, aunque en este caso las variaciones en H deben considerarse, en el mejor de los casos, como la suma de variaciones de H y Al

| Tabla 4.7.3: Matriz de covarianza, tres primeros Componentes Principales y % variancia total explicada, para todos los análisis de estaurolita (n = 193) |
|-----------------|-----|-----|-----|-----|-----|-----|-----|
| | Al | Ti | Fe | Mn | Zn | Mg | I |
| Al′ | 0.010 | | | | | | |
| Ti | 0.001 | 0.001 | | | | | |
| Fe | 0.006 | 0.000 | 0.011 | | | | |
| Mn′ | -0.001 | -0.000 | -0.000 | 0.001 | | | |
| Zn′ | -0.003 | -0.000 | -0.000 | 0.000 | 0.000 | | |
| Mg′ | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.493 |
| % de la varianza explicada | 58.745 | 26.091 | 9.338 |
| | II | III | | | | | |
| H | 0.333 | | | | | | |
| Ti | 0.005 | 0.001 | | | | | |
| Fe | 0.025 | 0.001 | 0.012 | | | | |
| Mn′ | -0.002 | -0.000 | -0.000 | 0.001 | | | |
| Zn′ | 0.011 | 0.000 | 0.011 | 0.001 | 0.000 | | |
| Mg′ | 0.006 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.009 |
| % de la varianza explicada | 91.370 | 5.659 | 1.805 |

4.7.3.1. Variaciones Composicionales Relacionadas con el Grado Metamórfico

En la Figura 4.7.1 puede observarse que la estaurolita tiende a incrementar los contenidos en Fe+Mn+Zn+Mg a medida que aumenta el grado metamórfico, desde los esquistos con Si+Al+Grt+And (ca .31 átomos pfu) a los gneises pelíticos (ca. 4 átomos pfu). No obstante, los espectros composicionales se solapan en todos los tipos de rocas, particularmente en los esquistos gráfíticos, que no sobrepasan el valor de FMZM = 3.8 y que pueden considerarse indistinguibles entre sí en términos de FMZM. Las únicas composiciones distinguibles son las correspondientes a las estaurolitas de los gneises pelíticos. A este respecto, es significativa la diferencia en composición clara entre las estaurolitas de los gneises pelíticos con Si+Al+Grt+Ky+Fib+And y los dos esquistos gráfíticos analizados con la misma asociación de fase AFM (Figura 4.7.1). Estas diferencias deben interpretarse como indicativas de (1) variaciones en las variables intensivas asociadas a cada zona y/o (2) efectos composicionales de los sistemas.

Las variaciones composicionales en términos de cationes individuales no están tan claras como las ilustradas en la Figura 4.7.1, tal y como puede apreciarse en la Figura 4.7.2. Las cantidades de Ti (0.08-0.22 átomos pfu, Tabla 4.7.2b) y Mn (0.00-0.14) son bajas y presentan variaciones no sistemáticas. El Zn aumenta de 0.01 a 0.29 átomos pfu al aumentar el grado (Figuras 4.7.2 y 4.7.3), lo cual concuerda con el
comportamiento conocido de esa fase que participa preferentemente el Zn respecto de resto de las fases coexistentes (e.g., Guidotti, 1970; Ashworth, 1975; Nemec, 1978; Fletcher y Greenwood, 1979; Labotka, 1980). De las correlaciones observadas, parece que las variaciones del Zn no están controladas por variaciones en el resto de cationes divalentes sino por Al o H. No obstante, dadas las limitaciones anteriormente expuestas, esto no permite concluir que el Zn se aloja preferentemente en posiciones octaédricas. La distribución del Zn es algo errática en relación con las distintas asociaciones de fases diferenciadas, lo cual también ha sido observado en otras áreas (cf. Guidotti, 1970; Holdaway et al., 1988), y puede relacionarse con las cantidades modales de estaurolita (Guidotti, 1970; McLellan, 1985). Es interesante señalar que los esquistosgrafitos con la asociación St+Bt+Grt+Ky+Fib+And presentan los contenidos más bajos en Zn, menores que los de los esquistos grafitos con St+Bt+Grt+And (Figura 4.7.3).

![Diagrama Mg/Fe vs Zn para todas las estaurolitas analizadas.](image-url)

*Figura 4.7.3. Diagrama Mg/Fe vs Zn para todas las estaurolitas analizadas. Símbolos como en la Figura 4.7.2. Las cruces marcan la media y ±1σ de ambas variables para cada tipo de asociación. Nótese que las variaciones en la razón Mg/Fe se relacionan con las estaurolitas de gruesos polimórficos (cuadrados) presentan los valores mayores de Zn, y los de los esquistos grafitos con St+Bt+Grt+Ky+Fib+And los menores.

La razón Mg/Fe oscila entre 0.13 y 0.21, y no existen variaciones sistemáticas con el grado (Figuras 4.7.2 y 4.7.3), lo cual se ha observado en estaurolitas de zonas metamórficas de P intermedia (e.g., Guidotti, 1970; Labotka, 1980; Lang y Rice, 1985b; Holdaway et al., 1988), aunque en otros casos se han detectado descensos en la razón Mg/Fe con el grado (e.g., McLellan, 1985). Hay que indicar que la ausencia de variación en la razón Mg/Fe no implica, lógicamente, que el coeficiente de reparto \(K_{D}^{Mg/Fe} \) entre estaurolita y otras fases ferromagnesianas no varíe con el grado (e.g. Lang y Rice, 1985b). El escaso rango de variación en la razón Mg/Fe se debe al escaso rango de variación del Mg (0.39-0.64), ya que el Fe varía significativamente (2.59-3.31). En la Tabla 4.7.2 puede apreciarse que las correlaciones entre el Mg y Fe son nulas, indicando que las variaciones en Fe (y Mg/Fe) están esencialmente controladas por variaciones en Al y/o H.
4.7.3.2. Variaciones Composicionales dentro de Muestras Individuales

Las variaciones composicionales de estaurolitas dentro de muestras individuales son similares a las variaciones encontradas en el conjunto de muestras con su misma asociación de fases (Figura 4.7.4 y Tabla 4.7.4). Las estaurolitas de las muestras seleccionadas en la Figura 4.7.4 lo fueron por presentar relaciones texturales que indican variados estadios de crecimiento (ver Capítulo 3.1.1.2). A pesar de ello, y al igual que en la discusión anterior relativa a los cambios composicionales entre las distintas asociaciones de fases, las variaciones en términos de cantidades individuales no son sistemáticas, las correlaciones interelementales son malas, y no se observa zonación alguna en cristales con texturas de crecimiento (Figura 3.1.3c y d).

Tabla 4.7.4. Estadísticas básicas para las estaurolitas analizadas de las muestras T447, esquisito con St+Bt+Grt+And (n=8) y T329, esquisito con St+Bt+Grt+Fib+And (n=9), T18-17, esquisito con St+Bt+Grt+Ky+Fib+And (n=24) y T327, greis pelítico con St+Bt+Grt+Ky+Fib+And (n=10). Normalización a Si + Al = 25.53 átomos f.u.

<table>
<thead>
<tr>
<th></th>
<th>T447 Min</th>
<th>Max</th>
<th>Media</th>
<th>σ</th>
<th>T329 Min</th>
<th>Max</th>
<th>Media</th>
<th>σ</th>
<th>T18-17 Min</th>
<th>Max</th>
<th>Media</th>
<th>σ</th>
<th>T327 Min</th>
<th>Max</th>
<th>Media</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>7.555</td>
<td>7.741</td>
<td>7.629</td>
<td>0.074</td>
<td>7.623</td>
<td>7.835</td>
<td>7.746</td>
<td>0.067</td>
<td>7.422</td>
<td>7.759</td>
<td>7.601</td>
<td>0.081</td>
<td>7.597</td>
<td>7.894</td>
<td>7.759</td>
<td>0.100</td>
</tr>
<tr>
<td>FeO/Al</td>
<td>0.253</td>
<td>0.445</td>
<td>0.371</td>
<td>0.074</td>
<td>0.167</td>
<td>0.377</td>
<td>0.251</td>
<td>0.067</td>
<td>0.241</td>
<td>0.578</td>
<td>0.399</td>
<td>0.101</td>
<td>0.106</td>
<td>0.493</td>
<td>0.541</td>
<td>0.100</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>17.282</td>
<td>17.951</td>
<td>17.701</td>
<td>0.074</td>
<td>17.671</td>
<td>17.907</td>
<td>17.781</td>
<td>0.067</td>
<td>17.771</td>
<td>18.106</td>
<td>17.929</td>
<td>0.101</td>
<td>17.626</td>
<td>17.933</td>
<td>17.771</td>
<td>0.101</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.119</td>
<td>0.185</td>
<td>0.147</td>
<td>0.022</td>
<td>0.097</td>
<td>0.185</td>
<td>0.125</td>
<td>0.034</td>
<td>0.102</td>
<td>0.169</td>
<td>0.135</td>
<td>0.016</td>
<td>0.141</td>
<td>0.173</td>
<td>0.156</td>
<td>0.012</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>2.705</td>
<td>3.113</td>
<td>2.922</td>
<td>0.146</td>
<td>2.729</td>
<td>2.975</td>
<td>2.881</td>
<td>0.067</td>
<td>2.867</td>
<td>3.141</td>
<td>3.036</td>
<td>0.076</td>
<td>3.023</td>
<td>3.313</td>
<td>3.205</td>
<td>0.096</td>
</tr>
<tr>
<td>Mn</td>
<td>0.000</td>
<td>0.047</td>
<td>0.029</td>
<td>0.016</td>
<td>0.038</td>
<td>0.111</td>
<td>0.096</td>
<td>0.010</td>
<td>0.049</td>
<td>0.093</td>
<td>0.068</td>
<td>0.011</td>
<td>0.062</td>
<td>0.080</td>
<td>0.072</td>
<td>0.006</td>
</tr>
<tr>
<td>Zn</td>
<td>0.029</td>
<td>0.103</td>
<td>0.062</td>
<td>0.016</td>
<td>0.064</td>
<td>0.251</td>
<td>0.185</td>
<td>0.061</td>
<td>0.014</td>
<td>0.108</td>
<td>0.045</td>
<td>0.022</td>
<td>0.017</td>
<td>0.173</td>
<td>0.133</td>
<td>0.015</td>
</tr>
<tr>
<td>Mg</td>
<td>0.526</td>
<td>0.606</td>
<td>0.563</td>
<td>0.026</td>
<td>0.463</td>
<td>0.554</td>
<td>0.504</td>
<td>0.030</td>
<td>0.390</td>
<td>0.565</td>
<td>0.472</td>
<td>0.057</td>
<td>0.485</td>
<td>0.549</td>
<td>0.519</td>
<td>0.021</td>
</tr>
<tr>
<td>CaO₂Mg</td>
<td>3.401</td>
<td>3.829</td>
<td>3.626</td>
<td>0.147</td>
<td>3.529</td>
<td>3.729</td>
<td>3.666</td>
<td>0.181</td>
<td>3.431</td>
<td>3.783</td>
<td>3.673</td>
<td>0.106</td>
<td>3.786</td>
<td>4.063</td>
<td>3.930</td>
<td>0.089</td>
</tr>
<tr>
<td>Mg/Fr</td>
<td>0.171</td>
<td>0.209</td>
<td>0.189</td>
<td>0.012</td>
<td>0.163</td>
<td>0.195</td>
<td>0.175</td>
<td>0.012</td>
<td>0.127</td>
<td>0.185</td>
<td>0.156</td>
<td>0.018</td>
<td>0.150</td>
<td>0.181</td>
<td>0.162</td>
<td>0.008</td>
</tr>
<tr>
<td>Sr</td>
<td>97.465</td>
<td>98.581</td>
<td>97.987</td>
<td>0.314</td>
<td>94.217</td>
<td>97.645</td>
<td>97.121</td>
<td>0.346</td>
<td>97.265</td>
<td>98.999</td>
<td>98.196</td>
<td>0.472</td>
<td>97.952</td>
<td>98.262</td>
<td>98.190</td>
<td>0.137</td>
</tr>
<tr>
<td>MgO</td>
<td>3.398</td>
<td>4.274</td>
<td>3.681</td>
<td>0.319</td>
<td>3.421</td>
<td>4.241</td>
<td>3.870</td>
<td>0.278</td>
<td>3.295</td>
<td>4.515</td>
<td>4.077</td>
<td>0.256</td>
<td>2.795</td>
<td>3.624</td>
<td>3.166</td>
<td>0.270</td>
</tr>
<tr>
<td>Carg+</td>
<td>91.236</td>
<td>92.092</td>
<td>92.139</td>
<td>0.319</td>
<td>91.959</td>
<td>91.573</td>
<td>92.130</td>
<td>0.278</td>
<td>91.485</td>
<td>92.410</td>
<td>91.973</td>
<td>0.254</td>
<td>92.374</td>
<td>92.205</td>
<td>92.834</td>
<td>0.270</td>
</tr>
</tbody>
</table>

Estas relaciones se ilustran con la muestra T18-17 (esquisito con St+Grt+Bt+Ky+Fib+And, Tabla 4.7.5 y Figuras 4.7.5 y 4.7.6), que contiene grandes porfídoblastos de estaurolita roscional cuyos bordes incluyen a la foliación principal (i.e., su crecimiento es sin-D₂) y cuyos núcleos incluyen pequeños granates del grupo II (ver Figura 3.1.3d). Ni en los bordes contiene gráfico definiendo la S₁ = S₂ ni en las zonas cercanas a los bordes de los granates incluidos pueden detectarse variaciones composicionales claras, excepto en Mg y la razón Mg/Fe que descienden hacia los bordes (Figura 4.7.6). No obstante, este débil descenso en la razón Mg/Fe no ha sido detectado en otros cristales de la misma muestra ni de otras muestras, por lo que su representatividad es dudosa. Aunque en otros estudios se han detectado zonaciones en la estaurolita (e.g., Hollister, 1970; Triboulet y Audren, 1985; Spear y Rumble, 1986), la zonación irregular en la mayor parte de los componentes de éste y otros cristales analizados de otras muestras que también presentan zonado textural e inclusiones de granate, sugiere que gran parte de la heterogeneidad composicional es crónica, y posiblemente ligada a dispersión analítica. Dado que las variaciones composicionales de granos individuales son similares a las observadas en el conjunto de muestras, como se refleja por el Análisis de Componente Principal para la muestra T18-17 (aunque, lógicamente, los valores de los coeficientes de covarianza son menores en este caso, Tabla 4.7.6), es posible que estas últimas también se deban a dispersión analítica.2
Figura 4.74. a) $\text{Al}^{\text{IV}} (=\text{Al}_{\text{total}}^{\text{IV}}/\text{Al en posición de Si})$ en Fe+Mn+Zn+Mg (normalización a 44 O y 4 OH) y b) H calculado en Fe+Mn+Zn+Mg (normalización a Si + $\text{Al}_{\text{total}}^{\text{IV}} = 25.5$ dióxidos por) para lassubtitle de las muestras T447 (esquisto grafítico con Si+Br+Gt+And), T329 (esquisto grafítico con Si+Br+Gt+Fl+And) T327 (esquisto felsita con Si+Br+Gt+Ky+Fl+And). Las líneas continuas representan regresiones y las líneas discontinuas en a) la regresión obtenida por Griffith et al. (1982).
Figura 4.7.5. Diagramas de variación binarias (normalización a Si+Al\text{total} = 25.53) que muestran el espectro composicional de la estaurolita en la muestra T18-17 (equilíbrio con Sr+Br+Gr+Ky+Fib+And).

Por lo tanto, sobre las características composicionales de las estaurolitas analizadas sólo puede concluise que (1) existe un incremento en Zn y en Fe+Mn+Zn+Mg a medida que aumenta el grado metamórfico, (2) las cantidades de Zn de los esquistos con disteno son menores que las del resto de esquistos, y gneises pelícticos, y (3) la razón Mg/Fe es aparentemente constante, aunque parece descender hacia los bordes de algunos cristales con zonación textural. Estas relaciones, y el hecho de que gran parte de las
varaciones composicionales detectadas son erráticas, posiblemente debido a la dislocación analítica, permiten tratar a la esquinrolita como una fase de composición constante.

Figura 4.7.6. Perfiles elementales (normalizadas a Si=Al_{total} = 25.53) sobre el cristal ocular de esquinrolita de la muestra T18-17 (equivalente a Sr+Ba+Gr+K+Fe+Nd) ilustrados en la Figura 3.13). Nótese la ausencia de zonación clara, que tampoco se destaca en otros porfidoeleásticos de la misma muestra.
Tabla 4.7.5. Estadísticas básicas y matriz de correlación Pearson para los análisis de estaurolita de la muestra T18-17 (esquisto con St+Bt+Grt+Kfs+Fsb+And). Normalización a Si + Al = 25.53 átomos p.f.u. Número de observaciones = 24.

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
<th>Media</th>
<th>σ</th>
<th>Si</th>
<th>Altot</th>
<th>Ti</th>
<th>Fe²⁺</th>
<th>Mn</th>
<th>Zn</th>
<th>Mg</th>
<th>FMZM</th>
<th>Mg/Fe</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>7.422</td>
<td>7.759</td>
<td>7.604</td>
<td>0.101</td>
<td></td>
</tr>
<tr>
<td>[M]Al</td>
<td>0.241</td>
<td>0.578</td>
<td>0.395</td>
<td>0.101</td>
<td></td>
</tr>
<tr>
<td>Altot</td>
<td>17.771</td>
<td>18.104</td>
<td>17.929</td>
<td>0.101</td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>0.310</td>
<td>0.189</td>
<td>0.135</td>
<td>0.016</td>
<td>-0.112</td>
<td>0.112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>3.267</td>
<td>3.141</td>
<td>3.036</td>
<td>0.070</td>
<td>-0.088</td>
<td>0.088</td>
<td>0.099</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.049</td>
<td>0.003</td>
<td>0.008</td>
<td>0.011</td>
<td>-0.437</td>
<td>0.476</td>
<td>0.020</td>
<td>0.046</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>0.014</td>
<td>0.004</td>
<td>0.005</td>
<td>0.022</td>
<td>-0.007</td>
<td>-0.007</td>
<td>0.003</td>
<td>0.019</td>
<td>-0.385</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>0.390</td>
<td>0.565</td>
<td>0.472</td>
<td>0.057</td>
<td>-0.422</td>
<td>-0.422</td>
<td>0.048</td>
<td>0.140</td>
<td>-0.211</td>
<td>0.457</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMZM</td>
<td>3.431</td>
<td>3.783</td>
<td>3.621</td>
<td>0.106</td>
<td>0.121</td>
<td>-0.121</td>
<td>0.060</td>
<td>0.285</td>
<td>-0.230</td>
<td>0.544</td>
<td>0.730</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg/Fe</td>
<td>0.127</td>
<td>0.183</td>
<td>0.156</td>
<td>0.018</td>
<td>0.435</td>
<td>-0.450</td>
<td>0.024</td>
<td>0.004</td>
<td>-0.268</td>
<td>-0.429</td>
<td>-0.982</td>
<td>0.595</td>
<td>0.995</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>97.265</td>
<td>98.999</td>
<td>98.196</td>
<td>0.472</td>
<td>-0.401</td>
<td>0.401</td>
<td>0.086</td>
<td>0.381</td>
<td>0.279</td>
<td>0.207</td>
<td>0.149</td>
<td>0.536</td>
<td>0.046</td>
<td>0.677</td>
</tr>
<tr>
<td>H⁺</td>
<td>3.590</td>
<td>4.515</td>
<td>4.027</td>
<td>0.256</td>
<td>-0.467</td>
<td>0.467</td>
<td>0.219</td>
<td>0.041</td>
<td>0.374</td>
<td>-0.054</td>
<td>0.728</td>
<td>-0.906</td>
<td>-0.677</td>
<td>-0.309</td>
</tr>
<tr>
<td>Carga⁺</td>
<td>91.485</td>
<td>92.416</td>
<td>91.973</td>
<td>0.256</td>
<td></td>
</tr>
</tbody>
</table>

Notas: FMZM = Fe²⁺tot + Ma + Zn + Mg. Total = Suma de óxidos en % en peso. H⁺ estimado por diferencia de cargas sobre 96 cargas negativas. Carga⁺ no incluye las cantidades de H⁺ calculado.

Tabla 4.7.6. Matriz de covarianza, tres primeros Componentes Principales y % varianza total explicada, para los análisis de estaurolita de la muestra T18-17 (esquisto con St+Bt+Grt+Kfs+Fsb). Número de observaciones = 24.

a) Normalización a 44 O y 4(OH).

<table>
<thead>
<tr>
<th></th>
<th>Al⁺⁺</th>
<th>Ti</th>
<th>Fe</th>
<th>Mn</th>
<th>Zn</th>
<th>Mg</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Al⁺⁺</td>
<td>0.065</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.012</td>
<td>2.255</td>
<td>24.044</td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>-0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.317</td>
<td>-0.009</td>
<td>-25.510</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>-0.003</td>
<td>0.000</td>
<td>0.004</td>
<td></td>
<td></td>
<td></td>
<td>5.023</td>
<td>13.532</td>
<td>14.481</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.000</td>
<td>0.000</td>
<td>-0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td>0.454</td>
<td>0.446</td>
<td>2.068</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>-0.001</td>
<td>-0.000</td>
<td>0.000</td>
<td>-0.000</td>
<td>0.000</td>
<td>0.001</td>
<td>1.179</td>
<td>-1.455</td>
<td>7.760</td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>-0.003</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.006</td>
<td>4.901</td>
<td>-9.794</td>
<td>24.505</td>
<td></td>
</tr>
</tbody>
</table>

% de la varianza explicada: 65.508, 26.335, 3.500

b) Normalización a 48 O y 4(OH) + 25.53 átomos p.f.u.

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>Ti</th>
<th>Fe</th>
<th>Mn</th>
<th>Zn</th>
<th>Mg</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.065</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.674</td>
<td>1.097</td>
<td>8.234</td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>-0.001</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.061</td>
<td>0.067</td>
<td>-16.171</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>-0.011</td>
<td>0.000</td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
<td>0.657</td>
<td>14.536</td>
<td>16.911</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.004</td>
<td>0.000</td>
<td>-0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td>0.059</td>
<td>0.333</td>
<td>1.105</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>-0.003</td>
<td>-0.000</td>
<td>0.000</td>
<td>-0.000</td>
<td>0.000</td>
<td>0.001</td>
<td>0.147</td>
<td>-1.115</td>
<td>7.199</td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>-0.011</td>
<td>0.000</td>
<td>0.001</td>
<td>-0.000</td>
<td>0.000</td>
<td>0.005</td>
<td>0.645</td>
<td>-8.301</td>
<td>29.767</td>
<td></td>
</tr>
</tbody>
</table>

% de la varianza explicada: 93.526, 4.734, 0.847

4.8. FELDESPATOS

4.8.1. INTRODUCCIÓN

En este apartado se presentan conjuntamente las características composicionales de la plagioclase y el feldespat-K. Como ya se ha indicado, las asociaciones de fases de los gneises leucocratos son graníticas s.i., y coexisten dos feldespatos, mientras que en la secuencia de metapelitas gráfisicas, incluyendo los gneises.
pélites y los diferenciados leucocrácticos de éstos, y en las metapelitas y esquistos moscovíticos intercalados en los gneises leucocratos no coexiste feldespato-K4.

Los elementos analizados en los feldespatos han sido Si, Al, Fe, Ca, Ba, Na y K, y las composiciones han sido normalizadas a 8 oxígenos (Apéndice II Tablas P y K). Los elementos Fe (expresado como Fe3+/total) y Ba no han sido analizados sistemáticamente, aunque el Ba se encuentra por debajo del límite de detección en las plagioclases y en cantidades traza en el feldespato-K, y el Fe se encuentra en cantidades traza en ambas fases. Gran parte de las variaciones en estos elementos son críticas, incluso en el caso del Ba en el feldespato-K, por lo que se consideran el resultado de dispersión analítica debido a su escasa concentración y/o deficiencias en el calibrado. Por ello, las variaciones de estos elementos no se tenderán en cuenta en las descripciones que siguen.

Las variaciones composicionales de los feldespatos se describen en términos de los tres componentes Ca, Na y K normalizados, i.e., anortita (an, CaAl2Si2O8), albita (ab, NaAlSi3O8) y ortosa (or, KAlSi3O8). Esto supone ignorar las posibles deficiencias en los elementos alcalinos y alcalinotérreos (cations A), y considerar que las variaciones en Si y Al son dependientes de las variaciones en Ca vs. Na y K. No obstante, las desviaciones de la estequiometría ideal, K2Na2Ca1-(x+y)Al2-x-ySi2+y(Si2O2y)3, detectadas en feldespatos naturales y sintetizados experimentalmente son de entidad menor (c.f. Smith, 1974; Beatty y Albac, 1980; Ribbe, 1983; y referencias contenidas en estos trabajos). Por otro lado, en la normalización a 8 oxígenos las composiciones se desvían de la fórmula ideal anterior ya que no existen constricciones estequiométricas que impidan variar independientemente a Si, Al y las deficiencias en A. Por esta razón, en el presente caso la suma Ca+Ba+Na+K es generalmente < 1 y no se cumple que Si/(Al+Fe3+3) = (3-Ca-Ba)/(1+Ca+Ba). No obstante, las variaciones en Si y Al se correlacionan claramente con las variaciones en Ca, y las desviaciones de la estequiometría ideal son muy limitadas, por lo que las descripciones se harán en términos de los tres componentes Ca, Na y K normalizados.

En los feldespatos de todas las muestras analizadas existen variaciones composicionales significativas que se correlacionan con los distintos tipos texturales diferenciados (Figura 4.8.1). Estas variaciones composicionales, que sólo en parte son debidas a zonación de los cristales, registran una historia de crecimiento/dissolución compleja, e indican las dificultades existentes en el reequilibramiento de estas fases. Parte de estas variaciones son asignables a los procesos reacionales ocurridos durante la descompresión.

4.8.2. Metapelitas Grafíticas

4.8.2.1. Variaciones Composicionales Intra-Muestra

Parte de las variaciones composicionales de las plagioclases dentro de muestras individuales de este tipo de rocas son debidas a zonación de cristales individuales (ver más adelante), aunque en todos los casos en que se han analizado cristales zonados el rango de variación de éstos es menor que el del conjunto de la muestra. Esto sugiere la existencia de generaciones diferentes de plagioclasa cuyo crecimiento tuvo lugar a través de distintas reacciones y/o bajo condiciones diferentes.

4 En los esquistos intercalados en los gneises leucocratos puede aparecer Kfs en algunas venas granítoides muy finas y en algunos casos como producto de decomposición de monzonita-cuarzo a baja P.
Porfidoblastos

Los tipos texturales de plagioclasa diferenciados en estas rocas se resumen en la Figura 4.8.1 (ver Capítulo 3 y Apéndice II Tabla P). Dentro de los porfidoblastos se han diferenciado 3 tipos. El más común es el denominado tipo I (círculos en Figura 4.8.1), cuyo crecimiento es pre-a sin-Sp y cuya zonación es generalmente inversa (i.e., Xab descende hacia los bordes) o oscilante (en los gneises pelíticos). Dentro de este tipo también se encuentran los porfidoblastos con inclusiones de granate (cuadrados en Figura 4.8.1) ya que son similares en composición a los anteriores (particularmente en los gneises pelíticos, e.g., T330, Figura 4.8.1) y el patrón de zonación que presentan también inverso, caracterizado por núcleos amplios relativamente homogéneos y bordes finos más ricos en Ca. Sin embargo, en los esquistos con fibrolita estos porfidoblastos con inclusiones de granate presentan las composiciones más albíticas de todos los tipos analizados en los esquistos con fibrolita (e.g., esquistos con fibrolita T18-17 con distena y T320 sin distena), que llegan hasta albita casi pura (Xab = 0.963 y Xab = 0.024, en T320, Apéndice II Tabla P), por lo que se han distinguido en la Figura 4.8.1. Estas relaciones sugieren que parte de los porfidoblastos de tipo I (o parte de
su zonación) pueden corresponderse con los porfídoblastos con inclusiones de granate, y son importantes en la deducción de la historia reacional sufrida, en particular la relacionada con la blastesis y disolución de los granates del grupo II. El tercer tipo de porfídoblastos distinguido en estas rocas, denominado de tipo II (diamante en Figura 4.8.1), se encuentra sobre todo en los graises pelíticos, y su aparición es más esporádica. Sus rasgos distintivos son una zonación en parches y la presencia de intercruzamientos con cuarzo, aunque composicionalmente son similares a los porfídoblastos de tipo I. No existen lagunas composicionales en estos porfídoblastos, y las zonas de parches más ricas en Ca que las zonas homogéneas.

Al igual que en el caso de los granates, los graises pelíticos presentan la mayor variedad de patrones de zonación en los porfídoblastos de plagioclase, incluyendo patrones oscilantes, zonados inversos y en parches que coexisten a la escala de la lámina delgada (Figura 4.8.2). Los cristales con zonación oscilante presentan un núcleo con zonado inverso, una o dos recurrencias intermedias y, aunque no generalizable en todos los cristales, bordes con zonación normal (Figura 4.8.2). En todos los tipos de porfídoblastos destaca la ausencia de simetría en el patrón de zonación respecto de los límites de los cristales, algo común en plagioclases metamórficas (c.g., Fletchers y Greenwood, 1979). Esta característica puede explicarse por las dificultades en el

Figura 4.8.2. Perfiles sobre porfídoblastos de plagioclase de tipo I de graises pelíticos. Símbolos: Círculos X_{Ca}, Cuadrados Y_{Al}. Nótese las variaciones en los perfiles de zonación de distintos cristales de muestras individuales (c.g., T312a, b y c).
reequilibrio de esta fase incluso bajo condiciones de grado alto (e.g., Johannes, 1978, 1980, 1984, 1989), lo cual induce una localización espacial heterogénea de los procesos de disolución y crecimiento asociados a las reacciones que implican cambios en la composición de equilibrio de la plagioclasa (cf. Crawford, 1966, 1974, 1977; Spear et al., 1990b). Estas observaciones permiten concluir que la mayor parte de los patrones de zonación (inversos y oscilantes) detectados en los porfiddoblastos de tipo I representan un registro composicional parcial.

Granos de la Matriz

Los granos de tamaño de grano fino a muy fino dispersos en la matriz (triángulos en la Figura 4.8.1) presentan composiciones solapadas con los porfiddoblastos, aunque tiende a ser más ricos en Ca. Este aumento en Ca es relacionable con la descomposición de granate, ya que los granos de plagioclasa que reemplazan porfiddoblastos de granate (asteriscos en la Figura 4.8.1, ver muestra T329) son particularmente ricos en Ca, y los granos de la matriz son más cálculos en muestras con porfiddoblastos de granate fuertemente reemplazados (e.g., T348, donde los granos de plagioclasa de la matriz presentan las composiciones más pobres en albina; Xoa ca. 0.6, Figura 4.8.1). Estas relaciones sugieren que la homogeneidad en algunas muestras (e.g., en los exquisitos con St+Bi+Grt+And) es aparente y se debe al limitado número de análisis disponibles.

4.8.2.2. Varaciones Composicionales Relacionables con el Grado Metamórfico

El espectro compocional de las plagioclasas de las metapelitas grafitosas no es fácilmente interpretable en términos de una evolución metamórfica prograda simple, particularmente en el caso de las zonaciones oscilantes de algunos porfiddoblastos en los gneises pelíticos. No obstante, a medida que la grano aumenta en las metapelitas grafitosas se observa que la composición “media” de la plagioclasa se hace más anortítica (Figura 4.8.1), aunque no se detectan saltos bruscos al variar la asociación de fases. Este incremento en Xoa con el grado es consistente con la presencia de porfiddoblastos con zonación inversa en todos los tipos de metapelitas grafitosas.

La interpretación del conjunto de datos, incluida la zonación de los porfiddoblastos, sugiere que el incremento de Xoa en la secuencia de metapelitas no es exclusivamente el resultado de procesos reacionales ligados con la descomposición, sino que refleja una característica programada ya que los núcleos de los porfiddoblastos tienden hacia composiciones más anortíticas. Las variaciones en la composición de la plagioclasa en otras secuencias de metapelitas son contradictorias, ya que existe casos en los que la zonación de los porfiddoblastos es normal (i.e., más albíticas en los bordes) y Xoa aumenta con el grado (e.g., Spear y Rumble, 1986; Trolor et al., 1989), y casos en que la zonación es inversa y Xoa aumenta con el grado (e.g., Ghent, 1975; Fletcher y Greenwood, 1979; St-Onge, 1987; Stowell, 1989).

4.8.2.3. Interpretación de los Patrones de Zonación en Porfiddoblastos

Los patrones de zonación inversos en todas las metapelitas grafitosas podrían explicarse como el resultado del crecimiento tardío de plagioclasa más cálctica producto de descomposición de los porfiddoblastos de granate durante la descomposición. Esto viene sugerido por el hecho de que la composición de algunos bordes de porfiddoblastos es similar a la composición de los granos que reemplazan granate (e.g.,
T329, Figura 4.8.1). Según este modelo, parte de la plagioclasa pre-existente debería haber sufrido disolución y recristalización sobre los porfidoblastos con una composición más cálcica, ya que no es probable que otras fases (e.g., moscovita, biotita, turmalina) puedan liberar suficiente Na para formar los bordes. Sin embargo, existe una clara relación entre las zonaciones en Ca de plagioclasa y granate que no es explicable por el modelo anterior. En los esquistos con St+Br+Grt+And y con St+Br+Grt+Fib+And+Ky existe un único patrón de zonación en Ca en los porfidoblastos de granate (grupo I), que muestran zonación normal con descenso de Ca hacia los bordes, y, correspondientemente, un único patrón de zonación en Ca en los porfidoblastos de plagioclasa, que muestran zonación inversa con aumento de Ca hacia los bordes. En los gneises pelíticos, los patrones de zonación en los porfidoblastos de granate de los gneises pelíticos, incluyendo zonados normales y oscilatorios, y, correspondientemente, los patrones de zonación de los porfidoblastos de tipo I de plagioclasa son inversos y oscilatorios. Esta correlación es consistente con los elevados contenidos en grosularia de los porfidoblastos de granate con zonación normal de todos los tipos de metapelitas grafitosas, que hace concebible el que la composición efectiva de estos sistemas estuviera influenciada por procesos de fraccionamiento en términos de Ca que han debido influir en la composición de la plagioclasa coexistente en equilibrio (Crawford, 1974, 1977; Spear et al., 1990b). El incremento de X_{an} con el grado (Figura 4.8.1) no puede interpretarse, pues, como el resultado de un mayor grado de homogeneización de la plagioclasa durante la descompresión en las rocas que han sufrido mayores temperaturas.

La existencia de patrones oscilantes en los porfidoblastos de los gneises pelíticos debe relacionarse con cambios en las condiciones de equilibrio (PT-H_2O) y/o cambios en la asociación de fases, tales como la aparición de distena (muy abundante en los gneises pelíticos). Esto puede deducirse del hecho de que los núcleos de los porfidoblastos con zonación oscilante presentan zonación inversa (correlacionable con la de los porfidoblastos de los esquistos grafitosos) antes de sufrir oscilaciones. Por otra parte, las oscilaciones en la zonación de la plagioclasa no se consideran suficientemente bruscas para ser relacionadas con lagunas composicionales en la solución sólida aban, esto es, con crecimiento de composiciones en equilibrio localizadas en lados opuestos de superficies de solvus (e.g., la laguna de la peristerita, cf. Crawford, 1966, 1974; Ashworth y Ewiger, 1985). Tampoco parece probable que las zonaciones oscilantes en Ca de plagioclasa y granate estén controladas por otras fases cálcicas que hayan sido consumidas previamente (e.g., epidota), dado que este tipo de zonación es exclusivo de las metapelitas de grado mayor y no coexisten otras fases cálcicas en metapelitas de grado menor (i.e., esquistos con y sin fibrolita). El consumo de fases cálcicas habría producido fuertes discontinuidades en los patrones de zonación, pero no tendría por qué generar varias recurrencias como las observadas en algunos porfidoblastos de plagioclasa (Figura 4.8.2) y granate (Figura 4.6.7).

La composición más albitica de los porfidoblastos con inclusiones de granate, y su patrón de zonación inverso que incluye composiciones en los bordes próximos o solapadas con las composiciones de los núcleos de los porfidoblastos de tipo I, sugiere que su crecimiento es anterior al de estos últimos, i.e., bajo condiciones de grado menor en un modelo de metamorfismo progrado. Sin embargo, estas inferencias no son consistentes por las razones discutidas en el apartado dedicado al granate: (1) este tipo de granates y plagioclasas sólo se encuentran mayoritariamente en las metapelitas grafitosas de grado mayor, i.e., esquistos con fibrolita y gneises pelíticos, cuando un modelo progrado implicaría que deberían encontrarse dominantemente en rocas de grado menor, (2) las características composicionales de los núcleos de los granates del grupo II no son consistentes con un crecimiento a baja temperatura ya que los valores de X_{an} y Fe/Mg son bajos, y (3) los patrones de zonación inversa y texturas de disolución de los granates incluidos
son inconsistentes con condiciones progradas (i.e., +AT), lo que indica que la blasteis de los porfiroblastos que los incluyen (plagioclasa, escarolita, moscovita y turmalina) no se debe a incrementos de T. En el modelo de evolución metamórfica presentado en este trabajo (Capítulo 5.4), estas composiciones más albiticas de los porfiroblastos de plagioclasa puede explicarse por un crecimiento bajo condiciones de alta presión y temperatura.

Como se ha indicado en el Capítulo 4.6.5.1, la hipótesis pre-alpina no es factible ya que no explica porqué los porfiroblastos de plagioclasa donde se alojan los granates son composicionalmente distintos de los porfiroblastos de plagioclasa de tipo L, a menos que los propios porfiroblastos de plagioclasa con inclusiones de granate también fuesen parte de la asociación relita (i.e., metamorfismo alpino preoceo o pre-alpino). Esto es poco probable ya que habría que extender esta edad pre-alpina a los porfiroblastos de escarolita, moscovita, y turmalina con inclusiones de granate, lo cual es inconsistentes desde el punto de vista del análisis textural, microestructural y composicional de estas fases.

4.8.3. GNEISES LEUCOCRATOS Y METAPELITAS INTERCALADAS

4.8.3.1. PLAGIOCLASA

Las plagioclasas de los gneises leucocratos son más albiticas que las de las metapelitas grafitosas (Figura 4.8.1). No existen diferencias composicionales claras en función de los distintos tipos de rocas, aunque la plagioclasa del gneis leucítico T335 es particularmente sódica (recuérdese que la composición de la moscovita coexistente en esta muestra es igualmente rica en Na por comparación con la moscovita del resto de gneises leucíticos) y la del dique de microgranito T494 es relativamente cálcica, comparable en términos de X_{an} a la de los cristales producto de descomposición de granate en otras muestras (e.g., gneises bandeados, esquistos moscovíticos). Dentro de muestras individuales existen variaciones significativas entre gramos, y de nuevo la composiciones de los granos asociados a reemplazamiento de cristales de granate presentan las composiciones más cálcicas (Figura 4.8.1), tanto en gneises bandeados con Ms+Br+Gr (i.e., T336) como en los esquistos moscovíticos con Gr (e.g., T472b). A pesar de estas heterogeneidades composicionales a la escala de la lámina delgada, en los gneises leucocratos y rocas asociadas no suelen encontrarse cristales de plagioclasa zonados. Sólo ocasionalmente pueden observarse debiles patrones zonales, particularmente en cristales idiomorfos incluidos en megaristas de feldespato-K. Se trata de zonados invertidos, con alguna recurrencia oculte (T313, gneis bandeado con Ms+Br+Gr, Figura 4.8.3) con núcleos xenomorfos ($X_{an} = 0.09$) sobrecrrecidos por bordes idiomorfos más anoníticos ($X_{an} = 0.13$) (ver Figura 3.2.1d). Estas relaciones texturales son consistentes con un crecimiento de estos cristales de plagioclasa en contacto con un líquido, a pesar de que la zonación es inversa. En los gneises bandeados con Ms+Br+Gr, el incremento en Ca registrada en las plagioclasas de la matriz ($X_{an} = 0.100.20$) sugiere una tendencia al recubrimiento favorecida por la deformación en la formación de las rocas y aíllable a la descomposición de la secuencia, como lo indican las composiciones anoríticas de la plagioclasa asociada a pseudomorfos de granate ($X_{an} = 0.200.25$).

4.8.3.2. FELDESPATO-K

En el caso del feldespato-K, se encuentran también variaciones composicionales entre muestras y dentro de muestras individuales. Mientras el feldespato-K de los gneises bandeados con Ms+Br+Gr es similar
al de los gneises porfiríticos con Ms+Bs y megacrístales de Kfs, el feldespato-K de los gneises aplíticos es el más rico en Na (basta $X_{ab} = 0.3$) y el del dique de microgranito es el más pobre en Na (X_{ab}, ca. 0.1, Figura 4.8.1). No se han detectado variaciones composicionales en los granos de tamaño de grano mayor asignables a zonación por crecimiento (e.g., Mehnert y Büchli, 1985; Long y Luth, 1986), tanto en estos gneises como en los gneises porfiríticos con Ms+Bs. Sin embargo, dentro de muestras individuales de gneises bandeados, los megacrístales y granos mayores de feldespato-K muestran composiciones algo más albíticas ($X_{ab} = 0.230.21$) que los granos de tamaño de grano fino de la matriz ($X_{ab} = 0.190.18$), excepto cuando los primeros muestran evidencias de esquistificación (e.g., T313; $X_{ab} = 0.18$). En estos casos puede observarse claramente un descenso en Na en el feldespato adyacente a las esquistificación períticas (Figura 4.8.3). La tendencia al descenso en X_{ab} se observa claramente en los cristales de feldespato-K producto de descomposición de moscovita a baja P, que presentan las composiciones más pobres en Na (e.g., gneisc aplítico T493, Figura 4.8.1). Dado que descensos de P favorecen incrementos en la solubilidad de ab en el feldespato-K bajo condiciones subsílicas (Luth, 1974), el descenso continuado en X_{ab} en los cristales tardíos indica una cierta pérdida de T durante la descomposición.

Las variaciones composicionales entre muestras pueden explicarse teniendo en cuenta el efecto de la composición de los sistemas además del efecto de P y T sobre la solubilidad de albítita en el feldespato-K. En la Figura 4.8.4 se presentan las composiciones medias de los feldespatos coexistentes en los gneises analizados en el diagrama ternario Or-Ab-An. Estas composiciones medias no incluyen los tipos texturales tardios (i.e., asociados a pseudomorfos, fases intercristalinas, etc.). El feldespato-K está representado por megacrístales y fenocrístales (matrix solo en el caso del dique de microgranito T494), y la plagioclásica está representada por inclusiones no períticas dentro de los fenocrísticos de feldespato-K, fenocrísticos o granos de la matriz (en el caso de los gneises aplíticos). En esta figura puede observarse que a medida que el feldespato-K presenta menos componente albítico las plagioclásicas son más ricas en anortita. Esta figura no debe ser considerada como un diagrama de fases isotérmico-isoarclónico, a pesar de que las inclinaciones son divergentes. Más bien, este hecho es el resultado del efecto de la composición global de los sistemas, lo cual es claramente apreciable al observar cómo las inclinaciones de los gneises bandeados con Ms+Bs+Ge se localizan en el centro del espectro.
composicional, quedando a un lado la serita con Ms+Bl+Qtz y al otro lado los gneises porfiríticos con Ms+Bl y el dique de microgranito con Ms+Bl (recuerde la composición rica en ab de la plagioclasa de la serita T335, y la composición rica en an de la plagioclasa del dique de microgranito T494). Sin embargo, este diagrama sugiere que no existen diferencias significativas en la temperatura de equilibrio de los cristales de feldespatos precoces, esto es, en los que no son claramente subsólidos y asignables a equilibrio a baja P. Esto es consistente con un modelo de descomposición quasi-isotérmica.

![Diagrama ternario](image)

Figura 4.8.4. Diagrama ternario ab-an-or para las rocas de feldespato-K y plagioclasa texturalmente precoces de gneises tonoclastos.

Símbolos como en la Figura 4.8.1. Las composiciones de T336(1) corresponden a inclusiones de plagioclasa en fenocristales de Kfs por contraposición con las composiciones de T336 que corresponden a fenocristales de Hfs y Kfs.

4.9. TURMALINA

4.9.1. INTRODUCCIÓN

La turmalina se encuentra como fase accesoria (aunque no siempre presente) en los esquistos grafíticos y gneises pelíticos, si bien en algunas muestras de gneises pelíticos con cordierita la abundancia de esta fase puede ser más elevada, hasta un 10% modal. Texturalmente aparece como porosdiblastos idiomorfos de tamaño de grano fino (<0.5 mm) a medio (0.5 mm), con zonado óptico concéntrico (típicamente núcleos verde claro y bordes verde oscuro a marrón) o sin zonar (en tonos verde oscuro a marrón). En algunos gneises pelíticos la turmalina incluye a fases precoces, particularmente granates del grupo II de tamaño de grano fino con zonación inversa (e.g., T498, ver Figura 3.1.2g), mientras que en otras muestras se asocia a la blastesis de andalucita (e.g., T23). Sus relaciones blastesis-deformación sugieren igualmente una historia larga en estas rocas, incluyendo un posible origen detrítico para algunos núcleos y crecimiento pre- y postcinemático (Figura 3.1.2c). Sin embargo, la turmalina no presenta evidencias
texturales de reemplazamiento comunes en otras fases ferromagnesianas (granate, estaurolita), lo cual apunta a una estabilidad continua a lo largo de toda la trayectoria P-T sufrida por estas rocas.

En los gneises leucocárticos la turmalina también es fase accesoria de todos los tipos de rocas presentes, tanto en los esquistos moscovíticos como en los gneises (bandeados, glandulares y aplíticos), donde forma parte de la matriz y megacrístales aislados o en bolsadas pegmatoides. En los gneises aplíticos la turmalina es particularmente abundante. En el caso del gneis aplítico T 335, además de megacrístales pegmatoides zonados, la turmalina se encuentra en cristales xenomorfos en la matriz, incluida en cristales de moscovita primaria, y en pequeños cristales nucleados en los bordes de estos mismos cristales de moscovita; en este último caso presenta texturas simplectíticas con cuarzo. En algunos esquistos moscovíticos la abundancia de turmalina es particularmente elevada (hasta el 20-30% modal) como en el caso de la muestra analizada T 429b (de la banda de gneises de Rompealbandas) donde se encuentra incluida en blastos precoces de granate. Por lo tanto, la abundancia de turmalina es un carácter no primario de estos esquistos (i.e., no sedimentario) e implica una importante interacción entre este tipo de rocas y fluidos ricos en B, hay que concluir que la interacción con los fluidos fue precoz, asociada a condiciones de alta P.

Se han analizado las turmalinas de 9 rocas (Apéndice II Tabla I): 1 esquito con St+Be+Grt+And (T 448), dos esquistos con St+Be+Grt+Fib+And (T 320, T 329), dos gneises pelíticos con St+Be+Grt+K f+K e+Fib+And (T 23, T 228), un gneis pelítico con St+Be+Grt+Fib+And+Crd (T 498), un gneis bandeado con Ms+Be+Grt (T 336), un gneis aplítico con Ms+Be+Grt (T 335), y un esquito moscovítico con Ms+Be+Grt (T 499b). En el resto de las rocas analizadas la ausencia de turmalina en la escala de las láminas delgadas ha impedido su análisis. El número de análisis disponible (53 en total) no es adecuado para un estudio detallado de la composición de esta fase a pesar de su interés como indicador petrogenético (cf. Henry y Guidotti, 1985; Henry y Dutrow, 1992), aunque sí han permitido una caracterización en relación con los tipos de rocas donde se encuentra. Además, las variaciones composicionales (relacionadas con los tipos de rocas y el grado metamórfico) han podido ser evaluadas dentro de ciertas limitaciones en términos de sustituciones catiónicas.

4.9.2. FORMULA ESTRUCTURAL Y ERRORES E INCERTIDUMBRES ANALÍTICAS

4.9.2.1. FORMULA ESTRUCTURAL

La turmalina es un borosilicato complejo cuya composición, aunque muy variable, puede representarse con la fórmula ideal \([X]^2\left[X_{1-x}
ight]_{X_{1-y}}[Y]^3[O_3O_4]^3\text{Si}_2O_8(OH,F)_4 \) (e.g., Buerger et al., 1962). El B se encuentra en coordinación 3, y, dado su tamaño, no se sustituye por otros elementos en cantidades apreciables (e.g., Fortier y Donay, 1975) aunque se han descrito turmalinas con algo de Al y vacantes en las posiciones del B (e.g., Schmetzer et al., 1979; Fott y Rosenberg, 1979). Las posiciones tetraédricas están ocupadas esencialmente por Si, y por algo de Al (Deer et al., 1986; Fott y Rosenberg, 1977); se ha sugerido también la posible sustitución de B por Si en las posiciones tetraédricas (e.g., Barton, 1969; Donay y Barton, 1972), si bien no se han documentado casos naturales con apreciable B en exceso de 3 átomos p/fu. Las posiciones octaédricas son de dos tipos, Z y Y, e incluyen una gran variedad de cationes que confieren a la solución sólida de la turmalina gran parte de su complejidad química. Las posiciones Z, más regulares, están ocupadas esencialmente por Al, si bien se encuentran otros cationes como Fe\(^{3+}\), Fe\(^{2+}\), Mg, Ti, Cr, V\(^{3+}\) en cantidades subordinadas; las posiciones Y, mayores y más distorsionadas, admiten una gran variedad de
caciones monovalentes (Li), divalentes (Fe, Mg, Mn), trivalentes (Al, Fe, Cr, V) y cuádrivalentes (Ti); las posiciones poliédricas X de coordinación 9 están ocupadas esencialmente por Na y en menor medida Ca, aunque también presentan cantidades minoritarias de K y Mg (ver Foit y Rosenberg, 1977, Henry y Guidotti, 1983, y referencias contenidas en estos trabajos).

Los refinados estructurales y los análisis de turmalinas confirman la existencia de desviaciones composicionales de las turmalinas naturales de la fórmula ideal anterior. Particularmente significativas son las debidas a la presencia de vacantes, tanto en las posiciones Y (minoritarias) como X (generalizables a un gran número de turmalinas naturales), y cantidades variables de H y O (Buerger et al., 1962; Barton, 1969; Donay y Barton, 1972; Fortier y Donay, 1975; Foit y Rosenberg, 1977; Rosenberg y Foit, 1979, Schmetzer et al., 1979; Nuber y Schmetzer, 1984; Foit, 1989). En general, las composiciones de turmalinas normalizadas en base a 18 O, 4(OH,F) y 3BO3 (la normalización comúnmente usada en la literatura) resultan en fórmulas estructurales con deficiencias en las posiciones Y y X. No obstante, la existencia de cantidades de O variables, sistemáticamente mayores de los 31 oxígenos asumidos en la estetquiometría ideal, supone que esta normalización es incorrecta. De la misma manera que en otras fases hidratadas, esto resulta en una estetquiometría con cargas variables, i.e., a medida que las cantidades de (OH) disminuyen el total de cargas positivas y negativas aumentan (de 49, para el caso de (OH)=4, a 52, para (OH)=1, y asumiendo 3BO3). En consecuencia, la no consideración de cantidades variables de O induce incertidumbre en las fórmulas estructurales normalizadas a 49 unidades de carga electroestática (i.e., 24.5 oxígenos según la fórmula ideal anterior). No obstante, Henry y Guidotti (1985) señalaron que las determinaciones estructurales de turmalinas próximas a la serie dravita-schoeno indican ocupaciones casi totales en las posiciones Y, y sugirieron recalular las fórmulas estructurales sobre la base de Sum Y = 3 asumiendo que el balance de cargas se mantiene por pérdida de protones y ganancia de oxígeno, lo cual permite hacer una estimación de la cantidad de (OH,F) en la fórmula. La sugerencia de Henry y Guidotti (1985) fue confirmada por Foit et al. (1989), quienes señalaron que el cálculo de la fórmula estructural de la muestra refina por Foit (1989) sobre la base de 4(OH,F) daba lugar a una sobresaturación de los oxígenos ligados a los protones y a una ocupancia en las posiciones cetáfricas Y (o 9b) muy escasa, mientras que el recálculo de la fórmula ajustando la saturación de oxígeno daba 3.38 (OH) y las vacantes en las posiciones Y prácticamente se reducía a cero. En base a estos resultados, Foit et al. (1989) también consideraron recalcular las fórmulas estructurales derivadas de análisis de microsonda de manera que Sum Y = 3, y permitir la variación de OH.

Por otra parte, pequeños excesos en Si sobre 6 átomos pfu son comunes en las fórmulas estructurales normalizadas a 24.5 óxígenos ofrecidas en la literatura (e.g., Henry y Guidotti, 1985; Jolliff et al., 1986; De Pieri y Jobstraibizer, 1988; Kassoli-Fournari, 1990), aunque rara vez han sido descritos en refinados de estructuras (ver Foit, 1989). Dado que estos excesos son difíciles de conciliar con la estructura de esta fase, algunos autores han sugerido normalizar las fórmulas estructurales en base catiónica sobre 6 átomos de Si pfu (e.g., Jolliff et al., 1986). No obstante, no existen evidencias para considerar que el Si no pueda ser sustituido parcialmente por Al, lo cual da escasa justificación a la normalización a Si = 6 átomos pfu (cf. Gallagher, 1988).

Los elementos analizados por microsonda electrónica en este trabajo han sido Si, Ti, Al, Cr, Fe, Mn, Zn, Mg, Ca, Na, K y F (Apéndice II Tabla T). De ellos, Cr y Zn se presentan en cantidades trazas o menores del límite de detección (i.e., 0.01 % en peso de los óxidos correspondientes). La precisión en el análisis del F se considera mala, aunque se ofrece en las fórmulas estructurales. De la introducción anterior queda claro que las composiciones de turmalinas obtenidas con microsonda electrónica inducen incertidumbres.
importantes en las fórmulas estructurales basadas en 24.5 oxígenos debido a los elementos no analizables (Ti, Li y B) y a la imposibilidad de distinguir Fe\(^{2+}\) y Fe\(^{3+}\). La ausencia de análisis de B no introduce errores importantes dado que es muy probable que su abundancia se aporte a los teóricos 3 átomos puf, pero la ausencia de análisis de H y O, y en menor medida Li, si es considerada como una causa importante en la precisión de las composiciones. Por otra parte, se considera que la ausencia de análisis independientes de Fe\(^{2+}\) y Fe\(^{3+}\) introduce imprecisiones de importancia menor, al menos en las turmalinas coexistentes con gráfeno en metapelitas (cf. Henry y Guidotti, 1985; Foit et al., 1989, mostraron que las cantidades de Fe\(^{2+}\) son subordinadas respecto de Fe\(^{3+}\) en base a espectroscopia Mössbauer de schorlos pegmatíticos).

Las fórmulas estructurales de las turmalinas analizadas han sido calculadas sobre la base de 49 cargas (i.e., 24.5 oxígenos o 18 O, 4(OH,F) y 3BO) siguiendo los procedimientos más usuales de asignación de cationes en las distintas posiciones estructurales (cf. Foit y Rosenberg, 1977; Henry y Guidotti, 1985):

- El B ocupa totalmente las posiciones de coordinación 3.
- Las posiciones tercúdricas están ocupadas por Si y, en caso de presentarse en cantidades menores de 6 átomos puf, por Al hasta la ocupación completa.
- En las posiciones Z se asignan 6 átomos de Al.
- El resto del Al, Cr, Ti, Fe\(^{2+}\)\(_{\text{total}}\), Mn, Zn, y Mg asignan a las posiciones Y.
- El Ca, Na, K, se asignan a las posiciones X.

Como ya se ha indicado antes, hay que indicar que esta fórmula estructural es incorrecta en términos cristalquímicos ya que (1) es muy probable que (OH,F) < 4, (2) no se considera la partición de elementos en más de una posición octádrica (e.g., R\(^{2+}\) en posiciones Y y Z), (3) no se considera la posibilidad de que parte del Mg se localice en posiciones X, y (4) es probable que las cantidades absolutas de vacantes en las posiciones Y estén sobreestimadas. No obstante, y como veremos más adelante, para la mayor parte de los propósitos relacionados con la modelización de la solución sólida no es necesario tener en cuenta los puntos (2) y (3). Los puntos (1) y (4) son de mayor importancia, ya que indirectamente afectan a las cantidades absolutas de otros componentes, como las vacantes en las posiciones X.

4.9.2.2. Componentes Moleculares y vectores de intercambio

En términos de componentes mayoritarios, la composición de las turmalinas suele desglosarse a las series de solución sólida dravita-schorlor y schorlor-elbañita (ver Tabla 4.9.1 para las fórmulas de los términos extremos). Esta última serie parece que presenta una laguna composicional (Deer et al., 1962). En la Tabla 4.9.1 se resumen los términos extremos comúnmente aceptados para describir la composición de las turmalinas. Todos estos términos extremos pueden ser explicados por sustituciones simples (i.e., homovalentes) y acopladas (i.e. heterovalentes) o combinaciones de las mismas a partir de cualquier término extremo seleccionado. Puede observarse como una gran cantidad de ellos no pueden evaluarse a partir de análisis de microonda debido a la ausencia de estimaciones independientes de Li, H, O, y Fe\(^{3+}\). Como ya se ha comentado, existen además problemas adicionales, como la imposibilidad de repartir un mismo cation en posiciones estructurales distintas (e.g., el término cálcico uviásico). Existen además otras sustituciones potencialmente operativas a las que no se suelen asociar términos extremos debido al escaso rango de variación de los cationes implicados. Este es el caso de la sustitución tschermak y de sustituciones que involucran al Ti.
<table>
<thead>
<tr>
<th>Término extremo</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Fórmula estructural</th>
<th>Vértices de intercambio</th>
</tr>
</thead>
<tbody>
<tr>
<td>dravita</td>
<td>Na</td>
<td>Mg3</td>
<td>Al6</td>
<td>(BO)3</td>
<td>Si6</td>
</tr>
<tr>
<td>schorl</td>
<td>Na</td>
<td>Fe3+</td>
<td>Al6</td>
<td>(BO)3</td>
<td>Si6</td>
</tr>
<tr>
<td>anosita</td>
<td>Na</td>
<td>Mn3</td>
<td>Al6</td>
<td>(BO)3</td>
<td>Si6</td>
</tr>
<tr>
<td>feldespato</td>
<td>Na</td>
<td>Mg3</td>
<td>Fe3+</td>
<td>(BO)3</td>
<td>Si6</td>
</tr>
<tr>
<td>cromosilato</td>
<td>Na</td>
<td>Mg3</td>
<td>Cr6</td>
<td>(BO)3</td>
<td>Si6</td>
</tr>
<tr>
<td>elbaite</td>
<td>Na</td>
<td>Li3Al1.5</td>
<td>Al4</td>
<td>(BO)3</td>
<td>Si6</td>
</tr>
<tr>
<td>liddicoaita</td>
<td>Ca</td>
<td>Li2Al</td>
<td>Al6</td>
<td>(BO)3</td>
<td>Si6</td>
</tr>
<tr>
<td>uva</td>
<td>Ca</td>
<td>Mg3</td>
<td>Al6</td>
<td>(BO)3</td>
<td>Si6</td>
</tr>
<tr>
<td>dravita Na-deficiente</td>
<td>Na</td>
<td>Mg3</td>
<td>Al6</td>
<td>(BO)3</td>
<td>Si6</td>
</tr>
<tr>
<td>buttsite</td>
<td>Na</td>
<td>Fe3+</td>
<td>Al6</td>
<td>(BO)3</td>
<td>Si6</td>
</tr>
<tr>
<td>dravita H-deficiente</td>
<td>Na</td>
<td>Al3</td>
<td>Al6</td>
<td>(BO)3</td>
<td>Si6</td>
</tr>
<tr>
<td>dravita H- y Na-deficiente</td>
<td>Na</td>
<td>Al3</td>
<td>Al6</td>
<td>(BO)3</td>
<td>Si6</td>
</tr>
</tbody>
</table>

Otros vértices de intercambio no variados a términos extremos específicos

<table>
<thead>
<tr>
<th>Término extremo</th>
<th>Fórmula estructural</th>
</tr>
</thead>
<tbody>
<tr>
<td>tiessenmatt (ka)</td>
<td>Al2Si2O10</td>
</tr>
<tr>
<td>tiessenmatt (Tiek)</td>
<td>Ti2Al2Si2O10</td>
</tr>
<tr>
<td>tiessenmatt (Tisva)</td>
<td>Ti2Al2Si2O10</td>
</tr>
<tr>
<td>tiessenmatt (Tisva)</td>
<td>Ti2Al2Si2O10</td>
</tr>
</tbody>
</table>

Nota: *Términos extremos y vértices de intercambio no evaluables con análisis de microsonda normalizados a 24.5 oxígenos debido a (1) la imposibilidad de analizar Li, H, O, (2) distinguir entre Fe3+ y Fe2+, y (3) efectuar un reparto de un mismo cation en posiciones estructurales distintas. (o) = posición vacante. El término extremo dravita H-deficiente también se ha denominado olivita (cf. Burt, 1989). Algunos vértices se han nombrado como en las minas por conveniencia.

De la misma manera que en el caso de la estaurolita, no se pretende en este apartado ofrecer una evaluación crítica y exhaustiva de los distintos mecanismos de sustitución y términos extremos asociados que explican las variaciones composicionales de las turmalinas (ver Burt, 1989, para una revisión reciente y muy completa). Si merece la pena mencionar, no obstante, la importancia de las sustituciones (4,52 y 4,54) (Tabla 4.9.1) ampliamente estudiadas por E.F. Foid, P.B. Rosenberg y colaboradores (Foit y Rosenberg, 1977; Rosenberg y Foid, 1979, 1985; Rosenberg et al., 1986; Foit, 1989; Foit et al., 1989). La sustitución Na-deficiente (o)NaAl3Si3 (4,52) implica la introducción de vacantes en las posiciones X (o 3a en la nomenclatura usada por Rosenberg y Foit, 1979 y Foit, 1989) en sustitución de Na, manteniéndose el balance cargas por la sustitución acoplada de un cation trivalentes por uno divalente en las posiciones octaedricas (i.e., (o)R32R'2R2+). La mayor parte de los análisis de turmalinas naturales presentan valores de Sum X menores del teórico (1 átomo fu). lo que es una evidencia de la importancia de esta sustitución. No obstante, otras sustituciones son posibles para explicar las variaciones en la ocupación en X, tales como la sustitución (4,63), similar a la sustitución pirofilita en la moscovita. La escasa variación de Si en las turmalinas naturales indica que esta sustitución no es operativa, aunque Foit et al. (1989) han sugerido su efectividad subordinada en algunas turmalinas deficientes en cationes alcalinos. Por otra parte, la sustitución
de deshidroxilación (4.54) implica la sustitución de (OH)\(^{-}\) por O\(^{2-}\), balanceándose de nuevo la estructura por la sustitución de un cation trivalente por otro divalente en posiciones octaédricas (i.e., R\(^{3+}\)O\(^{-}\)R\(^{2+}\). La inspección de análisis con estimaciones independientes de H (Foit y Rosenberg, 1977) muestra deficiencias en (OH,F,Cl) sobre los 4 cationes teóricos, lo que sugiere la importancia de esta sustitución. Si esta sustitución se produce mediante un proceso de oxidación de Fe, el término extremo asociado es la bucerita (Tabla 4.9.1). Foit y Rosenberg (1977) sugirieron que las sustituciones Na-deficiente (4.52) y de deshidroxilación (4.54) se acomilan en muestras naturales, dando lugar a composiciones deficientes en (OH) y cationes alcalinos, modelizables por la solución sólida R\(^{1+}\)xR\(^{3+}\)_3R\(^{3+}\)O\(^{-}\)(BO\(^{3+}\))yO\(^{2-}\)O\(^{2-}\)O\(^{-}\)(OH)\(_{1+x}\). En el caso de turmalinas con razones Fe\(^{3+}/Fe^{2+}\) bajas, el cation R\(^{3+}\) dominante es Al, lo cual sugiere que turmalinas con excesos en Al pueden presentar estas sustituciones de manera significativa, siempre que el Li sea minoritario. Foit y Rosenberg (1977) concluyeron además, que la sustitución de deshidroxilación es más importante que la sustitución Na-deficiente en la explicación de la variabilidad composicional del conjunto de turmalinas estudiadas por ellos (i.e., aproximadamente 3:1). Por lo tanto, si los resultados de estos autores son generalizables, es muy importante tener en cuenta el efecto de cantidades de O en exceso sobre las teóricas dada la importancia de la sustitución Na-deficiente en turmalinas naturales cercanas al join dravita-schorio.

4.9.3. Espectro Composicional

A pesar del limitado número de análisis, se han detectado variaciones composicionales intramuestra asociadas a cambios en la composición de las rocas, y variaciones intramuestra asociadas a zonación de los cristales y a diferenciación entre granos de distinta generación. El espectro composicional de las turmalinas estudiadas puede apreciarse en las Tablas 4.9.2 (todas las muestras), 4.9.3 (metapelitas grafíticas) y 4.9.4 (gneisites leucocratos).

4.9.3.1. Composición de la Turmalina vs Tipo de Roca

Un primer acercamiento a la composición de las turmalinas estudiadas puede realizarse en términos de los efectos debidos a la composición del sistema. En un estudio sistemático de un gran número de análisis de turmalinas de rocas metamórficas, igneas e hidrotermales publicados hasta la fecha, Henry y Guidotti (1985) ofrecieron diagramas triangulares catiónicos sobre base molar que permiten distinguir la composición de las turmalinas en función del tipo de roca. Tal y como señalan Henry y Guidotti (1985), este tipo de diagramas es interesante ya que los resultados derivados son independientes del tipo de normalización estructural elegida al proyectarse proporciones de componentes catiónicos. No obstante, presentan el inconveniente de perder la información relativa a los valores absolutos de los componentes (como en todas las proyecciones baricéntricas), que sí son función de la normalización. Además, este tipo de proyecciones considera al mismo tiempo el efecto acumulativo de un número potencialmente alto de sustituciones, por lo que no pueden deducirse las sustituciones operativas en una base de datos determinada.

Las composiciones de las turmalinas estudiadas se han proyectado en los diagramas Al\(_{100-x}Fe^{3+}_{x}Al^{3+}_{x}Al^{3+}_{y}Mg_{y}\) y Ca-Fe-Mg de la Figura 4.9.1, donde también se han proyectado algunos componentes moleculares de interés (ver Tabla 4.9.1) y los campos definidos por Henry y Guidotti (1985) en función del tipo de roca. Puede observarse que los datos se agrupan en dos poblaciones claramente diferenciadas que se corresponden
con las muestras de metapelitas grafíticas (esquistos y gneises politicos) y de gneises leucocratos. Las turmalinas de los esquistos moscovíticos (T499b) son similares a las de los gneises bandeados y aplíticos, a pesar de su composición política. En el diagrama $A_{\text{magnesio}}Fe_{50}Al_{50}Mg_{50}$ (Figura 4.9.1) las muestras de metapelitas grafíticas se proyectan en el campo 4 correspondiente a metapelitas y metapsammitas con fases saturadas en Al, lo cual es consistente con las asociaciones de fases de estas rocas. Los tres análisis que se proyectan en el campo 5 de metapelitas y metapsammitas sin fases saturadas en Al corresponden al núcleo de un cristal zonado de la muestra T320 (esquito con St+Grt+Bt+Oliv), mientras que el único análisis que presenta una razón Fe/(Fe+Mg) > 0.5 y se proyecta junto con las muestras de gneises leucocratos corresponde al núcleo de un cristal de la muestra T448 (esquito con St+Grt+Bt).

![Diagrama de metaequilibrio](image)

Figura 4.9.1. Proyección de los análisis de turmalina en los diagramas $A_{\text{total}}Fe_{50}Mg_{50}$ y $Ca_{50}Fe_{50}Mg_{50}$, términos molares significativos (Tabla 4.1) y campos definidos por Henry y Goddet (1985) para turmalinas de distintos tipos de rocas (ligera mente modificado):

1. Pegmatitas y aplitas rocas en Li 2. Granitoides pegmatitas y aplitas pobres en Li 3. Ricas ricas en Fe$^{3+}$ con abundante cuarzo y turmalina (granitos alterados hidrotermalmente). 4. Metapelitas y metapsammitas con fases saturadas en Al (en el diagrama Ca-Fe-Mg también se incluyen rocas con abundante cuarzo y turmalina). 5. Metapelitas y metapsammitas sin fases saturadas en Al 6. Ricas con abundante cuarzo y turmalina ricas en Fe$^{3+}$, rocas de silicatos cloritos y metapelitas. 7. Rocas ultramáficas de bajo Ca y metasedimentos ricos en Cr y V. 8. Metacarbonatos y metaplorroctitas (en el diagrama $A_{\text{total}}Fe_{50}Mg_{50}$).
Tabla 4.9.2. Estadística básica y coeficientes de correlación Pearson para los análisis de turmalina normalizados a 45 e.p.n. (n=53, excepto para el Zn, n=11).

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
<th>Media</th>
<th>σ</th>
<th>Si</th>
<th>Al</th>
<th>Ti</th>
<th>Fe</th>
<th>Mn</th>
<th>Mg</th>
<th>Sum Y</th>
<th>Ca</th>
<th>Na</th>
<th>K</th>
<th>Sum X Altot</th>
<th>Fe/Fe+Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>9.338</td>
<td>6.011</td>
<td>3.935</td>
<td>0.472</td>
<td>-</td>
<td>0.808</td>
<td>-</td>
<td>-</td>
<td>0.808</td>
<td>-</td>
<td>0.808</td>
<td>-</td>
<td>0.808</td>
<td>-</td>
<td>0.808</td>
<td>0.808</td>
</tr>
<tr>
<td>Ti</td>
<td>0.086</td>
<td>0.016</td>
</tr>
<tr>
<td>Fe</td>
<td>0.000</td>
</tr>
<tr>
<td>Mn</td>
<td>0.000</td>
</tr>
<tr>
<td>Mg</td>
<td>0.000</td>
</tr>
<tr>
<td>Sum Y</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Tabla 4.9.3. Estadística básica y coeficientes de correlación Pearson para los análisis de turmalina normalizados a 245 oxiógenos de taquetes y gneises polícticos esotromíticos (n=22, excepto para el Zn, n=9).

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
<th>Media</th>
<th>σ</th>
<th>Si</th>
<th>Al</th>
<th>Ti</th>
<th>Fe</th>
<th>Mn</th>
<th>Mg</th>
<th>Sum Y</th>
<th>Ca</th>
<th>Na</th>
<th>K</th>
<th>Sum X Altot</th>
<th>Fe/Fe+Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>9.338</td>
<td>6.000</td>
<td>3.932</td>
<td>0.472</td>
<td>-</td>
<td>0.808</td>
<td>-</td>
<td>-</td>
<td>0.808</td>
<td>-</td>
<td>0.808</td>
<td>-</td>
<td>0.808</td>
<td>-</td>
<td>0.808</td>
<td>0.808</td>
</tr>
<tr>
<td>Ti</td>
<td>0.086</td>
<td>0.016</td>
</tr>
<tr>
<td>Fe</td>
<td>0.000</td>
</tr>
<tr>
<td>Mn</td>
<td>0.000</td>
</tr>
<tr>
<td>Mg</td>
<td>0.000</td>
</tr>
<tr>
<td>Sum Y</td>
<td>0.000</td>
</tr>
</tbody>
</table>

En este mismo diagrama, las composiciones de las turmalinas de gneises leucocratos y esquistos moscovíticos se proyectan en el campo 2 correspondiente a granitoïdes pobres en Li y pegmatitas y aplitas asociadas, aunque en el diagrama Ca-Fe-Mg (Figura 4.9.1) algunas composiciones se proyectan en el campo de las metapelitas (nótese que las composiciones que se adentran en el campo de metapelitas corresponden tanto al gneis aplítico T335 como al esquito moscovítico T492b). Desafortunadamente, Henry y Guidotti (1985) no distinguieron complejos analíticos enturbiados, si bien estos resultados son consistentes con las características de turmalinas de rocas de composición similar (i.e., cuerpos graníticos plútonicos).

Los diagramas de la Figura 4.9.1 permiten hacer algunas generalizaciones adicionales. Las turmalinas de las metapelitas grafitosas son ricas en Mg (i.e., Fe/(Fe+Mg) < 0,3), mientras que las de los gneises leucocratos y rocas asociadas son ricas en Fe (Fe/(Fe+Mg) > 0,5) y más pobres en Ca (Tablas 4.9.3 y 4.9.4). Aunque no se diferencian en el diagrama, los análisis que presentan las razones Fe/(Fe+Mg) más bajas
Tabla 4.9.4. Estadística básica y coeficientes de correlación Pearson para los análisis de turmalinas normalizados a 24.5 oxígenos de gneises leucocrinos (n=31, excepto para el Zn, n=2).

<table>
<thead>
<tr>
<th>Si</th>
<th>[M]Al_y</th>
<th>Ti</th>
<th>Fe</th>
<th>Mn</th>
<th>Mg</th>
<th>Sum Y</th>
<th>Ca</th>
<th>Na</th>
<th>X</th>
<th>Sum X [Al_{tot}, Fe/Fe+Mg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>5.852</td>
<td>5.011</td>
<td>5.952</td>
<td>0.049</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[M]Al</td>
<td>0.000</td>
<td>0.013</td>
<td>0.009</td>
<td>0.019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[M]Al_y</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[M]Al</td>
<td>0.024</td>
<td>0.003</td>
<td>0.012</td>
<td>0.521</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>0.040</td>
<td>0.168</td>
<td>0.087</td>
<td>0.021</td>
<td>0.223</td>
<td>0.077</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gr</td>
<td>0.000</td>
<td>0.010</td>
<td>0.002</td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>1.178</td>
<td>1.367</td>
<td>1.047</td>
<td>0.139</td>
<td>0.457</td>
<td>0.534</td>
<td>0.487</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.003</td>
<td>0.027</td>
<td>0.010</td>
<td>0.037</td>
<td>0.223</td>
<td>0.522</td>
<td>0.039</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>0.003</td>
<td>0.006</td>
<td>0.005</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>0.725</td>
<td>1.233</td>
<td>0.959</td>
<td>0.114</td>
<td>0.015</td>
<td>0.035</td>
<td>0.028</td>
<td>0.584</td>
<td>0.037</td>
<td></td>
</tr>
<tr>
<td>Sum Y</td>
<td>2.771</td>
<td>2.883</td>
<td>2.877</td>
<td>0.031</td>
<td>0.240</td>
<td>0.195</td>
<td>0.674</td>
<td>0.412</td>
<td>0.501</td>
<td>0.123</td>
</tr>
<tr>
<td>Ca</td>
<td>0.024</td>
<td>0.069</td>
<td>0.047</td>
<td>0.012</td>
<td>0.161</td>
<td>0.552</td>
<td>0.040</td>
<td>0.326</td>
<td>0.484</td>
<td>0.777</td>
</tr>
<tr>
<td>Na</td>
<td>0.608</td>
<td>0.883</td>
<td>0.765</td>
<td>0.099</td>
<td>-0.100</td>
<td>-0.429</td>
<td>-0.310</td>
<td>0.013</td>
<td>0.751</td>
<td>0.282</td>
</tr>
<tr>
<td>K</td>
<td>0.001</td>
<td>0.029</td>
<td>0.016</td>
<td>0.008</td>
<td>0.291</td>
<td>-0.425</td>
<td>-0.283</td>
<td>0.058</td>
<td>0.728</td>
<td>0.285</td>
</tr>
<tr>
<td>Sum X</td>
<td>0.661</td>
<td>0.965</td>
<td>0.832</td>
<td>0.111</td>
<td>-0.052</td>
<td>-0.470</td>
<td>-0.292</td>
<td>0.020</td>
<td>0.771</td>
<td>0.360</td>
</tr>
<tr>
<td>Al_{tot}</td>
<td>6.549</td>
<td>6.726</td>
<td>6.406</td>
<td>0.145</td>
<td>-0.704</td>
<td>0.973</td>
<td>-0.537</td>
<td>-0.564</td>
<td>-0.237</td>
<td>0.306</td>
</tr>
<tr>
<td>Fe/Fe+Mg</td>
<td>0.533</td>
<td>0.799</td>
<td>0.594</td>
<td>0.044</td>
<td>0.213</td>
<td>0.649</td>
<td>0.222</td>
<td>0.661</td>
<td>0.561</td>
<td>0.914</td>
</tr>
<tr>
<td>Na/Al_{tot}</td>
<td>0.020</td>
<td>0.975</td>
<td>0.944</td>
<td>0.012</td>
<td>-0.184</td>
<td>0.324</td>
<td>-0.182</td>
<td>0.394</td>
<td>0.106</td>
<td>0.760</td>
</tr>
</tbody>
</table>

corresponden a las turmalinas del gneis pelíctico con cordierita T49. Los análisis que presentan razones Fe/(Fe+Mg) más altas corresponden a las turmalinas de los gneises bandeados con Mqs+Br+Crt. Es interesante señalar que no se observan diferencias sustanciales en Al_{tot} entre los dos tipos de turmalina, a pesar de pertenecer a asociaciones marcadamente distintas en términos de saturación en Al. Por otra parte, ambos tipos se proyectan cerca del área de baritaschóloro, aunque aparentemente desviados hacia términos deficientes en calcio y elbaite. Así, las turmalinas de los gneises bandeados se proyectan separadas de las de los gneises aplíticos, que parecen tender hacia composiciones más aluminosas (más ricas en Li?). Existe además una clara variación composicional en las turmalinas de esquistos grafitosos que supone un incremento de Al_{tot} al aumentar Fe/(Fe+Mg), esto es, desviándose hacia el término extremo teórico de schóloro deficiente en Na (no proyectado en el diagrama, pero alineado con el término 'dravita sin Na'). Esta variación está relacionada con la zonación de algunos crustales y con el tipo de metapelita (ver más adelante).

4.9.3.2. ZONADO Y VARIACIONES INTRA-MUESTRA

Metapelitas Grafitosas

La zonación de los crustales individuales de turmalina estudiados es, en general, no muy fuerte, y parece que se hace menos pronunciada a medida que aumenta el grado metamórfico en las metapelitas (Figura 4.9.2). Las diferencias entre el núcleo y borde de la muestra T448 (esquist) con St+Br+Crt+And, no representado en la Figura 4.9.2) son mayores que las de la muestra T230 (esquist con St+Br+Crt+Fib+And), y estas a su vez mayores que las de las muestras T328 y T498 (gneises pelícticos). Las variaciones composicionales pueden correlacionarse con la zonación óptica, aunque los patrones de cambio de color (en general, de verde en el núcleo a marrón en el borde) no se corresponden con los mismos cambios composicionales (comparar la zonación contrapuesta de los crustales de las muestras T320 y T328 con la Figura 4.9.2).

Los perfiles elementales de los crustales de las muestras de metapelitas grafitosas sugieren una zonación continua (Figura 4.9.2), sin saltos composicionales bruscos, lo que excluía considerar a los núcleos como
relicios detríticos (cf. Henry y Guidotti, 1985; Henry y Darrow, 1992). La zonación mostrada por el cristal de la muestra T320 (espinito) indica un fuerte aporte de Al, Mg y Na, lo que sugiere la operatividad de la sustitución Na-deficiente (4.52) y el aumento de las vacantes en las posiciones X hacia los bordes. Las variaciones en el resto de los elementos son escasas (Si, Ti) o no concluyentes (Fe), aunque parece que el Ca aumenta hacia los bordes. Los perfiles elementales de la muestra T328 (gneis pelítico) presentan una débil zonación contraria a la del cristal de la muestra anterior en términos de Na, Al y Mg, que indicaría un descenso de las vacantes en X hacia los bordes. Fe y Si muestran un comportamiento antipatético respecto de Mg, mientras que Ti y Ca aumentan y la razón Fe/(Fe+Mg) disminuye hacia los bordes al aumentar el Mg y Na. No obstante, los valores absolutos de los distintos elementos son similares en ambos cristales. Sin embargo, el cristal de la muestra T498, un gneis pelítico con cordierita, presenta claras diferencias respecto de los anteriores, específicamente aumentos en Mg y descensos en Al_total y Fe, lo que supone unas razones Fe/(Fe+Mg) más bajas.

![Figura 4.9.2. Perfiles elementales compositivos de bordo a bordo de distintos cristales de turmalina de metapelitas grafitosas. T320: espinito con Sr+Bt+Grt+Fib+And; T328: gneis pelítico con Sr+Bt+Grt+Kry+Fib+And; T498: gneis pelítico con Sr+Bt+Grt+Kry+Fib+And+Crd. Las escala de los tres diagramas son proporcionales. El blasto de la muestra T320 presenta un zonado óptico (muy claro) en bordes y zonas oscuro a marrón; el blasto de la muestra T328 presenta un zonado óptico en tonos oscuro a marrón; el blasto de la muestra T498 presenta un zonado óptico muy débil (tonos marrón) aunque irregular.](image-url)

Los incrementos absolutos y correlaciones elementales entre $[^{3}]Al_{OP}$, Mg, Na y Sum X (Tabla 4.9.3) indican que la sustitución Na-deficiente (4.52) es la principal responsables de las variaciones composicionales en las turmalinas de las metapelitas grafitosas, en especial en los esquistos grafitosos (Figura 4.9.4), si bien la mayor correlación entre Mg y Na en los gneises pelíticos (Figura 4.9.4) indica complicaciones adicionales. Dadas las correlaciones negativas entre Fe y Mg, y positivas entre $[^{3}]Al_{OP}$ y Fe, el intercambio FeMg+ puede explicar este hecho. Las correlaciones observadas indican además que el resto de sustituciones son minoritarias.
Gneises Leucocratos

Sólo se disponen de análisis suficientes de cristales individuales de la muestra T335 (Figura 4.9.3). Puede observarse que la zonación es débil, incluso en el cristal pegmatítico a pesar del zonado óptico. Los dos gramos ilustrados en la Figura 4.9.3 son similares en composición. No obstante, existen diferencias composicionales entre éstos y los pequeños cristales con texturas simplectíticas con cuarzo nucleados en los bordes de cristales primarios de moscovita. Aunque estos cristales no están diferenciados en la Figura 4.9.4, pueden identificarse fácilmente por los bajos contenidos en Na (cerca de 0.6 átomos pfu, ver Apéndice II Tabla T).

![Figura 4.9.3. Perfiles elemental cuantitativos de cristales de turmalina del gneiso opíneo T335. Las escalas de los dos diagramas son proporcionales. El cristal incluido en un cristal de moscovita primaria (inc. Ms) presenta zonado óptico irregular con tono verde en la mayor parte del cristal y verde pálido en la parte izquierda del perfil, coincidiendo con la bajada en Fe; el cristal pegmatítico (pegp) presenta zonado óptico con un borde máximo de 500 micras (los dos análisis de la izquierda del perfil) y un núcleo homogéneo verde claro acuado (dero del perfil); debido al tamaño del cristal (~1 cm) el perfil está incompleto. Nótese que a pesar de este zonado óptico no existen variaciones composicionales relacionadas.](image-url)

Igualmente distinguibles en la Figura 4.9.4 son los análisis de las turmalinas del gneiso bandead (triángulos), que presentan bajos contenidos en Na y Mg y cantidades elevadas de Fe. En conjunto, pueden apreciarse cómo las variaciones composicionales de las turmalinas de los gneises leucocratos son claramente contrapuestas a las de las metapelitas grsitosas. Destaca la correlación negativa entre [Al] y Fe, y la escasa correlación entre el [Al] y Na, lo que sugiere una escasa contribución de la sustitución Na-deficiente. No obstante, estas turmalinas presentan cantidades menores de ocupación en las posiciones Y, lo cual implica la operatividad de las sustituciones que introduzcan vacantes en estas posiciones (e.g., 4.57 y/o 4.62) y/o de la sustitución de deshidroxilación (4.54). Nótese que en estas turmalinas existe una correlación positiva entre Fe y Sum X (Tabla 4.9.4), no observada en las metapelitas grsitosas (Tabla 4.9.3), lo cual sugiere la operatividad de la sustitución de deshidroxilación asociada al término extremo buergerita (4.53) y la presencia de Fe^3+ en cantidades sustanciales. Esto no sería de extrañar dada la ausencia de gráfico en estas rocas.
Figura 4.9.4. Diagramas de variación binarios para las series de rocas analizadas en los distintos tipos de rocas. Casiones normalizados a 24.5 oxígenos. Los símbolos se refieren a distintas muestras dentro de cada grupo. Los análisis de los cristales mostrados en las figuras 4.9.2 y 4.9.3 son: T320 (cristalo) cruzes, T328 (gris pétílico) triángulos invertidos, T498 (gris pétílico) cuadrados, y T335 (gris leucocristal apílico) cuadrados. Las líneas sólidas son líneas de regresión sobre todos los puntos de cada diagrama.
4.9.4. EVALUACIÓN DE LOS CAMBIOS COMPOSIÇIONALES MEDIANTE VECTORES DE INTERCAMBIO

La modelización de la solución sólida de la turmalina se ha efectuado en términos de vectores de intercambio siguiendo el procedimiento algebraico expuesto en el Capítulo 4.3, transformando la base catiónica a una base de vectores de intercambio y un componente aditivo (J.B. Thompson, 1982a). Este método es particularmente interesante en el caso de las turmalinas dado que permite sortear el problema de la asignación de un mismo elemento a posiciones estructurales distintas (cf. J.B. Thompson, 1982a, p. 21; ver también Burt, 1989). El término aditivo seleccionado es dravita, y los vectores de intercambio han sido seleccionados a partir de consideraciones teóricas, prácticas (ver más adelante) y en función de las correlaciones catiónicas observadas. Como es obvio, la normalización estructural elegida condiciona la selección de los vectores de intercambio, dado que gran parte de las sustituciones comunes en turmalina no pueden ser evaluadas (Tabla 4.9.1).

