Seminario Geometría (Virtual) : Horizontal Delaunay surfaces with constant mean curvature in product spaces

Ponente: José Miguel Manzano (Universidad de Jaén)

  • Resumen: In this talk, we will describe the 1-parameter family of horizontal Delaunay surfaces in S2×R and H2×R with supercritical constant mean curvature. These surfaces are not equivariant but singly periodic, and they lie at bounded distance from a horizontal geodesic. We will show that horizontal unduloids are properly embedded surfaces in H2×R. We also describe the first non-trivial examples of embedded constant mean curvature tori in S2×R which are continuous deformations from a stack of tangent spheres to a horizontal invariant cylinder. They have constant mean curvature H>1/2. Finally, we prove that there are no properly immersed surface with critical or subcritical constant mean curvature at bounded distance from a horizontal geodesic in H2×R.
  • Fecha: 20 de Noviembre de 2020
  • Hora: 10:30 – 11:30
  • Lugar: Videoconferencia Sala TESLA de la UGR, Acceso Sala Virtual Tesla
    Contraseña de la reunión: 359753
  • Organiza: Instituto de Matemáticas IEMath-GR
  • Más información: