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Schedule of the talk

@ Basic notation

@ Numerical range of operators

© Two results on surjective isometries

@ Numerical index of Banach spaces

e The alternative Daugavet property

© Lush spaces

@ Slicely countably determined spaces

© Remarks on the containment of ¢y and ¢;
© Numerical index of Lp-spaces

@ Extremely non-complex Banach spaces



Basic notation

Notation

e K base field (R or C):

o T modulus-one scalars,

o Rez real part of z (Rez = z if K =R).
H Hilbert space: (- | -) denotes the inner product.
@ X Banach space:

Sx unit sphere, Bx unit ball,

X* dual space,

L(X) bounded linear operators,

W(X) weakly compact linear operators,
Iso(X) surjective linear isomettries,

e X Banach space, T € L(X):

o Sp(T) spectrum of T.
o T* € L(X*) adjoint operator of T.
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Basic notation

Notation

X Banach space, B C X, C convex subset of X:
@ B is rounded if TB = B,

co(B) convex hull of B,

€0(B) closed convex hull of B,

aconv(B) = co(T B) absolutely convex hull of B,

aconv(B) = co(T B) absolutely convex hull of B,

ext(C) extreme points of C,

@ slice of C:

S(C,x*,a) = {x € C : Rex*(x) >supRex*(C) —a}

where x* € X* and 0 < a < supRe x*(C).
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Numerical range of operators

Numerical range of operators ]

© Numerical range of operators

o Definitions and first properties
@ Numerical range
@ Numerical radius
@ The Bohnenblust-Karlin theorem
@ The numerical index

¥ F. F. Bonsall and J. Duncan
Numerical Ranges. Vol | and Il.
London Math. Soc. Lecture Note Series, 1971 & 1973.
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Numerical range of operators Definitions and first properties

Numerical range: Hilbert spaces

Hilbert space numerical range (Toeplitz, 1918)

@ A n x n real or complex matrix

W(A) = {(Ax|x) : xe K", (x|x)=1}.

@ H real or complex Hilbert space, T € L(H),

W(T)={(Tx|x) : x€H, ||x| =1}.
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Numerical range of operators Definitions and first properties

Numerical range: Hilbert spaces

@ A n X n real or complex matrix
W(A) = {(Ax|x) : xeK", (x|x)=1}.
@ H real or complex Hilbert space, T € L(H),

W(T) ={(Tx|x) : x€H, |x| =1}.

v

Given T € L(H) we associate
@ a sesquilinear form ¢ (x,y) = (Tx | y) (x,y € H),

@ a quadratic form ¢7(x) = @r(x,x) = (Tx | x) (x € H).
Then, W(T) = ¢7(Sg).
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Numerical range: Hilbert spaces

@ A n X n real or complex matrix
W(A) = {(Ax|x) : xeK", (x|x)=1}.
@ H real or complex Hilbert space, T € L(H),

W(T) ={(Tx|x) : x€H, |x| =1}.

v

Given T € L(H) we associate

@ a sesquilinear form ¢ (x,y) = (Tx | y) (x,y € H),

@ a quadratic form ¢7(x) = @r(x,x) = (Tx | x) (x € H).
Then, W(T) = ¢7(Sg). Therefore:

o #1(Bu) = (0,1 W(T),

e ¢pr(H) =Rt W(T).

o But we cannot get W(T) from @1 (Bgy) !
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Numerical range of operators Definitions and first properties

7/ 152



Numerical range of operators Definitions and first properties

Numerical range: Hilbert spaces. Properties.

H Hilbert space, T € L(H):
o (Toeplitz-Hausdorff) W(T) is convex.
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Some properties

H Hilbert space, T € L(H):
o (Toeplitz-Hausdorff) W(T) is convex.
e T,SeL(H), apeK:
o W(aT + BS) C aW(T) + BW(S);
o W(ald + BS) = a4+ BIW(S).
e W(U*TU) = W(T) for every T € L(H) and every U unitary.
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o If T is normal, then W(T) = coSp(T).

@ In the real case (dim(H) > 1), thereis T € L(H), T # 0 with
W(T) = {0}.
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Numerical range of operators Definitions and first properties

Numerical range: Hilbert spaces. Properties.

Some properties

H Hilbert space, T € L(H):
o (Toeplitz-Hausdorff) W(T) is convex.
e T,SeL(H), apeK:
o W(aT + BS) C aW(T) + BW(S);
o W(ald + BS) = a4+ BIW(S).
W(U*TU) = W(T) for every T € L(H) and every U unitary.
Sp(T) € W(T).
If T is normal, then W(T) = @ Sp(T).

In the real case (dim(H) > 1), there is T € L(H), T # 0 with
W(T) = {0}.

In the complex case,

1
sup{|(Tx | x)| : x € Su} > 5Tl

If T is actually self-adjoint, then
sup{|(Tx [ x)| : x € Su} =TI

N
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Numerical range of operators Definitions and first properties

Proving a result

H complex Hilbert space, T € L(H), then

o(T) := sup{[(Tx | x)| : xGSH}>%||T||-
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Proving a result

H complex Hilbert space, T € L(H), then

o(T) == sup{|(Tx | x)| : x € Su} > 5 7],

@ For x,y € Sy fixed, use the polarization formula:

(x| y) = [T +y) [ x+y) = (Tx-y) |x=y)
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Numerical range of operators Definitions and first properties

Proving a result

H complex Hilbert space, T € L(H), then

o(T) == sup{|(Tx | x)| : x € Su} > 5 7],

@ For x,y € Sy fixed, use the polarization formula:
1
(Tx|y) = ;[T +y) [x+y) = (Tx=y)[x-y)
+ i (T(x+iy) | x+iy) —i(T(x—iy) | x—iy)].

o [(Tx [ y)l < 7 o(T)[llx+yl* + lx =yl + llx + iy | + flx — iy]?].

1
4
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Numerical range of operators Definitions and first properties

Proving a result

H complex Hilbert space, T € L(H), then

o(T) == sup{|(Tx | x)| : x € Su} > 5 7],

@ For x,y € Sy fixed, use the polarization formula:

(x| y) = [T +y) [ x+y) = (Tx-y) |x=y)

+ i (T(x+iy) | x+iy) —i(T(x—iy) | x—iy)].

1 , ,
o |(Tx [ y)| < go(T) [[lx +yl* + lx = yl* + lx + dyl|* + | x — iyl|?].

@ By the parallelogram’s law:

1 ,
|(Tx [ 9)] < 3 o(T) 2111 + 2]y )17 + 2]l + 2l|iy||*] = 20(T).
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H complex Hilbert space, T € L(H), then

o(T) == sup{|(Tx | x)| : x € Su} > 5 7],

@ For x,y € Sy fixed, use the polarization formula:

(x| y) = [T +y) [ x+y) = (Tx-y) |x=y)

+ i (T(x+iy) | x+iy) —i(T(x—iy) | x—iy)].

1 , ,
(Tx [ 9l < Zo(T) [lx +yl> + lx =yl + 2+ iy]* + [lx = iy[]?].

By the parallelogram'’s law:

1 ,
|(Tx [ 9)] < 3 o(T) 2111 + 2]y )17 + 2]l + 2l|iy||*] = 20(T).

We just take supremum on x,y € Sy v
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Numerical range of operators Definitions and first properties

Numerical range: Hilbert spaces. Motivation.
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Numerical range of operators Definitions and first properties

Numerical range: Hilbert spaces. Motivation.

Some reasons to study numerical ranges

o It gives a “picture” of the matrix/operator which allows to “see” many
properties (algebraic or geometrical) of the matrix/operator.

o It is a comfortable way to study the spectrum.

o It is useful to estimate spectral radii of small perturbations of matrices.

. (0 M (0 O
ConS|derA—<O O)andB—(8 0>.

e Sp(A) = {0}, Sp(B) = {0}.
o Sp(A+B) = {£vVMe} CW(A+B) CW(A)+ W(B),
@ so the spectral radius of A + B is bounded above by %(

M|+ [el).
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Numerical range of operators Definitions and first properties

Numerical range: Hilbert spaces. Motivation.

Some reasons to study numerical ranges

o It gives a “picture” of the matrix/operator which allows to “see” many
properties (algebraic or geometrical) of the matrix/operator.

o It is a comfortable way to study the spectrum.
o It is useful to estimate spectral radii of small perturbations of matrices.

o It is useful to work with some concepts like hermitian operator,
skew-hermitian operator, dissipative operator. . .
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Numerical range of operators Definitions and first properties

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, T € L(X),
V(T) = {x*(Tx) : x* € Sx+, x € Sx, x*(x) =1}
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Some properties

X Banach space, T € L(X).

@ V(T) is connected but not necessarily convex.
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v

Some properties

X Banach space, T € L(X).
@ V(T) is connected but not necessarily convex.
o T,Se€L(X), apckK:
o V(aT +BS) CaV(T)+ BV(S);
o V(ald+ BS) = a+ BV(S).

e Sp(T) C V(T).
o (Zenger—Crabb) Actually, &6 (Sp(T)) C V(T).
@ coSp(T) = N{V,(T) : p equivalent norm}

where V},(T) is the numerical range of T in the Banach space (X, p).
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Numerical range of operators Definitions and first properties

Numerical range: Banach spaces (1)

X Banach space, T € L(X),

V(T) = {x*(Tx) : x* € Sx+, x € Sx, x*(x) =1}

v

Some properties

X Banach space, T € L(X).
V(T) is connected but not necessarily convex.
T,S € L(X), a,BeK:

o V(aT +BS) CaV(T)+ BV(S);

o V(ald+ BS) = a+ BV(S).

Sp(T) € V(T).
(Zenger—Crabb) Actually, co(Sp(T)) C V(T).
e coSp(T) = N{Vy(T) : p equivalent norm}
where V;,(T) is the numerical range of T in the Banach space (X, p).

o V(U~'TU) = V(T) for every T € L(X) and every U € Iso(X).

10 / 152



Numerical range of operators Definitions and first properties

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, T € L(X),
V(T) = {x*(Tx) : x* € Sx+, x € Sx, x*(x) =1}
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Numerical range of operators Definitions and first properties

Numerical range: Banach spaces (II)

X Banach space, T € L(X),
V(T) = {x*(Tx) : x* € Sx+, x € Sx, x*(x) =1}

v

The numerical range as a derivative

X Banach space, T € L(X). Then

supRe V(T) = lim |[1d +aT|| —1
a—0* 114

i.e. supRe V(T) is the derivative of the norm at Id in the direction of T.
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Numerical range: Banach spaces (II)

X Banach space, T € L(X),

V(T) = {x*(Tx) : x* € Sx+, x € Sx, x*(x) =1}

v

The numerical range as a derivative

X Banach space, T € L(X). Then

supRe V(T) = lim |[1d +aT|| —1
a—0* 114

i.e. supRe V(T) is the derivative of the norm at Id in the direction of T.

Consequence

X Banach space, T € L(X). Then co(V(T)) =co(V(T*)).

Stronger result (Bollobas, 1970)

X Banach space, T € L(X). Then

V(T) C V(T*) C V(T).
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Numerical range: Banach spaces (lII)

The numerical range depends on the base field:
@ X complex Banach space = XpR real space underlying X.
e TeL(X) = Tgr € L(XR) is T view as a real operator.
@ Then V(TRr) =Re V(T).

o Consequence:
X complex, then there is S € L(XR) with ||S|| =1 and V(S) = {0}.
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Numerical range of operators Definitions and first properties

Numerical range: Banach spaces (IV)

Some motivation for the numerical range

@ It allows to carry to the general case the concepts of hermitian operator,
skew-hermitian operator, dissipative operators. . .

@ It gives a description of the Lie algebra corresponding to the Lie group of
all onto isometries on the space.