Las descripciones anteriores indican la importancia de las sustituciones Na-deficiente (4.52) y FeMg1, lo que sugiere la posibilidad de que existan sustituciones de deshidroxilación no evaluables con la normalización estructural elegida. Una evidencia indirecta que apoyaría eso es la sugerencia de Foit y Rosenberg (1977) de que las sustituciones Na-deficiente (4.52) y de deshidroxilación (4.54) van acopladas. En un intento de ajustar mejor las fórmulas estructurales, las mismas fueron recuadradas suponiendo que las vacantes en las posiciones Y son inexistentes y que las cantidades de OH son variables, siguiendo la sugerencia de Henry y Guidotti (1985) y Foit et al. (1989). Las cantidades de (OH,F) resultantes oscilan entre 3.241 y 3.846 (media=3.436, σ=0.124), valores que se corresponden con cantidades de O sobre los 18 teóricos no ligados a H y B de 18.759 y 18.154 (media=18.564, σ=0.124), respectivamente. Estas estimaciones coinciden con las de Henry y Guidotti (1985) y Foit et al. (1989).

Las cantidades de Si son mayores de 6 átomos pfu en 5 análisis de un total de 53 (Tabla Apéndice II Tabla T1), aunque tal exceso es de entidad menor (máximo de 0.011 átomos pfu, Tabla 4.9.2) y puede asumirse que es debido a dispersión analítica. Sin embargo, y como era esperable, la normalización a Sum Y = 3 resulta en un gran número de análisis con valores de Si > 6 (31 del total de 53 análisis), hasta un máximo de 6.087 átomos pfu (media=6.040, σ=0.024), lo cual no puede considerarse ajustado desde el punto de vista cristalquímico. Es muy probable que este resultado sea debido, al menos en parte, a la ausencia de análisis de otros elementos, particularmente Li, y a la posibilidad de que no todas las vacantes en las posiciones Y sean ficticias (ver más adelante). No obstante, las deficiencias absolutas en la ocupación en Y son mayores que estos excesos en Si, por lo que si todas las vacantes en Y son ficticias se podría considerar la normalización a Sum Y = 3 más ajustada.

En este sentido, debe indicarse que la normalización estructural a Sum Y = 3 es simplemente una transformación lineal, esto es, que existe una dependencia entre Sum Y (normalización a 24.5 oxígenos) y OH (normalización a Sum Y =3) expresable como OH = -6.000 + 3.333-Sum Y; en el presente caso, la dependencia lineal tiene la forma: OH = -5.983 + 3.329-Sum Y (r = 0.999). La pendiente de esta recta indica que, si Sum Y = 3, por cada -0.1 átomos pfu de incremento observado en la ocupación en Y se produciría un cambio de -0.33 átomos de OH. Por lo tanto, dado que la transformación simplemente implica trasladar las variaciones en Sum Y a variaciones en OH sin modificar las proporciones de otras variables, las vacantes en las posiciones Y pueden usarse como estimación de las posibles cantidades de OH sin necesidad de llevar a
cabo la transformación. Por esta razón, y por el hecho de que en un gran número de análisis las cantidades de Si exceden el valor máximo de 6 átomos p.f.u. en este trabajo no se ha considerado oportuno normalizar los análisis a Sum Y = 3, aunque esta normalización podría ajustarse mejor a la realidad en los casos de que se disponga de análisis más completos. Tampoco se ha considerado oportuno normalizar a 6 átomos de Si dado que no existen ninguna razón para imposibilitar la existencia de sustituciones de Si por Al en las posiciones tetraédricas (cf. Gallagher, 1988). El vector seleccionado para modelizar las vacantes en Y (e indirectamente OH) es AL_{0,99}Na_{0,01}Mg_{0,5} (4.62, Tabla 4.9.1), similar al distrioctaedrico en las micas.

Por otra parte, las variaciones observadas en Si son de entidad menor si se comparan con las de otras variables, particularmente las variaciones en las deficiencias en X, por lo que sus variaciones se modelizan con la sustitución tschemak (4.13) y no con la sustitución (4.63) sugerida por Foit et al. (1989). La sustitución tschemak, aunque limitada, no entra en contradicción con las correlaciones observadas (Tablas 4.9.3 y 4.9.4). La modelización de los cambios en Ti es difícil dado el carácter minoritario de este elemento. Henry y Guidotti (1983) consideraron la sustitución Ti-chernak (4.56), mientras que Burt (1989) señaló la posibilidad de la sustitución Ti-spinela (4.58) (Tabla 4.9.1). Sin embargo, es interesante señalar la existencia de una correlación positiva entre Ti y Sum Y en las turmalinas de los gneises leucocraticos (Tabla 4.9.4), lo cual podría considerarse como una evidencia para la estabilización del Ti a través de sustituciones que impliquen la introducción de vacantes en las posiciones Y, i.e., la sustitución Ti-vacante (4.57) (Tabla 4.9.1). A pesar de que esta posibilidad no ha sido considerada en ningún estudio precedente, la sustitución Ti-vacante (4.57) se considera en este caso más ajustada que las sustituciones de Ti anteriores. Las correlaciones negativas entre Ca y [Al]_{0,9} y positivas entre Ca y Mg (Tablas 4.9.3 y 4.9.4) sugieren claramente la operatividad de la sustitución uvita (4.51) o la sustitución (4.61). Puesto que la sustitución uvita no puede ser evaluada debido a la normalización estructural seleccionada, se considerará la operatividad de la sustitución (4.61) denominándola vCA, aunque la única diferencia entre ambas es que el intercambio entre Mg y Al se verifica en las posiciones Y en lugar de Z. Las variaciones de elementos menores, Cr, Mn, Zn y K se modelizan por los vectores Cr_{[Al]_{0,9}} M_{Mg_{0,1}}, Zn_{Mg_{0,1}} y K_{Na_{0,1}}, respectivamente.

El conjunto de vectores de intercambio linealmente independiente seleccionado junto con el término aditivo dravita para mostrar las variaciones composicionales en las turmalinas estudiadas es el mostrado en la Tabla 4.9.5. Nótese que el número de componentes intercambio es 10, igual al número de componentes en las fórmulas estructurales (18, incluyendo B y F) menos el número de restricciones esqueimétricas (8, incluyendo B=3 y OH=4) satisfechas por el componente aditivo dravita. La transformación de coordenadas supone explicar las composiciones por desviaciones del término externo dravita, ya que la transformación implica que dravita = 1 en todos los casos. Nótese que no se han distinguido las distintas posiciones estructurales para evitar problemas con la normalización estructural elegida, aunque algunas sustituciones pueden relacionarse con vectores particulares de la Tabla 4.9.1.

El resultado de la transformación de base puede apreciarse en la Figura 4.9.5. Esta figura representa la contribución de cada variable (catiónicas y vectores) en los componentes principales I y II (Tablas 4.9.6 y 4.9.7). Para el caso sobre base catiónica no se han reducido el número de variables en función de las constricciones esqueimétricas, lo cual es estadísticamente incorrecto como se discutió para las biotitas (Capítulo 4.5). Por esta razón, además de desbalance de cargas, aparece desbalance de masas en los componentes principales (o vectores de intercambio múltiples). Puede apreciarse como la mayor parte de las variaciones composicionales afectan a los cationes Fe y Mg (componente principal I) en la Tabla 4.9.6 y base catiónica de la Figura 4.9.5), y en menor medida a [Al]_{0,9} Na y [O]_{0,9} (componente principal II en la Tabla
4.9.6 y base catiónica de la Figura 4.9.5), lo cual se traduce en que los vectores FeMg$_1$ y AlMg$_1$Na$_{4.4}$ (Nadel) son dominantes en los componentes principales I y II de la Tabla 4.9.7, respectivamente, tal y como se ilustra en la Figura 4.9.5 (base vectorial).

Figura 4.9.5. Diagramas binarios donde se representan la composición de los componentes principales I y II deducidos para todas las muestras, metapelitas grafitosas y gneisises leucocratos, en términos catiónicos (24.5 oxígeno, Tabla 4.9.6) y vectores de intercambio (Tabla 4.9.7). Nótese que la mayor parte de las variaciones composicionales se describen por los vectores FeMg$_1$ y Na-deficientes (aunque no pueden evaluarse la sustitución de Na-deficiente 4.54-ni las sustituciones de Cs).

274
Tabla 4.9.5. Matriz de transformación de base catiónica a base vectorial para las turmalinas.

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>Al</th>
<th>Cr</th>
<th>Ti</th>
<th>Fe</th>
<th>Mn</th>
<th>Zn</th>
<th>Mg</th>
<th>Ca</th>
<th>Na</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>dravita</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fe&Mg1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mn&Mg1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Zn&Mg1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CaTi1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>KNa1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Al2Si3Mg6(O2)</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>TiMg2 (Ti=Al)</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CaMgMg2Al3(O2)(vCa)</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Al2Mg2 (v-def)</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AlMg2Na2 (Na=def)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Notas: tk = isothermal; Tvac = Tivacente; y-def = y-deficiente; Na-def = Na-deficiente.

Tabla 4.9.6. Cuatro primeros componentes principales (normalizados a un módulo de 1), porcentaje de varianza explicada y balance de masa y carga sobre las variables catiónicas de la normalización estructural sobre 24.5 oxígenos.

<table>
<thead>
<tr>
<th></th>
<th>Total (n=23)</th>
<th>Metapélites (n=22)</th>
<th>Concitas intercambiantes (n=31)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si [Al]</td>
<td>0.028</td>
<td>0.092 (-0.351)</td>
<td>0.000 (-0.321)</td>
</tr>
<tr>
<td>Ti [Al]</td>
<td>0.027</td>
<td>0.102 (0.165)</td>
<td>0.001 (0.054)</td>
</tr>
<tr>
<td>Fe</td>
<td>0.439</td>
<td>0.281 (0.014)</td>
<td>0.016 (0.002)</td>
</tr>
<tr>
<td>Mn</td>
<td>0.012</td>
<td>0.001 (0.013)</td>
<td>0.002 (0.002)</td>
</tr>
<tr>
<td>Mg</td>
<td>0.751</td>
<td>0.392 (0.133)</td>
<td>0.003 (0.003)</td>
</tr>
<tr>
<td>Ca</td>
<td>0.029</td>
<td>0.013 (0.151)</td>
<td>0.000 (0.000)</td>
</tr>
<tr>
<td>Na</td>
<td>0.049</td>
<td>0.093 (0.225)</td>
<td>0.015 (0.002)</td>
</tr>
<tr>
<td>K</td>
<td>-0.040</td>
<td>-0.083 (-0.515)</td>
<td>-0.001 (-0.001)</td>
</tr>
<tr>
<td>% Var.</td>
<td>82.179</td>
<td>78.547 (3.813)</td>
<td>64.252 (12.456)</td>
</tr>
<tr>
<td>Acarga</td>
<td>0.043</td>
<td>-0.007 (-0.065)</td>
<td>-0.002 (0.005)</td>
</tr>
<tr>
<td>Anmasa</td>
<td>0.006</td>
<td>0.001 (0.001)</td>
<td>0.000 (0.000)</td>
</tr>
</tbody>
</table>

Nota: Los coeficientes de Si y Ti [Al] no coinciden ya que en el conjunto de datos hay algunas muestas con Si>6. (o)=vacante.

Tabla 4.9.7. Cinco primeros componentes principales (normalizados a un módulo de 1) y porcentaje de varianza explicada sobre las variables vectoriales resultantes de la transformación de base (ver Tabla 4.9.5).

<table>
<thead>
<tr>
<th></th>
<th>Total (n=33)</th>
<th>Metapélites (n=22)</th>
<th>Concitas intercambiantes (n=31)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe&Mg1</td>
<td>-0.086</td>
<td>-0.102 (-0.032)</td>
<td>-0.004 (-0.002)</td>
</tr>
<tr>
<td>Mn&Mg1</td>
<td>0.045</td>
<td>0.008 (0.005)</td>
<td>0.001 (0.001)</td>
</tr>
<tr>
<td>KNa1</td>
<td>0.057</td>
<td>-0.004 (-0.032)</td>
<td>-0.005 (-0.005)</td>
</tr>
<tr>
<td>Ti6Al</td>
<td>0.014</td>
<td>-0.011 (-0.030)</td>
<td>-0.007 (-0.007)</td>
</tr>
<tr>
<td>y-def</td>
<td>-0.005</td>
<td>0.019 (0.586)</td>
<td>0.004 (0.004)</td>
</tr>
<tr>
<td>Na-def</td>
<td>0.101</td>
<td>-0.069 (-0.234)</td>
<td>-0.023 (-0.002)</td>
</tr>
<tr>
<td>% Var.</td>
<td>87.325</td>
<td>89.193 (5.899)</td>
<td>41.137 (14.308)</td>
</tr>
</tbody>
</table>

Nota: Los vectores de intercambio se nombran como en la Tabla 4.9.5 excepto. Los coeficientes en negrita señalan sobre qué vector(o) de intercambio están cargados los componentes principales.
Puesto que el porcentaje de la varianza total explicada por los dos primeros componentes principales en base vectorial excede del 95% (Tabla 4.9.7), y estos componentes están cargado sobre los vectores FeMg$_i$ y Na-deficiente, respectivamente, puede concluirse que éstas son las sustituciones más importantes que explican las variaciones composicionales de las turmalinas estudiadas, aunque no su posición absoluta en el espacio composicional. Puede observarse que los valores de Na y Sum X son, por lo general, menores en las metaclases que en los gneises leucocratos (Figura 4.9.4), lo cual implicaría una mayor contribución del componente Na-deficiente en la explicación de la posición absoluta de las primeras en el espacio composicional. Sin embargo, la varianza explicada por el CPIL, y por lo tanto por el vector Na-deficiente, en los gneises leucocratos es más elevada que en las metaclases grafitosas, lo cual es debido a la mayor varianza de Na y Sum X observada en estas muestras.

4.10. OXIDOS DE Fe-Ti

Los análisis de rutilo e ilmenita se presentan en el Apéndice II Tabla O. Los elementos analizados han sido Ti, Al, Cr, Fe, Mn, Zn, Mg, que se han normalizado a 6 oxígenos, excepto en los casos en que la composición de la ilmenita presenta valores positivos de componente hematites (dos análisis de la muestra T348, gneis peltico con cordierita) en los que la normalización estructural es a 6 oxígenos y 4 cationes. Las sumas de los óxidos indican, en general, una cierta deficiencia de masas (hasta 2% en peso) a pesar de que las cantidades de Fe$^{3+}$ calculado por estequimetría es = 0 en la mayoría de los casos.

El rutilo puede considerarse un fase prácticamente pura (TiO$_2$), aunque se detecta una cierta cantidad de Fe, de hasta 0,02 átomos puf (Apéndice II Tabla O). La ilmenita en cambio presenta concentraciones algo mayores en Mn (componente pirofánita), que superan a las de Mg. La composición de esta fase no es homogénea en muestras individuales, como puede apreciarse en la Figura 4.10.1. En muestras de gneises péliticos (e.g., T330, T348) y en el enclave restrictivo (T376), donde se dispone de suficientes análisis de tipos petrográficos variados, se observa que las composiciones de los cristales tardíos de ilmenita que se asocian a andalucita presentan cantidades más elevadas de Mn que los cristales de la matriz foliada (Figura 4.10.1). No obstante, estas relaciones se invierten en algunos gneises péliticos (T23) y esquistos con fibrolita (T320), lo cual puede deberse a la variable implicación del granate en los dominios reaccionales donde crece la ilmenita. En cualquier caso, estas relaciones indican que la dispersión analítica no es la causa mayor de las variaciones composicionales de la ilmenita, e imponen serias limitaciones en la evaluación de la partición Fe-Mn entre ilmenita y otras fases tales como granate (por esta razón, en este trabajo no se ha utilizado el equilibrio de intercambio Fe,Mn entre ilmenita y granate con fines termométricos, Pownceby et al., 1987; Capítulo 5.2.2).

Otro aspecto interesante de la composición de la ilmenita es la aparente ausencia de solución sólida hacia hematites (Fe$_4$O$_6$) deducida de criterios estequiométricos, tal y como se representa en el diagrama triangular TiO$_2$-FeO-Fe$_2$O$_3$ (mol% molar) de la Figura 4.10.2. En este diagrama las ilmenitas investigadas están contenidas en el join Ilm-Rt, lo cual podría indicar solución sólida hacia rutilo. Sin embargo esta solución sólida no existe (ver Lindsley, 1991), por lo que las desviaciones hacia rutilo deben reflejar simplemente la
ausencia de cantidades apreciables de Fe³⁺. En consecuencia, las condiciones de fugacidad de O₂ debieron mantenerse bajas en estas rocas, incluso a baja P, como se discute en el Capítulo 5A.3.2.

Figura 4.101. Espectro composicional de la titería en las muestras estudiadas en términos de X_{MnTiO_3} y X_{FeTiO_3}. Círculos: cristales de tamaño de grano cercano a 0.5 mm; Triángulos: cristales de la matriz fracturada; Estrella: cristales incluidos en porfiloblastas de granate, plagioclasa y estanofilita; Círculos: grano producto de descomposición de granato, aegirina, rutilo, y moscovita; Cuadrados de 4 barras: grano asociado a fase de baja P, andalucita, laurita y cordierita.

4.11. CORDIERITA

Los análisis de cordierita y zonas criptocrystalinas asignables a cordierita alterada o pírita se presentan en el Apéndice II Tabla C. Los elementos analizados han sido Si, Ti, Al, Cr, Fe, Mn, Zn, Mg, Ca, Na, y K, que han sido normalizados a 18 oxígenos. La mayor parte de los análisis corresponden a agregados
Figura 4.10.2. Diagrama triangular TiO₂-FeO-Fe₂O₃ (en molar) que muestra la ausencia de devoluciones hacia el componente hemátitas en las ilmenitas investigadas (no diferenciadas).

criptocristalinos. En estos se encuentran filosilicatos de baja cristalinidad, como lo indican la presencia de ciertas cantidades de cationes alcalinos en los análisis e imágenes de TEM obtenidas por el Dr. Antonio Sánchez Navas. Las composiciones de cordierita fresca, correspondientes a cristales producto de estaurolita en el gneis pelítico T348, presentan deficiencias de masa, cercanas a 1.5 % sobre el 100 % de los elementos expresados en forma de óxidos. Esto indica la presencia de cierta cantidad de H₂O, que no obstante no ha sido estimada por métodos ópticos o termodinámicos debido a la limitada representatividad de los análisis disponibles. Además, el claro estado de desequilibrio existente entre cordierita y el granate (ver Capítulo 5.4.3.3) resta cierto interés a la estimación de las cantidades de H₂O y CO₂ y CH₄ en la cordierita, necesaria en los cálculos termodinámicos (e.g., Holdaway y Lee, 1977; Martignole y Sissi, 1981; Aranovich y Podleskii, 1983; 1989). Los valores de Fe/(Mg+Fe) de la cordierita fresca de la muestra T348 oscilan entre 0.450 y 0.465, mientras que las composiciones de la cordierita pinimitizada de la misma muestra y de las zonas criptocristalinas del resto de las muestras son más ricas en Fe (Fe/(Mg+Fe) > 0.5).
5
Relaciones P-T-X, Historia Reaccional y Evolución P-T-t

5.1. INTRODUCCIÓN

En este Capítulo se pretende modelizar la historia metamórfica del área estudiada, en términos de las condiciones intensivas sufridas y de la naturaleza de las reacciones que han dado lugar a las distintas asociaciones. Como podrá comprobarse, existe una elevada incertidumbre en lo concerniente a la caracterización de las condiciones metamórficas sufridas por estas rocas, particularmente a P intermedia, ya que las fases granate, biotita, silicato de Al, plagioclasa, muscovita y feldespato-K, cuyos componentes de fase están implicados en los equilibrios mejor calibrados y más útiles en la estimación de las condiciones físicas-químicas en sistemas poléticos y gnenéticos como los estudiados en este trabajo (e.g., Essene, 1982, 1983; Pattison y Tracy, 1991; Berman, 1991, y referencias contenidas en estos trabajos), presentan fuentes heterogeneidades composicionales inducidas por procesos reaccionales sufridos durante la descompresión, y no existe garantía de que determinadas combinaciones de composiciones representen condiciones de equilibrio. A pesar de esta incertidumbre, es posible estimar las condiciones P-T sufridas en algunas rocas ya que las tendencias de variación composicional permiten extraer de las bases de datos aquellas composiciones que se inferen aproximadas a las condiciones de equilibrio a alta P. No obstante, en otras rocas la estimación de T es imposible.

Otro objetivo de este Capítulo es ofrecer las bases para el análisis y modelización de los procesos reaccionales producidos y asociados a la descompresión. Los complejos patrones de zonación de los porfiríoblastos de granate y la variabilidad composicional de los núcleos de los granates del grupo II sugieren que la evolución de las condiciones metamórficas pre-descompresión ha debido de ser compleja. Esto hace interesante un intento de interpretación de datos termobarométricos extraíbles de las rocas analizadas en términos de la evolución P-T precoz anterior al pico de presión que precedió a la descompresión. Los resultados obtenidos son interesantes ya que indican una historia metamórfica que parece no haber implicado un incremento lineal de P y T con anterioridad a la descompresión. No obstante, hay que indicar que la interpretación de estos datos como trayectorias P-T puede ser discutible por los problemas de equilibrio y selección de composiciones mencionados anteriormente. Sin embargo, las composiciones usadas en los equilibrios han sido elegidas en base a criterios texturales (Capítulo 3) y a las inferencias del estudio composicional de las fases (Capítulo 4). Se considera que, aunque los datos absolutos presenten una elevada
incertidumbre, la evolución general deducida es válida al menos cualitativamente, y en cualquier caso ofrece una nueva visión de la evolución metamórfica alpujarreña por cuanto se evalúan las secciones P-T previas a la descompresión.

No obstante, el establecimiento de la secuencia reacional debida a la descompresión (introducida en el Capítulo 3.1.2) es el aspecto que puede caracterizarse mejor debido a la abundancia de texturas reacionales en todos los tipos de rocas y su relación con heterogeneidades composicionales de las fases. Por ello, en este trabajo se ofrecerán modelos reacionales detallados que ilustran el particular proceso geológico sufrido por estas rocas, caracterizado por una fuerte y rápida descompresión y ulterior enfriamiento. Con este fin, se ofrecen además dataciones radiométricas sobre fases minerales de los gneises pelíclicos y gneises leucocratos (en parte publicadas; Zeck et al., 1989a; 1992; y en parte inéditas; Monié et al., en preparación) y una discusión al respecto de los procesos cinéticos que controlaron el progreso de las reacciones asociadas a la descomposición bajo condiciones de fuerte sobrepaso de las superficies P-T-X de equilibrio.

A continuación se presentan los métodos utilizados para estimar las condiciones P-T-X (Capítulo 5.2) y las técnicas de representación gráfica de diagramas de fases y de evaluación del espacio reacional en los sistemas multicomponentes de cualquier varianza (Capítulo 5.3). La lectura de estos capítulos no es necesaria para el lector familiarizado, y se presentan con fines de referencia para los Capítulos 5.4 y 5.5.

5.2. MÉTODOS DE ESTIMACIÓN DE LAS RELACIONES P-T-X

5.2.1. RELACIONES TERMODINÁMICAS BÁSICAS

La condición de equilibrio heterogéneo entre las fases coexistentes en cualquier sistema, a P y T determinadas, es (e.g., Powell, 1978):

\[\mu_i^\alpha - \mu_i^\beta - \mu_i^\gamma - \ldots = 0 \] \hspace{1cm} (5.1)

donde \(\mu_i^\alpha \) es el potencial químico del componente i en la fase \(\alpha \), definido como:

\[\mu_i^\alpha = \left(\frac{\partial G^\alpha}{\partial n_i^\alpha} \right)_{P,T,n_i^\alpha} \] \hspace{1cm} (5.2)

donde \(G^\alpha \) es la energía libre total de la fase \(\alpha \) a P y T de interés y \(n_i^\alpha \) es el número de moles del componente i en la fase \(\alpha \). Puesto que G es una función de estado extensiva, la ecuación (5.2) puede evaluarse sustituyendo \(G^\alpha \) por \(n_i^\alpha G^\alpha \), y \(n_i^\alpha \) por \(X_i^\alpha n \), donde n es el número total de moles de la fase, \(G^\alpha \) es la energía libre molar de la fase \(\alpha \), y \(X_i^\alpha \) es la fracción molar de i en \(\alpha \). Por lo tanto, \(\mu_i^\alpha \) es la energía libre molar del componente i en la fase \(\alpha \). La ecuación (5.2) establece que el potencial químico de un componente en una fase es una función de P, T y la composición de la fase. Para cualquier fase \(\alpha \), puede demostrarse que:

\[\mu_i^\alpha(P,T,X) = \left(\mu_i^\alpha(P,T) \right) + R \cdot T \cdot \ln X_i^\alpha(P,T,X) \] \hspace{1cm} (5.3)

donde R es la constante de los gases perfectos y T es la temperatura absoluta. La ecuación (5.3) representa la expansión de la función \(\mu_i^\alpha(P,T,X) \) en dos funciones. La primera de ellas, \(\left(\mu_i^\alpha(P,T) \right) \), es dependiente de P y T pero independiente de la composición, ya que representa el límite inferior de integración de \(\mu_i^\alpha(P,T,X) \) respecto de \(X_i^\alpha \). Esto es, en el caso límite en que la fase esté constituida exclusivamente por el componente i (i.e., \(n_i = 0 \)), \(\mu_i^\alpha(P,T,X) \) corresponde a la energía libre molar.
Capítulo 5: Relaciones P-T-X, Historia Reacional y Evolución P-T-X

total de la fase, que se define como \(\mu_i^{eq} (X_i^{eq}, T) \) o estado estacionario para la solución sólida. La segunda función del lado derecho de la ecuación (5.2) define la actividad del componente \(i \) en la fase, \(a_i^{eq} (P, T, X) \), que es una función de \(P, T \) y la composición de la fase, y puede definirse como la función que describe los cambios de energía libre en la fase al desplazar la composición de la solución sólida del término extremo i bajo condiciones determinadas de \(P \) y \(T \). Las funciones que describen este comportamiento se denominan relaciones actividad-composición (\(i-X \)), y suelen expresarse como el producto de un término dependiente exclusivamente de la composición (i.e., la fracción molar \(X_i^{eq} \)) y otro término dependiente de \(P, T \) y \(X \) denominado coeficiente de actividad, \(\gamma_i^{eq}(P, T, X) \), de manera que \(a_i = \gamma_i^{eq} \). De la igualdad (5.3), es aparente que la función de actividad depende del estado estándar elegido (e.g., Anderson, 1977; Powell, 1978; Ganguly y Saxena, 1987). La ecuación (5.3) puede hacerse más general sustituyendo \(\mu_i^{eq} (P, T) \) por \(\mu_i \), donde el asterisco indica un estado estándar cualquiera, no necesariamente definido por las propiedades del estado puro del componente i isosstructural con \(\alpha \) a \(P \) y \(T \) de interés. No obstante, este último es el más comúnmente aplicado (al menos para las fases sólidas), y será el considerado en las ecuaciones que siguen si no se especifica lo contrario.

Para cualquier reacción química balanceada que pueda escribirse entre todos o parte de los componentes de fase de una asociación de fases en equilibrio como:

\[
0 = \sum_i v_i M_i \quad (5.4)
\]

donde \(m \) son los componentes de fase de las soluciones sólidas implicadas en la reacción, y \(v_i \) son los coeficientes estequiométricos (por convención, positivos en el lado derecho y negativos en el lado izquierdo de la reacción) asociados a cada fórmula-gramo \(M_i \) de los componentes, debe cumplirse la relación:

\[
\Delta \mu_i = \sum_i v_i \mu_i = 0 = \sum_i v_i \mu_i^{eq} + R \cdot T \cdot \ln \prod_i a_i^{v_i} \quad (5.5)
\]

o de manera más compacta:

\[
\Delta G_i (P, T, X) = 0 = \Delta G_i^{eq} (P, T) + R \cdot T \cdot \ln K (P, T, X) \quad (5.6)
\]

donde \(\Delta G_i^{eq} (P, T) \) es el cambio de energía libre molar asociada a la reacción entre las fases puras a \(P \) y \(T \) de interés (i.e., condiciones del estado estándar seleccionado) y \(K (P, T, X) \) es la constante de equilibrio. La relación definida por la ecuación (5.6) es la base de un gran número de cálculos termodinámicos en equilibrio, incluyendo los cálculos termobarométricos y de estimación de la composición del fluido coexistente con la asociación de fases sólidas ya que esta ecuación indica que los desplazamientos en el espacio P-T respecto de la localización en este espacio de la reacción entre las fases puras a \((\alpha=1) \) tendrán un impacto en la constante de equilibrio, lo que permite evaluar \(P \) y \(T \) en función de los valores \(K \) observados.

Puesto que para cualquier fase para compuesta por el componente de fase i:

\[
G_i^0 (P, T) = G_i^0 (i, T) + \int_i^P V_i^0 (P, T) dP \quad (5.7)
\]

la ecuación (5.6) puede rescribirse (reordenando las funciones para las especies presentes en la fase fluida):

\[
\Delta G_i^{eq} (i, T) + \int_i^P \Delta V_i^0 (P, T) dP + \int_i^P \Delta V_i^0 (P, T) dP + R \cdot T \cdot \ln K_i + R \cdot T \cdot \ln \prod_i a_i^{v_i} = 0 \quad (5.8)
\]

donde los subíndices \(s \) y \(f \) se refieren a componentes de fases sólidas y fluida, respectivamente. El uso de equilibrios con fines termodinámicos implica resolver la ecuación (5.8) para \(P \) o \(T \), por lo que es conveniente seleccionar equilibrios en los que
no intervengan componentes de la fase fluida. Teniendo esto en cuenta, y las relaciones entre energía libre, entalpía y entropía de formación a 1 bar y 298.15 K, la ecuación (5.8) puede reescribirse para equilibrios donde no participen componentes de la fase fluida (e.g., Powell, 1978):

\[
\Delta H^O(T, 1298) - T \Delta S^O(T, 1298) = \int_{298}^{T} \Delta C_p dT - \int_{298}^{T} \Delta C_p(T) dT + \int_{1}^{P} \Delta V^D(P, T) dP + R T \ln K = 0 \quad (5.9)
\]

En esta ecuación, \(\Delta H^O\) (1,298) y \(\Delta S^O\) (1,298) son los cambios de entalpía y entropía molares de formación asociados a la reacción entre las fases puras a 1 bar y 298.15 K, obtenidos a partir de bases de datos y/o estimaciones experimentales específicas para la reacción evaluada. \(\Delta C_p\) representa las sumatorias de las funciones de capacidad calorífica a presión constante para las fases puras, que se expresan como funciones polinómicas de \(T\) (e.g., del tipo Maiter-Kelley) con un número de términos variable, por lo general no superior a 4 o 5 términos. Los coeficientes de estas funciones también pueden encontrarse tabulados en las bases de datos termodinámicas existentes. \(\Delta V^D\) representa el incremento de volumen molar de las fases puras asociado a la reacción a \(P\) y \(T\). Para las fases sólidas pueden asumirse cambios negligibles de volumen con cambios en \(P\) y \(T\), por lo que la integral correspondiente queda reducida a \(\Delta V^D(1,298)\) (\(P=1\)), donde \(\Delta V^D\) (1,298) es el cambio de volumen en la reacción a 1 bar y 298.15 K. No obstante, la integral de la función de volumen puede evaluarse también considerando los factores de compresibilidad y expansión térmica (e.g., Powell, 1978, para más detalles).

La ecuación (5.9) puede resolverse para \(T\) o \(P\) a partir de una estimación de la constante de equilibrio. Esta constante es evaluable si se conocen las relaciones entre la actividad de los componentes y composición de las fases, i.e., las relaciones \(a-X\) o modelos de actividad. En el caso más simple en que la solución sólida sea ideal y si la mezcla se da exclusivamente en una posición estructural (ideal de mezcla mixta), \(a_i = (X_i)^{m} \), \(m\) = multiplicidad de la posición estructural y la estabilidad de \(T\) o \(P\) es inmediata si se conoce la composición de las fases. Sin embargo, en la mayoría de los casos las soluciones sólidas no son ideales y suelen implicar más de una posición estructural (multiinert), por lo que las actividades de los componentes en esas fases son funciones complejas de \(P\) y \(T\) y la composición de la fase. En tal caso, para resolver la ecuación (5.9) es necesario expandir \(K\) (\(P, T, X\)), lo cual puede complicar la obtención de valores \(P-T\). Conocidas \(P\) y \(T\) es posible calcular la composición de la fase fluida aplicando la ecuación (5.8) hasta que las relaciones \(P-T-V\) de los fluidos implican complejas funciones de \(V^D(P, T)\) y de modelos de solución en mezclas de fluidos.

5.2.2. Equilibrios Termobarométricos Seleccionados

La información necesaria para evaluar la ecuación (5.6) obviamente generalmente de la determinación experimental de la posición \(P-T\) de la reacción entre las fases puras (i.e., \(\Delta G^O\)), y de datos calorimétricos o modelizaciones de datos experimentales y/o naturales (i.e., relaciones \(a-X\)). Por lo tanto, el uso de equilibrios de fases con fines termobarométricos se ha basado hasta hace poco en un número limitado de reacciones de las que se disponía de la información necesaria (e.g., Eocene, 1982, 1989; Bohlen y Lindsay, 1987). El acercamiento es sencillo, y se basa en la identificación de la intersección en el espacio \(P-T\) a un nivel de equilibrios determinados en una roca determinada, eligiéndose los equilibrios de manera que sean fuertemente dependientes de \(T\) o \(P\) para que la intersección quede definida con la menor incertidumbre posible (e.g., Hedges y Spear, 1982; Spear, 1989; Hedges, 1991).

En el caso de las rocas pétreas y gneisicas como las estudiadas en este trabajo, los equilibrios más utilizados como termómetro y barómetro son el basado en el intercambio Fe-Mg entre biotita y granoite (termómetro GARS) y el basado en la reacción de transferencia netas entre los componentes Al₂SiO₅, silita, granoite y SiO₂ en las fases aluminosilicato, plagioclas, granoite y cuarzo (barómetros GASP), respectivamente.

5.2.2.1. Termómetro GARS

Este termómetro se basa en la reacción de intercambio Fe-Mg entre granoite y biotita, que puede expresarse:

282
\[
\text{picopo + anita = almandina + flopopita}
\]
\[
\text{Mg}_2\text{Al}_2\text{Si}_3\text{O}_12 + \text{KFe}_3\text{Al}_3\text{Si}_3\text{O}_10(\text{OH})_2 = \text{Fe}_3\text{Al}_2\text{Si}_3\text{O}_12 + \text{KMg}_2\text{Al}_3\text{Si}_3\text{O}_10(\text{OH})_2
\]
(Saxena, 1989; Thompson, 1976b; Ferry y Spear, 1978; Hodges y Spear, 1982; Perchuck y Larochelle, 1983; Ganguly y Saxena, 1984, 1985; Indares y Martignole, 1985; Berman, 1990). Teniendo en cuenta que \(a_1 = X_{\text{Fe}}^3 \cdot X_{\text{Fe}}^2 \), la constante de equilibrio puede expresarse como:

\[
\text{R.T} \cdot \text{ln}K = 5 \cdot \text{R.T} \cdot \text{ln}K_D + 1 \cdot \text{R.T} \cdot \text{ln}K_y
\]
(5.11)

donde:

\[
K_D = \frac{\left(X_{\text{picopo}} \cdot X_{\text{anita}}\right) \left(X_{\text{almandina}} \cdot X_{\text{flopopita}}\right)}{\left(X_{\text{picopo}} \cdot X_{\text{almandina}}\right) \left(X_{\text{anita}} \cdot X_{\text{flopopita}}\right)} = \frac{(\text{Mg/Fe})_{\text{II}}}{(\text{Mg/Fe})_{\text{III}}}
\]
(5.12)

\[
K_y = \frac{(X_{\text{picopo}} \cdot X_{\text{anita}})}{(X_{\text{almandina}} \cdot X_{\text{flopopita}})}
\]
(5.13)

Por lo tanto, \(K_D\) es el coeficiente de reparto Fe/Mg entre las fases bionita y granate.

Thompson (1976b) ofreció un calibrado empírico obtenido a partir de asociaciones naturales con temperaturas de equilibrio conocidas. Esta aproximación considera implícitamente las desviaciones de la idealidad de las fases ya que estos contienen cantidades apreciables de otros componentes que sustituyen a Fe y Mg, por lo que \(K\) puede sustituirse por \(K_D\) directamente, aunque los cálculos conllevan los errores inherentes a la estimación independiente de \(P\) y \(T\) en las asociaciones que sirvieron para su calibrado. No obstante, algunos autores han señalado la validez de este calibrado (e.g., Indares y Martignole, 1985, para rocas de alto grado). La ecuación se obtiene mediante un análisis de regresión lineal de \(\text{ln}K_D\) sobre \(T\), de la que se pueden extraer los valores de las funciones termodinámicas molares \(\Delta H\), \(\Delta S\) y \(\Delta V\). La ecuación que representa el equilibrio se puede escribir como:

\[
Y = a + b/T
\]
(5.14)

donde \(Y = \text{ln}K_D + \Delta V \cdot \Delta P / RT\), \(a = \Delta S / R\) y \(b = \Delta H / R\) (la constante de los gases perfectos, \(R = 1.9872 \text{\,cm/\,K mol}\)). Sustituyendo los valores obtenidos por Thompson (1976a) y alimentando (en todas las ecuaciones que siguen, \(T\) en K y \(P\) en bar):

\[
0 = -1.150 + 2739.646 / T + 0.0234 - (P - 1) / T \cdot \text{ln}K_D
\]
(5.15)

\[
T(\text{K}) = \frac{2739.646 + 0.0234 \cdot (P - 1)}{1.150 + \text{ln}K_D}
\]
(5.16)

donde \(K_D = (\text{Fe/Mg})_{\text{II}} / (\text{Fe/Mg})_{\text{III}}\), esto es, el inverso del \(K_D\) definido en (5.12).

El calibrado de Ferry y Spear (1978) se basa en experimentos en el sistema binario puro Fe-Mg con composiciones ricas en Fe. La ecuación ofrecida es dependiente de \(K_D\), por lo que su aplicación debe restringirse a sistemas naturales de composición cercana al sistema binario y con Mg/Fe bajo. Ferry y Spear (1978) recomiendan el uso de su calibrado siempre que \(X_{\text{Fe}} + X_{\text{Mg}} < 0.2\) y \(X_{\text{Mg}} + X_{\text{Fe}} < 0.15\). La ecuación es:

\[
T(\text{Fe-S}) = \frac{12454 + 0.057 \cdot P}{4.662 \cdot 3 \cdot \text{R} \cdot \text{ln}K_D}
\]
(5.17)

donde \(K_D\) es el coeficiente de reparto definido anteriormente en (5.12).

Perchuck y Larochelle (1983) ofrecen también un calibrado experimental, pero utilizando fases naturales desviadas del sistema binario Fe-Mg, por lo que las estimaciones de \(T\) llevan implicitas desviaciones de la idealidad debidas a la presencia...
de otras componentes (e.g., Mn en Grt, Ti en Bi), aunque debe tenerse en cuenta que las cantidades de Ca y Mn de los granates usados por estos autores son bajas. Perchuk y Laren'teva (1983) presentan dos ecuaciones que difieren en la estimación de \(\Delta V \) para la reacción de intercambio, 0.0577 cal·bar\(^{-1}\) (Perchuk et al., 1981) y 0.0246 cal·bar\(^{-1}\) (Hewat y Wones, 1975):

\[
T(P & L) = \frac{7843.7 + \Delta V \cdot (P - 6000)}{1.987 \cdot \ln K_D + 5.659}
\]
(5.18)

donde \(K_D \) es el inverso del definido en (5.12). Algunos autores han coincidido en los buenos resultados de este calibrado (e.g., Bohlen y Lindsey, 1987; Chipera y Perkins, 1988).

El resto de los calibrados subsecuentes más relevantes introducen correcciones \(a - X \) a fin de tener en cuenta las desviaciones de la idealidad de las soluciones sólidas naturales. Estas correcciones se han añadido generalmente al calibrado experimental de Ferry y Spear (1978). Todos los estudios al respecto coinciden en la noidealidad de ambas fases (ver Ganguly y Saxena, 1987), aunque prácticamente todos ellos se han focalizado en el problema de la solución sólida del granate, esto es, considerando que \(Y_{\text{ref}} = Y_{\text{ps}} = 1 \). Expresiones de \(Y_{\text{ref}} \) y \(Y_{\text{ps}} \) han sido propuestas a partir del análisis de datos naturales (Indares y Martignole, 1985; Sengupta et al., 1990; Hoisch, 1991), y experimentales (Patiño Douce et al., 1993).

\[
RT(\ln(Y_{\text{ref}}/Y_{\text{ps}})) = W_{\text{FeMg}}(X_{\text{ref}} - X_{\text{ps}}) + (W_{\text{MgCa}} - W_{\text{FeCa}})X_{\text{Grt}} + (W_{\text{MgMn}} - W_{\text{FeMn}})X_{\text{ps}}
\]
(5.19)

Los parámetros de Margules (\(W \)) para las soluciones binarias en el sistema cuaternario están sujetas a cierto debate. Newtons y Haselton (1981) y Hodges y Spear (1982) consideran todos los parámetros de Margules = 0 excepto el parámetro de interacción entre Mg y Ca:

\[
W_{\text{MgCa}} = 3300 - 1.5 \cdot T \text{ cal·mol de cation}^{-1} (\approx 13807.2 - 6.276 \cdot T \text{ J mol de cation}^{-1})
\]
(5.20)

La ecuación resultante es:

\[
0 = 12454 - 4.662 \cdot T + 0.057 \cdot P + 3R \cdot T \cdot \ln K_D + 3(W_{\text{MgCa}})\text{Grt}
\]
(5.21)

\[
0 = 12454 - 4.662 \cdot T + 0.057 \cdot P + 3R \cdot T \cdot \ln K_D + 3(3300 - 1.5 \cdot T)
\]
(5.22)

Reordenando,

\[
T(\text{H&S}) = \frac{12454 - 0.057 \cdot P + 3 \cdot 3300 - X_{\text{Grt}}}{4.662 - 3 \cdot R \cdot \ln K_D - 4.5 \cdot X_{\text{Grt}}}
\]
(5.23)

Ganguly y Saxena (1984, 1985) sugieren valores distintos de 0 para los parámetros de mezcla de Margules del resto de las interacciones binarias, y ofrecen los siguientes resultados:
\[
\Delta W_{\text{Ca}} = W_{\text{MgCa}} - W_{\text{FeCa}} = 3000 \pm 500 \text{ cal/mol de catión} \quad \text{(5.24)}
\]
\[
\Delta W_{\text{Mn}} = W_{\text{MnMn}} - W_{\text{FeMn}} = 3000 \pm 500 \text{ cal/mol de catión} \quad \text{(5.25)}
\]
\[
W_{\text{FeMg}} = W_{\text{FeMg}} - \text{Mg/(Mg+Fe)} + W_{\text{MgFe}} - \text{Fe/(Mg+Fe)} \quad \text{(5.26)}
\]
\[
W_{\text{FeMg}} = 200 \text{ cal/mol de catión} \quad \text{(5.27)}
\]
\[
W_{\text{MgFe}} = 2500 \pm 500 \text{ cal/mol de catión} \quad \text{(5.28)}
\]

La ecuación resultante es:

\[
0 = 12454 - 4.662 \cdot T + 0.057 \cdot P + 3 \cdot R \cdot T \cdot \ln K_D + 3 \cdot (W_{\text{FeMg}} \cdot (X_{\text{al}} - X_{\text{pp}}) + \Delta W_{\text{Ca}} \cdot X_{\text{gr}} + \Delta W_{\text{Mn}} \cdot X_{\text{pp}}) \quad \text{(5.29)}
\]

Reordenando y sustituyendo:

\[
T(G & S) = \frac{12454 + 0.057 \cdot P + 3 \cdot (W_{\text{FeMg}} \cdot (X_{\text{al}} - X_{\text{pp}} - 0.8) + 3000 \cdot X_{\text{gr}} + 3000 \cdot X_{\text{pp}})}{4.662 \cdot 3 \cdot R \cdot \ln K_D} \quad \text{(5.30)}
\]

mas tarde modificada (Ganguly y Saxena, 1985) mediante la sustitución de \(\Delta W_{\text{Mn}} = 3000 \text{ cal/mol de catión} \) por \(\Delta W_{\text{Mg}} = 2500 \text{ cal/mol de catión} \).

Ganguly y Saxena (1984) definen los parámetros de mezcla, y por lo tanto el calibrado, para composiciones de \(X_{\text{gr}}\) y \(X_{\text{pp}} < 0.5\), y para valores de \((\text{Fe}/\text{Mg})^\text{Gr} > 3\); en este caso las composiciones de mezcla asimétrica ideal entre Fe-Mg no están garantizadas, por lo que podría volverse el parámetro \(W_{\text{FeMg}}\) en la formulación termométrica (como es el caso en granates ricos en pp del alto grado).

Indares y Martignole (1985) consideran, además de la no-idealidad del granate, el efecto del Ti y \([\text{Al}]\) en la desviación de la idea de la de la biorita mediante un modelo de solución asimétrica simétrica Fe-Mg-Ti-Al en las posiciones octádricas (Ganguly y Kennedy, 1974). El cálculo de \(\Delta W_{\text{Ti}}\) es empirico, por análisis de regresión sobre muestras de granulitas donde existan estimaciones independientes de P y T, advirtiendo además que es aplicable sólo en los casos en que el balance del \([\text{Al}]\) y Ti en la biorita se verifique mediante la sustitución Ti-vacante y distrioctádrico (ver Capítulo 4.5). No obstante, muchos autores han aplicado este modelo de solución no establecer explícitamente si la solución de la biorita se ajusta a estas premisas (e.g., Berman, 1990). Por otra parte, Indares y Martignole (1985) sugieren que el parámetro de Margoles que describe la no-idealidad de la solución Fe-Mg (i.e. \(W_{\text{FeMg}}\)) en el granate puede no ser válido para valores de alm/pp < 1, tal y como señalan Ganguly y Saxena (1984), y para condiciones de alta P, por lo que no incluyen este parámetro en las formulaciones termométricas. Desarrollan dos formulaciones distintas base a los distintos valores asignados a los parámetros de mezcla del granate, siguiendo los modelos de Newton y Haselton (1971) y Hodges y Spear (1982) por una parte (modelo A), y de Ganguly y Saxena (1984) para \(W_{\text{FeMg}}\) por otra (modelo B):

\[
T(I & M, A) = \frac{12454 + 0.057 \cdot P + 3 \cdot (3300 - 1.5 \cdot T) \cdot X_{\text{gr}} - 3 \cdot (454 \cdot X_{\text{Ti}} + 6767 \cdot X_{\text{Ti}})}{4.662 \cdot 3 \cdot R \cdot \ln K_D} \quad \text{(5.31)}
\]

\[
T(I & M, B) = \frac{12454 + 0.057 \cdot P + 3 \cdot 3000 \cdot (X_{\text{gr}} + X_{\text{pp}}) - 3 \cdot (1590 \cdot X_{\text{Ti}} + 7451 \cdot X_{\text{Ti}})}{4.662 \cdot 3 \cdot R \cdot \ln K_D} \quad \text{(5.32)}
\]
donde K_T es como en (5.12) (nótese que T no ha sido completamente despreciado en (5.31)). Algunos autores han señalado los buenos resultados obtenidos con estas correcciones (Böhlen y Lindsey, 1987), aunque Ganguly y Saxena (1987, p. 238) sugieren que estas correcciones pueden no ser satisfactorias para describir los efectos del Al y Ti en las biotitas ya que el rango de variación composicional de las biotitas usadas en las regresiones por Indares y Martignole (1985) es muy limitado para resultar en valores de ΔW_{Ti}^{Bi} y ΔW_{Al}^{Bi} significativos. Sengupta et al. (1990) han evaluado $(W_{Fe-Al} - W_{Mg-Al})^{Bi}$ y $(W_{Fe-Ti} - W_{Mg-Ti})^{Bi}$ para el intercambio Fe-Mg en ortopiroxenos y biotita en graníticas siguiendo la misma técnica que Indares y Martignole (1985), resultando en -1.25 sát. mol$^{-1}$ y -1.74 sát. mol$^{-1}$, respectivamente (ver también Hoiach, 1991 y Patiño Douce et al., 1993). Estos valores contrastan con los ofrecidos por Indares y Martignole (1985), sobre todo para el caso del modelo A. Los cálculos realizados en este trabajo basados en estos nuevos parámetros se encuentran dentro del rango de temperaturas calculado según los distintos calibrados y correcciones a X en muestras individuales (ver más adelante), por lo que no se ofrecen.

Finalmente, dentro de los modelos considerados en el presente trabajo queda por introducir la modelización reciente de Berman (1990) de las relaciones a X en el granito. Siguiendo a Berman y Brown (1984) y Berman (1990), la ecuación que define el coeficiente de actividad del componente m en un modelo general asimétrico de cuatro componentes es un polinomio de tercer grado expresable como:

$$n \cdot R \cdot T \cdot \ln Y_m = \sum_{i=1}^{4} W_{i,j,k} \left(\frac{Q_{m} \cdot X_{1} \cdot X_{i} \cdot X_{k}}{X_{m}} - 2 \cdot X_{1} \cdot X_{i} \cdot X_{k} \right)$$

(5.33)

donde cada $W_{i,j,k}$ se refiere a $W_{i,j,k} = W_{G} - W_{H} \cdot TW_{S} + PW_{k}$. Q_{m} es un término que da cuenta del número de i, j y k que son iguales a m, y p es el número de parámetros de mezcla necesarios para una solución dada (número de permutohexaedros posibles entre i, j y k). Berman (1990) calculó los parámetros ternarios a partir de las interacciones binarias según el modelo de Wehl (1953):

$$W_{i,j,k} = (W_{i,j} + W_{i,k} + W_{i,j,k} - W_{i,k} + W_{i,j,k})/2 - C_{i,j,k}$$

(5.34)

aunque haciendo el término ternario $C_{i,j,k} = 0$ debido a la ausencia de datos experimentales para calibrar las interacciones ternarias. La extensión de la ecuación para almandino, por ejemplo, es (ecuación A3 de Berman, 1990):

$$3R \cdot T \cdot \ln Y_{ilm} =$$

$$= W_{112}(2X_{2}X_{3}) + W_{122}(2X_{2}X_{3}) + W_{113}(X_{1} \cdot 2X_{2}X_{3}) + W_{133}(2X_{2}X_{3} \cdot 2X_{1}X_{3}) +$$

$$+ W_{114}(2X_{2}X_{4}) + W_{144}(2X_{2}X_{4}) + W_{222}(2X_{2}X_{3} + 2X_{2}X_{3}) + W_{233}(2X_{2}X_{3} + 2X_{2}X_{3}) +$$

$$+ W_{224}(2X_{2}X_{4}) + W_{334}(2X_{2}X_{4}) + W_{344}(2X_{2}X_{4} \cdot 2X_{2}X_{4}) +$$

$$+ W_{123}(X_{1}X_{2} + 2X_{1}X_{2}X_{3}) + W_{133}(2X_{1}X_{2}) + W_{124}(2X_{1}X_{2}X_{4}) + W_{134}(2X_{1}X_{2}X_{4} + 2X_{1}X_{2}X_{4}) + W_{234}(2X_{2}X_{4} \cdot 2X_{1}X_{2}X_{4})$$

(5.35)

donde las X_{i} se refieren a las fracciones molares de 1^{o}gra, 2^{o}pr, 3^{o}alm, 4^{o}ps, y $W_{i,j,k}$ como en (5.33). En este trabajo, y siguiendo la sugerencia de Berman (1990), se ha incluido este modelo de solución del granito junto con el modelo A de Indares y Martignole (1985) para la biotita en el calibrado experimental de Ferry y Spear (1978). Obviamente, otras combinaciones son también posibles, pero el número de cálculos sería muy elevado. Nótese que la inclusión de $R \cdot T \cdot \ln Y_{ilm}$ y $R \cdot T \cdot \ln Y_{opq}$ en la expresión de termométrica no permite una obtención directa de T ya que los $W_{i,j,k}$ son funciones de P, T y X_{i}, y el despeje de T es algo más complicado que en los casos anteriores.

5.2.2.2. BARÓMETRO GASp

Este barómetro se basa en la reacción de transferencia neta:
anortita = gneularia + silicato de Al + cuarzo

$$3\text{CaAl}_2\text{Si}_2\text{O}_8 = \text{Ca}_3\text{Al}_3\text{Si}_3\text{O}_{12} + 2\text{Al}_2\text{Si}_2\text{O}_5 + \text{SiO}_2$$ (5.36)

(Ghent, 1976; Ghent et al., 1979; Newton y Haselton 1981; Hodges y Spear 1982; Gargoly y Saxena 1984, Lang y Rice 1985a, Koziol y Newton 1988; Herman, 1990). La aplicación cuantitativa de este equilibrio con fines barométricos proviene de la fuerte influencia del incremento de volumen. La localización del equilibrio entre las fases puras en el espacio P-T tiene lugar a alta presión en el campo de estabilidad de la gneularia, siendo estable el el término derecho del equilibrio a alta P y baja T. Manteniendo otros factores constantes, la solución de otros componentes en el granate tiende a descender la P de equilibrio, mientras que la solución de Ab en la plagioclasa tiende a aumentarla. Por lo tanto, aumentos de $$X_{\text{Ab}}$$ y/o de $$X_{\text{An}}$$ favorecen condiciones de P alta, lo cual fue ya apuntado en el Capítulo 4 en la presentación de los datos composicionales de granate y plagioclasa.

Ghent (1976) mostró la aplicabilidad de este barómetro en asociaciones metamórficas de medio y alto grado, si bien, ante la ausencia de modelos de mezcla equilibrados para el granate y plagioclasa consideró modelos de solució ideal (i.e., $$\gamma = 1$$). Sin embargo, los datos experimentales obtenidos por Gargoly y Kennedy (1974) en granates naturales y por Orville (1972) en plagioclasa indican que las actividades de gneularia en concentraciones diluidas y de anortita y albita son mayores sus fracciones molares. Esto supone inferir estas estimaciones de P en el primer caso (granate) y sobrestimarlas en el segundo (plagioclasa). No obstante, ambos efectos parecen cancelarse mutuamente, por lo que las estimaciones hechas por Ghent (1976) en distintas asociaciones naturales coinciden aproximadamente con las predecibles a partir de los campos de estabilidad de los polimorfos de Al$_2$SiO$_5$.

En este caso, la forma explícita de la condición de equilibrio se modifica por convenciente de cálculo. Así, puede escribirse una igualdad del tipo de la ecuación (5.9), para la condición de equilibrio entre las fases puras a T de interés. En este caso, $$P = P_0$$ y $$\Delta G_{\text{v}}^0 = (P_0, T) = 0$$, por definición de la condición de equilibrio, de manera que:

$$\Delta H_{\text{v}}^0(1, 298) - T\Delta S_{\text{v}}^0(1, 298) + \int_{298}^{T} \Delta C_P \frac{dT}{T} - \int_{298}^{T} \frac{\Delta C_P}{T} \frac{dT}{T} + \int_{1}^{P_0} \left(\Delta V_{\text{v}}^0\right) \frac{dP}{P} = 0$$ (5.37)

Combinando esta igualdad con la ecuación (5.9), que representa la condición de equilibrio para unas condiciones P, T y X cualesquiera, resulta:

$$\int_{P_0}^{P} \frac{(\Delta V_{\text{v}}^0)}{T} \frac{dT}{T} + R \cdot T \cdot \ln K(P, T, X) = 0$$ (5.38)

que, obviando los coeficientes de compresibilidad y expansión térmica, da:

$$(P-P_0)\Delta V_{\text{v}}^0 + R \cdot T \cdot \ln K(P, T, X) = 0$$ (5.39)

donde:

$$K = \frac{a_{\text{gr}}}{a_{\text{an}}^3}$$ (5.40)

y $$\Delta V_{\text{v}}^0(P, T)$$ es el cambio de volumen de la reacción entre los términos puras a P y T que puede aproximarse a $$\Delta V_{\text{v}}^0(1, 298)$$. La ecuación (5.39) puede ser sí misma ser aplicada para cualquier cálculo barométrico evaluando las actividades a P y T de interés. No obstante, deben incluirse los efectos de la presión sobre los coeficientes de actividad en las expresiones de las actividades, particularmente en el caso de $$a_{\text{gr}}$$ debido al conocido comportamiento no ideal del volumen de solución del granate (Cressey et al., 1978) que hace aumentar el coeficiente de actividad a altas presiones de acuerdo con la expresión (estado estándar a P y T de interés).
\[\left(\frac{\partial \ln \gamma_i^k}{\partial P}\right)_{T,X_i} = \frac{\bar{V}_{i} - V_{i}^0}{R \cdot T} (5.41)\]

donde \(\bar{V}_{i}\) es el volumen molar de glosaria en la solución sólida del granate y \(V_{i}^0\) es el volumen molar de glosaria en estado puro (Haselton y Newton, 1980, Ganguly y Saxena, 1987). Aunque el volumen de exceso es pequeño en las soluciones binarias \(\text{pp}_2\text{p-gs} y \text{alm-gs}\) (Creasey et al., 1978, Haselton y Newton, 1980), en ambas se detectan desviaciones de la idealidad positivas del volumen molar en las cercanías de los términos de menor volumen \(\text{pp}_2\text{p y alm}\), de acuerdo con las observaciones de Newton y Wood (1980) al respecto del comportamiento volumétrico de las soluciones sólidas. En consecuencia, \(\bar{V}_{i}\) cambia rápidamente en función de la composición entre 0 y 30% de glosaria en ambos sistemas binarios, presentando un máximo en torno a \(X_{i} = 0.18\), y acercándose bastante \(V_{i}^0\) para \(X_{i} > 0.3\). Por lo tanto, la \(\bar{V}_{i}\) da un lugar errores en los cálculos basados en equilibrios que involucran glosaria para composiciones del granate contenidas dentro del rango anterior. Como señala Koziel y Newton (1989, p. 423), "An error in the activity coefficient of a garnet component, specially a dilute component such as glosaria or pyro en garnets from pelitic rocks, can make a large difference in the calculated activity of that component, which translates into sizable errors in the calculated temperature and pressures of recrystallization of natural assemblages". Una inspección de las relaciones \(a\times\) en el sistema \(\text{pp}_2\text{p-gs}\) ofrecidas por Haselton y Newton (1980, su Figura 3) puede dar una idea de las fuerzas desviaciones de la idealidad de la solución binaria en las cercanías del término \(pp\) debido a este efecto volumétrico.

La necesidad de dar cuenta de los efectos volumétricos en el coeficiente de actividad, llevó a Haselton y Newton (1980) y Newton y Haselton (1981) a modificar las funciones de exceso \(H_{\text{mix}}^0\) y \(S_{\text{mix}}^0\) para el componente glosaria mediante parámetros de margues \((W_1 y W_2)\), mientras que \(V_{\text{mix}}^0\) fue evaluada en términos de \(P(\bar{V}_{i}^0 - V_{i}^0)\), dado que:

\[V_{\text{mix}}^0 = R \cdot T \cdot \sum \chi_i \left(\frac{\partial \ln \gamma_i^k}{\partial P}\right)_{T,X_i} = \sum \chi_i \left(\bar{V}_{i}^0 - V_{i}^0\right) (5.42)\]

(Ganguly y Saxena, 1987). Si en las expresiones de las actividades no se incluyen explícitamente los términos de \(W_n\), la ecuación (5.39) debe modificarse:

\[(P-P_0)\Delta V_{\text{mix}}^0 (P,T) + R \cdot T \cdot \ln K (T,X) + R \cdot T \cdot \ln K_{\text{pp}} (P) = 0 (5.43)\]

donde \(K_{\text{pp}}\) expresan las interacciones energéticas debidas a los cambios de \(P\) de manera que \(R \cdot T \cdot \ln K_{\text{pp}} (P)\) puede sustituirse por \(P(\Delta V_{\text{pp}})\). Despejando \(P\) queda la igualdad utilizada comúnmente con fases barométricas:

\[P = \frac{P_0 \cdot \Delta V_{\text{mix}}^0 (1,298) - R \cdot T \cdot \ln K (T,X)}{\Delta V_{\text{mix}}^0 (1,298,X) (5.44)\}

Existe otro formas de derivar la ecuación (5.44). Siguiendo a Ganguly y Saxena (1987, p. 75-77) la expresión (5.38) puede modificarse en:

\[\int_1^{P} \left(\frac{\partial \ln K}{\partial \gamma_i}^k \right)_{T,X} dP - \int_{P}^{P_0} \left(\frac{\partial \ln K}{\partial \gamma_i}^k \right)_{T,X} dP + R \cdot T \cdot \ln K (1, T,X) = 0 (5.45)\]

que resulta de considerar el estado estándar a 1 bar y T de intervención para que la integral del volumen parcial molar de cuenta de las desviaciones de la idealidad a \(P > 1\). Obviando los coeficientes de compresibilidad y expansión térmica, la ecuación resultante es:
(5.46)
\[
(P-1) \Delta V'_P (1,298, X) - (P_0-1) \Delta V'_0 (1,298) + R.T. \ln K (1,T,X) = 0
\]

donde \(K \) se evalúa a 1 bar y \(T \) de interés. Despejando \(P \), y notando que bajo las condiciones de interés \(P \) y \(P_0 \gg 1 \), queda la expresión utilizada:

\[
P = \frac{P_0 \cdot \Delta V'_0 (1,298) - R \cdot T \cdot \ln K (1,T,X)}{\Delta V'_P (1,298,X)}
\]
(5.47)

La utilización de la ecuación (5.46) o (5.47) con fuentes barométricas necesita de modelos de mezcla para las fases solución sólida involucradas (relaciones \(x_X \), incluyendo una estimación de los volúmenes molares parciales de los componentes y de los volúmenes molares de las fases puras), y de un calibrado experimental preciso de la reacción entre las fases puras en el espacio P-T.

Newton y Hasleton (1981) utilizaron el calibrado experimental de la reacción entre las fases puras de Goldsmith (1980) junto con el calibrado de los polimorfas de \(\text{AlSi}_2\text{O}_4 \) de Holdaway (1971). Las ecuaciones que ofrecen son:

\[
\begin{align*}
\text{Po (kbar)} &= -2.1 + 0.0232 \cdot T \quad \text{(C), con disena} \\
\text{Po (kbar)} &= -0.6 + 0.0236 \cdot T \quad \text{(C), con silitama nada}
\end{align*}
\]
(5.48)
(5.49)

aunque esta última expresión es errónea, tal y como señalan Ganguly y Saxena (1984) a partir de una comunicación personal de Newton, la expresión que debe utilizarse es (derivada por F. Froese):

\[
\text{Po (kbar)} = -1.17 + 0.0238 \cdot T \quad \text{(C), con silitama nada}
\]
(5.50)

Los experimentos de Goldsmith (1980), así como los de Hay (1967) y Harnya y Kennedy (1968), fueron conducidos a alta \(T (> 900 \, ^\circ\text{C}) \), dada la necesidad de acotar de manera precisa el equilibrio mediante inversiones en la dirección de la reacción (i.e., reversa). Este es una limitación que introduce una incertidumbre añadida al propio calibrado experimental ya que hay que hacer una extrapolación al rango de \(T \) propio del metamorfismo (e.g., Hodges y McKenna, 1987). Debido a esta fuente de error, se reconoce generalmente una incertidumbre de ± 3 kbar para este barómetro (e.g., Lang y Race, 1985b). No obstante, el nuevo calibrado experimental de la reacción entre las fases puras de Kozsli y Newton (1988) ha contado con mejoras técnicas en las correcciones de \(P \) en el aparato "cilindro-pistón" y, aunque los experimentos se realizan a altos \(P \) y \(T (> 900 \, ^\circ\text{C} \) y \(> 18 \text{ kbar}, \) estos autores localizan un punto de la reacción a baja \(P \) y \(T \) (650 \, ^\circ\text{C} \) y entre 14-15 kbar, obteniendo a partir de los calibrados experimentales de las reacciones \(\text{Ae} + \text{H}_2\text{O} = 2 \text{Zo} + \text{Ky} + \text{Qz} \) y \(5 \text{Ae} + \text{A} \text{ros} + 2 \text{H}_2\text{O} = 4 \text{Zo} + \text{Qz} \) que permite deducir sustancialmente la incertidumbre debida a la extrapolación de la reacción extrema al rango P-T propio del metamorfismo cortical. La incertidumbre asignada por Kozsli y Newton (1988) es de ± 560 \, bar ± 600 \, ^\circ\text{C} \) y ±400 \, bar ± 1000 \, ^\circ\text{C} \). Las ecuaciones que aplican, que son las usadas en este trabajo, son:

\[
\begin{align*}
\text{Po(Ky)} &= -1093 + 22.80 \cdot T \quad \text{(C)} \\
\text{Po(Sil)} &= -25 + 23.41 \cdot T - 0.0001872 \cdot T^2 \quad \text{(C)}
\end{align*}
\]
(5.51)
(5.52)

esta última basada en la ecuación con Ky (5.51) y la ecuación Ky = Sil de Holdaway (1971).

Los valores de \(\Delta V' \) usados por Newton y Hasleton (1981) son los de Helgeson et al. (1978), por lo que \(\Delta V'_0 \) (con Ky) = -6.620 \, \text{joul/bar}, y \(\Delta V'_P \) (con Sil) = -5.482 \, \text{joul/bar} (1 \, \text{joul} = 10 \, \text{cm}^3 = 0.23901 \, \text{cal/bar}). Kozsli y Newton (1988) propusieron sin embargo los volúmenes molares actualizados de Holland y Powell (1985), que también son los utilizados en este trabajo.

La actividad de la garnetaria fue estimada por Newton y Hasleton (1981) a partir de la expresión usada por Ganguly y Kennedy (1974) para graniites de tres componentes (Mg,Fe,Ca) y utilizando los parámetros de Margules deducidos por ellos.
El volumen molar de la glosarina se evalúa mediante la expresión (equ. (1.32) de Ganguly y Saxena, 1987):

\[V_i = V^{Grt} + (1 - X_{X}) \left(\frac{\partial V^{Grt}}{\partial X_i} \right)_{P,T,X_i} \]

(5.56)

ajustando \(V^{Grt} \) (volumen molar de la solución en los sistemas binarios ppm-grs y s depending on funciones polinómicas dependientes de X ppm y X s a partir de los datos de Newton et al. (1977), Cresset et al. (1978) y Haschek y Newton (1980). Las funciones que ofrece Newton y Haselton (1981) son:

\[\bar{V}_{\text{gr}} = A - C X_i^2 + D \left(\frac{X_i - E}{F} \right) \exp \left(- \frac{(X_i - E)^2}{F} \right) \]

(5.57)

donde A, C, D, E, F son parámetros de ajuste y \(X_i = X_{\text{ppm}} \) o \(X_{\text{s}} \). Estas funciones aplican a los sistemas binarios Mg-Ca y Fe-Ca, por lo que su utilización en los sistemas naturales cuaternarios Fe-Mg-Mg-Ca es problemática ya que no pueden aplicarse directamente. El procedimiento a seguir supone recalcular las composiciones al sistema ternario Fe-Mg-Ca, y (1) calcular \(V_{\text{gr}} \) mediante una función que incluya una media ponderada de los dos conjuntos de parámetros aplicables a los sistemas binarios Mg-Ca y Fe-Ca o (2) mediante un cálculo independiente de \(V_{\text{gr}} \) en las mezclas binarias Fe-Ca y Mg-Ca y después considerar en función de las proporciones de aluminio y pirof. No obstante, Newton y Haselton (1981) no recalan \(X_{\text{ppm}} \) y \(X_{\text{s}} \) en el sistema ternario, lo que supone ciertas diferencias en los valores de \(V_{\text{gr}} \) calculados. En cualquiera de los casos es conveniente utilizar el valor de (1-X ppm) en vez de \(X_{\text{s}} \) y \(X_{\text{ppm}} \) en las expresiones de \(V_{\text{gr}} \) dado que las soluciones naturales no son binarias, tal y como señalan Ganguly y Saxena (1984), Hodges y Royden (1984) y Hoek (1990). Este método parece que no introduce errores de más de 1 cm³ por lo que introduciría un error de menos de ±50 bases en la presión calculada (Ganguly y Saxena, 1984), que es negligible si se compara con la incertidumbre debido a la extrapolación de la determinación experimental de la reacción entre las fases puras a las condiciones P-T de interés. Por otra parte, Newton y Haselton (1981), indicaron que el volumen molar parcial de la glosarina en la plagioclaza es sensiblemente igual al volumen molar de la anortita (Newton et al., 1980; Kroll y Müller, 1980). Por lo tanto, puede asumirse que

\[V_n = V_{\text{ppm}}^{\text{gr}} + V_{\text{s}}^{\text{gr}} \]

La ecuación (5.44) derivada como en Newton y Haselton (1981) ha sido utilizada por un gran número de autores. Aunque existen modificaciones procedentes de distintos modelos de solución para las fases implicadas, si estos modelos no contienen los términos apropiados de volumen de las expresiones de \(\chi \), el volumen parcial molar de la glosarina debe mantenerse en la forma explícita de la ecuación, evaluándose mediante las funciones polinómicas derivadas por Newton et al. (1977), Haselton y Newton (1980) y Newton y Haselton (1981).
recomendado por Orville, 1972), 1.8 y 2.0. Hodges y Spear (1982) seleccionan el valor de 2.0 ya que, para las muestras estudiadas por ellos, da resultados de P acordes con los campos de estabilidad de los polimorfos de Al₂SiO₅ de Holdaway (1971). Posteriormente, Hodges y Spear (citado en Hodges y Royden, 1984), consideran más ajustado el valor de 1.5 para γ_n, si bien desarrollan una expresión para calcularlo (asumiendo ordenamiento Si-Al):

$$\gamma_n = \exp[610.34/T \, [K] - 0.2.337]$$ \hspace{1cm} (5.57)

Hodges y Spear (1982) expanden el sistema ternario del granate a custernario, aunque el modelo de solución para esta fase es el mismo que el usado por Newton y Fishtone (1981). Esta modificación es oportuna en el caso de granates almandiniticos propios de metamorfosis, por lo que las expresiones de a_{mn} utilizadas en este trabajo es la de Hodges y Spear (1982).

$$a_{mn} = X_{mn} \exp[-(X_{ab}^2 + 715(1 - X_{ab} + X_{bb}))/(R\cdot T)]$$ \hspace{1cm} (5.58)

obtenida a partir de análisis termodinámico y estadístico de los datos de Orville (1972). Esta formulación parece dar mejores resultados en cuanto a que se obtienen menores dispersions de la presión estimada en rocas de una misma área, y se aproxima más a las condiciones del punto triple de los polimorfos de Al₂SiO₅ en las muestras estudiadas por Hodges y Spear (1982).

$$a_{mn} = \left[X_{mn} \left(1 + X_{mn}^{-1/2}\right) \exp \left(W_{o-xb} [X_{xb} X_{o-b} (0.5 - X_{mn} - 2 X_{xb}) - W_{r-xb} X_{xb} X_{o-b} (0.5 - X_{mn} - 2 X_{xb}) + W_{s-xb} X_{xb} X_{o-b} (0.5 - X_{mn} - 2 X_{xb}) + W_{o-xb} X_{xb} X_{o-b} (0.5 - X_{mn} - 2 X_{xb}) + \right] \right]$$ \hspace{1cm} (5.59)

donde los valores de W son $W_C = W_H + W_G + P W_C$ (Tabla 1 de Fuhrman y Lindley, 1988). También se han calculado las presiones con el modelo de Elkins y Grove (1990) para la plagioclasa, resultando en un incremento de P_{calc} de < 300 bares, por lo que ambas grúas de cálculo se consideran indistinguibles dados los errores asociados a los cálculos.

Dado que los modelos de Fuhrman y Lindley (1988) para la plagioclasa y de Berman (1990) para el granate consideran explícitamente los efectos de P sobre las funciones de exceso (i.e., γ), los cálculos de los volúmenes moleares parciales de gresulquita y anortita no son necesarios, y la ecuación aplicable es (5.38).

5.2.2.3 BÁROMETRO GAMB Y BAROMETRÍA SIMULTÁNEA DE HOISCH (1990, 1991)

La ausencia de silicatos de Al en algunas muestras, particularmente en los gneises leucocratos y en los reactivos grafícos sin fibra (la andalucita se considera en todos los casos producto de descomposición de las asociaciones de P intermedia, y por lo tanto no se la considera en equilibrio con el granate), hace necesario utilizar otros equilibrios para la estimación de P. La coexistencia de granate, plagioclasa, moscovita y biotita, común a un gran número de muestras investigadas en este trabajo, permite considerar las reacciones de transferencia neta:
piropo + grosularia + moscovita = anortita + flogopita
\[\text{Mg}_2\text{Al}_2\text{Si}_3\text{O}_{12} + \text{Ca}_3\text{Al}_2\text{Si}_3\text{O}_{12} + \text{KAl}_2\text{Si}_3\text{O}_{12}(\text{OH})_2 = 3\text{CaAl}_2\text{Si}_2\text{O}_8 + \text{KMg}_3\text{Al}_2\text{Si}_3\text{O}_{12}(\text{OH})_2 \] (5.60)

almandino + grosularia + moscovita = anortita + anita
\[\text{Fe}_3\text{Al}_2\text{Si}_3\text{O}_{12} + \text{Ca}_3\text{Al}_2\text{Si}_3\text{O}_{12} + \text{KAl}_2\text{Si}_3\text{O}_{12}(\text{OH})_2 = 3\text{CaAl}_2\text{Si}_2\text{O}_8 + \text{KFe}_3\text{Al}_2\text{Si}_3\text{O}_{12}(\text{OH})_2 \] (5.61)

(Ghent y Stout, 1981; Hodges y Crowley, 1985; Hodges y Royden, 1984; Lang y Rice, 1985b; Hoisch, 1990, 1991). Cualquier de estos equilibrios pueden usarse con fines barométricos, ya que, como indicaron Ghent y Stout (1981), en ambos casos existen cambios de coordinación de 6 a 4 para Al, y de 8 a 6 para Fe-Mg, que suponen fuertes cambios de volumen de reacción (los términos estables a baja P son los términos derechos de los equilibrios 5.60 y 5.61). Este barómetro se basa en la partición del Ca entre el granate y la plagioclasa, al igual que el barómetro GASP, y de nuevo, manteniendo otros factores constantes, aumentos de X_{Fe2O3} en X_{Ca} favorecen condiciones de P alta.

La localización P-T de estos equilibrios no ha sido investigada experimentalmente. Por lo tanto, todos los calibrados son empíricos, evaluándose mediante técnicas de regresión sobre análisis de rocas naturales para las que se asume P y T de equilibrio estimadas por otros equilibrios independientes (particularmente GARB y GASP, e.g., Ghent y Stout, 1981; Hodges y Crowley, 1985; Hoisch, 1990, 1991) siguiendo la técnica de Thompson (1976b). Esto introduce una elevada incertidumbre en los cálculos debido al efecto acumulativo sobre el error total de las precisiones de los equilibrios independientes. A estas incertidumbres deben añadirse las debidas a la incorporación de dos fases solución sólida complejas adicionales al equilibrio (moscovita y biotita), lo cual supone complicar la formulación de la constante de equilibrio y, consecuentemente, aumentar la incertidumbre en la determinación de P por la propagación de los errores. Además, tanto la moscovita como la biotita son soluciones sólidas muy complejas en sistemas naturales, y no se dispone de relaciones a-X afinadas excepto para sistemas simples (Fe-Mg en la biotita y K-Na en la moscovita). No obstante, el equilibrio en el espacio P-T es bajo, por lo que la incertidumbre debida a la estimación de T es menor que en el caso del barómetro GASP. Hodges y Crowley (1985) sugirieron una precisión máxima de ±2 kbar para cualquier estimación de P (±100 °C si el equilibrio es utilizado para estimar T).

Ghent y Stout (1981) ofrecieron un primer calibrado empírico usando modelos de solución iónicos ideales (ideal mixing on site) para todas las fases. En el análisis de regresión, donde se incluyen los valores de ΔV_p (P,T) = ΔV_p (1,298) y los valores de P (GASP) y T(GARB) calculados a partir de los calibrados de Ghent (1976) y Ghent et al. (1979), y Ferry y Spear (1974), respectivamente, da las siguientes ecuaciones (T en K, P en báar):

\[0 = -888.84 - 16.675 \cdot T + 1.738 \cdot P + \text{RTlnK}_{60} \] (5.62)
\[0 = -4124.4 - 22.061 \cdot T + 1.802 \cdot P + \text{RTlnK}_{61} \] (5.63)

donde:

\[K_{60} = a_{an} \cdot a_{m}^{3} \cdot a_{m}^{3} \cdot a_{g}^{3} \cdot a_{al}^{3} \] (5.64)
\[X_{an} = \frac{a_{an}}{a_{m} + a_{al} + a_{g}} \] (5.65)
\[a_{an} = \frac{C_{a}}{C_{a} + Na + K} \] (5.66)
\[a_{m} = \frac{Mg}{Mg + Fe + Mn + Ca} \] (5.67)
\[a_{al} = \frac{Fe^{2+}}{(Fe^{2+} + Fe^{3+} + Mn + Ca)} \] (5.68)
\[a_{g} = \frac{Ca^{2+}}{(Ca^{2+} + Mg + Fe + Mn + Ca)} \] (5.69)

Este método empírico asume que los efectos de las desviaciones de la idealidad para las distintas fases se consideran implícitos en los coeficientes obtenidos en las regresiones. De hecho, no consideran los efectos de P sobre los coeficientes de actividad, particularmente en el caso de grosularita.
Hodges y Crowley (1985) abordan el calibrado del equilibrio (5.61) con la misma técnica que Ghent y Stout (1981), aunque incluyen una base de datos mayor y modelos de solución no ideales. Utilizan el calibrado de Fein y Sprea (1978) para la estimación independiente de T y el de Newton y Haselton (1981) para P. Los volúmenes molares los tomaron de Helgeson et al. (1978) excepto el del pinó (Robie et al., 1978), e incluyen el cálculo del volumen parcial molar de la gru particulars según el método de Newton y Haselton (1981). La regresión de (P-1)ΔV, -RTlnKₘₐ para T(K) da ΔHₛₑₐₚ = 69.665 (±1372) J mol⁻¹ y ΔSₛₑₐₚ = 162.992 (±14.327) J mol⁻¹ K⁻¹, muy diferentes de las de Ghent y Stout (1981, 12257 J mol⁻¹ y 92.303 J mol⁻¹ K⁻¹, respectivamente). Tal y como puntualizan Hodges y Crowley (1985), estas diferencias se deben a (1) diferencias en la técnica de regresión, (2) en los modelos de solución asumiéndos, (3) en los calibrados usados para estimar P y T, y (4) en el número de muestras usadas en el campo P-T representado. La ecuación resultante es (T en K, P en bar):

\[-RT\text{ln}Kₘₐ = 69.665 - 162.992 T + (P-1)\Delta V_r\]

(5.73)

donde:

\[a_{\text{mm}} = X_{\text{mm}}Y_{\text{mm}}\]
\[a_{\text{sim}} = (X_{\text{sim}}^2 \exp(\frac{\text{W}_{\text{MgCa}}(X_{\text{sim}} - X_{\text{gr}})}{(T-RT)}))^2\]
\[a_{\text{grs}} = (X_{\text{gr}} \exp(\frac{\text{W}_{\text{MgCa}}(X_{\text{gr}}^2 + X_{\text{sim}}X_{\text{pp}} + X_{\text{pp}}X_{\text{gr}})}{(T-RT)}))^2\]
\[a_{\text{reg}} = X_{\text{pr}}Y_{\text{pr}}^2 \exp(\frac{(\text{W}_{\text{pr}}X_{\text{pr}}^2 + 2X_{\text{pr}}X_{\text{gr}}X_{\text{pr}}X_{\text{gr}})}{(T-RT)})\]

\[\text{W}_{\text{pr}} = 2923.1 + 0.1590P + 0.1609\text{T (cal/mol)}\]
\[\text{W}_{\text{reg}} = 4650.1 + 0.1095P + 0.3954\text{T (cal/mol)}\]

(5.74) - (5.76)

(5.77)

\[\Delta V_r = 0.1(\Delta V_r^0 + (\bar{\Delta V}_r - \Delta V_{gr}))\text{ J/bar}\]

(5.80)

Y \text{mm} como en (5.57), a_{\text{mm}} como en (5.60), \text{W}_{\text{MgCa}} (cal/mol) como en (5.20), y \bar{\Delta V}_r como en (5.56) y las precisiones leícas más arriba. Nótese que Hodges y Crowley (1985) usan unidades en J/mol, J/K-mol y J/bar-mol en (5.73), y cal/mol en (5.74)-(5.79), aunque el uso de las apropiadas dimensiones de \text{R} permite obtener los mismos resultados; en (5.80) el factor 0.1 transforma las dimensiones cm³ en J/bar.

Hoisch (1990, 1991) ha refinado el calibrado empírico de los equilibrios 5.60 y 5.61, y ha calibrado un gran número de equilibrios independientes de la fase fluida y que incluyen los componentes techermark de las micas. Algunas mejores respecto de los calibrados de Ghent y Stout (1981) y Hodges y Crowley (1985) son el utilizar la determinación experimental de la reacción GASP entre las fases parás de Kzoil y Newton (1988) para el barómetro GASP, y modelos de solución más actualizados. Su acercamiento al problema termobronacrométrico es interesante ya que se basa en la barómetry simúlata, i.e., aplicar un gran número de equilibrios encontrados entre los componentes de fases de asociaciones con granate, plagioclásica, biotita, moscovita, cuarto, silicatos de Al con el objetivo de definir el estado de equilibrio de la asociación y encontrar una P apropiada definida por el área de intersección de todas las curvas en el espacio P-T.

En el proceso de la extracción de los datos por regresión múltiple, Hoisch (1990, 6 equilibrios, y 1991, 45 equilibrios) encuentra parámetros de Margules para corregir los modelos de solución ideales en las posiciones crocáticas de las micas (modelo de mezcla simétrica cuaternaria Fe-Mg-Ti-Al para los biotitas, y modelo de mezcla disuvida de tipo Ley de Henry para el componente techermark en moscovitas), aunque indica que sólo son aplicables al rango compresional y P-T a partir del cual se han extruido. Este último punto es importante ya que supone que el campo compresional aplicable incluye rocas metaepilíticas saturadas en Al, por lo que, p.e., las moscovitas deben contener bajas concentraciones del componente leucófita (< 0.2 atomos de Mg por 22 oxigénos). Las asociaciones naturales deben ser de baja varianza, y la ventana P-T de aplicación incluye la parte alta del grado bajo hasta el grado alto y de 2 kbar hasta unos 11 kbar. Fuera de los límites establecidos por Hoisch (1990, 1991) la validez de los calibrados y de los modelos de mezcla para las micas pueden no ser extrapolables.

Dado el estado de desequilibrio de las muestras estudiadas en este trabajo, el acercamiento de barómetro simúlata no es particularmente apropiado ya que no se encuentran intersecciones entre todos los equilibrios aplicables en el espacio P-T.
T para una misma muestra. Por esta razón, en este trabajo se presentan los resultados barométricos usando los 6 equilibrios de Hoisch (1990), que además de los equilibrios 5.60 y 5.61, incluyen las reacciones de transferencia meta:

\[
\begin{align*}
1/3 \text{ piropo } + 2/3 \text{ groscaria } + \text{ casonita } + 2 \text{ cuarzo } &= 2 \text{ anortita } + \text{ flogopita} \\
1/3 \text{ almandino } + 2/3 \text{ groscaria } + \text{ siderofilita } + 2 \text{ cuarzo } &= 2 \text{ anortita } + \text{ annita} \\
1/3 \text{ piropo } + 2/3 \text{ groscaria } + \text{ moscovita } + 2 \text{ cuarzo } &= 2 \text{ anortita } + \text{ MgAl-clelandonita} \\
1/3 \text{ flogopita } + 1/3 \text{ groscaria } + 2/3 \text{ moscovita } + 2 \text{ cuarzo } &= \text{ anortita } + \text{ MgAl-clelandonita} \\
\end{align*}
\]

donde todos los componentes de fase se definen como en las reacciones 5.60 y 5.61, excepto casonita: KMg3Al(Al2Si2)O10(OH)2, siderofilita: KFe3Al(Al2Si2)O10(OH)2, y MgAl-clelandonita (i.e., leucosilita): KMgAl2Si4O10(OH)2. Las ecuaciones respectivas son como sigue (P en bar, T en K):

\[
\begin{align*}
P &= -3546.01 + 121.347 \cdot T - R \cdot T \cdot \ln K_{360}/(6.37161 - 3 \Delta V_{\text{grs}}) \\
P &= -553.30 + 140.635 \cdot T - R \cdot T \cdot \ln K_{361}/(6.59940 - 3 \Delta V_{\text{grs}}) \\
P &= -313.806 + 79.0281 \cdot T - R \cdot T \cdot \ln K_{363}/(13.8145 - 3 \Delta V_{\text{grs}}) \\
P &= -1467.072 + 85.5824 \cdot T - R \cdot T \cdot \ln K_{364}/(13.3986 - 3 \Delta V_{\text{grs}}) \\
P &= -20681.4 + 69.8341 \cdot T - R \cdot T \cdot \ln K_{365}/(14.1740 - 3 \Delta V_{\text{grs}}) \\
P &= -21664.0 + 33.75 \cdot T - R \cdot T \cdot \ln K_{366}/(2.19415 - 3 \Delta V_{\text{grs}})
\end{align*}
\]

donde:

\[
\begin{align*}
K_{360} &= \frac{X_{\text{piro}}^3 X_{\text{gro}}^3}{X_{\text{ann}}^2 X_{\text{grs}}^2 X_{\text{mu}}} \\
K_{361} &= \frac{X_{\text{ann}}^2 X_{\text{mu}}}{X_{\text{ann}}^2 X_{\text{grs}}^2} \\
K_{363} &= \frac{X_{\text{piro}}^2 X_{\text{gro}}^3}{X_{\text{ann}}^2 X_{\text{grs}}^2} \\
K_{364} &= \frac{X_{\text{ann}}^2 X_{\text{mu}}}{X_{\text{ann}}^2 X_{\text{grs}}^2} \\
K_{365} &= \frac{X_{\text{ann}}^2 X_{\text{mu}}}{X_{\text{ann}}^2 X_{\text{grs}}^2} \\
K_{366} &= \frac{X_{\text{ann}}^2 X_{\text{mu}}}{X_{\text{ann}}^2 X_{\text{grs}}^2}
\end{align*}
\]

\[
\begin{align*}
X_{\text{piro}} &= (X_{\text{Mg}}^3)^3 + (X_{\text{Fe}}^3)^3 \\
X_{\text{ann}} &= (X_{\text{Mg}}^3)^3 + (X_{\text{Fe}}^3)^3 \\
X_{\text{Ti}} &= \frac{T}{3} \\
\end{align*}
\]

Es importante mencionar que los valores de X se calculan utilizando las fórmulas correspondientes a los equilibrios específicos mencionados.
W_{Mg} = 26968.2 J/mol \quad \text{(5.104)} \quad W_{FeMg} = 32664.5 J/mol \quad \text{(5.107)}

W_{FeAl} = 30690.2 J/mol \quad \text{(5.105)} \quad W_{FeAl} = 32489.6 J/mol \quad \text{(5.108)}

W_{TiMg} = 42855.4 J/mol \quad \text{(5.106)} \quad W_{TiFe} = 37265.6 J/mol \quad \text{(5.109)}

\begin{align*}
X_{al} & = 4X_{Mg}^{Ms}X_{Al}^{Ms} - 4X_{Mg}^{Ms}X_{Al}^{Ms}/2 \quad \text{(5.110)}
X_{al} & = (X_{Ms}^{Mg}X_{Ms}^{Al}/2 - (X_{Ms}^{Mg}X_{Ms}^{Al}/2)^2 \quad \text{(5.111)}
X_{al} & = \exp (W_{Mg}^{Ms}(X_{Ms}^{Mg}X_{Ms}^{Al} + 2))/(R \cdot T) \quad \text{(5.112)}
W_{Mg} = 185443 J/mol \quad \text{(para 5.83)} \quad W_{Mg} = 172478 J/mol \quad \text{(para 5.84)} \quad \text{(5.113)} \quad \text{(5.114)}
\end{align*}

a_{opt} = (X_{opt} \exp (W_{MgCa}(X_{opt}^{Ms} + X_{opt}^{Ms} + X_{opt}^{Ms} + X_{opt}^{Ms}))/R \cdot T)) \quad \text{(5.115)}

\begin{align*}
a_{al} & = 0.1 \left[\frac{V_{al}}{V_{opt}} \right] \quad \text{(5.116)}
\end{align*}

\begin{align*}
\Delta V_{opt} & = 0.1 \left[\frac{V_{opt}}{V_{opt}} \right] \quad \text{(5.116)}
\end{align*}

de donde $\frac{V_{al}}{V_{opt}}$ calculado como en (5.56).

$\begin{align*}
a_{al} & = X_{al} (1 + X_{al}^{1/2}/4 \cdot \exp ((1-X_{al}^{1/2})/8578 + 3300X_{al}))/R \cdot T) \quad \text{(5.117)}
X_{al} & = Ca/(Ca+Na+K) \quad \text{(5.118)}
\end{align*}$

Otras modificaciones que se pueden hacer son las derivadas de los distintos modelos de mezcla, tales como plagioclasa (e.g., Saxena y Ribbe, 1972; Newton y Haselton, 1981; Fuchiman y Lindsley, 1988; Elkins y Groove, 1990;...), granate (e.g., Ganguly y Saxena, 1984; Berman, 1990;...), moscovita (e.g., Yaglou y Greenwood, 1979; Catterall y Flux, 1986), biotita (e.g., Ledeen y Martignole, 1985), lo cual resulta en un elevado número de combinaciones. No obstante, hay que indicar que estos calibrados empíricos son función de los modelos de solución utilizados en las ecuaciones (i.e., los especificados por los autores), por lo que la inclusión de otros modelos de mezcla resulta en inconsistencias internas. Así por ejemplo, el modelo de solución de Chatterjee y y Flux, (1986) para moscovita implica solución sólida K-Na exclusivamente, por lo que su aplicación a minas fangosas no es muy apropiado. Por este razón, en este trabajo se ha preferido mantener los modelos de mezcla inherentes a cada calibrado empírico, aunque también se han incluido otros modelos como términos comparativos.

5.2.3. ESTIMACIÓN DEL ERROR SOBRE P Y T CALCULADAS

Una correcta interpretación de los datos P-T estimados necesita de una evaluación del error inherente, cuyas fuentes son muy numerosas (i.e., error instrumental en los calibrados experimentales, error por extrapolación a las condiciones P-T de interés, error en las estimaciones independientes de P o T, error analítico, error en los modelos de mezcla de las soluciones sólidas, ...). La transmisión de todos estos errores en los cálculos supone una elevada incertidumbre sobre un determinado cálculo de P o T. No se pretende aquí revisar este tópico, que ha sido tratado en sus diversas aspectos por Powell (1985), Hodges y Crowley (1985), Hodges y McKenna (1987), McKenna y Hodges (1988), Powell y Holland (1988) y Kohn y Spear (1991a y b). Algunas estimaciones numéricas se han dado durante la exposición de los equilibrios seleccionados, y debe indicarse que cualquier estimación de T o P suele llevar implícito un error minimo de ±50 K y ±1 kbar si todas las fuentes de error se tienen en cuenta, particularmente las imperfectamente conocidas relaciones a-X. Como señalan Holland y Powell (1990, p.110) "...geobarometry is less precise than its practitioners would have us believe, and the problem
usual not only with the calibrations or with the thermodynamic data used for the equilibria but with postulated mixing-composition relations for the end-members in the mineral phase" (ver también Kohn y Spear, 1991 a y b).

En este trabajo se ha encontrado como hecho común que el rango de P y/o T obtenido para un mismo conjunto de composiciones de una muestra dada, usando distintos calibrados y relaciones a X para el mismo barómetro y/o termómetro, excede de 50 K y 1 kbar, llegando a veces a más de 200 K y 3 kbar (c.g., García-Casco et al., 1993). Aunque en parte esto puede ser debido a una falta de equilibrio entre las composiciones seleccionadas, la fuente de esta dispersión es esencialmente asignable a los distintos modelos de solución usados para una misma fase. A juicio del autor, el comentario anterior de Holland y Powell (1990) debería extendiéndose igualmente a la "geometría". Por lo tanto, la mera presentación de distintas estimaciones de P y T para una misma muestra es considerada como una indicación del error asignable a esta fuente de incertidumbre (relaciones a X), que puede considerarse representativa de la incertidumbre total ya que es la fuente más importante de error.

No obstante, para el caso del termómetro GARB, se ha evaluado la transmisión del error analítico sobre K_D mediante la aproximación al método de Monte Carlo (c.e., Anderson, 1976; Hodges y Spear, 1982; Hodges y Crowley, 1985; Powell y Holland, 1988):

\[
\sigma_{K_D}^2 = \sum_{i=n}^{m} \left(\frac{\partial K_D}{\partial C_i} \sigma_{C_i} \right)^2
\]

(5.119)

 donde \(\sigma_{K_D}^2 \) es el cuadrado del error en K_D estimado en base a las derivadas parciales de K_D respecto de los elementos implicados C_i y los errores estándar asignados a cada elemento \(\sigma_{C_i} \), y donde se considera que C_i no presentan correlación, por lo que se ha excluido los términos que involucran los coeficientes de correlación que describen las dependencias entre las incertidumbre de las concentraciones de los elementos. En este trabajo no se han evaluado generalmente los valores de \(\sigma_{K_D}^2 \), que refleja el error instrumental, mediante ninguna técnica estadística sobre los análisis disponibles, sino que se ha aplicado un valor del 3% relativo para todos los elementos implicados en K_D GARB en los análisis considerados representativos del lipotético equilibrio, independientemente de su concentración. Este procedimiento se debe al amplio rango de variaciones composicionales encontradas a la escala de la lámina delgada, que representa el estado de equilibrio de las rocas, por lo que no existe justificación alguna para elegir una media y error estándar sobre los análisis disponibles en una muestra. Nótese, no obstante, que el valor de 3% relativo es realmente elevado teniendo en cuenta la precisión y exactitud de los aparatos de microsonda usados.

5.2.4. Otras técnicas termobarométricas

5.2.4.1. Técnica del Multi-equilibrio

Como se ha indicado más arriba, cualquier reacción, tanto de intercambio como de transferencia neta balanceada que pueda escribirse entre los componentes de las fases presentes en una asociación es potencialmente utilizable como termómetro y/o barómetro. Puede imaginarse que en los sistemas complejos (con c componentes del sistema) donde coexistan un elevado número de fases solución sólida complejas (con n componentes de fase), el número de equilibrios potenciales es enorme (c^n/[(e+1)^n(n-e+1)]) (c.e., Berman, 1994). No obstante, la extracción de bases de datos termodinámicos internamente consistentes (c.e., Helgeson et al., 1978; Robie et al., 1978; Berman et al., 1985; Berman, 1988; Powell y Holland, 1985, 1988; Powell y Hottel, 1988; Holland y Powell, 1985, 1990) ha permitido un nuevo acercamiento al problema de estimación de P y T a partir de las asociaciones naturales basado en la técnica del multi-equilibrio. Este acercamiento es similar al de la barometría simultánea de Hohn (1990, 1991), pero incluye una gran cantidad de equilibrios potencialmente aplicables entre las distintas fases. Además, esta técnica ofrece una estimación del error basándose en la estadística de las intersecciones entre los distintos equilibrios y de la propagación del error analítico, aunque debe indicarse que muchos de los equilibrios implicados son linealmente dependientes. Un problema ulterior de esta técnica es el uso de los modelos de solución específicos usados para la extracción de las bases de datos termodinámicas, y que pueden ser hasta cierto punto deficientes. Para una descripción exhaustiva de esta técnica pueden consultarse los trabajos anteriormente citados.
En este trabajo se ha aplicado esta técnica usando el programa THERMOCALC (Powell y Holland, 1985, 1988; Holland y Powell, 1985, 1990) en algunas muestras con escasa variación composicional en las fases de interés (particularmente las mixtas). Este programa suministra valores absolutos de actividades de los componentes seleccionados para un cálculo determinado, pero no permite variar la actividad como función de P-T-X. De hecho, estos autores recomiendan el uso de modelos de sólido ideal o mixto para todas las fases de interés, ya que estos modelos fueron los usados en la extracción de la base de datos termodinámicos. Este ha sido el procedimiento utilizado en este trabajo al usar el programa Thermocalc, de manera que la actividad es sólo función de la composición (i.e., fracción molal termodinámica, Powell, 1978). Las incertidumbres en las actividades de los componentes son tratadas internamente por el programa mediante técnicas de propagación de error, asumiendo un error del 1 % relativo sobre las concentraciones en peso de los óxidos y tratando de manera distinta el caso de componentes minoritarios y minoritarios debido al impacto que la incertidumbre en la actividad de un elemento minoritario tiene sobre los cálculos (ver Powell y Holland, 1988, p.177-180 y su Apéndice D).

5.2.4.2. EL MÉTODO DE GIBBS

El método de Gibbs permite evaluar cambios en las variables termodinámicas intensivas de un sistema heterogéneo en equilibrio. Constituye una formulación analítica del equilibrio de fases, de forma que puede conocerse, por ejemplo, cómo varía la composición de las fases de una asociación en función de los cambios en P y/o T. El número de variables termodinámicas independientes en el sistema de ecuaciones debe corresponderse con la varianza del sistema derivada de la regla de las fases. Según el sistema de Duhem, en un sistema cerrado de composición conocida sólo dos variables son necesarias para describir el estado de dicho sistema (Prigogine y Defay, 1954; Korzuniński, 1959). La formulación analítica del método de Gibbs, desarrollada y aplicada inicialmente por Rumble (1974, 1976), ha sido ampliamente aplicada por Spear y colaboradores. Los trabajos de Spear et al. (1982b) y Spear y Silverstone (1983) constituyen una buena introducción al método de Gibbs y al tipo de resultados que pueden obtenerse. En estos primeros tratamientos se incorporan sólo las variables intensivas P, T, \(u_i^A \) y \(x_i^A \). Posteriormente, Spear (1988b) considera además variables intensivas como M (modos de las fases presentes). Los cálculos que conlleva la aplicación del método generalizado de Gibbs al estudio de los equilibrios minerales, pueden ser realizados mediante los algoritmos implementados en el programa denominado GIBBS (Spear, 1986; Spear y Menard, 1989), que ha sido utilizado en este trabajo.

La principal diferencia entre el método de Gibbs y otras técnicas que permiten formulaciones analíticas que describen la condición de equilibrio en asociaciones de fases, es que este método utiliza las formas diferenciales de las ecuaciones termodinámicas y de balance de masa en el sistema, en lugar de las formas integrales de las mismas. Esto supone (1) que se necesita un punto P-T-X-M de arranque para los cálculos y (2) que los incrementos de entalpía, entendidos como constante de integración, no son necesarios (aunque están implicados en los cálculos una vez seleccionado un punto P-T-X de arranque).

Básicamente, el método de Gibbs consiste en solucionar un sistema de ecuaciones diferenciales lineales. Estas ecuaciones incluyen:

1. Una ecuación de Gibbs-Duhem para cada fase de la asociación mineral (condición de equilibrio homogéneo):

\[
0 = \nabla \tau \cdot \nabla \mu + \sum_{i} x_i \delta \mu_i
\]

(5.120)

donde \(i \) se refiere a componentes de fase (J.B. Thompson, 1982a y b).

2. Un conjunto de ecuaciones linealmente independientes que relacionan los potenciales químicos de los componentes de las diversas fases que aparecen en la asociación mineral, y que constituyen las condiciones de equilibrio heterogéneo:

\[
\delta \mu_i = \sum_{j} v_{ij} \mu_j = 0
\]

(5.121)

297
 donde \(\gamma_i \) es el coeficiente estreñimientoico del componente \(i \) en una reacción entre los componentes de las fases, y \(\mu_i \) es el potencial químico del componente \(i \) (ver ecuación 5.5 más arriba). Dado que este método opera con los cambios en las variables del sistema, se utilizan las formas diferenciales, esto es:

\[
\sum_{i} v_i \, d\mu_i = 0
\]

Ecuación (5.122)

Esta ecuación es aplicable a un gran número de posibles equilibrios entre los componentes de fase de un sistema determinado (i.e., ver más arriba), aunque interesa un conjunto de construcciones de equilibrio que sean linealmente independientes, cuyo número (NR) viene dado por:

\[
NR = NP\cdot NC
\]

Ecuación (5.123)

donde NC es el número de componentes del sistema y NP el número de componentes de las fases. Para determinar un conjunto de NR condiciones de equilibrio que sean linealmente independientes, que definen el espacio reacional aplicable al sistema considerado, se parte del sistema de ecuaciones de balance de masa que definen los componentes de las fases en función de los componentes del sistema. Mediante el método de eliminación de Gauss se determina un sistema generador de espacio nulo de la matriz asociada al anterior sistema de ecuaciones (Kornzhinskii, 1958; J. B. Thompson, 1982a y b), el cual da las NR construcciones de equilibrio finalmente independientes.

En este punto, es importante indicar que puede establecerse una equivalencia entre el número de variables libres o independientes del sistema de ecuaciones formado por las ecuaciones (5.120) y (5.121), y los grados de libertad que se deducen de la aplicación de la regla de las fases al sistema estudiado. Así, el sistema queda totalmente definido por este sistema de ecuaciones, de ahí que cualquier adición de otras ecuaciones, que dependerá de los resultados que se persigan, se podrá llevar a cabo siempre que no se modifique la varianza del sistema de ecuaciones (esto es, debe incluirse una ecuación por cada variable nueva considerada). Por ejemplo, es posible introducir como variables términos composicionales como dX. Una ecuación que incorpora las derivadas de las variables composicionales en el sistema de ecuaciones, sin añadir otra variable adicional, es la que define la diferencial total de la pendiente de la tangente a la superficie de energía libre de Gibbs de una fase determinada del sistema, esto es, d(\(\mu_i \cdot m_i \)), en donde d e i se refieren a los componentes de las fases dependientes e independientes respectivamente. Puesto que la superficie de energía libre de una fase que constituye una solución sólida es función de P, T y X_i, puede escribirse una serie de ecuaciones (3) que relacionen cambios en la pendiente de la tangente a la superficie de energía libre con cambios de P, T y X_i:

\[
0 = d(\mu_i \cdot m_i) \cdot (S_i \cdot S_2) \cdot (\gamma_i \cdot \gamma_2) \cdot dP \cdot dX
\]

Ecuación (5.124)

en donde tanto i como j se refieren a los componentes de fase independientes.

Como se ha apuntado al inicio, la adición de las ecuaciones de balance de masa al método de Gibbs permite la consideración de cambios en variables extensivas de los sistemas tales como los moles de las fases presentes. Las construcciones de balance de masa son de la forma:

\[
m_i = \Sigma_k M_k \cdot \gamma_i \cdot v_{k,j} \cdot X_{k,j}
\]

Ecuación (5.125)

donde m_i son los moles del componente del sistema i, M_k son los moles de la fase k, v_{k,j} es el número de moles del componente del sistema j en un mol del componente de fase k en la fase k, y X_{k,j} es la fracción molar del componente de fase j en la fase k. Puesto que en el método de Gibbs se utilizan las formas diferenciales de las variables termodinámicas, y considerando un sistema cerrado de composición conocida, la ecuación (5.125) quedaría de la forma siguiente (una vez expresadas las variables dependientes de las fracciones moleares en función de las independientes):

\[
0 = \Sigma_k dM_k \cdot \gamma_i \cdot v_{k,j} \cdot X_{k,j} + \Sigma_k M_k \cdot \gamma_i \cdot v_{k,j} \cdot (v_{k,j} \cdot X_{k,j})dX_{k,j}
\]

Ecuación (5.126)
La varianza del sistema de ecuaciones resultante de la combinación de (5.120), (5.121), (5.124) y (5.126) es 2, lo cual es consistente con el esquema de Duhem.

5.3. ANÁLISIS PROYECTIVO Y ESPACIO REACCIONAL

En el Capítulo 4.3 se introdujeron las técnicas algebraicas de tratamiento de sistemas con un especial énfasis en el tratamiento de sistemas homogéneos, esto es, la transformación de bases o sistemas de coordenadas que explican la composición de una fase. En el caso más general, el número de componentes antiguos (componentes linealmente independientes y variables independientemente de la fórmula estructural) es igual al número de componentes nuevos (componentes activos e intercambiables). Este número da la dimensión del espacio composicional del sistema sometido a análisis (i.e., la fase en cuestión), definido por un conjunto determinado de componentes del sistema. Estas técnicas algebraicas son fácilmente extensibles el análisis proyectivo de diagramas de fases y del espacio reaccional para sistemas heterogéneos (J.B. Thompson, 1957, 1982 a y b; Korzhinski, 1959; Greenwood, 1975; Spear et al., 1982).

La interconexión entre el espacio composicional y el espacio reaccional de un sistema puede ilustrarse considerando el análisis proyectivo de sistemas heterogéneos en diagramas de fases, que en la mayor parte de los casos son de tipo barióncético. Los componentes que definen un diagrama de fases no suelen corresponderse con componentes de fase uno con componentes moleculares más o menos complejos definidos en función de los propósitos perseguidos, aunque el número de componentes nuevos sigue siendo igual al número de componentes antiguos e igual a la dimensión del espacio composicional del sistema. Por ejemplo, en el sistema de 6 componentes del sistema KFMASH, el caso más clásico de análisis proyectivo de rocas metamórficas supone transformar las composiciones de las fases coexistentes en términos de los 6 componentes nuevos SiO₂, H₂O, KAl₂SiO₄(OH)₂ (m), Al₂O₃, FeO y MgO (J.B. Thompson, 1957). Una vez obtenida la transformación de componentes mediante las técnicas algebraicas introducidas en el Capítulo 4.3, puede llevarse a cabo la proyección de las composiciones de las fases coexistentes en diagramas de fases apropiados. Sin embargo, representar gráficamente n componentes no es posible si n > 4, aunque pueden llevarse a cabo representaciones parciales del espacio composicional en subespacios de menor dimensión mediante proyecciones a través de uno o varios puntos de proyección (J.B. Thompson, 1957, 1982 a). Así, las transformaciones de componentes deben realizarse teniendo en cuenta que parte de los nuevos componentes definen el subespacio que recibe el imán proyectado o plano de proyección (e.g., Al₂O₃, FeO, MgO moleculares del diagrama AFM de J.B. Thompson, 1957), y que el resto de los componentes son los puntos de proyección (e.g., moléculas de cuarzo, muscovita y cuarzo en el ejemplo anterior). Una vez efectuada la transformación de componentes, el tratamiento matemático de la proyección es muy simple, ya que sólo implica el descarte de los componentes que se usan como puntos de proyección y la renormalización de los componentes restantes que definen el subespacio. Este tipo de imagen de un espacio multidimensional se denomina espacio reducido, y de lo dicho anteriormente se deduce que para su correcta interpretación se necesita tanto la imagen proyectada como la especificación de los puntos de proyección (ver más adelante). La proyección sobre un determinado plano puede hacerse también a través de puntos de proyección definidos como vectores de intercambio. Si todos los puntos de proyección son vectores de intercambio, el espacio composicional se denomina condensado (J.B. Thompson, 1982 a). Condenar un sistema implica que las moléculas que están relacionadas por vectores que se han usado como puntos de proyección se proyectan en el mismo punto del espacio composicional.

El correcto tratamiento de espacios reducidos es esencial en la interpretación de diagramas de fases en sistemas heterogéneos. Para que un diagrama de fases sea termodinámicamente válido (Greenwood, 1975), esto es, que cumpla la regla de las fases, las proporciones de los componentes de las fases presentes, así como son indicadas del diagrama, deben estar fijadas de manera única bajo condiciones de P y T constantes, y si el diagrama es una proyección desde otros componentes externos al diagrama, estos deben tener sus potenciales químicos fijados en un valor constante para todas las composiciones proyectables en el diagrama. Estas condiciones son cumplidas, en principio, por diagramas de fases proyectados en espacios reducidos de sistemas multicomponentes según el método proyectivo anteriormente especificado si los componentes puntos de proyección están presentes en el sistema como una fase pura (e.g., cuarzo, muscovita en el caso anterior) o controlados externamente (e.g., H₂O). En el primer caso, \(\mu_{i}^A(P,T) \) es máximo (i es componente usado como punto de proyección) para todas las composiciones proyectables en el diagrama, esto es, el sistema está saturado en esos componentes. Dicho de otro modo, un conjunto de asociaciones de fases coexistentes y equilibradas bajo condiciones P-T-H₂O fijadas deben presentar una
relación única entre las composiciones totales de los sistemas (i.e., rocas) y las composiciones de las fases coexistentes proyectadas en un diagrama de fases termodinámicamente válido (cf. Fisher, 1989).

Puesto que la intersección de líneas que unen fases coexistentes (isotema) de asociaciones distintas supone que la composición del sistema y la de las fases coexistentes no guardan un relación única, este hecho implica que las construcciones externas al diagrama de fases no se cumplen. Por lo tanto, el cruce de isotema en diagramas de fases termodinámicamente válidos implica (1) que existen relaciones de reacción univariante entre las dos asociaciones, esto es, que P y T no son arbitrarias, o (2) que las asociaciones se han equilibrado bajo condiciones de μ_i (i = componente punto de proyección) distintas ya que las diferencias en la composición de las fases no puede desestimarse sólo al efecto de la composición del sistema (Greenwood, 1967). En este caso, la condensación de un espacio para conseguir un diagrama de fases termodinámicamente válido no es posible ya que se viola la regla de las fases (J.B. Thompson, 1982a; Guidotti, 1983), lo que resulta en intersecciones artificiales de isotema. Esto ocurre, por ejemplo, con el diagrama AKF, donde el componente F en realidad representa Fe+Mg y por lo tanto implica proyectar (i.e., condensar) a través de MgFe₃. No obstante, para el caso de proyectar composiciones de rocas totales en diagramas de fases, la condensación a través de vectores de intercambio que involucran componentes minoritarios implica menos problemas, sobre todo si el diagrama se usa con fines ilustrativos (e.g., figuras 3.1.8 y 3.2.8).

Una cuestión importante en este tipo de análisis es el llevar a cabo la reducción del espacio cuando el número de componentes es elevado, como es el caso de las rocas naturales, ya que para conseguir un diagrama de fases se debe proyectar a través de muchos componentes. En el caso de que éstos últimos puedan ser definidos de manera que se mantengan las construcciones externas al diagrama (i.e., μ_i fijados), el diagrama de fases es válido pero su aplicabilidad se limita a rocas de composición y asociaciones de fases relativamente restringidas (e.g., a rocas con ilmenita presente en el caso de incluir Ti y proyectar desde FeTiO₃). Sin embargo el principal problema para conseguir diagramas válidos para estos sistemas es que, frecuentemente, los potenciales químicos de más de 4 componentes (o 3 si el diagrama es triangular) no puedan considerarse fijados externamente, lo que imposibilita la representación gráfica del diagrama de fases. Este tipo de componentes suelen ser los llamados componentes extra, esto es, componentes ajenos a un sistema simple que no implican la estabilización de una fase saturada en ese componente (e.g., Mn en sistemas pelíticos), lo que supone que la varianza del sistema puede ser elevada. Por lo tanto, la representación gráfica de estos sistemas, que son los comunes al considerar asociaciones naturales en equilibrio, es complicada ya que no es posible una evaluación rigurosa de las relaciones de fases que, en parte, pueden resultar ser artefactos de la proyección (Greenwood, 1967; Fisher, 1989, Spear et al., 1982a; Spear, 1988a).

Dos tratamientos comúnmente aplicados a los componentes extra han sido (1) ignorarlos y (2) considerar que presentan un comportamiento diadóncico con otro componente mayoritario del sistema, por lo que ambos se suman y se consideran como uno sólo (e.g., FeO+MnO). En el primer caso se lleva a cabo una proyección desde un componente no saturado (e.g., MnO), y en el segundo desde un vector de intercambio (MnFe₃), lo que supone que el diagrama ha sido condensado. Ambos procedimientos violan la regla de las fases, ya que los componentes extra suelen presentar fracción en las distintas fases de las asociaciones (e.g., X_Mn_Grt ≠ X_Mn_Bi). Otro tratamiento supone encontrar la composición más próxima al plano imagen que recibe la proyección, lo que implica la utilización de métodos de regresión tales como mínimos cuadrados, esta técnica fue introducida por Greenwood (1968) y ha sido más recientemente reconsiderada por Fisher (1989), quien ha presentado un método alternativo basado en el teorema de la decomposición singular de matrices (singular value decomposition, SVD) que es estadística y petrologicamente más correcto. Finalmente, otra técnica recientemente propuesta por Spear (1988a) implica el uso de las construcciones termodinámicas de equilibrio en un sistema heterogéneo de cualquier dimensión y composición para extrapolarse las composiciones de las fases a valores donde la concentración de los componentes extra tiende a 0. Estas últimas técnicas deben ser aplicadas en cualquier estudio riguroso de las relaciones de equilibrio en sistemas heterogéneos. Sin embargo, en este trabajo no lo han sido debido a la limitada aplicabilidad que el análisis proyectivo tiene al considerar asociaciones en desequilibrio, que por principio violan la regla de las fases.

De mayor interés en el contexto del presente trabajo es considerar la modelización de las relaciones de reacción en un sistema, que puede evaluarse analizando el espacio reacional del mismo. Este espacio representa reacciones posibles entre las fases (e.g., Fisher, 1989) o componentes de fase (J.B. Thompson, 1982a) de un sistema. El tratamiento algebraico es, en principio, idéntico en ambos casos, aunque conviene comenzar por el primero. Las relaciones entre la composición de un sistema de n componentes linealmente independientes y la composición de las m fases del mismo pueden definirse desde el punto de vista algebraico mediante la expresión:

\[Ax = b \] (5.127)

\[300 \]
Capítulo 5: Relaciones P-T-X, Historia Reacconal y Evolución P-T-X

donde A es una matriz de coeficientes a por m, x es un vector que define la composición del sistema en términos de las proporciones moleares de las m fases y b es un vector que define la composición del sistema en términos de los n componentes del sistema. Esta ecuación supone proyectar los elementos de x en el espacio composicional definido por los componentes del sistema, que además incluye al vector b. La dimensión de este espacio y el número de elementos de x que pueden proyectarse en él de manera única, corresponden al rango de la matriz A, que es igual a n cuando m > n. Si m = n, todos los elementos de x pueden proyectarse de manera única en el espacio composicional, y este caso representa el tratado anteriormente al considerar asociaciones sin cruce de tie-lines en diagramas de fases. En cambio, si m > n (e.g., 4 fases con cruce de tie-lines en un diagrama ternario) se pueden m - n elementos de x que no pueden proyectarse en el espacio composicional ya que un espacio n-dimensional puede contener un espacio de dimensión mayor. En este caso existen dependencias lineales entre las fases que definen la composición del sistema, o lo que es lo mismo, existen relaciones de reacción entre las fases de composición fija. El número de dependencias lineales (reacciones) linealmente independientes entre las fases es igual a m - n, que es la dimensión del espacio nulo a reaccional. Este espacio es un espacio vectorial donde se proyectan los elementos de x que no se proyectan de manera única en el espacio composicional. Así, en el caso de que m - n = 1, el sistema queda definido por la proyección de n fases en el espacio composicional de n componentes del sistema y la proyección de la fase restante en el espacio reacional unidimensional definido por el vector formado por la combinación lineal del resto de las fases (reacción univariable).

Este tipo de tratamiento puede extenderse al caso en que el sistema se exprese en términos de componentes de fase (J.B. Thompson, 1982b) en lugar de fases. En este caso, m (componentes de fase) puede ser mucho mayor que n, de manera que el número de reacciones (dimensión del espacio reacional) que describen las reacciones de reacción en un sistema dado es elevado. Estas reacciones serán reacciones estereométricamente sencillas, del tipo de transferencia neta e intercambio, que pueden considerarse como los mecanismos reacionales más simples constitutivos de reacciones heterogéneas más complejas entre las fases. Por otra parte, debe tenerse en cuenta que, aunque el número de reacciones si queda fijado por un sistema dado una vez definidos los componentes del sistema y los componentes de fase, existe una considerable libertad en la elección de un conjunto de m - n reacciones linealmente independientes de entre un número más elevado de posibles relaciones entre los componentes de fase. Por ende, este acercamiento requiere un conocimiento previo del comportamiento de las soluciones sólidas, esto es, de los componentes aditivos o vectores de intercambio significativos que describen la fase.

Cuando m < n la modelización de las posibles relaciones de reacción en un sistema es más problemática. Este caso corresponde a sistemas sobreestimados donde existen más ecuaciones (Ax) que incógnitas (x). La manipulación de sistemas sobreestimados es importante en petrología ya que trata el caso frecuente de sistemas naturales de alta variante debido a la presencia de componentes extra, (e.g., Mn, Ti, Na, Ca, Zn, etc. en sistemas geológicos que se aproximan al sistema KFMASH). En estos casos, el análisis del espacio reacional necesita de métodos de regresión (e.g., Greenwood, 1967, 1968; Fisher, 1989) para evaluar si asociaciones de fases distintas se volapan o no en el espacio multicomposicional. Esto es, si el cruce de tie-lines en diagramas de fases representa relaciones de reacción, o si las diferencias en composición de las fases son debidas a efectos composicionales del sistema (i.e., componentes extra). Este problema ha sido denominado the n-dimensional tie-line problem (Greenwood, 1967).

En este trabajo la modelización de las relaciones de reacción entre fases y/o componentes de fase se ha realizado mediante la técnica SVD presentada por Fisher (1989) usando programas amablemente suministrados por este autor. Este método permite evaluar las posibles relaciones de reacción a partir de sistemas de ecuaciones (5,127) infraestimados y sobreestimados. En el primer caso, el procedimiento general implica (1) la identificación del rango de la matriz A y de sus bases orthonormales que definen los espacios composicional y reacional, (2) la identificación de matrices modelo de rango menor e indistinguibles estadísticamente de la matriz A, lo que puede suponer la identificación de relaciones de reacción ocasionadas por la incertidumbre analítica (programa SVDMOD, Fisher, 1989), (3) el cálculo de matrices de ponderación necesarios para dar cuenta de la incertidumbre analítica (programa CALCWT, Fisher, 1989), y (4) la identificación de todas las reacciones (incompatibilidades) posibles en el espacio reacional (programa MULTI, Fisher, 1989). En el segundo caso (i.e., m < n), el procedimiento es idéntico aunque hay que prestar especial cuidado en la evaluación de los residuales asociados a las matrices modelo de rango menor calculadas según el punto (2) anterior. Debe tenerse en cuenta que siempre es posible calcular matrices de rango menor hasta que m > n, por lo que siempre es posible calcular reacciones cuya significación petrográfica deberá aceptarse si no contradicen las texturas observadas y si los residuales de los distintos componentes en las distintas fases son bajos (en general, las razones de error o error ratio = residuo/errore admitido deben ser < 1). Ejemplos de análisis del espacio reacional en base a técnicas estadísticas para metabolillas pueden encontrarse en Fletcher y Greenwood (1979), Figge (1976, 1982), Lang y Rice (1985a), Giaramita y Day (1991a y b) y Lang (1991) (los
5.4. METAPELITAS GRAFITOSAS

5.4.1. Partición Mg-Fe entre las Fases de las Metapeilitas Grafíticas

La fuerte heterogeneidad composicional de las distintas fases presentes en muestras individuales indica claramente el estado de desequilibrio debido a los procesos reaccionales ligados a la descompresión de la secuencia metamórfica. Estos procesos implican la descomposición de las fases características de condiciones de P intermedia, como estaurolita y granate, y el reajuste composicional en micas y plagioclase. Sin embargo, la variedad textural y composicional de los granates en los esquistos grafíticos con St+Br+Grt+Fib+And(±Ky) y en los gneises pelícticos grafíticos con St+Br+Grt+Kry+Fib+And(±Crd) sugiere también una historia metamórfica compleja anterior a la descompresión final. En este sentido, uno de los aspectos más interesantes del estudio de las rocas concierne a la posible ausencia de equilibrio entre las fases precoces estaurolita y granate, tal y como puede inferirse de los particulares relaciones en la partición Mg-Fe entre las mismas.

La Figura 5.4.1 se representa la distribución Mg-Fe entre las fases granate, estaurolita y biorita de las muestras de metapeilitas grafíticas. El diagrama es semi-logarítmico para permitir una mejor apreciación de las relaciones entre estaurolita y granate. En este diagrama, la distancia horizontal entre los puntos proyectados de dos fases es proporcional a la constante de reparto respectiva,

\[
(K_{D}^{Mg-Fe})^{a-b} = \frac{(Mg/Fe)^{a}}{(Mg/Fe)^{b}}
\]

(cf. Albrec, 1972; Guidotti, 1974). Las razones Mg/Fe de estaurolita corresponden a medias de todos los análisis disponibles en muestras individuales debido a que el rango de variación Mg/Fe es bastante limitado en el conjunto de muestras (Figuras 4.7.5 y 4.7.6) y a que no existen relaciones claras entre texturas y variaciones composicionales. Las composiciones de granate corresponden a análisis individuales de bordes y núcleos de los distintos tipos texturales distinguídos (porfiroblastos y grupo II). Las composiciones de biorita reflejan igualmente los distintos tipos texturales, agrupados en cristales tardíos (asociados andalucita, en pseudomorfos de granate, ...) y precoces (inclusiones en porfiroblastos excluyendo andalucita y cristales que reemplazan a los granates del grupo II incluidos a su vez en porfiroblastos de estaurolita y plagioclase). En la Figura 5.4.1 puede apreciarse la relativa constancia en la razón Mg/Fe de la estaurolita en toda la secuencia de metapeilitas, y la heterogeneidad en los granates y bioritas de muestras individuales. Las principales observaciones de la Figura 5.4.1 son:

Granate. La razón Mg/Fe de los bordes de los porfiroblastos de granate aumenta al aumentar el grado, al menos al comparar los esquistos con St+Br+Grt+And (Mg/Fe < 0.18) con los gneises pelícticos con St+Br+Grt+Kry+Fib+And(±Crd) (Mg/Fe > 0.18). Esto está de acuerdo con lo comúnmente observado en granates de otras metapeilitas de grado medio, y puede explicarse por el progreso de determinados equilibrios progradados entre las fases APM (ver más adelante).
Figura 5.4.1. Diagramas semilogarítmicos que muestran las relaciones Mg/Fe de granate, estaurolita y biotita de las metapelitas gneisicas de la unidad de Torres (T82 de la unidad de Salar). Las composiciones proyectadas representan análisis individuales de los distintos tipos de granate (círculos: círculos inferiores, bordes: círculos vacíos; inc St = incluidos en estaurolita, inc. Pl = incluidos en plagioclasa, inc. Ms = incluidos en muscovita, inc. Tur = incluidos en turmalina), medias de los porfidoblastos de estaurolita y medias de distintos tipos de biotita (puntos: cuadrados llenos, cuadrados vacíos, pto Gr-St = producto de descomposición de granate y estaurolita, inc. SpPl = incluidos en estaurolita y plagioclasa, pto Gr inc St = producto de nácar de granate del grupo II incluidos en estaurolita, pto Gr inc Pl = producto de nácar de granate del grupo II incluidos en plagioclasa).

Biotita. En general, la razón Mg/Fe es mayor en los granos texturalmente precoces, y menor en granos texturalmente tardíos ricos en Ti, de manera que (Mg/Fe)precoces > (Mg/Fe)matrix > (Mg/Fe)esférula. Esta observación incluye a los granos precoces que son producto de descomposición de granates II incluidos en plagioclasa y estaurolita. Las inversiones locales de estas relaciones, específicamente (Mg/Fe)matrix > (Mg/Fe)esférula, se explican por el efecto de los balances de masa locales sobre la composición de los granos.
tardíos y la correlación negativa entre el Ti y la razón Mg/Fe (Capítulo 4.5). Es posible identificar un cierto descenso en la razón Mg/Fe de la biotita con el grado en la serie de metapelitas gráfitas que no puede relacionarse con el aumento en la razón Mg/Fe de los bordes de los porfiroblastos de granato ya que es probable que ninguna represente condiciones de equilibrio con el granate coexistente (sobre todo en las rocas de mayor grado, ver más adelante).

E斯塔urolita. La razón Mg/Fe es aproximadamente constante en toda la serie de metapelitas e independientes de las variaciones en la razón Mg/Fe de granato. Esto es especialmente claro en los gneises pelíticos, donde a pesar del claro aumento en (Mg/Fe)^Grn(pfd)bord, la razón Mg/Fe de la estaurolita de estas muestras es homogénea (0.16-0.18) y similar a la de los esquistos gráfíticos. Este hecho contrasta con observaciones en otras secuencias progradadas (e.g., Guidotti, 1974; Labotka, 1980; Lang y Rice, 1983a y b), y no es explicable en términos de relaciones de equilibrio puesto que variaciones en P y/o T a lo largo de la secuencia deberían implicar variaciones en la composición Fe-Mg de la estaurolita en equilibrio con los bordes de los porfiroblastos de granato. Además, detectan inversiones en la partición Mg-Fe (i.e., partitioning reversal), de manera que K_p < 1 (partición normal) en las metapelitas gráfíticas y > 1 (partición inversa) en los gneises pelíticos. Estas inversiones, que no son relacionables con deficiencias analíticas y/o efectos de las normalizaciones estructurales (e.g., la coexistencia de grafito, que excluye cualquier efecto significativo de Fe^3+/Fe^2+), son anómalas por comparación con otras muestras naturales, y su interpretación es importante en la explicación de la evolución metamórfica del área estudiada. Por esta razón, conviene precisar más las relaciones de partición entre los distintos tipos de asociaciones distinguidas en las metapelitas.

5.4.1.1. ESQUISTOS CON ESTAULORITA+BIOTITA+GRANATE+ANDALUCITA

En las rocas de grado más bajo, con St+Bi+Grt+And, la partición Mg-Fe presenta la secuencia (Mg/Fe)^Grn(pfd)núcleo < (Mg/Fe)^Grn(pfd)bord < (Mg/Fe)^St < (Mg/Fe)^St (Figura 5.4.1). En este caso, la partición Mg-Fe entre granate y estaurolita es normal. Esta secuencia es la comúnmente observada en rocas naturales de composición y grado similar a las estudiadas en este trabajo (e.g., Albou, 1966a y b; Guidotti, 1974; Fletcher y Greenwood, 1979; Lang y Rice, 1985b; Spear y Rumble, 1986; Klaper y Bucher-Nurminen, 1987; Holdaway et al., 1988; Crowley, 1990; Cheney y Brady, 1992), y es consistente con las predicciones de la mayor parte de los sistemas modelo (e.g., Thompson, 1976a y b; Harte y Hudson, 1979; Spear y Cheney, 1989). No obstante, en algunas muestras de estas rocas se observa (Mg/Fe)^Grn(pfd)bord ≈ (Mg/Fe)^St, lo cual contrasta con los casos naturales anteriormente mencionados donde se registra un fraccionamiento Mg-Fe detectable entre estas fases. Más aún, en el caso de la muestra T307-1 puede observarse una inversión en la partición Mg-Fe entre estaurolita y granate ((Mg/Fe)^St < (Mg/Fe)^Grn(pfd)bord), aunque ambas razones son muy próximas. Si además se tiene en cuenta que los porfiroblastos de granato analizados pueden no preservar las composiciones originales de los bordes debido a procesos de disolución durante la descompresión, es claro que pudieron desarrollarse inversiones en la partición Mg-Fe entre estaurolita y granate en estas rocas ya que la razón Mg-Fe aumenta hacia los bordes de los porfiroblastos de granate.

En las muestras T447 y T448, el fraccionamiento Mg-Fe normal entre granate y estaurolita se debe esencialmente a la composición más magnética de la estaurolita. Esto no puede relacionarse con un efecto de la composición del sistema, ya que la composición de los bordes de los porfiroblastos de granate de estas muestras (que, al menos en el caso de T447, representan los bordes originales no disueltos, Capítulo 3.1.1.1, Figura 3.1.1a; Capítulo 4.6.3, Figura 4.6.3) es similar a los casos en que la estaurolita es más rica en Fe. Esta
dispersión en los valores de K_D en metapelitas de grado similar sugiere que los porfisoblastos de esaurolita equilibraron bajo condiciones diferentes durante la evolución P-T de estas rocas, y que la composición de esaurolita en equilibrio con los bordes de los porfisoblastos de granito debió ser más magnésica que la mayoritariamente registrada.

5.4.1.2. ESQUISTOS CON ESTAUROLITA+BIOITITA+GRANATE+PIBROLITA+ANDALUCITA+DISTENA

En estos esquistos se observa la secuencia normal en las muestras con porfisoblastos de granito (T329 y T2610-14), i.e., $(Mg/Fe)^{Gr(t)o} < (Mg/Fe)^{Gr(t)b} < (Mg/Fe)^{St} < (Mg/Fe)^{Fe}$. En estas muestras la dispersión en los valores de K_D se debe a la corrosión de los bordes de los porfisoblastos de granito. Los granates del grupo II incluidos en esaurolita y plagioclasa muestran inversión en la zonación, $(Mg/Fe)^{Gr(t)b} < (Mg/Fe)^{Gr(t)o}$, excepto en los granates incluidos en plagioclasa de la muestra T307-7 (Figura 5.4.1). Inversiones en la participación Fe-Mg entre granito y esaurolita se encuentran sólo en los granates incluidos en plagioclasa de la muestra T18-17 (con distena), pero no se han encontrado en los granates incluidos en los porfisoblastos de esaurolita. A pesar de ello, los núcleos de los granates incluidos en esaurolita de la muestra T18-17 presentan $(Mg/Fe)^{Gr(t)o} = (Mg/Fe)^{Fe}$, por lo que no puede asegurarse que no presentaran inversiones originales en la partición debido a la probable modificación difusional de la zonación que han sufrido (Capítulo 4.6.5).

5.4.1.3. GNIESES PELITICOS CON ESTAUROLITA+BIOITITA+GRANATE+DISTENA+PIBROLITA+ANDALUCITA+CORDIERITA

En los gneises pelíticos se observa una gran complejidad en las relaciones Fe-Mg entre esaurolita y granate derivada de los distintos tipos de granate presentes en muestras individuales (Figura 5.4.1). Al considerar los porfisoblastos de granito se observa la secuencia $(Mg/Fe)^{Gr(t)b} < (Mg/Fe)^{St} < (Mg/Fe)^{Fe}$, i.e., todos los bordes de los porfisoblastos de granito presentan inversiones en la participación Fe-Mg con esaurolita. Es interesante señalar que en el caso de los porfisoblastos de granito con zonación oscilante en Ca (muestra T312, Figura 4.6.7), la inversión en la partición tiene lugar a partir de la subida final en X_{Fe} de los sobrecobrecimientos, mientras que los máximos en X_{Fe} adyacentes al núcleo presentan partición normal (Figura 5.4.1). Todos los tipos de granates del grupo II de estas rocas presentan inversiones de la zonación $(Mg/Fe)^{Gr(t)b} < (Mg/Fe)^{Gr(t)o}$, aunque se observan granos con inversiones y sin inversiones de la partición $(Mg/Fe)^{St}$.

Todos los núcleos de granos de granito de la matriz e incluidos en plagioclasa, que son composicionalmente similares en las muestras estudiadas (Capítulo 4.6.3), y los incluidos en turmalina, presentan inversiones en la partición. Esto contrasta con lo observado en los granates incluidos en plagioclasa de los esquistos con fibrolita, donde no se han detectado inversiones de la partición excepto en la muestra con distena T18-17, lo que sugiere que la coexistencia de distena es un hecho relacionable con las inversiones en la partición. Los núcleos de los granotes de granito incluidos en esaurolita no presentan inversiones en la partición, al igual que los granates de este tipo de los esquistos con fibrolita.

Respecto a los granates incluidos en mocoítica, existen granos con inversiones (T23) y sin inversiones (T327 y T328) en la partición (Figura 5.4.1). Esta observación complementa lo indicado en el Capítulo 4.6.3 en relación con las características texturales y composicionales (particularmente en Mg/Fe, X_{Fe} y X_{Fe}) de estos granos, que sugieren que ambos tipos de granito representan estadios de álalástesis.
distintos. Los granates con inversiones de la partición (T23) están incluidos en placas de moscovita de tamaño de grano considerable, aisladas y más o menos decusadas (Figura 3.1.2), mientras que los que no presentan inversiones de la partición (T327 y T328) se encuentran en dominios lepidoblasticos ricos en moscovita (Figura 3.1.2) y son composicionalmente similares a los granos incluidos en estaualota de las mismas muestras (Capítulo 4.6.3). Cabe recordar además la singularidad de los granates con inversiones de la partición incluidos en moscovita de la muestra T23, que muestran incrementos en X_{ps} hacia los bordes y raíces Mg/Fe en los núcleos mayores que las de los bordes de los porfiroblastos de granate de la misma muestra. De estas relaciones, y de las existentes en los porfiroblastos de granate con zonación oscilante en Ca, es posible concluir que los incrementos en X_{ps} hacia los bordes de los granates tienen relación con la presencia de partición $(Mg,Fe)^{Grt-Si}$ invertida en estas rocas. Por otra parte, debe notarse que los granates del grupo II incluidos en placas de moscovita (T23) y en turmalina (T498) presentan inversiones de la partición incluso entre la estaualota y los bordes con zonación inversa (Figura 5.4.1).

5.4.1.4. POSIBLES SIGNIFICADOS DE LA PARTICIÓN Mg-Fe INVERSA ENTRE ESTAUALOTA Y GRANATE

Los casos de inversiones en la partición Mg-Fe entre estaualota y granate detectados en las metapelitas estudiadas en este trabajo podrían ser considerados como representativos de condiciones de desequilibrio entre ambas fases, si se tienen en cuenta las evidencias de muestras naturales y la mayor parte de las predicciones del sistema modelo KFMASH propuestas. No obstante, cabe notar que la base de datos termodinámicos internamente consistente de Holland y Powell (1990), extraída a partir de un elevado número de determinaciones experimentales de equilibrios entre los que se encuentran reacciones con estaualota (Richardson, 1968; Ganguly, 1969, 1972; Rao y Johannes, 1979; Dutrow y Holdaway, 1986), predice partición inversa. Powell y Holland (1990) no encuentran justificación a este hecho, excepto por las mal conocidas relaciones a-X de la estaualota, cuyas propiedades termodinámicas fueron extraídas por estos autores asumiendo mezcla ideal. Holland y Powell (1990) califican las propiedades de los componentes extremos Fe-estaualota y Mg-estaualota extraídas por ellos como poco fiables y preliminares (reliability level 3, ver Tabla 7c de Holland y Powell, 1990), posiblemente debido a su comportamiento no ideal y a inconsistencias en los datos experimentales (e.g., Figge y Greenwood, 1982).

Sin embargo, independientemente de que las propiedades termodinámicas de los términos extremos Fe-estaualota y Mg-estaualota predigan partición Mg-Fe normal o inversa con el granate, la asunción de mezcla ideal no puede en ningún caso predecir cambios en la partición (i.e., cambios en el signo de InK_D) por variaciones de P-T y/o de la composición del sistema. Cambios en el signo de InK_D sólo pueden explicarse desde el punto de vista del equilibrio si el sistema Grt-Si es azeotrópico en el sistema pseudobinario Fe-Mg. Los sistemas azeotrópicos se definen como aquellos donde, a P y T constantes, se encuentra un punto composicional del sistema para el que K_D = 1, de manera que a ambos lados de ese punto el signo de InK_D es opuesto (ver Saxena, 1973, p. 39-40; Ganguly y Saxena, 1987, p. 143-144). Este comportamiento, que es debido a relaciones a-X no ideales de las soluciones sólidas implicadas en el reparto, es conocido en sistemas donde coexiste estaualota, aunque los datos disponibles son muy escasos. Grambling (1983) y Rice (1985) han detectado inversiones en la partición Fe-Mg entre estaualota y cloritoide en muestras naturales, y entre estaualota y granate sintetizados experimentalmente, respectivamente. Según los resultados experimentales de Rice (1985), la partición Mg-Fe entre granate y estaualota es normal para composiciones ricas en Fe, en consistencia con las evidencias de metapelitas ricas en Fe naturales, y es inversa en composiciones ricas en Mg (ver Ganguly y Saxena, 1987, p. 143-144). Dado que las composiciones de las
metapelitas grifositas estudiadas son ricas en Fe y no se encuentran diferencias composicionales sustanciales entre las razones Mg/Fe de los esquistos grifositos y los gneises pelíticos (Figura 3.1.8), parece probable que las inversiones detectadas en la partición Fe-Mg entre estaurolita y granate no sean el resultado de efectos composicionales del sistema. De hecho, partición normal e inversa son observadas en muestras individuales al considerar distintos tipos de granate coexistentes. Por lo tanto, no pueden invocarse equilibrios a lados opuestos de los puntos donde $K_D = 1$, a menos que exista una fuerte dependencia de la localización de estos puntos en el espacio cosmolítico con T y/o P, lo cual significaría un comportamiento no ideal fuertemente dependiente de T y/o P de la estaurolita. No existen estudios detallados al respecto que permitan corroborar esta posibilidad. Sin embargo, el hecho de no encontrarse casos naturales de metapelitas ricas en Fe en secuencias progresivas donde se aprecien inversiones de la partición debido a cambios en P y/o T sugiere que las variaciones composicionales y/o las variaciones de T en las rocas estudiadas no implican las inversiones de la partición $(Mg,Fe)^{Gns St}$ observadas. En consecuencia, estas últimas serán consideradas como el resultado de la ausencia de equilibrio entre estaurolita y granate.

Para explicar el origen de la inversión de la partición $(Mg,Fe)^{Gns St}$ deben tenerse en cuenta las únicas texturas reaccionales claras entre ambas fases preservadas en estas rocas, esto es, los granates del grupo II con texturas en atólon cuyos núcleos se encuentran reemplazados por la propia estaurolita (Bt+Ms) que los incluye. El crecimiento de los granates del grupo II parecen haber tenido lugar bajo condiciones de T elevadas en los distintos tipos de roca, ya que presentan valores de X_{sp} bajos y Mg/Fe altos en los núcleos (Capítulo 4.6.3). Por otra parte, el proceso de modificación difusional de la zonación debe considerarse un estudio anterior al desarrollo de las texturas en atólon, ya que estas texturas resultan claramente del hecho de que la composición de los núcleos estaba más desplazada del equilibrio responsable de su reemplazamiento por Bt+St o Bt+Fl, esto es, debido a una mayor razón Mg/Fe respecto de los bordes. Este proceso reacional de reemplazamiento de granate y crecimiento de estaurolita debe relacionarse con el desarrollo de las inversiones en la partición Mg-Fe entre estaurolita y granate, ya que los núcleos no reemplazados de los granates incluidos en estaurolita de los gneises pelíticos presentan inversiones en la partición con la estaurolita que los incluye, mientras que los bordes de estos granates que han sufrido modificación difusional no presentan tales inversiones. Estas relaciones sugieren que la estaurolita producto de descomposición de los granates del grupo II creció en desequilibrio, esto es, a partir de composiciones de granate desplazadas del equilibrio responsable de su reemplazamiento. Por lo tanto, debe concluirse que esta estaurolita resultante del reemplazamiento de los granates del grupo II debió crecer en desequilibrio con los bordes de los porfídiblastos pre-existentes de granate, lo cual es evidente en las rocas de grado mayor (gneises pelíticos). El hecho de que los bordes de otros granates del grupo II con zonación inversa presenten inversiones en la partición Mg-Fe con los porfídiblastos de estaurolita sugiere que han existido dificultades para el reequilibramiento de estos bordes posiblemente debido a su aislamiento de la matriz.

Por lo tanto, todas las relaciones texturales y composicionales observadas sugieren que el proceso reacional causante de las inversiones en la partición Mg-Fe entre estaurolita y granate es igualmente responsable de las inversiones en la zonación de los granates del grupo II y de su reemplazamiento y el desarrollo de texturas en atólon. Este proceso reacional debió proceder rápidamente, impidiendo un completo equilibramiento de la asociación de fases. Las relaciones de desequilibrio resultantes deben extrapolarse a condiciones de P intermedias anteriores a la decompresión final de la secuencia metamórfica, ya que la estaurolita con inclusiones de granate también se encuentra reemplazada por andalucita. La inferencia obvia de toda esta discusión es que el desarrollo de las inversiones en la partición Mg-Fe entre
estaurolita y granate puede relacionarse con los estados iniciales del proceso de descompresión sufrido por la sequencia metamórfica y no es el resultado de dos o más procesos metamórficos superpuestos. Más adelante se muestra la compatibilidad entre las predicciones de sistemas modelo sometidos a descompresión y las composiciones y texturas reacionales observadas en las fases coexistentes en los distintos tipos de metapelitas. Estas predicciones permiten explicar el hecho de que el desequilibrio entre estaurolita y granate es mayor en las metapelitas de gradomayor (gneises péticos), lo cual es consistente con otras evidencias a este respecto presentadas en el Capítulo 4 (e.g., preservación de fuerzas heterogeneidades composicionales en las micas).

5.4.2: ESTIMACIONES TERMOMBAROMETRICAS

5.4.2.1. ESQUISTOS GRAFITOSOS CON ESTAUROLITA+BIOTITA+GRANATE+ANDALUCITA

Los resultados termobarométricos según distintas técnicas para las muestras de esquistos con St+B+Grt+And (más el esquisto sin estaurolita T88-2 de la unidad de Salares) se presentan en la Tabla 5.4.1 y Figura 5.4.2. En esta rocas se ha aplicado el barómetro GAMB (ver apartado 5.2.2.2) dado que la andalucita es producto de descomparsión de granate y estaurolita, y por lo tanto se considera que no se encuentra en equilibrio con granate. Las composiciones se han elegido en función de los criterios discutidos en el Capítulo 4 con el fin de aproximar la composición pre-descomposición. Estas composiciones son: bordes de los porfiroblastos de granate, medias de las biotitas de la matriz (i.e., no asociadas a pseudomorfos) con la condición [Na] > 1.6 y suma total de óxidos > 97 % en peso (excepto en algunas muestras donde no existen análisis que satisfagan tales condiciones, como T88-1 y T88-2), moscovitas de la matriz no asociadas a pseudomorfos y con Si > 3, y medias de porfiroblastos de plagioclasa (caso de no existir o no haber sido analizados, se utilizan medias de los granos de la matriz excluyendo las composiciones más ricas en Ca) en general, X_R > 0.8. El problema de selección de composiciones en estas rocas es sencillo por comparación con el resto de metapelitas grafitosas, donde existen varios generaciones de granate, por lo que los cálculos hechos en estas rocas son interesantes en la evaluación de los distintos calibrados y métodos de estimación de P y T.

La observación de la Tabla 5.4.1 muestra varios aspectos interesantes. Destaca la elevada presión que se obtiene con todos los métodos de cálculo, en todos los casos mayor de 7 kbar. Nótese que los cálculos del barómetro GAMB en su término extremo de Fe basado en el calibrado de Hodges y Crowley (1985) resultan en presiones consistentemente más bajas que los basados en los calibrados de Hoisch (1990), que incluyen el barómetro GAMB en su término extremo de Fe (i.e., P61 en la Tabla 5.1). Por lo tanto, la dispersión en las presiones calculadas es esencialmente el resultado de los distintos métodos de estimación. No obstante, los valores de P calc son relativamente homogéneos al considerar métodos o calibrados independientes. Esto sugiere que las composiciones de granate y plagioclasa seleccionadas deben aproximarse a las composiciones de equilibrio, aunque esto no es necesariamente así para moscovita y biotita ya que el efecto de las variaciones compuestionales de las micas sobre P calc es limitado en el barómetro GAMB.

308
Figura 5.4.2. Diagrama P-T que muestra los resultados termobarométricos en los esquistos grafíticos con St+Bt+Grt+And utilizando las composiciones de la Tabla 5.4.1. Círculos grandes rellenos: situaciones simultáneas del barómetro GAMB (PS en Tabla 5.4.1, Hodge y Crossley, 1985, con las actividades de granulina y almandino de Berman, 1990, anortita de Fahnestock y Lindsey, 1988, y muscovita de Chatterjee y Floc, 1986) y termómetro GARB (T/B) en Tabla 5.4.1; Ferré y Spear, 1978, con las las actividades de almandino y pérrita en el granate de Berman, 1979, y flogopita y anortita de Indares y Mariñuela, 1983, modelo A). Cuadrados grandes rellenos: resultados de ThermoCalc, estimando Fe₃O₄ y MgSiO₃ (ver texto) con indicación de la inestabilidad. Trayectorias P-T para 4 de las muestras calculadas con el método de Gibbs (ver texto). Los puntos invariantes [Cordierita,Chlorita,Talco] y [Cordierita,Al₂SiO₅,Talco] en el sistema KFMASH (círculos pequeños rellenos) son de Spear y Cheney (1989), y las curvas univariantes en el sistema KFMASH y el punto triple de los polimorfos de Al₂SiO₅ calculados con el método de Gibbs (base de datos de Spear y Cheney, 1989, extraída en parte de Berman, 1988). Nótese la fuerte dispersión en T_mf y la inconsistencia de algunas de estas temperaturas con las condiciones de estabilidad de estañocristita en el sistema KFMASH.

Otro aspecto importante es que existe una gran dispersión de temperaturas calculadas con el termómetro GARB. Los calibrados que tienen en cuenta las desviaciones de la idealidad de la biotita, ya sea
Evolución metamórfica del Complejo Cuencano de Torrox y Serranías Adyacentes

explicitamente (Indares y Martínez, 1985) o implicitamente (Perchuk y Larenteva, 1983), resultan en temperaturas calculadas consistientemente más bajas, y probablemente más ajustadas, que el resto de los calibrados. No obstante, el considerar un solo calibrado se observa una fuerte dispersión de las temperaturas calculadas para las distintas muestras, en contraste con lo observado para las presiones calculadas, lo cual sólo puede justificarse por relaciones de desequilibrio entre los bordes de los granates y las biotitas de la matriz (y, por supuesto, el resto de biotitas). Además, en algunas muestras se obtienen temperaturas muy elevadas, inconsistentes con la estabilidad de estaunolita, tal y como se indica por las soluciones simultáneas (intersecciones) de los equilibrios GAMB y GARB en la Figura 5.4.2 (ver también Tabla 5.4.1). Estas altas temperaturas calculadas no se deben a deficiencias en los termómetros usados, ya que resultan de calibrados que implementan modelos de solución que tienen en cuenta las desviaciones de la ideidad en la biotita (lo que reduce sustancialmente \(T_{\text{calc}} \)), y son claramente el resultado del uso de composiciones en desequilibrio.

Aunque valores elevados de \(T_{\text{calc}} \) pueden adscribirse a razones Mg/Fe altas en el granate y/o bajas en la biotita (i.e., de manera que \(K_0 \rightarrow 1 \)), todas las evidencias sugieren que las razones Mg/Fe en las biotitas son las responsables de las temperaturas calculadas tan elevadas, ya que las reacciones asociadas a la descomposición producen biotita y consumen granate (Capítulo 3.1.2 y más adelante). La disolución de granate no puede explicar aumentos artificiales de \(T_{\text{calc}} \) puesto que la razón Mg/Fe en los porfíroidoblastos de granate desciende hacia el núcleo. De hecho, en la Tabla 5.4.1 se observa una clara correlación negativa entre las temperaturas calculadas y las razones Mg/Fe de las biotitas. Esto sugiere que la composición de la biotita es una composición intermedia entre granate y P intermedia (> 7 kbar) no se preserva en estas rocas. Como se muestra más adelante, las predicciones de sistemas modelo (KFMASH) son consistentes con un descenso de la razón Mg/Fe en la biotita al descender la presión, lo cual se predijo en el Capítulo 3.1.2 al considerar la evolución de las topologías AFM en función de la secuencia reacional asignada a la descomposición (ver también Spear y Silverstone, 1983; Spear, 1988a). El rango de temperaturas calculadas más bajo, en torno a 550 °C (usando los calibrados que tienen en cuenta las desviaciones de la ideidad en la biotita) podría considerarse el resultado de disolución de granate no identificada, aunque también puede representar una estimación más ajustada a las temperaturas de equilibrio y presión que se obtienen en las muestras T447 y T448 que, como se ha indicado antes, el caso de la parte de Mg-Fe entre estaunolita y granate, parecen preservar composiciones más equilibradas.

El rango de temperaturas obtenido con Thermocalc mediante la técnica del multiequilibrio es igualmente amplio. Los valores utilizados para la composición del fluido (\(X_{\text{H}_2\text{O}} = 0.9 \), \(X_{\text{CO}_2} = 0.05 \) y \(X_1 = 0.05 \) de un diluyente, ideal) se basan en cálculos en el sistema CO-H (ver más adelante). Como pode apreciarse en la Tabla 5.4.1, se ha considerado oportunamente realizar dos tipos de cálculo, i.e., incluyendo y excluyendo del análisis los componentes de fase Feestaunolita y Mg-estaunolita, respectivamente. La exclusión de estos componentes está justificada por (1) las evidencias anteriores al respecto del posible estado de desequilibrio entre estaunolita y granate, (2) el escaso conocimiento de las propiedades de esta fase y de sus relaciones a-X (Holland y Powell, 1990; Holdaway et al., 1991), y (3) el hecho de que su exclusión permite no considerar reacciones que involucren \(\text{H}_2\text{O} \) (ver los resultados del cálculo para la muestra T447), lo cual es conveniente desde el punto de vista estrictamente termobarométrico. Nótese que las diferencias entre ambos tipos de cálculos con Thermocalc afectan esencialmente a la temperatura, aunque estas diferencias no son significativas dada la elevada incertidumbre en T (Tabla 5.4.1, Figura 5.4.2). Si se excluyen las muestras con temperaturas mayores de 700 °C, las condiciones P-T obtenidas (568-619 °C y 9.8-10.9 kbar) son consistentes con la estabilidad de estaunolita en el sistema KFMASH (Tabla 5.4.1, Figura 5.4.2). Estas presiones son
Capítulo 5: Relaciones P-T-X: Historia Reacncional y Evolución P-T-

Similares a las calculadas con el barómetro GAMB, por lo que pueden considerarse aproximadas a las presiones de equilibramiento entre los bordes de granates y plagioclasa. Sin embargo, y a pesar de que las temperaturas calculadas con ThermoCalc no se disparan y se agrupan en torno a 550-600°C, existe una elevada incertidumbre a respecto de su consideración como temperaturas de equilibramiento debido a las ya comentadas relaciones de desequilibrio entre biotita y granate.

Tabla 5.4.1 Estimaciones termobarométricas de esquistos grafíticos con St+Grt+Hbl+And, y sumario de los datos composicionales de las fases usadas en los cálculos.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>T6B8</th>
<th>T6B8</th>
<th>T6B8T6</th>
<th>T6B8T6</th>
<th>T6B8T6</th>
<th>T6B8T6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotita</td>
<td>0.218</td>
<td>0.178</td>
<td>0.212</td>
<td>0.211</td>
<td>0.213</td>
<td>0.196</td>
</tr>
<tr>
<td>XTT</td>
<td>0.031</td>
<td>0.047</td>
<td>0.049</td>
<td>0.055</td>
<td>0.046</td>
<td>0.082</td>
</tr>
<tr>
<td>XTT</td>
<td>0.274</td>
<td>0.491</td>
<td>0.471</td>
<td>0.499</td>
<td>0.410</td>
<td>0.463</td>
</tr>
<tr>
<td>XTT</td>
<td>0.374</td>
<td>0.229</td>
<td>0.265</td>
<td>0.232</td>
<td>0.330</td>
<td>0.311</td>
</tr>
<tr>
<td>XTT</td>
<td>0.000</td>
<td>0.565</td>
<td>0.564</td>
<td>0.465</td>
<td>0.806</td>
<td>0.671</td>
</tr>
<tr>
<td>Plagioclasa</td>
<td>0.106</td>
<td>0.192</td>
<td>0.096</td>
<td>0.099</td>
<td>0.146</td>
<td>0.112</td>
</tr>
<tr>
<td>Xab</td>
<td>0.084</td>
<td>0.192</td>
<td>0.872</td>
<td>0.891</td>
<td>0.842</td>
<td>0.865</td>
</tr>
<tr>
<td>Mozocovita</td>
<td>0.957</td>
<td>0.941</td>
<td>0.926</td>
<td>0.946</td>
<td>0.928</td>
<td>0.928</td>
</tr>
</tbody>
</table>

Terminología GAMB (°C) (Cálculos a 10 kbar, 1° basado en la propagación de 3º de errores relativo sobre X).

TCSS	526(18)	735(28)	715(27)	845(35)	665(21)	649(21)	696(26)
TCSS	534(18)	742(28)	713(27)	850(35)	676(21)	649(21)	721(26)
TCSS	549(18)	742(28)	713(27)	845(35)	595(21)	625(21)	695(26)
TCSS	526(17)	671(26)	68(25)	767(31)	546(19)	558(19)	617(23)
TCSS	534(16)	690(26)	66(25)	712(31)	504(19)	534(19)	583(23)
TCSS	549(15)	732(21)	72(20)	816(24)	636(17)	641(17)	707(20)
TCSS	562(11)	667(14)	657(13)	717(15)	600(12)	603(12)	648(13)
TCSS	562(18)	676(26)	683(25)	733(31)	541(19)	564(20)	615(24)

Barometría GAMB de Hodges y Crowley (1985) y modificaciones de modelos de solubilidad (bar) (Cálculos a 500°C).

P1	7522	8356	7888	7829	7435	7345
P2	6737	8487	7218	6996	6724	6546
P3	7597	8586	8030	7907	7561	7478
P4	6839	7567	7145	7070	6846	6874
P5	7842	8518	8319	8312	7643	7660
P6	8228	9105	8536	8542	8076	7957

Barometría de Hooch (1990) (bar) (cálculos a 500°C), con los modelos de actividad definidos por este autor.

P60	10384	11043	11142	9411	9242	9632
P61	9378	9737	9755	9019	8760	8812
R81	8992	9694	9943	8825	8444	9396
P62	7428	7820	7796	7741	7536	8435
P63	10277	11551	11782	9732	9131	9878
T84	8525	9216	9291	9060	8265	8427
Tabla S.4.1. (Continuación) Estimaciones termobarométricas con Thermocalc de exquistes geológicos con Sc+Bt+Grt+Anh.

<table>
<thead>
<tr>
<th>P (kbars)</th>
<th>T (°C)</th>
<th>cor</th>
<th>fH₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0(5.5)</td>
<td>10.0(1.5)</td>
<td>11.0(1.4)</td>
<td>11.0(1.6)</td>
</tr>
</tbody>
</table>

Componentes de fase implicados en las reacciones: aln, prp, grt, nz, cel, phl, ann, cpx, fe, mgpx, an, sz, qz, H₂O.

<table>
<thead>
<tr>
<th>P (kbars)</th>
<th>T (°C)</th>
<th>cor</th>
<th>fH₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0(1.7)</td>
<td>10.0(1.7)</td>
<td>12.0(1.9)</td>
<td>9.0(1.5)</td>
</tr>
</tbody>
</table>

Componentes de fase implicados en las reacciones: aln, prp, grt, nz, cel, phl, ann, cpx, fe, mgpx, an, sz, qz, H₂O.

Serie de P(Cpx+enr) = 3000-800°C T(Cpx). Componentes: aln, prp, grt, nz, cel, phl, ann, cpx, mgpx, an, sz, qz, H₂O.

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>P(Cpx+enr) (kbars)</th>
<th>cor</th>
<th>fH₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>0.40</td>
<td>0.75</td>
<td>1.00</td>
</tr>
<tr>
<td>350</td>
<td>3.55</td>
<td>2.55</td>
<td>2.00</td>
</tr>
<tr>
<td>400</td>
<td>1.35</td>
<td>0.75</td>
<td>1.00</td>
</tr>
<tr>
<td>450</td>
<td>0.85</td>
<td>0.75</td>
<td>1.00</td>
</tr>
<tr>
<td>500</td>
<td>0.50</td>
<td>0.75</td>
<td>1.00</td>
</tr>
<tr>
<td>550</td>
<td>0.35</td>
<td>0.75</td>
<td>1.00</td>
</tr>
<tr>
<td>600</td>
<td>0.25</td>
<td>0.75</td>
<td>1.00</td>
</tr>
<tr>
<td>650</td>
<td>0.15</td>
<td>0.75</td>
<td>1.00</td>
</tr>
<tr>
<td>700</td>
<td>0.10</td>
<td>0.75</td>
<td>1.00</td>
</tr>
<tr>
<td>750</td>
<td>0.05</td>
<td>0.75</td>
<td>1.00</td>
</tr>
<tr>
<td>800</td>
<td>0.00</td>
<td>0.75</td>
<td>1.00</td>
</tr>
</tbody>
</table>

EJEMPLO DE RESULTADOS DE CÁLCULOS TERMOBAROMÉTRICOS CON THERMOCALC PARA LA MUESTRA T447

< AVERAGE PRESSURE/TEMPERATURE CALCULATIONS »

<table>
<thead>
<tr>
<th>P (550°C)</th>
<th>cor</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.86</td>
<td>1.26</td>
</tr>
<tr>
<td>9.13</td>
<td>1.22</td>
</tr>
</tbody>
</table>

An independent set of reactions has been calculated for dP/dT kbars.

312
La disponibilidad de perfiles detallados de la zona del granate (Capítulo 4.6.3) permite aplicar el método de Gibbs para intentar dilucidar la trayectoria PT anterior al equilibramiento de los bordes de los granates. En el sistema KNaCaFmMASH, la coexistencia de Qtz-Ms-Pl-Bt-Grt-St-H\textsubscript{2}O característica de este tipo de metapelitas (excluyendo andalucita, que se considera en desequilibrio con granate y estaurolita) define un equilibrio cuadrivariante. Los monitoreos elegidos han sido las fracciones molares de los componentes independientes del granate \(X_{\text{ann}} \), \(X_{\text{mpt}} \), \(X_{\text{gr}} \) y \(X_{\text{M/M}} \). La elección de este último monitoreo se debe a que no existen otras fases zonadas en las muestras ni se tienen evidencias de cómo pudo variar la composición de plagioclasa. Los incrementos de \(X_{\text{M/M}} \) se establecieron arbitrariamente = 0.00, lo cual, aunque impreciso, no debe tener excesivo impacto en los resultados calculados con las composiciones de los bordes de los porfídblastos de granate donde \(X_{\text{Pl}} \) presenta variaciones muy débiles (Figura 4.6.1). Como puntos PT de arranque se usan los resultados de los cálculos con Thermoncalc excluyendo los componentes Fe-estaurolita y Mg-estaurolita (Figura 5.4.2) debido a que la dispersión de las temperaturas calculadas es menor que con los cálculos GARB. En el caso de las muestras T26114 y T88-1, en las que la biotita presenta composiciones claramente en desequilibrio con el granate, la composición de la biotita en términos de \(X_{\text{ann}} \), \(X_{\text{Ph}l} \) y \(X_{\text{M/M}} \) ha sido ajustada de manera que sea consistente con las temperaturas y presiones de arranque utilizando el equilibrio GARB con las modificaciones de Berman (1990) para el granate e Indares y Martignole (1985, Modelo A) para la biotita (i.e., calibrado T(B) en Tabla 5.4.1). Este tipo de ajuste no supone modificaciones sustanciales en la forma de las trayectorias calculadas (ver Spear y Rumble, 1986, para un procedimiento similar relativo al cálculo de la composición de clorita coexistente).

Los resultados indican trayectorias en el sentido de las agujas del reloj (Figura 5.4.2), aunque con débiles descensos de P y fuertes aumentos de T que sugieren un calentamiento casi isobárico. No obstante, los resultados son inciertos ya que los cálculos se detienen tras los primeros incrementos en los monitoreos debido a que la composición calculada de plagioclasa deviene \(X_{\text{pl}} > 1 \) (Tabla 5.4.2). Existen varias interpretaciones para explicar este hecho, que se relaciona con el fuerte incremento de \(X_{\text{Pl}} \) hacia el núcleo de los granates, aunque la más probable es que la clorita coexistiera en condiciones de grado más bajo durante el
crecimiento de los núcleos del granate ricos en Mn y durante las secciones cercanas al borde donde el granate sufre fuertes variaciones en Mn. Según los cálculos de Spear et al. (1990b), a presiones intermedias las isótopas de X$_{Mg}$ en la plagioclasa coexistente con granate, biotita y clorita (Ms+Qtz+H_2$O) en el sistema KNaCaFeMnMASH, presentan débiles pendientes dX/dT negativas bajo condiciones propias del crecimiento de granate $(500-550 \, ^{\circ}C)$, descendiendo X$_{Mg}$ al aumentar P (dado que X$_{Mg}$ está controlada por el equilibrio GAMB (5.61)), mientras que las pendientes de las isótopas de X$_{Mg}$ son positivas, decreciendo X$_{Mg}$ con incrementos en T. Esta disposición de isótopas (ver Figura 1 de Spear et al., 1990b) permite deducir que una trayectoria dominada por fuertes cambios de T y débiles variaciones en P (a presiones de 8-10 kbar), resultaría en que la composición de la plagioclasa se mantendría aproximadamente constante, ya que sería casi paralela a las isótopas de X$_{Mg}$, mientras que X$_{Mg}$ disminuiría hacia el borde de los granates sin requerir la coexistencia de otras fases cálcicas (zoisita/clinozoisita) que no se han encontrado como relictos en ninguna muestra.

| Tabla 5.4.2. Resultados de termobarometría relativa por el método de Gibbs. |
|-----------------|------------------|-----------------|------------------|-----------------|------------------|------------------|
| | X$_{Alm}$ | X$_{Gps}$ | X$_{Grt}$ | X$_{Ab}$ | T(°C) | P(kbar) | X$_{Alm}$ | X$_{Gps}$ | X$_{Grt}$ | X$_{Ab}$ | T(°C) | P(kbar) |
| Borde | 0.828 | 0.064 | 0.067 | 0.900 | 568 | 9.8 | 0.802 | 0.016 | 0.083 | 0.852 | 502 | 9.9 |
| #2 | 0.833 | 0.005 | 0.074 | 0.978 | 474 | 11.3 | 0.764 | 0.022 | 0.163 | 0.923 | 444 | 10.0 |
| #3 | 0.824 | 0.015 | 0.123 | >1.00 | 402* | 13.7* | 0.678 | 0.087 | 0.200 | >1.00 | 361* | 11.8* |
| | X$_{Alm}$ | X$_{Gps}$ | X$_{Grt}$ | X$_{Ab}$ | T(°C) | P(kbar) | X$_{Alm}$ | X$_{Gps}$ | X$_{Grt}$ | X$_{Ab}$ | T(°C) | P(kbar) |
| Borde | 0.743 | 0.009 | 0.149 | 0.905 | 619 | 10.9 | 0.808 | 0.011 | 0.066 | 0.893 | 613 | 10.3 |
| #2 | 0.676 | 0.078 | 0.208 | >1.00 | 277* | 22.2* | 0.786 | 0.014 | 0.130 | 0.917 | 541 | 10.9 |
| #3 | - | - | - | - | - | - | 0.763 | 0.030 | 0.133 | 0.985 | 380* | 11.9* |

Nota: La composición del borde del granate de T447 no coincide con la de la Tabla 5.4.1 ya que en aquel caso es una media de dos puntos de borde. La composición de la plagioclasa ha sido recalcu la en base a X$_{Alm}$X$_{Grt}$ = 1. Los puntos P-T de los bordes corresponden a los resultados de Thermocalc (Tabla 5.4.1). *Valores de P y T correspondientes a los puntos en que X$_{Ab}$=1; en el caso de T447 esto no llegó a ocurrir, pero la composición de la moscovita se basa e xcesivamente rica en Na (X$_{Na}$ = 0.643), y la temperatura asociada es demasiado baja para que coexistan sólo las fases iniciales.

A pesar de que los problemas de equilibrio encontrados en estas rocas no permiten precisar las condiciones P-T sufridas, en base a los cálculos anteriores puede considerarse que el equilibramiento a P intermedia de estas rocas debió tener lugar entre 550 a 650 °C y 8-10 kbar (Figura 5.4.2). Esta estimación tiene en consideración todos los cálculos efectuados, de manera que se han excluido los calibrados claramente insatisfactorios para estas muestras y las muestras con signos claros de desequilibrio entre biotita y granate. El método de Gibbs permite inferir una trayectoria P-T previa a la descompresión dominada por un fuerte incremento de T casi isobárico a presiones del orden de 8-10 kbar, al menos en las etapas finales del crecimiento de granate (Figura 5.4.2). En base a las texturas reaccionales encontradas en estas rocas puede inferirse que con posterioridad al crecimiento progresado del granate bajo condiciones de P cercanas a 8-10 kbar, las rocas sufrieron una importante descompresión que intersecaría el campo de estabilidad de andalucita. No es posible estimar las condiciones P-T bajo las cuales creció la andalucita (Bt+Im) debido a la ausencia de equilibrios aplicables (el granate es relicto). No obstante es posible que la trayectoria de descompresión fuese quasi-isotérmica, a juzgar por la trayectoria deducida para las gneises leucocratos intrayanacentes (Capítulo 5.5 y García-Casco et al., 1993). Más adelante se considera la trayectoria de descompresión desde el punto de vista de las predicciones en sistemas modelo.
5.4.2.2. ESQUISTOS GRAFITOSOS CON ESTAUROLITA+BIOTITA+GRANATE+FIBROLITA+ANDALUCITA=DISTENA

En este tipo de rocas las estimaciones termobarométricas son casi imposibles dado que los escasos porfidoblastos de granate analizados muestran claras evidencias de reemplazamiento y disolución, y no se conocen las composiciones de las fases coexistentes con los granates del grupo II incluidos en estaurolita y plagioclase. Sólo es posible hacer una cruda estimación de las presiones asociadas a los granates del grupo II incluidos en plagioclasa mediante el barómetro GASP (si se asume que fibrolita o distena coexistieron con estos granates) o mediante el barómetro GAMB (ya que la composición de las micas no influye demasiado en Pcalc). Los resultados obtenidos indican presiones variables, desde 4 hasta > 10 kbar (a temperaturas entre 550 y 600 ºC), lo cual contrasta con lo obtenido en los esquistos con St+Bi+Grt+And donde sólo se obtienen presiones relativamente elevadas. Dada la incertidumbre asociada a estos cálculos, en este trabajo no se considerarán estos resultados, aunque se discutirán en detalle los obtenidos con este tipo de granates del grupo II en los gneises pelíticos que, como se muestra a continuación, también ofrecen estimaciones de presión variables.

5.4.2.3. GNEISES PELÍTICOS CON ESTAUROLITA+BIOTITA+GRANATE+DISTENA+FIBROLITA+ANDALUCITA=GORDIERITA

Cualquier tipo de cálculo termodinámico es igualmente problemático en estas rocas debido al elevado número de tipos petrográficos y composicionales de granate y a la presencia de zonación oscilante en los porfidoblastos de plagioclase (Capítulo 4). Los cálculos termométricos GARB, usando la biotita de la matriz foliada y los bordes de los porfidoblastos de granate en aquellos casos en que estos aparecen sin signos de disolución (T312 y T327) o presentan estados de reemplazamiento avanzados pero donde se reconoce el borde (T23), resultan en temperaturas que superan en todos los casos los 650 ºC, cualquiera que sea la presión a la que se estimen (Figura 5.4.3, Tabla 5.4.3), llegando incluso a valores extremadamente elevados (> 1000 ºC). Esto es una clara evidencia del fuerte estado de desequilibrio entre la biotita de la matriz foliada y los bordes de estos granates. Dado que la disolución de granate no puede justificar estas elevadas temperaturas calculadas ya que Mg/Fe aumenta hacia los bordes (i.e., si el granate estuviera reabsorbido las temperaturas calculadas serían más bajas), esto implica que la composición de la biotita originalmente en equilibrio con estos granates debería haber sido significativamente más rica en Mg que cualquiera de las composiciones actualmente registradas. Por lo tanto, el reajuste composicional sufrido por la biotita de estas rocas durante los procesos reaccional ligados a la descompresión ha debido ser significativo pese a su elevada proporción modal. Esto impide cualquier estimación de la temperatura de equilibrio a P intermedia en base a equilibrios de intercambio. No obstante, la temperatura sufrida por estas rocas bajo condiciones de P intermedia debió ser mayor que la sufrida por los esquistos grafitosos, dado que los bordes de los porfidoblastos de granate presentan razones Mg/Fe significativamente mayores (Figura 5.4.1, Tablas 5.4.1 y 5.4.3). El mayor grado de reajuste composicional a baja P de la biotita en las rocas respecto de las rocas de grado más bajo (esquistos con St+Bi+Grt+And), es consistente con el hecho de que las fuentes inversiones en la partición Mg-Fe entre estaurolita y granate de los gneises pelíticos sean el resultado de condiciones de desequilibrio inducidas por la descompresión.

