El Teorema de Mazur-Ulam

Miguel Martín

http://www.ugr.es/local/mmartins

V Escuela-Taller de Análisis Funcional ICMAT, Madrid, Marzo 2015

Esquema de la presentación

- Concepto de espacio normado
- Isomorfismos isométricos
- Problemas abiertos relacionados

Concepto de espacio normado

Sección 1

- Concepto de espacio normado
 - Estructuras en un espacio normado
 - Aplicaciones que conservan las estructuras
 - Relaciones entre las estructuras

Espacio normado

Definición de espacio normado (Banach, 1922

Un espacio normado es un conjunto X dotado de las siguientes operaciones:

- Suma: $X \times X \longrightarrow X$, $(x,y) \longmapsto x+y$ (asociativa, conmutativa, con elemento neutro 0 y con elemento opuesto -x)
- Producto por escalares: $\mathbb{K} \times X \longrightarrow X$, $(\lambda, x) \longmapsto \lambda x$ $(\mathbb{K} = \mathbb{R} \text{ o } \mathbb{K} = \mathbb{C})$ (asociativo, distributivo (2), con elemento neutro 1)
- Norma: $X \longrightarrow \mathbb{R}_0^+$, $x \longmapsto ||x||$, verificando:
 - $\bullet \|x\| = 0 \implies x = 0,$
 - $\bullet \|\lambda x\| = |\lambda| \|x\|,$
 - $||x + y|| \le ||x|| + ||y||$

Estructuras en un espacio normado. I

Un espacio normado X es. . .

Espacio vectorial (Peano, 1888)

Suma y producto por escalares

Espacio topológico (Hausdorff, 1914)

• Los entornos de un punto $x_0 \in X$ contienen a alguno de la forma

$$\{x \in X : ||x - x_0|| < \delta\} \qquad \left(\delta \in \mathbb{R}^+\right)$$

Espacio vectorial topológico (Kolmogorov, 1934; von Neumann, 1935)

- Suma y producto por escalares son continuos
- Basta conocer los entornos de cero (las traslaciones son homeomorfismos)

Estructuras en un espacio normado. Il

Un espacio normado X es. . .

Espacio métrico (Fréchet, 1906)

• Su estructura viene dada por la distancia $d: X \times X \longrightarrow \mathbb{R}^+_0$ definida por

$$d(x,y) = ||x - y|| \qquad (x, y \in X)$$

- $d(x,y) = 0 \iff x = y$
- $\bullet \ d(x,y) = d(y,x)$
- $d(x,y) \leqslant d(x,z) + d(z,y)$

Otros ejemplos de espacios métricos

- Cualquier subconjunto de un espacio normado (distancia heredada)
- El conjunto de los subconjuntos compactos de un espacio métrico con la distancia de Hausdorff
- Conjuntos de espacios normados con la distancia de Banach-Mazur
- El espacio $\mathcal{H}(\mathbb{C})$ de las funciones enteras (con la *convergencia uniforme sobre compactos*)

Miguel Martín (Granada)

Aplicaciones que conservan las estructuras

Espacio vectorial

- $T: X \longrightarrow Y$ biyección lineal $\Longrightarrow T^{-1}$ es lineal.
- ullet X e Y equivalentes como espacios vectoriales sii tienen bases de Hamel biyectivas

Espacio topológico

 $T: X \longrightarrow Y$ biyectiva y bicontinua $\implies T$ es homeomorfismo.

Espacio vectorial topológico

- $T: X \longrightarrow Y$ lineal, biyectiva y bicontinua (o biacotada) $\implies T$ es isomorfismo (de EVT).
- ullet Si X e Y son **completos**, T lineal, biyectiva y continua $\implies T$ es *isomorfismo*

Espacio métrico

 $T: X \longrightarrow Y \text{ biyectiva con } \|T(x) - T(y)\| = \|x - y\| \text{ para todo } x, y \in X \\ \Longrightarrow T \text{ isometría sobreyectiva}.$

Aplicaciones que conservan las estructuras

Espacio vectorial

- $T: X \longrightarrow Y$ biyección lineal $\implies T^{-1}$ es lineal.
- X e Y equivalentes como espacios vectoriales sii tienen bases de Hamel biyectivas

Espacio topológico

 $T: X \longrightarrow Y$ biyectiva y bicontinua $\implies T$ es homeomorfismo.