@ It gives an easy and quantitative proof of the fact that Id is an strongly
extreme point of By x) (MLUR point).
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Numerical range of operators Definitions and first properties

Numerical radius: definition and properties

Numerical radius

X real or complex Banach space, T € L(X),

o(T) =sup {|A| : A€ V(T)}
=sup {|x*(Tx)| : x* € Sx-, x € Sx, x*(x) =1}
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Some examples
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Numerical radius: examples
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@ H real Hilbert space dim(H) > 1
= exist T € L(X) with o(T) =0 and ||T|| = 1.
@ H complex Hilbert space dim(H) > 1
o o(T) > 31Tl

1. .
e the constant 5 is optimal.
Q@ X=1Li(p) = o(T)=|T|| for every T € L(X).
Q X*=L1(y) = o(T) = ||T|| for every T € L(X).
@ |In particular, this is the case for X = C(K).
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@ Equivalently,
0z (TUD) [ ~ITI and  [dg (i) =1,

meaning that o(T) ~ || T||.v’
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X complex Banach space, define T € L(XR) by

T(x)=ix (x € X).

o [|T|| =1 and v(T) = 0 if viewed in XR.
o ||T|| =1and V(T) = {i}, so v(T) =1 if viewed in (complex) X.

Theorem (Bohnenblust-Karlin, 1955; Glickfeld, 1970)

X complex Banach space, T € L(X):

1
T)> —||T|.
o(T) > 2|IT|

1
The constant — is optimal:
e

3 X two-dimensional complex, 3 T € L(X) with |T|| = e and (T) = 1.
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The exponential function

fee)
1
X Banach space, T € L(X), define exp(T) = = T".
0
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=2 1
X Banach space, T € L(X), define exp(T) = } | i T".
n=0 """

4

X Banach space, T, S € L(X).
o TS = ST = exp(T+S) = exp(T) exp(S).
o exp(T) exp(—T) = exp(0) =Id = exp(T) surjective isomorphism.

o {exp(pT) : p € RJ } one-parameter semigroup generated by T.

o |lexp(T)|| < ellTl (we will improve this inequality in the sequel).
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H
3
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o
S|
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First properties
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@ Fora>0and T € L(X),

XE 1 1
exp (;Id—k T) H < exp (H&Id—k TH) .

X E
]
]
]
]

e!/*[|exp(T)|| =

v

Exponential formula

X Banach, T € L(X), then || exp(¢T)| < elé”(T) for every € K.

—

»

18 / 152



Numerical range of operators Definitions and first properties

Proof of Bohnenblust-Karlin's theorem. Preliminaries

@ Fora>0and T € L(X),

e/%| exp(T)| = |lexp (%Id—k T) H < exp (H%Id—!— TH) .

@ Therefore,

1d + aT]|| - 1
el P

| exp(T)]| < exp (

v

Exponential formula

X Banach, T € L(X), then || exp(¢T)| < elé”(T) for every € K.

—

»

18 / 152



Numerical range of operators Definitions and first properties

Proof of Bohnenblust-Karlin's theorem. Preliminaries

@ Fora>0and T € L(X),

e/%| exp(T)| = |lexp (%Id—k T) H < exp (H%Id—!— TH) .

@ Therefore,

»

1d + aT]|| - 1
el P

| exp(T)]| < exp (

@ Taking limit with & — 07, we get

| | exp(T)|| < exp(supRe V(T)) < ()

— —
and the result follows. |

Exponential formula

X Banach, T € L(X), then || exp(¢T)| < elé”(T) for every € K.

18 / 152



Numerical range of operators Definitions and first properties

Proof of Bohnenblust-Karlin's theorem. Preliminaries

@ Fora>0and T € L(X),

e/%| exp(T)| = |lexp (%Id—k T) H < exp (H%Id—!— TH) .

@ Therefore,

»

1d + aT]| - 1
el P

| exp(T)]| < exp (

@ Taking limit with & — 07, we get

| | exp(T)|| < exp(supRe V(T)) < ()

— —
and the result follows. )

Exponential formula

X Banach, T € L(X), then || exp(¢T)| < elé”(T) for every € K.
o Actually, || exp(T)|| < es®PReV(T)  e0(T),

e
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Consider f({) = exp({T) (¢ € C) which is an entire function.

o If o(T) =0, then [ f({)]l < exp(|flo(T)) <1
[Liouville's theorem] = f is constant, so T = f'(0) = 0.

@ Now, it is enough to show that v(T) = 1 implies || T|| < e
@ Indeed, by Cauchy integral formula

1 £Q)
T=f(0)= /(Ol)—d@.

27

@ Therefore,
7l < e / lexp@T)lldg < o [ el — e
27 2 c(0,1)

and we are done.
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@ H Hilbert, dim(H) > 1:

(H) 0  real case,
n =
1
5 complex case.

@ X complex space — n(XIR) =0.
@ n(Ly(n)) =1, p positive measure.

Q X*=Li(p) = nX)=1.
@ In particular,

n(CEK) =1, n(Co(L) =1, n(Le(w) =1.

Q n(A(D)) =1 and n(H®) = 1.
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Surjective isometries |

© Two results on surjective isometries
e Numerical ranges and isometries
@ Isometries on finite-dimensional spaces
o Isometries and duality

@ M. Martin
The group of isometries of a Banach space and duality.
J. Funct. Anal. (2008).

@ M. Martin, J. Meri, and A. Rodriguez-Palacios.
Finite-dimensional spaces with numerical index zero.
Indiana U. Math. J. (2004).

@ H. P. Rosenthal
The Lie algebra of a Banach space.
in: Banach spaces (Columbia, Mo., 1984), LNM, Springer, 1985.
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Semigroups of isometries: motivating example

A motivating example

A real or complex n X n matrix. TFAE:
o A is skew-adjoint (i.e. A* = —A).

@ B =exp(pA) is unitary for every p € R (i.e. BB = BB* =1d).
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Semigroups of isometries: motivating example

A motivating example

A real or complex n X n matrix. TFAE:
o A is skew-adjoint (i.e. A* = —A).
o Re(Ax | x) =0 for every x € H.
@ B =exp(pA) is unitary for every p € R (i.e. BB = BB* =1d).

| A\

In term of Hilbert spaces

H (n-dimensional) Hilbert space, T € L(H). TFAE:
e ReW(T) = {0}.
o exp(pT) € Iso(H) for every p € R.

| A

For general Banach spaces
X Banach space, T € L(X). TFAE:
e ReV(T) = {0}.

o exp(pT) € Iso(X) for every p € R.

A

23 / 152
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Semigroups of isometries: characterization

Theorem (Bonsall-Duncan, 1970's; Rosenthal, 1984)
X real or complex Banach space, T € L(X). TFAE:

Re V(T) = {0} (T is skew-hermitian).

|lexp(pT)|| <1 for every p € R.

{exp(pT) : p € R§ } CIso(X).

T belongs to the tangent space to Iso(X) at Id.
T -1
p—0 P

0.
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Theorem (Bonsall-Duncan, 1970's; Rosenthal, 1984)

X real or complex Banach space, T € L(X). TFAE:
Re V(T) = {0} (T is skew-hermitian).
|lexp(pT)|| <1 for every p € R.

{exp(pT) : p € R§ } CIso(X).

T belongs to the tangent space to Iso(X) at Id.
T -1
p—0 P

This follows from the exponential formula

supRe V(T) = lim I+ g7 —1 = sup log [ exp(a T)|| )
el ﬁ a>0 &

0.
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Semigroups of isometries: characterization

Theorem (Bonsall-Duncan, 1970's; Rosenthal, 1984)
X real or complex Banach space, T € L(X). TFAE:

o ReV(T) = {0} (T is skew-hermitian).
|lexp(pT)|| <1 for every p € R.
o {exp(pT) : p € Rj} CIso(X).
o T belongs to the tangent space to Iso(X) at Id.
T -1
p—0 P

0.

If X is complex, there always exists exponential one-parameter semigroups of
surjective isometries:

t—sef1d generator: i1d.

N
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Semigroups of isometries: characterization

Theorem (Bonsall-Duncan, 1970's; Rosenthal, 1984)
X real or complex Banach space, T € L(X). TFAE:

o ReV(T) = {0} (T is skew-hermitian).
|lexp(pT)|| <1 for every p € R.
o {exp(pT) : p € Rj} CIso(X).
o T belongs to the tangent space to Iso(X) at Id.
T -1
p—0 P

o
Main consequence

If X is a real Banach space such that

0.

V(T)={0} = T=0,

then Iso(X) is “small”:

@ it does not contain any exponential one-parameter semigroup,

@ the tangent space of Iso(X) at Id is zero.

\
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@ Iso(X) is infinite.
e n(X)=0.
@ Thereis T € L(X), T # 0, with v(T) = 0.

Examples of spaces of this kind

© Hilbert spaces.
@ XR, the real space subjacent to any complex space X.
© An absolute sum of any real space and one of the above.

@ Moreover, if X = Xg @ X7 where X7 is complex and
“x0+ei9x1" = ||xp + x1]] (x0 € Xo, x1 € X3, 0 €R).

(Note that the other 3 cases are included here)

Can every Banach space X with n(X) = 0 be decomposed as in (g
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Negative answer

Infinite-dimensional case

There is an infinite-dimensional real Banach space X with n(X) = 0 but X is
polyhedral. In particular, X does not contain C isometrically.

An easy example is

X= |6 Xx

n=2 ‘o

X, is the two-dimensional space whose unit ball is the regular polygon of 2n
vertices.

Such an example is not possible in the finite-dimensional case.
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Quasi affirmative answer

Finite-dimensional case

X finite-dimensional real space. TFAE:
e n(X)=0.

0 X=X9D X1 DD Xy such that

o Xy is a (possible null) real space,
e Xji,...,X, are non-null complex spaces,
there are pq,...,py rational numbers, such that

b €5y 405

for every x; € X; and every 0 € R.

_'_an
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Quasi affirmative answer

Finite-dimensional case

X finite-dimensional real space. TFAE:
e n(X)=0.
0 X=X9D X1 DD Xy such that

o Xy is a (possible null) real space,
e Xji,...,X, are non-null complex spaces,

there are pq,...,py rational numbers, such that

[0+ 10244 €005y | = [lrg 21 4+ 4

for every x; € X; and every 0 € R.

@ The theorem is due to Rosenthal, but with real p's.

@ The fact that the p’s may be chosen as rational numbers is due to
M.—Meri—Rodriguez-Palacios.
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Sketch of the proof

o Fix T € L(X) with ||T|| =1 and o(T) = 0.

o We get that ||exp(pT)|| =1 for every p € R.

@ A Theorem by Auerbach: there exists a Hilbert space H with
dim(H) = dim(X) such that every surjective isometry in L(X) remains
isometry in L(H).

@ Apply the above to exp(pT) for every p € R.

o You get that T is skew-hermitian in L(H), so T* = —T and T? is
self-adjoint. The X;'s are the eigenspaces of T2,

@ Use Kronecker’s Approximation Theorem to change the eigenvalues of T2
by rational numbers.v’
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@ Then ||xg+x1 + x2|| = on +elf (x1 —|—ei(”‘*1)Px2) H Yp.

oTakep:%withkez.

Then ||x + (x1 + x2)|| = on teldt(xy +x2)H VkeZ
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A simple case of getting rational numbers

o let X=XgPX; P Xy and x € R\Q s.t.
on +efx) + ei"‘prH = ||xp +x1 + x2|| Vo, Vo, x1, %2
@ Then ||xg+x1 + x2|| = on +elf (x1 —|—ei(”‘*1)1’x2) H Yp.

oTakep:%withkez.

Then ||xp+ (x1 +x2)|| = on +ei%(x1 +x2)H VkeZ

27tk
But {exp (z’le1> : kEZ} is dense in T, so

o+ (1 +x2) | = [|xo + e (x1 +x2)| Vo eR

and X = Xy ® Z where Z = X1 @ X5 is a complex space
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Consequences

Corollary

X real space with n(X) = 0.
o If dim(X) =2, then X =C.
o If dim(X) = 3, then X = R & C (absolute sum).