315
Tabla 5.4.3. Estimaciones termobarométricas para los gneises pelíticos grafitos con St+Bt+Grt+Ky+Fib+And+Cof y sumario de los datos composicionales de las fases usadas.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>T23</th>
<th>T312</th>
<th>T327</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granito (bordo porfídolosito)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xaln</td>
<td>0.319</td>
<td>0.783</td>
<td>0.824</td>
</tr>
<tr>
<td>Xpp</td>
<td>0.156</td>
<td>0.165</td>
<td>0.164</td>
</tr>
<tr>
<td>Xps</td>
<td>0.011</td>
<td>0.000</td>
<td>0.013</td>
</tr>
<tr>
<td>Xgrs</td>
<td>0.115</td>
<td>0.051</td>
<td>0.019</td>
</tr>
<tr>
<td>Mg/Fe</td>
<td>0.217</td>
<td>0.211</td>
<td>0.174</td>
</tr>
<tr>
<td>Biotita (mátriz)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X[^31]Al</td>
<td>0.195</td>
<td>0.184</td>
<td>0.192</td>
</tr>
<tr>
<td>XTi</td>
<td>0.051</td>
<td>0.045</td>
<td>0.047</td>
</tr>
<tr>
<td>Xsod</td>
<td>0.474</td>
<td>0.484</td>
<td>0.484</td>
</tr>
<tr>
<td>Xphl</td>
<td>0.277</td>
<td>0.284</td>
<td>0.273</td>
</tr>
<tr>
<td>Mg/Fe</td>
<td>0.585</td>
<td>0.587</td>
<td>0.563</td>
</tr>
<tr>
<td>Plagioclasa (bordes porfídolosito)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xan</td>
<td>0.219</td>
<td>0.169</td>
<td>0.202</td>
</tr>
<tr>
<td>Xab</td>
<td>0.765</td>
<td>0.822</td>
<td>0.778</td>
</tr>
<tr>
<td>Muscovita (mátriz)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X[^31]Al</td>
<td>0.507</td>
<td>0.509</td>
<td>0.907</td>
</tr>
<tr>
<td>XK</td>
<td>0.804</td>
<td>0.783</td>
<td>0.810</td>
</tr>
</tbody>
</table>

T(FeO) 934(45) 939(41) 844(34) Termómetros GAB (°C)
T(MgO) 1009(41) 959(41) 852(34) (Cálculos a 10 kbar, 1000 °C basado en la propagación de 3% de error relativo sobre KDP).
T(CeO) 929(41) 875(38) 802(33)
T(Al2O3) 884(48) 857(47) 748(31)
T(Fe2O3) 884(48) 857(47) 690(30)
T(FeO) 597(28) 879(27) 815(24)
T(MgO) 762(17) 772(16) 716(15)
T(FeO) 835(38) 752(37) 722(31)

P1 = ±100 kbar, P2 = ±50 kbar y P3 = ±25 kbar (ver tabla 5.4.1) Barómetro GASP (bar) (Cálculos a 650 °C).

P1 = ±50 kbar y P2 = ±25 kbar (indicaciones a 650 °C).

Respecto de los cálculos barométricos, en estas muestras puede utilizarse el barómetro GASP dada la coexistencia de diastema y fibrolita (aunque probablemente esta última no representa equilibrio con granito). Las muestras donde se encuentran porfídolositos de granito con zonación oxidante en Ca (i.e., T312) y con núcleos pobres en Ca y fuertes incrementos en Ca hacia los bordes (i.e., T23), parecen haber equilibrado a alta P (ca. 10 kbar). Estas presiones son consistentes con la presencia de diastema y con los resultados barométricos obtenidos en los esquistos grafitos (Tabla 5.4.3, Figura 5.4.3). Sin embargo, la presión calculada es baja (ca. 4 kbar, Tabla 5.4.3) para los bordes de los porfídolositos de granito con zonación normal en Xgrs de la muestra T327. Esta baja presión es el resultado de la baja concentración en Ca (Xgrs = 0.02, Tabla 5.4.3) de los bordes de estos granitos, y contrasta con la coexistencia de diastema en esta muestra, aunque podría argumentarse que el borde de estos granitos equilibró en el campo de la silimanita. Sin embargo, es también
probable que las composiciones de los bordes de los porfídoblastos de granate y plagioclasa tampoco representen condiciones de equilibrio.

La historia registrada en los granates y porfídoblastos de plagioclasa de los gneisos pelíticos parece indicar cambios recurrentes de presión dadas las fuertes variaciones oscilantes en X_{gr} y X_{an}. Esto viene indicado por el hecho de que la reacción de transversa beta que describe los cambios en Ca de granate y plagioclasa coexistentes es del equilibrio GASP, fuertemente dependiente de P. Aunque los cambios de X_{gr} no pueden asignarse exclusivamente a cambios de P (e.g., ΔX_{gr} hacia el borde puede explicarse por incrementos isobáricos de T; e.g., Spear y Selverstone, 1983; Spear, 1988b, 1989; Spear et al., 1990b; ver más adelante), incrementos oscilantes en Ca en granate y plagioclase en un sistema cerrado y a temperaturas superiores a la de la laguna de la peristerita sólo son posibles si varían las condiciones de P y/o si se produce un cambio topológico con variación de la asociación de fases. Este último aspecto es importante, ya que es posible que la estaurolita se consumiera cuando crecieron los bordes de los porfídoblastos de granate y apareció distinta en la asociación de estas rocas. Esto es, podría haberse superado el equivalente multicomponente de la reacción univariante (en el sistema KFMASH) $Grt+Qz+Ms = Grt+Ky+Bt+H_{2}O$, lo cual puede relacionarse con la ausencia de equilibrio entre granate y estaurolita (i.e., inversión de la partición Mg:Fe) si esta última fase volvió a crecer con posterioridad (ver más adelante).

Si los cambios oscilantes en X_{gr} de los porfídoblastos de granate de la muestra la T312 (Figura 5.4.7) se correlacionan con patrones de zonación de los porfídoblastos de plagioclasa de esta muestra, que, aunque irregulares, son dominantemente oscilantes (T312b y T312c en la Figura 4.8.2), puede extraerse información barométrica secuencial. La correlación de las composiciones puede hacerse suponiendo que ninguna otra fase cálcica interviene en el equilibrio entre granate y plagioclase, por lo que podría asumirse que los máximos de X_{gr} en el granate se corresponden con mínimos de X_{an} en la plagioclase y viceversa. En la Tabla 5.4.4 y Figura 5.4.3 pueden apreciarse las composiciones usadas y las estimaciones de P resultantes según el criterio anterior. Obviamente, no pueden ofrecerse unas estimaciones precisas de las presiones en cada punto calculado ya que no se dispone de estimaciones de temperatura, ni siquiera para el borde de los granates. Las temperaturas a las que se han calculado las presiones en la Tabla 5.4.4 son estimaciones arbitrarias, asumiendo un rango entre 600 y 650 °C para el borde de granate donde se dan las oscilaciones en X_{gr}. Estos cálculos representan las oscilaciones máximas de P ($\Delta P = \pm 6$ kbar) sufridas durante el crecimiento de los bordes de granate con zonación oscilante en Ca de la muestra T312.

Dado que la zonación de la plagioclasa puede haberse desarrollado por disoluciones y precipitaciones sucesivas (ver más adelante), no está garantizado que los máximos de X_{gr} se correspondan con mínimos de X_{an} y viceversa, siendo también posible la situación contraria. En este segundo caso los incrementos absolutos de P_{calc} se reducen, aunque se siguen obteniendo variaciones significativas en P. Por ejemplo, las presiones calculadas con GASP y GAMB a 600 °C para el análisis de granate #17 (borde con máxima X_{gr} = 0.112) se reducen unos 2 kbar si se utiliza el análisis de plagioclasa #24-3 (máxima X_{an} = 0.238), i.e., 10.0 vs 12.9 kbar (GASP) y 8.0 vs 10.4 kbar (GAMB); las presiones calculadas a 625 °C con el análisis de granate #5 (borde con mínima X_{gr} = 0.019) aumentan en >1 kbar si se utiliza el análisis de plagioclase #14-12 que corresponde al borde del porfídoblasto, i.e., 5.0 vs 3.0 kbar (GASP) y 4.0 vs 2.9 kbar (GAMB). Por lo tanto, estos cálculos sugieren también cambios de P durante el crecimiento del granate con zonación oscilante en Ca, aunque los incrementos absolutos de P al pasar de un estadio de crecimiento de granate al siguiente sean algo menores que en el caso de cambios antipatéticos de X_{gr} y X_{an}.
Figura 5.4.3. Diagrama P-T que muestra los resultados termostato-estratigráficos para la muestra T312, un gneis pelítico con St+Bl+Grt+Ky+Fib+And, utilizando las composiciones de las Tablas 5.4.3 y 5.4.4. Circulo grande rojo: solución similitud del barómetro GASP (P3 en Tabla 5.4.3, actividad de granát, 1990, anortosis de Fohlman y Lindley, 1988) y termostato GARB (T3B en Tabla 5.4.3; Ferry y Span, 1978, con las las actividades de aluminato y pirita en el granate de Berman, 1990, y plagioclase y anorto de Indares y Martínez, 1985, modelo A) para el borde de los granates de la matriz del grupo II (mtrz-b). Nótese (1) la incoherencia con las condiciones de estabilidad de cristalización en el sistema KFMASH, (2) la mayor temperatura obtenida con los modelos menos modificados (mtrz-n), y (3) la ausencia de intersección con la veneciana PT entre los equilibrios GASP y GARB para el borde de los peridotitos de granate (phas). Cuadrados verdes: resultados barométricos para el borde final (phas), borde de bajo Ca (phas-Ca) y borde alto Ca (phas-Ca) de los peridotitos de granate calculados a temperaturas arbitrariamente elegidas (650, 625 y 600 °C respectivamente). Los números 1, 2, y 3 adjuntos se refieren a los estudios de cristalización del granate discutidos en el texto. Las líneas verticales representan distintas combinaciones de composiciones de granate y plagioclase (ver texto). Las trayectorias P-T calculadas con el método de Gibbs considerando la coexistencia de St+Bl+Ky con el borde final de los peridotitos de granate (e = espesor) y considerando que la cristalización no existe con Bl+Grt+Ky en el borde final de los granates (e = espesor; ver el texto y la Tabla 5.4.3). Los puntos importantes (círculos pequeños verdes) y las curvas antivariaciones en el sistema KFMASH, y el punto triple de los polímeros de Al2SiO5, calculados con el método de Gibbs como en la Figura 5.4.2.
Tabla 5.4.4. Resultados de barométricos para los porfiroblastos de grano y plagioclasa en la muestra T312 asumiendo variaciones antipetélicas en X_{gr} y X_{an} en los porfiroblastos de grano y plagioclasa, respectivamente.

<table>
<thead>
<tr>
<th>Granito</th>
<th>X_{an}</th>
<th>X_{gr}</th>
<th>X_{ps}</th>
<th>Mg/Fe</th>
<th>P(Atmosférico)</th>
<th>Estado (estimado)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#20</td>
<td>0.783</td>
<td>0.166</td>
<td>0.000</td>
<td>0.052</td>
<td>0.211</td>
<td>#14-12</td>
</tr>
<tr>
<td>#18</td>
<td>0.819</td>
<td>0.145</td>
<td>0.012</td>
<td>0.024</td>
<td>0.197</td>
<td>#14-2</td>
</tr>
<tr>
<td>#5</td>
<td>0.821</td>
<td>0.138</td>
<td>0.021</td>
<td>0.019</td>
<td>0.168</td>
<td>#24-3</td>
</tr>
<tr>
<td>#17</td>
<td>0.760</td>
<td>0.102</td>
<td>0.026</td>
<td>0.012</td>
<td>0.134</td>
<td>#14-3</td>
</tr>
<tr>
<td>#17</td>
<td>0.760</td>
<td>0.102</td>
<td>0.026</td>
<td>0.012</td>
<td>0.134</td>
<td>#24-5</td>
</tr>
<tr>
<td>#7</td>
<td>0.727</td>
<td>0.097</td>
<td>0.034</td>
<td>0.042</td>
<td>0.117</td>
<td>#14-4</td>
</tr>
<tr>
<td>#11</td>
<td>0.721</td>
<td>0.046</td>
<td>0.184</td>
<td>0.049</td>
<td>0.066</td>
<td>#14-5</td>
</tr>
</tbody>
</table>

Notas: P3: GASP (como en Tabla 5.4.1); 35 Cálculos con similitud. PS: GAMB (Hodges y Crowley, 1985; como en Tabla 5.4.4).- Cálculos con 0\(e_p\) (B), 0\(e_{Fe}\) (Fe&L) y 0\(e_{Mg}\) (Ch&F). En los casos en que P3 aparece entre parentesis no es segura la existencia de silicato de Al (el cálculo es con distinta). Ver Apéndice II Tablas C y F para los números de referencia de los análisis. Las composiciones de grano corresponden al porfiroblasto #12 en el Apéndice II Tabla G (Figura IV.6.7) y las de plagioclasa a los porfiroblastos #14 y #24 en el Apéndice II Tabla F (T312b y T312c, respectivamente, en la Figura IV.8.2).

El desconocimiento de la composición de equilibrio de plagioclasa y grano induce una elevada incertidumbre en las presiones calculadas anteriormente. Esto implica que los valores absolutos de P_{calc} son de escaso valor, aunque no la tendencia de los cambios de P. La trayectoria PT calculada para los porfiroblastos de grano con zonación oscilante en Ca mediante el método de Gibbs también sugiere que estas rocas han sufrido cambios de P anteriores a la descompresión final. La coexistencia de Qtz-Ms-Pl-Bt-Grt-St-Ky-H_2O define un equilibrio trivariante en el sistema KNaCaFMnMASH, por lo que las variaciones PT podrían modelizarse usando los incrementos de los componentes independientes del grano X_{inv}, X_{gr} y X_{ps}. Sin embargo, antes de presentar los resultados es necesario hacer algunas consideraciones relativas a las asociaciones de fases presentes durante el crecimiento del grano y a las composiciones usadas en los cálculos dado el estado de desequilibrio de la muestra.

A efectos descriptivos, se pueden considerar cuatro estados de crecimiento de estos granitos de la muestra T312 que, de núcleo a borde, corresponden a: (1) núcleo de Ca constante (X_{gr} = 0.0453), (2) borde de alto Ca (X_{gr} = 0.1122), (3) borde de bajo Ca (X_{gr} = 0.0119), y (4) borde final de alto Ca (X_{gr} = 0.0511). Los tres últimos estados (2, 3 y 4) corresponden con el borde sobrecrecido textural y presentan contenidos en Mn muy bajos, por lo que se considera que la clorita no coexistió durante su crecimiento. De hecho, las razones Mg/Fe de estos estados son significativamente mayores que las asociadas a los núcleos, que son ricos en Mn y con Ca constante (Tabla 5.4.4). En consecuencia, otras reacciones entre St-Bt-Grt-Ky deben considerarse para explicar el crecimiento de los bordes de granito (e.g., Tracy et al., 1976; Thompson et al., 1977a y b). En este sentido, es probable que la distensión no estuviera presente durante el crecimiento de las los estadios (1), (2) y (3), dado que los porfiroblastos de grano de los esquistos con St+Bt+Grt+And (sin distensión) también presentan bordes con fuertes caídas en Ca. Por lo tanto, se considera que la distensión creció durante el paso del estadio (3) al (4) a partir del punto en que la granularidad alcanza el mínimo y vuelve a aumentar hacia el borde final. Como se ha sugerido más arriba, es posible que la estaurolita hubiera sido consumida en la sección (3)-(4) dadas las incompatibilidades entre las fases St+Grt+Bt+Ky+Ms+Qtz+H_2O en el sistema KFMASH (ver más adelante) y el hecho de que la partición Mg-Fe entre estaurolita y grano es inversa en la sección (3)-(4) del borde del grano (Figura 5.4.1). En la Figura 5.4.3 se presentan dos posibles combinaciones de fases AFM coexistentes durante el crecimiento del borde del grano de la muestra T312: A): (2)-(3) = St+Grt+Bt y (3)-(4) = St+Grt+Bt+Ky (crueces en la Figura 5.4.3), y B): (2)-(3) = St+Grt+Bt y (3)-(4) = Grt+Bt+Ky (aspas en la Figura 5.4.3).
Por otra parte, es necesario estimar la composición de la biotita en equilibrio con el borde del granate en el escenario (4) ya que de los datos anteriores queda claro que estas fases no están actualmente en equilibrio en esta muestra (nótese que la curva GARB calculada para el borde del porfidoablasto de granate y la biotita de la matriz intersecta la ventana P-T de la Figura 5.4.3 en la parte inferior derecha a casi 800 °C). La composición de equilibrio de la biotita (X_{an} y X_{ph}) se ha estimado con el equilibrio GARB (con las modificaciones de Berman, 1990 para el granate e Indares y Martignole, 1985, Modelo A, para la biotita, i.e., calibrado T(B) en Tabla 5.4.3) sobre el punto P-T de arranque, que se ha considerado en 10 kbar en base a los cálculos barométricos anteriores y, arbitrariamente, a 650 °C. Igualmente, la composición de la estaurolita en equilibrio con el borde del granate (caso A) se ha estimado de manera que $X_{Fe}^{Grt} > X_{Fe}^{St} = 0.8$ dado que la estaurolita que coexiste actualmente en la muestra presenta la proporción Mg:Fe invertida respecto del borde del granate. Estas estimaciones resultan en composiciones algo más magnéticas de biotita y estaurolita que las actuales. El ajuste de la composición de estaurolita para el caso B se ha hecho tomando como referencia la composición del granate correspondiente al escenario (3) de mínima X_{gr}, por lo que la composición asumida ($X_{Fe}^{St} = 0.845$) es más próxima a la que presenta la estaurolita en la muestra.

Otra complicación adicional resalta el valor de X_{gr} = 0.000 del borde del granate. Dado que es necesario dar un valor mayor de 0.0 para permitir cambios en esta variable, X_{gr} se ha hecho igual a 0.0001. Las cantidades de Mn en estaurolita y biotita en esta muestra ($X_{Mn}^{St} = 0.0258$ y $X_{Mn}^{Bmatrix} = 0.0043$) indican que la partición de este elemento entre los bordes de los porfidoablastos de granate y estaurolita y biotita es también inversa, ya que existen evidencias para considerar que la partición de este elemento sigue la secuencia $X_{Mn}^{Grt} > X_{Mn}^{St} > X_{Mn}^{B}$ (c.g., Guidotti, 1974; Tracy et al., 1976; A.B. Thompson, 1976a; Spear, 1988b). Esto, que es extensible al resto de las muestras, sugiere de nuevo un estado de desequilibrio entre granate y estaurolita y biotita, por lo que los valores de X_{Mn}^{St} y X_{Mn}^{B} deben ajustarse también. En los cálculos se han asumido los valores de $X_{Mn}^{St} = 0.00005$ y $X_{Mn}^{Bmatrix} = 0.00001$ (caso A) y $X_{Mn}^{St} = 0.005$ y $X_{Mn}^{Bmatrix} = 0.0001$ (caso B).

Las asociaciones de fases presumidas anteriormente (+Qtz+Ms+H₂O) en el sistema KNaCaFeMnMgASK suponen que la varianza del sistema es 4, excepto en los escenarios (3)(4) del caso A donde la varianza es 3 al coexistir Ms+Grt+Ky. Por lo tanto, en la modelización de las dos trayectorias P-T debe añadirse una variable independiente más a las tres variables composicionales independientes del granate, que en este caso corresponde a X_{gr}. Esto supone una complicación más dadas las incertidumbres sobre la correlación de las composiciones de X_{gr} y X_{an} discutidas más arriba. Los cálculos realizados para el caso B (tetravariante) considerando cambios antiparáticos de X_{gr} y X_{an} resultan en trayectorias P-T imposibles, con fuertes incrementos de T hacia el núcleo (> 1000 °C). Por esta razón se presentan los resultados de los cálculos A y B realizados considerando que los cambios de X_{gr} ocurren en ambas fases en el mismo sentido.

Los resultados de estas modelizaciones son consistentes con los obtenidos en los esquemas grafíticos dado que a lo largo de los escenarios (2) y (3) las trayectorias calculadas suponen un calentamiento aproximadamente isobarico (Figura 5.4.3). Por lo tanto, el fuerte descenso en los datos registrados al pasar del escenario (2) al (3) ($X_{gr} = 0.112 \rightarrow 0.019$) puede explicarse exclusivamente por fuertes incrementos de T, que serían más intensos en estas rocas que en el caso de los esquemas grafíticos ya que los valores de Mg/Fe y X_{gr} son mayores y menores, respectivamente, que en estos últimos (comparése las composiciones de los bordes de los porfidoablastos de granate de los esquemas en la Tabla 5.4.1 con la composición del escenario (3) de los porfidoablastos de granate de la muestra T312 en las Tablas 5.4.5). Las trayectorias calculadas correspondientes a los escenarios (3)(4) implican que el aumento final de X_{gr} ($X_{gr} = 0.019 \rightarrow 0.051$) no puede
explicarse por incrementos de T, y suponen una compresión casi isota que no quedó registrada en los granates de los esquistos gráfíticos con Gr+Bi+Gr+An. Por otra parte, debe notarse que el borde final registra un descenso de T (caso A) o un descenso de P (caso B), resultante del hecho de que el borde del grano registra una débil inversión de la zonación en Mg/Fe en este punto.

Aunque imprecisos, estos resultados son considerados de valor ya que permiten explicar la gran variedad de texturas y composiciones de los porfidosoblastos de grane y granates del grupo II de los gneises pelícicos, así como el estado de desequilibrio de las fases presentes en estas muestras.

Tabla 5.4.5. Resultados FT obtenidos por el método de Gibba para la muestra de grane pelico T312 (caso B del texto).

<table>
<thead>
<tr>
<th>Xaln</th>
<th>Xnes</th>
<th>Xgr</th>
<th>Xan</th>
<th>T(C)</th>
<th>P(kbar)</th>
<th>Asociación AFM</th>
<th>Estudio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.051</td>
<td>0.347</td>
<td>650</td>
<td>10.0</td>
<td>Gr+Br+Kry</td>
<td>(4) borde final</td>
</tr>
<tr>
<td>0.787</td>
<td>0.001</td>
<td>0.037</td>
<td>0.194</td>
<td>705</td>
<td>9.9</td>
<td>Gr+Br+Kry</td>
<td>T=ΔT</td>
</tr>
<tr>
<td>0.808</td>
<td>0.001</td>
<td>0.029</td>
<td>0.185</td>
<td>707</td>
<td>9.2</td>
<td>Gr+Br+Kry</td>
<td>T+ΔP</td>
</tr>
<tr>
<td>0.821</td>
<td>0.010</td>
<td>0.023</td>
<td>0.174</td>
<td>703</td>
<td>8.6</td>
<td>Gr+Br+Kry</td>
<td>T+ΔP</td>
</tr>
<tr>
<td>0.821</td>
<td>0.002</td>
<td>0.019</td>
<td>0.163</td>
<td>699</td>
<td>8.1</td>
<td>Sr+Gr+Br</td>
<td>(3) borde (bajo Ca)</td>
</tr>
<tr>
<td>0.783</td>
<td>0.026</td>
<td>0.043</td>
<td>0.203</td>
<td>605</td>
<td>9.9</td>
<td>Sr+Gr+Br</td>
<td>T+ΔT</td>
</tr>
<tr>
<td>0.760</td>
<td>0.026</td>
<td>0.043</td>
<td>0.242</td>
<td>540</td>
<td>9.8</td>
<td>Sr+Gr+Br</td>
<td>(2) borde (alto Ca)</td>
</tr>
<tr>
<td>0.827</td>
<td>0.034</td>
<td>0.043</td>
<td>0.130</td>
<td>558</td>
<td>9.4</td>
<td>Sr+Gr+Br</td>
<td>(1) núcleo</td>
</tr>
<tr>
<td>0.748</td>
<td>0.142</td>
<td>0.049</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Chl</td>
<td>-</td>
</tr>
</tbody>
</table>

Nota: En la serie de composiciones del grane se ha interpretado el análisis #17 correspondiente a Xgr máxima. La composición de la plagioclase se ha ajustado tomando como referencia las composiciones de los porfidosoblastos con zonación oscilante T312b y T312c de la Figura 4.8.2, de manera que ΔXgr y ΔXan sean del mismo signo. Ver el texto para las asociaciones AFM presuntas para cada estado de crecimiento del grane. Los resultados con interrogación corresponden a la posible coexistencia de cloista.

En otras muestras los porfidosoblastos de granates no han registrado toda la evolución de los porfidosoblastos de la muestra T312, aunque los fragmentos registrados son consistentes con el modelo anterior. Por ejemplo, el borde de alto Ca del porfidosoblasto de la muestra T23 es consistente con el estado (2), registrándose hacia el núcleo el paso al estado (1) de bajo Ca. La ausencia de los estados (3) y (4) en estos granates es asignable al estado de disolución que presentan estos granos (Figura 4.6.12), aunque esta muestra presenta granates del grupo II incluidos en placas de moscovita con zonación inversa en Ca (Figura 4.6.15) que podrían asignarse sin problemas a estos estados (3) y (4). Por otra parte, el borde de bajo Ca del porfidosoblasto de la muestra T327 puede asumirse que corresponde al estado (3), lo cual es consistente con una razón Mg/Fe relativamente elevada. La zona adyacente al borde con Xgr = 0.10, Mg/Fe algo menor y baja Xan, correspondería con el estado (2). El estado (1) correspondiente al núcleo se caracteriza por una elevada concentración en Ca (Xgr ca. 0.25) similar a la encontrada en los porfidosoblastos de granate de los esquistos gráfíticos, por lo que no se observan fuertes incrementos en Xgr al pasar del estado (1) al (2). Esta diferencia puede asignarse a variaciones composicionales del sistema que influyeran en la asociación de fases presentes durante el crecimiento de los núcleos (ver Capítulo 4.6.5). El estado (4) no registrado en estos porfidosoblastos puede relacionarse con los granates del grupo II de la matriz, que presentan Xgr, y razones Mg/Fe mayores que los bordes de los porfidosoblastos.

El estado de disolución es lo suficientemente elevado en el resto de porfidosoblastos analizados, incluyendo los de las muestras con cordynta T348 y T498, como para no poder efectuar cálculos con un mínimo de seguridad. Estos granates registran núcleos de bajo Ca y alto Mn, y en algunos casos bordes de alto Ca correspondientes al estado (2). No obstante, a pesar de presentar núcleos que composicionalmente se corresponderían con el estado (1) de la muestra T312, estos porfidosoblastos presentan razones Mg/Fe
Elevadas en los bordes, aunque presentan valores elevados de Xspl = 0.1 (Figuras 4.6.10). Esto puede relacionarse con la composición algo más magnésica de estas rocas (Capítulo 3.1.2).

La presencia de composiciones contrastadas en los núcleos de este tipo de granate de grano muy fino y cuyo radio no suele superar 100 µm sugiere estados de blastesis distintivos. Esto es evidente si la zonación en Ca de estos granates refleja la zonación original sin modificaciones difusionales sustanciales. En caso contrario, los procesos difusionales que dieron lugar a la inversión de la zonación en Mg/Fe y Mn deben corresponder igualmente a estados distintos-ya que se observan zonaciones normales en Ca (i.e., descensos hacia el borde), patrones planos en Ca, y zonaciones inversas en Ca en granitos donde la zonación en Mg/Fe y Mn es inversa (Figura 4.6.15). Estas zonaciones en Ca sugieren en cualquier caso una evolución PT complicada-anteior a la descompresión final, que puede encuadrarse en el modelo de estados anteriormente discutido (Tabla 5.4.6).

Tabla 5.4.6. Sumario de resultados de barométricos para los granos de granate del grupo II en los gneis policíticos.

<table>
<thead>
<tr>
<th>Granate</th>
<th>Plagioclase</th>
<th>P(Bar)</th>
<th>Estadio asignado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Xan</td>
<td>Xab</td>
<td>P(Bar)</td>
</tr>
<tr>
<td>T312 Granates de la matriz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>núcleo</td>
<td>0.763</td>
<td>0.143</td>
<td>0.015</td>
</tr>
<tr>
<td>borde</td>
<td>0.762</td>
<td>0.119</td>
<td>0.031</td>
</tr>
<tr>
<td>T327 Granates de la matriz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>núcleo</td>
<td>0.755</td>
<td>0.133</td>
<td>0.043</td>
</tr>
<tr>
<td>borde</td>
<td>0.782</td>
<td>0.123</td>
<td>0.013</td>
</tr>
<tr>
<td>T330 Granates de la matriz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>núcleo</td>
<td>0.742</td>
<td>0.080</td>
<td>0.048</td>
</tr>
<tr>
<td>borde</td>
<td>0.743</td>
<td>0.116</td>
<td>0.048</td>
</tr>
<tr>
<td>T328 Granates incluidos en plagioclase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>núcleo</td>
<td>0.735</td>
<td>0.142</td>
<td>0.017</td>
</tr>
<tr>
<td>borde</td>
<td>0.745</td>
<td>0.137</td>
<td>0.016</td>
</tr>
<tr>
<td>T330 Granates incluidos en plagioclase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>núcleo</td>
<td>0.727</td>
<td>0.140</td>
<td>0.013</td>
</tr>
<tr>
<td>borde</td>
<td>0.758</td>
<td>0.084</td>
<td>0.065</td>
</tr>
<tr>
<td>T23 Granates incluidos en plaques de muscovita</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>núcleo</td>
<td>0.785</td>
<td>0.183</td>
<td>0.010</td>
</tr>
<tr>
<td>borde</td>
<td>0.727</td>
<td>0.143</td>
<td>0.010</td>
</tr>
<tr>
<td>T328 Granates incluidos en muscovita de la matriz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>núcleo</td>
<td>0.727</td>
<td>0.099</td>
<td>0.028</td>
</tr>
<tr>
<td>borde</td>
<td>0.727</td>
<td>0.084</td>
<td>0.058</td>
</tr>
<tr>
<td>T327 Granates incluidos en esmucita</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>núcleo</td>
<td>0.731</td>
<td>0.099</td>
<td>0.022</td>
</tr>
<tr>
<td>borde</td>
<td>0.787</td>
<td>0.083</td>
<td>0.079</td>
</tr>
<tr>
<td>T328 Granates incluidos en esmucita (el núcleo está reemplazado por SrBi)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>núcleo</td>
<td>0.758</td>
<td>0.083</td>
<td>0.122</td>
</tr>
</tbody>
</table>

Nota: T de referencia a 650 °C. P3: GASP (como en Tabla 5.4.3; § cálculos con sillimanita). P5: GAMB (Hodges y Crowley, 1985; como en Tabla 5.4.4). Cálculos con \(a_{\text{min}}(B) \), \(a_{\text{min}}(F&L) \) y \(a_{\text{min}}(Ch&Bp) \). czo Grt: composición de plagioclase en contacto con granates incluidos. Los estados de crecimiento asignados se refieren a los núcleos menos modificados por procesos de difusión, excepto en el caso de los granates incluidos en plaques de muscovita de la muestra T23 donde se identifican los estados (3) y (4) en el núcleo y borde, respectivamente debido a la zonación inversa en Xspl.

En las muestras T312 y T327 existen granates de la matriz del grupo II con zonación inversa Mn y Mg/Fe cuyos núcleos presentan razones Mg/Fe elevadas (ca. 0.19) y contenidos en Xspl igualmente elevados (0.05-0.1). Las presiones calculadas con estos granos son elevadas (ca. 10 kbar), similares a las calculadas para el estado (4) anterior, aunque debido a la constancia en Xspl, las presiones calculadas para los bordes son similares a las de los núcleos (Tabla 5.4.6). Esto sugiere que los cambios de P no debieron ser importantes.
durante la formación de estos granates; (si la zonación en Ca es original) o durante la retrogresión (si la zonación en Ca está afectada por procesos de difusión). Las temperaturas GARB calculadas con los núcleos de estos granates y las biotitas de la matriz son inconsistentes con la estabilidad de estaurolita (≥700°C) lo que indica su desequilibrio con la biotita de la matriz. La zonación inversa en Mg/Fe y Mn de estos granos debe relacionarse con la debil zonación inversa de los bordes del porfídoblasto #12 de la muestra T312 debida a descensos de Ti y/o P posteriores a las máximas temperaturas y/o presiones sufridas.

Los granos de granate incluidos en porfídoblastos de plagioclasa pueden utilizarse con relativa seguridad con fines barométricos debido a que no existen incertidumbres al respecto de la composición de la plagioclasa a utilizar (Tabla 5.4.6). Todos los granos analizados son consistentes con altas presiones, mayores de 10 kbar ranto en los núcleos como en los bordes. Las razones Mg/Fe de los núcleos son elevadas (≥ 0.18) lo que sugiere que el crecimiento de estos granates debe asociarse al estadio 4. La zonación en Xgrs de estos granos es débilmente normal (T330) o inversa (T328), por lo que puede que registren variaciones en Ti y/o P, o que la zonación en Xgrs haya sido modificada débilmente por procesos de difusión previos a su inclusión en los porfídoblastos de plagioclasa (es difícil imaginar que la plagioclasa intercambie Fe con el granate, ver Figura 4.6.15, T328 inc Fl). Esto es consistente con el hecho de que en los casos en que el granate incluido aparece corroído, los núcleos aparecen reemplazados por plagioclasa (AEl).

Los granates incluidos en estaurolita (más los presentes en dominios lepidolásticos de moscovita de las muestras T327 y T328) pueden relacionarse con el estadio de crecimiento (2) de los porfídoblastos, ya que presentan contenidos en Ca elevados y razones Mg/Fe relativamente bajas en los núcleos (Tabla 5.4.6). Este tipo de granate no presenta inversiones de la participación Mg/Fe respecto de la estaurolita (Figura 5.4.1), al igual que las composiciones del estadio (2) de los porfídoblastos de la muestra T312. No obstante, la ausencia de inversión en la participación podría deberse a un reajuste composicional por intercambio Mg/Fe con la estaurolita que los incluye (o a la matriz en el caso de los incluidos en dominios lepidolásticos de moscovita), por lo que estos granates podrían corresponder al estadio (4) aunque no se reconocieran actualmente composiciones ricas en Mg. Las presiones calculadas con las composiciones de los núcleos menos modificados son 12-13.3 kbar, mientras que las presiones calculadas con los bordes oscilan entre 6.5 y 9.9 (una temperatura de referencia de 650 °C), lo cual es debido a que la zonación en Xgrs es normal. El valor de estas presiones calculadas es iniciente debido al desconocimiento de la composición de la plagioclasa en equilibrio (se ha utilizado los bordes de los porfídoblastos), de la temperatura de crecimiento y de la extensión de la modificación de la zonación por procesos de difusión. Sin embargo, la zonación normal de Xgrs es consistentes con un crecimiento asociado al paso del estadio (2) al (3), lo que indicaría que la zonación en Xgrs no ha sido modificada por los procesos de difusión, a pesar de la clara modificación sufrida por Xlm, Xpp y Xspi (Figura 4.6.15, T327 inc S).

Finalmente, los granates incluidos en placas de moscovita de la muestra T23 son interesantes por presentar una zonación inversa en Xgrs (0.023 → 0.118, Figura 4.6.15). Las presiones calculadas con estos granates suponen un incremento de 4.8 kbar (campo de la silimanita) a 12 kbar de núcleo a bordo (GASP, T de referencia 650 °C, Tabla 5.4.6), similares a las calculadas para los estadios (3) y (4) de los porfídblastos de granate de la muestra T312. Al igual que para los porfídblastos con zonación oscilante en Ca de la muestra T312, los resultados barométricos anteriores son muy inciertos debido al desconocimiento de la temperatura de equilibramiento y de la composición de equilibrio de la plagioclasa, aunque es posible inferir que asociado al crecimiento de estos granates se registra un aumento de P si la zonación en Xgrs no
está modificada por la dilución (aunque si la zonación en Fe y Mg; X90 es muy baja y no muestra zonación en este caso, Figura 4.6.15).

5.4.2.4 CONCLUSIONES

La evolución P-T de los gneises pelícosos grafitosos previa a la descompresión debió incluir un calentamiento casi isobárico (¿de 10 a 8 kbar?) hasta alcanzar condiciones de temperatura relativamente elevadas (¿ > 600 °C), en consistencia con la evolución sufrida por los esquistos grafitosos de grado menor. No obstante, y como característica distintiva, en los gneises pelícos se registra una compresión subsiguiente casi isoterma (¿ > 12 kbar?) a la que se asocian al menos parte de los granates del grupo II existentes en estas rocas, así como los sobrecocimientos finales de los porfídoblastos de granate con aumento en Xgrs. Dada la pendiente negativa del equilibrio St+Ms+Qtz = Gnt+Br+Al2SiO5 en el campo de estabilidad de distintos (Figura 5.4.3), es posible que estas rocas hayan superado el límite de estabilidad de estaulota bajo condiciones de P intermedia durante esta compresión a alta T. Por tanto, la coexistencia de estaulota en estas rocas debe considerarse como una característica retrógrada (i.e., reheidratación por -ΔT o, más probablemente, por -ΔP). Con posterioridad a la compresión a alta T ocurrió la descompresión de la secuencia, que llegaría a intersectar el campo de estabilidad de andalucita. No es posible estimar las condiciones P-T asociadas a la blastesis de andalucita, debido a la ausencia de equilibrio entre los relievos de granate y plagiolasa con las micas de la matriz, aunque es claro que se alcanzaron presiones menores a 3 kbar a temperaturas de 550-600 °C. Dada la pendiente dP/dT positiva de la reacción St+Ms+Qtz = Gnt+Br+Al2SiO5 (Figura 5.4.3), debe evaluarse la posibilidad de que esta reacción se intersectara a baja P durante la descompresión, al menos en los gneises pelícos que alcanzaron mayor temperatura. Esto será considerado, entre otras cuestiones, a continuación.

5.4.3. MODELIZACIÓN DE LAS REACCIONES METAMÓRFICAS POR BALANCES DE MASA

5.4.3.1 PROYECCIÓN AFM

El análisis proyectivo de las metamólicas estudiadas es de escaso valor dadas las evidencias de desequilibrio entre las fases presentes. En la Figura 5.4.4 se presentan diagramas AFM de Thompson (1957) para los distintos tipos de rocas que complementan ciertas observaciones hechas hasta ahora. En estos diagramas los puntos de proyección son cuارzo, H2O, moscovita (medio de cada tipo de roca excluyendo los cristales producto de descomposición de granate y estaulota), ilmenita (medio de cada tipo de roca) plagiolasa (medio de cada tipo de roca, excluyendo las composiciones ricas en Ca, i.e., Xab > 0.8), MnO, ZnO y anortita (CaAl2Si2O8). Por lo tanto, los diagramas no son válidos ya que se ha proyectado desde componentes que no están saturados (Mn, Zn y Ca). En el caso del Ca, la proyección desde anortita permite variaciones en la proyección del granate en términos de Al2O3/(Al2O3+FeO+MgO), lo que refleja el zonado en grosularita. Las composiciones proyectadas de granate, estaulota y biotita corresponden a parte de las representadas en la Figura 5.4.1, esto es, bordes de porfídoblastos de granate, núcleos de granate del grupo II (o bordes si la zonación no está invertida), medio de estaulota, media de biotita de la matriz y biotitas de pseudomorfos y tardíos. La composición de cordierita para la muestra T348 (gneis pelíco cordierístico) corresponde a la media de los cristales no pinitizados que pseudomorfían estaulota. Esta composición ha sido utilizada también para representar la cordierita pinitizada de la muestra T498.
Figura 5.4.4. Diagramas AFM de Thompson (1977) para las muestras de (a) esquistos con St+Bt+Grt+And, (b) esquistos con St+Bt+Grt+Fib+And, (c) esquistos con St+Bt+Grt+Ky+Fib+And, y (d) gneises pelícos con St+Bt+Grt+Ky+Fib+And+Crd.

Debido al estado de desequilibrio de las muestras, las *tie-lines* que unen biotita, granato, estaúrolita y disteno en la Figura 5.4.4 deben considerarse exclusivamente como líneas que unen composiciones de fases en muestras individuales. Teniendo en cuenta las composiciones de los esquistos y gneises pelícos proyectadas en el diagrama AFM de la Figura 3.1.8, y las composiciones actuales de las biotitas (Figura 5.4.4), está claro que las *tie-lines* Bt-Als (andalucita) proyectadas representan las condiciones de equilibrio a baja P. La dispersión en las composiciones de biotita en los esquistos con St+Bt+Grt+And se debe presumiblemente a variaciones en el grado de reequilibrio a baja P (Figura 5.4.4a). Presumiblemente, las composiciones más ricas en Fe deben representar composiciones más reequilibradas, aunque también es posible cierta cloritización de las muestras (Capítulo 4.5.2). En los esquistos con fibrolita destaca la homogeneidad de las biotitas de la matriz, que sugiere un mayor grado de reequilibrio a baja P (Figuras 5.4.4b y c). La variación en la composición del granato resulta de la proyección desde anortita y refleja su variabilidad en
EVOLUCIÓN METAMÓRFICA DEL COMPLEJO GRÚSICO DE TORROX Y SERIES ADYACENTES

giosularia. En este tipo de rocas no se observan diferencias sustanciales entre las asociaciones sin y con
distena (Figuras 5.4.6b y c, respectivamente), aunque en una de estas últimas (T18-17) la partición Mg/Fe
entre estaurolita y granate es inversa (Figura 5.4.1). En la Figura 5.4.6b no se han representado las tie-lines St-
Ails ya que es probable que la estaurolita no coexista en equilibrio con fibrolita y andalusita. En los gneises
pélitos destacan las mayores razones Mg/Fe de los granates y las composiciones ricas en Fe de las biotitas,
lo que supone que el campo trífásico St-Grt-Bt está muy estirado (Figura 5.4.6d). De la discusión
anteriormente expuesta al respecto del estado de desequilibrio entre biotita y granate, puede inferirse que la
composiciones de biotita equilibradas con granate (y distena) bajo condiciones de P intermedia deberían ser
más ricas en Mg que las proyectadas en este diagrama. De hecho, no existen diferencias sustanciales entre
estas biotitas y las de los esquistos con fibrolita, independientemente de que, en estos últimos coexista o no
distena, lo que sugiere que todas las composiciones actuales de biotita no están en equilibrio con granate. Por
otra parte, las inversiones de la partición Mg/Fe entre estaurolita y granate son más claras en los gneises
pélitos (Figura 5.4.6d), lo cual supone que las tie-lines que unen estaurolita y distena tampoco representan
relaciones de equilibrio, al menos si se considera la composición actual de la estaurolita.

5.4.3.2 MODELIZACIÓN DE LAS REACCIONES

El estado de desequilibrio entre las fases presentes supone un serio impedimento para evaluar, no sólo
las condiciones P-T suficientes, sino las relaciones cuantitativas de reacción. No obstante, se han realizado
distintos tipos de balances de masa para reflejar las posibles relaciones de reacción. De entre todos los
modelos realizados, a continuación se presentan los más representativos.

Esquisitos con Estaurolita + Biotita + Granate + Andalusita

En estos esquisitos coexisten 10 fases (Grt, Rt, Ms, St, Pl, Br, Ilm, And, Qtz y H₂O) en el sistema de 10
componentes KNaCaFMnMATiSH (se ha excluido el Zn ya que no se dispone de análisis de este elemento
en todas las fases). Por lo tanto, si todos los componentes son significativos en la estabilización de esta
asociación, el espacio reacional presenta dimensión – 0, y no pueden extraerse relaciones de reacción
unívocamente. En este caso, las texturas reacionales (i.e., Grt → St, Grt → And, y St → And, Capítulo 3.1.1)
serían indicativas del progreso de un equilibrio divaricante. En la Tabla 5.4.7 se presentan la matriz de
coefficientes que describe las composiciones de las fases en la muestra T447, y la matriz de errores sobre las
normalizaciones estructurales asumiendo 1 % relativo para los distintos componentes en cada fase, excepto
para los componentes no analizados y/o en bajas cantidades a los que se ha asignado un error de 0.001. Los
componentes Si y H pueden excluirse del análisis que sigue ya que están en exceso al coexistir las fases Qtz y
H₂O (que también deben excluirse; cf. Fisher, 1989). Este procedimiento, además de ser completamente
 válido, es útil ya que simplifica el análisis de las incompatibilidades de fases. Por lo tanto, el rango de la
matriz de coeficientes es 8, aunque es posible encontrar una matriz de rango menor (≤ 7) mediante la técnica
de la descomposición singular de una matriz (SVD, Capítulo 5.3) que se aproxima mucho a la original
(Tabla 5.4.7). La dimensión del espacio reacional asignable a la matriz composicional modelo es m = 1, lo que
significa que existen dependencias lineales entre las fases de composición calculada. Estas dependencias
resultan en la ecuación (escrita de manera que H₂O se encuentre en la asociación producto):
<table>
<thead>
<tr>
<th>Gt</th>
<th>Rt</th>
<th>Ms</th>
<th>St</th>
<th>Pl</th>
<th>Br</th>
<th>Ilm</th>
<th>Als</th>
<th>Qte</th>
<th>H2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>0.030</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Ti</td>
<td>0.002</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Al</td>
<td>2.044</td>
<td>0.000</td>
<td>5.674</td>
<td>17.950</td>
<td>1.127</td>
<td>3.716</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Fe</td>
<td>2.336</td>
<td>0.000</td>
<td>0.094</td>
<td>2.992</td>
<td>0.000</td>
<td>2.279</td>
<td>1.815</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Mn</td>
<td>0.010</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Mg</td>
<td>0.340</td>
<td>0.000</td>
<td>0.010</td>
<td>0.042</td>
<td>0.000</td>
<td>1.037</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Ca</td>
<td>0.164</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.012</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Na</td>
<td>0.000</td>
<td>0.000</td>
<td>0.100</td>
<td>0.000</td>
<td>0.000</td>
<td>0.059</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>K</td>
<td>0.000</td>
<td>0.000</td>
<td>1.588</td>
<td>0.000</td>
<td>0.010</td>
<td>1.605</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>H</td>
<td>0.000</td>
<td>0.000</td>
<td>4.000</td>
<td>3.551</td>
<td>0.000</td>
<td>4.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Matriz de errores:

<table>
<thead>
<tr>
<th>Gt</th>
<th>Rt</th>
<th>Ms</th>
<th>St</th>
<th>Pl</th>
<th>Br</th>
<th>Ilm</th>
<th>Als</th>
<th>Qte</th>
<th>H2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>0.020</td>
<td>0.001</td>
<td>0.062</td>
<td>0.076</td>
<td>0.029</td>
<td>0.055</td>
<td>0.003</td>
<td>0.010</td>
<td>0.010</td>
</tr>
<tr>
<td>Ti</td>
<td>0.001</td>
<td>0.010</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.002</td>
<td>0.000</td>
<td>0.010</td>
<td>0.001</td>
</tr>
<tr>
<td>Al</td>
<td>0.330</td>
<td>0.001</td>
<td>0.137</td>
<td>0.179</td>
<td>0.011</td>
<td>0.037</td>
<td>0.002</td>
<td>0.020</td>
<td>0.001</td>
</tr>
<tr>
<td>Fe</td>
<td>0.023</td>
<td>0.001</td>
<td>0.010</td>
<td>0.030</td>
<td>0.001</td>
<td>0.023</td>
<td>0.018</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Mn</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.000</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Mg</td>
<td>0.003</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.018</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Ca</td>
<td>0.002</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.000</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Na</td>
<td>0.001</td>
<td>0.001</td>
<td>0.002</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.000</td>
<td>0.001</td>
<td>0.000</td>
</tr>
<tr>
<td>K</td>
<td>0.001</td>
<td>0.001</td>
<td>0.010</td>
<td>0.001</td>
<td>0.016</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>H</td>
<td>0.001</td>
<td>0.001</td>
<td>0.040</td>
<td>0.019</td>
<td>0.001</td>
<td>0.040</td>
<td>0.001</td>
<td>0.001</td>
<td>0.020</td>
</tr>
</tbody>
</table>

Residuales (matriz de coeficientes original vs. matriz calculada de rango 7, excluyendo Si + H2O y H2O):

<table>
<thead>
<tr>
<th>Gt</th>
<th>Rt</th>
<th>Ms</th>
<th>St</th>
<th>Pl</th>
<th>Br</th>
<th>Ilm</th>
<th>Als</th>
<th>Qte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>-0.020</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
</tr>
<tr>
<td>Al</td>
<td>-0.002</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
</tr>
<tr>
<td>Fe</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
</tr>
<tr>
<td>Mn</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
</tr>
<tr>
<td>Mg</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
</tr>
<tr>
<td>Ca</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
</tr>
<tr>
<td>Na</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
</tr>
<tr>
<td>K</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
</tr>
</tbody>
</table>

Razones de errores (residuales/errores estimados):

<table>
<thead>
<tr>
<th>Gt</th>
<th>Rt</th>
<th>Ms</th>
<th>St</th>
<th>Pl</th>
<th>Br</th>
<th>Ilm</th>
<th>Als</th>
<th>Qte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Al</td>
<td>0.10756</td>
<td>0.23477</td>
<td>0.01580</td>
<td>0.04704</td>
<td>0.00167</td>
<td>0.92015</td>
<td>0.51694</td>
<td>0.95942</td>
</tr>
<tr>
<td>Fe</td>
<td>0.09977</td>
<td>0.02506</td>
<td>0.09390</td>
<td>0.20457</td>
<td>0.07333</td>
<td>0.07217</td>
<td>0.00093</td>
<td>2.05256</td>
</tr>
<tr>
<td>Mn</td>
<td>0.48934</td>
<td>0.05326</td>
<td>0.19187</td>
<td>18.21164</td>
<td>0.01543</td>
<td>3.34077</td>
<td>0.03587</td>
<td>4.25028</td>
</tr>
<tr>
<td>Mg</td>
<td>0.09975</td>
<td>0.01627</td>
<td>0.06944</td>
<td>0.92574</td>
<td>0.00741</td>
<td>0.05999</td>
<td>0.01088</td>
<td>1.31765</td>
</tr>
<tr>
<td>Ca</td>
<td>0.06641</td>
<td>0.02329</td>
<td>0.08181</td>
<td>7.91994</td>
<td>0.00671</td>
<td>1.33902</td>
<td>0.01551</td>
<td>1.87882</td>
</tr>
<tr>
<td>Na</td>
<td>0.02660</td>
<td>0.00324</td>
<td>0.00619</td>
<td>1.13862</td>
<td>0.00011</td>
<td>0.22157</td>
<td>0.00222</td>
<td>0.27011</td>
</tr>
<tr>
<td>K</td>
<td>0.00530</td>
<td>0.00397</td>
<td>0.00453</td>
<td>0.19348</td>
<td>0.00016</td>
<td>0.00255</td>
<td>0.00048</td>
<td>0.04590</td>
</tr>
</tbody>
</table>

1.000 St + 0.310 Ms + 1.861 Qtz + 2.198 Rt =
= 0.118 Gt + 0.042 Pl + 0.306 Br + 1.113 Ilm + 9.248 Als + 1.938 H2O (5.128)

donde Qtz y H2O se han calculado ulteriormente por balance de masa. Esta reacción representa el equivalente multicomponente de la reacción del sistema KFMASH (St+Ms+Qtz=Gt+Br+Als+H2O), ver más adelante, lo cual implicaría que esta reacción describiría las condiciones de desaparición total de esaurolita en estas rocas bajo condiciones de baja P (debido a la coexistencia de andalúltita). Sin embargo, esto no parece posible ya que texturalmente no se observa que la descomposición de esaurolita genere la asociación And+Grt sino And+Br. Además, los
resultados barométricos obtenidos usando la composición de los bordes de los porfiroblastos de granato indican presiones elevadas, >8 kbar (Tabla 5.4.1), inconsistentes con la estabilización de Grt+And. En consecuencia, debe concluirse que la reacción anterior carece de significación petrográfica, por lo que es posible que la reducción de la espacial composicional realizada con SVD no sea ajustada, como lo indican las razones de error (error ratio = residuales/errores estimados) para algunos componentes mayores de 1 (Tabla 5.4.7), valor que no debe superarse si la nueva matriz es estadísticamente indistinguible de la anterior teniendo en cuenta la incertidumbre analítica. El desajuste del modelo anterior se apercibe en que el granate y plagioclasa se localizan en la asociación producto de la reacción (5.128), lo cual no es posible ya que son las únicas fases con cantidades de Ca significativas. Esto es el resultado de los altos residuales en Ca, e ilustra que la matriz modelo de rango 7 es distinguida de la matriz original de rango 8.

La evaluación de las relaciones de reacción entre las fases de la muestra T447 excluyendo Als (i.e., andalucita) puede dar información de los posibles procesos previos a la aparición de andalucita, ya que las composiciones de las fases utilizadas parecen haber equilibrado a presiones elevadas (Tabla 5.4.1). En este caso, el sistema de ecuaciones está sobreestimado (ya que el número de fases es menor que el número de componentes), y la modelización de matrices con rango < 7 resulta en residuales insatisfactorios. El análisis mediante métodos de regresión (eso es sin modelizar la matriz de coeficientes) resulta igualmente en residuales elevados para algunos componentes, específicamente el Ca, lo que sugiere que no existen relaciones de reacción entre las fases. Sin embargo, es posible encontrar balances de masa con residuales aceptables si se incluyen componentes de fase tales como anortita:

\[
1.000 \text{ Grt} + 1.913 \text{ Rt} + 0.160 \text{ Ms} + 0.213 \text{ H}_{2}\text{O} = \\
\text{ } - 0.113 \text{ St} + 0.024 \text{ Pl} + 0.157 \text{ Br} + 0.911 \text{ Ilm} + 1.915 \text{ Qtz} + 0.160 \text{ an}
\] (5.129)

(residuales sobre la composición del granate: Si = 0.0000, Ti = 0.0000, Al = -0.00024, Fe = 0.00029, Mn = -0.06389, Mg = -0.00329, Ca = 0.00048, Na = 0.00025, K = 0.0090, H = 0.0000; chi-cuadrado = 0.004). Este tipo de balance ha sido considerado por autores como Pijage (1982) y Lang y Rice (1985a), quienes sugieren la utilización de componentes moleculares no presentes como fases para permitir la zonación y/o el cambio composicional de las fases apropiadas durante la reacción. Giaranuta y Day (1991a) consideran que los balances así obtenidos no pueden representar asociaciones en equilibrio con varianza ≤ 2. En el presente caso es posible inferir la operatividad de este tipo de reacciones debido a la fuerte heterogeneidad composicional detectada en todas las fases. Por lo tanto, si la ecuación (5.129) representa relaciones de reacción (varianza = 3), debe concluirse que bajo condiciones no precisadas de P intermedia se generó granate por descomposición de estaurolita o, alternativamente, se generó estaurolita por descomposición de granate mediante una reacción de rehidratación. La reacción (5.129) representa el equivalente multicomponente de la reación divariable Grt+Ms+H_{2}O = Qtz+Brt+Qtz en el sistema simple KFMASH (ver más adelante y Thompson, 1976a). Tendiendo en cuenta las predicciones del sistema modelo y las relaciones de reacción entre granate, plagioclasa, moscovita y biotita (i.e., equilibrio GAMB), puede concluirse que +ΔP y/o +ΔT darían lugar a crecimiento de granate, mientras que -ΔP y/o -ΔT producirían crecimiento de estaurolita. Como ya se ha adelantado y se discute más adelante, es muy probable que la reacción (5.129) refleje el crecimiento de estaurolita a partir de granate durante la descompresión, lo que permite explicar la variabilidad en el valor y signo de ln(K_{D}^{Mg}Fe^{2+}Mg^{2+}) detallado en estas rocas (Figura 5.4.1).
Esquistos con Estaurolita+Biotita+Granate+Fibrolita+Andalucita+Distena

Modelizaciones con otras muestras de esquistos con Sr+Bt+Grt+And resultan en reacciones similares a (5.128) que localizan al granate en el producto. Sin embargo, la generación de andalucita a baja P en estas rocas debe relacionarse con reacciones de descomposición de estaurolita y granate, aunque para apreciar estas relaciones de reacción es necesario tener en cuenta las variaciones en la composición de las micas y plagioclasas en muestras individuales. Esto no es posible en los esquistos con Sr+Bt+Grt+And debido al limitado número de análisis disponibles de las distintas fases en muestras individuales. En cambio, en los esquistos con Sr+Bt+Grt+Fib+And(FeK) estas limitaciones no existen en algunas muestras, específicamente en la muestra T329. En esta muestra coexisten 11 fases (Grt, Rt, Ms, Pl, Br, IIm, Fib, And, Qtz y H2O) en el sistema de 10 componentes KNaCaFMnMgTiAlS, aunque en el análisis de las relaciones de reacción no es posible distinguir los polimorfos de los silicatos de Al si estos se representan por la molécula estequiométrica Al2SiO5, por lo que el número de fases a considerar es 10 y, en principio, la dimensión del espacio reaccional es 0. Sin embargo, pueden modelizarse las composiciones originales de las 10 fases (incluyendo 1 análisis de moscovita con alto Si-Ms1, 1 análisis de biotita tardía asociada a andalucita-Bt2a, y 1 análisis de plagioclasa tardía de alto Ca-P12) y encontrar una matriz de coeficientes de rango menor muy próxima a la matriz original, aunque la estadística no es muy buena para algunos componentes en algunas fases (Tabla 5.4.8). Esta reducción supone que la dimensión del espacio reaccional es -1, y la reacción entre las fases sería (Qtz y H2O calculados por balance de masa):

\[
0.022 \text{Grt} + 1.000 \text{St} + 0.380 \text{Ms1} + 2.247 \text{Rt} + 1.244 \text{Qtz} = \\
= 0.392 \text{Bt2a} + 0.045 \text{Pl} + 9.209 \text{Als} + 1.091 \text{IIm} + 1.911 \text{H2O}
\]

\[(5.130)\]

| Table 5.4.8. Datos aplicables al análisis del espacio reaccional para la muestra T329 (esquito con Sr+Bt+Grt+Fib+And). |
|---|---|---|---|---|---|---|
| | Grt | St | Ms1 | Rt | Bt2a | Pl1 |
| borde | medio | alto Si | alto Ti | alto Ca | Pl2 | Alm | Qtz | H2O |
| Si | 3.017 | 7.479 | 6.324 | 0.000 | 5.437 | 2.748 | 1.000 | 0.000 | 1.000 | 0.000 |
| Ti | 0.001 | 0.135 | 0.056 | 1.000 | 0.314 | 0.000 | 0.006 | 2.081 | 0.000 | 0.000 |
| Al | 1.964 | 17.881 | 5.244 | 0.000 | 3.625 | 1.242 | 2.000 | 0.002 | 0.000 | 0.000 |
| Fe | 2.301 | 2.841 | 0.137 | 0.000 | 2.681 | 0.000 | 0.024 | 1.726 | 0.000 | 0.000 |
| Mn | 0.550 | 0.096 | 0.001 | 0.000 | 0.034 | 0.000 | 0.000 | 0.102 | 0.000 | 0.000 |
| Mg | 0.259 | 0.504 | 0.193 | 0.000 | 1.536 | 0.000 | 0.000 | 0.006 | 0.000 | 0.000 |
| Ca | 0.403 | 0.000 | 0.001 | 0.000 | 0.003 | 0.368 | 0.000 | 0.000 | 0.000 | 0.000 |
| Na | 0.000 | 0.000 | 0.138 | 0.000 | 0.067 | 0.712 | 0.000 | 0.000 | 0.000 | 0.000 |
| K | 0.000 | 0.000 | 1.623 | 0.000 | 1.572 | 0.014 | 0.000 | 0.000 | 0.000 | 0.000 |
| H | 0.000 | 3.870 | 4.000 | 0.000 | 4.000 | 4.000 | 0.000 | 0.000 | 0.000 | 2.000 |

<table>
<thead>
<tr>
<th></th>
<th>Pl2</th>
<th>Alm</th>
<th>Qtz</th>
<th>H2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>bajo Ca</td>
<td>bajo Si</td>
<td>bajo Ti</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.867</td>
<td>3.152</td>
<td>5.344</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>1.229</td>
<td>5.679</td>
<td>3.256</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>0.007</td>
<td>2.811</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.026</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>0.075</td>
<td>1.639</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>0.162</td>
<td>0.002</td>
<td>0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.080</td>
<td>0.192</td>
<td>0.047</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.016</td>
<td>1.636</td>
<td>1.635</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.000</td>
<td>4.000</td>
<td>4.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Razones de errores (residuales/errores estimados), excluyendo Si y H y las fases Qtz y H2O para la matriz modelo de rango = 7
Por comparación con la ecuación (5.128) derivada de la misma manera para el esquisto T447 con Sr+Br+Grt+And, esta ecuación sí parece representar las relaciones de reacción asociadas a la descomposición, ya que estaurolita y granate se localizan como reactantes y la plagioclase es producto de reacción. Esta ecuación (5.130) no representa el equivalente multicompONENTE de la reacción univariante terminal de estaurolita en el sistema simple KFMASH (Sr+Ms+Qtz = Grt+Br+AlS+H₂O), lo cual es consistente con las texturas observadas. Dado que el cohexidiente de granate es muy pequeño en la ecuación (5.130), la reacción está controlada esencialmente por la descomposición de estaurolita, que en términos del sistema simple KFMASH puede describirse como la reacción divariant e Sr+Ms+Qtz = Br+AlS+H₂O (ver más adelante y A.B. Thompson, 1976a). Nótese que esto explica porque la mayor parte de las texturas reaccionales que implican a andalucita (y, en menor medida, fibroblasto) se identifican como reemplazamientos de estaurolita, y rara vez se encuentran reemplazamientos de granate. En consecuencia, se considera que la ecuación (5.130) es representativa de los procesos reacciónales de descomposición de estaurolita sufridos por estas rocas durante la descomposición.

Aunque la reacción (5.130) describe bien las relaciones de de reacción en los esquistos con Sr+Br+Grt+Fib+And, es conveniente considerar el efecto de las variaciones composicionales en las micas y plagioclasa. Esto es equivalente a considerar las relaciones de reacción entre los subconjuntos de una sola muestra, una de P intermedia (asociación 1) y otra de baja a P (asociación 2), lo cual es posible mediante la técnica SVD. Las composiciones que se han añadido a las utilizadas anteriormente son de plagioclasa precoz con bajo Ca (P1), moscovita tardía pobre en Si (Ms2) y biotita tardía asociada a pseudomorfos con granate con bajo Ti (Bt2b) (Tabla 5.4.8). Debe notarse que las dos composiciones de biotita utilizadas son tardías (rica en Ti, Bt2a y pobre en Ti, Bt2b), debido a la inexistencia de composiciones de biotita en equilibrio con granate representativas de las condiciones de P intermedia. El procedimiento seguido en este caso ha sido similar a los anteriores (i.e., excluir Si e H₂O, Qetz), aunque se ha considerado oportuno utilizar la matriz original (10 x 13) y no modelizar una matriz de coeficientes de rango menor debido a los problemas asociados a las elevadas razones de error encontradas para algunos componentes en algunas fases. Consecuentemente el espacio reacional puede modelizarse mediante 3 reacciones independientes. El número total de reacciones en esta asociación es de 55, de las cuales 5 incluyen incompatibilidad entre Grt, St, Ms1, Pl1 y Rt y localizan las dos composiciones de biotita en el producto de reacción:

<table>
<thead>
<tr>
<th></th>
<th>Grt</th>
<th>St</th>
<th>Ms1</th>
<th>Pl1</th>
<th>Rt</th>
<th>Bt2a</th>
<th>Bt2b</th>
<th>Ms2</th>
<th>Pl2</th>
<th>AlS</th>
<th>Ilm</th>
<th>Qtz</th>
<th>H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>1.000</td>
<td>3.672</td>
<td>0.035</td>
<td>1.539</td>
<td>-0.095</td>
<td>-0.507</td>
<td>-3.043</td>
<td>0.000</td>
<td>-8.941</td>
<td>-0.796</td>
<td>-0.165</td>
<td>-1.983</td>
<td>(5.131)</td>
</tr>
<tr>
<td>0.000</td>
<td>1.000</td>
<td>3.500</td>
<td>0.050</td>
<td>1.668</td>
<td>-0.617</td>
<td>-0.000</td>
<td>-2.681</td>
<td>-0.016</td>
<td>-8.994</td>
<td>-0.802</td>
<td>0.128</td>
<td>-1.938</td>
<td>(5.132)</td>
</tr>
<tr>
<td>1.000</td>
<td>-0.000</td>
<td>8.093</td>
<td>3.118</td>
<td>0.595</td>
<td>-0.000</td>
<td>-0.775</td>
<td>-7.254</td>
<td>-3.347</td>
<td>-0.213</td>
<td>-0.300</td>
<td>-4.934</td>
<td>-0.122</td>
<td>(5.133)</td>
</tr>
<tr>
<td>1.000</td>
<td>-0.000</td>
<td>7.222</td>
<td>3.140</td>
<td>0.762</td>
<td>-0.801</td>
<td>0.000</td>
<td>-6.695</td>
<td>-3.371</td>
<td>-0.294</td>
<td>-0.310</td>
<td>-4.486</td>
<td>-0.053</td>
<td>(5.134)</td>
</tr>
<tr>
<td>0.000</td>
<td>1.000</td>
<td>3.747</td>
<td>0.035</td>
<td>1.540</td>
<td>0.000</td>
<td>-0.601</td>
<td>-3.118</td>
<td>0.000</td>
<td>-8.932</td>
<td>-0.795</td>
<td>-0.222</td>
<td>-1.992</td>
<td>(5.135)</td>
</tr>
</tbody>
</table>

La consideración de dos composiciones de biotita distintas en la asociación producto puede considerarse poco ortodoxa desde el punto de vista del análisis del espacio reacional entre dos asociaciones, que deberían incluir una biotita en la asociación reactante y otra en la asociación producto. Sin embargo, este análisis refleja las relaciones de reación de estas rocas ya que permite explicar las texturas reaccionales observadas.
(Capítulo 3.1.1) y las variaciones composicionales en las biotitas tardías en términos del efecto de balances de masa locales en las reacciones de descomposición de granate y estaurolita durante la descomposición (Capítulo 4.5). Así, la reacción de descomposición de estaurolita (5.132) es Gt-ausente y B2M (de bajo Ti)-ausente, e implica una elevada proporción de Als en el producto, transferencias netas importantes de Ti entre de los óxidos Fe-Ti y la biotita de alto Ti asociada a andalucita y producto de descomposición de estaurolita, y una escasa proporción de plagioclase en el producto (Alp = Pl2 - Pl1). Por otra parte, la reacción de descomposición de granate (5.133) es St-ausente y B2M (de alto Ti)-ausente, implica una menor proporción de Als en el producto, una elevada cantidad de plagioclase en el producto, y transferencias netas menos importantes de Ti entre los óxidos Fe-Ti y la biotita de bajo Ti que pseudomorfiza al granate.

Greises Pelícicos con Estaurolita+Biotita+Granate+Díctima+Fibrolita+Andalucita

Las relaciones de reacción en los greises pelícicos son más complicadas de establecer debido a las heterogeneidades composicionales de granates (porfídoblastos y grupo II) y plagioclase (porfídoblastos con zonación oxidante). Por ejemplo, las posibles reacciones que dieron lugar a la blastesis de los granates del grupo II no son evaluables debido a la incertidumbre respecto a las composiciones del resto de las fases. El análisis resultante de la consideración de los bordes de los porfídoblastos de granate y bordes de los porfídoblastos de plagioclase se ilustra a continuación para la muestra T312, donde coexisten 10 fases (i.e., considerando los tres polimorfas de Als como una sola fase) en el sistema de 10 componentes (Tabla 5.4.9). Nótese que para esta muestra la modelización de la matriz de coeficientes mediante la técnica SVD es satisfactoria ya que la matriz modelo de rango = 7 implica unas razones de error que en todos los casos es menor de 1 (Tabla 5.4.9). La reacción obtenida con esta matriz modelo (dimensión del espacio reaccional = 1) es:

\[
\begin{align*}
0.070 \text{ Gt} & +(pfd-b) + 1.000 \text{ St} + 0.402 \text{ Ms} + 2.326 \text{ Bt} + 1.055 \text{ Qtz} = \\
& = 0.395 \text{ Bt} + 0.065 \text{ Pl} + 1.171 \text{ Ilm} + 9.290 \text{ Als} + 1.612 \text{ H}_2\text{O} \\
\end{align*}
\]

(5.136)

Esta reacción es similar a la (5.130), deducida anteriormente para el esquisito con fibrolita T329, y, de manera similar a aquel caso, puede considerarse representativa de las relaciones de reacción asociadas a la descomposición ya que estaurolita y granate se localizan como reactantes y la plagioclase es producto de reacción. Dado que la reacción (5.136) no representa el equilibrio multicomponente de la reacción univariante terminal de estaurolita en el sistema simple KFMASH, podría suponerse que la coexistencia de isótopos en estas rocas no se debe a que se hayan alcanzado las condiciones propias de la reacción St+Ms+Qtz = Gt+Bt+Ky+H2O. Sin embargo, esto no es posible seguirlo de este balance de masa ya que las composiciones de estaurolita y biotita no representan las condiciones de equilibrio a P intermedia (i.e., en equilibrio con granate). La consideración de otras composiciones de biotita, tales como las incluidas en los núcleos de los granates en el borde del grupo II, no cambia esta situación ya que se obtienen reacciones similares a (5.136). Para dilucidar si es posible que las asociaciones St+Bt+Grt+Ky representen relaciones de reacción asignables a la desaparición de estaurolita, es necesario considerar la zonación oxidante en Ca de los porfídoblastos de granate de la muestra T312.

Más arriba se consideró que la composición de los bordes de granate con \(X_{grs} = \) mínimo (i.e., \(X_{grs} = 0.019 \)) representa un estado de crecimiento progresado (estadio 3) durante el cual coexistieron estaurolita y granate probablemente en equilibrio. A partir de este estado, el incremento en \(X_{grs} \) y Mg/Fe del granate hacia
el estudio 4 (bordes) podría representar la operatividad de la reacción terminal de estaurolitita (o su equivalente multicomponente), que sería responsable de la blastesis de granate y distena, como lo sugiere la inversión de la partición Mg-Fe entre estaurolitita y los bordes de estos granates. Por lo tanto, al análisis anterior se ha añadido la composición de los bordes de granate con X_{eq} = mínimo, lo que supone considerar 11 fases en el sistema de 10 componentes y un espacio reacional de dimensión = 1 sin necesidad de modelizar la matriz de coeficientes. La reacción resultante:

$$1.000 \text{ St} + 0.458 \text{ Ms} + 2.745 \text{ Rt} + 0.297 \text{ Grt (pdf-b bajo Ca)} + 0.666 \text{ Qtz} =$$

$$= 0.020 \text{ Grt (pdf-b)} + 0.450 \text{ Br} + 0.074 \text{ Pl} + 1.370 \text{ Ilm} + 9.550 \text{ Al} + 1.614 \text{ H$_2$O}$$ \hspace{1cm} (5.137)

Supone que la generación de los bordes del granate+Br+K_y es el resultado del equivalente multicomponente de la reacción terminal de descomposición de estaurolitita en el sistema KFASH. De ser así, la operatividad de la reacción (5.137) debe asignarse a condiciones propias de estabilidad de distena en base a los resultados barométricos anteriormente presentados. Aunque la composición de biotita utilizada en el balance de masa no está en equilibrio con los bordes de los granates, la consideración de otras composiciones de biotita no cambia los resultados anteriores.

Tabla 5.4.9. Datos aplicables al análisis del espacio reacional para la muestra T312 (gneis pélico con St+Br+Grt+K_y+Fib+And).

<table>
<thead>
<tr>
<th></th>
<th>Grt</th>
<th>St</th>
<th>Ms</th>
<th>Rt</th>
<th>Br</th>
<th>Pl</th>
<th>Ilm</th>
<th>Al</th>
<th>Qtz</th>
<th>H$_2$O</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pdf-b</td>
<td>pdf</td>
<td>mjn</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>Si</td>
<td>2.994</td>
<td>2.827</td>
<td>6.251</td>
<td>0.000</td>
<td>5.857</td>
<td>2.846</td>
<td>0.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Ti</td>
<td>0.006</td>
<td>0.019</td>
<td>0.034</td>
<td>1.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Al</td>
<td>2.015</td>
<td>17.703</td>
<td>5.440</td>
<td>0.000</td>
<td>3.482</td>
<td>1.151</td>
<td>0.000</td>
<td>2.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Fe</td>
<td>3.246</td>
<td>3.085</td>
<td>0.124</td>
<td>0.009</td>
<td>2.829</td>
<td>0.000</td>
<td>1.844</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Mg</td>
<td>0.496</td>
<td>0.058</td>
<td>0.117</td>
<td>0.000</td>
<td>1.543</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Ca</td>
<td>0.154</td>
<td>0.000</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
<td>0.192</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Nb</td>
<td>0.800</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>K</td>
<td>0.000</td>
<td>0.000</td>
<td>1.566</td>
<td>0.000</td>
<td>1.591</td>
<td>0.018</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>H</td>
<td>0.000</td>
<td>3.193</td>
<td>4.000</td>
<td>0.000</td>
<td>4.000</td>
<td>0.000</td>
<td>0.000</td>
<td>2.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Razones de error (residuales/errores estimados), excluyendo Si y H y las fases Qtz y H$_2$O para la matriz modelo de rango 7:

<table>
<thead>
<tr>
<th></th>
<th>Grt</th>
<th>St</th>
<th>Ms</th>
<th>Rt</th>
<th>Br</th>
<th>Pl</th>
<th>Ilm</th>
<th>Al</th>
<th>Qtz</th>
<th>H$_2$O</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pdf-b</td>
<td>pdf</td>
<td>mjn</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>Ti</td>
<td>0.0000</td>
</tr>
<tr>
<td>Al</td>
<td>0.0003</td>
<td>0.0009</td>
<td>0.0004</td>
<td>0.0005</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Fe</td>
<td>0.0007</td>
<td>0.0028</td>
<td>0.0002</td>
<td>0.0001</td>
<td>0.0003</td>
<td>0.0005</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Mg</td>
<td>0.0132</td>
<td>0.0359</td>
<td>0.0124</td>
<td>0.0020</td>
<td>0.0070</td>
<td>0.0012</td>
<td>0.0015</td>
<td>0.0015</td>
<td>0.0008</td>
<td>0.0000</td>
</tr>
<tr>
<td>Ca</td>
<td>0.0015</td>
<td>0.0015</td>
<td>0.0001</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Nb</td>
<td>0.0017</td>
<td>0.0008</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>K</td>
<td>0.0003</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

El mismo tipo de cálculo anterior para el gneis pélico T327, donde coexisten granates del grupo II cuyos núcleos no presentan inversión de la partición Mg-Fe con los porfidoblastos de estaurolitita que los incluyen, resulta en la siguiente reacción (11 fases en el sistema de 10 componentes, Tabla 5.4.10):
0.128 Grt (inc-Sr, núcleo) + 1.000 St + 0.107 Ms + 0.801 Rt + 2.818 Qtz =

= 8.166 Als + 0.951 Grt (pfd-b) + 0.105 Bt + 0.015 Pl + 0.458 Ilm + 1.588 H₂O

(5.138)

Esta reacción sugiere igualmente que se alcanzaron las condiciones de estabilidad de estaurolita (*Qtz*+*Ms*). El hecho de que no puedan distinguirse los polimorfos de Al₂SiO₅ en los balances de masa podría hacer pensar que los anteriores no representan procesos reacionales bajo condiciones de P intermedia (campo de la distena), sino bajo condiciones de baja P. Sin embargo, esto es poco probable por las mismas razones que se indicaron al respecto de los esquistos con St+Bt+Grt+And, esto es, por la ausencia de evidencia textural que indique la blastesis de And+Grt a baja P a partir de descomposición de estaurolita. Por lo tanto, la compresión detectada a presiones intermedias en los gneises pelíticos (Figura 5.4.3) cobra cierto sentido si se relaciona con la blastesis de distena y granate (alto Ca), a pesar de las incertidumbres asociadas a los cálculos termobarométricos.

<table>
<thead>
<tr>
<th>Grt</th>
<th>Grt</th>
<th>St</th>
<th>Als</th>
<th>Bt</th>
<th>Ms</th>
<th>Pl</th>
<th>Ilm</th>
<th>Qtz</th>
<th>H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>pfd-b</td>
<td>incSt(n)</td>
<td>Si</td>
<td>2.996</td>
<td>2.983</td>
<td>7.729</td>
<td>1.000</td>
<td>0.000</td>
<td>5.446</td>
<td>6.255</td>
</tr>
<tr>
<td>Ti</td>
<td>0.000</td>
<td>0.003</td>
<td>0.156</td>
<td>0.000</td>
<td>1.000</td>
<td>0.264</td>
<td>0.007</td>
<td>0.000</td>
<td>2.042</td>
</tr>
<tr>
<td>Al</td>
<td>1.972</td>
<td>1.965</td>
<td>17.771</td>
<td>2.000</td>
<td>0.000</td>
<td>3.609</td>
<td>5.416</td>
<td>1.182</td>
<td>0.000</td>
</tr>
<tr>
<td>Fe</td>
<td>2.908</td>
<td>2.299</td>
<td>3.200</td>
<td>0.000</td>
<td>0.000</td>
<td>2.701</td>
<td>0.138</td>
<td>0.000</td>
<td>1.820</td>
</tr>
<tr>
<td>Mg</td>
<td>0.039</td>
<td>0.067</td>
<td>0.072</td>
<td>0.000</td>
<td>0.000</td>
<td>0.018</td>
<td>0.001</td>
<td>0.000</td>
<td>0.091</td>
</tr>
<tr>
<td>Mg</td>
<td>0.437</td>
<td>0.305</td>
<td>0.519</td>
<td>0.000</td>
<td>0.000</td>
<td>1.522</td>
<td>0.161</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Ca</td>
<td>0.058</td>
<td>0.457</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.003</td>
<td>0.000</td>
<td>0.199</td>
<td>0.000</td>
</tr>
<tr>
<td>Na</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.197</td>
<td>0.766</td>
<td>0.000</td>
</tr>
<tr>
<td>K</td>
<td>6.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.154</td>
<td>0.169</td>
<td>0.019</td>
</tr>
<tr>
<td>H</td>
<td>0.000</td>
<td>0.457</td>
<td>3.166</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>2.000</td>
</tr>
</tbody>
</table>

Relaciones de Reacción con Cordierita en los Gneises Pelíticos

La existencia de cordierita fresca en algunas muestras de gneises pelíticos confiere cierta singularidad a los procesos reacionales ocurridos a baja P en estas rocas, que se han evaluado cuantitativamente en la muestra T348, donde se dispone de análisis de esta fase sin alterar. En esta muestra, el número de posibles combinaciones de composiciones de fases es elevado debido, sobre todo, a los amplios espectros composicionales de las micas (Capítulo 4.4.5.1 y 4.5.4, Tabla 5.4.11). Considerando la asociación Grt (pfd-b de alto Ca), St, Ms (porfídrastos de alto Si), Bt, Ilm, Bt (de alto Ti producto de estaurolita), Pl (matriz), Cnd, Als (Andaluca), Qtz, y H₂O, la reacción resultante es (11 fases - 10 componentes = 1 reacción, no necesitándose de modelizaciones mediante SVD):

0.055 Grt (pfd-b alto Ca) + 1.000 St + 0.936 Ms (alto Si) + 1.490 Bt + 0.451 Cnd =

= 0.623 Ilm + 0.939 Bt (pfo St) + 0.085 Pl (matriz) + 10.482 Als + 0.387 Qtz + 1.909 H₂O

(5.139)

Como puede apreciarse, esta reacción localiza la cordierita como fase reactante junto con estaurolita, granate y moscovita en contra de todas las evidencias texturales. La misma situación se obtiene excluyendo el rutilo, que no coexiste en la muestra (aunque es previsible que originalmente coexistiera). Excluyendo la fase Als del
análisis, la reacción modelo localiza St+Bi+Rt como reactante y Grt+Ms+Crd+Ilm como producto, lo cual es inconsistente con las texturas reaccionales. Además, las razones de error asociadas la matriz modelo de rango 7 (excluyendo Si e H y Qtz y H2O) son inaceptables para algunos elementos menores como el Mn (e.g., 49 y 33 para biotita y cordierita, respectivamente).

Si se consideran las composiciones de fases asociadas en texturas reaccionales específicas (i.e., St → Crd, Grt → Crd, y Ms → Crd), las reacciones obtenidas son también inconsistentes con las texturas observadas. Así, en la reacción (obtenida una vez modelizada la matriz de coeficientes para un rango = 7, excluyendo Si e H y Qtz y H2O):

\[
\begin{align*}
1.000 \text{ St} + 0.718 \text{ Ms (mtrx)} + 1.729 \text{ Rt} + 0.396 \text{ Crd} + 0.488 \text{ Qtz} = \\
= 0.764 \text{ Ilm} + 0.739 \text{ Bt (pro St)} + 0.083 \text{ Pl (mtrx)} + 10.372 \text{ Als} + 1.873 \text{ H2O}
\end{align*}
\]

(5.139a)

aplicable a las texturas St → Crd, la cordierita es reactante junto con estaurolita. Esta situación no cambia si se considera moscovita de alto Si (es moscovita de bajo Si) o si se excluye el rutilo. La exclusión de Als permite localizar Crd como producto, aunque en las reacciones modelo resultantes la biotita es reactante, lo cual es inconsistente con las texturas reaccionales (además, las modelizaciones de la matriz de coeficientes para un rango 6 resultan en residuales muy altos).

<table>
<thead>
<tr>
<th>Grt</th>
<th>Grt</th>
<th>St</th>
<th>Bt</th>
<th>Bt</th>
<th>Bt</th>
<th>Bt</th>
<th>Ms</th>
<th>Ms</th>
<th>Ms</th>
<th>Ms</th>
<th>Ms</th>
<th>Pl</th>
<th>Ilm</th>
<th>Crd</th>
</tr>
</thead>
<tbody>
<tr>
<td>p6d</td>
</tr>
<tr>
<td>alto Ti bajo Ti</td>
<td>alto Ti bajo Ti</td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>3.992</td>
<td>3.998</td>
<td>3.555</td>
<td>5.612</td>
<td>5.243</td>
<td>5.243</td>
<td>5.171</td>
<td>5.171</td>
<td>5.171</td>
<td>5.171</td>
<td>5.171</td>
<td>5.171</td>
<td>5.171</td>
<td>5.171</td>
</tr>
<tr>
<td>Ti</td>
<td>0.005</td>
<td>0.001</td>
<td>0.126</td>
<td>0.314</td>
<td>0.451</td>
<td>0.044</td>
<td>0.382</td>
<td>0.316</td>
<td>0.118</td>
<td>0.050</td>
<td>0.073</td>
<td>0.023</td>
<td>0.009</td>
<td>0.000</td>
</tr>
<tr>
<td>Fe</td>
<td>1.899</td>
<td>2.254</td>
<td>2.574</td>
<td>2.570</td>
<td>1.875</td>
<td>2.806</td>
<td>2.846</td>
<td>2.682</td>
<td>2.223</td>
<td>0.594</td>
<td>0.136</td>
<td>0.110</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Mn</td>
<td>0.024</td>
<td>0.022</td>
<td>0.022</td>
<td>0.022</td>
<td>0.001</td>
<td>0.016</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Mg</td>
<td>0.591</td>
<td>0.494</td>
<td>0.505</td>
<td>1.815</td>
<td>1.902</td>
<td>1.724</td>
<td>1.471</td>
<td>1.451</td>
<td>0.576</td>
<td>0.075</td>
<td>0.195</td>
<td>0.128</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Ca</td>
<td>0.525</td>
<td>0.165</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>Na</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.067</td>
<td>0.038</td>
<td>0.061</td>
<td>0.062</td>
<td>0.061</td>
<td>0.062</td>
<td>0.061</td>
<td>0.062</td>
<td>0.061</td>
<td>0.062</td>
<td>0.061</td>
</tr>
<tr>
<td>K</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.597</td>
<td>1.603</td>
<td>1.573</td>
<td>1.600</td>
<td>1.615</td>
<td>1.632</td>
<td>1.692</td>
<td>1.660</td>
<td>1.299</td>
<td>0.017</td>
<td>0.026</td>
</tr>
<tr>
<td>H</td>
<td>0.000</td>
<td>0.000</td>
<td>3.829</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Respecto de las texturas Grt → Crd, la situación es similar. La reacción (una vez modelizada la matriz de coeficientes para un rango 7, excluyendo Si e H y Qtz y H2O):

\[
\begin{align*}
1.000 \text{ Grt} + 3.463 \text{ Ms (mtrx)} + 6.073 \text{ Crd} + 4.310 \text{ Ilm} + 0.316 \text{ H2O} = \\
= 5.621 \text{ Bt (pro Grt alto Ti)} + 1.283 \text{ Pl (mtrx)} + 17.550 \text{ Als} + 6.542 \text{ Rt} + 16.760 \text{ Qtz}
\end{align*}
\]

(5.139b)

localiza la cordierita como reactante, y reacciones similares se obtienen si se consideran las composiciones de moscovita de alto Si y de biotita producto de granate de bajo Ti. Si además se incluyen otras composiciones de micas para permitir cambios composicionales en las mismas, se obtienen reacciones imposibles que, por ejemplo, localizan la moscovita fengítica de alto Si en el producto de reacción. En todos los casos, la cordierita es reactante y Als producto. Excluyendo Als, las reacciones obtenidas localizan cordierita como reactante, si se consideran Ms (mtrx) y Bt (pro Grt), o como producto, si se consideran Ms (alto Si), Ms (pro Grt) y Bt (pro Grt), aunque en este último caso la biotita aparece como reactante y la moscovita de alto Si como producto.
Para la descomposición de los porfídoblastos de moscovita fengítica (Capítulo 6.4.5) se han ensayado un gran número de modelos basados en distintas combinaciones de las fases Ms (alto Si), Bt (intercética), Crd (de los pseudomorfos de estaurolita), Ilm, Qtz, H$_2$O, Pl (matriz y porfídoblastos), Als, Rt. Considerando todas estas fases el sistema de 10 componentes, la reacción resultante en base a la matriz modelo de rango 7 (i.e., excluyendo Si e H y Qtz y H$_2$O) es:

$$
1.000 \text{ Ms (alto Si)} + 0.701 \text{ Als} + 0.103 \text{ Ilm} + 0.083 \text{ Pl} = \\
= 0.914 \text{ Ms (bajo Si)} + 0.046 \text{ Bt} + 0.227 \text{ Crd} + 0.262 \text{ Rt} + 0.513 \text{ Qtz} + 0.080 \text{ H}_2\text{O} \quad (5.139c)
$$

Esta reacción puede parecer apropiada ya que cordierita y biotita se localizan en el producto, aunque no parece describir bien las texturas reaccionales ya que la ilmenita aparece como reactante, y no se han observado intercercimientos de rutilo. La exclusión del rutilo supone localizar la ilmenita como producto, pero la biotita es reactante junto con la moscovita de alto Si, lo cual no es posible. Por otra parte, la exclusión de Als (que no está implicado directamente en las texturas) implica que la cordierita es reactante junto con la moscovita de alto Si, lo que tampoco es posible. Dada la escasa transferencia de masa en términos de Ca y Na implicada en la descomposición de moscovita, se ha evaluado el espacio reacional en el sistema de 8 componentes KFMnMATiSH excluyendo el Ca y condensando por proyección desde NaK$_2$.

Este procedimiento es conveniente ya que estos componentes presentan las razones de error más elevadas (> 1) en las matrices modelo calculadas con SVD para los casos anteriores. Las reacciones obtenidas en este caso excluyendo plagioclase y considerando (1) todas las fases, (2) excluyendo rutilo y (3) excluyendo Als, son similares a los casos respectivos discutidos anteriormente, aunque difieren en los valores absolutos de los coeficientes.

La modelizaciones excluyendo al mismo tiempo Rt y Als, tanto en el sistema de 10 u 8 componentes, resulta en reacciones consistentes con las texturas observadas. En el caso del sistema KFMnMATiSH, la reacción es:

$$
1.000 \text{ Ms (alto Si)} = \\
= 0.851 \text{ Ms (bajo Si)} + 0.025 \text{ Bt} + 0.117 \text{ Crd} + 0.022 \text{ Ilm} + 0.646 \text{ Qtz} + 0.246 \text{ H}_2\text{O} \quad (5.139d)
$$

Sin embargo, las razones de error asociadas a la matriz modelo de rango 6 (incluyendo Qtz y H$_2$O) de los elementos Al, Fe y Mg en las moscovitas de alto y bajo Si son aceptables (hasta 44 para el Mg en la moscovita de bajo Si). La situación mejora condensando por proyección desde MnMg$_{1/4}$ (o MnFe$_{1/4}$), y si se condensa ulteriormente el sistema por proyección desde FeMg$_{1/4}$ (i.e., KMATiSH) la reacción resultante es:

$$
1.000 \text{ Ms (alto Si)} + 0.079 \text{ Crd} = \\
= 0.808 \text{ Ms (bajo Si)} + 0.137 \text{ Bt} + 0.012 \text{ Ilm} + 1.271 \text{ Qtz} + 0.110 \text{ H}_2\text{O} \quad (5.139e)
$$

que, aunque no presenta problemas de residuales, localiza a la cordierita como reactante junto con la moscovita fengítica.

Estas inconsistencias en los balances de masa (5.139d y 5.139e) para explicar las texturas reaccionales en las moscovitas fengíticas del gneis pelítico con cordierita T348 son el resultado de varios factores, entre los que pueden señalarse: (1) deficiencias en las normalizaciones estructurales (específicamente Fe$^{3+}$ en las micas), (2) la no correspondencia entre la composición de la cordierita asociada a pseudomorfos de
estaurolita y la localizada en los intercercimientos de muscovita, (3) la necesidad de incorporar otras fases a las reacciones. Este último aspecto es importante, ya que la elevada proporción de biotita y cordierita intercercada en los porfidooblástos de muscovita no favorece una mera descomposición de los componentes fengíticos de la muscovita. Sin embargo, la implicación de otras fases resulta en inconsistencias entre las predicciones de los balances de masa y las texturas reaccionales observadas, como se ha indicado más arriba al respecto de las reacciones (5.139), (5.139a), (5.139b) y (5.139c).

El hecho de que no se obtengan relaciones de reacción consistentes con la producción de cordierita contrasta con las texturas reaccionales que implican la descomposición de estaurolita y granate y la producción de cordierita. Este problema puede resolverse si se considera que la descomposición de estas fases en equilibrio debería haber dado lugar a la asociación And+Bt como en el resto de las muestras de gneísicos pelíticos y esquistos grafitositos, y que esta asociación debería haber reaccionado ulteriormente para generar la asociación And+Bt+Crd sin implicar granate y estaurolita. La modelización de la descomposición de St y Grt para dar And+Bt en la muestra T348 resulta en reacciones similares a las calculadas anteriormente para los esquistos grafitositos y gneísicos pelíticos:

\[
\begin{align*}
0.011 \text{ Grt} + 1.000 \text{ St} + 0.520 \text{ Ms (alto St)} + 1.853 \text{ Rt} + 1.169 \text{ Qtz} &= \\
= 0.527 \text{ Bt (pto St)} + 9.361 \text{ Als (And)} + 0.017 \text{ Pl} + 0.885 \text{ Ilm} + 1.914 \text{ H}_2\text{O} &\quad (5.140a)
\end{align*}
\]

(con residuales aceptables excepto para el Mn). Una vez generada esta asociación, la reacción estable que debería haber dado lugar a cordierita, sin implicar las fases reactantes en la reacción (5.140a) sino a las fases de la asociación Bt+And+Ms+Ilm+Pl+Qtz+H₂O sería:

\[
\begin{align*}
1.000 \text{ Bt (mtrx)} + 0.229 \text{ Pl} + 8.428 \text{ Als (And)} + 2.555 \text{ Qtz} + 0.077 \text{ H}_2\text{O} &= \\
= 1.038 \text{ Ms (mtrx)} + 2.091 \text{ Crd} + 0.189 \text{ Ilm} &\quad (5.140b)
\end{align*}
\]

(el número de fases consideradas es 8 en el sistema de 10 componentes, por lo que esta modelización conlleva una elevada incertidumbre debida a elevados residuales). Por lo tanto, los balances de masa que localizan a la cordierita como reactante no tienen significado petrogenético, pero los balances que localizan cordierita en el producto al excluir Als (ver más arriba) deben considerarse como reacciones metastables de descomposición de estaurolita, granate y muscovita para dar cordierita. Estas conclusiones se confirman más adelante al considerar las predicciones de sistemas modelo y las evidencias de otras asociaciones naturales.

5.4.4. Relaciones P-T-X en Sistemas Modelo

La integración de todos los datos presentados en un modelo de evolución metamórfica es una labor complicada, ya que deben explicarse una gran variedad de observaciones, incluyendo:

1. la extremada variabilidad composición y textural de los granates,
2. las inversiones de la zonación de los granates,
3. las inversiones de la partición Mg-Fe entre estaurolita y granate,
4. las texturas de reemplazamiento precoces de los granates II incluidos en porfidooblástos,
5. la ausencia de variaciones Mg/Fe en estaurolita con el grado metamórfico.
El punto (1) anterior ha sido discutido previamente en relación con los resultados termobarométricos, que sugieren una evolución metamórfica dominada por calentamiento casi isobárico, seguida de una compresión casi isotérmica durante el crecimiento de los granates. Esto resulta permitir deducir varios estados de crecimiento del granate en las rocas de grado apropiado. Las relaciones entre los puntos (2), (3), y (4) se introdujeron anteriormente al considerar el origen de las inversions de la partición Mg:Fe entre esbaulita y granate. En base a los datos petrográficos, composicionales, y relaciones de fases y cálculos termobarométricos, el proceso de inversión de la zonación en las granates del grupo II deber relacionarse con su reemplazamiento y con la blastesis de pordkoblastos de esbaulita ya que estos últimos forman parte de la asociación producto localizada en los núcleos de los granates de granate pseudomorfizados. La inversión de la zonación puede interpretarse como un reajuste composicional relacionado con reacciones que involucran consumación de granate y generación de esbaulita a temperaturas relativamente elevadas dentro de la evolución de cada tipo de roca. Estos procesos reaccionales podrían representar estados iniciales de la descompresión sufrida por la secuencia metamórfica ya que han dado lugar a características de desequilibrio, como la inversión de la partición Mg:Fe entre esbaulita y granate, correlacionales con el resto de evidencias al respecto encontradas en estas rocas (e.g. ausencia de equilibrio entre granate y biotita). No obstante, es importante evaluar esta hipótesis en términos de las predicciones de sistemas modelo, ya que cualquier evolución PT propuesta supone el progreso de una serie de reacciones intersectadas secuencialmente, que deben ser consistentes con la secuencia de texturas reaccionales encontradas.

5.4.4.1. RELACIONES PT-X EN EL SISTEMA KFMAISH

Desde el trabajo de Albee (1965a), el análisis del sistema KFMAISH ha sido objeto de numerosos estudios (e.g., Brown, 1975; A. B. Thompson 1976a y b; Harte y Hudson, 1976; Loomis y Nimick, 1982; Spear y Silverstone, 1983; Bickie y Archivald, 1984; Delor et al., 1984; Lang y Rice, 1985b; Triboulet y Audren, 1985; Paterson y Harte, 1985; Klaper y Bucher-Nurminen, 1987; Spear, 1988b; Sebastián y Martínez, 1988; Spear y Cheney, 1989; Powell y Holland, 1990; Paterson y Tracy, 1991), que generalmente han enfatizado las relaciones entre las observaciones en rocas naturales de series progradas y las predicciones resultantes del análisis del sistema modelo considerando aumentos de temperatura. En este trabajo se presentan las relaciones de fases calculadas variando P, y se recurre a los resultados de los trabajos anteriores para explicar los aspectos que pueden relacionarse con el metamorfismo progrado previo a la descompresión.

Las predicciones del sistema KFMAISH no pueden compararse directamente con las rocas naturales dadas las complicaciones introducidas por otros componentes extra (e.g., Ca, Na, Mn, Ti,...). La presencia de estos componentes extra puede modificar sustancialmente las topologías y reacciones operativas ya que, según la regla de las fases, el número de fases posibles aumenta para cualquier asociación. No obstante, la discusión que sigue es valiosa ya que las reacciones en el sistema modelo KFMAISH pueden considerarse como los mecanismos reaccionales (i.e., reacciones más simples) operativos que explican reacciones macroscópicas más complejas (ver Kerrick et al., 1991). Así, las predicciones del sistema KFMAISH permiten interpretar las texturas reaccionales descritas en el Capítulo 3.1.1 y las relaciones de fases discutidas más arriba ya que las reacciones modelo en el sistema KNaCaFeMnMATISH presentadas en el apartado anterior representan los equivalentes multicomponentes de reacciones mas simples en el sistema KFMAISH.

Debido a los problemas encontrados en la identificación de las reacciones de formación de cordierita, por el momento se considera el espacio reaccional entre las fases Qtz-Ms-H2O-Bt-S-Grt-Als (Ky-Sis-And) en el sistema KFMAISH. En este sistema de 6 componentes el espacio reaccional aplicable a una composición
dada, formada por combinaciones de las fases anteriores puede describirse mediante combinaciones apropiadas de los componentes de fase: SiO₂ (qtz), K₂Al₆Si₄O₂₀(OH)₄ (ms), K₂Mg₆Al₂Si₄O₂₀(OH)₄ (phl), K₂Mg₆Al₂Si₄O₂₀(OH)₄ (ann), Mg₆Al₂Si₄O₁₂ (prp), Fe₃Al₂Si₆O₁₆ (alm), Mg₆Al₁₈Si₇₃O₂₅(OH)₄ (Mgsit), Fe₆Al₁₈Si₇₃O₂₅(OH)₄ (Fe-st), Al₂SiO₅ (alto), y H₂O. Alternativamente, también puede considerarse las relaciones entre los 7 componentes moleculares que encuentran proyección en el sistema KASHM (o KMASH) y los tres vectores de intercambio [MgFe₄]Grt, [MgFe₄]Sp, [MgFe₄]Bl (J.B. Thompson, 1982b). Para los sistemas saturados en SiO₂ y H₂O, existen 4 reacciones divariantes en el sistema KMASH que implican la ausencia de una fase AFM. Así, la coexistencia divariable de Br+Grt+Ms+Qtz+H₂O, aplicable a las rocas estudiadas bajo condiciones de P intermedia, se describe mediante 9 (componentes de fase) - 6 (componentes del sistema) = 3 reacciones linealmente independientes de transferencia neta y/o de intercambio (ver A.B. Thompson, 1982b, Spear et al., 1982b). En este caso, una de las reacciones es de transferencia neta en el sistema KASHM y dos de intercambio MgFe₄:

\[
\begin{align*}
1/2 \text{Fe-st} + 23/24 \text{ann} + 4 \text{qtz} & \rightarrow [\text{Al}]/31/12 \text{alm} + 23/24 \text{ms} + \text{H}_2\text{O} \\
\text{ann} + \text{prp} & \rightarrow \text{phl} + \text{alm} \quad (\Rightarrow [\text{MgFe}_4]^{\text{Grt}} - [\text{MgFe}_4]^{\text{Bl}}) \\
\text{Fe-st} + \text{prp} & \rightarrow \text{Mgsit} + \text{alm} \quad (\Rightarrow [\text{MgFe}_4]^{\text{Grt}} - [\text{MgFe}_4]^{\text{Bl}})
\end{align*}
\]

La fase que aparece entre corchetes en la reacción (5.141) es la fase ausente, y sirve para nombrarla siguiendo la notación de Schreinemakers (ver Kozinski, 1959 y Zen 1966). Resolviendo simultáneamente las respectivas igualdades ΔC°p = R·T·InK para los equilibrios (5.141)-(5.143) se describen las dependencias P-T-X entre las fases implicadas en el equilibrio divariable (e.g., A.B. Thompson, 1976a y b). De la misma manera pueden describirse el resto de los equilibrios divariantes [Grt], [Bt], y [St] mediante las reacciones:

\[
\begin{align*}
1/2 \text{Fe-st} + 1/3 \text{ms} + 8.5/6 \text{qtz} & \rightarrow \text{[Grt]}/1/3 \text{ann} + 31/6 \text{als} + \text{H}_2\text{O} \\
1/2 \text{Fe-st} + 12.5/6 \text{qtz} & \rightarrow \text{[Bt]}/23/6 \text{als} + 2/3 \text{alm} + \text{H}_2\text{O} \\
\text{ann} + 4 \text{als} + 2 \text{qtz} & \rightarrow \text{[St]}/2 \text{alm} + \text{ms}
\end{align*}
\]

y las reacciones de intercambio MgFe₄ apropiadas (nótese que para la reacción (5.145) el subsistema a considerar es FMASH). En términos geológicos estas reacciones divariantes describen las relaciones P-T-X de los campos trisfásicos Br-Grt-St [Als], Br-Als-St [Grt], Als-Grt-St [Bt] y Br-Als-Grt [St] en la proyección AFM de Thompson (1957).

Las relaciones P-T-X asociadas a la coexistencia univariante de las 7 fases St+Br+Grt+Als+Ms+Qtz+H₂O se describen por 4 de las reacciones anteriores, resolviendo simultáneamente para las respectivas igualdades ΔC°p = R·T·InK. Por ejemplo, pueden utilizarse las reacciones (5.141), (5.142), (5.143) y (5.145), aunque otras combinaciones son posibles exceptuando una reacción de transferencia neta y tres de intercambio Mg-Fe ya que existirían dependencias lineales entre estas tres últimas y el espacio reaccional no quedaría definido. Si la partición Mg-Fe entre las fases granate, estaurolita y biotita es tal que (MgFe₄)Grt < (MgFe₄)Sp < (MgFe₄)Bl (i.e., partición normal) el equilibrio univariante KASHM entre las 7 fases anteriores se describe mediante la reacción discontinua:

\[
\text{St} + \text{Ms} + \text{Qtz} = \text{Bt} + \text{Grt} + \text{Als} + \text{H}_2\text{O}
\]

(5.147)
(e.g., A.B. Thompson, 1976a y b; Harte y Hudson, 1979; Spear y Cheney, 1989). Esta reacción, cuya estequiometría exacta depende del punto P-T en el cual se evalúa, define el límite superior de estabilidad de estaurolita para cualquier composición saturada en SiO₂ y H₂O en el sistema KFMASH. Así, no es posible la presencia de estaurolita bajo las condiciones P-T propias de la porción estable de la reacción [Si], independientemente de que el sistema esté o no saturado en SiO₂ y H₂O (ver Figura 5.4.5).

Si la partición Mg/Fe entre estaurolita y granito es inversa, de manera que (Mg/Fe)_{St} < (Mg/Fe)_{Grt} < (Mg/Fe)_{Bt}, el equilibrio univariante se describe mediante la reacción discontinua:

\[\text{St} + \text{Bt} + \text{Qz} = \text{Ms} + \text{Grt} + \text{Als} + \text{H}_{2}\text{O} \] (5.148)

Esta diferencia resulta en un cambio topológico importante ya que la reacción (5.148) no es terminal en el sentido de A.B. Thompson (1976a), y la asociación diana St-Grt-Als [Bt] es posible a temperaturas superiores de las propias de la reacción univariante (5.148). Por lo tanto, la estabilidad de estaurolita es posible en el sistema KFMASH bajo condiciones P-T correspondientes a la porción estable de la reacción [St] para composiciones ricas en Fe (ver Figura 5.4.5).

La coexistencia de las 4 fases AFM Grt-St-Bt-Als en el sistema modelo KFMASH es también posible si el sistema no está saturado en H₂O (e.g., Greenwood, 1975). En este caso, la coexistencia de las 4 fases AFM definen un equilibrio diana donde el potencial químico del componente H₂O está internamente controlado por la asociación de fases (ver Rumble 1977; Guidotti, 1974; Lang y Rice, 1985a; Garamita y Day, 1991a). En el análisis que sigue, esta posibilidad se excluye ya que el sistema se considera saturado en H₂O, aunque más adelante se volverá sobre este problema dada la presencia de Grt-Bt-St-Ky en los gneisos pelíticos donde coexiste grafito.

En la Figura 5.4.5 se muestran secciones isothermas pseudobinarias P-X_{Fe} y diagramas de compatibilidad AFM de A.B. Thompson (1957) calculados a distintas presiones a partir de las pseudosecciones P-X_{Fe} respectivas. Las secciones pseudobinarias y los diagramas de fases se han calculado mediante (1) el método de Gibbs, usando la base de datos termodinámicos de Spear y Cheney (1989), tomada en gran parte de Berman et al., 1985 y consistentemente con la base de Berman, 1988), y (2) mediante la técnica de resolución simultánea de igualdades \(AG^o = -R-T\ln K \) usando la base de datos de Holland y Powell (1990). Las relaciones de fases calculadas mediante el método de Gibbs se han evaluado a 650 °C (Figura 5.4.3). Aunque es quizás algo elevada, esta temperatura es apropiada para las rocas estudiadas (particularmente los gneisos pelíticos) ya que las reacciones que interesan se localizan a temperaturas relativamente altas. A esta temperatura (1) queda excluida la intersección del equilibrio univariante Cld+Ms+Qz = Grt+Bt+H₂O y de equilibrios univariantes que involucran clorita (Spear y Cheney, 1989, y Figura 5.4.3), que claramente fueron superados por las rocas estudiadas durante la evolución progresiva, y (2) permite una buena visualización del efecto del cambio de polimorfo de Als estable sobre las composiciones de equilibrio al variar la presión. Por otra parte, las relaciones de fases calculadas mediante la técnica de resolución simultánea de igualdades \(AG^o = -R-T\ln K \) se han evaluado a 600 °C debido a que las reacciones que interesan se localizan a menores temperaturas en el espacio P-T usando la base de datos termodinámicos de Holland y Powell (1990), lo que resulta en fuerzas mayores en los rangos de presión a los que una determinada reacción diana esté operativa a una misma temperatura. Por esta razón, el campo estable de la sillimanita es muy reducido en la sección pseudobinaria P-X_{Fe} correspondiente de la Figura 5.4.5.
Evolution mésocyclique de coulées de type de forme et séries d'coefficients

Figure 5.2. Sériation mésocyclique de coulées de forme et séries d'coefficients de forme (1989) et d'orientation (1990)

Base de données de Holland et Powell (1980)
Existen otras muchas e importantes diferencias entre ambos diagramas que son independientes de la temperatura de cálculo. Además de las ya mencionadas (partición Fe-Mg entre estaurolita y granate y la naturaleza de los equilibrios univariantes), entre éstas destacan la localización de los equilibrios divariantes en los sistemas extremos KFASH y KMASH, particularmente la localización del equilibrio [Bt], la geometría de los loops que describen los equilibrios divariantes, el efecto de los polimorfos de Al₂SiO₅ en los mismos y, lógicamente, las diferentes topologías AFM resultantes (Figura 5.4.5). Las predicciones de ambos cálculos al respecto de los equilibrios divariantes [Als], [St] y [Grt] son similares, no obstante.

Debe señalarse que las relaciones de fases presentadas en la Figura 5.4.5 no son completas ya que no se ha considerado la presencia de otras fases como clorita y cordierita. Parte de las superficies P-T-X calculadas pueden, por lo tanto, ser metastables para composiciones magnéticas bajo determinadas condiciones respecto de equilibrios que involucren clorita y/o cordierita, y por ende, los diagramas de fases AFM calculados no definen topologías completas. Sin embargo, la mayor parte de las características de las rocas estudiadas pueden evaluarse con los equilibrios presentados en la Figura 5.4.5 ya que la composición de las rocas estudiadas es rica en Fe (Capítulo 3.1.2 y Figura 3.1.8).

En la Figura 5.4.5 es aparente que no existen cambios en la partición Mg:Fe entre estaurolita y granate en los diagramas considerados independientemente al variar la presión, lo cual también aplica a cálculos isóbáricos. Como se indicó anteriormente, esto es el resultado de considerar la solución de estaurolita como una mezcla Fe-Mg ideal. Aunque posiblemente esto no sea así, en este trabajo no se considerará el probable comportamiento azeotrópico del intercambio Fe-Mg entre estaurolita y granate. Al considerar la observación de (Mg/Fe)₀ > (Mg/Fe)₀ como una evidencia de desequilibrio, toda la discusión que sigue se centra sobre los cálculos realizados con la base de datos de Spear y Cheney (1989), aunque se harán algunas referencias al diagrama calculado con la base de datos de Holland y Powell (1990). Algunos aspectos interesantes de la Figura 5.4.5 que conviene resaltar son:

- El progresivo aumento de la razón Mg/Fe en el granate a aumentar la presión. Esto mismo se observa con la temperatura en el campo de la distena, pero no en el campo de la sillimanita (e.g., Spear y Silverstone, 1983; Lang y Rice, 1985b).
- La combinación de granate con la descompresión, ya sea bajo las condiciones de estabilidad de estaurolita o por encima de ellas (a alta y baja P).
- La inversión del sentido de la reacción [Grt] al pasar del campo de estabilidad de la distena (Bt + Ky + H₂O → St + Ms + Qtz) al campo de sillimanita y andulacita (St + Ms + Qtz → Bt + SiO₂ + And + H₂O). Este comportamiento no se observa en los cálculos con la base de datos de Holland y Powell (1990).
- El progresivo descenso en la razón Mg/Fe de estaurolita y biotita al descender la presión en todas las reacciones divariantes, excepto en la reacción [Grt] en el campo de estabilidad de la distena.

Como se muestra a continuación, las texturas observadas en las rocas estudiadas son consistentes con la operatividad de los equilibrios representados en la Figura 5.4.5, aunque su descripción completa necesita de otras fases y componentes, lo cual será considerado más adelante.

Esquistos Grafíticos con Estaurolita+Biotita+Granate+Andulacita

A presiones y temperaturas intermedias, la asociación de fases AFM estable bajo condiciones de estabilidad de estaurolita para una composición global rica en Fe y moderadamente alumínica es Grt+St+Bt [Als]. Un aumento isóbárico de T, o isotermo de P, implicaría consumición de St+Bt y un aumento de
Mg/Fe en el granate por el progreso de la reacción [Als] (Figura 5.4.5). Estas relaciones permiten correlacionar los incrementos de Mg/Fe en los bordes de los porfidoblastos de granate (donde X_{Fe} es muy baja y apenas varía) de los exquisitos con St+Gr+Grt+And con la operatividad de la reacción [Als] bajo las condiciones de P intermedia (i.e., 8-10 kbar). Esto supone que el crecimiento de granate en estas rocas no se debe exclusivamente al progreso de reacciones de descomposición de clorita, sino también de estaurolita (cf. Tracy et al., 1976; Thompson et al., 1977a y b). Este progreso de la reacción [Als] se debe a aumentos de temperatura, dados los resultados de la modelización de la zonación de los granates de estas rocas por el método de Gibbs (Figura 5.4.2) y la ausencia de evidencias al respecto de la compresión isobárica detectada en los gneises pelícanos (Figura 5.4.3).

Una vez alcanzadas las condiciones P-T de los bordes de los porfidoblastos de granate y comienza la descomposición de la secuencia, la evolución de estas rocas estaría marcada por consumición de granate y crecimiento de St+Bi mediante la reacción divariant [Als], siempre que el sistema disipase de H_{2}O ya que la reacción operaría en este caso en el sentido de rehidratación. Las predicciones del sistema modelo implican un progresivo desplazamiento hacia composiciones ricas en Fe de las tres fases AFM durante una descomposición isotérmica, tanto si la partícula Mg-Fe entre granate y estaurolita es normal o inversa (Figura 5.4.5). El reajuste composicional del granate podría verificarse si se tiene en cuenta su zonación, de manera que el progreso de la reacción [Als] expondría secciones de granate con Mg/Fe progresivamente menores. No obstante, si la presión desciende de manera rápida, el progreso de la reacción [Als] estaría controlado por el proceso cinéticamente más lento, que presumiblemente sería la disolución de granate. Por lo tanto, la composición de las secciones expuestas del granate reactante presentarían razonables Mg/Fe mayores que las esperables de unas condiciones P-T de equilibrio dadas. De esta manera la reacción [Als] progresaría en desequilibrio, y la composición de estaurolita y biotita presentarían razonables Mg/Fe en desequilibrio con los bordes del granate. Estas circunstancias, que suponen una velocidad de reacción baja, permiten explicar la eventual inversión de la partícula Mg-Fe entre estaurolita y granate, y las elevadas temperaturas GARB calculadas, por lo que pueden considerarse aplicables en estas rocas durante la descomposición. Así, la descomposición irreversible de granate por sobrepaso extensivo de la reacción [Als] daría lugar a biotita y estaurolita de composiciones ricas en Fe, y dependiendo de la extensión de la descomposición de un determinado porfidoblasto de granate se podrían detectar inversiones de la parición o particiones normales. Debe inferirse, por lo tanto, que la tasa de descomposición fue alta bajo condiciones de P intermedia, esto es, desde el inicio de la descomposición. La temperatura relativamente baja sufrida por estas rocas durante la descomposición (ca. 550 ºC) y/o la disponibilidad de H_{2}O necesaria para el progreso de [Als] pueden condicionar también la baja velocidad de reacción por comparación con la velocidad de descomposición.

La predicción de la historia reacional, asumiendo una trayectoria de descomposición en un sistema cuya composición sea rica en Fe y donde inicialmente coexistan de St+Grt+Bi a P intermedia, es consistente con las texturas reacionales y asociaciones de fases observadas en estas rocas. Nótese que la predicción del sistema modelo en términos de evolución topológica AFM para una descomposición isotérmica implica la rotación de tie-lines hacia el polo Fe. Esta rotación es esencialmente debida al cambio composicional en la biotita, que como se ha indicado antes debe hacerse rica en Fe. Si se parte de la asociación St+Grt+Bi la rotación de tie-lines durante la descomposición localizaría a la composición global del sistema cada vez más cerca de la tie-line St-Bi, consumiendo granate y produciendo St+Bi mediante [Als]. En consecuencia, la estaurolita de estas rocas no sería exclusivamente el resultado de la descomposición progresiva de clorita y/o cloritoide. Cuando la composición global del sistema intersectara la tie-line St-Bi, el granate no debería
coexistir (i.e., debería haberse consumido totalmente) y la asociación devendría trivariante. Una rotación ulterior de las tie-line (i.e., descompresión) localizaría la composición global del sistema en el campo trífase divariable St+Bi+Al, apareciendo silicato de Al por descomposición de estaurolita mediante la reacción [Grt] (Figura 5.4.5). Dada la coexistencia exclusivamente de andalucita en estas rocas, es claro que la intersección de la composición del sistema con la tie-line St-Bi se verificó en el campo de la andalucita. La reacción [Grt] consume estaurolita y produce Bi+Al, de manera que la tie-line Bi-Al se acercaría a la composición del sistema. Finalmente, al intersectar la composición del sistema la tie-line Bi-Al la estaurolita debería desaparecer, siendo la asociación estable Bi-Al. Esta secuencia reacional es la encontrada en estas rocas, donde se detecta blastesis de estaurolita (+Bi) sin a tardíamente (i.e., asociada a la descompresión) por consumición de granate, y blastesis ulterior de andalucita (+Bi) por estaurolita.

La persistencia de granate junto con St+Bi+And puede ser entendida como una evidencia de desequilibrio y/o como el resultado de los componentes extra. En este último caso, la descomposición de estaurolita y granate durante la descompresión podría ser debida a una única reacción de{ (i.e., univariante) que generase la asociación And+Bi. Aunque esto es ciertamente posible, las texturas y los balances de masa sugieren que el proceso de descomposición de granate (→ St+Bi) es independiente de, y anterior al, proceso de descomposición de estaurolita (→ And+Bi) en consistencia con la reacción reacional predicha por el sistema modelo, aunque no se excluye la participación de otras fases debido a componentes extra (como se ejemplifica en los balances de masa presentados en el apartado 5.4.3). Por lo tanto, la persistencia del granate bajo las condiciones de la reacción [Grt] se debe a los problemas cinéticos relacionados con su disolución, de manera que la reacción [Al] seguiría procediendo metastablemente a baja P al mismo tiempo que la reacción estable para esas condiciones [Grt]. La operatividad de ambas reacciones [Al] y [Grt] produciría igualmente la asociación And+Bi a través de un proceso irreversible fuertemente desplazado del equilibrio. Esto puede explicar las texturas de los porfídoblastos de granate que aparecen pseudomorfizados por asociaciones decusadas de micas (2Qtz 2Fl).

La presencia de andalucita como único polimorfo de Al en estas rocas no es necesariamente interpretable como evidencia de que la trayectoria P-T de estas rocas no interfirió el campo de la silimanita durante la descompresión, y de hecho, es muy probable que así lo hiciera si se asume el punto triple de Holdaway (1971, 501 °C). La no generación de silimanita (i.e., fibrolita) a pesar de haberse intersectado su campo de estabilidad es posible para un sistema rico en Fe sometido a una descompresión bajo condiciones de P y T tales que la reacción univariante (5.147) pudiera intersectarse en el campo de la andalucita durante la descompresión. Así, la composición del sistema intersectaría la asociación trífase St+Bi+And a baja P, mientras que para las condiciones propias de estabilidad de silimanita la asociación presente en estas rocas sería St+Bi+Grt, por lo que no se habría generado fibrolita durante la descompresión. El diagrama construido con la base de datos de Spear y Cheney (1989) de la Figura 5.4.5 no es consistente con la situación descrita anteriormente debido a la alta temperatura a la que ha sido calculado, aunque sí lo es el diagrama calculado con la base de datos de Holland y Powell (1990), en la Figura 5.4.5, donde la porción estable de [Grt] intersecta el campo de la andalucita (aunque en un rango de P mínimo).

Esquistos Gafitosos con Estaurolita+Biottita+Granate+Fibrolita+Andalucita+DisTellita

El modelo anterior puede extenderse a los esquistos gafitosos con fibrolita considerando que estas rocas alcanzaron temperaturas algo superiores a las esquistos con St+Bi+Grt+And. La secuencia de texturas observadas es igualmente consistente la operatividad de la reacción [Al] durante la descompresión, tal y
cómo lo demuestra el desarrollo de inversiones en la zonación de los granates del grupo II y su reemplazamiento en los núcleos por St+Bt (tMg).

La inversión de la zonación en los granates del grupo II puede ser explicada como la tendencia de estos a reajustar su composición mediante la reacción [AlS] durante los primeros estadios de la descompresión, ya que la composición del grano en la asociación St+Bt+Grt debe hacerse más rica en Fe (y Mn, ver Spear, 1988) al desceder P (Figura 5.4.5). Nótese que, al menos en algunas rocas (T307-7 y T320), la composición de la biotita de los pseudomorfos de núcleos de granate II incluidos en porfidoblastos de estaurolita y plagioclasa presenta razones Mg/Fe algo mayores que las de la matriz (Figura 5.4.1), en consistencia con las predicciones del sistema modelo ya que la composición de las primeras debe corresponder a condiciones de mayor presión. En este sentido, es importante señalar que no es posible generar estas texturas (i.e., consumir granate y producir St+Bt) mediante la reacción [AlS] por incrementos de T (cf. Spear 1988b), por lo que es necesario relacionar el desarrollo de esta textura con procesos enfriamiento o, más probablemente, de descompresión (Figura 5.4.5).

Estas texturas indican que el proceso difusional de reajuste composicional del granate no fue lo suficientemente efectivo como para homogeneizar estos granos, a pesar de su tamaño de grano tan fino y las temperaturas más elevadas (cf. Spear, 1988c; 1991; Florence y Spear, 1991), lo cual sugiere de nuevo una descompresión relativamente rápida. Bajo estas circunstancias, la descomposición de los núcleos de los granates del grupo II, menos modificados por procesos de difusión y con razones Mg/Fe más elevadas que los bordes, debió ser claramente irreversible ya que las composiciones de estos núcleos estarían desplazadas de la superficie P-T-X de equilibrio correspondiente a la reacción [AlS]. Esto permite explicar la eventual inversión de la partición Mg-Fe entre estaurolita y los núcleos de los granates del grupo II de la misma manera que en los esquistos con St+Bt+Grt+And.

En estas rocas no se observa inversión de la partición Mg-Fe entre los bordes de los porfidoblastos de granate y estaurolita. Esto puede explicarse si la reacción [AlS] progresó más en estas rocas que en los esquistos con andalucita durante la descompresión, ya que los porfidoblastos de granate habrían expuesto a la matriz composiciones progresadas más ricas en Fe que los bordes finales. Inversión de la partición se detecta sólo en granates del grupo II incluidos en porfidoblastos de plagioclasa, i.e., protegidos de disoluciones ulteriores. El hecho de que esta inversión de la partición se detecte en rocas con distintas se discutirá más adelante.

Por otra parte, la probable mayor temperatura alcanzada y el mayor progreso de la reacción [AlS] en estas rocas respecto de los esquistos con andalucita (para un descenso similar en presiones) puede explicar también (1) la escasez y ausencia de porfidoblastos de granate en bastantes muestras, que habrían sido consumidos totalmente y (2) el desarrollo de fibrolita. Aunque la nucleación de fibrolita puede tener lugar en el campo de estabilidad de la silimanita (ver Kerrick, 1990), se sugiere que éste no es el caso de las rocas estudiadas, al menos para una gran parte de la fibrolita contenida en ellas. Es probable que la rotación de las tectópas durante la descompresión permitiese que la composición global de los sistemas intersectara el campo trifásico St+Bt+Als a presiones mayores que para el caso de los esquistos con andalucita. Esto es, durante la descompresión la reacción [Grt] fue operativa en estas rocas en el campo de la silimanita, y posteriormente en el campo de la andalucita, produciendo la secuencia Fib+St → And+Bt exclusivamente por rotación de las tectópas. Por lo tanto, la presencia o ausencia de fibrolita en las rocas estudiadas (y en otras unidades alpujarriadas) no puede considerarse directamente como una evidencia de metamorfismo progresado (i.e., resultante de incrementos de T). Esta conclusión está de acuerdo con Torres-Roldán (1981) y contradice
las interpretaciones texturales de otros autores (e.g., Elorza, 1979; Cuevas, 1988) basadas en criterios esencialmente progresados.

Parte de la fibrolita de estas rocas podría ser también el resultado de la descomposición metaestable de granate ya que, si parte del granate persiste durante la descomposición una vez que se intersectaron los campos St+Br → St+Br+Al → St+Br+And, el producto de la reacción [Al] sería St+Ky, que posiblemente no llegara a formarse debido a la operatividad de la reacción [Grt] que supone consumición de St y formación de Fib+Br (y And+Br). Esto permite explicar también el reemplazamiento radió de los escuadros poríduoblastos de granate relictos por Br(Mst+Quz+Pl).

Gneises Pelíticos con Estaurolita+Biotita+Granato+Distena+Fibrolita+Andalucita

También en este caso se aplican lo esencial de los modelos anteriores en cuanto a la explicación de los mecanismos reacionales y texturas relacionados con la descomposición (e.g., desarrollo secuencial de Fib+Br → And+Br por rotación de las icosedras). Sin embargo, es necesario considerar los aspectos relativos a la trayectoria anterior a la descomposición final y la coexistencia de distena (i.e., 4 fases AFM a P intermedia). Como se ha sugerido en el apartado de termobarometría, es probable que estas rocas sufrieran un incremento de P posterior al calentamiento casi isobárico y anterior a la descomposición final. Dada la pendiente negativa del equilibrio univariante (5.147) St+Ms+Qtz = Grt+Al+Br+H₂O en el campo de la distena (Figura 5.4.3), este incremento de P pudo permitir la intersección de este equilibrio a presiones intermedias dentro del campo de estabilidad de distena, aunque finalmente volviéra a intersectarse en sentido inverso durante la descomposición. Por lo tanto, la coexistencia de 4 fases AFM en estas rocas puede considerarse como:

- una evidencia de desequilibrio (i.e., la estaurolita fue consumida y posteriormente volvió a crecer coexistiendo con la asociación relictua Gt+Ky+Br);
- el resultado del efecto de los componentes extra (i.e., el sistema KIMASH no puede describir correctamente las relaciones de fases, de manera que otros componentes ajenos al sistema estabilizan una de las 4 fases: e.g., Ca en Gt, Mn en Gt, Za en St, Ti en Br).
- la asociación mineral en estas rocas controla el potencial químico de H₂O en el fluido (i.e., el sistema no está saturado en H₂O y/o otros componentes están presentes en el fluido tales como CO₂, CH₄, ...).

Estas tres posibilidades han sido consideradas en numerosas ocasiones para explicar la coexistencia de más fases que las predichas por la regla de las fases en sistemas simples, i.e., excluyendo las relaciones de reacción univariante entre ellas. Para la caso de la coexistencia de las 4 fases AFM estaurolita, biotita, silicato de Al y granate, el lector puede consultar el trabajo de Giaramita y Day (1991b) para una revisión reciente de la literatura al respecto y los distintos autores que han favorecido las diferentes hipótesis. En el presente caso, es probable que las tres hipótesis hayan contribuido a la coexistencia de las 4 fases, aunque la más importante debe ser la coexistencia en desequilibrio (excluida por Giaramita y Day (1991b) como causística generalizable dada la abundancia de esta asociación en la naturaleza) dadas las inversiones de la partición Mg-Fe entre estaurolita y granate.

El hecho de que la reacción (5.147) (o su equivalente en sistemas multicomponentes) fuese intersectada por estas rocas en condiciones de P relativamente elevadas, y por lo tanto que la coexistencia de St+Br+Grt+Ky no represente una asociación de equilibrio, viene sugerido además por otras observaciones. En primer lugar, la distribución de la zonación en la razón Mg-Fe de los porifdoblastos de la muestra T312 sufre una inflexión en el paso del borde recrecido donde X₉₃ desciende al borde final donde X₉₃ aumenta,
esto es, coincidiendo con la sección del granate generado durante la compresión isotérmica previa a la descomposición. Esta inflexión supone que el incremento en Mg/Fe es más moderado en la zona externa del borde que en la parte interna (ver Figura 4.6.7). Esto es interpretable como el resultado de la operatividad de reacciones distintas (cf. Tracy et al., 1976; Trzcinski, 1977; Spear, 1988h y c), y es consistente con lo predecible a partir del sistema modelo KFMASH. Como puede apreciarse en la Figura 5.4.5, la secuencia reaccional [Als] → (5.147) → [St] intersectada por incrementos de P supone generación de granate cuya razón Mg/Fe aumentaría hacia el borde, pero lo zonación sufriría una inflexión al intersectarse (5.147) y subsecuentemente progresar [St] de manera que el incremento en Mg/Fe debido a esta última sería menos acusado que el generado por la operatividad de la reacción [Als]. En segundo lugar, el hecho de que el valor absoluto de la razón Mg/Fe de los bordes de los porfidioblastos de granate no reabsorbidos sea distintivamente más elevado que en los esquistos grafíticos (i.e. > 0.18), es indicativo de condiciones de P y/o T más elevadas. Aunque como se ha indicado, el progreso de la reacción [St] por incrementos de P supone incrementar la razón Mg/Fe en el granate en equilibrio con Bt + Ky (Figura 5.4.5), Spear y Silverstone (1983), indicaron que incrementos de T también pueden explicar un aumento de Mg/Fe en el granate por la operatividad de la reacción [St] en el campo de la distena (aunque no en el campo de la silimanita y/o andalucita). Contrariamente, las relaciones derivadas por Thompson (1976a y b) sugieren que incrementos de T resultarían en descenso de Mg/Fe en el granate al operar la reacción [St]. En cualquier caso, debe excluirse la posibilidad de incrementos de T para explicar la zonación en Mg/Fe de los bordes finales de los porfidioblastos de granate ya que, los incrementos en X_Mg de estos porfidioblastos de granate de estas rocas y de los granates II incluidos en placas de moscovita de la muestra T23 sólo pueden explicarse por incrementos de P, como ya se ha discutido más arriba. Este incremento de P debe relacionarse por tanto con la intersección del equilibrio (5.147) en estas rocas. Finalmente, los balances de masa presentados más arriba (ecuaciones 5.137 y 5.138) sugieren que estas composiciones de los porfidioblastos de granate y granates del grupo II de los gneises pelíticos pueden proceder del equivalente tricomponente de la reacción (5.147).

La fuerte inversión de la partición Mg-Fe entre estaurolita y granate de los gneises pelíticos puede interpretarse en este contexto como el resultado del crecimiento/reequilibrio de estaurolita en condiciones de menor presión que los bordes de los porfidioblastos de granate. Si la estaurolita fue consumida totalmente durante la trayectoria anterior a la descomposición al atravesar la reacción (5.147), su abundancia en estas rocas indica que debieron darse condiciones para la rehidratación durante la descomposición. En principio, esto no parece problemático dadas las evidencias de movilidad de fluidos en estas rocas, con abundantes segregaciones trondhjemíticas. El hecho de que las fases propias de [St], particularmente distena, coexistan metaestablemente en estas rocas sugiere que la intersección de la reacción (5.147) fue rápida durante la descomposición, apuntando de nuevo a una rápida descomposición (relativa a la velocidad de reacción) bajo condiciones de P intermedia. Durante la descomposición, los equilibrios [St], (5.147), [Als] y [Grt] operarían metaestablemente tendiendo a generar finalmente la asociación estable And+ Bt a baja P. En la Figura 5.4.6 se representan las hipotéticas relaciones de fases para el gneis pelítico T312 desde las condiciones de P intermedia hasta las condiciones de baja P.

Dado que en ninguna de las metapelitas grafíticas estudiadas se ha detectado crecimiento de granate a baja P por descomposición de estaurolita, cabe suponer que la reacción univariante (5.147) no fue intersectada a baja P, lo que podría explicarse si las rocas sufrieron enfriamiento a baja P ya que la pendiente dP/dT de este equilibrio es positiva en los campos de la silimanita y andalucita (Figura 5.4.3). Sin embargo, es también posible que, al menos en los gneises pelíticos que sufrieron condiciones de mayor temperatura, la
reacción (5.147) fuere intersecada a baja P, pero que no llegase a crecer grano neoformado por descomposición de esaurolita si el conjunto de reacciones procedería irreversiblemente, fuertemente desplazadas de las respectivas superficies P-T-X. Esto puede explicarse si se considera una descompresión casi instantánea desde condiciones de alta P a baja P. Debido a la rotación de las isobases, una rápida descompresión haría que la composición global del sistema se localizara a la derecha de la isobasa Bi-And de la asociación Gt-Bt-And (St) en la Figura 5.4.5. En estas circunstancias, todas las reacciones anteriores operarían de manera irreversible, incluyendo la reacción univariante (5.147) y la reacción divariante [9], produciendo directamente la asociación estable And^+Bi. O sea, la masa que debiera haber resultado en grano por descomposición de esaurolita mediante la reacción (5.147) generaría directamente andaluzita+biotita, lo cual puede entenderse fácilmente desde el punto de vista macroscópico por la operatividad de la reacción [St] bajo condiciones de descompresión (Figura 5.4.5). Esta posibilidad no puede demostrarse, aunque no puede descartarse dada la abundancia de texturas generadas en procesos irreversibles encontradas en los gneises pelícos (e.g., inversión polimórfica directa Ky → And, blastesis de cordierita, ver más adelante) y gneises leucocratos (e.g., descomposición de moscovita).

Figura 5.4.6. Diagrama AFM de Thompson (1937) para el gneis pelíco 1312 que ilustra la evolución de las asociaciones de fases desde condiciones de P intermedias (Grt+Ky+Bi) a baja P (And^+Bi). Se han proyectado las distintas composiciones de grano y biotita (índices como en la Figura 5.4.1). Las composiciones de biotita en equilibrio bajo condiciones de P intermedias se asumen más ricas en Mg que las actuales.

5.4.4.2. RELACIONES P-T-X EN SUBSISTEMAS DEL SISTEMA CaNaKFMnMTiASHC

Para una interpretación más ajustada de la historia reacional sufrida por las metapelitas grafitosas es necesario considerar los efectos debidos a los componentes extra y al tamponamiento de la composición del
fluido por las asociaciones de fases. Estos dos efectos transforman las reacciones del sistema simple KFMASH en multivariantes, y serán considerados a continuación para corroborar el modelo de secuencia reaccional presentado más arriba para el sistema KFMASH.

Efecto del Ca y Equilibrios entre Plagioclase y Granate

De los componentes extra más importantes para la discusión de las relaciones de reacción entre las fases consideradas es el Ca por cuanto los granates de las rocas estudiadas presentan cantidades apreciables de este componente, particularmente en los núcleos y algunos bordes. La expansión del sistema por inclusión del Ca supone considerar otras fases como plagioclase, lo cual implica expandir de nuevo el sistema para incluir el componente Na. Esto es, el número de componentes del sistema se incrementa en dos al introducir Ca y Na, mientras que el número de fases se incrementa en uno al incluir plagioclase. Así, los equilibrios divariantes (S.141), (S.144), (S.145), y (S.146) y el univariante (S.147) (o (S.148)) aumentan su varianza en 1 respecto del sistema KFMASH al ser considerados en el sistema CaNaKFMASH e incluir la fase plagioclase.

En la Figura S.4.7 puede apreciarse el efecto de la solubilidad del Ca en el granate y en la plagioclase sobre el desplazamiento de la reacción multicomponente equivalente a (S.147), que puede escribirse como:

\[
\text{St} + \text{Ms} + \text{Qtz} + \text{Pl} = \text{Bt} + \text{Grt} + \text{Als} + \text{H}_2\text{O}
\]

(S.147b)

El progreso de esta reacción hacia la asociación producto por \(+\Delta T\) y/o \(+\Delta P\) en el campo de la distena, o por \(+\Delta T\) y/o \(-\Delta P\) en los campos de silimanita y andalucita, puede modelizarse por las isótopas de \(X_{\text{grs}}\), que aproximadamente son paralelas al equilibrio terminal para \(X_{\text{grs}} = 0\) (i.e., reacción S.147). Puede apreciarse en la Figura S.4.7 que el granate generado a partir de descomposición de estaurolita por la reacción (S.147b) debe presentar contenidos en \(X_{\text{grs}}\) menores hacia los bordes. La extensión P-T del campo divariante sobre el que pueden coexistir las cuatro fases St+Grt+Bt+Als es significativamente mayor en el campo de la distena que en los campos de la silimanita y andalucita, donde, en la práctica, representarían equilibrios (casi-)discontinuos. La zonación normal en Ca que presentan parte de los granates del grupo II de los esquistos grafíticos con fibrolita ≥ distena y de los gneises pelíticos (i.e., matriz, incluidos en plagioclase e incluidos en estaurolita) es consistente con su generación por intersección de la reacción (S.147b) en el campo de la distena, lo cual es a su vez consistente con las altas presiones resultantes de las estimaciones termobarométricas usando los núcleos de este tipo de granates (Tabla 5.4.6).

Sin embargo, el progreso de esta reacción no puede explicar los incrementos en \(X_{\text{grs}}\) de los bordes finales de los porfiroblastos de granate con zonación oscilante en Ca y en los granates del grupo II incluidos en placas de moscovita de los gneises pelíticos ya que cualquier trayectoria P-T que intersecte las isótopas de \(X_{\text{grs}}\) hacia composiciones más cálcicas supone que la reacción (S.147b) progresa al contrario, siendo la línea de reacción (S.147b) serrada y dando lugar a consumición de granate. La modelización P-T presentada anteriormente con el método de Gibbs para los granates de la muestra T312 (Figura 5.4.3) sugiere que los incrementos de \(X_{\text{grs}}\), hacia los bordes de estos granates son el resultado de incrementos de presión previos a la descompresión final de la secuencia. No obstante, como se ha indicado anteriormente cabe la posibilidad de que las rocas de grado mayor (i.e., gneises pelíticos) hayan interactuado con la reacción (S.147b) durante la descompresión, y por lo tanto, de que estas secciones con \(+\Delta X_{\text{grs}}\) hacia el borde, se produjese a baja P. Para evaluar esta posibilidad, en la modelización que sigue de las relaciones P-T-X mediante el método de Gibbs (Figuras 5.4.7 y 5.4.8) se ha
elegido como condiciones iniciales de arranque la composición del borde de los granates de la muestra T312 con X_gri mínima (i.e., estado (3), X_gri=0.019, Tablas 5.4.4 y 5.4.5) a P = 4.5 kbar y T = 625 °C. Estas condiciones se obtienen de las estimaciones barométricas GASP y GAMB para estas composiciones de granate (Tabla 5.4.4), y son propias de la generación de granate a baja P por descomposición de estaurolita si se tiene en cuenta que la reacción terminal 5.147 en el sistema simple KFMASH se desplaza hacia temperaturas menores al ser considerada en el sistema multicomponente KNaCaMnMgAlSiO. La composición de plagioclasa seleccionada ha sido X_an = 0.242, dado que la presión seleccionada es baja (como se verá a continuación X_an aumenta con -ΔP). La composición de biotita ha sido calculada como se ha indicado en casos anteriores. La composición de estaurolita se ha ajustado de manera que (Mg/Fe)Gr < (Mg/Fe)K para que la composición seleccionada de granate presenta una razón Mg/Fe = 0.168, dúbilmente mayor que la de la estaurolita de la muestra (Mg/Fe = 0.165). A partir de este punto P-T-Xc, se han calculado las isopletas de X_gri, X_an, M(oles)Gri y M_SR en el sistema KNaCaMASH para el campo divariantes Qtz+Ms+St+Bl+Grt+Als+Pl+H2O (i.e., equilibrio 5.147b, Figura 5.4.7) y los campos trivariantes que lo limitan a menor temperatura (Qtz+Ms+St+Bl+Grt+Als+Pl+H2O) y a mayor temperatura (Qtz+Ms+St+Br+Grt+Als+Pl+H2O) (Figura 5.4.8). Estos dos campos trivariantes se modelizan mediante equilibrios equilíbrios equivalentes a los equilibrios (5.141) y (5.146) en el sistema KFMASH, que pueden reescibirse en el sistema KNaCaMASH como:

\[
\text{St + Bt + Qtz + Pl = Grt + Ms + H}_2\text{O} \quad \text{(5.141b)}
\]
\[
\text{Bt + Als + Qtz + Pl = Grt + Ms} \quad \text{(5.146b)}
\]

Dado que la varianza de estas asociaciones en el sistema considerado es >2, es necesario imponer constricciones de balances de masa para que el sistema pueda quedar completamente definido mediante dos variables (i.e., teorema de Duhem) y para que las pseudocciones P-T del espacio P-T-X puedan ser representadas sin tener que mantener constante una variable composicional intensiva (ver Spear, 1986b). Las proporciones modales asignadas al punto de arranque han sido: Qtz = 25%, Ms = 25%, H2O = 0%, Als = 0%, Pl = 15%, Grt = 5%, Br = 20%, St = 10%.

Teniendo en cuenta la disposición de las isopletas de M_Gri y M_SR (Figura 5.4.8b), es evidente que sólo es posible generar granate con incrementos de X_gri hacia el borde por incrementos positivos de P (y ±ΔT). Cualquier trayectoria P-T dominada por descomposición resultaría en consumición de granate (Figuras 5.4.7 y 5.4.8). Esto permite descartar la posibilidad de que las secciones de los granates con +ΔX_gri, de los gneises pelíticos hayan crecido durante la descomposición de la secuencia a baja P. La hipótesis favorecida en este trabajo es la apuntada en la sección de termobarometría, i.e., estos granates crecieron previamente a la descomposición por incrementos casi isotérmicos de P a partir de la reacción [St] (5.146b) en condiciones de estabilidad de diestra. Si esto es así, es evidente que la estaurolita presente en los gneises pelíticos es neoformada, debiendo haber crecido durante la descomposición a intersectarse en sentido retrógrado la reacción (5.147b). Una vez sobrepasada la reacción (5.147b) durante la descomposición, el granate seguiría consumiéndose y la estaurolita seguiría creciendo y reequilibrándose al progresar la reacción (5.141b), tal y como se ilustra en la Figura 5.4.8b por la distribución de isopletas de M_SR y M_Gri. Subsecuentemente, una vez se intersectase el campo correspondiente al equilibrio (Grt), o su equivalente multivariante, por -ΔP comenzaría a consumirse la estaurolita. La elevada razón Mg/Fe propia de los bordes de los granates con
incrementos en X_{gr} hacia los bordes, explicable por la operatividad de la reacción (5.146b), debe considerarse portante relict de condiciones de alta P, lo cual explica la inversión de la partición $(\text{Mg/Fe})^{\text{Gr/Sp}}$.

![Diagrama PT](image)

Figura 5.4.7. Diagrama PT que muestra el gasto de la solución de Ca en granate y plagioclasa en la reacción $\text{Sr} + \text{Mg} + \text{Qz} + P = \text{Gr} + \text{Br} + \text{Al} + \text{H}_2\text{O}$ (sistema KNaCaFMASH) calculada por el método de Gibb. Los dos conjuntos de isoecias de X_{gr} y X_{an} corresponden a dos puntos P-TX de arranque correspondientes [1] al punto invariente [Ca,Chl,Te], consistente con la red petrogenética de Spear y Cherry (1989) en el sistema KFMASH, y [2] a P = 4.5 kbar y T = 625 °C, hipotéticamente representativo del estado 3 de los porfídolobastos de granate de la muestra T312 (ver el texto para más detalles). En este último caso, las isoecias de X_{gr} y X_{an} corresponden a las composiciones encontradas en los porfídolobastos de granate y plagioclasa.

El estado caracterizado por $\pm \Delta X_{\text{gr}}$, no se detecta en los granates de los esquistos gráfiticos con fibrolita/dolomita, excepto en los porfídolobastos de la muestra T2610-14, que presenta distena (Figura 4.6.4), aunque estos bordes no presentan inversión de la partición $(\text{Mg/Fe})^{\text{Gr/Sp}}$, que sólo se observa entre la estaurolita y los núcleos de los granates incluidos en plagioclasa de la muestra T18-17, que también
presenta distena. Esto sugiere que la blastesis de distena en estas rocas puede estar relacionada con la eventual intersección del equilibrio (5.147b) en rocas de composición apropiada bajo condiciones de P intermedia.

Por correlación con los gneises pelíticos, se sugiere que la intersección de la reacción 5.147b en los esquistos con St+Bt+Grt+Fls+And+Ky se produjo durante la compresión casi isotema. Sin embargo, la escasez de relaciones inversas en la partición (Mg/Fe)Grt y las bajas razones Mg/Fe de los granates de estas rocas por comparación con las de los granates pelíticos sugieren que la reacción (5.147b) fue intersecada, pero no sobrepasada, y consecuentemente, que la reacción [St] (5.146b) no se intersecó en estas rocas. En los esquistos de grado más bajo, con St+Bt+Grt+And, la ausencia de incrementos en X_grt hacia los bordes de los porfídoblastos de granate y la ausencia de distena sugiere que estas rocas no interseccaron la reacción 5.147b.

Figura 5.4.8. Diagramas PT que muestran la distribución de isótopas de a) X_grt y X_grt y b) M(Fe+Mg) y M(Fe+Mg) correspondientes a los campos triestásicos St+Bt+Grt+Qz+Mts+Fl+H2O (reacción 5.141b) y Grt+Bt+Al2O3+Qz+Mts+Fl+H2O (reacción 5.146b) en el sistema KNaCeFeMASH. Cálculos por el método de Gibbs, el punto de arranque como en la Figura 5.4.8, y la reacción (5.147b) representada por la isótopa M(Fe+Mg) = 0.

Por otra parte, la distribución de las isótopas de X_grt y M(Fe+Mg) (Figura 5.4.8a) es totalmente consistente con la consumición de granate durante la descomposición, como lo evidencia el incremento en Ca en las plagioclases asociadas a pseudomorfos de granate. Es también claro que los porfídoblastos de plagioclase con inclusiones de granate del grupo II, cuyos núcleos están pseudomorfizados por la misma plagioclase, han debido crecer a alta P dada su mayor concentración en Na. La distribución de isótopas de M(Fe+Mg) (no mostradas en la Figura 5.4.8) mimetiza las isótopas de M(Fe+Mg) aunque ΔM(Fe+Mg) supone ΔM(Fe+Mg) en todos los equilibrios considerados de manera que en un sistema cerrado donde las fases cálcicas coexistentes sean granate y plagioclase, el crecimiento de granate necesita de consumición de plagioclase (ver Spear, 1988b, 1989; Spear et al., 1990b). Esto implica que el desarrollo de la zonación oscilante en los porfídoblastos de plagioclase no
podría ser correlacionada con la del granate y debida a ΔAP, ya que la plagioclasa estaría siendo consumida al crecer el granate con zonación oscilante en Ca. En este caso, los perfiles de zonación de ambas fases serían diacrónicos, y los resultados barométricos efectuados más arriba en base a las correlaciones entre los perfiles serían esquemáticos (Tabla 5.4.4).

Sin embargo, el proceso de reajuste compositivo de la plagioclasa al ser consumida durante el crecimiento de granate es un proceso poco efectivo debido a las barreras cinéticas impuestas por la difusión volumétrica de la plagioclasa: cambios en Na-Ca necesitan de cambios en el entramado de tetraedros ocupados por Si y Al debido a que la sustitución operativa en las plagioclasas es NaSiCa₂Al₂. Crawford (1974, 1977) y Spear et al. (1990b) han sugerido que el proceso de reajuste compositivo durante la consumición de plagioclasa se verifica mediante disolución de algunos gramos que no modifican su composición, y precipitación del material disuelto sobre otros granos de manera que podrían formarse gramos zonados que registrarían sucesivas composiciones en equilibrio (ver Figura 3 de Spear et al., 1990b). Este proceso podría aplicar en el presente caso, dado que distribución de isótopas de X se justifica el desarrollo de la zonación oscilante en los porfiroclastos de plagioclasa por cambios de P, y dadas las similitudes de los patrones de zonación oscilante en Ca de granate y plagioclasa.

Complicaciones adicionales para explicar la zonación de granate y plagioclasa proceden de las evidencias al respecto de la presencia de fluído en los gneisos pelíticos, responsable de la segregación de agregados trondhjemiticos. Este fluído podría proceder de infiltración desde los gneisos leucocratos subyacentes, liberados durante el proceso de cristalización de fundidos graníticos y pegmatíticos ricos en H₂O. En este caso, el sistema es abierto, y podría producirse crecimiento de plagioclasa independiente del granate, aunque la zonación de plagioclasa indicaría que durante el proceso de infiltración u oxigenación no eran constantes.

Según la discusión anterior, los esquistos con fibrolita+donostia podrían considerarse como una zona de transición entre la asociación St+Bi+Grt (Als) y la asociación Grt+Bi+Ky (St) desarrollada en los gneisos pelíticos en condiciones de alta P. No obstante, debe tenerse en cuenta que el progreso de la reacción (5.147b) en una roca con proporciones dadas de las distintas fases, implica una consumición casi instantánea de estaurolita (en términos de ΔT y/o ΔP), independientemente de que la estaurolita presente una elevada proporción modal y aún en el campo de la donostia. Esto sugiere que el efecto del Ca como componente extra no puede explicar por sí solo el desarrollo areal de los esquistos (más el gneis o pelítico) con granates del grupo II. Otros componentes deben implicarse para ampliar el campo de coexistencia St+Bi+Grt+Ky.

Efecto del Ti y Equilibrios con Ilmenita y Rutilo

El efecto del Ti sobre el desplazamiento de los equilibrios (5.141), (5.144), (5.145), (V146) y (V147) no puede ser evaluado de manera precisa ya que no se conocen las propiedades termodinámicas de los componentes de Ti de las micas, específicamente biotita. En el Capítulo 4.5 se expusieron las evidencias experimentales y naturales al respecto de la solubilidad del Ti en la biotita, que son consistentes con un aumento del Ti en las biotitas coexistentes con ilmenita a bajas P. La consideración del componente Ti introduce dos fases adiconales presentes en las rocas estudiadas, i.e., rutilo e ilmenita, que muestran relaciones de reacción con el resto de las fases presentes (Capítulo 3.1.6 y 5.4.3), por lo que los equilibrios que involucran estas fases no son de interés. En el presente trabajo, se han considerado los equilibrios en subosistema simple FeTiASiO₄, i.e., considerando las fases QZ-St-Grt-Al₂Si₃O₁₀-H₂O, y excluyendo la solución Mg-Fe y las fases con K. Las propiedades termodinámicas de rutilo e ilmenita utilizadas son las de Berman.
(1988), que se han añadido a la base de datos de Spear y Cheney (1987). Los cálculos se han realizado mediante el método de Gibbs tomando como condiciones de arranque el punto invariante del sistema a \(P = 11 \) kbar y \(T = 625 \) °C, consistente con los resultados experimentales de Boley et al. (1983). Los resultados se muestran en la Figura 5.4.9.

Aunque simplificados, los equilibrios analizados son indicativos de las relaciones de reacción de los óxidos Fe-Ti y los silicatos. Así, la coexistencia de rutilo (silicenita) en las rocas estudiadas es consistente con condiciones de alta \(P \). Durante la descompresión, las relaciones de reacción presentadas en la Figura 5.4.9 indican consumición de rutilo por reacción con granate, y posteriormente con estaurolita, generándose las asociaciones \(Si+Ilm \) y \(And+Ilm \) a baja \(P \). La presencia de ilmenita asociada a las masas de fibroilita y a los porfídeblastos de andalucita (que comúnmente pseudomorphizan estaurolita) sugiere que efectivamente el rutilo fue consumido durante la descomposición de estaurolita (y granate) y que la asociación estable a baja \(P \) es \(And+Ilm+Qtz \) (rica en Ti). La persistencia de rutilo en la mayor parte de las muestras no es sino una evidencia más del estado de desequilibrio que presentan las rocas estudiadas. Estas consideraciones son consistentes con los balances de masa presentados más arriba, donde en todos los casos de reacciones posibles asignables a la descompresión el rutilo es fase reactante y la ilmenita es fase producto.

Figura 5.4.9. Diagramas P-T que muestran las relaciones entre las fases \(Qz+Si+Ab+Rt+Ilm+H_2O \) en el sistema \(F+T+ASH \) calculadas por el método de Gibbs. El punto de arranque corresponde al punto invariante del sistema a \(P = 11 \) kbar y \(T = 625 \) °C, consistente con los resultados experimentales de Boley et al. (1983). Los diagramas de fase incluyen \(Qz \) y \(H_2O \) como puntos de proporción. Las tinciones distintas en los diagramas de fase corresponden a las curvas que limitan la reacción \([H_2O] \) a baja \(T \) muestran relaciones de fases en el sistema anteriores no saturado en \(H_2O \). La línea gris muestra las reacciones interesadas por los grados polícticos en una trayectoria de descompresión.
Equilibrios en el Sistema C-O-H y Efecto del Tamponamiento de la Composición del Fluido

La presencia de grafito en todas las metalesitas estudiadas garantiza que la composición del fluido metamórfico no puede corresponder a H₂O puro. En el sistema C-O-H-S, los fluidos metamórficos están compuestos por especies químicas variadas, tales como H₂O, CO₂, CH₄, H₂S, H₂, CO, SO₂, O₂, etc. (French, 1966; Ohmoto y Kerrick, 1977; Holloway, 1981; Ferry y Burt, 1982; Labotka, 1991). La presencia de especies de nitrogénio se excluye en la presente discusión debido a su escasa concentración en los fluidos metamórficos (e.g., Wilkinson, 1991). La presencia de especies de azufre está maximizada en sistemas donde coexisten sulfuros (Froese, 1971; Guidotti, 1970; Guidotti et al., 1975; Ferry, 1981; Mohr y Newton, 1983; Tracy y Robinson, 1988). En el presente estudio sólo se ha detectado la presencia de sulfuros (pirrotina) en pequeñas venas de metalesitas grafitosas de grado más bajo, y no ha sido detectada en la mayor parte de los casos. Por esta razón, se ha excluido también la consideración del componente S en la discusión que sigue. Esta simplificación no afecta sustancialmente a los resultados ya que aún en el caso de que el sistema contenga grafito y pirrotina no pírita, la composición del fluido está formada esencialmente por las especies H₂O, CO₂ y CH₄ bajo condiciones de grado medio (e.g., Ohmoto y Kerrick, 1977).

El método de cálculo de la distribución de especies en el fluido metamórfico coexistente con grafito en el sistema C-O-H es descrito por French (1966). Siguiendo la regla de las fases, el equilibrio entre grafito y un fluido en el sistema de 3 componentes C-O-H es trivariante. Consecuentemente, la composición del fluido queda definida al fijar 3 variables intensivas (e.g., PT-φ₂). La composición del fluido coexistente con grafito está gobernada por equilibrios heterogéneos entre las dos fases y por equilibrios homogéneos en la fase fluida. Las especies químicas constitutivas del fluido consideradas en este trabajo son H₂O, CO₂, CH₄, CO, H₂ y O₂. Aunque la concentración de las tres últimas especies es baja en los fluidos metamórficos, su inclusión en los cálculos es importante ya que permite controlar las condiciones de oxidación-reducción del sistema. Debe indicarse, que la fugacidad de oxígeno del sistema analizado no está controlada (i.e., tamponada) por equilibrios entre el grafito y el fluido, por lo que no es posible conocer el valor de f₀₂. Las especies químicas anteriores, junto con la fase grafito, están relacionadas por 7 (componentes de fase) - 3 (componentes del sistema) = 4 reacciones linealmente independientes. De entre todas las reacciones posibles entre estas especies se han seleccionado las siguientes:

\[
\begin{align*}
C + O_2 &= CO_2, \\
CO + \frac{1}{2}O_2 &= CO_2, \\
H_2 + \frac{1}{2}O_2 &= H_2O, \\
CH_4 + 2O_2 &= CO_2 + 2H_2O.
\end{align*}
\]

(cuyas constantes de equilibrio pueden evaluarse mediante 4 expresiones \(\Delta G^\circ(P,T) + RT\ln K = 0 \), que expandida puede expresarse como:

\[\Delta G^\circ(1,T) + \int P \Delta V^\circ(P,T) dP + \int \Delta V^\circ(P,T) dP + RT\ln K_s + RT\ln \prod_\gamma^Y = 0 \] (5.8)

donde los subíndices \(s \) y \(f \) se refieren a componentes de fases sólidas y fluida, respectivamente (ver Capítulo 5.2.1). Es aparente que en todas las expresiones el término \(RT\ln K_s = 0 \), ya que en las reacciones que participa...
grafito \(\gamma_{C}^{\text{grafito}} = 1 \). Para mezclas no ideales de gases (fluidos) reales, la integral de volumen del fluido más el producto de las actividades de los componentes del fluido puede evaluarse mediante la expresión:

\[
\mu_i(P, T) - \mu_i^0(T) = \int_1^P \nu_i^0 dP + RT \ln a_i = RT \ln \left(\frac{f_i^0}{\nu_i} \right) = RT \ln f_i
\]

(5.153)

donde \(f_i \) es la fugacidad del componente en la mezcla a \(P \) y \(T \) de interés y \(f_i^0 \) es la fugacidad del componente puro en el fluido a \(P \) y \(T \) de interés. En este caso, la ecuación (5.8) se reduce a (excluyendo las integrales de \(C_\eta \)):

\[
\Delta G_i^0(T, T) + \Delta V_i^0(P, T) + RT \ln \prod f_i^0 = 0
\]

(5.154)

y los productos de las fugacidades definen las constantes de equilibrio \(K_i \):

\[
K_{148} = \frac{f_{CO_2}}{f_{CO}} \quad (5.155)
\]

\[
K_{150} = \frac{f_{CO}}{f_{CO_2}} \left(\frac{f_{CO_2}^0}{f_{CO}^0} \right)^{1/2} \quad (5.156)
\]

\[
K_{155} = \frac{f_{H_2O}}{f_{CO_2}} \left(\frac{f_{CO_2}^0}{f_{CO}^0} \right)^{1/2} \quad (5.157)
\]

\[
K_{152} = \frac{f_{H_2O}^0}{f_{CO_2}^0} \left(\frac{f_{CO_2}^0}{f_{CO}^0} \right)^{1/2} \quad (5.158)
\]

Por lo tanto, deben conocerse las fugacidades de los 6 componentes del fluido para evaluar las 4 expresiones (5.154) correspondientes a los equilibrios (5.149)-(5.152), que pueden evaluarse mediante la relación:

\[
f_i = f_i^0 a_i = (\chi_i^0 P) (\gamma_i X_i^{\text{fluido}})
\]

(5.159)

donde \(\chi_i^0 \) es el coeficiente de fugacidad del componente puro a \(P \) y \(T \) y \(\gamma_i \) es el coeficiente de actividad del componente i en la mezcla a \(P \) y \(T \). Los valores de \(\chi_i^0 \) y \(\gamma_i \) en mezclas no ideales de gases reales son funciones complejas de \(P-T-X \). Existen varias ecuaciones de estado para mezclas no ideales que permiten extraer estos valores necesarios para estimar \(f_i \), entre las que destacan las ecuaciones MRK (modified Redlich-Kwong equation of state, e.g., Holloway, 1977; Kerrick and Jakobs, 1981; Halbach y Chattejee, 1982; Bowers y Helgeson, 1983; ver Labotka, 1991 para una revisión reciente). La consideración de no-idealidad en mezclas reales de fluidos complica bastante los cálculos en sistemas considerado. Sin embargo, existen numerosas evidencias para considerar que las derivaciones de la idealidad en mezclas de fluidos supercríticos son de escasa entidad bajo ciertas condiciones (e.g., Kerrick, 1974; Ohmoto y Kerrick, 1977; Ferry y Burt, 1982; Labotka, 1991).

Por lo tanto, es posible considerar que \(\gamma_i = 1 \), simplificando considerablemente los cálculos ya que solamente es necesaria una estimación del coeficiente de fugacidad del componente puro a \(P \) y \(T \) (\(\chi_i^0 \)) para obtener el valor de \(f_i \) a la \(P \) y \(T \) de interés. Numerosos autores han seguido esta simplificación en los cálculos (e.g., Ghara, 1975; Tyler y Ashworth, 1982; Lang y Rice, 1985b), que para el sistema CO-H considerado no presenta grandes problemas si (1) \(T \) es media a alta, (2) las reacciones no involucran a las especies \(H_2O \) y \(CO_2 \) al mismo tiempo en lados opuestos de los equilibrios (mixed-valolatile equilibria) y (3) la mezcla no incluye cantidades sustanciales de CH4 (cf. Ferry y Burt, 1982, p.229-323).

En las cuatro expresiones (5.154) correspondientes a los equilibrios (5.149)-(5.152) hay 6 incógnitas (las seis fugacidades de los componentes en el fluido), por lo que deben especificarse dos constricciones más en el sistema de ecuaciones para poder solucionarla. La primera de ellas es:
\[p_{sólidos} = p_{fluído} = \Sigma f_i (X_i) \]

Asumiendo mezcla ideal la ecuación (5.160) se reduce a:

\[p_{sólidos} = p_{fluído} = \Sigma P_i = \Sigma (P_i X_i) \]

donde \(P_i \) y \(X_i \) son las presiones parciales y fracciones molares de las especies i en la mezcla, respectivamente. Existen dos maneras de imponer una segunda restricción al sistema de ecuaciones para obtener un resultado. En primer lugar, cabe imponer directamente un valor a una de las variables, y resolver para el resto. Generalmente suele seleccionarse la fugacidad de \(O_2 \) (ver Ohmoto y Kerrick, 1977), por lo que a \(P \) y \(f_{O_2} \) fijas (sistema trivariante), las fugacidades de los componentes en la mezcla ideal del fluido real coexistente con grafito quedan automáticamente fijadas, pudiendo obtenerse \(X_{H_2O}, X_{CO_2}, X_{CH_4}, X_{CO}, X_{H_2}, \) y \(X_{O_2} \). Este método es interesante para evaluar la composición del fluido bajo condiciones variables de estado de oxidación del sistema, lo cual es útil si se dispone de tampones de \(f_{O_2} \) (e.g., cuarzo-fayalita-magnetita, QFM, o magnetita-oro-ilmenita, MRI). Aunque en las rocas analizadas no pueden evaluarse equilibrios que tampón \(f_{O_2} \), los resultados de este método permiten describir el comportamiento de la composición del fluido en equilibrio con grafito.

En segundo lugar, cabe suponer que la fugacidad de \(H_2O \) está controlada (tamponada) por equilibrios de deshidratación entre las fases sólidas silicatadas de la asociación mineral. Siguiendo las ideas expuestas más arriba, cualquier equilibrio de deshidratación que pueda escribirse entre los componentes de fase definidos es un equilibrio operativo en la asociación considerada, de manera que \(f_{H_2O} \) queda fijada para \(P \) y \(T \) y composición de las fases sólidas fijas, pudiendo resolverse el sistema de ecuaciones anteriores para el resto de las fases gaseosas. Este método necesita lógicamente de la consecución de equilibrio entre las fases coexistentes, y de un conocimiento preciso de \(P \) y \(T \) y la composición de las fases sólidas en equilibrio. Dado que esta información no puede extraerse con precisión en las rocas estudiadas, es conveniente evaluar equilibrios simples en una ventana \(P-T \) determinada para extraer conclusiones generales. En este trabajo se ha considerado la reacción \(FeSiO_3 + O_2 = Alm+Alx+H_2O \) en el sistema FASH (ver más adelante, y Pigage y Greenwood, 1982 y Lang y Rice, 1985b).

Los datos pertinentes para resolver las cuatro ecuaciones \(\Delta G_{p}^{o} = -RT\mu_{K} \) proceden de las bases de datos termodinámicos de Robie et al. (1978) para \(CO \) y Helgeson et al. (1978) para el resto de las especies, y han sido tomados de Lang y Rice (1985b). Los cálculos incluyen el efecto de \(\Delta V_{políédicos} \) sobre la expresión de \(K \) que involucra al grafito. Los coeficientes de fugacidad de los componentes puros \(H_2O \) y \(CO_2 \) a \(P \) y \(T \) han sido calculados mediante las expresiones polinómicas de Holland y Powell (1990), extraídas por regresión sobre valores calculados a partir de las ecuaciones de estado MRK de Kerrick y Jacobs (1981) para fluidos puros en estos componentes (a su vez extraídas de los datos de Burnham et al., 1969, para \(H_2O \), y Shmulovich y Shmonov, 1978, para \(CO_2 \)). Los coeficientes de fugacidad de \(CH_4 \) se han tomado de los datos tabulados de Ryzhenko y Volkov (1971), y los coeficientes de \(CO_2, H_2, \) y \(O_2 \), se establecieron arbitrariamente \(= 1 \), lo cual no supone graves errores dado la escasa concentración de estas especies en el fluido (Ohmoto y Kerrick, 1977). Hay que indicar que el sistema de ecuaciones es cuadrático para \(f_{H_2O} \) a una \(f_{O_2} \) dada, pero una de las soluciones es negativa, por lo que obviamente se ha seleccionado el valor positivo en la resolución. Las ecuaciones de los tampones de \(f_{O_2} \) QFM y MRI se han tomado de Myers y Eugster (1983) y Ghent (1975), respectivamente. Los datos pertinentes para determinar independientemente \(f_{H_2O} \) a partir de la
reacción Fe-Std + Qtz = Altn + Alts + H₂O en el sistema FASH mediante la ecuación ΔG°₂₋₋ = -RTlnK proceden de la base de datos de Holland y Powell (1990). Los resultados de estos cálculos a distintas temperaturas y presiones se representan en las Figuras 5.4.10 y 5.4.11.

** Evolución de la Composición del Fluido.** En los diagramas X₁-f₂O₂ de la Figura 5.4.10 puede observarse la fuerte variación en la composición del fluido al variar f₂O₂ a P y T fijas. Bajo condiciones reducidas el fluido es esencialmente una mezcla de CH₄ y H₂O, mientras que bajo condiciones más oxidadas el fluido está formado esencialmente por CO₂ y H₂O. En estos diagramas, puede observarse también la existencia de un valor de f₂O₂ para el que X₂CO₂ = 1 a P y T fijas. Este valor determina el límite máximo de estabilidad de grafito por encima del cual no es posible la coexistencia de esta fase. También es interesante señalar el comportamiento de X₁H₂O₈ a P y T fijas, que describe una curva con un máximo que bajo cualquier condición es X₁H₂O₈ < 1, lo cual indica que en sistemas grafíticos la composición del fluido nunca puede corresponderse con H₂O pura (Figura 5.4.10). Este resultado es independiente del hecho de que la composición del fluido esté tan ponderada por equilibrios de deshidratación entre las fases sólidas o controlada por un reservorio externo al sistema. Como se ilustra en la Figura 5.4.10, la condición de X₁H₂O₈ = 1, supone que X₂CO₂ = X₂CH₄, lo cual es debido a que esta condición se verifica en sistema CO₂-H₂O a lo largo del *join* C-H₂O (Figura 5.4.11a), y en el sistema cerrado definido por el *join* C-H₂O la composición del fluido está controlada por la reacción:

\[
2\text{C} + 2\text{H}_2\text{O} = \text{CO}_2 + \text{CH}_4
\]

que supone que la proporción molar CO₂/CH₄ debe ser = 1.

Es importante notar que, dado el comportamiento de la concentración de H₂O en el fluido en equilibrio con grafito, existen dos valores de f₂O₂ que satisfacen un mismo valor de X₁H₂O₈ a P y T fijas, bajo los cuales el fluido estará compuesto esencialmente por mezclas de CH₄-H₂O (f₂O₂ bajos) y CO₂-H₂O (f₂O₂ altos), respectivamente (Figura 5.4.10). Esto es, para conocer la composición del fluido en términos de las especies de carbono es necesario una estimación independiente de f₂O₂.

El efecto de la variación en P y T sobre la composición del fluido en equilibrio con grafito sólo puede estimarse si la fugacidad de O₂ está controlada por algún equilibrio independiente (i.e., tampón) o si la composición del fluido se localiza a lo largo del *join* C-H₂O de manera que X₁H₂O₈ sea máxima. En la Figura 5.4.11c se han representado la composición del fluido para esta última condición, y para las condiciones de f₂O₂ definidas por el tampón QFM, a distintas presiones y temperaturas. Es claro que, para ambos casos, el descenso de P y/o aumento de T suponen reducir la cantidad de H₂O en el fluido, como también puede observarse en la Figura 5.4.10. En el caso del *join* C-H₂O, esto es debido a que el equilibrio (5.162) se desplaza hacia la derecha al aumentar T y/o descender P. Nótese que bajo las condiciones de f₂O₂ definidas por el tampón QFM la composición del fluido evoluciona rápidamente al descender la presión (i.e., X₁H₂O₈ → 0, X₂CO₂ → 1) ya que el equilibrio QFM interseca el límite superior de estabilidad de grafito en el espacio P-T-f₂O₂ (Figura 5.4.11d). Lógicamente, este comportamiento no se observa en el caso de que la composición del fluido esté controlada al *join* C-H₂O, i.e., por el equilibrio (5.162), aunque también en este caso es claro que a baja P la composición del fluido evoluciona rápidamente. Por lo tanto, es concebible que al descender la presión la composición del fluido haya sido progresivamente más pobre en X₁H₂O₈, lo cual ha podido influenciar la historia reaccional de las rocas estudiadas.
Figura 5.4.10. Secciones isotérmicas e isobáricas del espacio PT/fO₂/fluído en el sistema CO₂-H₂O que muestran la composición de un fluido metamórfico en equilibrio con grafita. Las fracciones molares de las especies mayores del fluido calculadas a 550 °C y 650 °C, y presiones de 10 kbar y 3 kbar (aproximadas a las condiciones sufridas por los metamófilos grafitinos) se presentan en log fO₂. Nótese los valores de X₄H₂O = máximo descensos al disminuir la presión.

Es posible que la composición del fluido haya sido controlada por las reacciones de deshidratación operativas en las rocas estudiadas. En el presente caso, las reacciones más importantes a considerar son los equilibrios que describen la estabilidad de estaqrolita, i.e., los equilibrios divariantes (5.141), (5.142), (5.145) y (5.146), y la reacción univariante (5.147) (o (5.148)) en el sistema KFMASH, que se expanden a trivariantes y divariantes, respectivamente, al incorporar el componente C. Incorporar todas estas reacciones a los
cálculos en el sistema CO-H supone complicar bastante el sistema de ecuaciones a resolver aún asumiendo mezcla ideal en los sólidos, ya que el número de incógnitas se eleva al considerar la solución Fe-Mg en las fases graníticas, estaurolita y biotita (Ohmoto y Kerrick, 1977; Labotka, 1991). Labotka (1991) ofrece algunos resultados considerando equilibrios con corderita en sistemas pelíticos, aunque asumiendo K_D^{Fe-Mg} constantes en las fases ferromagnesianas en cuestión para simplificar los cálculos, lo cual no tiene justificación. En este trabajo se ha preferido omitir la solución Fe-Mg entre las fases ferromagnesianas, analizando el equilibrio univariante [Br] el sistema simple FASH (i.e., Fe-Si + Qz = Alm + AlS + H2O), que se expande a divariante al considerar el componente C. Esta reacción se ha seleccionado por su simplicidad y porque presenta una geometría similar al equilibrio univariante (5.147) en el espacio Fe-T, incluyendo la fuente inflexión de la pendiente dP/dT al pasar del campo de silimanita a distena (Figura 5.4.11b). Por lo tanto, las conclusiones obtenidas pueden extenderse de manera cualitativa al caso más general descrito por la reacción de descomposición de estaurolita (5.147).

En la Figuras 5.4.11 se muestra la posición del equilibrio [Br] en el sistema FASHC a 600 °C en el espacio P-T-XH2O-F2O. Si se incluyera el componente Mg y (Mg/Fe)Gr + (Mg/Fe)Sh (i.e., partición normal) el campo de Sr+Qz se vería debilmente ampliado en los diagramas de las Figuras 5.4.11c y d. Puede observarse que si este equilibrio tampoco la fugacidad de H2O y el sistema es cerrado, la composición del fluido debe evolucionar a lo largo del equilibrio [Br] de manera que XH2O descienda al descender la presión en el campo de estabilidad de la distena. Esta es la consecuencia lógica de que la pendiente dP/dT de este equilibrio es negativa en el espacio P-T (Figura 5.4.11b), por lo que al descender la presión el equilibrio se desplaza hacia la asociación hidratada consumiendo H2O y generando estaurolita. No obstante, al intersectar el campo de estabilidad de silimanita, y posteriormente el de la andalucita, la tendencia se invierte, aumentando XH2O en el fluido al descender la presión debido a la pendiente dP/dT positiva del equilibrio [Br] bajo estas condiciones, desplazándose hacia la asociación deshidratada consumiendo estaurolita y liberando H2O (i.e., $X_{H2O} \rightarrow 1$). Dado que no es posible que el fluido en equilibrio con grafito pueda estar compuesto de H2O pura bajo ninguna condición, la evolución composicional del fluido se detendrá en el punto en que X_{H2O} sea igual a la máxima posible en equilibrio con grafito para las condiciones de T consideradas (i.e., 600 °C). En este punto la reacción [Br] procede hasta la consumación total de una de las fases reactantes (estaurolita en sistemas saturados en Qz), a partir de lo cual la composición del fluido evoluciona a lo largo de la línea que define X_{H2O} máxima si no existen otras reacciones de deshidratación. Todo lo anterior aplica exactamente igual a la reacción univariante de descomposición de estaurolita (5.147), que en el sistema con C sería divariante (Figura 5.4.11b).

De estas relaciones es concebible que el fluido fuese rico en H2O bajo las condiciones de P intermedia sufridas por las metapelitas gráficas, por lo que la temperatura a la que se intersectaría la reacción de descomposición de estaurolita para dar lugar a la asociación AFM Grt-Ky-Be (St) bajo condiciones de P intermedia sería próxima a la predicha en el sistema puro en H2O (i.e., las representadas en la Figura 5.4.11b por el equilibrio univariante (5.147)). Esto podría haber ocurrido en los greisíes pelíticos, y quizás en algunos esquistos gráficos con Fib+Ky en los que X_{H2O} hubiera sido algo menor en el resto de esquistos con fibrolita. Una descompresión implica que la composición del fluido de estas rocas pudo haberse más pobre en H2O al evolucionar tanponada por las reacciones de deshidratación en el campo de estabilidad de distena, que implican crecimiento de estaurolita y consumición de H2O. Esto habría favorecido la coexistencia de Sr-Grt-Be-Ky durante una sección de la trayectoria de descompresión, aunque finalmente la distena sería metestable en los campos de silimanita y de andalucita, donde X_{H2O} aumentaría.
Figura 5.4.11. a) Diagrama de fase para el sistema CO-H2O calculado a 600 °C y 10 kbar. Los triángulos que tienen el fluido y grafito se basan en los datos de log (fO2) (cada 0.5 unidades), aunque sólo se han indicado dos líneas para los cálculos a 10 kbar y otros dos para los cálculos a 2 kbar. Los ejes adyacentes a los triángulos marcan los valores de log (fO2) para la condensación de XH2O_{max}. b) Diagrama que muestra el desplazamiento en el ejes PT de la reacción Si+Mg+2Qs = Grt+Br+Al+H2O al variar XH2O en una solución binaria H2O-CO2 de fluido. Se muestra también la posición PT de la reacción P-T de la reacción [Bi] Fe+Si+Qs = Alm+Al+H2O (XH2O = 1) condensada en las Figuras 5.4.11c y d. Los desplazamientos de esta reacción debido a XH2O ≤ 1 son similares a los mostrados para la reacción Si+Mg+2Qs = Grt+Br+Al+H2O. Los cálculos se han realizado con el método de Gibbs y las de datos de Spear y Cheney (1989) implementado con el modelo Frelich-King de solución binaria H2O-CO2 del estadio de Kerrich y Jacobs (1981). c) Diagrama P-Xf/fluido sistema (600 °C) que muestra las abundancias de las especies mayoritarias en el fluido para las condiciones de fO2 definidas por la condición XH2O = max (C-H2O join, equilibrio 5.162 en el texto) y por el campo QFM. Se indica también la posición del equilibrio [Bi]. Las flechas marcan la evolución de la composición del fluido durante la decomposición, inmediatamente temporada por los equilibrios [Bi] y (5.162). d) Diagrama Plog (fO2) sistema (600 °C) con indicación de los campos QFM y MRI y del límite de estabilidad del grafito. Las flechas marcan la evolución de fO2 durante la decomposición, temporizada sucesivamente por los equilibrios [Bi] y (5.162). Nótese las dos trayectorias posibles durante la evolución temporizada por el equilibrio [Bi]. Ver el texto para detalles sobre los cálculos.
Si la evolución de la composición del fluido hubiera sido similar a la ilustrada en la Figura 5.4.11c, la reacción de descomposición de estaurolita (5.147) debería haberse sobrepasado durante la descompresión, sobre todo en las rocas de grado mayor (i.e., gneises pelíticos), ya que la reacción (5.147) se desplaza hacia condiciones de menor temperatura cuando X_{H_2O} disminuye (Figura 5.4.11b). Este sin embargo no parece ser el caso ya que no se observa crecimiento de granate a baja P en las rocas estudiadas, a menos que se implique un fuerte sobrepaso de las reacciones (5.147) y [St] a baja P que impidiese la nucleación de granate, como se ha indicado más arriba. En cualquier caso, la composición del fluido a baja P debió evolucionar sobre el join C-H$_2$O de manera que $X_{H_2O} = \text{max}$ ya que las reacciones de deshidratación habrían progresado ampliamente durante la descompresión, de tal manera que se hubieran intersectado las curvas de X_{H_2O} máxima en equilibrio con grafito y la reacción (5.162) gobernaba la composición del fluido en el join C-H$_2$O si no se vuelve a consumir H$_2$O por reacción entre los silicatos. Esto implica que la composición del fluido sería $X_{H_2O} = 0.8$, a 2 kbar y 600-500 °C.

Todo lo anterior aplica a los exquisitos con St+Grt+Br+And a pesar de la no coexistencia de silicato de Al a presiones intermedias ya que la reacción [Al$_2$] también consume H$_2$O y genera estaurolita al desceder la presión (Figura 5.4.5). Sin embargo, para estas rocas no existiría el control de los campos de estabilidad de los polísmorfo de silicato de Al, por lo que H$_2$O descedería hasta el punto en que se intersectase la reacción [Grt] en el campo de la andalusita por la rotación de las téline discutida anteriormente. En este punto se produciría andalucita y H$_2$O, y se consumiría estaurolita, por lo que X_{H_2O} comenzaría a aumentar en el fluido, intersectando eventualmente la superficie $X_{H_2O} = \text{max}$, Dado que estas rocas habrían sufrido condiciones de menor temperatura, la posibilidad de que se hubiese sobrepasado la reacción de descomposición de estaurolita (5.147) durante la descompresión es menor. No obstante, la evolución de la composición del fluido a baja P estaría probablemente gobernada por la reacción (5.162) en el join C-H$_2$O por las mismas razones discutidas anteriormente.

Condiciones de Fugacidad de O$_2$. En secciones isoterma P-f$_{O_2}$ del espacio P-X$_{H_2O}$-f$_{O_2}$ las reacciones que involucran H$_2$O (e.g., de deshidratación y de fusión) describen curvas parabólicas de manera que, a una P (o T) dada, existen dos valores de f$_{O_2}$ correspondientes a los campos donde el fluido es una mezcla de CO$_2$-H$_2$O (f$_{O_2}$ altos) y de CH$_4$-H$_2$O (f$_{O_2}$ bajos), respectivamente, para los que X_{H_2O} en el fluido satisface la constante de equilibrio de tales reacciones (ver Ohmoto y Kerrick, 1977, para una discusión general al respecto de secciones isobáricas de reacciones de deshidratación, decarbonación y de mezcla de volátiles o mixed-volatiles). Como se muestra en la Figura 5.4.11d, en estas secciones las superficies $X_{H_2O} = \text{max}$ se localizan a modo de traza axial de las curvas parabólicas que describen los equilibrios que involucran H$_2$O. Para el caso que nos ocupa, durante la evolución en que la composición del fluido está tamponada por la reacción de deshidratación [Bt], la fugacidad de O$_2$ está igualmente tamponada, evaporando a lo largo de cualquiera de los dos brazos que definen la reacción de deshidratación hasta que se intersecta la superficie $X_{H_2O} = \text{max}$. Por lo tanto, se necesita de información independiente para evaluar las condiciones de f$_{O_2}$ durante el estudio de tamponamiento por la reacción de deshidratación. Esta estimación es imposible en las rocas estudiadas ya que, aunque coexistan asociaciones de fases que tamponen f$_{O_2}$, tales como equilibrios entre componentes ferrosos y férricos de la biotita, no se dispone de datos independientes de Fe$^{3+}$ en las fases analizadas. No obstante, el hecho de que el componente Fe$_3$O$_4$ (hematita) calculado en las ilmenitas analizadas sea negativo en la mayor parte de los casos (Capítulo 4.10) sugiere condiciones fuertemente reducidas. El equilibrio entre rutilo e ilmenita:
\[2 \text{Fe}_2\text{O}_3 \text{(hem)} + 4 \text{TiO}_2 \text{(Rt)} = 4 \text{FeTiO}_3 \text{(ilm)} + \text{O}_2 \] (5.163)

permite estimar la composición del fluido si se conocen las actividades de hematites e ilmenita en la ilmenita, o, alternativamente, estimar la composición de la ilmenita conocida \(f_{O_2} \). La expresión \(\log(f_{O_2}) \) para el equilibrio (5.163) puede determinarse por combinación lineal de los tampones MRI y magnetita-hematites (tomados de Ghent, 1975 y Myers y Eugster, 1983, respectivamente), e incluyendo los términos apropiados de actividad de los componentes en las fases sólidas correspondientes a la constante de equilibrio \(K_{163} \):

\[
\log \left[\frac{a_{\text{ilm}}^{4} f_{O_2}}{a_{\text{hem}}^{2} a_{\text{Rt}}^4} \right] = \frac{-3255.867}{T} + 10.1407 + 0.082833 \frac{(P-1)}{T} \] (5.164)

(\(T \) en Kelvin, \(P \) en bars). En la Figura 5.4.12 se muestra la variación de la actividad de hematites en la ilmenita coexistente con rutilo respecto de \(f_{O_2} \) para 600 °C y distintas presiones (2-10 kbar) y considerando un valor constante de \(a_{\text{ilm}} = 0.9 \). Nótese que este valor es simplemente una aproximación a la actividad de ilmenita, ya que se considera como la fracción molar sin tener en cuenta que la solución es multi-posicional y claramente no ideal (e.g., Ghiorsos, 1990; Ghiorsos y Sack, 1991).

![Figura 5.4.12. Diagrama \(a_{\text{ilm}} - \log(f_{O_2}) \) isobárico (600 °C) calculado a distintas 2, 5, 8 y 10 kbar para la reacción \(\text{Fe}_2\text{O}_3 + \text{TiO}_2 = \text{FeTiO}_3 + \text{O}_2 \) asumiendo un valor constante de \(a_{\text{ilm}} = 0.9 \).](image)

Resolver para un valor constante de \(a_{\text{ilm}} \) no es estrictamente correcto ya que \(a_{\text{ilm}} \) varía al variar \(P \) y \(f_{O_2} \) debido a que el equilibrio entre rutilo e ilmenita es trivariante en el sistema Fe\(^{2+}\)-Fe\(^{3+}\)-Ti-O, aunque valores de Fe\(_2\)O\(_3\) menores en solución en ilmenita coexistente con rutilo son consistentes con condiciones de \(f_{O_2} \) más bajas. Aunque estos resultados pueden considerarse sólo como aproximados, se sugiere que bajo
condiciones de \(f_{\text{CO}_2} \) mayores de \(10^{21} \) bar y 600 °C debería detectarse la presencia de componente hemíticas en la ilmenita, independientemente de la presión total del sistema. Esto sugiere que las condiciones de \(f_{\text{CO}_2} \) de las rocas estudiadas son bajas, menores de \(10^{21} \), por lo que el fluido estaría constituido esencialmente por mezclas de \(\text{CH}_4 \) y \(\text{H}_2\text{O} \) a alta \(P \) y su evolución composicional controlada por las secciones de bajo \(f_{\text{CO}_2} \) de las reacciones de deshidratación (Figura 5.4.11d), aunque se necesitan datos más precisos para confirmar estos resultados. Los descensos de presión harían aumentar \(X_{\text{CO}_2} \) en el fluido ya que \(f_{\text{CO}_2} \) aumenta a lo largo de la reacción \([\text{Bt} \rightarrow \text{I clin}] \). En los puntos de la silimanita y andalusita (Figura 5.3.11c(b)), llegando a condiciones en que \(X_{\text{CO}_2} = X_{\text{CH}_4} \) en los puntos en que las reacciones de deshidratación intersectan las superficies de \(X_{\text{H}_2\text{O}} = \) máxima en equilibrio con grafita. Por lo tanto, como se ha indicado más arriba, la composición del fluido constaría de mezcla de \(\text{CO}_2 \cdot \text{CH}_4 \cdot \text{H}_2\text{O} \) a baja \(P \).

5.4.4.3. RELACIONES DE REACCIÓN CON CORDIERITA

La cordierita es un producto estable a baja \(P \) en rocas con composición apropiada, algo más magnéticas, aunque los análisis disponibles de roca total indican que la razón molar \(\text{MgO/FeO} \) de estas rocas no es muy diferente de las metapelitas grafitosas sin cordierita (Figura 3.1.8). Esto sugiere que la aparición de cordierita a baja \(P \) puede ser debida a la rotación de las ilmenita hacia composiciones ricas en Fe durante la descomposición.

A pesar de que las texturas reacionales asociadas a cordierita en los gneises pelíticos cordieríticos indican que la blástesis de esta fase (birritita) se debe a la descomposición de esaurolita, granate y moscovita (tongásico), el análisis reacional efectuado más arriba (Capítulo 5.4.3) no ha permitido establecer con claridad las relaciones de reacción de cordierita ya que esta fase aparece como reactante y no como producto de descomposición de granate y esaurolita si el silicato de Al (andalusita) es implicado en los balances de masa. Aunque es probable que las reacciones locales de descomposición de estas fases y de blástesis de cordierita sean hasta cierto punto independientes (Capítulo 5.4.3), en base a las texturas reacionales observadas en muestras individuales se puede considerar que la reacción global de blástesis de cordierita debería tener la forma (Capítulo 3.1.2):

\[
\text{Si} + \text{Grt} + \text{Ms} + \text{Rt} = \text{Grd} + \text{Bt} + \text{Ilm} + \text{H}_2\text{O} (\pm \text{And} \pm \text{Qtz} \pm \text{Pl})
\]

(3.11)

La modelización de esta reacción en términos del sistema modelo KFMASH no es simple porque este sistema puede predecir blástesis de cordierita a partir de la asociación (previa) \(\text{Si-Bt-Als} \) (o \(\text{Grt-Bt-Als} \) si se ha superado la reacción (5.147)) por descomposición de esaurolita (o granate) sólo si antes se desestabiliza la asociación \(\text{Al}_2\text{SiO}_4 + \text{Bt} \). Sin embargo, en estas rocas (y todos los tipos de las rocas estudiadas) no existe evidencia textural alguna que indique la inestabilidad de \(\text{And} + \text{Bt} \) en algún momento de la evolución sufrida.

Los análisis de A. B. Thompson (1976b), Holdaway y Lee (1977) y Powell y Holland (1990) del sistema KFMASH incluyen diferentes conjuntos de ecuaciones y se han aplicado al presente caso ya que su intersección es factible por descensos de presión. La secuencia reacional y de cambios topológicos posibles dependen de las reacciones que se consideren estables y metastables. Por su simplicidad, en la Figura 5.4.13 se presentan las reacciones AFM aplicables a cada sección P-T de Thompson (1976b). En esta Figura puede apreciarse que una descensión bajo condiciones de \(T \) inferiores a la desestabilización de esaurolita mediante la reacción (5.147) resultaría en la intersección de las reacciones univariantes.
Figura 5.4.13. Red petrogenética de A.B. Thompson (1976b, en Figura 7) para reacciones discontinuas en el sistema KFASH. Las transiciones de Al₂SiO₅ según Newton (1966, N), Richardson et al. (1969, RGB) y Holdaway (1971, H). Como indica A.B. Thompson, las reacciones discontinuas dibujadas con líneas grasas marcan las presiones máximas para la aparición de cordierita en la mayoría de las composiciones de metamorfismo. Nótese que la posibilidad de coexistencia St+Bt+Crd+Ms+Qtz (y Grt+Bt+Crd+Ms+Qtz) impone la inestabilidad de Al₂SiO₅ (i.e., reacción Bt-St+Crd+Si en la Figura 5.165 en el texto). La flecha grisácea indica la trayectoria PT seguida por los gneises pelíticos.

\[\text{Bt} + \text{Al₂} + \text{Qtz} + \text{H₂O} = \text{St} + \text{Crd} + \text{Ms} \]
\[\text{St} + \text{Bt} + \text{Qtz} = \text{Grt} + \text{Crd} + \text{Ms} + \text{H₂O} \]
\[\text{(5.165)} \]
\[\text{(5.166)} \]

(la cordierita (Mg₉Fe₉)₂Al₄Si₁₂O₃₂, se asume anhidra). Si los gneises pelíticos hubiesen intersectado la reacción de descomposición de estaurolita 5.147 durante la descompresión, la reacción univariante que describiría la inestabilidad de Al₂SiO₅ sería (Figura 5.4.13):

\[\text{Bt} + \text{Al₂} + \text{Qtz (} + \text{H₂O}) = \text{Grt} + \text{Crd} + \text{Ms} \]
\[\text{(5.167)} \]

(H₂O entre paréntesis para cordierita hidratada), ya que no se observa la inestabilidad de moscovita+cuarzo y la estabilidad de feldespat-K.

El hecho de que en las rocas estudiadas no se haya detectado la inestabilidad de Al₂SiO₅ está de acuerdo con el hecho de que no se observa crecimiento de St o Gr a baja P, lo cual debería haberse observado.
si las rocas intersectaron las reacciones (5.165)-(5.157) anteriores. Sin embargo, la operatividad de estas reacciones permite la coexistencia de asociaciones divergentes con St+Cr d y Gt+Cr d (Figura 5.4.13) que podrían explicar las texturas reaccionales observadas. Estas reacciones divergentes son (no balanceadas):

\[
\begin{align*}
\text{Bi} + \text{St} + \text{Qtz} &\rightarrow \text{Cr d} + \text{Ms} + \text{H}_2\text{O} \\
\text{St} + \text{Qtz} &\rightarrow \text{Cr d} + \text{And} + \text{H}_2\text{O} \\
\text{Gt} + \text{St} + \text{Qtz} &\rightarrow \text{Cr d} + \text{H}_2\text{O} \\
\text{Gt} + \text{Ms} + \text{Qtz} (+ \text{H}_2\text{O}) &\rightarrow \text{Cr d} + \text{Br} \\
\text{Gt} + \text{And} + \text{Qtz} (+\text{H}_2\text{O}) &\rightarrow \text{Cr d}
\end{align*}
\]

(5.168) (5.169) (5.170) (5.171) (5.172)

De entre estas reacciones cabe resaltar las (5.168) y (5.171), ya que describen las relaciones de los campos trifásicos St-Crd-Bt y Gt-Crd-Bt, respectivamente, en el diagrama AFM. Estas reacciones podrían explicar las texturas reaccionales observadas en los gneises pelíticos.

Por lo tanto, estamos ante una aparente paradoja, i.e., las reacciones divergentes pueden explicar las texturas reaccionales, pero las reacciones univariantes que permiten la operatividad de las anteriores no se detectan en las muestras estudiadas. Desde el punto de vista del equilibrio, la consideración de sistemas más complejos con un mayor número de componentes puede permitir la coexistencia de hasta cinco fases AFM (St-Grt-Bt-And-Crd), y por lo tanto relaciones de reacción entre ellas sin necesidad de desestabilizar la asociación Als+Br. Sin embargo, existen algunas evidencias de muestras naturales que sugieren que la generación de cordierita en estas rocas puede haber ocurrido mediante las reacciones divergentes anteriores (i.e., (5.168) y (5.171)) que operarían de manera irreversible por descomposición de esauroilita y granate relictos, del mismo modo que más arriba se ha explicado la descomposición de granate por la reacción [Als] una vez la roca intersectase el campo trifásico St-Bt-Als.

La asociaciones Gt-Crd-Bt-Ms (i.e., reacción (5.171)) y St-Crd-Bt-Ms (i.e., reacción (5.168)) son raras en pelitas de metamorfismo de contacto y regional (ver Paterson y Tracy, 1991, para una revisión). Paterson y Tracy (1991), p.147 indican que la asociación St-Crd-Bt-Ms es aparente, i.e., no demostrada en equilibrio, en los escasos ejemplos documentados de metamorfismo regional (Zwart, 1958, 1962; Guitard, 1965; Osberg, 1968), y es virtualmente inexistente en rocas de metamorfismo de contacto. En base a las asociaciones comúnmente observadas en distintos tipos de series de fases, Paterson y Tracy (1991, p. 154-155) excluyen la posibilidad de coexistencia estable de la asociación St-Crd-Bt-Ms para la mayoría de las composiciones normales de metapelitas (ver también Spear y Cheney, 1989, p. 158), esto es, sin considerar composiciones ricas en Zn y Li que amplían el campo de estabilidad de esauroilita. La asociación Gt-Crd-Bt-Ms también es considerada metaestable por Paterson y Tracy (1991) en el sistema KFMASH, aunque reconocen que el efecto de componentes extra como Mn y/o Ca puede estabilizar el granate en asociaciones donde coexiste Crd-Bt-Ms. La coexistencia de Crd-Grt-Bt es típica de rocas de grado alto donde coexiste Kfs y la moscovita no es estable (ver A. B. Thompson, 1975b, Spear y Cheney, 1989; Paterson y Tracy, 1991).

En resumen, es posible que las reacciones univariantes (5.165)-(5.167) anteriores y por lo tanto las reacciones divergentes (5.168)-(5.172) sean metaestables para composiciones de metapelitas normales. Según la red petrogenética de Paterson y Tracy (1991), la reacción estable que debería dar lugar a la aparición de cordierita en el sistema KFMASH debido a una descomposición bajo condiciones de grado medio aplicables a las rocas estudiadas, es la reacción divergente (Figura 5.4.14):
Figura 5.4.14. Riel petrogenético esquemática de Paterson y Tracy (1991, sus figuras 32 y 33, ver su Tabla 33 para las notaciones de las reacciones). S = H₂O, L = líquido gránítico para reacciones disociativas (líneas gruesas) y combinadas (líneas finas) en a) los sub-sistemas KMASH y KFMASH y b) el sistema KFMASH. La transición And = Stl es considerada como una banda. El campo marcado con 10 dentro de un círculo en b) indica la existencia disociativa de Al₂+Be+Cr+2Mg+2Qtz+H₂O en el sistema KFMASH, que aparece en el sistema modelo sometido a descompresión a partir de la reacción metastable en el sistema KMASH: Al₂+Be+Qtz+H₂O = MgCr²+Ms, marcada con 10 en b). En rocas ricas en Fe la curvatura aparece a partir de la correspondiente reacción disociativa en el sistema KFMASH por rotación de las tie-lines hacia composiciones ricas en Fe. La flecha gruesa indica la trayectoria PT seguida por los gémas polícratas.

\[\text{And} + \text{Bi} + \text{Qtz} + (\text{H}_2\text{O}) = \text{Crd} + \text{Ms} \]

(5.173)

Esta reacción es consistente con las topologías AFM asumidas a baja P en la Figura 3.1.8 (y calculadas en la Figura 5.4.5) ya que no supone la inestabilidad And+Bi, y describe el campo trifásico And-Bi-Crd. Sería intercambiada en estas rocas por la rotación de las tie-lines que unen la biotita con el resto de las fases hacia composiciones ricas en Fe durante la descompresión, ya que la aparición del campo trifásico Al₂+Bi-Crd habría ocurrido a presiones intermedias por la reacción univariante en el sistema KMASH.
8 Al₂ + Ptl + 7 Qtz (º H₂O) = 3 Mg-Crd + Ms

(5.174)

Esto permite explicar además porque la cordierita (o agregados piníticos) se observa sólo en algunas rocas (i.e., debido a su composición algo más magnética), siendo And+Br la asociación estable a baja P en la mayor parte de los casos. Si se hubiesen intersectado las reacciones univariantes anteriores, que permiten la operatividad estable de las reacciones divariantes (5.168) y (5.171), las asociaciones con cordierita serían prácticamente una constante en todas las rocas estudiadas dadas las escasas variaciones en Mg/Fe de las mismas (Figura 3.1.8).

Por lo tanto, si los sistemas naturales pueden aproximarse a los sistemas modelo (KFMAH), parece que la blastesis de cordierita en los gneises pelícticos ha ocurrido mediante reacciones metastables de descomposición de estaurolita y granate, que operarían hasta cierto punto de manera independiente en los puntos de reacción controlados por la localización de las fases reactantes, como lo indican todas las texturas de reacción que afectan al granate y estaurolita (y moscovita fengítica, ver más adelante). Existen muchas reacciones equi-ópticas posibles en el sistema KFMAH que podrían representar estas reacciones metastables. Además de las reacciones divariantes KFMAH anteriores (5.168) y (5.171), se puede considerar la reacción (5.170) ya que puede incluir los componentes de las micas (incluyendo el componente tschermak) y los óxidos de Fe-Ti al considerar un sistema más complejo. Aunque la consideración de sistemas multicomponentes puede aliviar hasta cierto punto estas conclusiones, las evidencias anteriores al respecto de la escasez de asociaciones con St-Crd-Bt-Ms y Grn-Crd-Bt-Ms en metapelitas naturales parece que la conclusión anterior es preferible. De la discusión presentada en el Capítulo 4.5, se concluyó que las fuertes variaciones composicionales de las biotitas de la muestra T348 (gneis pelíctico con cordierita) son asignables a problemas de balances de masa locales (influenciados esencialmente por Ti y Al) asociados a los procesos reacciones de baja P ya que todas las biotitas son texturalmente tardías. Además, las sustituciones operativas deducidas de los espectros compostacionales se interpretaron como representativas de procesos metastables ya que no son normalmente identificadas al analizar secuencias progresadas aparentemente equilibradas. El resultado del progreso de las reacciones metastables de descomposición de estaurolita y granate darían lugar a la asociación estable a baja P predicable por el sistema simple KFMAH en rocas de composición apropiada, i.e., And+Bt+Crd. Estas relaciones se ilustran en la Figura 5.4.15 para la muestra T348.

Mención aparte merecen las texturas de descomposición de las placas de moscovita fengítica, que presentan la asociación intercrecida Bt+Crd(pirita)+Ilm+Qtz (Capítulo 4.4.5) e indican la operatividad de reacciones de descomposición del componente tschermak en la moscovita. Considerando el sistema simple KMAH, la reacción de descomposición de moscovita es:

\[
K_2Al_6Si_6O_{26}(OH)_4 + 4 SiMgAl_2 + Mg_2Al_2Si_2O_18 = K_2Mg_2Al_2Si_2O_20(OH)_4 + 9 SiO_2
\]

moscovita vectorite cordierita flogopita cuarzo

que procede hacia la derecha por descensos de presión (e.g., A.B. Thompson, 1982; Pattison, 1987). Esta reacción divariantes, que describe el campo trifásico Ms+Bt-Crd en el diagrama AKM (Figura 3.1.8), no es aplicable ya que consume cordierita, que sin embargo se observa como producto de descomposición. La inclusión de silicato de Al (i.e., considerando la asociación divarante Al₂-Crd-Bt-Ms-Qtz-H₂O en el sistema KFMAH) permite solucionar el problema ya que es posible generar una reacción de transferencia neta que
describa la descomposición del componente tschermak en moscovita para generar cordierita y biotita por combinación lineal de las reacciones (5.174) y (V175). Aunque la estequiometría exacta de esta reacción depende de las contribuciones respectivas de ambas reacciones, una posible estequiometría es:

\[\text{ms} + 8 \text{tk} + 8 \text{als} = \text{phl} + \text{crd} + 11 \text{qtz} \]
\[(5.176) \]

Esta reacción es equivalente al balance de masa (5.139c) obtenido en el Capítulo 5.4.3 para el sistema multicomponente KNaCaFMnMATiSH. Debe tenerse en cuenta que las reacciones (5.174) y (5.175) operan en sentido contrario durante la descompresión, esto es, produciendo y consumiendo cordierita, respectivamente. Por lo tanto, para explicar las texturas de descomposición de las moscovitas fengíticas de los gneises pelíticos la contribución de la reacción (5.174) en términos de moles de cordierita implicados debe ser mayor que la de la reacción (5.175) en el caso de la reacción 5.176 la proporción es 2:1. Esto es consistente con lo esperable del análisis del sistema KFMASH, aunque dado que no se observa la implicación de Als en estas texturas, debe concluirse cierta mobiliidad del Al a la escala de la lámina delgada. Aunque no se observen procesos claros de disolución de Als, la ausencia o escasez de distena y fibrolita, por comparación con los gneises pelíticos con St+Bt+Grt+Ky+Fib+And, indica que estas fases han podido consumirse durante la descompresión.

![Diagrama AFM de Thompson (1957) para el gneis pelítico con cordierita T348 que ilustra la evolución de las asociaciones de fases desde condiciones de P intermedia (Grt+Bt+Ky), la disena no coexisten actualmente en esta muestra) a baja P (And+Bt+Crd). Se han proyectado las distintas composiciones de biotita (símbolo como en la Figura 5.4.1). Las ecuaciones Crd+Grt y Crd+Grt son discontinuas para mostrar sus relaciones moleculares. Las composiciones de biotita en equilibrio bajo condiciones de P intermedia se asumen más ricas en Mg que las acimutales.](image-url)

368
5.5. GNEISES LEUCOCRATOS

Las relaciones de campo y características petrográficas, composicionales e isotópicas (Apéndice V) de los gneises graníticos del complejo de Teterox indican un origen metasedimentario de sus protolitos. El complejo presenta características de cuerpos anácticos entrelazados o débilmente movilizados, y no existe ninguna indicación que sugiera emplazamiento desenraizado a gran escala de magmas graníticos. Por ejemplo, los cuerpos de gneises porfiríoides con Ms+Bit y megacrítalos de Kfs son pequeños (algunos metros de potencia; Figura 2.2.4d), aunque durante el episodio metamórfico alpino han representado magmas graníticos con tasas de fundido parcial químicamente más elevadas que las de los gneises bandedados. Lo mismo puede decirse de los gneises aplíticos, que al menos en parte representan fundidos segregados durante el evento alpino. El complejo de gneises, por lo tanto, puede considerarse como un cuerpo anáctico heterogéneo, lo cual es consistente con la inexistencia de estaurolita en las rocas de composición pelítica intercaladas (Capítulo 3.2.2 y Figura 3.2.8).

Las asociaciones de fases, composiciones minerales y texturas indican que el complejo gneísico de Teterox alcanzó altas presiones, y subsecuentemente sufrió una importante descompresión. El desequilibrio resultante de la descompresión de la secuencia en los gneises leucocratos se pone de manifiesto claramente por los amplios espectros composicionales de las micas (Capítulos 4.4 y 4.5), aunque la coexistencia de asociaciones incompatibles no es tan evidente en estas rocas como en las metapelitas gresíticas. El evento de alta PT es anterior al desarrollo de la deformación principal (D2-D3), y está representado por fases como distena, granate y rutilo. La descompresión a alta temperatura viene indicada por la mayor parte de las texturas encontradas (Capítulo 3.2), tales como la presencia de los tres polimorfos de Al₂SiO₅, la pseudomorfosis de rutilo por ilmenita, el reemplazamiento de granate por Ms+Bit+Pl, y, particularmente, las texturas reaccionales y heterogeneidades composicionales de las moscovitas (Capítulos 3.2 y 4.4), ya que éstas conllevan la descomposición del componente leucófilo (teitrocádrico, τTi-moscovita) y, en algunos casos, la inestabilidad de moscovita (como fase) en sistemas saturados en SiO₂.

Un aspecto importante en la evaluación de las condiciones PT y la historia reacional sufridas por estas rocas es la presencia de una fase líquida durante su evolución. Esto es claro en los gneises aplíticos, así como en los segregados y venas graníticas discordantes, pero las relaciones de campo (Capítulo 2.2.2) y algunas de las texturas de los gneises bandedados y porfiríoides (Capítulo 3.2) también indican que una fase líquida estuvo presente durante el desarrollo de las estructuras relacionadas con la deformación principal y los estados iniciales de la descompresión. La presencia de una fase fundida es un impedimento para evaluar la historia reacional sufrida, dado el desconocimiento de la composición líquida. Un aspecto importante desde el punto de vista petrogenético es que las asociaciones Ms+Qtz+Kfs (en los gneises) y Ms+Qtz (en los esquistos moscovíticos intercalados) son estables bajo las condiciones de P intermedia (Capítulo 3.2.2). Texturas que indican la desestabilización de la asociación moscovita-cuarzo se observan exclusivamente bajo condiciones subsolidas a baja P, en el campo de estabilidad de andalucita.

Debido a su heterogeneidad composicional, los distintos tipos de gneises leucocratos y rocas asociadas presentan historias reacionales distintas. Por esta razón, es conveniente proceder a su descripción en función de las distintas litologías.
5.5.1. GNEISES BANDEADOS CON MOSCOVITA+BIOTITA+GRANATE

5.5.1.1. RELACIONES DE FASES

Las relaciones de las fases en este tipo de rocas se ilustran en los diagramas AKF y AFM de la Figura 5.5.1. Al igual que en el caso de las metapelitas grafitosas, estos diagramas no son termodinámicamente válidos ya que los puntos de proyección incluyen vectores de intercambio (que condensan el sistema) y componentes cuyo potencial químico no está fijado a p y T fijas (e.g., TiO₂, dada la no coexistencia de rutilo o ilmenita). No obstante, en estos diagramas pueden apreciarse las variaciones composicionales de las fases y los cambios en la orientación de las *tie-line* debido a los procesos reacionales asociados con la descomposición. Respecto de las moscovitas, el descenso en los componentes leucofílicos, Ti-moscovita, pirofilita, y biotita (triclinodróico) y la tendencia hacia composiciones cercanas al término moscovita (+paragonita) de las moscovitas primarias se aprecia claramente en el diagrama AKF. Estos cambios están asociados a la descomposición de moscovita y desarrollo de intercambios de Br+Qz (Capítulo 4.4.4.1). Las biotitas de la matriz ricas en Ti presentan cantidades de Al algo más bajas que las lamelas intercambiadas en las moscovitas primarias, y estas, a su vez, son más pobres en Al que las biotitas intercambiadas en las moscovitas pegmatiticas, las biotitas de la matriz reequilibradas y las que son el producto de descomposición de granate (Figura 5.5.1, Capítulo 4.5.5.1, y ver más adelante). Los cambios composicionales en el granate se muestran en los diagramas AFK y AFM indirectamente, esto es, por cambios aparentes en Al que son el resultado de la proyección desde la molécula de anorrita, lo que implica que las composiciones de los núcleos, ricas en giroscaria (Ca > 0.6), presentan menos Al en la proyección que las composiciones reequilibradas más pobres en Ca.

Las relaciones composicionales de las fases proyectadas permiten establecer el cambio de topología asociado a la descomposición. El descenso en la razón Mg/Fe (y Ti) detectado en las biotitas de la matriz al progresar la descomposición de granate durante la descomposición no se observa al considerar las lamelas de biotita intercambiadas en las moscovitas primarias y pegmatiticas (diagrama AFM de la Figura 5.5.1). Este hecho evidencia la necesidad de implicar balances de masa locales y difusión limitada en Al, Ti, Fe y Mg para explicar las heterogeneidades composicionales de las biotitas tardías, y que los distintos procesos reacionales sufridos por estas rocas durante la descomposición progresaron hasta cierto punto independientemente, de acuerdo con lo ya discutido en el Capítulo 4.5.7. La asociación precoz de P intermedia, constituida por Ms(rica en Si)+Br(rica en Ti)+Grt(rico en Ca), da paso a las asociaciones de baja P formadas por:

- Ms(bajo Si)+Br(bajo Ti) en la matriz (el granate se considera metaestable)
- Ms(bajo Si)+Br(alto Ti) en los intercambios de las moscovitas primarias
- Kfs+And+Br en los segregados pegmatoides

La composición de este tipo de gneises es consistente con la asociación precoz Ms(rica en Si)+Br(rica en Ti)+Grt(rico en Ca) de la matriz, y con todas las asociaciones de baja P que implican a las lamelas de biotita intercambiadas, pero contradice la asociación de baja P formada por Ms(bajo Si)+Br(bajo Ti) en la matriz. Esto viene indicado por la ausencia de intersección de la *tie-line* Ms(bajo Si)+Br(bajo Ti) y bajo Mg/Fe, con el campo proyectado de la composición de los gneises bandeados, y es debido a la baja razón Mg/Fe de
las biotitas producto de descomposición de granate (diagrama AFM de la Figura 5.5.1). Esta contradicción, que en definitiva es un problema de balance de masa, no se soluciona aún, ya que el granate de bajo Ca definió junto con Br y Ms la asociación de baja P, y sugiere que la composición de la biotita producto de granate es metaestable. La composición de estas biotitas es anómal, muy rica en [Mg]Al (ca. 1.4 átomos pfu), por comparación con otras biotitas de metspelitas y gneises de grado medio y alto, que no suelen superar 1.1 átomos pfu de [Mg]Al (Guidotti, 1984; ver Capítulos 4.5.3 y 4.5.5.1, Figuras 4.5.1 y 4.5.10). Estas relaciones de fases permiten reafirmar las conclusiones parciales discutidas en el Capítulo 4.5.7 al respecto de la operatividad metaestable de los vectores Ti-Al-vacante (Ti4⁺[Mg]O3[Mg]Al3) y Si-vacante (Si4⁺[Si]O6[Mg]Al3Mg6) en la explicación de la heterogeneidad composicional de estas biotitas, que resulta de la limitada difusión del Ti y Al.

![Diagrama AFM y AKE para las muestras de granitos basálticos con Ms+Br+Grt del complejo de granitos de Torova. Los puntos de proyección plagioclase y feldespato-K son medios de ferrotelita de estas fases en cada muestra. Se indican también la proyección de moléculas significativas para las relaciones sólidos metasomáticos y biotitas (mas veinticuatro, paragranita, las veintiocho, Torova: Ti-muscovita, pil: pilóforita, ass: assilite, as: asidofilita; ver Capítulos 4.4 y 4.5 para la definición de estas moléculas). Símbolos: Maficos: Círculos: cristales primarios; Cuadrados: granos recristalizados; Triángulos: cristales pegmatíticos. Biotitas: Círculos: cristales de la matriz; Triángulos: cristales producto de granate. Almas: bandas intercaladas en las veintiocho pegmatíticas. Granite: Círculos: Ca > 0.5 átomos pfu; Triángulos: Ca < 0.5 átomos pfu (las variaciones en Al del granate son artificios de la proyección desde la molécula de amoníaco). Las flechas indican el sentido de cambio compresional en las fases debido al progreso de reacciones asociadas a la descomposición. Los tictoces representan las asociaciones predescomposición (líneas discontinuas) y las reacciones de la descomposición (líneas continuas). No se especifican los tictoces que son intermedios con el resto de las fases. El campo definido por la línea de puntos representa la composición propuesta de otro tipo de granito (ver Figura 3.2.4). Nótese que la tictocex Mafico K4-Blanco T y Mg/Fe, no inicia la composición propuesta de las gneises en el diagrama AFM.

5.5.1.2. ESTIMACIONES THERMOBAROMÉTRICAS

En los granitos con Ms+Br+Grt, la trayectoria de descomposición puede establecerse con cierta precisión, aunque no así las condiciones P-T asociadas a las condiciones de alta P. Los resultados de la
estimaciones termobarométricas en tres de las cuatro muestras analizadas se presentan en la Tabla 5.5.1 y Figura 5.5.2. Existen dificultades en la aplicación de los equilibrios GARB y GAMB (en estas muestras no coexisten silicatos de Al, por lo que no puede aplicarse el barómetro GASP) debido a las fuertes heterogeneidades composicionales que presentan las fases Br, Grt, Ms y Pl (Cáptítulo 4), por lo que las condiciones de equilibrio no pueden demostrarse. Las composiciones usadas en la mayoría de los cálculos son: granate de alto Ca ($X_{gr} > 0.2$), biotita de alto Ti ($Ti > 0.3$ átomos pfu), plagioclases incluidas en fenocristales de Kfs y de la matriz ($X_{an} < 0.2$), y moscovita de alto Si ($Si > 6.5$ átomos pfu) (Tabla 5.5.1). Como se ha indicado más arriba, estas composiciones pueden aproximarse a las condiciones de equilibrio previas a la descompresión, ya que (1) los granates son ricos y relativamente homogéneos en Ca, excepto en los bordes con zonación invertida en Mg/Fe y X_{ep} donde X_{an} también es menor (Cáptítulo 4.6.4, Figura 4.6.18, y diagrama AFM de la Figura 5.5.1), y (2) las biotitas de la matriz reequilibradas y/o crecidas por procesos reactivos de descomposición de granate durante la descompresión son más pobres en Ti y ricas en Fe (Cáptítulo 4.5.5, Figuras 4.5.1 y 4.5.10, y Figura 5.5.1). Como puede inferirse del diagrama AFM de la Figura 5.5.1, las temperaturas GARB calculadas usando composiciones de biotita con contenidos de Ti intermedios y bajos (no presentadas en la Tabla 5.5.1) son más altas que las calculadas con las composiciones ricas en Ti, lo cual se debe al aumento en la razón (Mg/Fe)$^{3+}$ (i.e., $K_D^{Mg^{3+}Fe^{3+}}$) > 1. Esto indica la ausencia de equilibrio entre los bordes de los granates y la biotita de la matriz que es producto de granate, de manera similar a lo encontrado en las metapelitas grafitosas (Cáptítulo 5.4.2), aunque en este caso parecen preservarse las composiciones relicticas de mayor presión.

Las cálculos barométricos con el calibrado del equilibrio GAMB de Hodges y Crowley (1985) y distintas combinaciones de expresiones a-X para los componentes de fase implicados, resultan en presiones elevadas, entre 12-14 kbar (a 650 °C, Tabla 5.5.1). Presiones aún mayores, entre 13-19.5 kbar se obtienen con los calibrados empíricos de Hoisch (1990), que incluyen los equilibrios (5.80)-(5.84) que consideran el componente leucoesfílita de la moscovita, además de los equilibrios GAMB (5.60)-(5.61). Estos resultados son poco precisos ya que las composiciones usadas por Hodges y Crowley (1985) y Hoisch (1990) en sus cálculos de regresión difieren bastante de las presentes en los gneises bandeados analizados, particularmente en lo que respecta a las micas (estos autores usaron asociaciones pélíticas que contienen alguno de los polimorfos de Al$_2$Si$_2$O$_8$, por lo que las micas están saturadas en Al). Además, las posibles imprecisiones de los equilibrios GARB y GASP usados para estimar T y P en los cálculos de regresión y las escasamente conocidas relaciones a-X de las micas fencíticas, implican una elevada incertidumbre en los cálculos anteriores (ver Cáptítulo 5.2.2.3). En este trabajo se asume una precisión máxima de ±2 kbar en las estimaciones de P (Hodges y Crowley, 1985). A pesar de estas incertidumbres, los resultados obtenidos sugieren presiones superiores a 10 kbar, de acuerdo con los elevados contenidos en Si de las moscovitas primarias de estas rocas. La aplicación del barómetro gráfico de la fencita de Massonne y Schreyer (1987, ver Figura 5.5.2) resulta en ca. 11 kbar (a 650 °C) usando el contenido máximo de Si en las moscovitas analizadas (Si = 6.66 átomos pfu, Cáptítulo 4.4.4.1). Esta presión debe considerarse como una estimación mínima, ya que no se conoce la composición original de las moscovitas primarias de estas rocas, que en todos los casos ha sufrido descomposición del componente leucoesfílita (Cáptítulo 4.4.4.1). Por lo tanto, las estimaciones barométricas sugieren que estos gneises han sufrido presiones aparentemente más elevadas que las registradas en la serie de metapelitas grafitosas, posiblemente en el rango de 11-15 kbar (Figura 5.5.2).
Tabla 5.5.1. Estimaciones termobarométricas en tres de los gneises bandeados con Ms+Bi+Qtz analizados del complejo geotécnico de Torres y sumario de los datos composicionales de las fases usadas en los cálculos.

<table>
<thead>
<tr>
<th>Termometría GAR (°C) (Cálculos a 10 kbar).</th>
<th>Briotita</th>
<th>Granate</th>
<th>Temperatura (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muestra</td>
<td>nS Mg/Fe</td>
<td>X_gr</td>
<td>n Mg/Fe</td>
</tr>
<tr>
<td>T313</td>
<td>0.072</td>
<td>0.205</td>
<td>9</td>
</tr>
<tr>
<td>T316</td>
<td>0.054</td>
<td>0.208</td>
<td>9</td>
</tr>
<tr>
<td>T336</td>
<td>0.059</td>
<td>0.236</td>
<td>11</td>
</tr>
<tr>
<td>(10)</td>
<td>(0.004)</td>
<td>(0.012)</td>
<td>(0.025)</td>
</tr>
</tbody>
</table>

Nota: nS = número de análisis. En todos los casos se han usado briotita de alto Ti (Ti > 0.3 átomos pto) y granate de alto Ca (X_gr > 0.2). Las abreviaturas de los distintos calibrados como en la Tabla 5.4.1. * K_D = (Mg/Fe)Gr/(Mg/Fe)Br. Error estándar sobre K_D y T propagado en base a las desviaciones estándar de los grupos composicionales de las fases.

Barometría GAMB de Hodges y Crowley (1985) y modificaciones de modelos de solución (bas) (Cálculos a 650 °C, excepto para P4 pro Grt (T336), calculado a 600 °C).

| Barometría GAMB de Hodges y Crowley (1985) y modificaciones de modelos de solución (bas) (Cálculos a 650 °C, excepto para P4 pro Grt (T336), calculado a 600 °C). |
|--|---------|---------|---------|---------|---------|---------|---------|
| Muestra | P1 | P2 | P3 | P4 | P5 | P6 |
| Granate | X_M | X_K | Mg/Fe | X_gr | X_M | X_K | Mg/Fe |
| T313 | 0.072 | 0.205 | 0.208 | 0.338 | 0.058 | 0.214 | 666 | 745 | 746 | 641 | 646 | 685 | 630 | 648 |
| T316 | 0.054 | 0.208 | 0.295 | 0.036 | 0.186 | 613 | 692 | 702 | 636 | 659 | 644 | 563 | 594 |
| T336 | 0.059 | 0.236 | 0.333 | 0.056 | 0.181 | 697 | 695 | 693 | 602 | 612 | 639 | 599 | 695 |

Nota: P1-P6 (kbar) como en Tabla 5.4.1. En todos los casos se ha usado briotita de alto Ti, moscovita de alto Si, y granate de alto Ca en los cálculos excepto S: plagioclases de la matriz más granate de bajo Ca (T313), y plagioclases productos de decompromisión de granate más bordes de granate más briotita con 0.2Ti<0.3 (T336). En este último caso la temperatura de cálculo es 600 °C (ver texto).

Barometría de Hoesch (1990) (bas) con los modelos de actividad definidos por este autor (Cálculos a 650 °C, excepto para P4 pro Grt (T336), calculado a 600 °C).

| Barometría de Hoesch (1990) (bas) con los modelos de actividad definidos por este autor (Cálculos a 650 °C, excepto para P4 pro Grt (T336), calculado a 600 °C). |
|--|---------|---------|---------|---------|---------|---------|
| Muestra | P61 | P82 | P83 | P84 |
| Granate | X_M | X_K | Mg/Fe | X_gr | X_M | X_K | Mg/Fe |
| T313 | 0.088 | 0.205 | 0.338 | 0.214 | 666 | 745 | 746 | 641 | 646 | 685 | 630 | 648 |
| T316 | 0.128 | 0.295 | 0.318 | 0.214 | 613 | 692 | 702 | 636 | 659 | 644 | 563 | 594 |
| T336 | 0.054 | 0.208 | 0.333 | 0.056 | 0.181 | 697 | 695 | 693 | 602 | 612 | 639 | 599 | 695 |

Nota: P61-P84 (kbar) como en Tabla 5.4.1. Temperatura de cálculo como en GAMB.

Un amplio espectro de temperaturas (600-750 °C) se obtiene en las muestras estudianas usando los distintos calibrados del equilibrio GARB y expresiones a-X (Tabla 5.5.1). En la Figura 5.5.2 se presentan los resultados extremos, obtenidos con los calibrados de Indares y Martignole (1985, modelo A) y Hodges y Spear (1982). Como resultado general, las temperaturas más altas se obtienen cuando los modelos de actividad de los componentes del granate (Hodges y Spear, 1982; Ganguly y Saxena, 1984; Berman, 1990) se incluyen para corregir el calibrado experimental de Ferry y Spear (1978). La composición rica en Ca de los
granates, rica en Ti y [M]Al en las biotitas, implica la necesidad tener en cuenta las relaciones a-X de granate y biotita. La inclusión de modelos a-X para la biotita que corren su desviación del sistema puro Fe-Mg (Indares y Martignole, 1985) resulta en estimaciones de temperatura más bajas (660-650 °C), y sus bandas de error se superponen a las soluciones de los calibrados experimentales (Perry y Spear, 1978; Perchuk y Laren'teva, 1983) y empíricos (A.B. Thompson, 1976b).

Aunque temperaturas cercanas a 750 °C pueden parecer muy elevadas, no existe criterio para acotar la temperatura sufrida por estas rocas bajo condiciones de alta P dentro del rango de 600-750 °C. En gran medida, esto se debe al hecho de que la elevada presión sufrida no permite excluir el rango de temperaturas más elevado, dado que la reacción de fusión por deshidratación de moscovita en condiciones anhidras (sistema KNAFASH):

$$Fe_{-}Ms + Ab + Qtz = Fe_{-}Bt + Kfs + Al_{-}S + L$$

(L = líquido gránítico), que marca el límite máximo de temperatura sufrida en el complejo gránítico de Torrox, presenta pendiente dP/dT positiva hasta, al menos, 20 kbar (Storre, 1972; Péto y Thompson, 1974; A.B. Thompson, 1982, 1988a; Clemens, 1984; Le Breton y Thompson, 1988; V. Weitz y Holloway, 1988; ver Figura 5.5.2). Las temperaturas obtenidas con otras rocas del complejo de gneises de Torrox tampoco permiten establecer con claridad la temperatura sufrida bajo condiciones de alta P. Puesto que no existe impedimento para la coexistencia de moscovita a estas temperaturas debido a las elevadas presiones sufridas, es muy probable que esta fase coexistiera con un líquido bajo estas condiciones iniciales dado que las temperaturas obtenidas en estos gneises bandedes son superiores al sólido gránítico saturado en H₂O, definido en el sistema KNAFASH por la reacción:

$$Kfs + Ab + Qtz + Fe_{-}Ms + Fe_{-}Bt + H₂O = L$$

(Figura 5.5.2). A pesar de estas incertidumbres, en este trabajo se considera que temperaturas en torno a 650 °C prevalecieron durante las condiciones de P intermedio (> 10 kbar).

A partir del estudio inicial de alta presión y alta temperatura, una fuerte descompresión se detecta por las cantidades menores de Xₚₜ, y mayores de Xₚₜ, en los bordes de los granates, tanto si éstas son consideradas como una característica de crecimiento (Green, 1796, 1977) o de modificación difusional, y por los reemplazamientos de granate por Pl (rica en Ca) - Qtz - Ms - Bt (Ti intermedio) que cortan a la zonación del granate (Capítulo 4.6.4). Las heterogeneidades composicionales y las texturas reaccionales de las moscovitas de estas rocas indican una fuerte y continuada descompresión hasta condiciones de baja P. El descenso en Si (de 6.66 a 6.14 átomos p.f.u) que resulta del proceso de descomposición fengítica y rescristalización de las moscovitas primarias supone un cambio de presiones desde 11 a 2-3 kbar (barómetro de la fengia, Massonne y Scherfer, 1987), mientras que la descomposición de las moscovitas pegmatíticas en agregados de And+Kfs+Bt indica que se alcanzaron bajas presiones a temperaturas relativamente elevadas ya que se habría superado el límite máximo de estabilidad de moscovita en sistemas saturados en SiO₂. La inestabilidad de moscovita-fuercuo ha debido proceder en condiciones subsólidas mediante la reacción (sistema KASH):

$$K₂Al₆Si₆O₂₀(OH)₄ (Ms) + 2 SiO₂ (Qtz) + 2 KAl₃Si₃O₈ (Kfs) + 2 Al₂SiO₅ (Al₂S) + 2 H₂O$$

(5.179)
Figura 5.5.2. Diagrama P-T que muestra los resultados termoacronómicos en los gruesos basálticos con Melt+Gr
45 del complejo geológico de Torres del Paine utilizando las composiciones de plagioclase de la matriz de la Tabla 5.5.1. Cuadrados rellenos: soluciones simultáneas del barómetro GAMB (PS en Tabla 5.5.1, Hodges y Crouse, 1983, con las actividades de gisantaria y almandina de Berman, 1990, con la de Fishman y Lindley, 1988, y los coeficientes de Chatterjee y Finf, 1986), y las soluciones extremas del barómetro GARP de Frye y Spear (1978) con las actividades de almandina y gisantaria en el granate de Hodges y Spear (1982) (THISS en Tabla 5.5.1, rectas de alta P y T), y con las actividades de plagioclase y almandina de Indares y Martínez(1985, modelo A) (THISS en Tabla 5.5.1, rectas de baja P). El punto triple de los polímeros de Al2SiO5 a de Fyfe y Stuever (1974), las reacciones en los sistemas KFMASH y KNaFAMASH según A.B. Thompson (1982), y las expresiones de Si para la reacción Melt (reactor no esquemático) = Kf+Qtz+Bt+H2O en el sistema KFMASH según Maslany y Schreyer (1987). Nótense que las soluciones simultáneas no interrumpen la reacción FeMt+Ab+Qtz = Fe+Bt+Kf+Al, que marca el límite de estabilidad de microclina. La trayectoria de descomposición se infiere de las variaciones en la composición de las microclinas de la matriz y de la descomposición de microclina pegmatítica a Ab+Bt+Bt.

(c.g., Chatterjee y Johannes, 1974) o su equivalente multicomponente (Figura 5.5.2; A.B. Thompson, 1982). Aunque no es posible deducir con precisión las condiciones P-T a que esta reacción ha sido intersectada, es
Es posible que éstas fueran próximas a 600 °C y 2 kbar, ya que la composición de los granos de moscovita recrystalizados de la matriz indican presiones de 2-3 kbar. Estas cifras son suficientemente ilustrativas de la fuerte descompresión casi-isotérmica sufrida por estas rocas, desde más de 11 kbar hasta ca. 2 kbar.

Con posterioridad a estas condiciones de baja P, la trayectoria PT ha estado dominada por enfriamiento. En la Figura 5.5.2, esto se indica por una trayectoria que inicialmente sigue la traza de la reacción que describe la inestabilidad de moscovita+cuarzo. Más adelante se discuten las evidencias que justifican esta inferencia.

5.5.1.3. Modelización de las reacciones

Como se ha indicado anteriormente al analizar los diagramas AKF y APF, en la modelización de las reacciones es necesario tener en cuenta que los procesos reaccionales responsables de los cambios topológicos sufridos por los gneises bandeados con Ms+Bi+Grt parecen haber operado de manera independiente debido a problemas de balances de masa locales.

Descomposición de Granate

Las texturas de descomposición de granate indican que esta fase ha sido reemplazada por agregados de plagioclasa cálcica, cuarzo, moscovita y biotita. Por tanto, el balance de masa asociado a esta reacción, hay que tener en cuenta el balance del K. Es claro que la biotita es un producto de la reacción, como lo indica el hecho de que las placas de los pseudomorfos son más pobres en Ti, y la razón Mg/Fe es más baja que en las placas de biotita de la matriz. Si la moscovita es también, producto de la reacción, como sugieren las texturas, es necesario considerar una fase reactante de K que puede ser el feldespato-K y/o un fundido granítico. Sin embargo, la asociación producto de descomposición de estos granates es similar a la encontrada en los pseudomorfos de los granates de las metapelitas grafíticas, donde la moscovita es claramente una fase reactante. Esto podría sugerir que la moscovita ha sido implicada en los pseudomorfos de granate como un producto de reacción intermedio, resultante de la operatividad de reacciones tónicas en subdominios, aunque en conjunto la moscovita sería reactante.

Diversas combinaciones de las composiciones de la Tabla 5.5.2 resultan sistemáticamente en reacciones modelo que consumen moscovita, aún en el caso de incluir al mismo tiempo las composiciones de cristales primarios y recrystalizados. La modelización de la reacción para la muestra T336, usando las composiciones de la Tabla 5.5.2 (excluyendo la biotita intercrecida en las placas de moscovita primaria), cuarzo y H₂O, no es petrogenéticamente significativa ya que la biotita de bajo Ti producto de descomposición del granate se localiza en la asociación reactante, y la biotita de alto Ti de la matriz se localiza en la asociación producto. Modelos que sean consistentes con la producción de biotita pobre en Ti y consumición de moscovita se obtienen si se excluye una de las composiciones de moscovita, por lo que se ha preferido excluir la composición de la moscovita recrystalizada dado que esta fase parece ser reactante.

El espacio reactivo para las 9 fases: Grt, Ms (prm), Bi (mtrc), Bi (pto Grt), Pl (pfd), Pl (pto Grt), Kfs (pfd), Qtz, H₂O en el sistema de 10 componentes KNaCaFMnMATSH puede evaluarse reduciendo el rango de la matriz de composición. La reacción resultante de considerar una matriz modelo de rango 8 es:

\[\text{Grt (núcleo) + 0.287 Ms (prm) + 0.162 Bi (mtrc) + 4.334 Pl (pfd) + 0.571 Kfs (pfd) + 0.542 H}_2\text{O} =
\text{0.720 Bi (pto Grt) + 3.297 Pl (pto Grt) + 1.485 Qtz}\]

(5.180)

376
Tabla 5.5.2: Datos aplicables al análisis del espacio reacional para la muestra T316 (granulometría con Fe3+Bi+Gp).

<table>
<thead>
<tr>
<th>Edad (Ga)</th>
<th>Mus (1)</th>
<th>Mus (1)</th>
<th>Br (1)</th>
<th>Br (2)</th>
<th>Pl (1)</th>
<th>Pl (2)</th>
<th>Kfs (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>nítido</td>
<td>pm <0.01</td>
</tr>
<tr>
<td>Grano >0.8</td>
<td>T >0.35</td>
<td>T <0.05</td>
<td>C <0.1</td>
<td>C >0.2</td>
<td>C >0.2</td>
<td>C >0.2</td>
<td>C >0.2</td>
</tr>
<tr>
<td>Sí</td>
<td>0.002</td>
<td>0.003</td>
<td>0.005</td>
<td>0.005</td>
<td>0.006</td>
<td>0.006</td>
<td>0.006</td>
</tr>
<tr>
<td>Ti</td>
<td>0.007</td>
<td>0.010</td>
<td>0.010</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
</tr>
<tr>
<td>Al</td>
<td>0.192</td>
<td>0.540</td>
<td>0.540</td>
<td>0.540</td>
<td>0.540</td>
<td>0.540</td>
<td>0.540</td>
</tr>
<tr>
<td>Fe</td>
<td>2.060</td>
<td>0.813</td>
<td>0.813</td>
<td>1.724</td>
<td>1.724</td>
<td>1.724</td>
<td>1.724</td>
</tr>
<tr>
<td>Mn</td>
<td>0.053</td>
<td>0.039</td>
<td>0.039</td>
<td>0.039</td>
<td>0.039</td>
<td>0.039</td>
<td>0.039</td>
</tr>
<tr>
<td>Mg</td>
<td>0.414</td>
<td>0.032</td>
<td>0.032</td>
<td>0.032</td>
<td>0.032</td>
<td>0.032</td>
<td>0.032</td>
</tr>
<tr>
<td>Ca</td>
<td>0.811</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Na</td>
<td>0.000</td>
<td>0.112</td>
<td>0.112</td>
<td>0.112</td>
<td>0.112</td>
<td>0.112</td>
<td>0.112</td>
</tr>
<tr>
<td>K</td>
<td>0.000</td>
<td>1.561</td>
<td>1.561</td>
<td>1.561</td>
<td>1.561</td>
<td>1.561</td>
<td>1.561</td>
</tr>
<tr>
<td>H</td>
<td>0.000</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
</tr>
</tbody>
</table>

Matriz de errores (%):

Sí	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ti	0.002	0.001	0.001	0.001	0.001	0.001	0.001
Al	0.019	0.045	0.045	0.045	0.045	0.045	0.045
Fe	0.021	0.004	0.004	0.004	0.004	0.004	0.004
Mn	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Mg	0.001	0.003	0.003	0.003	0.003	0.003	0.003
Ca	0.006	0.001	0.001	0.001	0.001	0.001	0.001
Na	0.001	0.002	0.002	0.002	0.002	0.002	0.002
K	0.001	0.017	0.017	0.017	0.017	0.017	0.017
H	0.002	0.000	0.000	0.000	0.000	0.000	0.000

Matriz de residuos para la modelización de la reacción (S1801) del texto:

Sí	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ti	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
Al	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Fe	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mg	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Ca	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Na	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
K	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
H	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000

Matriz de covariancia para la modelización de la reacción (S1801) del texto:

Sí	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ca	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Na	0.000	0.000	0.000	0.000	0.000	0.000	0.000
K	0.000	0.000	0.000	0.000	0.000	0.000	0.000
H	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Notas: * Número de análisis. # Cuando la composición de las fases está representada por un análisis puntual, se ha asumido un error de % relativo, excepto para los componentes minoritarios a los que se ha asignado un valor de 0.001. @ La composición de muscovita primaria corresponde al análisis con Si máximo de la base de datos de este tipo de gneises, y pertenece a un cristal de la muestra T316. Se excluyen SiO2 y H2O.

Esta ecuación puede ser considerada petrogenéticamente significativa ya que representa la producción neta de bitoita y plagioclasa a expensas de granate y muscovita (y feldesplato-K, aunque esta fase no ha sido observada

377
en las texturas reaccionales), y puede explicar las texturas reaccionales. Sin embargo, los residuales asociados a los elementos Ti, Mn y Mg en la matriz modelo de rango 8 son elevados (ver razones de error en la Tabla 5.5.2). Al menos para el caso del Mg, y posiblemente también del Ti, estos malos residuales deben considerarse indicativos de que la matriz original y la matriz modelo no son estadísticamente indistinguibles dentro del error analítico, ya que ambos elementos no son minoritarios en las micas. Por lo tanto, es posible que la reacción anterior no sea indicativa del proceso de descomposición de granate. La consideración de otras composiciones de micas, (biotitas de la matriz con Ti0.3 y muscovitas primarias con Si<6.6 átomos pfu), o la exclusión de algunas fases (e.g., una composición de biotita y otra de plagioclasa en lugar de dos por cada fase, feldespatos-K), resulta en todos los casos en reacciones modelo inaceptables debido a los elevados residuales asociados a bastantes elementos, aunque la forma de los balances de masa es similar a la ecuación (5.180). Los malos residuales en Ti, Mn y Mg asociados al balance (5.180) sólo pueden interpretarse como el resultado de (1) errores en las normalizaciones estructurales de las micas, en cuyo caso la reacción (5.180) es significativa aunque imprecisa, o (2) la no consideración de otras fases, particularmente un fundido.

La consumición de granate podría modelizarse mediante la reacción divariente en el sistema KFMASH:

\[\text{Grt} + \text{Kfs} + \text{H}_2\text{O} = \text{Bt} + \text{Ms} + \text{Qtz}\] (5.181)

Esta reacción ocurre a altas presiones y a temperaturas inferiores al límite máximo de estabilidad de muscovita+cuarzo, como se muestra en la Figura 5.5.3a (reproducida de la Figura 1 de A.B. Thompson, 1982), por lo que es posible que haya sido operativa en los gneises baneados. En este caso, la descomposición de granate representa una reacción de rehidratación, (como también se infiere del balance de masa (5.180)). Dadas las composiciones de las micas y plagioclasa implicadas en los pseudomorfos, la reacción de descomposición del granate debe relacionarse con la descompresión de los gneises, lo cual es concordante con la pendiente dP/dT positiva de la reacción (5.181). No obstante, la fuente del fluido puede ser un problema, aunque la cristalización simultánea de un fundido parcial puede explicar la disponibilidad de H2O.

En el sistema KFMASH, la reacción (5.181) es metaestable respecto a otras reacciones de fusión bajo condiciones de temperatura apropiadas (A. B. Thompson, 1982). Esto que permite considerar la posibilidad de que el granate haya reaccionado con un fundido (generado a alta P y T), al menos durante los estudios iniciales de la descompresión. La presencia de una fase fundida en los gneises baneados durante la descompresión puede inferirse de la presencia venas aplíticas concordantes y de segregados pegmatíticos de Qtz+Kfs+Ab+Ms+Tur (Capítulo 3.2.1.1). De hecho, algunas de las texturas de reemplazamiento del granate parecen deberse a reacción con un fundido ya que implican exclusivamente a cuarzo y plagioclasa como productos localizados en golpes de corrosión similares a los que pueden encontrarse en fases de rocas igneaes (Figura 3.2.1b). De entre las posibles reacciones entre granate y fundido, pueden destacarse (en el sistema KFMASH):

\[\text{Grt} + \text{L} = \text{Ms} + \text{Bt} + \text{Qtz} + \text{H}_2\text{O}\] (5.182)

\[\text{Grt} + \text{Kfs} + \text{L} = \text{Bt} + \text{Ms} + \text{Qtz}\] (5.183)

378
Figura 5.3.3. Redes petrogenéticas esquemáticas y topografías AKF y AFH2O de A. B. Thompson (1982) para el sistema KFASH aplicable a metamorfos y gneiss de grado alto bajo condiciones a) subhidradas, b) superhidradas y saturadas en H2O, y c) superhidradas y subatmosférica en H2O. Nótese la posición de las reacciones 27, 45, y 48, correspondientes a las reacciones (5.181), (5.182) y (5.183) del texto, que pueden explicar la descomposición de granato. En cada diagrama se han señalado las reacciones que marcan las condiciones P-T máximas de estabilidad de muscovita. La trayectoria de descomposición se ha ajustado a los respectivos diagramas y que todas las reacciones de fason se desplazan a menor temperatura en el sistema KFASH por la inclusión de albina.
que aplican a sistemas saturados y subsaturados en H_2O, respectivamente. Estas dos reacciones se localizan, al igual que la reacción (5.181), a altas presiones y a temperaturas inferiores a la estabilidad máxima de moscovita-cuarzo (Figura 5.5.3b y c; reproducidas de las Figuras 5b y 6b de A.B. Thompson, 1982; ver también Vielzeuf y Holloway, 1988). De haber sido intersectadas y ser la causa de los reemplazamientos de granate, el progreso de estas reacciones debería relacionarse con la descompresión (y enfriamiento).

Debe notarse que la asociación Ms+Grt debería desestabilizarse durante la descompresión y generar $Bt+Als$, tanto bajo condiciones subsólidas como supersólidas, mediante la reacción (Figura 5.5.3b y c):

$$Grt + Ms = Bt + Als + Qtz$$ (5.184)

Sin embargo, la ausencia de silicatos de Al en la matriz de estas rocas sugiere que esta reacción no ha debido ser intersectada, lo que puede explicarse por la composición de estas rocas. Como puede deducirse de los diagramas AKF de la Figura 5.5.3b, la reacción (5.184) no debería observarse en sistemas pobres en Al y ricos en K como lo representado por los gneises baneados con Ms+Bt+Grt, sobre todo si se tiene en cuenta que otros componentes como Ca y Na deben expandir el campo de estabilidad de Ms+Grt. La observación de la Figura 5.5.3c indica que la ausencia de Als es indicativa de condiciones saturadas en H_2O. Por otra parte, la composición de este tipo de gneises, con razonable Mg/Fe bajas y moderadamente aluminásico (Figura 3.2.8), no es apropiada para la formación de cordierita (Figura 5.5.3). Esto puede explicar también la ausencia de cordierita en los pseudomorfos de granate de estos gneises, aunque las condiciones PT apropiadas para las reacciones:

$$Grt + Als + Qtz = Crd$$ (5.185)

$$Bt + Als + Qtz = Crd + Ms$$ (5.186)

han debido ser superadas durante la descompresión (Figura 5.5.3). La reacción (5.186) sí ha sido intersectada por los gneises pelíticos grafitosos adjacentes (Capítulo 5.4.3.3).

Descomposición de las Moscovitas Primarias

La fuerte heterogeneidad composicional y los abundantes intercambiernos de $Bt+Qtz$ que presentan los cristales de moscovita primaria de la matriz de los gneises con Ms+Bt+Grt indican que estas moscovitas han sufrido un proceso de descomposición dominado por la inestabilidad del componente leucotlitita asociado a la descompresión (Capítulo 4.4.4.1). Es posible que el proceso de descomposición del granate haya progresado al mismo tiempo que el proceso de descomposición de la moscovita, toda vez que esta fase parece ser reactante junto con el granate (reacción (5.180)). Sin embargo, (1) la disposición de los intercambiernos de $Bt+Qtz$ en el interior de los cristales de moscovita, (2) la intima asociación de los intercambiernos con halos de empobrecimiento en Si, Fe, Mg y Ti en la moscovita (Capítulo 4.4.4.1) y (3) el tamaño de grano tan fino de estos intercambiernos (ver más adelante y García-Casco et al., 1993), indican que la descomposición del granate no estuvo directamente relacionada con el crecimiento de la asociación intercereada en las placas de moscovita primaria. De hecho, heterogeneidades composicionales y texturas reaccionales similares se encuentran en las moscovitas de los gneises porfiroïdes con Ms+Bt, donde no coexiste granate. Como se ha indicado más arriba, los procesos reaccionales sufridos han ocurrido en
La reacción modelo (sistema KMASH) de transferencia neta que describe el cambio de composición de la moscovita en términos del componente leucofilita (o vector tschemak, tk) en la asociación divariante Ms+Bt+Kfs+Qtz+H₂O es:

\[
3 \text{K}_2\text{Al}_5\text{Si}_8\text{O}_{20}\text{(OH)}_4 (\text{Ms}) + 6 \text{SiMg}_{[\text{ts}]}^{[\text{M}]}\text{Al}_{[\text{tk}]}^{[\text{M}]}\text{Al}_3^{[\text{M}]}\text{Al}_3^{[\text{M}]} (\text{vector tk}) = \\
= 4 \text{KAlSi}_3\text{O}_8 (\text{Kfs}) + 6 \text{SiO}_2 (\text{Qtz}) + K_2\text{Mg}_2\text{Al}_5\text{Si}_8\text{O}_{20}\text{(OH)}_4 (\text{Bt}) + 4 H_2O
\]

(5.187)

Esta reacción, que ha sido escrita en términos del vector tschemak para enfatizar el aumento en Al de moscovita y biotita al progresar hacia la derecha (J.B. Thompson, 1972; A.B. Thompson, 1982; Miyashiro y Shido, 1984), ha sido investigada por Yelde (1965, 1967), Monier y Robert (1984a) y Massonne y Schreyer (1987). Las isoperas de Si para la reacción (5.187), referida como reacción de descomposición fúngica, presentan pendientes dP/dT positivas y bajas, lo que indica un fuerte efecto de la presión sobre el equilibrio (Figura 5.5.2), de acuerdo con las evidencias de muestras naturales (ver Capítulo 4.4.3.2). Dada la fuerte variación en Si y las buenas correlaciones entre Si, Mg, Fe y [M]Al de las moscovitas primarias y recrystalizadas de estos rocas, la reacción (5.187) parece responsable de gran parte de las fuerzas variaciones composicionales de estas micas (Capítulo 4.4.4.1). Sin embargo, como ya se enfatizó en el Capítulo 4.4.4.1, un aspecto importante es que la reacción (5.187) predice la formación de feldespato-K, el cual no ha sido observado con métodos de microscopía óptica y electrónica (SEM y TEM) en los intercambios de Bt+Qtz de las moscovitas primarias a pesar de estar presente en la matriz de estos gneises. Sin embargo, es probable que la ausencia del feldespato-K en los intercambios se deba al efecto de otros componentes de la moscovita y a la posible difusión del K fuera de los cristales de moscovita, como se muestra a continuación.

La reacción de descomposición de moscovita en el sistema KNaFMATISH puede ser evaluada siguiendo el acercamiento algebraico de J.B. Thompson (1982 a y b) en términos de un conjunto de reacciones de transferencia neta independientes entre componentes de fase linealmente independientes definidos como componentes aditivos y vectores de intercambio. Los componentes del sistema Ca y Mn han sido excluidos debido a su escasa concentración en las fases implicadas. Para las fases moscovita y biotita, con moscovita y flogopita como componentes aditivos, respectivamente, el número de vectores de intercambio es 6 (10 variables composicionales - 4 constricciones de balance de masa y carga; ver Capítulos 4.4.2 y 4.5.2). Para la moscovita se han elegido los vectores deducidos en el Capítulo 4.4.4.1, i.e., FeMg₄ (fms), NaK₄ (nk), SiMg₄[Al₄]₆[Al₂]₂ (tk), Si[Al₂]₄[Si₆]₂ (phl), Mg₂[Ti₄]₆[Al₄]₂ (Tsp), y Mg₂[Al₂]₂ (distri). Para la biotita, se han elegido estos mismos vectores aunque se ha sustituido el vector Tsp por el vector Ti₄ (Ti₄[O]Mg) debido al fuerte control que ejerce el Ti sobre las vacantes octaédricas. Debe notarse que no se han incluido los vectores Ti-Al-vacante y Si-vacante, ya que controlan la variación de las biotitas de la matriz. No obstante, su consideración como componentes implicados en las reacciones que siguen no supone ningún problema ya que existen combinaciones lineales entre estos vectores y los arriba indicados. El resto de componentes a considerar son los componentes aditivos feldespato-K (Kfs, KAlSi₃O₈), cuarzo (Qz, SiO₂), rutilo (R, TiO₂) y agua (H₂O).

Puesto que las reacciones de intercambio no modifican sustancialmente las abundancias volumétricas de las fases implicadas en las reacciones heterogéneas (J.B. Thompson, 1982b), aquellas reacciones que involucran a los vectores de intercambio fms y nk pueden excluirse en la modelización. Esto supone
condensar el sistema KNaFMA TISH en el sistema KMATISH por proyección desde FeMg₁, y NaK₁. El error cometido por este procedimiento no es importante ya que los pares Fe-Mg y Na-K se comportan de la misma manera durante el proceso de descomposición de la moscovita (Figuras 4.4.6 y 4.4.8). La dimensión del espacio reacional entre los 11 componentes seleccionados en el sistema de 6 componentes KNATISH es 5. De entre todas las posibles reacciones de transferencia neta independientes que relacionan los componentes anteriores se ha seleccionado la reacción (5.187) y las reacciones:

\[6 \text{KAI}S_iO_8\text{(kfs)} + 6 \text{Si}^{[8]}\text{(ok)}\text{Al}_3\text{K}_1\text{(prl)} = 24 \text{SiO}_2\text{(qtz)} \]
(5.188)

\[3 \text{K}_2\text{Al}_6\text{Si}_6\text{O}_{24}\text{(OH)}_4\text{(ms)} + 6 \text{Mg}^{[6]}\text{Al}_2\text{(ok)}\text{(ih)} = 3 \text{K}_2\text{Mg}_6\text{Al}_2\text{Si}_6\text{O}_{24}\text{(OH)}_4\text{(phil)} \]
(5.189)

\[3 \text{K}_2\text{Al}_6\text{Si}_6\text{O}_{24}\text{(OH)}_4\text{(ms)} + 6 \text{TiMg}^{[6]}\text{Al}_2\text{(Ti-sp)} = \]
\[= 3 \text{K}_2\text{Mg}_6\text{Al}_2\text{Si}_6\text{O}_{24}\text{(OH)}_4\text{(phil)} + 6 \text{Ti}^{[6]}\text{(ok)}\text{Mg}_2\text{(Ti vac)} \]
(5.190)

\[3 \text{K}_2\text{Al}_6\text{Si}_6\text{O}_{24}\text{(OH)}_4\text{(ms)} + 6 \text{TiMg}^{[6]}\text{Al}_2\text{(Ti-sl)} = \]
\[= \text{K}_2\text{Mg}_6\text{Al}_2\text{Si}_6\text{O}_{24}\text{(OH)}_4\text{(phil)} + 6 \text{TiO}_2\text{(ir)} + 4 \text{KAI}S_iO_8\text{(kfs)} + \text{H}_2\text{O} \]
(5.191)

Estas cinco reacciones de transferencia neta (5.187)-(5.191) pueden utilizarse para describir el progreso de la reacción de descomposición de la moscovita, y los cambios de composición asociados, siempre que los vectores de intercambio seleccionados describan cambios reales de composición, y no artefactos resultantes de la normalización estructural realizada (20 Oxígenos y 4 OH). Como se indicó en el Capítulo 4, la selección de un conjunto de vectores independientes en soluciones sólidas complejas no es una tarea simple ya que su número y naturaleza depende de (1) el número y naturaleza de los componentes elementales analizados (e.g., ausencia de determinaciones independientes de Fe³⁺, H y O), (2) el tipo de normalización estructural utilizada (e.g., 22 átomos de O vs 8 cationes tetraédricos más 4 octaédricos para la moscovita), y (3) elecciones crasiquímicas particulares (e.g. [⁶¹⁶¹]Ti vs [⁶¹⁶¹]Ti). Además, una vez se ha normalizado una determinada composición, existe considerable libertad en la selección, dados el elevado número de vectores de intercambio potencialmente operativos. Estas limitaciones hacen que el conjunto de vectores seleccionado anteriormente no sea único, y que incluso alguno de los componentes no sea realmente operativo o esté sobreestimado (e.g. vectores di-tri-octaédricos y pirofilita en la moscovita, ver Capítulo 4.4 y más adelante). Sin embargo, esta selección de vectores de intercambio se considera útil en la modelización de los cambios composicionales sufridos por la moscovita durante su descomposición fengítica (Capítulo 4.4.4.1).

La modelización de esta relación se ha realizado mediante cálculos de balance de masa transformando la composición de la moscovita primaria (Tabla 5.5.2) en el sistema de coordenadas definido por la composición de moscovita recristalizada y biotita intercercada (Tabla 5.5.2), y las composiciones crasiquímicas de feldespato-K, cuarzo, cuarto y H₂O. Las composiciones han sido condensados en el sistema KMATISH (por proyección desde FeMg₁, y NaK₁) y expresadas en términos de unidades oxi-equivalentes (24 unidades de O) para aproximar sus abundancias volumétricas (Brady y Stout, 1980; J.B. Thompson, 1982). Dado que la dimensión de la matriz de composición es 6 (KMATISH x 7 (fases)), la dimensión de espacio reacional es 1 y existe una relación de dependencia única y exacta entre estas fases. La ecuación resultante es:

382
\[\text{Ms}(\text{fmr}) = 0.647 \frac{\text{Ms}(\text{recr})}{1.158} + 0.089 \text{Qz} + 0.086 \text{Kfs} + 0.005 \text{Rt} + 0.016 \text{H}_2\text{O} \quad (5.192) \]

Esta reacción predice la formación de cantidades detectables de feldespato-K (la asociación de fases sólidas producto de reacción, excluyendo el rutio, estaría formada por 47% Bt, 27% Qz, y 26% Kfs). Dado que la proporción de fases sólidas esperables de la reacción de descomposición fénítica (5.187) es 35% Bt, 18% Qz, y 47% Kfs, el efecto neto de otros componentes de la moscovita sobre el producto de descomposición ha sido un descenso en la proporción de Kfs y un aumento en la proporción de Bt y Qz, independientemente de que procesos de difusión hayan modificado los valores obtenidos en el balance de masa. La expresión de la reacción (5.192) en términos de los 11 componentes de fase considerados más arriba resulta en (unidades molar):

\[3\text{ms} + 4.510\text{tk} + 1.130\text{prl} + 0.500\text{distri} + 0.990\text{Ti-sp} = \\
= 1.342\text{phl} + 0.527\text{Ti-va} + 2.185\text{Kfs} + 9.031\text{qz} + 0.463\text{rt} + 3.315\text{H}_2\text{O} \quad (5.193) \]

que puede considerarse como la reacción de descomposición global ponderada, formada por las 5 reacciones de transferencia neta más simples (5.187)-(5.191) corregidas por 1/6 de los coeficientes estequiométricos correspondientes a los vectores de intercambio del lado izquierdo de la reacción (nótese que el vector Ti-sp no ha sido dividido en sus valores correspondientes de las reacciones (5.190) y (5.191), pero los factores de corrección para las mismas son 1/6 de los coeficientes estequiométricos de Ti-va y rt en la reacción (5.193), respectivamente). Los valores normalizados de estos coeficientes en la ecuación (5.193) son 63.3% tk, 15.8% prl, 7.0% distri y 13.9% Ti-sp, que son muy aproximados a los obtenidos en el Capítulo 4.4.4.1 en el apéndice de las variaciones composicionales de estas moscovitas mediante la técnica de Componentes Principales (ver ecuación (4.30): 54.5% tk, 21.8% prl + 5.7% distri + 18.0% Ti-sp).

Estos resultados confirman que la reacción de descomposición fénítica (5.187) da cuenta de la mayor parte de los cambios composicionales en la moscovita y del volumen de las fases producto. Sin embargo, los cambios en los componentes trioxaédricos y de Ti en la moscovita, modelizados mediante las reacciones (5.189) y (5.190), respectivamente, han contribuido a la formación de más biotita, y los cambios en la cantidad de componentes alcalinos, modelizados por el vector pirofilita en la reacción (5.188), han contribuido a la formación de más cuarzo y menos feldespato-K. Ésto se ilustra en el diagrama AKF condensado de la Figura 5.5.1, donde el espectro composicional de la moscovita se localiza en una posición intermedia entre las trayectorias esperables de los cuatro vectores de intercambio (o 5 reacciones de transferencia neta) que operan sobre la moscovita. Puesto que la composición de la moscovita primaria que sufre descomposición está desplazada hacia el join mssd del triángulo mssd-Kfs, las cantidades de Kfs producidos han sido menores que las predecibles de la reacción de descomposición fénítica (5.187) (i.e., ca. 25% vs 47% en unidades oxiequivalentes). Esto es esencialmente el resultado del incremento en los contenidos de cationes alcalinos en la moscovita a medida que la descomposición progrese (ver Figura 4.4.8).

Los resultados anteriores son probablemente imprecisos debido a que dependen del valor del conjunto de vectores de intercambio seleccionado, que a su vez depende de críticamente del valor de las normalizaciones estructurales y de la no disponibilidad de estimaciones independientes de H y Fe³⁺. Particularmente importante en este contexto es la no disponibilidad de estimaciones de H que puede poner en entredicho la operatividad del vector pirofilita en la moscovita ya que las vacantes interlaminares calculadas en la normalización estructural (0.256-0.058 átomos pfu) pueden ser ficticias debido a la
operatividad de la sustitución de hidronios \((H_3O^+)K_1\). Las correlaciones negativas entre Si y los cationes interlaminares (Tabla 4.4.3) y las consideraciones hechas en el Capítulo 4.4.4.1 favorecen la operatividad de la sustitución pirofilita y la existencia de vacantes interlaminares reales, en consistencia con los resultados experimentales de Velde (1969) y Rosenberg (1987), pero sólo si los contenidos de \(H_3O^+\) no han sido afectados por los cambios en T-P responsables de la reacción de descomposición de micas. Esto último no puede excluirse, dadas las variaciones en H y de biotitas metamórficas en función del grado metamórfico obtenidas por Dyar et al. (1991a). En este sentido, es interesante volver a indicar que las micas pirofilitas de este tipo de grés, que se han formado cerca del sólido granítico saturado en \(H_2O\), presentan contenidos en cationes alcalinos menores que los de las micas recristalizadas de la matriz, lo que sugiere cantidades mayores de H en las posiciones interlaminares. De hecho, si \(H_3O^+\) ocupa posiciones interlaminares, reacciones como:

\[
9 \text{kfs} + 6 \text{H}_3\text{O}^+\text{K}_1\text{ms} = 1.5 \text{ms} + 18 \text{qtz} + 6 \text{H}_2\text{O}
\]

pueden explicar también el progresivo aumento en cationes alcalinos de la micaqua de la matriz a medida que su descomposición progresa, y el descenso en las cantidades de feldespato-K respecto al predicción de la reacción de descomposición fengítica (5.187). Así, aunque en este trabajo se ha modelizado los cambios en la ocupancia interlaminar mediante la sustitución pirofilita debido a la no disponibilidad de estimaciones independientes de H, las cantidades calculadas de componente pirofilita en solución (Figura 4.4.8) y la contribución relativa de la reacción (5.188) en la reacción de descomposición global (5.193) deben considerarse como estimaciones del efecto compuesto de las sustituciones pirofilita y de hidronios.