Todas las estructuras

La identificación total entre dos espacios normados es el isomorfismo isométrico:

$$T: X \longrightarrow Y$$
 lineal, biyectiva y que conserva la norma ($||T(x)|| = ||x|| \ \forall x \in X$)

$$\implies$$
 T y T^{-1} lineales, continuas e isometrías

Espacio métrico

 $T: X \longrightarrow Y$ bivectiva con ||T(x) - T(y)|| = ||x - y|| para todo $x, y \in X$ \implies T isometría sobrevectiva.

Relaciones entre las estructuras. I

¿Cómo es la relación entre las distintas estructuras?

¿Lineal implica topológica?

- En dimensión finita, toda aplicación lineal es continua.
- ullet En dimensión finita, X e Y isomorfos sii tienen la misma dimensión.
- En dimensión infinita, no hay buena relación:

Aplicaciones lineales discontinuas

- Si $\dim(X) = \infty$, existe $f: X \longrightarrow \mathbb{K}$ lineal y discontinua.
- Si $\dim(X) = \infty$, existe $T: X \longrightarrow X$ lineal, biyectiva y bi-discontinua.
- Por otro lado, siempre existe $T: X \longrightarrow Y$ lineal, continua (y no nula).

Observación: en todos estos resultados se necesita el Axioma de elección.

Relaciones entre las estructuras. II

¿Topológica implica lineal?

- ullet En dimensión finita, X e Y son homeomorfos sii tienen la misma dimensión.
- En dimensión infinita, no hay buena relación:

Si una taza es un donut, todo espacio de Banach es un espacio de Hilbert

- (Kadets, 1967): todos los espacios de Banach separables (de dimensión infinita) son homeomorfos.
- (Torunczyk, 1978): cualesquiera dos espacios de Banach (de dimensión infinita) con el mismo carácter de densidad son homeomorfos.
- Por tanto, cualquier espacio de Banach es homeomorfo a un espacio de Hilbert.

Relaciones entre las estructuras. III

¿Topológica y lineal implica métrica?

• Ni siquiera en dimensión finita la cosa va bien:

Todos los espacios de dimensión dos son isomorfos, pero hay distintas normas con distintas propiedades, que producen *espacios distintos*

¿Y al revés?

 $T: X \longrightarrow Y$ isometría sobreyectiva con T(0) = 0 (salvo una traslación):

- se conserva la topología y también se conserva la norma
- Teorema de Mazur-Ulam: T es \mathbb{R} -lineal
- ullet Por tanto, T es un isomorfismo isométrico real (identificación total como espacios reales)

Isomorfismos isométricos

Sección 2

- Isomorfismos isométricos
 - La discretización de las señales con energía finita
 - Distintas normas, distintas isometrías
 - El teorema de Banach-Stone
 - El Teorema de Mazur-Ulam
 - El caso complejo del Teorema de Mazur-Ulam

La discretización de las señales con energía finita

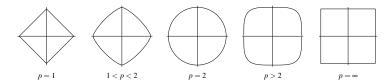
Probablemente, el ejemplo más antiguo de isomorfismo isométrico entre dos espacios de Banach (de dimensión infinita) es el siguiente:

Teorema (Riesz-Fischer – Parseval-Fatou)

Los espacios $L_2(\mathbb{T})$ y $\ell_2^{\mathbb{Z}}$ son isométricamente isomorfos.