N

Are all finite-dimensional X's with n(X) = 0 of the form X =Xy ® X; ?

No.

1 [2m 2it . it .
X = (R |-, I(a,b,c,d)| = 1/0 ‘Re (e "(a+ib) +¢€' (c+zd))’ dt.
Then 1n(X) = 0 but the unique possible decomposition is X = C & C with

eztx1 + eZzt

x| = 3 + x2].
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@ When X is finite-dimensional, Iso(X) is a L|e—group and Z(X) is the
tangent space (i.e. its Lie-algebra).
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The Lie-algebra of a Banach space

X real Banach space, Z(X) = {T € L(X) : o(T) =0}.

@ When X is f|n|te—d|men5|ona|, Iso(X) is a Lie-group and Z(X) is the
tangent space (i.e. its Lie-algebra).

Remark

| A

o dim(X)=n = dim(Z(X))< ”(”T_l)

o Equality holds <= H Hilbert space.

Given 1 > 3, which are the possible dim (Z(X)) over all n-dimensional X's?

v

Observation (Javier Meri, PhD)

When dim(X) = 3, dim(Z(X)) cannot be 2.
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@ When X is f|n|te—d|men5|ona|, Iso(X) is a Lie-group and Z(X) is the

ﬂ: If dim(X) = 3, n(X) = 0, then X = C ® R (absolute sum).
o If ® = @, then X is a Hilbert space and dim(Z(X)) =3. v/

a o If ® # @y, then isometries respect summands and

dim(Z(X)) = 1. v

Given 1 > 3, which are the possible dim (Z(X)) over all n-dimensional X's?

v

Observation (Javier Meri, PhD)

When dim(X) = 3, dim(Z(X)) cannot be 2.
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Semigroups of surjective isometries and duality

X Banach space.
o Telso(X) = T* €Iso(X*).
o Iso(X*) can be bigger than Iso(X).

@ How much bigger can be Iso(X*) than Iso(X)?
o Is it possible that Z(Iso(X*)) is big while Z(Iso(X)) is trivial?

The answer is yes. This is what we are going to present next. J
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@ Write fy(&o) = Awr + (1 — A)w;, with |w;| =1 and consider the functions

fi=10—=@)fo+ewi [= fo+¢(wi— fo)] € Ce(K|L) fori=1,2.
© Then [fill <1and [|fo— (Afi + (1 =A)f2)| = llefo = ¢fo(Zo)ll ~ 0.
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Fix T e L(CE(KHL)) Take f[) S SCE(KHL) and éo S K\L with ‘[ng](éo)‘ ~ ”TH

Consider V = {¢ € K\ L : fo(&) ~ fo(Z)} and take ¢ : K — [0,1] continuous with
supp(¢) C V and ¢(&o) = 1.
Write fo(&0) = Awy + (1 — A)w;, with |w;| =1 and consider the functions

fi=10—=@)fo+ewi [= fo+¢(wi— fo)] € Ce(K|L) fori=1,2.

Then [Ifill <1and [|fo — (Afi + (1= N)f2) || = llefo — @fo(Z0)]| ~ 0.
Therefore, we may choose i € {1,2} with |[T(f;)](&)| ~ [|T]|, but now |f;(&)| = 1.
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Write fo(&0) = Awy + (1 — A)w;, with |w;| =1 and consider the functions

fi=10—=@)fo+ewi [= fo+¢(wi— fo)] € Ce(K|L) fori=1,2.
Then [Ifill <1and [|fo — (Afi + (1= N)f2) || = llefo — @fo(Z0)]| ~ 0.
Therefore, we may choose i € {1,2} with |[T(f;)](&)| ~ [|T]|, but now |f;(&)| = 1.
Equivalently, |15,§0 (T(f)] ~ Tl y |6z, (fi)l =1, so o(T) ~ || T|. v
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Semigroups of surjective isometries and duality

K compact, L C K closed nowhere dense, E C C(L).

Ce(K|IL) = {f € C(K) : f|L € E}.

Ce(K|IL)* =E* @1 Go(K|L)* & n(Ce(K|L)) =1.

Consequence: the example
Take K = [0,1], L = A (Cantor set), E = ¢, C C(A).
@ Iso(Cy,([0,1]]|A)) has no exponential one-parameter semigroups.

o Cy, ([0,1]]|A)* = £r @1 Co([0,1]]|A)*, so taken S € Iso(4p)

S ( s ) € I50(C,, ([0, 1]114)")

Then, Iso(Cy,([0,1][|A)*) contains infinitely many exponential
one-parameter semigroups.
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In terms of linear dynamical systems

o In Cy,([0,1]]|A) there is no A € L(X) such that the solution to the linear
dynamical system

¥ =Ax  (x:Rf — Ch([0,1]]))

(which is x(t) = exp(t A)(x(0))) is given by a semigroup of isomettries.
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o In Cy,([0,1]]|A) there is no A € L(X) such that the solution to the linear
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(which is x(t) = exp(t A)(x(0))) is given by a semigroup of isomettries.
@ There are infinitely many such A’s in Cy, ([0,1][|A)*, in Cp, ([0, 1]|A)**. ..

Further results (Koszmider—M.—Meri., 2011)

o There are unbounded As on Cy,([0,1]||A) such that the solution to the
linear dynamical system

¥ (t) = Ax(t)
is a one-parameter Cy semigroup of isometries.

@ There is X such that
Iso(X) ={-Id,Id} and X* =/, Py L(v).
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Some comments

In terms of linear dynamical systems

o In Cy,([0,1]]|A) there is no A € L(X) such that the solution to the linear
dynamical system

¥ = Ax (x:IRO+ — Cy,([0,1]]|14))

(which is x(t) = exp(t A)(x(0))) is given by a semigroup of isomettries.
@ There are infinitely many such A’s in Cy, ([0,1][|A)*, in Cp, ([0, 1]|A)**. ..

Further results (Koszmider—M.—Meri., 2011)

o There are unbounded As on Cy,([0,1]||A) such that the solution to the
linear dynamical system

¥ (t) = Ax(t)
is a one-parameter Cy semigroup of isometries.
@ There is X such that
Iso(X) ={-1Id,Id} and X*=/{;,®;L1(v).
@ Therefore, there is no semigroups in Iso(X), but there are infinitely many
exponential one-parameter semigroups in Iso(X*).
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Numerical index

Numerical index of Banach spaces |

© Numerical index of Banach spaces
@ Basic definitions and examples
e Stability properties
@ Duality
e The isomorphic point of view

@ Banach spaces with numerical index one

@ |somorphic properties
@ Isometric properties
@ Asymptotic behavior

e How to deal with numerical index 1 property?
e Some open problems

@ V. Kadets, M. Martin, and R. Paya.
Recent progress and open questions on the numerical index of Banach spaces.

RACSAM (2006)
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Numerical radius

X Banach space, T € L(X). The numerical radius of T is

o(T) = sup {|x*(Tx)| : x* € Sx-, x € Sx, x*(x) =1}
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Numerical index of Banach spaces: definitions

X Banach space, T € L(X). The numerical radius of T is

o(T) = sup {|x*(Tx)| : x* € Sx+, x € Sx, x*(x) =1}

The numerical radius is a continuous seminorm in L(X). Actually, v(-) < || - ||

X Banach space, the numerical index of X is
n(X) = inf {v(T) : TeL(X), |T| = 1}
=max {k>0 : k|T|<o(T) VTeL(X)}
= inf {M >0 : AT LX), [T =1, | exp(oT)| < elP™ vp e IR}

v
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Numerical index of Banach spaces: basic properties

Recalling some basic properties
e n(X)=1iffvand || - | coincide.
e 1n(X) = 0 iff v is not an equivalent norm in L(X)

o X complex = n(X)>1/e.
(Bohnenblust-Karlin, 1955; Glickfeld, 1970)
o Actually,

{n(X) : X complex, dim(X) =2} = [e"1,1]
{n(X) : X real, dim(X) =2} =[0,1]

(Duncan—-McGregor—Pryce-White, 1970)
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Numerical index of Banach spaces: examples (1)

Some examples

@ H Hilbert space, dim(H) > 1,

n(H) =0
n(H) =1/2

if H is real
if H is complex
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n(H) =1/2 if H is complex
Q@ n(Li(u)) =1 p positive measure
n(C(K)) =1 K compact Hausdorff space

(Duncan et al., 1970)
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Numerical index of Banach spaces: examples (1)

Some examples

@ H Hilbert space, dim(H) > 1,

n(H)=0 if H is real
n(H) =1/2 if H is complex
(2] M positive measure
K compact Hausdorff space

(Duncan et al., 1970)

n(Ly(p))
n(C(K))

=1
=1
n(A) =1 A commutative

n(A) =1/2 A not commutative

(Huruya, 1977; Kaidi—-Morales—Rodriguez, 2000)

Q If Aisa C*-algebra = {

38 / 152



Numerical index Basic definitions and examples

Numerical index of Banach spaces: examples (1)

Some examples

@ H Hilbert space, dim(H) > 1,

n(H)=0 if H is real
n(H) =1/2 if H is complex

Q n(Li(pn)) J positive measure

n =1
n(C(K)) =1 K compact Hausdorff space
(Duncan et al., 1970)

n(A) =1 A commutative

@ If Aisa C*-algebra =
& {n(A) =1/2 A not commutative

(Huruya, 1977; Kaidi-Morales—Rodriguez, 2000)

Q If A is a function algebra = n(A) =1
(Werner, 1997)
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Numerical index Basic definitions and examples

Numerical index of Banach spaces: some examples (I1)

More examples

© For n > 2, the unit ball of X, is a 2n regular polygon:

tan (%) if n is even,
n(Xy) =

. 7T . .

sin (ﬂ) if n is odd.

(M.~Meri, 2007)
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Numerical index of Banach spaces: some examples (1)

More examples

© For n > 2, the unit ball of X}, is a 2n regular polygon:

7T . .
tan (—) if n is even,

2n
n(Xn) =

. T . .

sin (%) if n is odd.
(M.—Meri, 2007)

@ Every finite-codimensional subspace of C[0,1] has numerical index 1
(Boyko—Kadets—M.—Werner, 2007)
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Even more examples

@ Numerical index of Ly-spaces, 1 < p < oco:
_ 1 (m)
o n(Ly[0,1]) = n(lp) = nil_rgon(Ep ).
(Ed-Dari, 2005 & Ed-Dari-Khamsi, 2006)
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Numerical index of Banach spaces: some examples (l11)

Even more examples

@ Numerical index of Ly-spaces, 1 < p < oco:
_ T (m)
o n(Lp[0,1]) = n(fp) = Agr})on(ﬂp ).
(Ed-Dari, 2005 & Ed-Dari-Khamsi, 2006)
o n(e?) ?

o In the real case,
1 1 (2)
max{z—]/p, 271/‘7} M, < n(ﬂp ) <M,

0 1 [tP=1 — ¢
and M, =0 = max ———
4 (—1 0) teloq] 1+ tP

(M.—Meri, 2009)
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Numerical index of Banach spaces: some examples (l11)

Even more examples

@ Numerical index of Ly-spaces, 1 < p < oco:
_ T (m)
o n(Lp[0,1]) = n(fp) = r&l_r}r;on(ép ).
(Ed-Dari, 2005 & Ed-Dari-Khamsi, 2006)
o n(e?) ?

o In the real case,
1 1 2)
max{—zl/p, 721/41} M, < n(ﬁp ) <M,

. 0 1\ _ |tP—1 — |
and M, = v (_1 O) = tren[oa,)f]il_'_ tP

(M.—Meri, 2000)
My
1 1°

6p? qﬁ

o In the real case, n(Ly(p)) >

(M.—Meri—Popov, 2011)
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Numerical index of Banach spaces: some examples (l11)

Even more examples

@ Numerical index of Ly-spaces, 1 < p < oco:
_ T (m)
o n(Lp[0,1]) = n(fp) = r&l_r}r;on(ép ).
(Ed-Dari, 2005 & Ed-Dari-Khamsi, 2006)
o n(e?) ?

o In the real case,
1 1 2)
max{—zl/p, 721/41} M, < n(ﬁp ) <M,

. 0 1\ _ |tP—1 — |
and M, = v (_1 O) = tren[oa,)f]il_'_ tP

(M.~Merf, 2009)
My

1 1

6p;7 qq

o In particular, n(Ly(p)) > 0 for p # 2.

(M.—Meri—Popov, 2011)

o In the real case, n(Ly(p)) >
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Numerical index: open problems on computing

Open problems

@ Compute n(Lp[0,1]) for 1 < p < oo, p # 2.
Qs n(ég,z)) = M, (real case) ?

i
Qs n(Zg,Z)) = (p% q%) (complex case) ?

@ Compute the numerical index of real C*-algebras.
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Numerical index Basic definitions and examples

Numerical index: open problems on computing

Open problems

@ Compute n(Lp[0,1]) for 1 < p < oo, p # 2.
Qls n(ég,z)) = M, (real case) ?

i
Qs n(Z;Z)) = (p% q%) (complex case) ?

@ Compute the numerical index of real C*-algebras.

@ Compute the numerical index of more classical Banach spaces: C"[0, 1],
Lip(K), Lorentz spaces, Orlicz spaces. . .

41/ 152
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Stability properties

Direct sums of Banach spaces (M.—Paya, 2000)

n([@AeAXA]CU) = n([@/\EAX/\]Zl) = n([@/\EAX/\]Zw) = inf n(X;)
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@ There is a real Banach space X such that

o(T) >0 when T #0,

but n(X) =0
(i.e. v(-) is a norm on L(X) which is not equivalent to the operator norm).
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Stability properties

Direct sums of Banach spaces (M.—Paya, 2000)

"([@AEAXA]CU) = n([@AEAXA]Zl) = ”([@AeAXA]ew) = inf n(X;)

Consequences

@ There is a real Banach space X such that
o(T) >0 when T #0,
but n(X) =0
(i.e. v(+) is a norm on L(X) which is not equivalent to the operator norm).

@ For every t € [0,1], there exist a real X; isomorphic to ¢y (or ¢1 or £)
with i’l(Xt) = i

@ For every t € [e~!,1], there exist a complex Y; isomorphic to cy (or £; or
foo) with H(Yt) =
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Stability properties (II)

Vector-valued function spaces (L6pez-M.-Meri-Payé-Villena, 2000's)

E Banach space, y positive o-finite measure, K compact space. Then
n(C(K,E)) = n(Cu(K,E)) =n(L1 (1, E)) = n(Leo(, E)) = n(E),

and n(Cy+ (K, E*)) < n(E)
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Stability properties (II)

Vector-valued function spaces (L6pez-M.-Meri-Payé-Villena, 2000's)

E Banach space, y positive o-finite measure, K compact space. Then
n(C(K,E)) = n(Cu(K,E)) =n(L1 (1, E)) = n(Leo(, E)) = n(E),

and n(Cy+ (K, E*)) < n(E)

| A

Tensor products (Lima, 1980)

There is no general formula for 11(X®:Y) nor for n(X®xY):
o n(lV8, ) = n(e¥& ) = 1.
o n(lV& M) = n(t¥%, %)) < 1.

Lp-spaces (Askoy—Ed-Dari-Khamsi, 2007)

n(Lp([0,1), E)) = n(£,(E)) = lim n(E®,-" @p E).
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Numerical index Duality

Numerical index and duality

X Banach space, T € L(X). Then

T|| -1
e supReV(T) = lim M.

a—01 14

(Duncan—-McGregor—Pryce-White, 1970)
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@ Then, v(T*) = v(T) for every T € L(X).
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Numerical index Duality

Numerical index and duality

X Banach space, T € L(X). Then

. |Id+aT| -1

lim ———.
a—0t ®
@ Then, v(T*) = v(T) for every T € L(X).
@ Therefore, n(X*) < n(X).

o supReV(T) =

(Duncan—-McGregor—Pryce-White, 1970)

N

Is n(X) =n(X*) ?

Negative answer (Boyko—Kadets—M.—Werner, 2007)

Consider the space

X={(%y2) € cBucBxoc : limx+limy+limz = 0}.

Then, n(X) =1 but n(X*) < 1.
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@ A={(es,0,0,0) : n e N}U{(0,e,,0,0) : n € N}U{(0,0,e,,0) : n € N} C X*.
@ Then By = aco®" (A) and

[x*(a)| =1 V x™ € ext(Bx+~) Vae€ A.
e Fix T L(X), e>0. Find a € A with ||T*(a)|| > ||T*| —e.
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Fix T € L(X), € > 0. Find a € A with ||T*(a)|| > ||T*]| —e.
@ Then we find x** € ext(Bx++) such that
(T @) = 1T @) > [T — e

Since |x**(a)| = 1, this gives that v(T*) > || T*|| — ¢, so v(T) = ||T|| and
nX)=1.v

45 / 152



Numerical index Duality

Numerical index and duality. Proof of main example

X={(xy2) €cBucBuoc : limx+limy+limz = 0}:
n(X) =1 but n(X*) < 1.

Proof
o ¢* =0 & Klim = X* = [¢* @1 ¢* @ ¢*]/(lim, lim, lim).
@ Then, writing Z = 853)/(1, 1,1), we can identify
X*=li P11 D101 Z, X = Loo Poo loo Boo beo Poo Z*.

@ Z is an L-summand of X* so

n(X*) < n(2).

45 / 152



Numerical index Duality

Numerical index and duality. Proof of main example

X={(xy2) €cBucBuoc : limx+limy+limz = 0}:
n(X) =1 but n(X*) < 1.

Proof
o ¢* =0 & Klim = X* = [¢* @1 ¢* @ ¢*]/(lim, lim, lim).
@ Then, writing Z = 853)/(1, 1,1), we can identify

X*=li P11 D101 Z, X = Loo Poo loo Boo beo Poo Z*.

@ Z is an L-summand of X* so
n(X*) < n(2).

e Butn(Z)<1! v

45 / 152



Numerical index Duality

Numerical index and duality. Proof of main example

X={(xy2) €cBucBuoc : limx+limy+limz = 0}:
n(X)=1 but n(X*) < 1.

Proof
o ¢* =0 & Klim = X* = [¢* @1 ¢* @ ¢*]/(lim, lim, lim).
o Then, writing Z = 43)/(1, 1,1), we can identify

X*=li P11 D101 Z, X = Loo Poo loo Boo beo Poo Z*.

@ Z is an L-summand of X* so

n(X*) < n(Z2).

e Butn(Z)<1! v

Figure: Bz
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Numerical index Duality

Numerical index and duality (II)

The above example can be squeezed to get more counterexamples.

Exists X real with n(X) =1 and n(X*) = 0.
Exists X complex with n(X) =1 and n(X*) =1/e.

Given t €]0,1], exists X real with n(X) =t and n(X*) = 0.
Given t €]1/e,1], exists X complex with n(X) =t and n(X*) =1/e.

46 / 152



Numerical index Duality

47 / 152



Numerical index Duality

Numerical index and duality (lII)

Some positive partial answers
One has n(X) = n(X*) when

o X is reflexive (evident).

47 / 152



Numerical index Duality

Numerical index and duality (lII)

Some positive partial answers
One has n(X) = n(X*) when

o X is reflexive (evident).

@ X is a C*-algebra or a von Neumann predual (1970’s — 2000’s).

47 / 152



Numerical index Duality

Numerical index and duality (I11)

Some positive partial answers
One has n(X) = n(X*) when

o X is reflexive (evident).

@ X is a C*-algebra or a von Neumann predual (1970's — 2000’s).
@ X is L-embedded in X** (M., 2009).

47 / 152



Numerical index Duality

Numerical index and duality (I11)

Some positive partial answers
One has n(X) = n(X*) when

o X is reflexive (evident).

@ X is a C*-algebra or a von Neumann predual (1970's — 2000’s).
e X is L-embedded in X** (M., 2009).
o If X has RNP and n(X) = 1, then n(X*) = 1 (M., 2002).

47 / 152



Numerical index Duality

Numerical index and duality (I11)

Some positive partial answers
One has n(X) = n(X*) when

o X is reflexive (evident).

@ X is a C*-algebra or a von Neumann predual (1970's — 2000’s).
e X is L-embedded in X** (M., 2009).
o If X has RNP and n(X) =1, then n(X*) =1 (M., 2002).

If X is M-embedded in X** and n(X) =1
— n(Y)=1for X C Y C X**.

47 / 152



Numerical index Duality

Numerical index and duality (I11)

One has n(X) = n(X*) when
o X is reflexive (evident).
@ X is a C*-algebra or a von Neumann predual (1970's — 2000’s).
e X is L-embedded in X** (M., 2009).
o If X has RNP and n(X) =1, then n(X*) =1 (M., 2002).

o If X is M-embedded in X** and n(X) =1
= n(Y)=1for XCY C X**

X = Ci(,)([0,1]]|A). Then n(X) =1 and

X* = K(6)" &1 Co(K||A)* and X** = L(lp) ®oo Co(KJ||A)*.

Therefore, X** is a C*-algebra, but n(X*) =1/2 < n(X) = 1.

N,
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Numerical index Duality

Main question

Find isometric or isomorphic properties assuring that n(X) = n(X*).

If Z has a unique predual X, does n(X) = n(X*) ?

Z dual space, does there exists a predual X such that n(X) = n(X*) ?

Question 4
If X has the RNP, does n(X) = n(X*) ?
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Numerical index ~ The isomorphic point of view

The isomorphic point of view

Renorming and numerical index (Finet—-M.—Paya, 2003)
(X, Il - II) (separable or reflexive) Banach space. Then
@ Real case:
0[S {n(X|-1) = 1[I}

o Complex case:
e 1[C {(n(X|-1) s |11}

The result is known to be true when X has a long biorthogonal system.
Is it true in general ?

In some sense, any other value of n(X) but 1 is isomorphically trivial.
What about the value 1 7
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Numerical index Banach spaces with numerical index one

Banach spaces with numerical index one

Numerical index 1

Recall that X has numerical index one (n(X) = 1) iff

[ T|| = sup{|x*(Tx)| : x € Sx, x* € Sx-, x*(x) =1}

(i.e. o(T) = ||T||) for every T € L(X).
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Banach spaces with numerical index one

Recall that X has numerical index one (n(X) = 1) iff
|T|| = sup{|x*(Tx)| : x € Sx, x* € Sx+, x*(x) =1}

(i.e. o(T) = || T||) for every T € L(X).

Observation

| A\

For Hilbert spaces, the above formula is equivalent to

|IT|| =sup{|(Tx,x)| : x € Sx}

which is known to be valid for every self-adjoint operator T.

C(K), L1(n), A(D), H*, finite-codimensional subspaces of C[0,1]...
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Numerical index Banach spaces with numerical index one

Isomorphic properties (prohibitive results)

Does every Banach space admit an equivalent norm with numerical index 1 ?

v

Negative answer (Lépez—M.—Paya, 1999)
Not every real Banach space can be renormed to have numerical index 1.
Concretely:

o If X is real, reflexive, and dim(X) = oo, then n(X) < 1.

o Actually, if X is real, X**/X separable and n(X) =1,
then X is finite-dimensional.

@ Moreover, if X is real, RNP, dim(X) = oo, and n(X) = 1, then X D /3.

v

A very recent result (Avilés—Kadets—M.—Meri-Shepelska)

If X is real, dim(X) = o0 and n(X) =1, then X* D ¢;.

More details on this later on. J
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X Banach space, n(X) =1
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(Choquet's lemma): x; € ext(Bx-+), 3y € Sx and > 0 such that
|z*(x0) — x5(x0)| <& whenever z* € By~ satisfies Rez*(y) > 1 — B.

o letT=y*"@yelX) |T|=1 = oT)=1.
We may find x € Sy, x* € Sx», such that

F()=1 and  [x'(Tx)| = ly*(¥)|]¥* ()] > 1 — min{a, B},
@ By choosing suitable s,t € T we have
Rey“(sx) = [y'(x)| >1—a &  Retx'(y) = [x*(y)| > 1-p.
o It follows that |sx — xg|| < & and |tx*(xg) — x5 (x0)| < &, and so
1= (o)l < I (%) — x5 (x0)] <
< |t (sx) — tx* (xo) | + [Ex (x0) — x5 (x0)| < 2e.v
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o {a,} weak Cauchy = {y*(ax)} is eventually 1 or —1.
o Then ext(By-) = | J (ExU—Ex) where
kelN
Er ={y* €ext(By:) : y*(ay) =1 forn > k}.
o {a,} separates points of Y* = E finite, so ext (By-) countable.
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(Krein-Milman theorem): every y* € ext (By~) has an extension which
belongs to ext (Bx«).
So, |y*(an)| =1 Vy* € ext(By), Vn € N.
o {a,} weak Cauchy = {y*(ax)} is eventually 1 or —1.
o Then ext(By-) = | J (ExU—Ex) where
kelN

Ex = {y* €ext(By.) : y*(an) =1 for n >k}

o {a,} separates points of Y* = E; finite, so ext (By+) countable.
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Proving the 1999 results (III)

X Banach space, n(X) =1
= |x§(x0)| =1 for all x§ € ext(Bx-) and all denting point xy of Bx.

Proposition

X real, A C Sx infinite with |x*(a)| =1 Vx* € ext(Bx+), Va € A.
= X Dcpor X D{.

| N

54 / 152



Numerical index Banach spaces with numerical index one

Proving the 1999 results (III)

Lemma

X Banach space, n(X) =1
= |x§(x0)| =1 for all x§ € ext(Bx-) and all denting point xy of Bx.

Proposition

X real, A C Sx infinite with |x*(a)| =1 Vx* € ext(Bx+), Va € A.
= X Dcpor X D{.

| N

\

Main consequence
X real, RNP, dim(X) = o0, and n(X) =1 = X D /3.

54 / 152



Numerical index Banach spaces with numerical index one

Proving the 1999 results (III)

Lemma

X Banach space, n(X) =1
= |x§(x0)| =1 for all x§ € ext(Bx-) and all denting point xy of Bx.

| N

Proposition

X real, A C Sx infinite with |x*(a)| =1 Vx* € ext(Bx+), Va € A.
= X Dcpor X D{.

\

Main consequence
X real, RNP, dim(X) = o0, and n(X) =1 = X D /3.

Proof.

54 / 152



Numerical index Banach spaces with numerical index one

Proving the 1999 results (III)

Lemma

X Banach space, n(X) =1
= |x§(x0)| =1 for all x§ € ext(Bx-) and all denting point xy of Bx.

| N

Proposition

X real, A C Sx infinite with |x*(a)| =1 Vx* € ext(Bx+), Va € A.
= X Dcpor X D{.

\

Main consequence
X real, RNP, dim(X) = o0, and n(X) =1 = X D /3.

Proof.
@ X RNP, dim(X) =c0o = 3 infinitely many denting points of Bx.

54 / 152



Numerical index Banach spaces with numerical index one

Proving the 1999 results (III)

Lemma

X Banach space, n(X) =1
= |x§(x0)| =1 for all x§ € ext(Bx-) and all denting point xy of Bx.

| N

Proposition

X real, A C Sx infinite with |x*(a)| =1 Vx* € ext(Bx+), Va € A.
= X Dcpor X D{.

\

Main consequence
X real, RNP, dim(X) = o0, and n(X) =1 = X D /3.

Proof.
@ X RNP, dim(X) =c0o = 3 infinitely many denting points of Bx.
@ Therefore, X D ¢y or X D /4.

54 / 152



Numerical index Banach spaces with numerical index one

Proving the 1999 results (III)

Lemma

X Banach space, n(X) =1
= |x§(x0)| =1 for all x§ € ext(Bx-) and all denting point xy of Bx.

| N

Proposition

X real, A C Sx infinite with |x*(a)| =1 Vx* € ext(Bx+), Va € A.
= X Dcpor X D{.

\

Main consequence
X real, RNP, dim(X) = o0, and n(X) =1 = X D /3.

Proof.
@ X RNP, dim(X) =c0o = 3 infinitely many denting points of Bx.
@ Therefore, X D ¢y or X D /4.
o If X RNP, then X B ¢y. v/
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Proving the 1999 results (III)

Lemma

X Banach space, n(X) =1
= |x§(x0)| =1 for all x§ € ext(Bx-) and all denting point x of Bx.

Proposition

X real, A C Sx infinite with |x*(a)| =1 Vx* € ext(Bx+), Va € A.
= X Dcpor X D{.

| \

\

Main consequence
X real, RNP, dim(X) = o0, and n(X) =1 = X D /3.

X real, dim(X) = o0, n(X) = 1.

o X is not reflexive.

o X**/X is non-separable.
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Isomorphic properties (positive results)

A renorming result (Boyko—Kadets—M.—Meri, 2009)

If X is separable, X D ¢p, then X can be renormed to have numerical index 1.

Consequence
X separable containing ¢ == there is Z ~ X such that

n(Z*) =0 real case
* :e—l

complex case

@ Find isomorphic properties which assures renorming with numerical index 1

@ In particular, if X D ¢4, can X be renormed to have numerical index 1 ?

4

Negative result (Bourgain—Delbaen, 1980)

There is X such that X* ~ ¢1 and X has the RNP. Then, X can not be
renormed with numerical index 1 (in such a case, X D ¢; !)
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Isometric properties: finite-dimensional spaces

Finite-dimensional spaces (McGregor, 1971; Lima, 1978)

X real or complex finite-dimensional space. TFAE:
o n(X)=1.
o |[x*(x)| =1 for every x* € ext (Bx+), x € ext(Bx).
@ By = aconv(F) for every maximal convex subset F of Sx
(X is a CL-space).

Remark

This shows a rough behavior of the norm of a finite-dimensional space
with numerical index 1:

| A\

@ The space is not smooth.

@ The space is not strictly convex.

What is the situation in the infinite-dimensional case ?
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X infinite-dimensional Banach space, n(X) = 1. Then
@ X* is neither smooth nor strictly convex.
@ The norm of X cannot be Fréchet-smooth.

@ There is no WLUR points in Sx.

Proving that X* is not smooth:
o dim(X) > 1, exists xg € Sx and xjj € Sx+ such that xj(xp) = 0. Then,
consider T = x{ ® xg which satisfies T? =
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Isometric properties: infinite-dimensional spaces

Theorem (Kadets—M.—Meri—Paya, 2009)

X infinite-dimensional Banach space, n(X) = 1. Then
@ X* is neither smooth nor strictly convex.
@ The norm of X cannot be Fréchet-smooth.
@ There is no WLUR points in Sx.

Proving that X* is not smooth:
o dim(X) > 1, exists xg € Sx and xjj € Sx+ such that xj(xp) = 0. Then,
consider T = x} ® xo which satisfies T> = 0, ||T|| = 1.

(AcostaPayd1993): exists {T,} —> T such that
|Tu]l =1, T, attains its numerical radius v(T;i) = v(Ty) = | Tu|| = 1.

e We may find A, € T and (x};, x;;*) € Sx+ X Sx such that
Ay () =1 and [Ty (")) (xp) = 27Ty (x5)) = 1.
o If X* is smooth: T,;*(x}*) = Ay x;;*. Thus,
TP )l = A7 ) = 1.

But, since T, — T and T2 = 0, then [T;*]> — 0 !l V'
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Isometric properties: infinite-dimensional spaces

Theorem (Kadets—M.—Meri—Paya, 2009)

X infinite-dimensional Banach space, n(X) = 1. Then
@ X* is neither smooth nor strictly convex.
@ The norm of X cannot be Fréchet-smooth.
@ There is no WLUR points in Sx.

X = C(T)/A(D). X* = H' is smooth = n(X) <1 & n(H') < 1.

Example without completeness
@ There is X (non-complete) strictly convex with X* = L;(u), so n(X) = 1.

e X completion of X. For F C S maximal face, By = aconv(F).

Is there X with n(X) = 1 which is smooth or strictly convex ? J
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Asymptotic behavior of the set of spaces with numerical index one

Theorem (Oikhberg, 2005)

There is a universal constant ¢ such that
1
dist(X, &™) > ¢ mi

for every m € IN and every m-dimensional X with n(X) = 1.

| A

Old examples

dist(e{™, 6™ = dist (62, 6M) = m?

A

o Is there a universal constant ¢ such that
. o 1
dist(X, ng)) > m?

for every m € N and every m-dimensional X's with n(X) =1 7
o What is the diameter of the set of all m-dimensional X's with n(X) =1 ?

v
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How to deal with numerical index 1 property?

One the one hand: weaker properties

@ In a general Banach space, we only can construct compact (actually,
finite-rank) operators.

@ Actually, we only may easily calculate the norm of rank-one operators.

o All the results given before for Banach spaces in which we use numerical
index 1 only need
v(T) = ||T|| for every rank-one operator T.

@ This is called the alternative Daugavet property (ADP) and we will present
it in the next section.

4

One the other hand: stronger properties

@ We do not know any operator-free characterization of Banach spaces with
numerical index 1.

@ When we know that a Banach space has numerical index 1 (or that it can
be renormed with numerical index 1), we actually prove more.

o Later we will study sufficient geometrical conditions.

@ The weakest property is called lushness.

A
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Relationship between the properties

@ One of the key ideas to get interesting results for Banach spaces with
numerical index 1 is to study when the three properties below are
equivalent.

@ A very interesting property appears: the slicely countably determination.

@ We will study this property later on.

— |Numerica| index 1| —

with SCD property
(RNP, Asplund...)
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Some interesting open problems

Open problems

@ Characterize (without operators) Banach spaces with numerical index 1.
Q@ X withn(X) =1, dim(X) =00 X DcgorXD¥?
© Characterize those X admitting a renorming with numerical index 1.

Q If X D ¢g or D 1 can X be renormed with numerical index 1 ?

@ Find isomorphic or isometric conditions assuring that n(X) = n(X*).

The oldest open problem

Calculate the numerical index of “classical” spaces.
e In particular, calculate n(Ly(p)).
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The alternative Daugavet property |

© The alternative Daugavet property
@ The Daugavet property

e The alternative Daugavet property
@ Geometric characterizations
@ C*-algebras and preduals
@ Some results

@ M. Martin and T. Oikberg
An alternative Daugavet property
J. Math. Anal. Appl. (2004)

B M. Martin
The alternative Daugavet property of C*-algebras and |B*-triples
Math. Nachr. (2008)
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The Daugavet property: motivation

@ In a Banach space X with the
Radon-Nikodym property the unit ball
many denting points.

@ x € Sy is a denting point of By if for
every € > (0 one has

x ¢ @0 (Bx \ (x + €Bx)).

e C[0,1] and L1[0,1] have an extremely
opposite property: for every x € Sy an
every € > 0

) (BX\ (x—l—(2—s)BX)) — By.

@ This geometric property is equivalent to a

property of operators on the space.

The Daugavet property

has

d

BX \ (.’L‘+ (2 - a)Bx)
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The Daugavet property: definition

The Daugavet equation

X Banach space, T € L(X)
Hd+T|| =1+ ||T]| (DE)

Classical examples

© Daugavet, 1963:
Every compact operator on C[0,1] satisfies (DE).

@ Lozanoskii, 1966:
Every compact operator on L1[0,1] satisfies (DE).
@ Abramovich, Holub, and more, 80’s:
X = C(K), K perfect compact space
or X = Ly(u), p atomless measure
= every weakly compact T € L(X) satisfies (DE).
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The Daugavet property: definition

The Daugavet equation

X Banach space, T € L(X)
Hd+T|| =1+ ||T]| (DE)

A Banach space X is said to have the Daugavet property iff every rank-one
operator on X satisfies (DE).

Then, every weakly compact operator on X satisfies (DE).

(Kadets—Shvidkoy—Sirotkin—-Werner, 1997 & 2000)
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The Daugavet property: geometric characterizations

Theorem [KSSW]

X Banach space. TFAE:

Every rank-one operator
@ X has the Daugavet property.

T € L(X) satisfies
IId+T||=1+|T]-
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X Banach space. TFAE:
@ X has the Daugavet property.

@ For every x € Sx, x* € Sx+, and & > 0, there exists
y € Sx such that
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The Daugavet property: geometric characterizations

Theorem [KSSW]

X Banach space. TFAE:
@ X has the Daugavet property.

xT
@ For every x € Sx, x* € Sxx, and € > 0, there exists
y € Sx such that
Rex*(y) >1—¢ and |x—y||>2—=¢
@ For every x € Sx, x* € Sxx, and € > 0, there exists —_— —
y* € Sx= such that
Rey*(x) >1—¢ and |[x*—y*|>2—= Bx \ (z+ (2 —¢)Bx)
@ For every x € Sx and every € > 0, we have

@ (BX\(er(Zfs)Bx)) = Br.
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The Daugavet property: some results

Some propaganda

X with the Daugavet property. Then:
@ X does not have the Radon-Nikodym property.
(Wojtaszczyk, 1992)

o Every weakly-open subset of Bx has diameter 2.
(Shvidkoy, 2000)

X contains a copy of ¢1. X* contains a copy of L1[0,1].
(Kadets—Shvidkoy—Sirotkin—-Werner, 2000)

@ X does not have unconditional basis.
(Kadets, 1996)

@ X does not embed into a unconditional sum of Banach spaces without a
copy of /7.

(Shvidkoy, 2000)
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The DPr, the ADP and numerical index 1

Observation (Duncan-McGregor-Price-White, 1970)

X Banach space, T € L(X):
o supReV(T) = |T|| — |[ld+T| =1+]T|.
o o(T) =||T| r(}lea%HIdJrGTH =1+|T|.

X Banach space:

e Daugavet property (DPr): every rank-one T satisfies
[1d + T = 1+ [ T]| (DE)
@ numerical index 1: EVERY T satisfies

max |[[Id+6T| =1+ |T| (aDE)
0T

alternative Daugavet property (ADP): every rank-one T € L(X) satisfies (aDE).
Then, every weakly compact operator satisfies (aDE).
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Relations between the properties

| Daugavet property| . 7 | Numerical index 1

N

e C([0,1],K(£2)) has DPr, but has not numerical index 1
@ ¢o has numerical index 1, but has not DPr
@ ) Poo C([0,1],K(¢2)) has ADP, neither DPr nor numerical index 1
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Relations between the properties

| Daugavet property| . 7 | Numerical index 1

Examples

e C([0,1],K(£2)) has DPr, but has not numerical index 1
@ ¢o has numerical index 1, but has not DPr
@ ) Poo C([0,1],K(¢2)) has ADP, neither DPr nor numerical index 1

RENES

@ For RNP or Asplund spaces, | ADP ‘ — ‘ numerical index 1 ‘

@ Every Banach space with the ADP can be renormed still having the ADP
but failing the Daugavet property.

A
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Geometric characterizations of the ADP

X Banach space. TFAE: Every rank-one operator
@ X has the ADP. T € L(X) (equivalently, every
weakly compact operator)
satisfies

max |[ld+wT| =1+ |T|.

|w|=1

69 / 152



The alternative Daugavet property  The alternative Daugavet property

Geometric characterizations of the ADP

X Banach space. TFAE:
@ X has the ADP.

@ For every x € Sx, x* € Syx, and € > 0, there exists
y € Sx such that

@ >1—¢ and |x—y|>2-ec
@ For every x € Sx, x* € Sx+, and € > 0, there exists
y* € Sx= such that
ly*(x)]>1—¢ and |x*—y*||>2—c¢
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Geometric characterizations of the ADP

X Banach space. TFAE:
@ X has the ADP.

@ For every x € Sx, x* € Syx, and € > 0, there exists
Y € Sx such that

@ >1—¢ and |x—y|>2-ec
@ For every x € Sx, x* € Sxx, and & > 0, there exists
y* € Sx+ such that
l[y*(x)]>1—¢ and |x*—y*|>2-—c¢

@ For every x € Sx and every ¢ > 0, we have

Bx =0 (T{y € Bx : [x—y| >2—¢}).

{yeBx : Jety|>2-¢}

{yeBx : Je—yl>2-¢}
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C*-algebras and preduals (1)

Let Vi be the predual of the von Neumann algebra V. )

The Daugavet property of V, is equivalent to:

@ V has no atomic projections, or

@ the unit ball of Vi has no extreme points.

v

V. has numerical index 1 iff:

e V is commutative, or
e |v*(v)| =1 for v € ext (By) and v* € ext (By:).

v

The alternative Daugavet property of Vi is equivalent to:

@ the atomic projections of V are central, or

o |[v(vy)| =1 for v € ext (By) and v, € ext(By,), or

o V=C®u N, where C is commutative and N has no atomic projections.
v
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C*-algebras and preduals (II)

Let X be a C*-algebra. )

The Daugavet property of X is equivalent to:

@ X does not have any atomic projection, or

o the unit ball of X* does not have any w*-strongly exposed point.

v

X has numerical index 1 iff:

e X is commutative, or
o |x**(x*)| =1 for x** € ext (Bx~) and x* € ext (Bx-).

The alternative Daugavet property of X is equivalent to:

@ the atomic projections of X are central, or

o |x**(x*)| =1, for x** € ext(Bxs+), and x* € Bx+ w*-strongly exposed, or

o J a commutative ideal Y such that X/Y has the Daugavet property.
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Since when we use the numerical index 1 only rank-one operators may be used,
most of the known results are valid for the ADP.

v

Theorem (L6pez—M.—Paya, 1999)

Not every real Banach space can be renormed with the ADP.

@ X real reflexive with ADP = X finite-dimensional.
@ Moreover, X real, RNP, dim(X) = oo, and ADP, then X D /.

A very recent result (Avilés—Kadets—M.—Meri-Shepelska)

If X is real, dim(X) = oo and X has the ADP, then X* D /5.

A renorming result (Boyko—Kadets—M.—Meri, 2009)
If X is separable, X D cg, then X can be renormed with the ADP.
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Some results on the ADP: isometric properties

Also some isometric properties of Banach spaces with numerical index 1 are
actually true for ADP.

| A\

Theorem (Kadets—M.—Meri—Paya, 2009)
X infinite-dimensional with the ADP. Then

@ X* is neither smooth nor strictly convex.
@ The norm of X cannot be Fréchet-smooth.
@ There is no WLUR points in Sx.

X = C(T)/A(D). Since X* = H' is smooth == nor X nor H' have the
ADP.

Is there X with the ADP which is smooth or strictly convex ? J
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Lush spaces J

© Lush spaces

@ Definition and examples

o Lush renorming

o Reformulations of lushness and applications

o Lushness is not equivalent to numerical index one

ﬁ K. Boyko, V. Kadets, M. Martin, and J. Meri.
Properties of lush spaces and applications to Banach spaces with numerical index 1.
Studia Math. (2009)
ﬁ K. Boyko, V. Kadets, M. Martin, and D. Werner.
Numerical index of Banach spaces and duality.
Math. Proc. Cambridge Philos. Soc. (2007)
ﬁ V. Kadets, M. Martin, J. Meri, and R. Paya.
Convexity and smoothnes of Banach spaces with numerical index one.
lllinois J. Math. (to appear)
ﬁ V. Kadets, M. Martin, J. Meri, and V. Shepelska.

Lushness, numerical index one and duality.
J. Math. Anal. Appl. (2009)
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Motivation

@ Usually, when we show that a Banach space has numerical index 1, we
actually prove more.

@ We do not have an operator-free characterization of the spaces with
numerical index 1.
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Observation

Showing that (c¢) = n(X) =1, one realizes that (c) is too much.

X is lush if given x,yy € Sx, € > 0, there is x* € Sx- such that

x € S(Bx,x*,¢) and dist(y,aconv(S(Bx,x",¢€))) < e.
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X is nicely embedded in C,(Q)) if exists | : X — Cp(Q2) linear isometry with
(N1) [|[J*6s]| =1 Vs € Q,
(N2) span(J*ds) L-summand in X* Vs € Q.

v

Even more examples of lush spaces

@ Nicely embedded Banach spaces (they fulfil (a)).
© |In particular, function algebras (as A(ID) and H*®).
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Some reformulations of lushness

X Banach space. TFAE:
o X is lush,
@ Every separable E C X is contained in a separable lush Y with E C Y C X.

Separable lush spaces
X separable. TFAE:
o X is lush.
@ There is G C Sx« norming such that

Bx = aconv(S(By, x*,¢)) (>0, x* €G).

o Therefore, |x**(x*)| =1 for every x** € ext (Bx+) and every x* € G.
o This implies that By = aconv ({x € Bx : x*(x) =1}) Vx* € G.

Consequence
X C C[0,1] strictly convex or smooth = C[0,1]/X contains C[0, 1].
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[x*(a)] =1 (x* € ext(Bx+), a € A).
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Main consequence
X real lush, dim(X) = co — X* D /5.
Proof.
@ There is E C X separable and lush.
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X lush separable, dim(X) = c0o = there is G € Sy« infinite such that

[ (x")| =1 (x** € ext(Bx=), x* € G).

Proposition (Lépez—M.—Paya, 1999)

X real, A C Sx infinite such that

|x*(a)] =1 (x* € ext(Bx+), a € A).

Then, X D ¢y or X D /7.

Main consequence
X real lush, dim(X) = co — X* D /5.

What happens if just n(X) =1 ? The same, we will prove later. }
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@ The set
{x* € Sy+ ¢ |x™(x*)| =1 for every x™* € ext (By)}

is empty.

| A\

Consequence

Xlush | 75 [ X* lush

] = (Xt

A
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Slicely countably determined spaces

@ Slicely countably determined spaces
o Slicely Countably Determined sets and spaces
o Applications to numerical index 1 spaces
o SCD operators
e Open questions

@ A. Avilés, V. Kadets, M. Martin, J. Meri, and V. Shepelska
Slicely Countably Determined Banach spaces
Trans. Amer. Math. Soc. (2010)
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SCD sets: Definitions and preliminary remarks

X Banach space, A C X bounded and convex.

A is Slicely Countably Determined (SCD) if there is a sequence {S, : n € N}
of slices of A satisfying one of the following equivalent conditions:

@ every slice of A contains one of the S's,
A C conv(B) if B C A satisfies BNS, # @ Vn,
given {x; }peN with x, € S, Vn € N, A C conv({x, : n € N}).

e A is SCD iff A is SCD.

o If A is SCD, then it is separable.
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SCD sets: Elementary examples |

A separable and A = conv(dent(A)) = A is SCD.

Proof.
e Take {a, : n € N} denting points with A = conv({a, : n € N}).
@ For every n,m € IN, take a slice S, containing a, and of diameter 1/m.
e IfBNSym #DVnmeIN = a, € B VneN.
o Therefore, A =conv({a, : n € N}) C conv(B) = conv(B). v’

In particular, A RNP separable = A SCD. \

o If X is separable LUR = By is SCD.

@ So, every separable space can be renormed such that B(X,|~|) is SCD.
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o It is easy to show that any slice of A contains one of the Sy ;. v/

Negative example

If X has the Daugavet property =—> By is not SCD.
Therefore, Bcjg 1), Br,[o,1) are not SCD.

Proof.
e Fix xg € Bx and {S,} sequence of slices of By.
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SCD sets: Elementary examples |l

If X* is separable = A is SCD. I

Proof.
o Take {x}; : n € N} dense in Sx-.

o For every n,m € IN, consider S, = S(A, x};,1/m).

o It is easy to show that any slice of A contains one of the Sy ;. v/

Negative example

If X has the Daugavet property =—> By is not SCD.
Therefore, Bcjg 1), Br,[o,1) are not SCD.

Proof.
e Fix xg € Bx and {S,} sequence of slices of By.

o By [KSSW] there is a sequence (x;) C By such that

o x, €S, for every n € IN,
o (Xn)u>0 is equivalent to the basis of (1,
o soxg &lin{x, : n€N}. v
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SCD sets: Further examples |

m
W= Y ArSp C A where Ay >0, YA =1, S slices.
k=1

Proposition

| \

In the definition of SCD we can use a sequence {S, : n € IN} of convex
combination of slices.

A has small combinations of slices iff every slice of A contains convex combina-
tions of slices of A with arbitrary small diameter.

If A has small combinations of slices + separable = A is SCD.

Particular case

A strongly regular + separable = A is SCD.

88 / 152



Slicely countably determined spaces ~ SCD sets & spaces

89 / 152



Slicely countably determined spaces ~ SCD sets & spaces

SCD sets: Further examples |l

Bourgain's lemma

Every relative weak open subset of A contains a convex combination of slices.

89 / 152



Slicely countably determined spaces ~ SCD sets & spaces

SCD sets: Further examples |l

Bourgain's lemma

Every relative weak open subset of A contains a convex combination of slices.

In the definition of SCD we can use a sequence {S, : n € IN} of relative weak
open subsets.

89 / 152



Slicely countably determined spaces ~ SCD sets & spaces

SCD sets: Further examples |l

Bourgain's lemma

Every relative weak open subset of A contains a convex combination of slices.

Corollary

In the definition of SCD we can use a sequence {S, : n € IN} of relative weak
open subsets.

A 71t-base of the weak topology of A is a family {V; : i € I} of weak open sets
of A such that every weak open subset of A contains one of the V;'s.
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Every relative weak open subset of A contains a convex combination of slices.

Corollary

In the definition of SCD we can use a sequence {S, : n € IN} of relative weak
open subsets.

A 71t-base of the weak topology of A is a family {V; : i € I} of weak open sets
of A such that every weak open subset of A contains one of the V;'s.

v

Proposition

If (A,0(X,X*)) has a countable 7-base — A is SCD.
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@ By Rosenthal ¢; theorem, (A, (X, X*)) is a relatively compact subset of
the space of first Baire class functions on T.

By a result of Todorgevi¢, (A,0(X, X*)) has a o-disjoint 7t-base.

{V; i€ I} is o-disjoint if I = U,en In and each {V; : i € I,} is pairwise
disjoint.

e A o-disjoint family of open subsets in a separable space is countable. v*

A separable without /;-sequences =—> A is SCD. I
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X is Slicely Countably Determined (SCD) if so are its convex bounded subsets.

y

Examples of SCD spaces

© X separable strongly regular. In particular, RNP, CPCP spaces.
© X separable X 2 1. In particular, if X* is separable.

Examples of NOT SCD spaces

@ X having the Daugavet property.
Q@ In particular, C[0,1], L1[0,1]
© There is X with the Schur property which is not SCD.

o Every subspace of a SCD space is SCD.

o This is false for quotients.
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SCD spaces: stability properties

ZCX. If Zand X/Z are SCD — X is SCD. \

X separable NOT SCD
o If {1 ~Y C X = X/Y contains a copy of ;.
o If /1 ~Y] C X = thereis /1 ~ Y, C X with YN Y, =0.

X1, Xm SCD => X1 @ - - - ® Xm SCD.
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SCD spaces: stability properties |l

X1, X>,... SCD, E with unconditional basis.
e E 2 co = [Dnen Xnlp SCD.
o E ;é lp = [Ben Xulp SCD.

v
Examples

@ co(¢1) and ¢1(cq) are SCD.

Q ¢ ®¢ o, €0 R €, €0 Re b1, €0 R b1, €1 ®e 41, and ¢4 @5 £1 are SCD.
@ K(cg) and K(cg, ¢1) are SCD.

Q Vp ®:ly =K(4p) and £y By by = L1(£;) are SCD

\
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The DPr, the ADP and numerical index 1

© Kadets-Shvidkoy-Sirotkin-Werner, 1997:
X has the Daugavet property (DPr) if

1d + T =1+ [|T]| (DE)

for every rank-one T € L(X).
Then every weakly compact T also satisfies (DE).
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The DPr, the ADP and numerical index 1

© Kadets-Shvidkoy-Sirotkin-Werner, 1997:
X has the Daugavet property (DPr) if

1d + T =1+ [|T]| (DE)

for every rank-one T € L(X).
Then every weakly compact T also satisfies (DE).

@ Lumer, 1968: X has numerical index 1 if EVERY operator on X satisfies
max |[Id+6T| =1+ T (aDE)
0T
Equivalently, v(T) = ||T|| for EVERY T € L(X).
© M.-Oikhberg, 2004: X has the alternative Daugavet property (ADP) if

every rank-one T € L(X) satisfies (aDE).
Then every weakly compact T also satisfies (aDE).
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Relations between these properties

| Daugavet property| . 7 | Numerical index 1

N

e C([0,1],K(£2)) has DPr, but has not numerical index 1
@ ¢o has numerical index 1, but has not DPr
@ ) Poo C([0,1],K(¢2)) has ADP, neither DPr nor numerical index 1
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Relations between these properties

| Daugavet property| . 7 | Numerical index 1

Examples

e C([0,1],K(£2)) has DPr, but has not numerical index 1
@ ¢o has numerical index 1, but has not DPr
@ ) Poo C([0,1],K(¢2)) has ADP, neither DPr nor numerical index 1

RENES

@ For RNP or Asplund spaces, | ADP ‘ — ‘ numerical index 1 ‘

@ Every Banach space with the ADP can be renormed still having the ADP
but failing the Daugavet property.

A
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Characterizations of the ADP

X Banach space. TFAE:
@ X has ADP (i.e. maxger ||[Id+ 0 T|| = 1+ ||T|| for all T rank-one).
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ADP + SCD == numerical index 1

Characterizations of the ADP

X Banach space. TFAE:

@ X has ADP (i.e. maxger ||[Id+ 0 T|| = 1+ ||T|| for all T rank-one).

o Given x € Sx, a slice S of Bx and € > 0, there is y € S with

x+0y||l >2—e¢.
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e Given x € Sy, a sequence {S;} of slices of By, and € > 0,
there is y* € Sy« such that x € S(By,y*, ¢) and

conv (T S(Bx,y*,€)) (\Sn #@  (n €N).

Theorem

| A\

X ADP + Bx SCD = given x € Sx and & > 0, there is y* € Sx- such that
x € S(Bx,y*,¢) and By =conv(T S(Bx,y",¢€)).

This implies lushness and so, numerical index 1.
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@ ADP + X 2 ¢; = numerical index 1 (actually, lushness).

X real + dim(X) = o0 + ADP = X* D /.

In particular,

X real + dim(X) = oo + numerical index 1 = X* D /3.

X real, dim(X) = o0, n(X) =1 = X Dcpor X Dl ? J
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T € L(X) is an SCD-operator if T(By) is an SCD-set.

v

T is an SCD-operator when T(By) is separable and
O T(By) is RPN,
@ T(Bx) has no {1 sequences,
© T does not fix copies of {1

T =1+ |T].
e XDPr+ T
T Separability is not needed !

Main corollary
X ADP + T does not fix copies of £, =—> maxger [Id+6T| =1+ ||T|.
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@ Find more sufficient conditions for a set to be SCD.

@ For instance, if X has 1-symmetric basis, is By an SCD-set ?

@ Is SCD equivalent to the existence of a countable 7t-base for the weak
topology ?

On SCD-spaces

o E with unconditional basis. Is E SCD ?
o X, YSCD. Are X®,Y and X®, Y SCD ?
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Containment of ¢y and {1

On the containment of ¢y or {1 ]

© Remarks on the containment of ¢y and /4

@ A. Avilés, V. Kadets, M. Martin, J. Meri, and V. Shepelska.
Slicely countably determined Banach spaces.
Trans. Amer. Math. Soc. (2010).

@ V. Kadets, M. Martin, J. Meri, and R. Paya.
Smoothness and convexity for Banach spaces with numerical index 1.
Hlinois J. Math. (2009).
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o (KMMP 2009): In the separable case, lushness implies [x**(x*)| =1 for
every x** € ext (Bx+) and every x* € G, G norming for X.
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Open question (Godefroy, private communication)
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¢ Old approaches to this problem:
o Lépez—M.—Pay4, 1999:
X real, RNP, dim(X) = o0, n(X) =1 = X D ;.
o Kadets—M.—Meri—Pay4, 2009:
X real lush, dim(X) =00 = X* D {;.
o Avilés—Kadets—M.—Meri—Shepelska, 2010:
X real, dim(X) =0 = X* D ;.

J Equivalent reformulation of the problem:

Equivalent open problem

X real separable, X 2 {1, exists G C Sx+ norming with
Bx =aconv ({x € Bx : x*(x) =1}) (x* € G).

Does X D ¢g ?
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Numerical index of Lp

Numerical index of L ,-spaces

© Numerical index of Ly-spaces

) ) & )

@ The 2000’s results on the numerical index on L,-spaces
@ The new results on the numerical index of L,-spaces

M. Martin, and J. Meri,

A note on the numerical index of the Lp-space of dimension two.
Linear Mult. Algebra (2009)

M. Martin, J. Meri, and M. Popov.

On the numerical index of real Lp (y1)-spaces.
Israel J. Math. (2011)

M. Martin, J. Meri, and M. Popov.

On the numerical radius of opearators on Lebesgue spaces.
J. Funct. Anal. (2011)

M. Martin, J. Meri, M. Popov, and B. Randrianantoanina.

Numerical index of absolute sums of Banach spaces.
J. Math. Anal. Appl. (2011)
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) <n(eM) for m € N.
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Known results on the numerical index of L,-spaces

Q n(¢y) < n(fﬁ,mﬂ)) < n(ﬁgm)) for m € IN.
(M.—~Pay4, 2000)

— - L (m)y _ ; (m)
Q n(Lp[0,1]) = n(lp) = r}l_r}r}”n(ép )= W}g{\]n(ép ).
(Ed-Dari, 2005 & Ed-Dari—-Khamsi, 2006)

© In the real case,
1 1 0 1 (2) 0 1
max{z—l/p, 21—/'1}7)(_1 0><n(1€}7 ) gv(_l O)

do < v 1) max ‘t}Fl —
an = —_—
=1 0/ o1 1+¢tF

(M.—Meri, 2009)
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\

Proof of the decreasing

° Z;,m) is an absolute summand in both K;mﬂ) and in fp.
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whose union is dense. Then, = n(Z) > limsup n(Z;).
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Corollary

—
N,

Z Banach space with monotone basis (ey;), Zm = span{e; : 1 < k < m}.
= n(Z) > limsup n(Zp).
m—»00

Proof of the inequality
o Z =y, (ey) canonical basis = Z, = éém) for all m € IN.
o E=1Ly[0,1], (e) Haar system = Z, = Eg,m) for m = 25 (k € N).
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The two-dimensional case

In the real case,

b
T_(c d

la+dtP| + |bt+ctP| |d+atP|+|ct+btP|
v(T) = max{ max max ]

) operator in 622). Then

tef0,1] 1 ¢7 " te[0a] 1+tP

Proof of the result

° n((éz)) < My since

0 1 0 1
(71 O)Hzlandv(i1 O>:Mp.

o We compare (T) with My, but we use ||T||; and ||T||e instead of ||T||,.
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Questions

Qs n((émﬂ)) = n(ﬂém)) form>2 7
@ In the real case, is n(Ly[0,1]) positive ?