La ausencia de feldespato-K en la asociación producto interesada en las placas de micaqua de la roca que contradice las predicciones de los balances de masa y de los diagramas de fases en equilibrio. Una posible explicación es que el componente K ha difundido hacia la matriz de estas rocas, lo cual es posible si se tiene en cuenta que una fase fluida rica en \(H_2O\) ha sido producida durante la descomposición fengítica de la micaqua. La difusión del K a través de los cristales de micaqua puede considerarse en términos de la difusión de un compuesto hidratado disuelto en el fluido que lo transpercia. Esto implica que reacciones de hidrolisis como:

\[
6 \text{kfs} + 4 \text{H}_2\text{O} = \text{ms} + 12 \text{qtz} + 4 \text{KOH}
\]

representan mecanismos reaccionales más simples de las reacciones moleculares más complejas. Por lo tanto, el incremento en los contenidos en cationes alcalinos de las micas en la matriz a medida que su descomposición progresa puede ser evaluado como el resultado de reacciones de intercambio entre el fluido y la micaqua, que podría expresarse como:

\[
\text{KOH} \text{[Fluido]} + \text{H}_3\text{O}^+\text{K}_1\text{ms} = 2 \text{H}_2\text{O}
\]

Este tipo de reacciones favorece la operatividad de la sustitución de hidronios en estas micas, aunque son necesarios datos composicionales más precisos para evaluar la importancia relativa de las sustituciones pirofilita y de hidronios.
Descomposición de las Moscovitas Pegmatíticas

Las moscovitas pegmatíticas que aparecen en los gneises bandeados con Ms+Qtz+Grt no presentan evidencias de haber sufrido procesos de descomposición fengítica similares a los presentes en las moscovitas primarias y recristalizadas de la matriz de este tipo de rocas. Esto es debido a su escasa concentración en los componentes leucofilita, T1-moscovita y trioctaedrico. Sin embargo, las texturas reaccionales encontradas en las moscovitas pegmatíticas indican que estas rocas interfrecieron el límite superior de estabilidad de moscovita en sistemas saturados en SiO₂ a baja P bajo condiciones subóctulas, que puede describirse por el equilibrio univariante (5.179) en el sistema KASH (Figura 5.5.2), que se considera comúnmente como el límite inferior de temperatura del grado alto. A pesar de la naturaleza discontinua de la reacción (5.179), no es raro encontrar la coexistencia de Ms+Kfs+Qtz+Al₂O₃ a lo largo de zonas de persistencia en rocas de alta temperatura sujetas a metamorfismo progrado bajo condiciones de P intermedia a baja. Estas zonas pueden ser el resultado de (1) factores cinéticos (Lasaga, 1986; Kerrick et al., 1991), (2) la naturaleza heterogénea de la fase fluida coexistente ya que la reacción (5.179) se desplaza hacia menor T bajo la condición de P₉₂₀ < P₉₂₀ (Kerrick, 1972), o (3) variaciones en la composición de las fases sólidas. Las investigaciones experimentales y teóricas sobre la reacción (5.179) han mostrado que, bajo condiciones de sobrepaso moderado del equilibrio, la moscovita debería descomponerse totalmente (c.g. Ridley y Thompson, 1986; Schramke et al., 1987; Kerrick et al., 1991; ver más adelante), y que los desplazamientos del equilibrio en el espacio P-T debido a variaciones en la composición de la moscovita no justifican las zonas de persistencia anteriormente mencionadas a pesar de que la consideración de otros componentes en las fases sólidas resulta en un aumento de la varianza y el equilibrio deviene continuo. La reacción (sistema KMASH):

\[
K₂Al₆Si₄O₂₆(OH)₄ (M₁) + 2x(SiMgAl₂) (tk) + 2x₂SiO₂ (Qz) = (2x₂/3) KAl₃Si₃O₁₀ (Kfs) + \\
+ (2-2x₂) Al₂SiO₅ (Als) + x/3 K₂Mg₂Al₃Si₃O₁₆ (OFl)₄ (Phl) + (2-2x₂/3) H₂O
\]
(5.179)

que incluye el vector tschermack para enfatizar el aumento en los contenidos de Al en las micas y la producción de una fase ferromagnesiana (biotita), ocurre a unos grados más que la reacción (5.179) a P₉₂₀ y P₉₂₀ constantes (A.B. Thompson, 1982), pero este desplazamiento se balancea por el efecto del Na en las micas y el feldespato (c.g., Chatterje y Froese, 1975). Por lo tanto, es posible considerar el límite máximo de estabilidad subóctulas de moscovita como una discontinuidad zonal (i.e., isográda), a pesar del carácter continuo de la reacción en sistemas multicomponentes. Los datos composicionales disponibles (Figura 4.4.6), y la inspección de transversales elementales cualitativas con la microsonda electrónica, indican que la composición de la moscovita pegmatítica en contacto con los productos de reacción es idéntica dentro del error analítico a la composición de las zonas no afectadas por la descomposición, por lo que no pueden implicarse intercambios netos de naturaleza continua entre las fases, y por lo tanto, la reacción de descomposición debió progresar a efectos prácticos como una reacción discontinua.

La reacción (5.179) es más apropiada que la reacción (5.179) para describir las texturas reaccionales encontradas en las moscovitas pegmatíticas de este tipo de rocas. En el sistema KNaCaF₃MnMATISH, la coexistencia de moscovita, feldespato-K, silicato de Al, biotita y H₂O es terravariante. Por lo tanto, el sistema de ecuaciones (5.127) necesario para evaluar las relaciones de reacción entre estas fases está sobreestimado (más ecuaciones que incógnitas). Los cálculos de balances de masa modelizando la composición media de las moscovitas pegmatíticas, resultan en la ecuación:

385
Mas + 1.785 Qtz = 1.941 Kfs + 0.065 Bt + 1.747 Als + 1.871 H2O \((5.198) \)

usando medias de las composiciones de biotita y feldespat-K intercercados en las moscovitas pegmatíticas (Capítulo 4), y las composiciones estereométricas de Als y Qtz. Esta reacción se aproxima bastante a la reacción modelo (5.197); y parece describir bien las texturas reaccionales de las moscovitas pegmatíticas. Los residuales son aceptables, exceptuando el del Na (Si = 6.000; Ti = -0.00633; Al = 0.000; Fe = -0.00928, Mn = -0.00036; Mg = -0.02115; Ca = -0.00491; Na = -0.16956; K = 0.03685; H = 0.000), lo que sugiere problemas en el balance de los cationes alcalinos. La transformación de la reacción (5.198) en términos de los componentes Ms, Fes-k, MnFe₄, MgFe₄, di-trí, prl, Ti-sp, NaK₄ y CaAlK₂Si₂₄ (para la moscovita), ann, Fes-k, MnFe₄, MgFe₄, di-trí, prl, Ti-sp, NaK₄ y CaAlK₂Si₂₄ (para la biotita) y kfs, NaK₄, CaAlK₂Si₂₄, prl y Al₃Si, \(2 \text{K}_1 \) (para el feldespat-K), además de los componentes estereométricos als, qtz y H₂O resulta en la ecuación:

\[
1.000 \text{ms} + 1.785 \text{qzt} + 0.047 \text{Fes-k} + 0.089 \text{di-trí} + 0.085 \text{prl} + 0.010 \text{Ti-sp} = \\
1.941 \text{kfs} + 1.747 \text{and} + 0.065 \text{ann} + 1.871 \text{H₂O} + 0.000 \text{MnFe}_4 + 0.021 \text{MgFe}_4 + 0.016 \text{Ti-sp} + \\
+ 0.170 \text{NaK}_4 + 0.005 \text{CaAlK}_2\text{Si}_2\text{O}_6 + 0.017 \text{Al}_3\text{Si}_3\text{O}_8 \text{K}_1 \tag{5.199}
\]

En esta ecuación, los vectores de intercambio dan cuenta de las desviaciones composicionales de las fases sólidas Mas, Bt y Kfs, y en conjunto deben balancear los elementos extraños al sistema KFASH. Puede apreciarse que, para algunos de estos componentes existe balance de masa a ambos lados de la ecuación (e.g., MnFe₄ = 0, y Ti-sp y Ti-sp prácticamente balancean el Ti), aunque para otros el desbalance es claro. Este es el caso del Na y Mg, que sólo están implicados en los vectores NaK₄ y MgFe₄ (i.e., NaK₄ ≠ 0 y MgFe₄ ≠ 0), respectivamente. En parte, esta discrepancia puede deberse al hecho de que las fórmulas estructurales de las micas no están ajustadas debido a los problemas derivados de la posible presencia de Fe³⁺ (Capítulo 4.4.4.1) y de cantidades de H mayores de 4. Aunque esta explicación puede justificar el moderado desbalance del Mg, no es probable que pueda justificar el elevado desbalance del Na, que no es sino el reflejo de los mínimos residuales asociados a este componente.

Para explicar este desbalance del Na es necesario considerar el efecto de las soluciones acuosas en la reacción de descomposición. En este sentido, debe recordarse que el análisis de las texturas reaccionales sugiere que la moscovita reaccionó inicialmente en los contactos con cuarzo, formando un fino borde de fibrolita-feldespat-K que en parte aisló los cristales de moscovita de los cristales exteriores de cuarzo. Sin embargo, el hecho de que la descomposición tuvo lugar de forma amplia dentro de los cristales de moscovita, lejos del cuarzo exterior, sugiere la coexistencia de un fluido que facilitase el acceso de Si hacia el interior de los cristales de moscovita ya que de otra forma los núcleos de moscovita (que pueden considerarse como un sub-sistema substaurado en SiO₂) no habrían reaccionado para producir andaluzita (ver Capítulos 3.3.2 y 4.4.4.1 y Figura 3.2.2). Los componentes cariónicos, tales como Si, Na y K, podrían estar disueltos en la solución acusa en forma de complejos hidratados, aunque en términos prácticos pueden considerarse hidróxidos simples como Si(OH)₆, NaOH y KOH. La modelización de la reacción de descomposición considerando estas tres especies hidratadas resulta en balances de masa donde el feldespat-K es reactante, lo cual no es posible dada su presencia en el producto de reacción. Si se excluye la especie KOH el balance de masa resultante es consistente con las texturas reaccionales:
Ms + 1.908 Si(OH)₄ + 0.179 NaOH = 1.999 Kfs + 0.059 Bt + 1.729 And + 5.783 H₂O \quad (5.200)

y presenta unos residuales acceptables (Si = 0.000; Ti = -0.00488; Al = 0.000; Fe = 0.00662; Mn = -0.00024; Mg = -0.01430; Ca = 0.00494; Na = 0.000; K = 0.000; H = 0.000; Chi-cuadrado = 0.000). Estos resultados refuerzan la interpretación anteriormente apuntada al respecto de la operatividad de reacciones de hidrólisis:

\[
pa [\text{Ms}] \cdot 1.2 \text{Si(OH)}_4 + 4 \text{NaOH} = 6 \text{ab} [\text{Kfs} + 28 \text{H}_2\text{O}] \quad (5.201)
\]

como mecanismos reaccionales más simples de los procesos moleculares (ver Schramke et al., 1987). Al igual que en el caso de la descomposición feldítica discutido más arriba, este tipo de reacciones favorecen la operatividad de la sustitución de hidronios toda vez que puede escribirse un balance de intercambio similar a (5.196) en el sistema NaASH:

\[
\text{NaOH} [\text{Fluido}] + \text{H}_2\text{O}^+ \text{Na}_3 [\text{Ms}] = 2 \text{H}_2\text{O} \quad (5.202)
\]

que puede considerarse en conjunción con (5.201) en la explicación del desarrollo de las texturas en este tipo de moscovitas (nótese la menor ocupancia interlaminar de estas moscovitas, Figura 4.4.6). Las implicaciones de la operatividad de reacciones de hidrólisis, y consecuentemente las variaciones en las concentraciones de K⁺, Na⁺ e H⁺ en el fluído acuoso, son importantes para explicar ciertos aspectos relativos al desarrollo de las texturas en las moscovitas (ver más adelante).

5.5.2. GNEISES APLÍTICOS Y DIQUE DE MICROGRANITO T494

5.5.2.1. RELACIONES DE FASES

Los diagramas AKF y AFM que ilustran las relaciones de las fases presentes en este tipo de rocas, construidos de la misma manera que para los gneises bandeados, se presentan en la Figura 5.5.4. Las relaciones topológicas de las distintas muestras son similares entre sí y a las descritas para los gneises bandeados, aunque respecto de estas últimas rocas existen algunas diferencias entre las que cabe destacar las variaciones en la razón Mg/Fe de las micas, y el efecto de las sustituciones di-rioccaédrica y de Ti sobre las moscovitas.

La muestra T493 (un gneiso aplático con Ms+Br+Grt, y donde las placas de moscovita presentan intercrecimientos de biotita y pseudomorfos parciales de And+Kfs+Br, ver Figura 3.2.5) puede utilizarse como patrón de comparación. En esta muestra, las variaciones composicionales del granate son escasas, las biotitas de la matriz adyacentes a los gramos de granate presentan razones Mg/Fe más bajas que aquellas que son el producto de la descomposición de moscovita en And+Kfs+Br, y las moscovitas presentan un espectro composicional con fuerzas variaciones en Al (Figura 5.5.4a). Estas relaciones son similares a las encontradas en los gneises bandeados, aunque en conjunto las composiciones de las fases de estas últimas rocas son más ricas en Fe. Otra diferencia sustancial es que las variaciones en Al de las moscovitas no están dominadas por la descomposición del componente leucofilita (aunque son ricas en este componente), sino por el componente trioccaédrico (Capítulo 4.4.4.4). Este aspecto puede apreciarse particularmente bien en el diagrama AKF, donde la composición de la moscovita no sólo está desplazada del join ms-1cp, sino que su
Evolución metamórfica del complejo gneisico de Torrox y series adyacentes

espectro composicional sigue el jam ms-ann (Figura 5.5.4a). Aunque es posible que parte de la variación asignada al componente trioctádrico se deba a variaciones en la razón Fe²⁺/Fe³⁺, las texturas de descomposición son consistentes con la exfoliación del componente trioctádrico debido a la escasez de lamelas intercruzadas de cuarzo y la pequeña variación en el componente leucofilita, que puede asignarse al hecho de que estas moscovitas no estaban saturadas en este componente cuando cristalizaron debido a la probable ausencia de biotita y/o a la coexistencia de una fase fundida (ver Capítulos 4.4.4.4 y 4.4.6 para más detalles). Por estas razones el proceso de descomposición de estas moscovitas será denominado trioctádrico, por oposición a la descomposición fenítica descrita más arriba para las moscovitas de los gneises bandeados.

La comparación del resto de gneises aplútics (T335 y T472a) con la muestra T493 ilustra el efecto de las variaciones en la razón Mg/Fe de las rocas. En la muestra T335, moscovita, biotita y granate presentan razones Mg/Fe más bajas (Figura 5.5.4b), y lo contrario se observa en la muestra T472a (Figura 5.5.4c). Esto sugiere que la ausencia de granate en esta última muestra puede asignarse al efecto composicional del sistema (ver Capítulo 3.2.2). En cualquier caso, la variación composicional de la moscovita de la muestra T472a está dominada también por la descomposición del componente trioctádrico, de acuerdo con las texturas reaccionales observadas, mientras que las variaciones composicionales de la moscovita de la muestra T335, que no presentan texturas reaccionales, son muy restringidas (Capítulo 4.4.4.4). Esto indica además que el desarrollo de las texturas de descomposición trioctádrica de moscovita no dependen de la coexistencia de granate, por lo que esta última fase no está implicada en los balances de masa que describen tal proceso reaccional.

Las placas de moscovita ignea del dique de microgranito T494, que son muy ricas en Ti, presentan texturas reaccionales distintivas que implican sobrecrecimientos de placas de biotita e intercruzamientos de lamelas finas de biotita, y en menor medida, cuarzo (Capítulo 4.4.4.5). Asociadas a ambos tipos de texturas, la moscovita presenta halos enriquecidos en Al y empobrecidos en Ti, Fe y Mg, y en menor medida Si, que son mayores en el caso de asociarse a las placas de biotita sobrecrecidas, y finos y alargados según (001) en el caso de asociarse a las lamelas de biotita intercruzadas. Los cambios composicionales asociados a los amplios halos de empobrecimiento ligados a las placas sobrecrecidas de biotita implican esencialmente la inestabilidad del Ti y pueden describirse por los vectores Ti-Al-vacante Ti³⁺[Al³⁺(OH)₄]Al⁺, Ti-Fespinela TiFe³⁺[Al₂] y Ti-Mg-espinela TiMg⁶⁺[Al₂]. Estos cambios composicionales ocurren de forma abrupta, i.e., los perfiles elementales de Ti, Al, Fe, y Mg definen funciones concentración-distancia muy pendientes. Esto supone la aparición de una laguna composicional en términos de las cantidades de Ti que no se aprecia en los diagramas AKF y AFM de la Figura 5.5.4d a pesar de que el componente de Ti deficiente en cationes octádricos K₂Ti₂Al₂Si₆O₂₄(AlO₄)₄ (relacionado con el vector Ti-Al-vacante) se proyecta en el vértice KAlO₂ del diagrama AKF. Por otra parte, los cambios composicionales asociados a los halos de emprovemento ligados a las lamelas más finas de biotita desarrollan perfiles más gradual que pueden describirse por los vectores Ti-espinela, distrioctádrico y, en menor medida, tscherruk (ver Capítulo 4.4.4.5 y ecuaciones (4.36) y (4.37) para más detalles).
Figura 5.5.4. Diagrama AKF y AFM para las muestras de gneiss aplítico y dique de microgranito T494 del complejo de gneiss de Terres. Los puntos de proyección plagióclase y feldespato-K son medidas de fases cristalinas de estas fases en cada muestra. Las proyecciones de moléculas significativas para las mismas y símbolos como en la Figura 5.5.1. Las líneas representan las asociaciones pre-descomposición (líneas continuas) y las resultados de la descomposición (líneas discontinuas). Las líneas de puntos representan las variaciones esperadas de la operatividad del vector tiblein (caja media) y divariativa (caja mín-max).
Las complicaciones introducidas por las variaciones composicionales en Ti oscurecen las relaciones en las proyecciones AKF (y AFM), donde las composiciones ricas en Ti deberían aparecer desplazadas hacia el vértice KAlO₂. Debido a estas complicaciones, la pendiente del espectro composicional no coincide con el join m-sann y es más parecida a la pendiente del join msl-pap a pesar de que el componente leucosfilita no está implicado de manera significativa en el desarrollo del espectro composicional. El efecto del componente de Ti deficiente en cationes octaédricos puede apreciarse en el diagrama Al₂O₃-FeO-TiO₂ de la Figura 5.5.5. El paso del grupo de composiciones de alto Ti al grupo de bajo Ti se explica por el vector Ti₃Al₄, que genera una clara laguna composicional entre los grupos composicionales de alto Ti y bajo Ti, y las variaciones dentro de cada grupo de composiciones de Ti se explican, esencialmente, por la operatividad del vector trioctaédrico (aunque este vector es colineal con el vector trihemak en esta proyección).

Figura 5.5.5. Diagrama AFTi que muestra el efecto del Ti en las variaciones composicionales de las micas y leucosfilitas del complexo de zonas de Ti₄₉ del complejo de gneises de Torrox. Los puntos de proyección plagioclasa y feldespato-K son medios de fases cristalinas de esta fase. Las proyecciones de mediciones significativas para las mismas y símbolos como en la Figura 5.5.3. Las flechas indican el sentido de cambio composicional en las fases debido a la operatividad de los vectores TiAl₄m, Ti₃Al₄, Ti₄Al₄ y Al₂S₂.

5.5.2.2. ESTIMACIONES THERMOBAROMÉTRICAS

Los resultados termobarométricos obtenidos se han analizado en el gneis aplático T493 (en la muestra T493a no coexiste granate, y en la muestra T335 es muy rico en espesartina, por lo que no puede aplicarse el termómetro CARB) se presentan en la Tabla 5.5.3 y Figura 5.5.6. Las composiciones de las fases usadas en los cálculos corresponden a grano de alto Ca y Mg/Fe alto, media de plagioclasa (que es homogénea), moscovita de alto Si, y las lamelas de biotita intercristales en moscovita. Esta selección se debe a que el uso de las biotitas de la matriz adyacente a cristales de granate resultan en temperaturas muy elevadas, lo que indica la ausencia de equilibrio entre ambas fases. Estas biotitas tampoco deben estar en equilibrio con el granate, ya que han cristalizado por descomposición trioctaédrica de moscovita durante la descomposición. Por lo tanto, las temperaturas obtenidas, que son relativamente bajas dentro del conjunto de estimaciones realizadas, tampoco son significativas.

390
Tabla 5.5.1. Estimaciones termobarométricas en un gneis aplático (T493), enclaves resíduales (T76) y espigas moscovíticas (T471d, T426b, T481) del complejo gneisico de Torrox y bandas de gneis de Rompepalabras, y seminario de los datos composicionales de las gneis usadas en el cálculo.

<table>
<thead>
<tr>
<th>Termometría GARB (ºC) (Cálculos a 10 kbar).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muestra</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>T493</td>
</tr>
<tr>
<td>T76</td>
</tr>
<tr>
<td>T471d</td>
</tr>
<tr>
<td>T472b</td>
</tr>
<tr>
<td>T481</td>
</tr>
<tr>
<td>T496</td>
</tr>
<tr>
<td>T497</td>
</tr>
</tbody>
</table>

Nota: n = número de análisis. En todos los casos se han utilizado biotita-granito con Mg/Fe alto. Las abreviaturas de los distintos calibres como en la Tabla 5.4.1 y el resto como en Tabla 5.5.1. # Esquema moscovítico de la banda de gneis de Rompepalabras.

Barométría GAMB de Hodge y Crowley (1985) y modificaciones de modelos de relación (brr), y de Hinsch (1990) con los modelos de actividad definidos por este autor (Cálculos a 650 ºC).

<table>
<thead>
<tr>
<th>Barométría de Hinsch (1990)</th>
</tr>
</thead>
<tbody>
<tr>
<td>--------</td>
</tr>
<tr>
<td>T493</td>
</tr>
<tr>
<td>T471d</td>
</tr>
<tr>
<td>T472b</td>
</tr>
<tr>
<td>T491</td>
</tr>
</tbody>
</table>

Nota: PB-P6 (brr) y PB-P84 (brr) como en Tabla 5.4.1. En todos los cálculos se ha usado biotita de alto Ti y Mg/Fe, moscovita de alto Si, y granito de alto Mg/Fe. En T490b no existe plagiodrasa.

Dado que el efecto de la composición de la biotita en el desplazamiento del equilibrio GAMB no es muy importante, podría considerarse que las presiones calculadas (> 10 kbar) indicarían condiciones de presión relativamente elevadas. Sin embargo, además de los problemas anteriores al respecto de la composición de la biotita, no está asegurada la consistencia de esta fase cuando cristaliza el granato, lo cual invalidaría las presiones obtenidas con el barómetro GAMB. La cantidad de Si de las moscovitas no es muy elevada (Si_{max} = 6.44 átomos p.f.), lo cual podría interpretarse como evidencia de una presión de equilibrio pre-decompression significativamente menor (ca. 7 kbar a 650 ºC, Figura 5.5.6) respecto de los gneises barreados, si se aplica el barómetro de la fengita de Massonne y Schreiber (1987). No obstante, como se ha indicado más arriba, es probable que estas cantidades bajas de Si en la moscovita sean el resultado de una combinación de (1) el efecto de la presencia de una fase fundida, dado que la cristalización de moscovita tuvo lugar a partir de un fundido granítico y la cantidad de Si en la misma a una presión dada no debe corresponderse a la esperable en el sistema subsolidus, y (2) el efecto de la posible no existencia de Kf y/o Br (que es esta) durante la cristalización de la moscovita ignea, por lo que esta última no debería
estar saturada en el componente leucosílice. Si esto es así, la presión estimada con el barómetro de la fengita (ca. 7 kbar) debe considerarse como una presión de cristalización mínima.

Figura 5.5.6. Diagrama P-T que muestra los resultados termobarométricos en los gases volátiles (T493) y equilibrio nesosóltico con Mr+Br+Grt+Kfs (T471d, T472k, T481, T499k) y mueves rectiles (T376) del complejo geotérmico de Torrox y banda de gases de Rompajibarbas utilizados los cromasiones de la Tabla 5.5.3. Cuadrados rellenos: soluciones mixtas y de los gases de las Tablas 5.5.2 y 5.5.3; rectas de alta T y TICPMA, rectas de bajo T en Tablas 5.5.2. El punto triple de las fases cielo, K_2SO_4 de Haidaroy (1971), las equilibrios en los sistemas $KNaFMASH$ y $KNaFMASH$ según A.B. Thompson (1982), y los isótopos de Si para la reacción Mr+Br (cromieno) - Kfs+Qz+H$_2$O en el sistema $KNaFMASH$ según Mawer y Schreyer (1987). La trayectoria de decomposicióm a la referencia para las gases hirvana con Mr+Br+Grt.
5.5.2.3. Modelización de las reacciones

Descomposición trioctaedrica de la moscovita

La modelización de la reacción de descomposición trioctaedrica de las moscovitas primarias de los gneises aplásticos no puede llevarse a cabo con precisión ya que no se dispone de análisis de las lamelas de biotita interrecidas. No obstante, se han calculado balances de masa para la muestra T493, donde se dispone de análisis de biotita producto de la descomposición de moscovita en Kfs+And+Bt. Evidentemente, no está garantizado que la composición de estas biotitas se corresponda con la de las lamelas más finas interrecidas en el interior de los cristales de moscovita, aunque, por comparación con lo observado en los gneises bandedos (donde las biotitas producto de descomposición fengútica de moscovita son similares a las biotitas producto de descomposición de las moscovitas pegmatíticas a Kfs+And+Bt, Figura 5.5.1), es posible que las composiciones de ambos tipos de biotita sean similares. Además de estas composiciones de biotita, se ha utilizado la composición del feldespato-K interrecido con And+Bt producto de descomposición de moscovita (Tabla 5.5.4). Los componentes Ca y Mn no han sido incluidos en los modelos debido a las bajas concentraciones que presentan las fases implicadas en estos elementos. Dado que la matriz de composición presenta 8 filas (KNaFMATiSH) y 6 columnas (Ms1, Ms2, Bt, Kfs, Qtz, H2O), es necesario reducir su rango y obtener una matriz modelo de rango 5 para que el espacio reaccional presente dimensión 1. Esta matriz modelo es indistinguible de la matriz original ya que todas las razones de error son menores de 1. La reacción resultante en términos molares es:

\[1 \text{ Ms1} + 0.003 \text{ Kfs} \text{ (int Ms)} = 0.938 \text{ Ms2} + 0.054 \text{ Bt (int Ms)} + 0.109 \text{ Qtz} + 0.016 \text{ H}_2\text{O} \]

(5.203)

Los resultados obtenidos al condensar el sistema por proyección desde MgFe₂ y NaK₁ son prácticamente idénticos. Esta reacción predice que el feldespato-K es fase reactante, aunque las cantidades implicadas de esta fase son lo suficientemente bajas como para considerar que no está implicada en la reacción de descomposición. De hecho, la matriz modelo de rango 4 obtenida excluyendo el feldespato-K es indistinguible de la matriz de composición (8x5) original, y la reacción resultante es:

\[1 \text{ Ms1} = 0.937 \text{ Ms2} + 0.054 \text{ Bt (int Ms)} + 0.108 \text{ Qtz} + 0.018 \text{ H}_2\text{O} \]

(5.204)

que expresada en oxi-equivalentes de oxígeno (24 unidades de O) es:

\[1 \text{ Ms1} = 0.937 \text{ Ms2} + 0.054 \text{ Bt (int Ms)} + 0.009 \text{ Qtz} + 0.0008 \text{ H}_2\text{O} \]

(5.205)

El hecho de que el feldespato-K no sea necesario en los balances de masa supone una diferencia sustancial respecto del modelo obtenido para la descomposición fengútica de las moscovitas primarias de los gneises bandedos, que predice la formación de feldespato-K, y puede considerarse como el resultado de la limitada implicación del componente leucocítico en la descomposición de la moscovita. Las relaciones volumétricas de las fases interrecidas (Bt/Qtz = 88/14 en la reacción (5.205)) son consistentes con una importante implicación del componente trioctaedrico, y concuerda con lo observado en los interrecimientos, donde la biotita predomina claramente sobre el cuarzo.
Tabla S.5.4 Datos aplicables al análisis del espacio racional para la muestra T493 (gneis apílico con Mt+Be+Gr)

<table>
<thead>
<tr>
<th></th>
<th>Mt (I)</th>
<th>Ms2 (I)</th>
<th>Be (I)</th>
<th>Kf (I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>prom</td>
<td>prom</td>
<td>prom</td>
<td>prom</td>
<td>prom</td>
</tr>
<tr>
<td>matriz de composición</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>6.388</td>
<td>6.392</td>
<td>5.382</td>
<td>2.993</td>
</tr>
<tr>
<td>Ti</td>
<td>0.154</td>
<td>0.154</td>
<td>0.410</td>
<td>0.000</td>
</tr>
<tr>
<td>Al</td>
<td>4.932</td>
<td>5.056</td>
<td>5.099</td>
<td>1.019</td>
</tr>
<tr>
<td>Fe</td>
<td>0.256</td>
<td>0.137</td>
<td>2.03</td>
<td>0.000</td>
</tr>
<tr>
<td>Mg</td>
<td>0.255</td>
<td>0.268</td>
<td>1.93a</td>
<td>0.000</td>
</tr>
<tr>
<td>Na</td>
<td>0.42</td>
<td>0.144</td>
<td>0.040</td>
<td>0.100</td>
</tr>
<tr>
<td>K</td>
<td>1.673</td>
<td>1.689</td>
<td>1.776</td>
<td>0.869</td>
</tr>
<tr>
<td>H</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>0.000</td>
</tr>
<tr>
<td>matriz de errores</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>0.064</td>
<td>0.024</td>
<td>0.024</td>
<td>0.002</td>
</tr>
<tr>
<td>Ti</td>
<td>0.002</td>
<td>0.017</td>
<td>0.022</td>
<td>0.001</td>
</tr>
<tr>
<td>Al</td>
<td>0.049</td>
<td>0.035</td>
<td>0.044</td>
<td>0.001</td>
</tr>
<tr>
<td>Fe</td>
<td>0.003</td>
<td>0.005</td>
<td>0.019</td>
<td>0.001</td>
</tr>
<tr>
<td>Mg</td>
<td>0.004</td>
<td>0.011</td>
<td>0.086</td>
<td>0.001</td>
</tr>
<tr>
<td>Na</td>
<td>0.010</td>
<td>0.007</td>
<td>0.014</td>
<td>0.012</td>
</tr>
<tr>
<td>K</td>
<td>0.017</td>
<td>0.016</td>
<td>0.029</td>
<td>0.011</td>
</tr>
<tr>
<td>H</td>
<td>0.040</td>
<td>0.049</td>
<td>0.049</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Nota: * Número de análisis. # Cuando la composición de las fases está representada por un análisis puintual, se ha asumido un error de 1% relativo, excepto para los componentes minoritarios a los que se ha asignado un valor de 0.001. & Las composiciones de la moscovita primaria corresponden a medias con Sum V6 > 4.08 (Ms4) y Sum V6 < 4.015 (Ms2).

Como se indicó en el Capítulo 4.4.4.4, en el caso de que las variaciones en Sum V6 reflejasen variaciones en Fe³⁺, el cambio composicional debería asignarse al vector Fe-oxi-fenita (4.16) ya que la escasa variación en Si (Figura 4.4.12) excluye la sustitución ferri-tschermak (4.15). La descomposición del componente Fe-oxi-fenita es un proceso redox que puede describirse mediante las reacciones:

\[
3 \text{K}_2\text{Fe}^{2+}_2\text{Al}_2\text{Si}_4\text{O}_{10}(\text{OH})_2[\text{Fe-oxi-ph}]
= \text{K}_2\text{Fe}^{2+}_6\text{Al}_2\text{Si}_6\text{O}_{20}([\text{ann}]+4 \text{KA}\text{Si}_3\text{O}_8[\text{Kfs}]+6 \text{SiO}_2[\text{Qtz}]+\text{H}_2\text{O}+3/2\text{O}_2
\]
\[= 3 \text{K}_2\text{Fe}^{2+}_2\text{Al}_2\text{Si}_4\text{O}_{10}(\text{OH})_2[\text{Fe-oxi-ph}]
= \text{K}_2\text{Fe}^{2+}_2\text{Fe}^{3+}_4\text{Al}_2\text{Si}_6\text{O}_{24}[\text{oxi-ann}]+4 \text{KA}\text{Si}_3\text{O}_8[\text{Kfs}]+6 \text{SiO}_2[\text{Qtz}]+3 \text{H}_2\text{O}+1/2\text{O}_2
\]

Ambas reacciones implican la formación de cuarzo y Kfs, lo que supone que deberían observarse variaciones significativas en Si, y las proporciones volumétricas Bt/Qtz (67/33) predicen una abundancia de cuarzo no observado en los intercambios. Por lo tanto, y a pesar de la incertidumbre relativa al estado de oxidación del Fe, se considera que la descomposición de las moscovitas primarias de los gneis apílicos está dominada por la inestabilidad del componente trioctádrico (i.e., reacción S.189).

394
Descomposición de Moscovita en Feldespato-K+Andalucita+Biotita

La modelización de la reacción de descomposición de moscovita para dar la asociación Kfs+And+Bt en la muestra T493, usando las composiciones de la Tabla 5.5.4 además de cuarzo, H₂O y Al₂O₃, implica la obtención una matriz modelo de rango 5 que es significativamente distinta de la matriz de composición original, con residuales inaceptables para Ti, Fe, Mg, y Na. Esta situación es similar al caso descrito para las moscovitas pegmatíticas de los gneises bandeados, y de nuevo indica que el proceso reacional no se corresponde con reacciones moleculares como (5.197). Es posible encontrar balances de masa algo más ajustados, similares a los encontrados para los gneises bandeados (5.198) aunque con algo más de biotita en el producto, si se incluyen las especies hidratadas Si(OH)₄, NaOH y KOH, que pueden asumirse disueltas en el fluido:

\[
\begin{align*}
\text{Ms} + 0.649 \text{Si(OH)}_4 + 0.027 \text{NaOH} &= 1.628 \text{Kfs} + 0.145 \text{Bt} + 1.361 \text{And} + 3.020 \text{H}_2\text{O} \quad (5.206)
\end{align*}
\]

aunque los residuales asociados a Ti (0.094), Fe (0.079) y Mg (0.074) son inaceptables. Esta situación no puede resolverse a menos que se implique también al Fe y Mg como especies hidratadas o iónicas independientes, lo que contrasta con los modelos para las moscovitas pegmatíticas de los gneises bandeados. Un posible balance de masa sería:

\[
\begin{align*}
1 \text{Ms} + 0.315 \text{Si(OH)}_4 + 0.609 \text{Fe(OH)}_2 + 0.372 \text{Mg(OH)}_2 &= \\
= 0.376 \text{Bt (int)} + 1.158 \text{Kfs (int)} + 1.217 \text{And} + 0.011 \text{Na(OH)} &= 2.838 \text{H}_2\text{O} \quad (5.207)
\end{align*}
\]

Esta ecuación representa las relaciones de reacción única entre 9 especies en el sistema de 8 componentes, por lo que las elevadas cantidades de Fe(OH)_2 y Mg(OH)_2 son una indicación directa del fuerte desbalance de masa existente entre las fases sólidas. En cualquier caso, la ecuación (5.207) no se considera muy ajustada dado que las proporciones volumétricas Kfs/And/Bt (∼38/25/37, calculadas a partir de la normalización de la ecuación (5.207) a 24 unidades oxí-equivalentes de O) no se corresponden con las observadas en los intercambios, donde la biotita es minoritaria. Esto sugiere que Fe y Mg no estuvieron presentes como especies hidratadas disueltas en el fluido, y que el balance de masa (5.206) donde se excluyen Fe(OH)_2 y Mg(OH)_2 es más apropiado a pesar de los malos residuales asociados. Es posible que este problema provenga, al menos en parte, del hecho de no haber tenido en cuenta las razones Fe³⁺/Fe²⁺ de las micas.

Aunque no se encuentra una explicación sencilla al problema del desbalance de masa anterior (podría especularse la implicación de una fase fundida), en este trabajo se considera que la reacción de descomposición de moscovita para dar Kfs+And+Bt en los gneises apláticos corresponde al equivalente multicomponente de la inestabilidad de Ms+Qtz en condiciones subsólidas, modelizada por la ecuación (5.206).

Descomposición de la Moscovita del Dique de Microgranito T494

El establecimiento de balances de masa que explique las texturas encontradas en las moscovitas de alto Ti del dique de microgranito T494 es complicado debido a participación de una fase fundida en las reacciones que generaron las placas de biotita sobrecrecidas. La participación de una fase fundida es necesaria puesto que no coexisten otras fases Fe-Mg en la muestra ni óxidos de Fe-Ti que puedan implicarse en la
La relación de reacción obtenida (con residuales aceptables) es:

\[
\begin{align*}
[K_{1.71}Na_{0.13}(Al_{3.21}Ti_{0.22}Fe^{3+0.30}Mg_{0.32})][Al_{1.66}Si_{4.59}O_{20}](OH)_{4}] & + 0.35 KAlSi_{3}O_{8} + 0.36 H_{2}O + \\
+ 1.54 FeO + 0.62 MgO - 0.57 (K_{1.13}Na_{0.95}(Al_{3.42}Ti_{0.36}Fe^{3+0.22}Mg_{0.28})[Al_{1.65}Si_{4.59}O_{20}](OH)_{4}] & + \\
+ 0.61 (K_{1.74}Na_{0.08}(Al_{1.17}Ti_{0.36}Fe^{3+0.22}Mg_{0.28})[Al_{1.51}Si_{4.53}O_{20}](OH)_{4}] & + 0.42 SiO_{2}. \quad (5.208)
\end{align*}
\]

Dado que el vector Ti-Al-vacante explica las variaciones composicionales en la moscovita de la Figura 4.4.16, en esta ecuación las composiciones de moscovita usadas son de alto Ti y alto Fe-Mg. Los componentes estoequimétricos feldespato-K, cuarzo, H_{2}O (que es reactante), FeO y MgO pueden considerarse como componentes de un líquido gráfitico, por lo que el balance de masa anterior puede reescribirse de manera cualitativa como (L = líquido gráfitico):

\[
Ms\text{ (alto Ti)} + L = Bt\text{ (neodformada)} + Ms\text{ (bajo Ti)} + L\text{ (más pobre en Fe-Mg)}. \quad (5.209)
\]

Si esta reacción es apropiada, es claro que incluso en condiciones supersólidas las biotitas sobrecreadas en las placas de moscovita no pudieron equilibrarse con las biotitas de la matriz, ya que las primeras presentan composiciones distintivas (i.e., mayor proporción de componente dioctaédrico, ver Capítulo 4.5.3.

Los procesos macroscópicos que explican la formación de las lamelas de biotita (cuarzo) intercreadas en los cristales de moscovita deben ser similares a los encontrados en la descomposición triocataédrica de las moscovitas de los gneises aplíticos, puesto que el vector triocataédrico parece explicar una parte importante de los cambios composicionales en las áreas relícticas y descompuestas de moscovita (Figuras 4.4.14 y 4.4.15, y 5.5.4d). Los cálculos de regresión, incluyendo la composición de moscovita de alto Ti y alto Fe-Mg (relíctica), moscovita de bajo Ti y bajo Fe-Mg (asociada a los intercambios de biotita) y biotita intercreada, más los componentes estoequimétricos feldespato-K, albita, cuarzo y H_{2}O resultan en el balance de masa (residuales aceptables):

\[
K_{1.71}Na_{0.13}(Al_{3.21}Ti_{0.22}Fe^{3+0.30}Mg_{0.32})[Al_{1.66}Si_{4.59}O_{20}](OH)_{4} + 0.01 NaAlSi_{3}O_{8} = \\
= 0.09 KAlSi_{3}O_{8} + 0.90 (K_{1.69}Na_{0.4}Al_{3.48}Ti_{0.19}Fe^{3+0.18}Mg_{0.28})[Al_{1.65}Si_{4.53}O_{20}](OH)_{4} + 0.13 SiO_{2} + \\
+ 0.06 (K_{1.76}Na_{0.97}(Al_{1.18}Ti_{0.33}Fe^{3+0.22}Mg_{0.28})[Al_{1.62}Si_{4.62}O_{20}](OH)_{4} + 0.08 H_{2}O. \quad (5.210)
\]

Las cantidades de cuarzo y feldespato-K implicadas en esta reacción son bajas, aunque las relaciones volumétricas de las fases sólidas producto Bt/Qtg/Kfs (59/11/30, calculadas en base a 24 unidades oxíequivalentes de oxígeno) predicen la formación de una cierta cantidad de feldespato-K que no ha sido observado en los intercambios. Esto contrasta con los modelos obtenidos para la descomposición triocataédrica de las moscovitas de los gneises aplíticos (reacción (5.206)), si bien en parte esto se debe a la
5.5.3. ESQUITOS MOSCOVÍTICOS CON MOSCOVITA+BIOTITA+GRANATE=FELDESPATO-K

Las texturas reaccionales y topologías de este tipo de rocas son similares a las descritas para los gneises bandeados y aplícticos, por lo que no se entará en una descripción detallada. No obstante, debe recordarse que las muestras analizadas de este tipo de rocas no presentan feldespato-K. Esto no es un inconveniente para explicar las texturas de descomposición de moscovita, dado que la reacción responsable de este proceso es similar a la deducida para la descomposición triocédrica de las moscovitas primarias de los gneises aplícticos. No obstante, la ausencia de feldespato-K complica la interpretación de las texturas de descomposición de granate (→ Ms+Br+Pl+Qz), puesto que no pueden relacionarse directamente con las reacciones inferidas para la descomposición de granate en los gneises bandeados (e.g., 5.181), y lo mismo puede decirse de la ausencia de silicatos de Al. No obstante, es posible que estas rocas hayan sufrido procesos de fusión parcial dado que presentan venas leucograníticas intercaladas, incluso a la escala de la lámina delgada, lo que podrían justificar las texturas de reemplazamiento de granate por la operatividad de la reacción (5.182).

Las temperaturas calculadas en los esquistos moscovíticos son muy elevadas en las muestras T471d y T472b, mientras que en T481 son intermedias y en T499b son relativamente bajas (Tabla 5.5.3). Esto es de nuevo interpretable en relación con la ausencia de equilibrio entre biotita y granate, al menos en los casos en que T_mol es elevada, por lo que no es posible dar una estimación de temperatura. Aunque este tipo de rocas es más rica en Al que los gneises leucocratos, no están saturadas en Al, por lo que los resultados barométricos basados en los calibrados de Hedges y Crowley (1985) y Hoisch (1990) siguen siendo imprecisos. Las presiones calculadas son elevadas, de nuevo mayores de 10 kbar a 650 °C (Tabla 5.5.3 y Figura 5.5.6), lo que es consistente con las estimaciones de los gneises bandeados con Ms+Br+Grt. Sin embargo, las condiciones de presión resultantes de la aplicación del barómetro de la fengita son algo más bajas (ca. 9 kbar) debido a la baja cantidad de Si de las moscovitas (Si_{max} = 6.59 átomos pfu). Esto es explicable en los mismos términos que para los gneises aplícticos, esto es, la moscovita no está saturada en componente leucofilita y la presión calculada en base a las cantidades de Si representa una estimación mínima ya que en las 4 muestras analizadas no coexiste feldespato-K. A pesar de haber sufrido un proceso de descomposición, la implicación del vector tschermak en la explicación de las variaciones composicionales de las moscovitas de estas muestras es menor (Capítulo 4.4.4.6), lo que indica que la ulterior descompresión no afectó significativamente al componente no saturado leucofilita.
5.5.4. ENCLAVES RESTÍTICOS CON BIOTITA+RUTILO+DISTENA+GRANATE Y GNEISES PORFIROÍDES CON MOSCOVITA+BIOTITA

5.5.4.1. RELACIONES DE FASES

Las relaciones de fases del enclave restíctico T376 no son evaluables en términos de los diagramas AKF y AFM ya que no coexisten cuarzo (excepto como intercrómientos simpletíticos), feldespatos-K, y plagioclasa, y la moscovita es una fase tardía que reemplaza a los silicatos de Al (ver Capítulo 3.2.1.3). Su representación gráfica en otros diagramas ternarios como SiO₂·FeO·K₂O y SiO₂·FeO·MgO (Figura 5.5.7), proyectado desde Al₂SiO₅ presenta impedimentos similares, aunque pueden considerarse más aproximados a proyecciones válidas. En estos diagramas de la Figura 5.5.7, las tielines representan la coexistencia de Br+Ilm+Ms en el interior del enclave y de Br+Grt que se localiza a modo de corona sobre las placas de biotita en contacto con Qtz y Kfs del gneis que lo engloba, aunque no se quiere indicar que estas asociaciones representen condiciones de equilibrio. Las texturas reaccionales y relaciones de reacción entre estas fases, discutidas más adelante, sugieren en efecto la ausencia de equilibrio tanto en el interior como en el exterior del enclave.

![Diagramas SiO₂·FeO·K₂O y SiO₂·FeO·MgO para el enclave restíctico T376 con Br+Ky+Rt+Grt del complejo de gneises de Torrox. Los puntos de proyección incluyen silicato de Al (presente como distena y esdulavita) y los componentes especificados en cada caso. Símbolos: Estrellas: placas de moscovita que reemplazan biotita y silicatos de Al. Círculos: áreas de las placas de biotita alrededor de texturas reaccionales y repectuosos a los gramos de rutilo. Triángulos: áreas de las placas de biotita cercanas a reemplazamientos de biotita por And+Qtz+Ilm y adyacentes al granate del borde del enclave. Triángulos: granate del borde del enclave. Las flechas indican el sentido de cambio composicional en la biotita debido al progreso de reacciones asociadas a la descomposición y el granato debido al intercambio Fe-Mg con biotita. Las tielines representan las asociaciones, no necesariamente en equilibrio, del interior y del borde del enclave.](image)
5.5.4.2 Estimaciones Termobarométricas

El rango de temperatura obtenido en el enclave T376 es elevado (600-750 °C) (Tabla 5.5.3). Estas temperaturas se han obtenido con los extremos ricos en Mg de las placas de biotita y los granos de granates, ya que la tendencia de ambas fases hacia composiciones más ricas en Fe está relacionada con el reequilibramiento durante la descompresión. (Capítulos 4.5.5 y 4.6.4). No obstante, las elevadas cantidades de Ti en biotita (Ti = 0.51 átomos p.f.u., Capítulo 4.5.5.2) y moscovita (Ti = 0.2, Capítulo 4.4.4.3), y el hecho de que el patrón de variación del granate sea similar a granates de grado alto reequilibrados (Capítulo 4.6.4), sugieren que las temperaturas alcanzadas fueron elevadas, posiblemente en el rango indicado de 650-700 °C. En estas rocas no existe plagioclasa, por lo que no es posible ofrecer una estimación de presión con los barómetros GASP y GAME. La aplicación del barómetro GRAIL (Bohlen et al., 1983; Ghent y Stout, 1984) resulta en presiones elevadas, en torno a 12-13 kbar. A pesar de ser consistentes con las presiones estimadas en otras rocas, estos resultados no son considerados significativos ya que (1) el granate es producto de la descomposición de biotita durante la descompresión, y no está cercano los granos de rutilo y disena del interior del mismo, y (2) aunque el granate coexiste en equilibrio con rutilo y disena a presiones elevadas, los pseudomorfos de ilmenita (composicionalmente heterogéneos) que reemplazan al rutilo indican que la ilmenita no coexiste en equilibrio con esta asociación. Por estas razones, los resultados del barómetro GRAIL en las rocas estudiadas no han sido incluidos en este trabajo. Por lo tanto, no pueden obtenerse estimaciones de presión directas para estos enclaves, aunque la presencia de disena + rutilo refleja sugiere presiones elevadas. Dado que el granate es producto de descomposición de biotita durante la descompresión, las temperaturas GARB obtenidas debe asignarse a presiones intermedias dentro de la trayectoria P-T seguida por estas rocas. Esto es una evidencia más de que la descompresión fue casi-isotérmica durante la sección de P intermedia de la trayectoria P-T seguida por estas rocas.

5.5.4.3 Modelización de las Reacciones

Reemplazamiento de Feldespato-K por Moscovita y Silicatos de Al en los Gneises Porfiroideas

En los gneises porfiroideas con Ms+Bt se encuentran texturas que sugieren la operatividad de reacciones que implican la interacción de los sólidos con especies iónicas en disolución acuosa (e.g., Eugster, 1970; Gunter y Eugster, 1980; Montoya y Hemley, 1975; Wintsch, 1975; Wintsch et al., 1980; Vernon, 1979; Vernon et al., 1987). Entre estas texturas destacan los reemplazamientos de feldespato-K por lamelas de moscovita secundaria y fibrolita/andalucita blásticas, según direcciones cristalográficas y a lo largo de planos de foliación y/o cizalla y en fracturas tensionales, y asociaciones esqueletales y simplectitas de And+Qtz localizadas en los agregados de biotita. Este último tipo de textura será considerada más adelante al considerar el enclave restitico.

La transformación de feldespato-K a moscovita y ulteriormente a fibrolita o andalucita, puede modelizarse mediante la reacción iónica (5.195), que puede reescribirse como:

\[6 \text{KAlSi}_3\text{O}_8 (\text{Kfs}) + 2 \text{H}^+ = \text{K}_2\text{Al}_6\text{Si}_2\text{O}_{20}(\text{OH})_4 (\text{Ms}) + 12 \text{SiO}_2 + 4 \text{K}^+ \]

(5.195b)

mientras que las transformaciones de feldespato-K y moscovita a silicato de Al en términos iónicos son:
Como puede deducirse de estas reacciones, un aumento en la actividad de \(H^+ \) (o un descenso de la razón \(a_{K^+}/a_{H^+} \)) impuesto por condiciones externas y/o cambios de \(P-T-a_{H_2O} \) supone un desplazamiento hacia las asociaciones productivas, esto es, la descomposición de las fases sólidas protosasas y un "lavar" del cation \(K^+ \) que entra en solución acusa. Esto se ilustra en la sección pseudobinaria del espacio \(P-T-log(a_{K^+}/a_{H^+}) \) de la Figura 5.5.8a (reproducida de Wintsch, 1975, su Figura 2).

Figura 5.5.8. Sección pseudobinaria en el espacio \(P - T - a_{H_2O} - a_{K^+}/a_{H^+} - a_{Na^+}/a_{H^+} \) para los sistemas KASH y KNaASH (reproducida de las Figuras 2 y 7 de Wintsch, 1975) que muestran los equilibrios iónicos discutidos en el texto que explican las transformaciones de las feldespatos en los gresos porfiríticos con Mn+Be. La flecha indica la trayectoria seguida y el desplazarse en \(a_{K^+}/a_{H^+} \) y \(a_{Na^+}/a_{H^+} \) durante la descomposición y enfriamiento.

Asumiendo unas condiciones iniciales \(P-T-a_{H_2O} a_{K^+}/a_{H^+} \) cualesquiera para la coexistencia de feldespato-K y moscovita, i.e., sobre el equilibrio (5.195b) (reacción 5 en la Figura 5.5.8a), puede apreciarse que una descomposición no permite la formación de Ms y/o AlS a partir de Kfs si T, \(a_{H_2O} \) y \(a_{K^+}/a_{H^+} \) permanecen constantes, sino que la reacción 5.195b se desplazaría hacia la izquierda y la moscovita tendería a formar feldespato-K. La inspección de esta Figura indica que para producir Ms mediante la reacción 5.195b a partir de feldespato-K es necesaria la modificación de la razón \(a_{K^+}/a_{H^+} \) hacia valores más bajos, lo que permite inferir la operatividad de procesos de (auto) metamorfismo ácido (o basaltation leaching) o una fuerte
pérdida de T, que puede excluirse debido a que la trayectoria $P-T$ sufrida por estas rocas está dominada por una fuerte descompresión (a$_{H_2O}$ no afecta ya que no está implicada en el equilibrio 5.195b).

Una trayectoria de descompresión y débil enfriamiento, junto con un cierto aumento en a$_{H_2O}$ debido a la posible cristalización de fundidos parciales coexistentes, permite explicar los reemplazamientos Kfs → Ms y Kfs → Fib/And de manera secuencial. Partiendo de las condiciones iniciales especificadas en la Figura 5.5.8a, la coexistencia de Kfs+Ms durante la descompresión (y débil enfriamiento) generará un desplazamiento de la razón a$_{K^+}$/a$_{H^+}$ hacia valores-más bajos y el reemplazamiento Kfs → Ms. Si a$_{H_2O}$ es constante, esta trayectoria puede intersectar el punto pseudoinvariante para el que coexisten Kfs+Ms+Als, y prodrá formarse Kfs → Fib/And por la reacción (5.212). En ese momento, la trayectoria T-$log(a_{K^+}/a_{H^+})$ en la Figura 5.5.8a sufría una inflexión ya que a$_{K^+}$/a$_{H^+}$ estaría tamponada (para a$_{H_2O}$ fija) por la asociación, hasta que el feldespato-K se consumiere. Sin embargo, si a$_{H_2O}$ aumenta progresivamente o abruptamente (i.e., cristalización de un fundido) puede no llegar a intersectarse el punto pseudoinvariante de coexistencia de Kfs+Ms+Als, o en su caso, volver a consumir Als (Als → Ms, reacción (5.211), Figura 5.5.8a), por lo que la razón a$_{K^+}$/a$_{H^+}$ puede volver a estar controlada por el equilibrio entre Kfs y Ms (reacción 5.195b). Esta situación es más probable dado que los reemplazamientos Kfs → Ms son más abundantes, y en cualquier caso, pondrán los reemplazamientos Kfs → Fib/And. Una conclusión similar puede deducirse para los reemplazamientos de plagoclasa por moscovita, esto es, un descenso de la razón a$_{Na^+}$/a$_{H^+}$ a medida que desciende la presión (Figura 5.5.8b).

Rutilo→Ilmenita, Biotita→Andalucita+Cuarzo+Ilmenita y Biotita→Granate en los Enclaves Restíticos

Las texturas reaccionales encontradas en el interior de estos enclaves (particularmente en la muestra analizada T376) implican transformaciones locales desconectadas aparentemente entre sí (Capítulo 3.2.1.3), y que pueden sumarizarse como sigue:

- $Rt + Br → Ilm$ (Figuras 3.2.4e y g)
- $Br → And + Qtz$ (simplectítico) + Ilm (Figuras 3.2.4i, m y n)
- $Br → Ms$ (Figuras 3.2.4i y j)
- Ky (agregados de prismas finos) → And (pareada, Figuras 3.2.4i y j)
- $Ky/And → Ms$ (Figura 3.2.4k)

En los contactos exteriores del enclave se encuentran granates a modo de corona (Figura 3.2.4c, d y l) que implican relaciones de reacción entre la biotita del enclave y el gneís porfiróide encajante. Individualmente, estas reacciones no pueden ajustarse mediante balances de masa entre las especies moleculares (exceptuando $Ky → And$), aunque si es posible modelizarlas individualmente y en conjunto mediante reacciones iónicas o procesos (auto-) metasomáticos de H.

Las relaciones de reacción entre la biotita y los cristales de rutilo, cuyos bordes están parcialmente reemplazados por ilmenita en los contactos con las placas de biotita, pueden considerarse como una reacción del tipo de transferencia meta que modifica la composición de la biotita. Dado que la única fase capaz de suministrar Fe en los alrededores del rutilo es biotita, una posible reacción que forma ilmenita y que implica
cambios en la composición de la biotita mediante las sustituciones Ti-Al-vacante (Ti$_3^{(ox)}$(Al$_3^{(ox)}$)$_2$Al$_3^{(ox)}$) y Si-vacante (Si$_2^{(ox)}$(Si$_2^{(ox)}$)$_2$Si$_2^{(ox)}$) deducidos en el Capítulo 4.5.5.2) serían:

\[
K_2Fe_6Al_2Si_6O_{20}(OH)_4 \text{ (ann)} + 2.25 TiO_2 (Rt) = 1.5 Fe_2TiO_3 (Ilm) + \\
+ 0.5 K_2Ti_3Fe_4Al_2Si_6O_{20}(OH)_4 (Ti-ann) + 0.5 K_2Fe_6Si_6O_{20}(OH)_4 (Si-ann)
\]

(5.213)

Sin embargo, como se indicó en el Capítulo 4.5.7, la variación composicional de la biotita puede implicar la sustitución de dehidrogenación, como Ti-oxi-anita, TiO$_2$*Fe$_4$(OH)$_4$*2$. De hecho, la formación de ilmenita a partir de rutilo y biotita puede modelizarse también mediante la reacción:

\[
K_2Fe_4[Al_2Si_6]O_{20}(OH)_4 \text{ (ann)} + 4 TiO_2 (Rt) = \\
\text{2 Fe}_2TiO_3 (Ilm) + K_2Fe_4[Al_2Si_6]O_{24} (Ti-oxi-ann) + 4 H^+ + 2 O_2
\]

(5.214)

aunque las variaciones de Ti pueden tener lugar al mismo tiempo mediante las sustituciones Ti-Al-vacante y Ti-oxi, por lo que pueden implicarse combinaciones de las reacciones (5.213) y (5.214) tales como:

\[
K_2Fe_4[Al_2Si_6]O_{20}(OH)_4 \text{ (ann)} + 4.47 K_2Ti_3Fe_4Al_2Si_6O_{20}(OH)_4 (Ti-ann) + \\
+ 4.47 K_2Fe_6Si_6O_{20}(OH)_4 (Si-ann) + 19.63 TiO_2 (Rt) = \\
- 6.47 Fe_2TiO_3 (Ilm) + 9.93 K_2Fe_4[Al_2Si_6]O_{24} (Ti-oxi-ann) + 39.73 H^+ + 19.87 O_2
\]

(5.215)

Tanto la reacción (5.214) como (5.215) implican la liberación de H$. Este componente es necesario para la formación de los reemplazamientos de las placas de biotita por And+Qtz+Ilm y por Ms (además de la formación de Ms a partir de silicato de Al) localizados en las cercanías de los granos de rutilo transformados, aunque no directamente en contacto con ellos. Esto permite inferir una relación entre ambas texturas reaccionales de manera que el H$ liberado en la transformación de rutilo a ilmenita puede inducir la transformación de biotita en otras áreas mediante un proceso de autometasomatismo de hidrógeno (ver Vernon, 1979; Kerrick, 1987; Wintsch y Andrews, 1988 para otros casos de descomposición de biotita por reacciones iónicas y formación de fibrolita y cuarzo). Existe un elevado número de balances de masa que pueden explicar las texturas de reacción e implican la presencia de especies en disolución (i.e., K$, Na$, Fe2$, Mg2$). Por ejemplo, las transformaciones Rt+Bi → Ilm y Bt → And+Qtz+Ilm pueden modelizarse mediante la reacción:

\[
(K_{1.737}Na_{0.079})F_{5.388}Mg_{0.82}Ti_{0.473}Al_{0.863}[Al_{2.432}Si_{5.57}][O_{20}(OH)_4 (Bi) + 3.780 Rt + 1.923 H^+ + \\
+ 1.737 Fe^{2+} = 2.086 Fe_{1.9}Mg_{0.01}Ti_{2.04}O_6 (Ilm) + 3.934 Qtz + 1.643 And + 2.962 H_2O + 1.812 Mg^{2+} + \\
+ 1.737 K^+ + 0.076 Na^+
\]

(5.216)

que incluye todas las fases sólidas implicadas. Sin embargo, si las reacciones son iónicas, el rutilo no tiene porqué estar implicado directamente en la formación de los agregados de And+Qtz+Ilm (la abundancia de ilmenita es escasa en estos pseudomorfosis), lo que permite reescribir la reacción anterior como:

\[
(K_{1.737}Na_{0.079})F_{5.388}Mg_{1.821}Ti_{0.473}Al_{0.863}[Al_{2.432}Si_{5.57}][O_{20}(OH)_4 (Bi) + 9.050 H^+ = \\
- 0.232 Fe_{1.9}Mg_{0.01}Ti_{2.04}O_6 (Ilm) + 3.934 Qtz + 1.643 And + 6.525 H_2O + 1.795 Fe^{2+} + 1.821 Mg^{2+} + \\
+ 1.737 K^+ + 0.076 Na^+
\]

(5.217)
El H⁺ debe proceder, al menos en parte, de las áreas donde Rt+Bt = 11m. Si además se incluye moscovita (excluyendo rutilo) el balance de masa global es:

\[
\begin{align*}
(K_{1.737}Na_{0.079})(Fe_{3.286}Mg_{0.822}Ti_{0.473}Al_{0.897}Al_{2.42}Si_{5.57})O_{20}(OH)_4 (Bt) + 1.969 SiO_2 + 2.513 Al^3+ + \\
+ 5.130 H^+ + 1.073 K^+ + 0.135 Na^+ = \\
= (K_{1.744}Na_{0.131})(Fe_{0.192}Mg_{0.309}Ti_{0.106}Al_{1.402}Si_{2.43})O_{20}(OH)_4 (Ms) + \\
+ 0.082 Fe_{1.9}Mg_{0.14}Ti_{0.04}O_6 (Ilm) + 1.611 + 1.343 H_2O + 1.771 Fe^{2+} + 1.403 Mg^{2+} \quad (5.218)
\end{align*}
\]

En esta ecuación el silicato de Al se encuentra como reactante, lo cual no es sino la indicación de la transformación de Ky/And = Ms. Además, SiO₂, H⁺, K⁺ y Na⁺ deben considerarse como especies reactantes disueltas en el fluido, lo que indica la necesidad de transferencias iónicas entre las distintas áreas donde progresan las reacciones. La transformación de los agregados de prismas finos de distena a andalucita palmeada puede entenderse por disolución (hidrólisis) de los primeros y represenciación de la segunda, ya que en este caso no es posible implicar procesos de inversión polimórfica. Las transferencias iónicas entre las distintas áreas reactivas son dificilmente evaluables en términos cuantitativos, aunque puede ofrecerse un modelo simplificado en el que Al y Ti son los componentes que controlan el desarrollo de las texturas (Figura 5.5.9), ya que presentarían las tasas de difusión más bajas, de acuerdo con las inferencias al respecto ofrecidas en los Capítulos 4.5.5.2 y 4.5.7). Estos procesos reaccionales deben relacionarse con la descomposición de la secuencia, ya que todos implican la neoformación de fases estables a menor P, aunque como se ha indicado más arriba no es posible inferir las condiciones particulares de formación.

Figura 5.5.9. Diagrama ilustrativo de las transferencias iónicas entre las áreas reactivas del enclave reativo T376 y el gusí porfirítico inyector.

La reacción de formación de granate a partir de biotita en los bordes del enclave puede modelizarse también mediante reacciones iónicas ya que tanto lmenita como granate presenta razones Mg/Fe menores que la de biotita (Figura 5.5.7), lo cual implica que la simple descomposición de esta última fase no puede
balancear las transferencias de Fe. Sin embargo, el hecho de que estos granates se localicen en el exterior del enclave, en contacto con el cuarzo y el feldespato-K del gneis porfiroide encajante permite considerar los componentes moleculares estequilométricos kfs (KAlSi₅O₁₈), ab (NaAlSi₃O₈), y an (Ca₂Al₂Si₂O₇) en lugar de los iones K⁺, Na⁺ y Ca²⁺. Un posible balance de masa es:

\[
\begin{align*}
& (K_{1.737}Na_{0.009})(Fe_{1.280}Mg_{1.822}Ti_{0.473}Al_{0.864}N_{0.220}Si_{1.577})O_{26}(OH)_4(Br) + 2.158 Qtz + 2.409 H₂O + \\
& + 9.087 an + 0.201 Fe^{2+} + 0.231 Fe_{1.9}Mg_{0.01}Ti_{2.0}O_{26} (Ilm) + 0.827 (Grt) + \\
& + 1.737 kfs + 0.076 ab + 3.204 H₂O + 1.404 Mg^{2+}
\end{align*}
\]

(5.219)

donde la composición del granate corresponde a una media de las composiciones con Mg/Fe más alto (i.e., no afectadas por procesos de intercambio con la biorita, Capítulo 5.6.5). Esta reacción implica la consumición de 1 H₂O, que puede proceder de áreas cercanas del interior del enclave o del gneis encajante, donde los feldespatos están parcialmente reemplazados por finas lamelas de muscovita retrógrada (Figura 3.2.4d y Capítulo 4.4.4.2), y a veces las bioritas están reemplazadas por agregados esqueletales y similitúicos de And + Qtz + Ilm (Figura 3.2.3b). Por lo tanto, la formación de estos granates debe estar controlada por un proceso de metasomatismo en el que los potenciales químicos de los componentes en el interior y exterior del enclave han debido ser distintos. La evaluación de este proceso está fuera del alcance del presente trabajo. En cualquier caso, la formación de las coronas de granates parece haber estado relacionada con las transformaciones ocurridas en el interior del enclave durante la descomposición, implicando que el proceso debió tener lugar por encima del sólido, ya que fragmentos desmembrados de este tipo de enclaves se encuentran incluidos en los fenocristales de feldespatos (Figura 3.2.3g). Esta conclusión es consistente con el hecho de que un fundido parcial coexistiese a baja P en estas rocas, como puede inferirse de la presencia de cristales de andesita incluidos en los feldespatos, y de segregados pegmatoides que cortan la foliación. Parte de estas texturas de reacción que implican metasomatismo ácido pueden relacionarse con la cristalización de fundidos parciales ricos en H₂O, cuya cristalización controlaría las condiciones de aH₂O y los potenciales químicos de especies como CIH y FH en estas rocas (e.g., Vernon, 1979; Kerrick, 1987).

5.6. TRAYECTORIAS P-T-t: CONSTRUCCIONES RADIOMÉTRICAS Y EVIDENCIAS DE LA CINÉTICA DE REACCIÓN

5.6.1. CONSTRUCCIONES RADIOMÉTRICAS

En este apartado se presentan datos isotópicos de muscovita, biorita y feldespato-K (Rb/Sr y Ar/Ar) de los gneises polícticos grafitos y de gneises bandedos, porfiroide y aplitos de la unidad de Torrox. Estos datos han sido obtenidos en el contexto del presente trabajo en colaboración con los laboratorios de análisis isotópico de las universidades de Westfalia (Müster, Alemania; Rb/Sr, Dr. B.T. Hansen) y Montpellier (Francia; ⁴⁰Ar/³⁹Ar, Dr. F. Monié), y han sido en parte publicados (Zeck et al., 1989; 1992; Monié et al. 1991b). En todos los casos, pueden interpretarse en términos de la edad de la terminación del metamorfismo alpíjarride ya que los métodos geocronológicos utilizados datan las edades de cierre de los sistemas isotópicos investigados en las fases analizadas. Ya que la temperatura de cierre de los sistemas Rb/Sr y ⁴⁰Ar/³⁹Ar en las fases analizadas se estiman entre 575 °C y 350 °C, y las rocas investigadas pertenecen a la
parte alta del grado medio y grado alto, estos datos permiten establecer las tasas de enfriamiento durante las etapas finales del metamorfismo alpino (Dodson, 1973; Cliff, 1985).

Las muestras analizadas son parte del conjunto de muestras estudiadas en este trabajo con métodos de microscopía electrónica (ver Figura 2.1.2 para su localización), excepto la muestra 86Z63 (Zeck et al, 1989) que corresponde a un gneis bandeadó con Ms+Be+Grt. Los datos obtenidos pueden consultarse en la Tabla 5.5.5, donde también se incluyen los resultados 40Ar/39Ar para la biotita de un canto de esquisto grafítico de la formación detritica de La Viñuela (ver Figura 2.1.1), de edad Burguiales Inferior (i.e., 19±1 Ma, Boulin et al., 1973; González-Donoso et al., 1982), que fosiliza los contactos mecánicos entre las unidades alpujarraídes. Los concentrados minerales fueron separados con métodos magnéticos y gravimétricos (fracción 125-200 μm), y presentan menos de 1% de impurezas inclusa para el caso de las moscovitas de los gneises, ya que en el caso de corresponder la muestras donde esta fase presenta abundantes intercruzamientos de biotita, los separados corresponden a fracciones ligeras (i.e., placas recristalizadas con escasas inclusiones) de concentrados de moscovita. Los detalles de las técnicas analíticas y métodos de estimación de edad pueden consultarse en Zeck et al. (1989, ver Apéndice IV) y Monié (1990).

Tabla 5.5.5. Datos geocronológicos para las muestras analizadas en el Complejo Gneísico de Torrox y cantos detriticos de esquistos grafíticos de la formación de La Viñuela.

<table>
<thead>
<tr>
<th>Método</th>
<th>40Ar/39Ar</th>
<th>40Ar/39Ar</th>
<th>40Ar/39Ar</th>
<th>40Ar/39Ar</th>
<th>Edad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ms+Be+Grt</td>
<td>575±50</td>
<td>402±50</td>
<td>300±50</td>
<td>200±50</td>
<td>(González-Donoso et al., 1982)</td>
</tr>
</tbody>
</table>

Nota: Temperaturas de cierre calculadas para una tasa de enfriamiento de 100 °C/Ma. Las edades son en millones de años (Ma). Para el sistema 40Ar/39Ar las edades son de correlación.

Debe notarse que las estimaciones de edad son similares e incluso idénticas (dentro de los límites de error) entre sí, a pesar de corresponder a temperaturas de bloqueo isotópico distintas, lo cual refleja las fuertes tasas de enfriamiento sufridas durante la sección de baja presión de la trayectoria P-T seguida por estas rocas (Figura 5.5.10). Debido a este hecho, la estimación de la tasa de enfriamiento conlleva una elevada imprecisión ya que, incluso a pesar de los pequeños errores analíticos, las tasas de enfriamiento calculadas oscilan entre 200 y 500 °C/Ma. En cualquier caso, puede asegurarse que debieron aproximarse a los valores más altos, sobre todo si se tiene en cuenta que la determinación de la edad paleoanimalica de la formación de La Viñuela coincide con las edades de bloqueo isotópico. Teniendo en cuenta esta edad (i.e., 19.0 Ma, a 25 °C), las tasas de enfriamiento calculadas son cercanas 500 °C/Ma. Aunque estas tasas de enfriamiento pueden parecer excesivas, datos de otras áreas confirman tales estimaciones (ver más adelante). La edad paleoanimalica de la formación de La Viñuela también condiciona una tasa de exhumación muy elevada durante esta sección de baja T, que pueden estimarse en 2.5-5 km/Ma teniendo en cuenta que los gneises de Torrox interseccionaron la reacción de estabilidad de moscovita+ciuarzo a 2.3 kbar y ca. 600 °C (ver Capítulo 5.5.1.2 y Figura 5.5.2). Estas estimaciones son más bajas que las inferidas por Zeck et al. (1992, p. 81), quienes sugieren tasas de 6-12 km/Ma ya que asumen una trayectoria P-T que atraviesa la isotema de 375 °C a 4.6 kbar, lo cual no es consistente con el hecho de que estas rocas interseccionaron el límite de estabilidad superior de moscovita para sistemas saturados en SiO₂.
Figura 5.6.1. Diagrama P-T que muestra las trayectorias de descomposición y enfriamiento de los esquistos gráficos (XT), gneises plúlicos gráficos (GPE) y gneises ultracalizadas (GL) de la unidad de Torrox. La trayectoria que atraviesa los símbolos cuadrados (eclogitas) y el triángulo más grande (migmatitas) se refiere a las rocas de la unidad de Blanca (Waterhouse, 1975, 1977; Torro-Roldán, 1983; Tubé y Gil-Garcés, 1991), y la trayectoria que comienza en el triángulo pequeño (granulitas) se refiere a las rocas de grado alto de la unidad de Caños-Los Realejos (Laonitis, 1976, 1977, 1979; Torro-Roldán, 1981). Se muestra además una trayectoria hipotética para las rocas de grado bajo y alta P de la unidad del Torrenque con Fucalfoita (Cph-pel) y fenguita (Ph) datadas por Monné et al. (1995) en 25 Ma (rocas discontinuas adyacentes a Cph-pel). Se muestran además las trayectorias de bloque isotrópico para los sistemas analizados.

Las tasas descomposición (y enfriamiento) inferidas para la sección de baja P de la trayectoria P-T seguida por los gneises de Torrox son lo suficientemente altas para considerarlas el resultado de erosión, y debe implicarse un rápido ascenso condicionado por procesos tectónicos (Zeck et al., 1989, 1992). Dada la trayectoria P-T seguida por estas rocas, dominada por una fuerte descomposición casi isostérica de más de 10 kbar, seguida de un rápido enfriamiento, estos procesos tectónicos deben implicar extensión sin-metamórfica...
más que engrosamiento (Albarède, 1976; Thompson y Ridley, 1987). Por lo tanto, las deformaciones D_2 y D_3 deben relacionarse con esta extensión, lo cual contrasta con la interpretación de Cuevas et al. (1989) quienes relacionan estas deformaciones con emplazamiento de manitas. Una extensión sin-metamórfica es consistente con los dataciones radiométricas realizadas en otras unidades alpujarrienses y séptidales, tanto de tipo Casares-Los Reales como de tipo Blanca, en los cuerpos ultramáficos de Ronda, y en diques básicos discordantes emplazados en unidades alpujarrienses y maláguides (Torres-Roldán et al., 1986). Estos datos se agrupan en 18-22 Ma, independientemente del sistema isotópico investigado (Sm/Nd, Rb/Sr-roca total, Rb/Sr-mineral; K/Ar y 40Ar/39Ar) y del tipo de muestras analizadas (granato, piroxeno, roca total, moscovita, biotita, feldespatos-K) (e.g., Loomis, 1975; Seidemann, 1976; Priem et al., 1979; Michard et al., 1983; Zindler et al., 1983; Zeck et al., 1989a, 1989b, 1992; Monié et al., 1991a, 1991b, 1993, en prep.), y de la unidad estructural. Este último aspecto indica que no es posible implicar proceso tectónico que supongan engrosamiento corílcal y emplazamiento de unidades tectónicas, sobre todo si se tiene en cuenta que las trayectorias PT seguidas por las rocas analizadas por los autores anteriores son similares a las deducidas para la unidad de Torrox (i.e., dominada por una fuerte descompresión) (Torres-Roldán, 1974, 1981, 1983; Westerhof, 1977, Michard et al., 1983; García-Casco et al., 1992).

El comienzo de este proceso de extensión debe relacionarse con las condiciones de P intermedia. Debido al escaso enfriamiento sufrido por las rocas estudiadas (de grado medio y alto) durante la sección de P intermedia (desde >10 a 2-3 kbar) de la trayectoria de descompresión, el análisis de los sistemas isotópicos (i.e., edad de bloqueo) no permite la datación de las condiciones previas a la descompresión, y consecuentemente de las tasas de enfriamiento y descompresión precoces. Monié et al. (1991a) han sugerido una edad de 25.4±0.4 Ma (40Ar/39Ar sobre una fentga de baja temperatura y alta presión, coexistente con carfotita, aragonito y cloritoide, de la unidad del Trevenque) para el inicio de la descompresión. Si éste fuera el caso, y aplicado a las rocas de grado alto de los gneises de Torrox, puede inferirse una tasa de ascenso de 10 km/Ma para la sección de descompresión casi isotérmica de la trayectoria P-T. Esta fuerte tasa de descompresión favorece un modelo tectónico de colapso extensional sin-metamórfico en la región de Alborán durante el Oligoceno Superior-Mioceno Inferior.

El colapso extensional sin-metamórfico puede evaluar indirectamente mediante el análisis de texturas reaccionales, ya que es predecible un fuerte sobrepaso de los equilibrios intersectados durante la descompresión previa al enfriamiento. Este aspecto ha sido analizado en este trabajo mediante consideraciones al respecto de los procesos cinéticos implicados en el progreso de las reacciones de descomposición fentgica de las moscovitas primarias y de la reacción de descomposición de Ms+Qtz en los gneises de Torrox. Como se discute a continuación, todas las evidencias texturales son consistentes con tasas de descompresión elevadas durante la descompresión.

5.6.2. PROCESOS CINÉTICOS

5.6.2.1. CONTROLES CINÉTICOS DE LOS PROCESOS REACCIONALES HETEROGENEOS

Los procesos cinéticos que controlan el progreso de cualquier reacción (i.e., nucleación, crecimiento y difusión) están controlados, esencialmente, por la temperatura, la tasa de cambio de temperatura y/o presión, la deformación, y la cantidad y naturaleza del fluido presente en una roca (Ridley y Thompson, 1986). En cualquier proceso reacional es necesario un cierto sobrepaso de la superficie P-T-X de equilibrio para que la
reacción progresó, ya que debe superarse la energía de activación necesaria para el inicio de la nucleación de los productos de reacción. Una vez superada tal barrera energética, la tasa de nucleación alcanza un máximo en el tiempo a partir del cual la generación de nuevos núcleos tiende a disminuir, y la reacción progresa por crecimiento de las fases producto sobre los núcleos existentes (ver figura 1 de Ridley, 1985). Esto es, una vez que cierta cantidad de núcleos se han formado y ha tenido lugar cierto crecimiento, las posibilidades de nueva nucleación disminuyen. Para explicar ciertos aspectos de las texturas reaccionales descritas en este trabajo, y particularmente de las texturas de descomposición de moscovita, en términos de los procesos cinéticos que han controlado el progreso de las reacciones es necesario hacer algunas consideraciones básicas sobre los factores que controlan la tasa de nucleación de los productos de reacción.

Al variar gradualmente la temperatura y/o presión durante la intersección de una superficie P-T-X de equilibrio, la tasa de nucleación será función de la temperatura y/o presión de sobrepaso de tal superficie, esto es, del incremento de energía libre asociado a la reacción (que por definición no es igual a 0 si la reacción progresa en un sentido). Ridley y Thompson (1986) sugieren que, en general, la nucleación tiene lugar después de haberse superado las superficies de equilibrio en 10-50 K o 1 kbar, aunque el límite de temperatura inferior debe aplicar a reacciones de deshidratación fuertemente endotérmicas, mientras que hasta 100 K pueden llegar a ser necesarios cuando la reacción involucra pequeños cambios de entropía como en las reacciones sólido-sólido. Un aspecto importante a resaltar es que, si una reacción es sobrepasada, el efecto de ΔH_2 o ΔV es siempre el de tender a restar las condiciones P-T hacia las apropiadas del equilibrio durante el progreso de la reacción. Tasas elevadas de calentamiento y/o cambio de P reducen el efecto de la entalpía de reacción y de cambio de volumen sobre la temperatura o presión local, por lo que estos cambios producen, en general, más núcleos, y consecuentemente productos de reacción de tamaño de grano fino (Ridley, 1985).

La ausencia de deformación permite mayor tasas de sobrepaso de las reacciones antes de que tenga lugar la nucleación. El efecto catalítico de la deformación en los procesos metamórficos se debe a una serie de factores, aunque uno de los más importantes es la deformación intracrystalina que da lugar a defectos cristalinos de alta energía. Estos son puntos favorables de nucleación ya que disminuyen la energía de activación para la nucleación, por lo que los defectos juegan un importante papel en el descenso de la temperatura y/o presión de sobrepaso necesarios para el inicio de la nucleación, y por lo tanto, de una reacción. Sin embargo, es importante notar que las leyes matemáticas de la nucleación sobre dislocaciones predicen un cese rápido de la tasa de nucleación después de que la reacción haya progresado en una cierta proporción (Ridley, 1985). Aunque esto permite predecir productos de reacción de tamaño de grano más gruesos, ya que la masa producto de reacción se aggrará sobre menos núcleos, hay que tener en cuenta que el número inicial de núcleos puede ser muy elevado si las estructuras de las fases reactantes son muy defectuosas, por lo que en este caso el producto final será de tamaño de grano fino pero presentará un tamaño mínimo distintivo. Los defectos también generan un aumento de las tasas de difusión (con o sin la presencia de una película de fase fluida), canalizan el transporte de la fase fluida intracrystalina, y favorecen crecimiento de fases producto de reacción, lo que genera un aumento la velocidad de reacción global (Lasaga, 1981; Ridley y Thompson, 1986).

Una menor energía interfacial implicada en los contactos entre las fases reactantes y producto, como es el caso de intercambios estructuralmente coherentes, hace decrecer la temperatura de sobrepaso de una superficie de equilibrio necesaria para el comienzo de la nucleación (Ridley, 1985). Si la energía interfacial es baja, la tasa de nucleación depende más críticamente de pequeños cambios en T y/o P y, bajo cualquier
condición, resulta en un cese más rápido de la nucleación, aunque se forman más núcleos y el tamaño de las fases producto es menor.

Adicionalmente, la deformación aumenta la transferencia de masa por transporte físico de volúmenes de composición distinta en una roca y por la generación de gradientes de presión a la escala de los gramos minerales (por apertura y cierre de microfracturas) que conducen el movimiento del fluido intra- e intergranular. La presencia (y composición) de una fase fluida, en combinación con la deformación, también es importante ya que incrementa la tasa de difusión entre límites de grano (A. B. Thompson, 1983; Walther y Wood, 1984; Etheridge et al., 1984; Rubie, 1986; A. B. Thompson, 1988b), y controla la difusión en el interior de los cristales (Giletti, 1985). En un sistema en que la difusión de elementos es restringida, existen diferencias en los potenciales químicos de los componentes entre distintas partes de la roca (Ridley y Thompson, 1986). La presencia de un fluido intergranular relaja los gradientes de potenciales químicos, lo que favorece tasas de sobrepaso menores en aquellos puntos de reacción donde la disponibilidad de un determinado componente esté limitada.

Finalmente, debe indicarse que el sobrepaso de una superficie P-T-X sin que se produzca nucleación de los productos de reacción permite la posibilidad de que este producto cristalice con una composición en desequilibrio, o que cristalice una asociación mineral metastable en su lugar. Las desviaciones composicionales en desequilibrio de aquellas en equilibrio serán mayores cuando la superficie P-T-X haya sido sobrepasada en mayor medida. La cristalización de una asociación metastable parece favorecida en aquellos puntos donde falta la nucleación de una o más fase(s) producto estable(s).

5.6.2.2. DECOMPOSICIÓN FENÓTICA DE MOSCOVITA

En una búsqueda de características microestructurales que pudieran ayudar a comprender y explicar los procesos macroscópicos de descomposición fenólica de moscovita descritos más arriba, se ha realizado un análisis de las imágenes de microscopía electrónica de transmisión (TEM) de moscovitas primarias de la muestra T336 (gneis bandado con Ms+Bt+Grn) obtenidas por el Dr. Antonio Sánchez Navas (García-Casco et al., 1993). Estas imágenes han podido ser interpretadas en términos del control que los procesos cinéticos de nucleación y crecimiento de los intercristales de biotita y cuarzo han ejercido sobre el progreso del proceso macroscópico de descomposición fenólica de estas moscovitas, y ha ofrecido información sobre las condiciones de sobrepaso de las superficies de reacción apropiadas.

Nucleación Heterogénea

Una gran cantidad de defectos y zonas defectuosas aparecen en grandes áreas de los gramos de moscovita, que en su mayoría son estructuras deformacionales resultantes de la deformación por cisalla sufrida por los cristales y reflejo de la deformación milonítica que registra estas rocas. Los tipos de defectos más abundantes son fallos de apilamiento (o stacking faults), plegamiento de las capas (001), dislocaciones de filo, y microestructuras de tensión (o pull apart) según las capas (001) (Figuras 5.6.2a-c). Como se ha indicado más arriba, los defectos cristalinos son puntos de nucleación favorables dado que la energía elástica y/o de superficie acumulada en estos defectos disminuye la energía de activación requerida para la formación de un núcleo de tamaño crítico estable (e.g., Petnis y McConnell, 1980; Lasaga, 1981; Rubie y Thompson, 1985; Ridley y Thompson, 1986). En las imágenes obtenidas esto se refleja por la abundancia de lamelas de biotita y cuarzo intercristaladas (i.e., puntos de nucleación). Un caso particular se encontró en relación con las
estructuras pull-apart, que forman huecos y microfracturas alargadas según los planos (001) de la moscovita (Figura 5.6.2c). Estas microfracturas se generan posiblemente a lo largo de la capa interlaminar de coordinación [XII], donde están contenidos los cationes alcalinos más grandes y más débilmente ligados a la estructura (e.g., Veblen, 1983), lo que genera áreas atómicamente deficientes que se muestran en las imágenes como áreas lenticulares blancas. En el ejemplo de la Figura 5.6.2c, la deformación plástica está almacenada en dos dislocaciones de filo opuestas, de manera que la continuidad entre las dos capas de moscovita afectadas por el pull-apart está de hecho rota. Dentro de las dos secciones de la estructura pull-apart de la Figura 5.6.2c aparecen dos franjas de dislocación simples (marcadas con flechas) que se unen a las dos dislocaciones de filo que rompen la continuidad de las capas de moscovita. Aunque algo especulativo, estas franjas de dislocación extra podrían interpretarse como líneas de skiing individuales que representarían una fase de dimensiones del orden del Å en estado de crecimiento congelado, posiblemente biotita, que crecería a medida que la microestructura pull-apart migrara lateralmente. Sin embargo, también es posible que las franjas de dislocación extra no resulten de una capa cristalina extra (a 10 Å), sino que representen franjas de Fresnel generadas en los bordes de la moscovita a lo largo de los espacios atómicamente deficientes (comunicación personal de Dr. D. Veblen al Dr. Antonio Sánchez Navas; ver también Eggleton y Buseck, 1980).

Crecimiento Coherente

Las imágenes de TEM confirmarían las evidencias ópticas y de imágenes de BSE sobre un crecimiento estructuralmente controlado (o interface-controlled) de la biotita, y en menor medida del cuarzo, a lo largo de los planos (001) de las moscovitas. El grado de coherencia estructural relativa a la dirección c* entre los dos filosilicatos parece función del tamaño de grano de las lamelas de biotita, y por lo tanto del estado de crecimiento. Así, en los casos de lamelas más finas (Figura 5.6.2d), las franjas de dislocación con espaciado a 10 Å observables en biotita (zona oscura) y moscovita (zona clara) muestran límites coherentes a lo largo de los planos (001). Puesto que la imagen de la Figura 5.6.2d no es una imagen de estructura, no se puede obtener información sobre la continuidad estructural a lo largo de otras direcciones. Sin embargo, la ausencia de límites netos con fuertes contrastes, tales como los relacionados con stacking faults en filosilicatos (e.g., Veblen, 1983, su Figura 2) que indicarían un cambio en las orientaciones de las direcciones a y b de las lamelas, sugiere un desarrollo coherente según los planos (001) para las lamelas de biotita más finas, esto es, durante los primeros estádios de crecimiento.