- ullet De hecho, la identificación es de la forma $f \equiv \sum_{n \in \mathbb{Z}} c_n(f) \, \mathrm{e}^{int}$
 - (desarrollo en serie de Fourier)
- Permite "discretizar" las señales con energía finita y ver los operadores entre ellas como matrices infinitas
- Es el principio de la cuantización, explica los armónicos, da rigor a las series de Fourier...

Distintas normas, distintas isometrías



¿Cómo son las isometrías de estos espacios?

- ullet Salvo una traslación, son lineales, luego son matrices 2×2
- Son siempre rotaciones $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ o reflexiones $\begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$
- \bullet Si p=2, todos los valores de θ son válidos, obteniendo el grupo ortogonal
- Si $p \neq 2$, sólo unos pocos valores de θ son válidos $\theta = 0$, $\theta = \pi/2$, $\theta = \pi$ y $\theta = 3\pi/2$: 4 rotaciones y 4 reflexiones (grupo diédrico D_4)
- $(p \neq 2)$ También pueden verse como matrices de permutación generalizadas: matrices con exactamente una entrada no nula con valor 1 o -1 en cada fila y cada columna

El Teorema de Banach-Stone

Teorema (Banach-Stone)

 K_1 y K_2 espacios topológicos de Hausdorff compactos. Si $T:C(K_1)\longrightarrow C(K_2)$ es un isomorfismo isométrico, entonces existen $h\in C(K_2)$ con $|h(t)|=1\ \forall t\in K_2$ y $\varphi:K_2\longrightarrow K_1$ homeomorfismo tales que

$$[T(f)](t) = h(t) f(\varphi(t)) \qquad (t \in K_2, \ f \in C(K_1)).$$

En particular, K_1 y K_2 son homeomorfos.

Ideas de la demostración:

- ullet T isomorfismo isométrico \Longrightarrow T lleva puntos extremos de la bola unidad en puntos extremos de la bola unidad
- ullet T isomorfismo isométrico \Longrightarrow T^* es isomorfismo isométrico
- \bullet Los puntos extremos de $B_{C(K)}$ son las funciones que toman valores con módulo 1
 - Por tanto, h = T(1) toma valores con módulo 1.
- Los puntos extremos de $B_{C(K)^*}$ son rotaciones de evaluaciones, es decir, de la forma $f \longmapsto \omega \, f(t)$ con $|\omega| = 1$ y $t \in K$
 - Por tanto, T^* da una biyección entre K_1 y K_2 , que se demuestra que es continua (topología w^*)

El Teorema de Banach-Stone

Teorema (Banach-Stone)

 K_1 y K_2 espacios topológicos de Hausdorff compactos. Si $T:C(K_1)\longrightarrow C(K_2)$ es un isomorfismo isométrico, entonces existen $h\in C(K_2)$ con $|h(t)|=1\ \forall t\in K_2$ y $\varphi:K_2\longrightarrow K_1$ homeomorfismo tales que

$$[T(f)](t) = h(t) f(\varphi(t)) \qquad (t \in K_2, f \in C(K_1)).$$

En particular, K_1 y K_2 son homeomorfos.

Compárese este resultado con el siguiente...

Teorema (Mylutin)

Si K_1 y K_2 son espacios topológicos compactos de Hausdorff separables y no numerables, entonces $C(K_1)$ y $C(K_2)$ son isomorfos.

• En particular, C[0,1] es isomorfo a $C([0,1]\times[0,1])$

El Teorema de Mazur-Ulam

Teorema (Mazur-Ulam, 1932)

Toda isometría sobreyectiva entre espacios normados es una transformación afín

Transformación afín

 $T: X \longrightarrow Y$ es *afín* si

$$T(\lambda x + (1 - \lambda)y) = \lambda T(x) + (1 - \lambda)T(y)$$
 $(x, y \in X, \lambda \in [0, 1])$

o, equivalentemente, T-T(0) es \mathbb{R} -lineal.

El Teorema de Mazur-Ulam

Teorema (Mazur-Ulam, 1932)

Toda isometría sobreyectiva entre espacios normados es una transformación afín

Observaciones

X e Y espacios normados reales, $T:X\longrightarrow Y$ isometría biyectiva.

- ullet Es equivalente a ver que T es lineal (cambiando T por T-T(0))
- ullet Por ser continua, basta ver que T es aditiva: T(x+y)=T(x)+T(y)
- Estudiaremos una demostración de Bogdan Nica de 2012, totalmente elemental.
- No obstante, la demostración original es muy sencilla y produce otros resultados:

Teorema (Baker)

Si Y es estrictamente convexo, toda isometría de X en Y es afín.

Teorema (Mankiewicz)

Toda aplicación que lleve isométricamente un abierto conexo de X sobre un abierto de Y es la restricción de una isometría (afín) de X sobre Y.

El caso complejo del Teorema de Mazur-Ulam

Pregunta

 $X,\,Y$ espacios normados complejos, $T:X\longrightarrow Y$ isometría sobreyectiva ($\mathbb R$ -lineal). ¿Son X e Y $\mathbb C$ -isométricamente isomorfos o, al menos, $\mathbb C$ -isomorfos?

Respuestas negativas

X espacio normado complejo, definimos \overline{X} como X con el producto escalar $(\lambda,x)\longmapsto \overline{\lambda}\,x$ para $x\in X$ y $\lambda\in\mathbb{C}.$ X y \overline{X} son indistinguibles como espacios reales, pero pueden ser distintos como espacios complejos:

- Bourgain 1986: X y \overline{X} pueden no ser \mathbb{C} -isomorfos.
- Kalton 1995: Otro ejemplo explícito (una suma torcida de espacios de Hilbert).
- Ferenczi 2007: Existe un espacio X con únicamente dos posibles estructuras complejas (isométricas como espacios reales) que son totalmente incomparables (ningún subespacio de dimensión infinita de una estructura es \mathbb{C} -isomorfo a ningún subespacio de la otra).

Miguel Martín (Granada)

Problemas abiertos relacionados

Sección 3

- Problemas abiertos relacionados
 - El problema de Tingley
 - Espacios Lipschitz-equivalentes

El problema de Tingley

Problema (Tingley, 1986)

 $X,\ Y$ espacios normados, $S_X=\{x\in X: \|x\|=1\},\ S_Y=\{y\in Y: \|y\|=1\}.$ $T:S_X\longrightarrow S_Y \text{ isometr\'{a} biyectiva}$ ¿es T la restricción de una isometr\'{a (lineal) de X sobre Y?

Observaciones

- Está abierto incluso en dimensión 2.
- ullet Es equivalente a preguntar si la extensión homogénea de T dada por

$$\widetilde{T}(x) = \|x\| T\left(\frac{x}{\|x\|}\right) \quad \text{si } x \neq 0, \quad \widetilde{T}(0) = 0$$

es una isometría (lineal) de X sobre Y.

• Tingley probó que, en dimensión finita, se tiene

$$T(-x) = -T(x) \qquad (x \in S_X)$$

(T lleva puntos antipodales en puntos antipodales).

El problema de Tingley. Il

Problema (Tingley, 1986)

X, Y espacios normados, $T:S_X\longrightarrow S_Y$ isometría biyectiva ¿es T la restricción de una isometría (lineal) de X sobre Y?

Algunos resultados positivos

- Para $1 \leqslant p < \infty$, $X = L_p(\mu)$ y $Y = L_p(\nu)$
- X = C(K), $X = L_1(\mu)$, X subespacio de codimensión finita de C[0,1] \checkmark
- Si B_X es un poliedro (dimensión finita) \checkmark

Algunas propiedades

- Si $||T(x) \lambda T(y)|| \ge ||x \lambda y||$ para todo $x, y \in S_X$ y todo $\lambda > 0$, entonces T se extiende a una isometría lineal de X en Y.
- Si $\dim(X) = \dim(Y) = 2$, T lleva biyectivamente puntos extremos en puntos extremos

El problema de Tingley. III

Bibliografía

Ding GuangGui

On isometric extension problem between two unit spheres *Science in China Series A: Mathematics* (2009)

Vladimir Kadets and Miguel Martín

Extension of isometries between unit spheres of finite-dimensional polyhedral Banach spaces

J. Math. Anal. Appl. (2012)

Dongni Tan, Xujian Huang, and Rui Liu

Generalized-lush spaces and the Mazur-Ulam property

Studia Math. (2013)

Royotaro Tanaka

A further property of spherical isometries

Bull. Aust. Math. Soc. (2014)

Espacios Lipschitz-equivalentes

Definición

 (X,d_1) , (Y,d_2) espacios métricos son *Lipschitz-equivalentes* si existe $f:X\longrightarrow Y$ biyectiva y existen m,M>0 tales que

$$m d_1(x,y) \leqslant d_2(f(x),f(y)) \leqslant M d_1(x,y)$$
 $(x,y \in X)$

Problem:

X e Y Banach. Si X e Y son Lipschitz-equivalentes, ¿son linealmente isomorfos?

Algunos resultados parciales

- Enflo 1970: Si X es Lipschitz-equivalente a un espacio de Hilbert, entonces X es isomorfo a un espacio de Hilbert.
- Aharoni-Lindenstrauss 1978: Existe un espacio de Banach X que es Lipschitz-equivalente a $c_0(\Gamma)$ (Γ no numerable) y que no es isomorfo a $c_0(\Gamma)$.
- Heinrich-Mankiewicz 1982: Si X es Lipschitz-equivalente a ℓ_p (1 , entonces <math>X es linealmente isomorfo a ℓ_p .
- Godefroy-Kalton-Lancien 2000: Si X es Lipschitz-equivalente a c_0 , entonces X es linealmente isomorfo a c_0 .

Espacios Lipschitz-equivalentes. II

Problema

X e Y Banach. Si X e Y son Lipschitz-equivalentes, ¿son linealmente isomorfos?

El problema está abierto en el caso separable.

Un caso particular

Si X es Lipschitz-equivalente a ℓ_1 , ¿es X linealmente isomorfo a ℓ_1 ?

Porqué es interesante...

Si X es Lipschitz-equivalente a ℓ_1 y es un espacio dual, entonces X es linealmente isomorfo a ℓ_1 .

Otro problema

Si c_0 es Lipschitz-equivalente a un subconjunto de X, ¿se embebe c_0 linealmente en X?

Espacios Lipschitz-equivalentes. III

El estudio de los embebimientos Lipschitz ha producido resultados sobre isometrías:

Teorema (Godefroy-Kalton)

X Banach separable. Si hay una isometría de X en Y, entonces Y contiene un subespacio isométricamente isomorfo a X.

Observaciones

- El resultado se basa en otro anterior de Figiel, junto con elevaciones de aplicaciones Lipschitz.
- Es falso en caso no separable:

Ejemplo (Godefroy-Kalton)

Cualquier espacio de Hilbert no separable H se embebe isométricamente en $\mathcal{F}(H)$, pero este espacio no contiene subespacios reflexivos no separables.

Espacios Lipschitz-equivalentes. IV

Bibliografía

Yoav Benuamini and Joran Lindenstrauss

Geometric nonlinear functional analysis, vol. 1.

AMS Colloquium Publications (2000)

Gilles Godefroy and Nigel Kalton

Lipschitz-free Banach spaces

Studia Math. (2003)

Nigel Kalton

The Nonlinear geometry of Banach spaces

Rev. Math. Complutense (2008)

Gilles Godefroy

Linearization of isometric embedding between Banach spaces: an elementary approach

approach

Oper. Matrices (2012)