Las relaciones estructurales anteriores sugieren que los planos (001) de las micas han actuado como límites de fase óptimos (o optimal phase boundaries, Robinson et al., 1971), a pesar de que sus diferentes dimensiones según las direcciones a y b hacen imposible un ajuste perfecto de ambas estructuras según los

Figura 5.6.2. (Página siguiente). Imágenes de TEM que muestran las naturalezas de los intercambios de Br+Oix en las moscovitas primarias de los gneises barreídos con M=Bi+Grt. a) Imagen de un intercambio compuesto que consta de dos lamelas de biotita de ca. 200 Å de grosor separados por una banda interior de bajo contraste (cuarzo). b) Imagen de detalle de la estructura anterior que muestra abundantes defectos en la moscovita (flechas finas), como dislocaciones de filo y condensaciones aisladas de las capas. Las lamelas de biotita presentan un estado de deformación cristalina menor que la moscovita. No parecen existir variaciones en la orientación de las direcciones a y b de las micas a través de la superficie de contacto (001) semiincoherente entre biotita y moscovita (flechas gruesas) debido a la ausencia de dislocaciones de filo. c) Microestructura de deformación por cizalla (pull-apart) paralela a las capas de moscovita. Dos dislocaciones de filo en la moscovita se interrumpen la continuidad de la estructura. Las dos franjas que aparecen señaladas a esta dislocaciones de filo podrían representar capas de 10 Å de biotita en un estado intermedio de crecimiento o franjas de Fresnel. d) Lamella de biotita semiincoherente en moscovita cuyas orientaciones de a y b parecen paralelas dada la ausencia de dislocaciones de filo. e) Imagen TEM de baja magnificación que muestra estadios de crecimiento avanzados de biotita y cuarzo incoherentes con moscovita, y cuarzo que aparece entre las lamelas de biotita y la moscovita.
planos (001) (ver Iijima y Zhu, 1982 para intercercimientos coherentes entre biotita y muscovita perpendiculares a los planos (001)). Las dimensiones a y b de las micas están relacionadas con la geometría de la coordinación octaedrica y con el grado de ajuste de las capas tetraédrica y octaedrica, que a su vez es función de los iones que ocupan tales posiciones estructurales y la ocupancia octaedrica total (Zussman, 1979; Weiss et al., 1985). En la secuencia muscovita → biotita → biotita el ángulo de rotación tetraédrica α, que mide el grado de desajuste de las capas octaedrica y tetraédrica, disminuye, y las dimensiones a y b aumentan. Por lo tanto, la coherencia debe haber estado favorecida en las etapas iniciales de crecimiento por los altos contenidos en componente feglitico (i.e., leucosfilita) de la muscovita, que presentaría mayores dimensiones a y b (Zussman, 1979; Guidotti, 1984; Massonne and Schreyer, 1986), aunque no podría mantenerse con el progreso de la descomposición ya que las dimensiones a y b de la muscovita se contraen al descender la concentración del componente leucosfilita.

Con el progreso de la descomposición de muscovita y el crecimiento de biotita, la deformación elástica en las superficies de contacto coherentes aumentaría hasta el punto de producir defectos cristalinos y contactos semicoherentes, lo que permite una reducción de la energía de deformación y un incremento de la energía de superficie (Putnis and McConnell, 1980). En nuestro caso, esto se ilustra por las dislocaciones de filo y curvatura de las capas en las áreas de muscovita cercanas a los contactos con lamelas de biotita relativamente pequeñas. Como ejemplo, la Figura 5.6.2a y b muestra un intercercimiento zonado, constituido por una banda central de bajo contraste (material de peso atómico medio bajo, guarczo) rodeada por dos lamelas de biotita (de ca. 200 Å cada una). Las abundantes dislocaciones de filo que afectan a los planos (001) de la muscovita (Figura 5.6.2b) indican la ausencia de contactos coherentes perfectos. Al igual que en el caso de la Figura 5.6.2d, las direcciones a y b de los pares biotita-muscovita adyacentes parecen mantenerse paralelas a través de las dos superficies de contacto. La simetría de esta estructura sugiere que la nucelación tuvo lugar en una microestructura planar (quaking fault) localizada en la posición que actualmente ocupa el cuarzo, y desde la cual ha tenido lugar el crecimiento de biotita en la dirección perpendicular a las capas (001). Puesto que las lamelas de biotita presentan menor deformación que la muscovita, su nucelación y crecimiento en áreas defectuosas de este tipo y la acomodación de las dos fases parecen haber aprovechado el estado de deformación previo de la estructura de la muscovita. Por lo tanto, el desarrollo de superficies de contacto semicoherentes se inicia que resulta de la nucelación y crecimiento en áreas defectuosas y de estudios precoces de crecimiento de los cristales de biotita intercercados.

Engrosamiento (Coarsening)

Cuando las lamelas de biotita se hacen más gruesas (> 500 Å), la coherencia se pierde completamente, y se desarrollan contactos de bajo ángulo próximos a los planos (001). El avance del reemplazamiento de muscovita implicaría que la difusión de los productos de decomposición se verificaria aproximadamente perpendicular a los planos (001) de la misma, como lo indican los halos de difusión alrededor de las fases intercercadas (Figura 4.4.7). A pesar de que la difusión perpendicular a (001) es un proceso cinéticamente menos favorable que paralelamente a (001) (e.g., Fortier and Giletto, 1991), podría haber estado favorecida debido a la minimización de la energía interfacial, al menos mientras los contactos de fase migraran manteniendo la coherencia cristalográfica. El desarrollo de contactos no coherentes y de halos de empobrecimiento suficientemente amplios en la muscovita parece haber producido un cambio en el mecanismo de crecimiento, pasándose del crecimiento inicial controlado por las superficies coherentes (surface-controlled coherent growth) a un crecimiento controlado por la difusión volumétrica (diffusion-controlled...
La presentación de gruesas lamelas de biotita rodeadas de cuarzo (Figura 5.6.2c) sugiere la operatividad de procesos de transferencia de masa por difusión de especies disueltas en un fluido a través de las contactos de grano, y crecimiento por precipitación a partir de este fluido. Esta inferencia es consistente con las deducciones hechas más arriba en la modelización del proceso macroscópico de descomposición fengítica de la moscovita de los gneises bandeados (reacción (5.192)), ya que se libera una fase fluida que puede llevar disueltas especies iónicas hidratadas (Si(OH))₄, KOH, NaOH, ver reacción (5.195)).

Curso de la Reacción

Las observaciones anteriores indican que la cinética del proceso de descomposición fengítica de las moscovitas consistió en un proceso de nucleación heterogénea y crecimiento, bajo condiciones de deformación cristalina resultante de la deformación planar que afecta a estas rocas. La nucleación de los productos de reacción ha tenido lugar preferentemente en los abundantes defectos deformacionales de la moscovita, que han jugado un papel importante a nivel atómico sobre el progreso de la reacción. Los estados iniciales de crecimiento han supuesto la migración de las superficies de los contactos de grano a través de limites coherentes o semicoherentes (en el caso de la lamela de biotita), lo que supone un crecimiento controlado por la interacciones energéticas en las superficies de contacto de las dos fases. Un crecimiento ulterior generó limites de grano no coherentes, de bajo ángulo e irregulares, y halos de empobrecimiento en Si, Ti, Fe y Mg en la moscovita, por lo que el engrosamiento de los productos está controlado por procesos de difusión, esto es, el progreso de la reacción de descomposición en puntos particulares se produjo por la velocidad de la difusión volumétrica de los componentes en el interior de los cristales de moscovita perpendicularmente a las capas (001).

A pesar de la simplicidad aparente del modelo anterior, puede concebirse un curso de reacción complejo dados:

- la abundancia de lamelas intercristales (i.e., puntos de nucleación),
- el amplio rango de tamaños de los productos y grados de coherencia cristalografía (i.e., estados de crecimiento),
- el papel de la deformación y de la recristalización que ha acompañado al proceso de descomposición de moscovita.

Un aspecto de particular importancia es el amplio rango de tamaños de grano de los productos de reacción, que oscila entre 10⁻⁶-10⁻² mm a lo largo de c para el caso de la biotita, y la ausencia de un tamaño de grano mínimo ya que existen tamaños de hasta algunas decenas de A y quizás líneas atómicas individuales (Figura 5.6.2c). Por lo tanto, la nucleación no cesó a medida que la descomposición de moscovita progresó y crecieron los productos de reacción. Esto contrasta con el hecho de que en las reacciones fuertemente exotérmicas como las de dehidratación, la nucleación bajo condiciones de baja energía interfacial (intercristalinos coherentes de biotita) favorece la formación de un número elevado de núcleos, pero también una rápida reducción de la tasa de nucleación con el progreso de la reacción, lo que permite predecir la formación de unos productos de reacción de grano fino y homogéneo, sobre todo si la nucleación se localiza en defectos (Ridley, 1985).

El hecho de que nuevos núcleos fueron generados continuamente una vez que las lamelas de otras áreas seguían creciendo puede explicarse por (1) la naturaleza continua de la reacción de descomposición, (2) una alta tasa de descompresión a presiones intermedias a altas, y (3) un cambio de crecimiento controlado...
por procesos de superficie en los contactos coherentes a un crecimiento controlado por difusión con el progreso de la reacción. El análisis textural indica que el desarrollo de los haces de empobrecimiento en Si, Fe, Mg y Ti en las áreas de moscovita adyacentes a las intercruces de Bt+Qtz impidió el crecimiento de las lamelas, y pudo causar el ceso del progreso de la reacción en algunos puntos cuando los haces alcanzaron un grosor crítico (5-10 μm). Los amplios incrementos de energía libre de reacción asociados a la decomposición de zonas de moscovita ricas en Si son proporcionales al grado de sobreeso de la superficie PT-X apropiada (Ridley y Thompson, 1986), lo que debería haberse preservado, y eventualmente incrementado la tasa de nucleación. Esto favoreció el progreso de la reacción en las áreas de moscovita todavía no descompuestas por nucleación ulterior, posiblemente en defectos generados por la deformación, y crecimiento coherente de nuevas lamelas de biotita. Debido a las altas temperaturas a las que ha tenido lugar el proceso de decomposición, este proceso de nucleación continua necesita tasas de descomposición elevada ya que, de otra manera, se habría favorecido el crecimiento de los productos de reacción ya formados más que el extremadamente elevado número de lamelas existentes.

Bajo estas circunstancias de fuerte tasa de descomposición, la decomposición debió progresar irreversiblemente ya que las composiciones de moscovita en las áreas ricas no descompuestas estaban cada vez más desplazadas de las superficies PT-X de equilibrio respectivas (ver Ridley y Thompson, 1986, su Figura 4). Como consecuencia de esto, se ha producido la heterogénea distribución espacial y de tamaño de los productos de reacción, y el zonado por difusión irregular en la moscovita reactante. Sin embargo, también es posible que la composición de las fases, y la propia asociación producto de reacción, no se corresponda con las predicciones del equilibrio. La no disponibilidad de análisis de las lamelas de biotita más finas excluye cualquier deducción al respecto de la cristalización de biotita con una composición en desequilibrio. No obstante, la composición de las lamelas biotita incorrecidas más gruesas parece estar toda vez que no presenta cantidades elevadas de NaAl como en los cristales de biotita de la matriz producto de descomposición de grano (Figuras 4.5.1 y 4.5.10). Respecto de la asociación de fases, la ausencia de feldespato-K intercruce con Bt+Qtz podría interpretarse como un resultado de la generación de una asociación metaestable, ya que su producción es predecible de los balances de masa presentes más arriba (reacción 5.192)). Un fallo en la nucleación de feldespato-K ha podido dar lugar a una composición metaestable de la fase fluida, puesto que no se ha detectado la presencia de otras fases sólidas potásicas además de biotita, y por lo tanto el K debe haberse disuelto hacia la matriz disuelto en el fluido. Debe notarse que la coexistencia de una fase parcialmente fundida durante los estadios iniciales de la descomposición no es impedimento para el control deformacional de la tasa de nucleación y el progreso de la reacción de descomposición, ya que un sistema con tasas de fundido parcial bajas puede deformarse (Arzi, 1978; van der Molen y Paterson, 1979; ver Capítulo 2.2.2.2).

5.6.2.3. Descomposición de moscovita en feldespato-K+andalusita+biotita

Rubie y Breatley (1987) y Breatley y Rubie (1990) observaron texturas topotácticas y esquelitales en moscovitas sometidas a procesos de descomposición en desequilibrio por reacciones de fusión metaestables en sistemas experimentales (ver también Breatley, 1986, para un caso natural). Estos autores obtuvieron descomposición completa de la moscovita en 220 días en sistemas saturados y substaturas en H2O bajo condiciones experimentales de fuerte sobreeso (50-200 °C) de la superficie de equilibrio (5.198) a bajas P (1 kbar), y observaron la asociación estable Kfs+Sil+Bi sólo bajo condiciones de saturación en H2O. Estos resultados podrían sugerir un crecimiento rápido para las texturas topotácticas y en damero de los
pseudomorfos de Kfs+And+Bt desarrollados en las moscovitas pegmatíticas (Figura 3.2.2) de los gneises bandeados con Ms+Bt+Grt, aunque las condiciones de fuente sobrepaso de la reacción (5.197) investigadas por Rubie y Brearley (1987) y Brearley y Rubie (1990) hacen que ambos casos no sean estrictamente comparables. Otros tipos de texturas de descomposición de moscovita son las encontradas en los gneises aplíticos (muestra T493, Figuras 3.2.5e y f), donde las fases producto se disponen zonalmente (biotita en contacto con moscovita, feldspato potásico en posición intermedia y andalucita en contacto con la matriz). Este tipo de disposición zonal indica que el crecimiento de los productos ha estado controlado por la difusión de los componentes, y la ausencia de texturas esqueletales sugiere que el sobrepaso de la superficie de reacción ha sido escaso.

Schrambe et al. (1987) obtuvieron la asociación estable Kfs+And bajo condiciones moderadas de sobrepaso (0-100 °C, a 0.5-5 kbar) y saturación en H2O, y concluyeron que la reacción de inestabilidad de Ms+Qtz (5.179) debería progresar hasta completarse totalmente durante el metamorfismo progranulítico aún bajo condiciones muy próximas a la superficie de equilibrio si el mecanismo cinético de control de la velocidad (un control de superficie que implica las superficies de los cristales de andalucita) es el mismo durante el progreso de la reacción. Ridley y Thompson (1986) estimaron un amplio rango de temperaturas de sobrepaso necesarias para la nucleación de los productos de la reacción (5.179) en función de consideraciones teóricas sobre la energía de superficie implicada en calibrados experimentales de esta reacción a 2 kbar, aunque sugirieron que los incrementos de temperatura y presión medios de sobrepaso de reacciones de deshidratación necesarios para el comienzo de la nucleación deberían ser cercanos a 10 °C y 1 kbar, respectivamente. Por lo tanto, los resultados de estudios experimentales y teóricos sobre la reacción de descomposición de moscovita (5.179) favorecen velocidades de reacción elevadas y condiciones de sobrepaso necesarias para la nucleación de moderadas a bajas. Esto está en contradicción con las texturas reaccionales observadas en las moscovitas de los gneises bandeados y aplíticos, ya que la reacción de descomposición (5.179, o 5.197) no ha progresado hasta completarse en la mayoría de los cristales de moscovita observados. Pero quizás más sorprendente sea el hecho de que (1) los cristales de moscovita primarios y recristalizados de la matriz de estas rocas no presentan evidencia alguna que indique su inestabilidad a través de la reacción (5.197), a pesar de estar en contacto con el cuarzo de la matriz y con los finos intercrescimientos de cuarzo producto de descomposición fengítica, y (2) en muestras individuales de gneises aplíticos se encuentra cristales parcialmente descompuestos a And+Kfs+Bt y cristales idénticos composicionalmente que no presentan texturas de descomposición y también están en contacto con cuarzo.

La interpretación del crecimiento secuencial de fibrolita y andalucita, en términos de un cambio desde el campo de estabilidad de la sillimanita al campo de estabilidad de la andalucita durante el progreso de la reacción de descomposición de las moscovitas pegmatíticas de los gneises bandeados, presenta complicaciones adicionales debido al probable crecimiento de la sillimanita fibrolítica fuera del campo de estabilidad de la sillimanita (ver Kerrick, 1990). Sin embargo, la trayectoria de descomposición seguida por esas rocas es consistente con un crecimiento inicial de fibrolita cerca de la superficie de reacción, posiblemente dentro del campo de estabilidad de sillimanita. El progreso de la reacción dentro del campo de estabilidad de andalucita ha debido tener lugar bajo condiciones cercanas a la superfi,

414
en los cristales de moscovita primarios y recristalizados de la matriz, indican que este estado de la trayectoria P-T debió evolucionar en las proximidades de la superficie de reacción y, por lo tanto, que esta trayectoria P-T debió caracterizarse por enfriamiento y descomposición simultáneos (Figura 5.5.2). Estas mismas conclusiones pueden obtenerse al considerar el proceso de descomposición de las piezas de moscovita primarias para dar And+Kfs+Bt en los gneises aplíticos, teniendo además en cuenta que en este caso no existen complicaciones derivadas del hecho de que distintos tipos de moscovitas presenten texturas distintivas como en los gneises bandeados (ver más adelante).

Estas conclusiones son hasta cierto punto conflictivas ya que es raro que una trayectoria P-T, que es el resultado de procesos tectónicos y de transmisión de calor en la corteza terrestre, siga “fielmente” durante un cierto tiempo la traza P-T de una reacción que puede considerarse una discontinuidad en el espacio P-T-X. Las posibilidades de que las trayectorias P-T de determinadas rocas coincidan con la proyección P-T de superficies de reacción son remotas, excepto si se tiene en cuenta el efecto de la entalpía de reacción sobre la evolución P-T de las rocas. Este efecto supondría que la reacción de descomposición de moscovita habría actuado como un tampon tórmico (o heat sink), de manera que al superarse la reacción por descenso de T (dF) el carácter exotérmico de la reacción tendería a producir un descenso de temperatura (dT) que conduciría a un acercamiento hacia la superficie de reacción y a un bloqueo del progreso de la descomposición (e.g., Ridley, 1986; Connolly y Thompson, 1989). La historia reacional tendría lugar bajo estados reactivos (dP) separados de estados no-reactivos (dT). Imaginando este proceso en términos de incrementos diferenciales de P y T, es fácil concluir que la trayectoria P-T de estas rocas seguiría la traza de la reacción de descomposición en el espacio P-T a modo de escalones diferenciales de T y P, impidiendo el sobrepaso de la superficie P-T-X. Este proceso es factible si se tiene en cuenta que bajo las condiciones de baja P no existe un aporte térmico que impidiera actuar a la reacción como un tampon tórmico, aunque el tiempo necesario para la difusión de calor en los volúmenes de roca sí podría haber sido un impedimento si la reacción se intersectó bajo condiciones de rápida descomposición. Las evidencias radiométricas presentadas más arriba indican tasas de descomposición (2.5 a > 5 km/m.a) para las secciones de baja P de las trayectorias P-T sufriéndolas por las unidades alpárpidas, pero estos mismos datos indican que las tasas de enfriamiento también fueron muy altas (> 200 °C/m.a). Es posible que el tiempo necesario para la difusión de calor no fuese un impedimento para que la reacción de descomposición de moscovita actuase como tampon tórmico, y por lo tanto para que la evolución P-T de estas rocas siguiera en un cierto tramo, quizás pequeño, la traza P-T de esta reacción, para a continuación diverger debido al rápido enfriamiento de las rocas.

No obstante, para explicar el comportamiento diferencial entre las moscovitas de la matriz y las pegmatíticas de los gneises bandeados deben implicarse también desplazamientos moderados en el espacio P-T de esta reacción de descomposición de moscovita, además de una trayectoria P-T controlada durante cierto tiempo por el tamponamiento del progreso de la reacción. Estos desplazamientos se deben a variaciones composicionales de las fases implicadas, incluyendo la fase fluida. La composición virtualmente idéntica de los gramos pegmatíticos y recristalizados de moscovita en las muestras analizadas (Figura 4.4.6), y el hecho de que las texturas de descomposición de moscovita para dar And+Kfs+Bt se hayan encontrado en cuerpos aplíticos y pegmatíticos del complejo gneísico de Terroso, sugiere que variaciones en la composición del fluido debe ser un factor esencial en la intersección de la superficie de descomposición de moscovita+quartz. Como se ha indicado más arriba, las variables composicionales más importantes de la fase fluida en equilibrio con estas rocas incluyen las actividades de especies iónicas (i.e., K⁺, Na⁺, H⁺), y componentes como B y F dada la coexistencia de turmalina en los segregados pegmatíticos (Capítulo 3.2.2).
Bajo condiciones isotermas, la intersección de la reacción de descomposición de mосcovita se produciría a mayor presión para valores de a_{H2O} menores. Esta reducción de a_{H2O} podría darse en los segregados donde se alojan las moscovitas pegmatíticas por un aumento de F y/o B en el fluido (Manning y Pichavant, 1983; Pichavant, 1987). Sin embargo, dadas las evidencias presentadas más arriba al respecto de la operatividad de reacciones de hidrólisis, es posible explicar la descomposición de las moscovitas pegmatíticas por variaciones en las razones a_{K}/a_{H+} y a_{Na}/a_{H+} de los fluidos en equilibrio con la matriz y con los segregados pegmatíticos (Wünnisch, 1975). Esto puede evaluarse cualitativamente en la Figura 5.5.8b para unas condiciones de a_{H2O} = 0.5. En esta figura puede observarse que la coexistencia de Ms+Kfs+Ab (puntos pseudoinvariantes II en esta sección isotermia, isobárica e iso-a_{H2O}) ocurre a alta P bajo razones a_{K}/a_{H+} y a_{Na}/a_{H+} fijadas y altas, que deben disminuir al descender la presión si el sistema es cerrado. Esto puede haber aplicado a las rocas investigadas durante la trayectoria de descompresión y progreso de la reacción de descomposición fengítica. Si la cristalización de la moscovita pegmatítica tuvo lugar a baja P en equilibrio con Kfs y Ab y el sistema fue abierto, la infiltración de un fluido con razones a_{K}/a_{H+} y/o a_{Na}/a_{H+} más bajas que las predecibles de las condiciones de equilibrio podría favorecer la descomposición de moscovita en los segregados pegmatíticos.

5.6.2.4. DESCOMPOSICIÓN TRIOCTAÉDRICA DE MОСCOVITA

En este trabajo se ha realizado un estudio de TEM de las texturas reaccionales encontradas en las moscovitas de gneises aplíticos, dique de microgranito y esquistos moscovíticos. No obstante, por lo que respecta a los intercrecimientos finos estructuralmente controlados de Bt+Qtz (i.e., excluyendo la descomposición de moscovita para dar And+Kfs+Bt en los gneises aplíticos y las lamelas de biotita sobrecrecidas en el dique de microgranito), puede predecirse una situación similar a la descrita para las moscovitas de la matriz de los gneises bandeados. En particular, es muy probable que la nucleación haya estado controlada por defectos cristalinos, al menos en las aplitas y esquistos moscovíticos deformados, y que el crecimiento haya tenido lugar inicialmente por migración de límites de grano coherentes. No obstante, los halos de empobrecimiento en Si, Ti, Fe y Mg y de enriquecimiento en Al de las moscovitas de los gneises aplíticos, dique de microgranito y esquistos moscovíticos se disponen en continuidad con las lamelas de biotita intercrecidas según direcciones paralelas a los planos (001) (Capítulo 4.4.4 y Figuras 4.4.15, 4.4.16, y 4.4.21). Esto supone una diferencia sustancial respecto de las texturas de las moscovitas primarias de los gneises bandeados, e indica que la difusión de los productos de descomposición ha seguido las direcciones (001) cinéticamente más favorables (Fortier y Giletti, 1991).

La causa de esta diferencia en la dirección (y posiblemente naturaleza) de la difusión debe encontrarse en diferencias en el proceso cinético de descomposición, que no sería sino la consecuencia de un proceso reacional distinto. Es posible que este proceso corresponda a una separación de fases relacionada por un solvus, que se propone en este trabajo a modo de hipótesis. Esta propuesta viene condicionada por el hecho de que, como se ha mostrado en los Capítulos 4.4.4 y 5.5.2.3, estas texturas de intercrecimiento formadas por intercrecimientos finos estructuralmente controlados de Bt (+Qtz minoritario) están relacionadas con cambios composicionales en las moscovitas donde predomina el efecto del componente trioctaédrico. Esto implica que el proceso reacional macroscópico es distinto del ocurrido en las moscovitas fengíticas de los gneises bandeados, y puede modelizarse globalmente como un proceso de expulsión de biotita en moscovita.
No se pretende aquí exponer en detalle las relaciones termodinámicas de la separación de fases relacionadas por solvus y los procesos de descomposición espinodal y nucleación y crecimiento, aunque es necesaria una breve introducción (ver Cahn, 1968; Yund y McCallister, 1970; Saxena, 1973; Ganguly y Saxena, 1982). A la escala microscópica, la composición de una solución está en un estado de fluctuación estadística espontánea alrededor de la composición media de la escala macroscópica. La Figura 5.6.3 (modificada de la Figura 4 de Cahn, 1968) muestra las relaciones T-G_X, apropiadas para la separación de fases en un solvus mediante los mecanismos de descomposición espinodal y de nucleación y crecimiento. A una determinada temperatura (o presión) menor que la temperatura crítica, la separación estable de dos fases en un solvus debe proceder de manera que las composiciones neoformadas se proyecten sobre el solvus (o curva binodal). No obstante, las composiciones de las fases en los estados iniciales de la descomposición, resultantes de las fluctuaciones espontáneas, corresponden a composiciones intermedias localizadas sobre la curva G_X, apropiada (en condiciones isótermas-isobáricas). Dependiendo de la composición original, el mecanismo de esvolación es distinto debido a las dos inflexiones en la curvatura de la curva G-X, (i.e., cambio de signo de (δ²G/δX²)ₚ=constant, denominado puntos espinodales. Así, la separación de fases debida a las fluctuaciones para composiciones localizadas entre los dos puntos espinodales permite la reducción de la energía libre del sistema, por lo que las nuevas composiciones pueden persistir. Este tipo de soluciones son inestables ya que tienden a descomponerse espontáneamente por descomposición espinodal. La separación de fases no es posible por descomposición espinodal si las estructuras de tales fases son distintas. Sin embargo, la separación de fases debida a pequeñas fluctuaciones para composiciones iniciales localizadas entre los puntos espinodales y binodales no es posible ya que la energía libre del sistema aumenta. Este tipo de soluciones son metastables, ya que no se descomponen espontáneamente, pero pueden descomponerse si las fluctuaciones son bruscas (i.e., discontinuas) y generan composiciones suficientemente diferentes de manera que ΔG (= X₀-X₁) supera el valor para el que ΔG (= G(ΔX)-G(ΔX=0)) es máximo (ver Figura 1 de Yund y McCallister, 1970), ya que el crecimiento ulterior permite reducir ΔG y finalmente conseguir un producto con ΔG negativo (i.e., estable y correspondiente a los binodales). Este proceso de descomposición corresponde a nucleación homogénea (al azar) y crecimiento.

![Figura 5.6.3. Relaciones T-G_X, apropiadas para la separación de fases en un solvus mediante los mecanismos de descomposición espinodal y de nucleación y crecimiento (modificada de la Figura 4 de Cahn, 1968). T_c es la temperatura crítica del solvus, a y b representan los binodales y c y d los puntos espinodales.](image-url)
En la Figura 5.6.4 (reproducida la Figura 9 de Cahn, 1968), se ilustran las diferencias entre la evolución composicional de una fase reactante que se descompone por mecanismos de descomposición espinodal y de nucleación y crecimiento. Como puede apreciarse en esta figura, la descomposición espinodal de una solución sólida implica el enriquecimiento en determinados componentes debido a las fluctuaciones atómicas espontáneas continuas (i.e., fluctuaciones que no presentan un límite mínimo para la separación mineral). Los clusters formados por estas fluctuaciones crecen en amplitud y longitud de onda por difusión hacia los propios clusters a pesar de su mayor concentración. Por el contrario, la nucleación homogénea debida a fluctuaciones espontáneas discontinuas genera desde el primer momento límites netos entre las fases, y produce un empobrecimiento alrededor del producto en los componentes que difunden en la fase reactante. En este caso, la difusión en la fase reactante tiene lugar hacia las zonas de menor concentración, aunque el producto final una vez la fase se ha separado, es similar y el área reactante adyacente al producto presenta un empobrecimiento en los componentes que han difundido.

![Figura 5.6.4: Evolución esquemática de los perfiles de concentración desarrollados por nucleación y crecimiento (arriba) y descomposición espinodal (abajo). Reproducida de la Figura 9 de Cahn (1968).](image)

El mecanismo de nucleación y crecimiento puede asumirse sin problemas para el caso de la descomposición fengítica (aunque la reacción no corresponde a un proceso de separación de fases en sentido estricto) ya que la nucleación ha sido heterogénea, esto es, ha tenido lugar sobre discontinuidades estructurales de alta energía que han "atraído" las fluctuaciones discontinuas. En este caso, la difusión de los componentes de la moscovita (Fe, Mg, Ti...) hacia los núcleos de biotita ha podido proceder perpendicularmente a las capas (001) debido a la menor concentración de estas especies en los alrededores de las fases producto. Si existe un solvus s.s entre moscovita y biotita el modelo de nucleación y crecimiento es igualmente válido para la descomposición trioctádrica, ya sea implicando nucleación heterogénea sobre defectos o nucleación homogénea. No obstante, la textura final sería distinta en cualquiera de los dos casos ya que los núcleos resultantes se habrían formado por fluctuaciones discontinuas que implicarían mobiliidad iónica paralelamente a las capas (001), y la difusión ulterior durante el crecimiento seguiría estas mismas direcciones. Por lo tanto, las diferencias texturales (i.e., distribución de los halos de empobrecimiento) serían simplemente el resultado de un proceso de separación de fases isoestructurales (C2/c) relacionadas por un solvus, que condiciona el mecanismo microscópico de reacción (nucleación, difusión volumétrica y...
crecimiento), por oposición al proceso reacional de decompensación fenítica. Esta inferencia viene también indicada por el hecho de que las texturas reacionales de las moscovitas de los gneises pelíticos, que implican el crecimiento de biotita, cuarzo, ilmenita y cordierita en el interior de los cristales de moscovita (Figura 4.4.26), también presentan halos de empobrecimiento adyacentes a los productos perpendicularly a las capas (001) similares a los desarrollados por la decompensación fenítica de las moscovitas de los gneises bandeados con Ms+Bs+Grt.

Puede predecirse que la morfología del solvus entre moscovita y biotita debe implicar una fuerte pendiente de las curvas GXp, al menos en las zonas cercanas al término extremo moscovita (i.e., la curva binodal sería muy próxima al componente moscovita) ya que la solubilidad del componente trioctádrico en la moscovita es limitada bajo condiciones PT corticales (ver la discusión y bibliografía presentada el apartado de Sustitución Di-Trioctádrico del Capítulo 4.4.3.2). Esto permitiría que moscovitas con contenido anormalmente altos en ocupación octádrica (>4.2 átomos f.u.) pudieran descomponerse mediante decompensación espinodal, al menos inicialmente. En este caso las fluctuaciones serían continuas, difundiendo los componentes (Fe, Mg, Ti) hacia zonas enriquecidas en tales componentes, y la formación de biotita en el interior de moscovita puede considerarse, esencialmente, como el resultado de un incremento gradual de la ocupación octádrica de las áreas reactantes de moscovita (i.e., Fe3Al3). Este proceso debe ser energéticamente favorable ya que no es necesario implicar variaciones importantes en las capas tetraédricas e interlaminares, y la difusión paralelamente a las capas 001 es cinéticamente efectiva.

La historia reacional del proceso de descomposición trioctádrico ha podido implicar distintos mecanismos en las capas sucesivas de crecimiento. Incluso es posible implicar descomposición espinodal coherente (cuya curva TX se localizaba en el interior del espinodal químico referido más arriba) y descomposición en el solvus coherente (cuya curva TX se localizaba en el interior del solvus libre de deformación plástica referido más arriba) (ver Cahn, 1962, Buseck et al., 1980; Yund, 1983) debido a las similitudes estructurales de moscovita y biotita, aunque el producto final, una vez que las placas de biotita han crecido, debe ser similar ya que teóricamente las composiciones de las fases separadas deben tender hacia composiciones consistentes con los puntos binodales, energéticamente más estables. Este modelo de separación de fases propuesto (i.e., exfoliación de biotita en moscovita) puede evaluarse mediante un estudio de TEM que permitiera analizar zonas con estados de crecimiento menos avanzado, donde se observasen la naturaleza de los contactos de las fases y, eventualmente, estructuras de exfoliación moduladas y contactos difusos similares a los encontrados en piroxenos (e.g., Buseck et al., 1980) y feldespatos (e.g., Yund, 1983) que sugieren una descomposición inicial de tipo espinodal. En cualquier caso, debe notarse que el mecanismo de exfoliación espinodal debe estar favorecido respecto de procesos de nucleación homogénea y heterogénea bajo condiciones de fuerte cambio de las variables intensivas que controlan la transformación. Los estudios consultados hacen referencia sistemáticamente a separación de soluciones sólidas controladas por cambios de temperatura y a trayectorias tiempo-temperatura-transformación (T-TT) (e.g., Buseck et al., 1980; Ghose, 1981; Saxena, 1983), por lo que es de presumir que el efecto de cambios de presión. Sin embargo, una rápida descomposición, que ha generado el estado de descomposición incompleta en el que se encuentran estas moscovitas, puede favorecer la descomposición espinodal si se tiene en cuenta que la solubilidad del componente trioctádrico está fuertemente controlada por la presión (e.g., Massonne y Schreyer, 1986, 1987).
5.6.2.5. Descomposición de la moscovita del dique de microgranito T494

Las texturas de las moscovitas del dique de microgranito T494 son interesantes ya que parecen ser el resultado de dos procesos o mecanismos cinéticos superpuestos (Capítulo 4.4.4.5). Uno de estos procesos da lugar a los intercrecimientos estructuralmente controlados de biotita y produce las transiciones composicionales graduales entre las áreas relictas de moscovita de alto Ti y las áreas descompuestas. Estos cambios composicionales están dominados por la descomposición del componente trioctaédrico (y de Ti) y puede considerarse como el resultado de la exfoliación de biotita como se ha indicado más arriba. El otro proceso está relacionado con la formación de las placas sobrecrecidas de biotita y de las áreas amplias de moscovita descompuesta empobrecida en TiFe₂Mg. Los cambios composicionales entre las áreas relictas ricas en Ti (0,23 átomos por fórmula) y las áreas descompuestas de moscovita son abruptos, y están controlados por la inestabilidad del Ti (sustituciones Ti-Alvacante, Ti-Fe-espinela y Ti-Mg-espinela).

Las transiciones composicionales graduales, paralelas a los planos [001], pueden conceptualizarse mediante modelos difusionales basados en la segunda ley de Fick:

\[
\frac{dC_i}{dt} = D_i \left(\frac{d^2C_i}{dx^2} \right)
\]

(5.220)

donde \(C_i\) es la concentración del componente \(i\), \(t\) es el tiempo en segundos, \(x\) es la profundidad de penetración del componente difundido en cm, y \(D_i\) que se asume constante, es el coeficiente de difusión para el componente \(i\) en \(cm^2 \cdot s^{-1}\), ya que esta ecuación predice la formación de un gradiente composicional cuya pendiente es función de \(D_i\) y del tiempo. Por el contrario, las transiciones degradacionales abruptas, paralelas y perpendiculares a [001], no pueden conceptualizarse por un modelo difusional basado en la segunda ley de Fick ya que, en el límite, estos perfiles presentan una pendiente infinita en la transición, lo que implicaría tiempos de reacción y/o coeficientes de difusión (para Ti, Fe y Mg) infinitesimales, que no son posibles ya que las áreas empobrecidas que han reaccionado son amplias, del orden de varios decenas de micras. No obstante, el proceso de difusión responsable de los perfiles graduales ha modificado estos perfiles abruptos, sobre todo paralelamente a las capas (001).

En el caso de los perfiles elementales graduales, la difusión volumétrica paralelamente a [001] ha sido el factor que ha controlado el progreso de la reacción de descomposición de moscovita. Las mayores profundidades de penetración que afectan al Al, Fe y Mg respecto del Ti (Figura 4.4.18b y c, sección derecha de los perfiles) puede explicarse por diferencias en los coeficientes de difusión de estos elementos. Estos coeficientes no han sido determinados experimentalmente en las mismas. En fases refractarias como olivino, granate y espinela se han determinado un amplio rango de valores de D (entre \(10^{-10}\) y \(10^{-15}\) \(cm^2 \cdot s^{-1}\)) a altas temperaturas (ca. 1000 °C) (Henderson, 1986); valores más bajos (\(<10^{-18} \ cm^2 \cdot s^{-1}\)) son más apropiados para los coeficientes de difusión de Fe y Mg en granates bajo condiciones propias de grado medio y alto (Loomis, 1978b; Spear, 1991; Florence y Spear, 1991). Los coeficientes de difusión de estos elementos en la biotita han sido considerados infinitos relativamente a los del granate, esto es, de varios órdenes de magnitud mayores (Spear, 1991). Por lo tanto, puede considerarse bajo una aproximación que los valores de D para el Fe y Mg en la moscovita oscilan entre \(10^{12} - 10^{16} \ cm^2 \cdot s^{-1}\), sobre todo si se tiene en cuenta que la difusión se modeliza paralelamente a los planos [001] (cf. Fortier y Giletti, 1991). Por otra parte, la carga mayor del Ti hace que este elemento presente una energía positional (site energy) mayor que Fe y Mg (considerando que
ocupan la misma posición estructural) (cf. Dowty, 1980). No existen estimaciones de las energías posicionales para el Ti, Fe y Mg en moscovita, pero sus energías electrostáticas respectivas en coordinación octaedrica en otras fases (-184 eV y -166 eV para el Ti en perovskita e ilmenita, respectivamente, y 50.7 eV para el Fe en annita y -55.7 eV para el Mg en flogopita, Smyth y Bischof, 1988) indican un coeficiente de difusión menor para el Ti.

Las soluciones de la segunda ley de Fick para los perfiles graduales de Ti y Mg paralelos a los planos (001) mostrados en la Figura 4.4.18c (sección derecha de los perfiles) se han obtenido mediante técnicas de diferencias finitas para una geometría unidireccional en un medio isotrópico (i.e., la difusión tiene lugar en una sola dirección normal a un plano infinito de isoconcentración, Crank, 1985). Estas modelizaciones (Figura 5.6.5) resultan en valores de D_{Ti} de 4.32×10^{-6} cm2/s para el perfil de Ti y de 3.46×10^{-5} cm2/s para el perfil de Mg (no mostrado), que indican que, si ambos perfiles se generaron durante el mismo periodo de tiempo, el coeficiente de difusión del Ti es un orden de magnitud menor que el del Mg en la moscovita, en consistencia con las inferencias anteriores. Por lo tanto, pueden asumirse unos valores extremos de D_{Ti} de 10^{-13} y 10^{-17} cm2/s$^{-1}$, aunque debe tenerse en cuenta que no se han considerado las interacciones interelementales propias de soluciones multicomponentes (D_{ij}) en el modelo (ver Lasaga, 1979 para una exposición al respecto). Cuando estos valores de D_{Ti} son aplicados, los periodos de tiempo necesarios para generar el perfil gradual de Ti mostrado en la Figura 5.5.14 es de 1.36 y 13699 años, respectivamente. Para el perfil modelo generado para el Mg, solucionado para valores de D_{Mg} de 10^{-12} y 10^{-16} cm2/s$^{-1}$, los periodos de tiempos resultantes son de 1.1 y 10972 años, respectivamente.

![Figura 5.6.5. Perfiles de Ti (líneas de puntos) controlados por procesos de difusión y modelizados mediante la segunda ley de Fick, mediante métodos de diferencias finitas. Para la sección derecha del perfil, las condiciones iniciales ($t = 0$, líneas continuas) son: moscovita de alto Ti ($Ti = 0.23$ átomos/fluorese) en contacto con biotita ($Ti = 0.33$ átomos/fluorese), y las condiciones limite son la existencia de una moscovita de bajo Ti ($Ti = 0.05$ átomos/fluorese) con un reservorio infinito (biotita) de composición constante en Ti. Para la sección izquierda del perfil las condiciones iniciales ($t = 0$, líneas continuas) son: moscovita de alto Ti ($Ti = 0.23$ átomos/fluorese) en contacto con una moscovita de bajo Ti ($Ti = 0.05$ átomos/fluorese), y las condiciones limite están en el infinito. Los valores D_{Ti} son en cm2/s.](image)

Teniendo en cuenta que los valores de D_{Ti} calculados aplican a la difusión paralela a (001) y que la temperatura del proceso ha debido tener lugar entre 600 y 650 ºC, las estimaciones de tiempo obtenidas pueden considerarse razonables, lo que sugiere que el proceso de difusión ocurrió en un periodo de tiempo...
muy pequeño (a la escala geológica). De hecho, períodos de tiempo más pequeños aún que los calculados más arriba se resuelven mediante la segunda ley de Fick para la transición abrupta en Ti de ca. 30 μm localizada en la sección izquierda del perfil de la Figura 4.4.18c (Figura 5.6.5), y que se considera como una transición abrupta modificada por difusión ulterior. Estos datos indican que debió ocurrir un sobreensfriamiento a alta temperatura mientras se generaban los perfiles graduales por difusión, ya que de otra manera los perfiles graduales serían más amplios. Este rápido enfriamiento debe corresponder a las condiciones de baja P de la trayectoria P-T seguida por las rocas estudiadas, ya que el microgranito T494 se localiza en una fractura que corta la foliación monolítica de los gneises, y esta foliación se desarrolló durante la descompresión como se ha deducido del estudio microscópico del proceso de descomposición fengítica de las moscovitas de los gneises con Mus+Br+Grt. Por lo tanto, las texturas de las moscovitas del microgranito son consistentes con las altas tasas de enfriamiento deducidas de las dataciones radiométricas en el complejo gneisico de Tostox presentadas más arriba, que caracterizan la sección de baja P de la trayectoria P-T seguida.

La generación de las texturas reaccionales en estas moscovitas del microgranito puede ser el resultado de la descompresión, en cuyo caso el rápido sobreensfriamiento tuvo que ocurrir inmediatamente después de la misma para permitir la preservación de los gradientes composicionales tan fuertes en Ti, Fe, Mg, y Al en la moscovita. Esto es consistente con el hecho de que la generación de perfiles difusionales, que es posterior a la formación de las transiciones abruptas, está relacionada con la exfoliación trioctaedrica y, en menor medida, con la descomposición del componente leucofilo, que son posibles por descensos de presión y no procederían por descensos de temperatura (Monier y Robey, 1986; Massonne y Schreyer, 1987). No obstante, la mayor solubilidad del Ti en la moscovita al aumentar T y/o descender P (ver referencias en el apartado Sustituciones de Ti del Capítulo 4.4.3.2) podría sugerir que la formación de estas texturas resulta del sobreensfriamiento a baja P. En cualquiera de los casos, los fuertes gradientes en Ti y otros componentes generados en las transiciones abruptas deben considerarse como el resultado de un fuerte sobreensfriamiento de la superficie de reacción apropiada. Hasta la fecha, estos gradientes son los más fuertes descritos para el Ti en esta fase, tanto en la amplitud de los incrementos de concentración como en el limitado espacio en el que tienen lugar, lo cual indica las particulares condiciones geológicas que se dieron en este área.

5.6.2.6. PROCESOS REACCIONALES EN LAS METAPELITAS GRAFITOSAS

La discusión presentada en el Capítulo 5.4 ha permitido establecer relaciones entre las predicciones de los sistemas modelo durante una descompresión, y las asociaciones, composiciones de las fases, secuencia reaccional y texturas reaccionales observadas en las muestras de metapelitas estudiadas. A continuación se presentan a modo de conclusiones los aspectos más relevantes que conciernen esencialmente al estado de desequilibrio que caracteriza las rocas estudiadas. Aunque en este trabajo no se ha hecho un estudio textural de detalle que permita modelizar la naturaleza de los mecanismos cinéticos responsables de la generación de las distintas texturas encontradas, todas las evidencias permiten inferir una tasa de descompresión (y deformación) elevada desde las condiciones de P intermedia (>8-10 kbar). Se sugiere, además, que la disponibilidad de Al a la escala de los puntos de reacción (i.e., disolución y nucleación) debe ser un factor importante en el desarrollo de las texturas y progreso de las reacciones.
Relaciones de Reacción entre Granate y Estaurolita

La evolución metamórfica de las metapelitas estudiadas puede consteñirse con cierta seguridad durante la sección descompresional de las trayectorias P-T. A lo largo de esta sección, la intersección de las distintas superficies P-T-X ha estado marcada por la rotación de las tielines hacia composiciones ricas en Fe, particularmente en la biotita, cuya composición debe considerarse en desequilibrio con las fases representativas de las condiciones de P intermedia, i.e., granate y estaurolita, al menos en los gneises pelíticos. La inversión de la partición Mg-Fe entre granate y estaurolita también puede explicarse por ausencia de equilibrio entre ambas fases, desarrollado durante estados iniciales de la descompresión. Las diferencias en el grado de reequilibramiento entre las metapelitas gráfitosas de grado mayor y menor son fácilmente interpretables si durante la descompresión la estructura térmica de la secuencia se mantuvo, esto es, si no se produjo un descenso importante de la temperatura desde las condiciones de blastesis de granate a P intermedia hasta las condiciones de blastesis de andalucita a baja P. Estas y otras evidencias implican que la velocidad de descompresión debió ser relativamente elevada desde un primer momento, y que los cambios de T fueron débiles hasta unos 2-3 kbar.

Por otra parte, parece claro que el crecimiento de parte de la estaurolita de estas rocas ha sido el resultado de la descomposición de granate (una vez que éste último completara su crecimiento progrado) durante la descomposición bajo condiciones de temperatura superiores a la estabilidad de clorita y/o cloritoide en rocas ricas en Fe. No se infiere que toda la estaurolita de los esquistos con Sr+Br+Grt+And (y esquistos con fibrolita) proceda de descomposición en desequilibrio de granate durante la descomposición, ya que en estas rocas la inversión de la partición Mg-Fe entre estaurolita y granate pudo no llegar a desarrollarse en algunas muestras (i.e., T447 y T448, Figura 5.4.1). En estas rocas parte de la estaurolita puede haber procedido de la descomposición de cloritoide y/o clorita bajo condiciones progradas (e.g. Ctd = Grt+Br+Sr, Grt+Chi = Br+Sr), lo que puede explicar las variables relaciones de blastesis de deformación de la estaurolita en los esquistos gráfitosos (i.e., pre, sin, y tardícinemática respecto de D2, Capítulo 3.13). Sin embargo, es posible que toda la estaurolita de los gneises pelíticos proceda de descomposición en desequilibrio de granate durante la descomposición, una vez que esta última fase completó su crecimiento progrado, como lo indican las texturas reaccionales y las inversiones sistemáticas de la partición Mg-Fe entre granate y estaurolita. Esto supone además que la estaurolita creció por una reacción de rehidratación bajo condiciones de grado relativamente elevadas, dado que los granates de estas muestras presentan razones Mg/Fe elevadas y valores de Xps muy bajos en los bordes de los porfídoblastos y en los núcleos de los granos del grupo II. Reacciones de rehidratación (retrogradadas por ΔT) han sido implicadas en algunos otros casos para justificar texturas reaccionales entre granate y estaurolita en metapelitas de grado medio-alto (e.g., Delor et al., 1984). La disponibilidad de H2O es por lo tanto necesaria, aunque puede haber condicionado el mayor o menor progreso de la reacción. En el caso de los gneises pelíticos, puede inferirse que el H2O se infiltró desde los gneises leucocristos (sobre todo si se tiene en cuenta que durante la descompresión se produjo la cristalización de los segregados aplíticos), por lo que puede explicarse la abundancia de estaurolita en estas rocas toda vez que las mismas habrían intersectado las condiciones de inestabilidad de Ms+Qtz+Sí durante el metamorfismo progrado de P intermedia. En el caso de los esquistos gráfitosos, es probable que la fuente de H2O sea interna, lo que ha debido condicionar el menor crecimiento de estaurolita durante la descompresión. Esta inferencia contrasta con las consideraciones de A. B. Thompson (1983) al respecto de la presencia esporádica de un fluido durante el metamorfismo progrado, coincidente con episodios de
dezidratación. El crecimiento de esaurolita durante la descompresión puede aplicar a otras unidades alpujarraides donde esta fase existe en rocas de grado alto incluyendo migmatitas (e.g., unidad de Adra, Cuevas, 1988; unidad de Casares-Los Reales, Loomis, 1972a; Torres-Roldán, 1981; Tubía, 1983). Si se formula esta sugerencia (por ejemplo, observando inversiones en la partición Mg-Fe entre esaurolita y granate), puede exclusionar cualquier interpretación "progresiva" de la presencia de esaurolita en estas rocas de grado alto, y puede explicarse la contradicción interpretación de Loomis (1972a) al respecto del aparente aumento modal de esaurolita en sentido progresivo en los esquistos de grado medio de la unidad de Casares - Los Reales y las relaciones de reacción entre la esaurolita y los silicatos de Al (ver Capítulo 1.2.2).

Respecto de los granates del grupo II, la presencia de zonaciones inversas en Mg/Fe y Mn puede explicarse por la tendencia al realjarse composicional de estos granates durante la descompresión, sin que sea necesario implicar un descenso de temperatura. Este realjase es consistente con el desarrollo de texturas en orto y su reemplazamiento por esaurolita (y plagioclase) mediante la reacción multicomponente equivalente a la reacción [Als] en el sistema KFMASH durante la descompresión. Sin embargo, es necesario implicar distintos estadios de nucleación y crecimiento previos a la modificación diferencial de la zonación para explicar la gran heterogeneidad composicional entre los distintos tipos y dentro de un mismo tipo textural: de estos granates de grano muy fino cuyo radio no suele superar 100 µm. Puesto que el volumen de grano asociado a estos granos es escaso, la heterogeneidad composicional en muestras individuales no puede sino justificarse por estadios de nucleación distintos. Esto es evidente si la zonación en Ca de estos granates refleja la zonación original no modificada sustancialmente por procesos de difusión, en cuyo caso estas zonaciones en Ca (y el resto de los componentes) sugieren cambios muy fuertes y rápidos en el espacio P-T dominados por incrementos de P de signo contrario (+ΔP cuando +ΔXgrs hacia el borde, y -ΔP cuando -ΔXgrs hacia el borde) dado el tamaño de grano tan pequeño que presentan estos granos. Si la zonación en Ca está afectada por los procesos de difusión, la inversión de la zonación debe corresponder a estadios distintos, ya que se observan zonaciones normales en Ca (i.e., descensos hacia el borde), patrones planos en Ca y zonaciones inversas en Ca en granos donde la zonación en Mg/Fe y Mn es inversa. En este trabajo se favorece la primera hipótesis, aunque, en cualquier caso, estos granates confirman una complicada evolución anterior a la descompresión final, que debe implicar la intersección de las reacciones de descomposición de esaurolita.

Zonación Mineral

De la discusión anterior debe concluirse que el modelo de Loomis (1972a, c) al respecto de la evolución metamórfica de la unidad de Casares-Los Reales (correlacional con la unidad de Torrox) es insatisfactorio. Loomis (1972a) consideró la serie metamórfica de Los Reales bajo un gradiente de And → Sil, explicando la presencia de distensa en el interior de la aureola como el resultado del dragado del caparazón de greises de alto grado durante el ascenso diapírico de las penicrilitas de Ronda. Loomis (1972c) pretendió expandir esta interpretación a otras aureolas de contacto donde aparece distensa, lo cual supuso la crítica de Atherton et al. (1975). Además, las descripciones anteriores y la evolución de las asociaciones propuestas indican que la elección de las asociaciones diagnóstico para una zonalidad metamórfica no puede hacerse en función de la fibrolita ya que todas las rocas estudiadas parecen haber equilibrado a >8-10 kbar en una secuencia metamórfica progresiva bajo condiciones de estabilidad de la distensa, en consistencia con las conclusiones de Torres-Roldán (1981). La blastesis de fibrolita representa un estado intermedio que no implica necesariamente condiciones de mayor temperatura que la blastesis de distensa ni de andalucita.
Queda claro además, de todas las descripciones anteriores, que la actividad tectónica D₁-D₂ está relacionada
con la desestabilización progresiva de asociaciones de P intermedia, y que los cambios en las variables
intensivas debieron ser rápidos para permitir la coexistencia de fases reaccionantes y producto, facilitando el
progreso irreversible de algunas reacciones. Esta inferencia es aún más evidente si se tiene en cuenta el efecto
catalizador que tiene la deformación en el progreso de las reacciones metamórficas por sí misma y por su
control sobre la porosidad y permeabilidad de las rocas (e.g., Vernon, 1976; Walter y Wood, 1984; Brodie y
Rutter, 1985; Bell et al., 1986; A. B. Thompson, 1988b).
Las relaciones texturales de distena, fibrolita y andalucita en muestras individuales indican que la
secuencia temporal de blastesis fue distena → fibrolita → andalucita (excluyendo las agujas tardías de
fibrolita, Capítulo 3.1.A). Por constricciones de energía de superficie, el campo de estabilidad de la fibrolita
se localiza a mayor temperatura que el de la silimanita (ver Kerrick, 1990). Por lo tanto, existe evidencia
suficiente para considerar que la fibrolita crece metaestablemente en los campos de estabilidad de distena,
silimanita y andalucita, dado que la fibrolita precede a la silimanita en secuencias progradadas. Sin embargo la
fibrolita es bastante más común que la silimanita en las metapelitas. En el presente caso es posible que gran
parte de las matas de fibrolita sintectónicas se hayan producido dentro del campo de estabilidad de
silimanita, toda vez que las asociaciones de fases y sus composiciones sugieren que estas rocas siguieron
condiciones de temperatura superiores al punto triple de los sílficatos de A1 (i.e., > 501 °C, Holdaway, 1971)
durante su equilibrio bajo condiciones de estabilidad de distena, particularmente en los gneisens
pélitos, y durante la descompresión no parecen haberse producido descensos fuertes de temperatura.
La operatividad de las reacciones [Als] y [Grt] durante la descompresión en los esquistos con
St+Bt+Grt+Fib+An+(±Ky) permite explicar el hecho de que la abundancia modal de andalucita esté
relacionada inverosímilmente con la abundancia de fibrolita (Capítulo 3.1.4). En rocas donde la fibrolita es
abundante, y la moscovita, estaurolita y granate son escasos o llegan a faltar, la andalucita es también escasa
o incluso no existe. Esto es, en rocas donde las reacciones previas de producción de fibrolita (i.e., [Grt]) han
progresado más, el crecimiento de andalucita es limitado por falta de masa reactiva. Esto es evidente en los
casos donde la moscovita ha sido casi totalmente consumida durante la blastesis de fibrolita (ver Yardley
et al., 1980, para un caso similar bajo condiciones progradadas). Esta explicación pone de manifiesto que las
reacciones de reemplazamiento de estaurolita y granate por andalucita debieron progresar irreversiblemente,
dado que estas mismas reacciones deberían haberse completado durante el crecimiento de fibrolita (si se
considera que esta fase creció en el campo de estabilidad de la silimanita). A esta misma conclusión puede
llegarse de la mera observación de las texturas de reemplazamiento que involucran andalucita, dadas las
fuerzas variaciones en el grado de pseudomorfosis apreciadas a la escala de la lámina delgada e incluso
microdominios. Al respecto del significado de estas variaciones en el grado de pseudomorfismo, Lang y
Dunn (1990) observaron texturas similares de reemplazamiento St → And en metapelitas sometidas a un
proceso de calentamiento isobárico a baja P. Estos autores indicaron que "Smaller staurolite inclusions [en
porfídoblastos de andalucita] that are optically continuous with the large staurolite ... clearly indicates that
andalucite partially replaced staurolite in this sample, perhaps as the result of a continuous reaction [Grt]. The
presence of unreacted staurolite grains in contact with the matrix in these samples suggests that staurolite might have maintained
equilibrium with andalucite and with the matrix minerals" (op. cit., p. 210). En este trabajo estas mismas texturas
se consideran indicativas de que el proceso reacional ha tenido lugar alejado de la superficie de reacción
apropiada, al menos en los esquistos con fibrolita y gneisens pélitos. La andalucita y estaurolita pudieron
cocexistir "en equilibrio" en un periodo muy limitado durante la descompresión, que quizás fuese algo mas

425
extenso en los esquistos sin fibrolita, pasando a ser fases incompatibles durante la blastesis principal de andalucita en todos los tipos de rocas.

Evolución Metamórfica del Complejo Cretácico de Torrox y Serres Adjacentes

Mecanismos Reaccionales

En detalle, los mecanismos reaccionales asociados a las reacciones de descomposición de estaurolita y granate y generación de fibrolita y andalucita han debido ser complejos, implicando movilidad iónica de unos puntos reaccionales a otros (e.g., Kwak, 1974; Yardley, 1977a; Rubenach y Bell, 1988; C. T. Foster, 1977, 1981, 1982, 1983, 1986). El hecho de que los pseudomorfos se desarrollen preferentemente sobre fases aluminicas, estaurolita y moscovita, y sólo en contadas ocasiones sobre granate sugiere que la disponibilidad de Al a la escala de los puntos de reacción (i.e., disolución y nucleación) debe ser un factor importante en el desarrollo de las texturas y progreso de las reacciones. No obstante, el hecho de que la biotita pueda disolverse en algunos puntos para generar andalucita, siendo claramente una fase producto de las reacciones macroscópicas, sugiere que haya podido actuar de catalizador. Sobre la posible naturaleza reactante de la biotita, debe indicarse que las placas mayores de biotita no muestran inclusiones orientadas de fibrolita que mimetizan la simetría pseudohexagonal de la biotita, como los casos descritos por Chinner (1961) y otros autores (e.g., Yardley, 1977a; Kerrick, 1987; Kerrick y Woodworth, 1989) y que pueden ser interpretados como el resultado de reemplazamiento de biotita por fibrolita (fibrolitización de biotita) vía reacciones iónicas de "lavado" de cationes (i.e., base-leaching) (e.g., Vernon, 1979; Vernon et al., 1989; Kerrick, 1987). Tampoco se observa un descenso en la intensidad del pleocroismo rojizo de la biotita intercercada, como sería el caso de una descomposición de biotita a fibrolita + ilmenita. Más aún, las placas de biotita decusadas de los gneises pelíticos cordieríticos no presentan inclusiones de fibrolita. En consecuencia los intercrecimientos de biotita con fibrolita + ilmenita parecen ser el resultado de un crecimiento simultáneo de estas fases previo al crecimiento de andalucita, aunque procesos iónicos de reemplazamiento de biotita a otras fases por fibrolita, posiblemente bajo condiciones propias de la estabilidad de andalucita, pueden explicar algunas texturas (e.g., las madejas de fibrolita de tipo disarmonico en la terminología de Vernon y Flood, 1977). Esta interpretación es consistente con conclusiones análogas de Torres-Roldán (1981) y contrasta con la sugerencia de Loomis (1972a) de que la fibrolita pseudomorfiza a la biotita en la unidad de Casares-Los Reales.

La localización preferente de las marcas de fibrolita en los dominios lepidoblasticos puede deberse a una combinación de (1) su carácter sin tectónico y (2) el efecto de la disponibilidad de Al (i.e., localización de la fase reactante moscovita). En los dominios lepidoblasticos, donde es concebible una mayor intensidad del esfuerzo por cisalla, la fibrolita acababa la deformación por deslizamientos intercrystalinos, mientras que el resto de las fases (i.e., moscovita) lo hace por deformación intracristalina que favorecería su disolución (e.g., Vernon, 1987; Wintsch y Andrews, 1988; Rubenach y Bell, 1988; Stübchi, 1989). Es también probable que la biotita deformada de estos dominios se disolviese parcialmente. Sin embargo, dado que la fibrolita (+Bi+Tl) crece por descomposición de St(Gr)+Ms, su localización en dominios lepidoblasticos puede estar controlada al mismo tiempo por la disponibilidad del Al de la moscovita. Esta conclusión es consistente con el hecho de que los pseudomorfosis de andalucita también se localizan preferentemente en los dominios lepidoblasticos ricos en moscovita cuando no pseudomorfizan directamente a estaurolita. Ambos efectos (i.e., control deformacional y control de difusión) pueden haber jugado un papel en la formación de las texturas observadas.
Por otra parte, la textura de reemplazamiento directo Ky → And observada en algunos gneises pelíticos con Sr+Br+Grt+Ky+Fib+And es particularmente notoria dado que no existen muchos casos naturales descritos (e.g., Hollister, 1969b; Grambling, 1981; Grambling and Williams, 1985; Kerrick, 1988). Como se indicó en el Capítulo 3.1.1.3, en la mayor parte de los casos observados el grado de inversión es total, aunque localmente algunos prismas de diestena están reemplazados sólo parcialmente. La andalucita producto de inversión forma aparentemente un solo cristal sobre el antiguo cristal de diestena, aunque presenta extinción anómala ondulante en subdominios palmoados. Esta característica evidencia el estado tensoal de la andalucita invertida, que no parece ser el resultado de la deformación sufrida por la roca, sino más bien el efecto del fuerte incremento de volumen asociado a la reacción de inversión (ΔV=1,298)Ky →And = 0.735 J-bar⁻¹-mol⁻¹ = 7.35 cc-mol⁻², según los datos de Berman, 1988) ya que los porfídoblastos de andalucita de las mismas rocas producto de descomposición de estaurolita y granate no presentan esta extinción ondulante. Las dificultades de acomodación de la nueva estructura ortorrómbica menos densa en el volumen inicial de la estructura trielínica parece ser la responsable de la generación de estructuras defectuosas y subgranos. Las texturas observadas no parecen indicar que el estado deformado de la diestena haya favorecido la inversión polimórfica, ya que no hay una correlación estricta entre la deformación interna cóncica observable de los cristales y la extensión de la inversión. De hecho, se observan cristales muy deformados sin indicios de inversión, mientras que otros prismas más pequeños están totalmente invertidos. Una situación similar a esta ha sido descrita por Kerrick (1988) en venas de segregación hidrotermal de los Alpes, aunque Grambling (1981) sugirió que el estado deformado de la diestena en los esquistos de Truchas Peaks (Nuevo México) favoreció la transformación a andalucita.

Dado que los gneises pelíticos han sufrido una descomposición desde el campo de la diestena hasta el de la andalucita, progresando las reacciones de descomposición de estaurolita y granate bajo condiciones de temperatura superiores al punto triple de los silicatos de Al, estas rocas han debido intersectar el campo de la silimanita durante la descomposición. Por lo tanto, e independientemente de la curiosidad mineralógica que representa, el caso de inversión polimórfica Ky → And descrito en este trabajo es muy significativo ya que supone probablemente un caso de transformación irreversible. Existen dos posibles explicaciones para esta textura: (1) que la transformación se verifique al intersectar la extensión metastable del equilibrio Ky → And dentro del campo de la silimanita, o (2) que la reacción Ky → And ocurriera fuertemente desplazada del equilibrio en el campo de estabilidad de andalucita. En este trabajo se favorece esta segunda hipótesis, dada la inexistencia de casos naturales o experimentales que favorezcan la transformación metastable. Puesto que la temperatura sufrida por los gneises pelíticos ha debido superar los 600 ºC durante la descomposición, las barreras cinéticas para la transformación Ky → Sil implicarían problemas cinéticos en ΔP = 3-4 kbar de sobrepaso (según del diagrama de Holdaway, 1971), que posiblemente sean explicables por la alta velocidad de descomposición sufrida desde las condiciones de P intermedia a baja P. En cualquier caso esta textura se suma a los abundantes casos descritos en este trabajo de texturas reactivionales y composiciones de fases asociadas que sugieren procesos reaccionales irreversibles.

Un ejemplo adicional del progreso de reacciones metastables es el de blastesis de cordierita a partir de la descomposición de estaurolita y granate. Aunque el sistema modelo KFMASH permite la coexistencia de Sr+Br+Crd y Grt+Br+Crd en sistemas con moscovita y cuarzo, las discontinuidades univariantes que generan topologías apropiadas para coexistencia de estas fases no han sido detectadas en las rocas estudiadas dado que, entre otras razones, no se observa la incompatibilidad de And+Br en las rocas con cordierita. Además, si estas reacciones hubiesen sido intersectadas, las asociaciones con cordierita serían bastante más abundantes.
en estas metapelitas de grado medio. Esto sugiere que las reacciones de descomposición de estaurolita, granate y moscovita fengítica que generan cordierita son metaestables. Esto explica el hecho de que la cordierita (fresca o alterada) es una fase ocasional, ya que granate y estaurolita relícticos reaccionarían para dar cordierita sólo en los casos en que la rotación de las tielines hacia composiciones ricas en Fe durante la descompresión permitiera la coexistencia de Crd+Bt+And. De nuevo, la velocidad de descompresión debió ser elevada.

Las evidencias presentadas sugieren que ninguna de las rocas estudiadas sobrepasó el límite máximo de estabilidad de estaurolita (+Ms+Qtz) durante la descompresión bajo condiciones de baja P. La elevada velocidad de descompresión inferida de todas las texturas reaccionales descritas puede sugerir que, al menos las rocas de grado mayor podrían haber sobrepasado estas condiciones, sobre todo si se tienen en cuenta los desplazamientos en el espacio P-T de esta reacción debidos a los componentes extra y a la composición del fluido metamórfico coexistente con gráfico. En este caso, la ausencia de crecimiento de granate debe considerarse como una indicación de que la reacción St+Ms+Qtz = Gtt+Bt+AlS+H2O (o su equivalente multicomponente) fue fuerte y rápidamente sobrepasada, de manera que el sistema se localizaría instantáneamente en el campo difásico And+Bt a baja P debido a la rotación de las tielines. Aunque no existen evidencias para sostener esta especulación, tampoco puede excluirse dada la operatividad irreversible de otras reacciones estables y metaestables que explican las inversiones en la partición Mg:Fe entre estaurolita y granate, la inversión polimórfica directa Ky → And, y la blastesis de cordierita. Esta hipótesis puede completarse si la reacción St+Ms+Qtz = Gtt+Bt+AlS+H2O actuó también como tapon térmico a baja P, de la misma manera que la reacción de descomposición de Ms+Qtz en losgneises leucocratos. Los descensos de T implican desplazamientos hacia composiciones más ricas en Fe de las fases que intervienen en la reacción terminal de estaurolita, lo que supondría que si esta reacción se sobrepasa, la composición del sistema puede localizarse rápidamente en el campo estáble de And+Bt, y el granate no llegaría a formarse. El rápido enfriamiento ocurrido a baja P es consistente con esta interpretación.
Conclusiones

Los resultados obtenidos en el presente trabajo permiten establecer una parte importante de la evolución metamórfica sufrida durante la orogenia alpina por las metapelitas grafitosas y leucogneises peraluminosas anatócticas de la unidad de Torrox, perteneciente al Dominio Alpujárride de la Zona Bética. Esta evolución ha consistido en dos estadios principales.

1) Un calentamiento casi isóbarico (+ΔT > 150 °C, -ΔP = 2 kbar), localizado en el campo de estabilidad de distena. Las temperaturas máximas y presiones asociadas que se alcanzaron durante esta etapa fueron de 550 °C y ca. 8 kbar en las rocas de menor grado (esquistos con St+Br+Grt+And), y 700 °C y > 10 kbar en los gneises leucocratos. Esto supone que la potencia de la serie metamórfica fue mayor de 10 km durante este estadio, en claro contraste con la potencia actual de la misma que no supera los 5 km (perpendicular a S2). El calentamiento casi isóbarico puede relacionarse con la evolución térmica de una sección cortical engrosada durante una etapa de colisión y de edad >25 Ma. Además de los cálculos barométricos, evidencias adicionales que indican incrementos de P significativos a lo largo de la secuencia son los incrementos en las cantidades de Si (componente leucofilita) en la moscovita de las metapelitas grafitosas, que aumenta desde 6.37% (esquistos con St+Br+Grt+And) hasta 6.56% (gneises pelíticos con St+Br+Grt+Kyt+Fib+And+Crd). Las elevadas presiones sufridas por los gneises leucocratos han condicionado que la moscovita fuera una fase estable durante el proceso de fusión parcial, y las elevadas concentraciones de leucofilita (Si,max = 6.66% átomos puf) de las moscovitas primarias (equilibriadas con un fundido) de estas rocas.

2) Una fuerte y rápida descompresión casi isoxerma (ΔT ca. 50 °C) desde las condiciones anteriores hasta presiones del orden de 2-3 kbar (ΔP = 6 kbar en los esquistos con St+Br+Grt+And, y -ΔP = 10 kbar en los gneises leucocratos), asociada al desarrollo de la foliación principal (S3), y que fue seguida de un rápido enfriamiento. La preservación de estadios de desequilibrio extremos en todos los tipos de rocas, generados durante la descompresión, indican que el rápido enfriamiento subsiguiente ocurrió inmediatamente después de la descompresión, sin mediar estadios tectónicos intermedios. La edad del inicio de la descompresión no ha sido determinada, aunque pudo corresponder con 25 Ma. (Monié et al., 1991a), y el rápido enfriamiento de la secuencia tuvo lugar desde 22 a 19 Ma. Estas cifras se traducen en tasas de exhumación de más de 10 km/Ma durante la trayectoria de descompresión casi isoxerma, que son consistentes con el fuerte sobrepaso de las superficies de reacción intersectadas deducido de las abundantes texturas de desequilibrio en todos los tipos de rocas. Las tasas de enfriamiento y exhumación calculadas para la sección de baja P de la trayectoria P-T seguida por las rocas son de 200-500 °C/Ma y 2.5-5 km/Ma, respectivamente. Estas velocidades de enfriamiento y descompresión pueden explicarse por un colapso extensional sin metamórfico durante D3.
que habría generado gradientes térmicos extremos (ca. 100 °C/km) hacia los 22 Ma, rápidamente relajados por el adelgazamiento y elevación de los materiales.

Los resultados obtenidos en este trabajo indican que entre el estado de calentamiento isobarico y la descompresión pudo mediar una compresión casi isotérmica (+ΔP > 2 kbar). Este estado, que se infiere de la zonación de los porfiroblastos de granate de los gneises pelíticos con Sbi+Bt+Grt+Ky+Fib+AndxKy, pudo estar relacionado con un evento tectónico compresivo (emplazamiento de las peridotitas de Ronda?, emplazamiento de los dominios Malágide, Alpujárride, y Nevado-Filábride?) que podría haber condicionado la inestabilidad tectónica de la cuña engrosada y a la subsiguiente colapso extensional. No obstante, más datos de otras unidades alpujárrides son necesarios para corroborar la existencia de este estado compresivo intermedio.

Las particulares condiciones geológicas sufridas por las rocas estudiadas han dado lugar a características de desequilibrio raras vez descritas, tales como las fuertes variaciones composicionales y peculiares texturas reaccionales que presentan las moscovitas, las fuertes variaciones composicionales de la biotita, la inversión en la partición Mg-Fe entre estaualomita y granate (que justifica el que la estaurolita haya crecido durante los estados iniciales de la descompresión por descomposición de granate), el reemplazamiento directo Ky → And en rocas que han superado el punto triple de los silicatos de Al, y el crecimiento de cordierita por reacciones metaestables de descomposición de estaurolita y granate. Las conclusiones relativas a los distintos aspectos texturales y composicionales de las fases implicadas en los procesos reaccionales relacionados con la descom presión de la secuencia metamórfica han sido ya expuestas en los respectivos apartados, y no serán repetidas de nuevo.
REFERENCIAS

Aravovich, L. Ya. and Podlesni, K. K. (1983) The coesite-
garnet-sillimanite-quartz equilibrium: experiments and
applications. In: S. K. Saxena (Ed.) "Kinetics and
Equilibrium in Mineral Reactions", Advances in Physical
Geochemistry, 3, 173-198. Springer-Verlag, New York.

Geothermobarometry of high-grade metamorphic:
simultaneously operating reactions. In J. S. Daly, R. A.
Cliff, and W. D. Yardley (Eds.) "Evolution of
Metamorphic Belts". Geological Society Special
Publication, 43, 45-61.

Ariz, A. A. (1978) Critical phenomena in the rheology of

Ashworth, J. R. (1975) Staurolite at anomalously high grade.
Contributions to Mineralogy and Petrology, 53, 281-291.

Ashworth, J. R. (1976) Petrogenesis of migmatic in the
Huntly-Portsoy area, north-east Scotland. Mineralogical
Magazine, 40, 661-682.

Ashworth, J. R. (1977) Petrogenesis of migmates in the
Huntly-Portsoy area, north-east Scotland. A Reply.

Ashworth, J. R. (1979a) Genesis of the Skagit Gneiss
migmates, Washington, and the distinction between
possible mechanisms of migmatization: Discussion.

Ashworth, J. R. (1979b) Comparative petrography of
deformed and undeformed migmates from the

Migmates. Blackie and Sons Ltd. Glasgow, 1-35.

Ashworth (Ed) Migmates. Blackie and Sons Ltd.
Glasgow, 180-203.

in pelites, central Menderes Massif, Turkey. 1. The
peristerite gap with coexisting kyanite. Journal of
Metamorphic Geology, 1, 207-218.

Atherton, M. D. (1968) The variation in garnet, biotite and
chlorite composition in medium grade pelitic rocks from
the Dalradian Scotland, with particular reference to
zoning in garnet. Contribution to Mineralogy and
Petrology, 18, 347-371.

Atherton, M. P. and Edmunds (1966) An electron-microprobe
study of some zoned garnets from metamorphic rocks.

Kyanite in some thermal aureoles. American Journal of
Science, 272, 432-443.

explicativas de la Hoja nº 1055 (Modro) del Mapa
Geológico de España, escala 1:50000 (serie Magna).
Instituto Geológico y Minero de España, Madrid.

Contributions to Mineralogy and Petrology, 101, 485-
495.

Bailey, S. W. (1984a) Classification and structures of the
micas in Mineralogical Society of America, Reviews in
Mineralogy, 13, 1-12.

Bailey, S. W. (1984b) Crystal chemistry of the true micas. In
Mineralogical Society of America, Reviews in
Mineralogy, 13, 13-60.

Bikker, H. E., De Jong, K., Helmers, H. y Biermann, C.
(1989) The geodynamic evolution of the Internal Zone
of the Betic Cordilleras (south-east Spain): a model based
on structural analysis and geothermobarometry. Journal
of Metamorphic Geology, 7, 359-381.

Despeñadero-Cañamaya y su relación estructural con la
Zona Bética y el Subbético-Interno (Cordilleras Béticas

Granada: relaciones estructurales con la Zona Bética y el
Subbético Interno. I Congreso Español de Geología, 3,
169-175.

Balanýa, J. C. (1986) La deformación tectónica en el
Complejo Malaguiñe (Cordilleras Béticas, Andalucía).
Malaeo Bol. Soc. Geol. Portugal, 2/3, 10.

en la parte norte del Arco de Gibraltar. Tesis Univ.
Granada, 210 p.

contracción y tensión implicadas en el contacto entre
los dominios de Alborán y Subbético en el Arco de

estructurales de las Fallas de Alborán de este y
del Arco de Gibraltar. Comptes Rendus de l
Académie des Sciences Paris, 304, 929-932.

los mapas Alpujárridas al W de Málaga (Béticas,
Andalucía). Geociencias, 9, 30-33.

Balanýa, J. C., Campos, J., Garcia-Dueñas, V., Orozco, M. y
plegues secundarios en los Mapas Alpujárridas entre
Ronda y Almería. Cordilleras Béticas. Geociencias, 2, 51-
53.

range of Mn-garnet in zoned granitic pegmatites.
Canadian Mineralogist, 21, 683-688.

Ferri-muscovite and celadonite substitutions in
muscovite from Fs3-rich low-grade para-metamorphic rocks
(Northern Apennines, Italy). Lithos, 20, 201-208.

Barber, J. F. y Yardley, W. D. (1983) Conditions of high
grade metamorphism in the Durnand of Connemara,
142, 87-96.

Bart, F., Bébich, J. y Ikenne, M. (1987) An example of
high-pressure low-temperature metamorphic rocks from
an island arc: the Pailons Series (Innermost Hellenides,

géochronologiques dans les zones internes des
Ordoviques débouchés au Sud-Ouest de la Sierra Nevada
(Espagne). Annales de la Société Géologique de
Belgique 92, 377-381.

Boule, J., Bourgeois, J., Chauve, P., Delga, M. D., Magne, J.,
Mathis, V., Payre, Y., Rivière, M. y Vera, J. A. (1972) Age
mésocène inférieur de la formation de la Víndola,
discordant sur les nappes internes bético (Province
de Malaga, Espagne). Comptes Rendus de l’Académie
des Sciences, Paris, 276, 1245-1248.

Bético, Espagne. Données géologiques pour un
Besançon 30, 445 p.

Bowen, N. L. (1940) Progressive metamorphism of silicious
limestone and dolomite. Journal of Geology, 48, 225-
274.

Bowers, T. S. y Helgeson, H. C. (1963) Calculation of the
thermodynamic and geochronological consequences of
monolithic mixing in the system H2O-CO2-NaCl on phase
relations in geological systems: Equation of state for
H2O-CO2-NaCl fluids at high pressures and
temperatures. Geochimica et Cosmochimica Acta, 47,
1247-1275.

American Journal of Science, 275, 1073-1088.

Brady, J. B. y Stout, J. H. (1980) Normalization of
thermodynamic properties and some complications for
graphical and analytical problems in Petrology,

Bray, A. J. (1986) An electron optical study of muscovite
breakdown in pelitic xenoliths during pyrometamorphism.

desquequilibrium breakdown of muscovite + quartz.

substitutions in biotite-M1 crystal chemistry. American
Mineralogist, 76, 1174-1183.

between deformation and metamorphism, with special
reference to the behavior of basic rocks. In: A.B.
Thompson, and D.C. Rubie (Eds) "Metamorphic
Reactions. Kinetics, Textures and Deformation".
Advances in Physical Petrochemistry, 4, 80-97, Springer-
Verlag, New York.

Geologische Rundschau, 17, 331-336.

Brown, E. H. (1968) The Sf content of natural phengites:
A discussion. Contributions to Mineralogy and
Petrology, 17, 78-81.

Brown, E. H. (1969) Some zoned garnets from the
greenschist facies. American Mineralogist, 54, 1662-1667.

producing biotite and other Al-F-re-Mg silicates in the

Mineralogical Magazine, 29, 929-932.

Bucher-Nurminen, K. (1987) A recalibration of the chloride-
sodium-silicate geobarometer. Contributions to
Mineralogy and Petrology, 96, 519-522.

Assessment of the several structures proposed for

tRío Verde und dem Campo de Gibraltar. Geol. Jb. 88,
371-420.

Thermodynamic properties of water to 1,000 °C and
10,000 bars. Geological Society of America, Special

compositions. American Mineralogist, 74, 826-839.

phenomena in pyroxenes. In Mineralogical Society of
America Reviews in Mineralogy, 7, 177-204.

Cahn, J. W. (1962) Coherent fluctuations and nucleation in

Cahn, J. W. (1968) Spinodal decomposition. Transactions of
the Metallurgical Society of AIME, 242, 166-180.

metamorphic reactions in quartz-bearing pelitic rocks.
Contributions to Mineralogy and Petrology, 20, 244-267.

Carmichael, D. M. (1978) Metamorphic barometers and
barograph: A measure of the depth of post-
metamorphic uplift and erosion on the regional scale.
American Journal of Science, 278, 769-797.

Chakrabarty S. y Ganguly, J. (1992) Cation diffusion in
aluminosilicate garnets: Experimental determination in
espressite-almandine diffusion couples, evaluation of
effective binary diffusion coefficients, and applications.
Contributions to Mineralogy and Petrology, 111, 74-86.

Chalouan, A. (1986) Les nappes gomariades (Rif
septentrional, Maroc). Un terrain variique dans les

Rif coastal range, Morocco: a variscan slip in the alpine
belt. Tectonics, 9, 1565-1583.

properties of muscovite-paragonite crystalline solutions
at high temperatures and pressures, and their geological

Chatterjee, N. D. y Froese, E. (1975) A thermodynamic
study of the pseudobinary join muscovite-paragonite in
the system KAlSi3O8-NaAlSi3O8-K2O-Al2O3-SiO2-H2O.
American Mineralogist, 60, 985-993.

and standard thermodynamic properties of synthetic
2M1-muscovite KAl3[AlSi3O10](OH)2. Contributions to
Mineralogy and Petrology, 48, 89-114.
Cheney, J. T. y Brady, J. B. (1952) Petrology of the high-

Chinner, G. A. (1946) The origin of sillimanite in Glen

Chinner, G. A. (1945) The kimberlite in Glen Clova,

Cricó, S. y Navrotsky, A. (1992) Substitution of Al in
phlogopite: High-temperature solution calorimetry, heat
capacities, and thermodynamic properties of the
phlogopite-exonite join. American Mineralogist, 77,
1191-1205.

Cricó, S., Navrotsky, A., Kirkpatrick, R. J. y Grahm, C.,
characterization, unit-cell variation, Al and Si mass-
spectrometry, and Al-Si distribution in the tetrahedral sheet. American Mineralogist, 75, 1485-1501.

garnet geothermometers: application to the English River

white micas: definition of paragenetic fields.
Schweizerische Mineralogische und Petrographische
Mitteilungen, 51, 259-302.

garnets: A review. Canadian Mineralogist, 19, 3-17.

Clemens, J. D. (1984) Water contents of silicic to
terrestrial magmas. Lithos, 17, 273-287.

Connolly, J. A. D. y Thompson, A. B. (1989) Fluid and
entrapment production during regional metamorphism. Contributions to Mineralogy and Petrology, 102, 147-166.

Coppenex, J. P. (1958) Observations géologiques sur les
Alpinisarides occidentales (Cordillères Bétiques, Espagne). Boletin Geologico y Minero, 70, 79-203.

Costinat, J. P. y Konoprost, J. (1977) Une interprétation
géodynamique de l'évolution polyphasique des
semblages des granulites dans les chaînes bético-
raifains et le Massif central français. Comptes Rendus

Crawford, M. L. (1946) Composition of pelitic gneisses and
associated minerals in some schists from Vermont,
U.S.A., and South Westland, New Zealand, with
ferrals of the peristerite slope. Contributions to
Mineralogy and Petrology, 1, 269-294.

Crawford, M. L. (1947) Calcium zoning in almandine: a
model based on plagioclase-equilibria. In W. S.
MacKenzie y J. Zussman (Eds) "The Felspars".
Manchester University Press, 629-644.

Crawford, M. L. (1977) Calcium zoning in almandine
garnet, Watsuhicon Formation, Philadelphia,
Pennsylvania. Canadian Mineralogist, 15, 243-249.

Thermodynamic properties of almandine-granates
solid solutions. Contributions to Mineralogy and
Petrology, 67, 397-404.

Crowley, M. S. y Ross, E. (1946) Crystalline solubility in the
muscovite and phlogopite groups. American Mineralogist, 49, 348-362.

Crowley, P. D. (1990) Metamorphism within the Coquile
synform: evidence for detachment faulting within the
metamorphic infrastructure of the Norwegian
Caledonides (67°-70°N). Journal of Metamorphic
Geology, 8, 615-628.

Cuevas, J. (1988) Microtextonika y metamorfismo de los
Mastos Alpinisaridas del Tercio Central de las
Costilleras Béticas (entre Motril y Adra). Tesis Univ.
Frias Vasco, 283 p.

intra la Apúrcel (Betic Cordillera, Spain).
Journal of Structural Geology, 12, 239-233.

Interpretation of the enclaves d'arcelles to the NE dans
las gneiss de Torrex (Complejo Alpinisarida,

Caracterización de las zonas de chapeo enzimaizadas
das nappe Alpinisaridas centrales (Cordilleras
Béticas, España). Comptes Rendus de l'Academie des
Sciences Paris, 302, 1177-1180.

Structure of the Alpinisaridas on the southern and
eastern border of the Sierra de Lujar. Estudios
Geológicos, 4, 209-216.

formation of chemical zoning in garnets. Contributions to
Mineralogy and Petrology, 79, 139-199.

Gaasbeek, G. K. y Wones, D. R. (1973) Oxidation during
magmatic differentiation, Finnmarka Complex, Oslo
Aren, Norway Part 2. The mafic silicates. Journal of
Petrology, 14, 349-380.

435

Dallmeyer, R. D. (1974b) The role of crystal structure in controlling the partitioning of Mg and Fe between coexisting garnet and biotite. American Mineralogist, 59, 201-203.

Gómez-Pugnaire, M. T. y Fernández-Soler, J. M. (1987) High-pressure metamorphism in metabasites from the Betic Cordilleras (SE Spain) and its evolution during the Alpine orogeny. Contributions to Mineralogy and Petrology, 95, 231-244.

Guidotti, C. V. (1973) Compositional variation of muscovite as a function of metamorphic grade and assemblages in metapelites from N.W. Maine. Contributions to Mineralogy and Petrology, 42, 31-42.

REFERENCES

Pattison, D. R. M. (1987) Variations in Mg/(Mg + Fo), Fe and (Fe,Mg)Si = 2Al in pelitic minerals in the Ballachulish thermal aureole, Scotland. American Mineralogist, 72, 255-272.

Rice, J. M. (1985) Experimental partitioning of Fe and Mg between coexisting staurolite and garnet. EOS Transactions of the American Geophysical Union, 66, 1127.

Rosenberg, P. H. (1987) Synthetic muscovite solid solutions in the system K2O·Al2O3·SiO2·H2O. American Mineralogist, 72, 716-723.

References

Storrb, B. (1972) Dry melting of muscovite + quartz in the range P = 7kb to P = 20kb. Contributions to Mineralogy and Petrology, 37, 87-89.

Thompson, A. B., Tracy, R. J., Lyttle, P. T., and Thompson, J. B. Jr. (1977b) Prograde reaction histories deduced from compositional zoning and mineral inclusions in garnet from the Gasset Unit, Vermont. American Journal of Science, 277, 1152-1167.

Wintsch, R. P. (1975) Solid-liquid equilibria in the system KAlSiO₃·3Na₂SiO₃·5Al₂SiO₅·2H₂O·HCl. Journal of Petrology, 16, 57–79.