© We do not have results for the complex case, even for dimension two.

The 2010’s results

@ We left the finite-dimensional approach and introduce
the absolute numerical radius.

@ This allows to show that 7(L,[0,1]) > 0 in the real case.
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The absolute numerical radius in LP

The numerical radius in L,

o For x € Ly(p), write x* = |x|P~!sign(%).
o It is the unique element in L;(p) such that
Ixllp = ll*1g  and [ xx¥ du = |lxllp llx*llg = llx[lp-
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The numerical radius in L,

o For x € Ly(p), write x* = |x|P~!sign(%).
o It is the unique element in L;(p) such that

Ixllp = 1Ix*1  and  [xo* dp = Jlxllp ll*]lg = [lx]]}-
o Therefore, for T € L(Ly(p)) one has

o(T) = sup{‘/x#Txd;t‘ s x€Ly(u), lIxlly = 1}
= sup{‘/|x|7"_1 sign (%) Txdy| s xeLp(p), |xllp = 1}

—
Absolute numerical radius

For T € L(Ly(n)),
I0(T) : = sup {/ |*Txdy : x € Ly(n), |x]l, = 1}

—sup { [ 11Tl s x € L0, ol =1}
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for every T € L(Ly(p)).

o |n|(Lp(p)) is the greatest constant K > 0 such that

sup{’/ |x|P71|Tx|dy‘ s xeLy(u), |xllp= 1} > K||T||

for every T € L(Ly(p)).
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Giving an estimation of n(L,(i))

Roadmap

We would like to give an estimation of n(Ly (1)) in two steps:

o First, we study the relationship between v(T) and |v|(T) for all
operators T.

@ Second, we study the relationship between |v|(T) and ||T|| for all
operators T. Here, we actually calculate |n|(Ly(u)).
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Relating the numerical radius and the absolute numerical radius

The constant

Write .
e (0 1
My=maxTvw ~“\-1 0

the numerical radius taken in the real E%,.

| N

Remark

It is not difficult to see that in every Lp(y) space there is an operator T with
IT|| =1 and v(T) = M.

\

We may use M, to relate v and |9

Theorem (M.—Meri—Popov, 2011)

In the real case,

for every T € L(Ly(1)).
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Calculating |n|(Ly(p)) |

-1

TP 1 1
Set kp 1= = A(1—A)p = ———.
et Kp 1"Ll:1>a8( 1+ 7P )LIQ[%,);] ( ) pl/qu/’i
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S Th=1 Al 1
t = —_— = q — P —= ——8M8M.
TR T T Ay 1=2) pl/rgl/a

v

The best possibility for [n|(L,(p))

If dim(Ly(p)) > 2, then there is a (positive) operator T € L(Lp(p)) with

ITI =1 [ol(T) = xp.

\

113 / 152



Numerical index of Lp The new results

Calculating |n|(Ly(p)) |

The constant

S Th=1 Al 1
t = — — q — P — .
ST T T ey 1= pl/rgl/a

v

The best possibility for [n|(L,(p))

If dim(Ly(p)) > 2, then there is a (positive) operator T € L(Lp(p)) with

ITI =1 [ol(T) = xp.

\

The examples for £, and L,[0,1]:

113 / 152



Numerical index of Lp The new results

Calculating |n|(Ly(p)) |

The constant

S Th=1 Al 1
t = —_— = q — P —= ——8M8M.
TR T T Ay 1=2) pl/rgl/a

v

The best possibility for [n|(L,(p))

If dim(Ly(p)) > 2, then there is a (positive) operator T € L(Lp(p)) with

ITI =1 [ol(T) = xp.

\

The examples for £, and L,[0,1]:

@ For {y: consider the extension by zero of the matrix (8 (1))

113 / 152



Numerical index of Lp The new results

Calculating |n|(Ly(p)) |

The constant

S Th=1 Al 1
t = —_— = q — P —= ——8M8M.
TR T T Ay 1=2) pl/rgl/a

v

The best possibility for [n|(L,(p))

If dim(Ly(p)) > 2, then there is a (positive) operator T € L(Lp(p)) with

ITI =1 [ol(T) = xp.

\

The examples for £, and L, [0,1]:
@ For {y: consider the extension by zero of the matrix (8 (1))

o For L,[0,1]:

1/2

Tf=2 [ A f(s)ds] X[11] (f € Lp[0,1]).

113 / 152



Numerical index of Ly~ The new results

114 / 152



Numerical index of Lp The new results

Calculating |n|(Ly(p)) Il

Theorem (M.—Meri—Popov, 2011)
|l (Lp(w)) = xp

114 / 152



Numerical index of Lp The new results

Calculating |n|(Ly(p)) Il

Theorem (M.—Meri—Popov, 2011)

|l (Lp(n)) = xp

Proof for positive operators:

114 / 152



Numerical index of Lp The new results

Calculating |n|(Ly(p)) Il

Theorem (M.—Meri—Popov, 2011)

|l (Lp(n)) = xp

Proof for positive operators:
@ Fix T € L(Ly(p)) positive with ||T|| =1, 7> 0 and £ > 0.

114 / 152



Numerical index of Lp The new results

Calculating |n|(Ly(p)) Il

Theorem (M.—Meri—Popov, 2011)

|l (Lp(n)) = xp

Proof for positive operators:
@ Fix T € L(Ly(p)) positive with ||T|| =1, 7> 0 and £ > 0.
@ Find x > 0 with ||x|| =1 and || Tx|” > 1—¢, set
y=xV1Tx and A={weQ: x(w) > 1(Tx)(w)},

and observe that

lyllP = /Ax” dy + /O\A(TTx)p du <1+ and Yy =xP v (zTx)P L

114 / 152



Numerical index of Lp The new results

Calculating |n|(Ly(p)) Il

Theorem (M.—Meri—Popov, 2011)

|l (Lp(n)) = xp

Proof for positive operators:
@ Fix T € L(Ly(p)) positive with ||T|| =1, 7> 0 and £ > 0.
@ Find x > 0 with ||x|| =1 and || Tx|” > 1—¢, set
y=xV1Tx and A={weQ: x(w) > 1(Tx)(w)},

and observe that
b= Pd +/ TTx)Pdu <1+ 7° d # = xP7ly (TTx)P L.
Ioll? = [, <" dut [ (TP and yf =71V (Tx)

@ Now,

1 1
[o|(T) > W/Qy#Tydu > /Oy#Tydu

114 / 152



Numerical index of Lp The new results

Calculating |n|(Ly(p)) Il

Theorem (M.—Meri—Popov, 2011)

|l (Lp(n)) = xp

Proof for positive operators:
@ Fix T € L(Ly(pu)) positive with ||T|| =1, T >0 and & > 0.
@ Find x > 0 with ||x|| =1 and || Tx|” > 1—¢, set
y=xV1Tx and A={weQ: x(w) > 1(Tx)(w)},

and observe that
b= Pd +/ TTx)Pdu <1+ 7° d # = xP7ly (TTx)P L.
Ioll? = [, <" dut [ (TP and yf =71V (Tx)

@ Now,

1 1
[o|(T) > W/Qy#Tydu > /Oy#Tydu

> Y o Txdu= T [(Topdns S
> 1o T xdp = F [ (T > (e,

114 / 152



Numerical index of Lp The new results

Calculating |n|(Ly(p)) Il

Theorem (M.—Meri—Popov, 2011)

|l (Lp(n)) = xp

Proof for positive operators:
@ Fix T € L(Ly(pu)) positive with ||T|| =1, T >0 and & > 0.
@ Find x > 0 with ||x|| =1 and || Tx|” > 1—¢, set
y=xV1Tx and A={weQ: x(w) > 1(Tx)(w)},

and observe that

lyllP = /Ax” dy + /O\A(TTx)p du <1+ and Yy =xP v (zTx)P L

@ Now,

1 1
[o|(T) > W/Qy#Tydu > /Oy#Tydu

> Y o Txdu= T [(Topdns S
> 1o T xdp = F [ (T > (e,

@ Taking supremum on 7 > 0 and ¢ > 0, we get [0[(T) > .
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The main consequence:

My«
n(Ly(p)) = 2 " in the real case.

In particular,

In the real case, n(Ly(p)) > 0 for every p # 2.
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Further results

More results

o If T € L(Ly[0,1]) is rank-one = o(T) > K%,HTH
o If T € L(Ly[0,1]) is compact, then

o(T) > k2||T|| (complex case), o(T) > maxK’ﬂpii_ﬂr IT|| (real case)
=7 ' T 0 141 '
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Extremely non-complex Banach spaces

@ Extremely non-complex Banach spaces
e Motivation
o Extremely non-complex Banach spaces
o Surjective isometries

@ V. Kadets, M. Martin, and J. Meri.
Norm equalities for operators on Banach spaces.
Indiana U. Math. J. (2007).

@ P. Koszmider, M. Martin, and J. Meri.
Extremely non-complex C(K) spaces.
J. Math. Anal. Appl. (2009).

@ P. Koszmider, M. Martin, and J. Meri.
Isometries on extremely non-complex Banach spaces.
J. Inst. Math. Jussieu (2011).
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Example (produced with numerical ranges)

There is a Banach space X such that
@ Iso(X) has no exponential one-parameter semigroups.
@ Iso(X*) contains infinitely many exponential one-parameter semigroups.
In terms of linear dynamical systems:

@ There is no A € L(X) such that the solution of
¥ =Ax (x: Ry — X)
is given by a semigroup of isometries.
@ There are infinitely many such A's on X*

@ But there are unbounded As on X such that the solution of the linear
dynamical system is a one-parameter C semigroup of isometries.

We would like to find X such that

o Iso(X) has no Cy semigroup of isometries.

o Iso(X*) has exponential semigroup of isometries

v
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Numerical range of unbounded operators (1960's)

X Banach space, T: D(T) — X linear,
V(T) = {x*(Tx) : x* € X*, x € D(T), x*(x) = ||x*|| = ||x|| =1}.
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Numerical range of unbounded operators

X Banach space, T: D(T) — X linear,

V(T) = {x*(Tx) : x* € X*, x € D(T), x*(x) = ||x*|| = ||x|| =1}.

Teorema (Stone, 1932)

H Hilbert space, A densely defined operator. TFAE:

@ A generates an strongly continuous one-parameter semigroup of unitary
operators (onto isometries).

e A" =—A.
o Re(Ax | x) =0 for every x € D(A).
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o In Co(R), ®(¥)(f)(s) = f(t+s) is an strongly continuous one-parameter
semigroup of isometries (generated by the derivative).

o In Cg([0,1]]|A) there are also strongly continuous one-parameter
semigroup of isometries.
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Numerical range of unbounded operators. |l

Which Banach spaces have unbounded operators with numerical range zero?

o In Co(R), ®(¥)(f)(s) = f(t+s) is an strongly continuous one-parameter
semigroup of isometries (generated by the derivative).

o In Cg([0,1]]|A) there are also strongly continuous one-parameter
semigroup of isometries.

Consequence

We have to completely change our approach to the problem.
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vy

Some remarks

@ This gives a structure of vector space over C:

(a+iB)x=ax+BT(x) (x+ipeC, xeX)
o Defining )
llx]l = max{[le®x|| : 6 € [0,27]} (x € X)
one gets that (X, || - [|) is a complex Banach space.

o If T is an isometry, then actually the given norm of X is complex.

@ Conversely, if X is a complex Banach space, then

T(x)=ix (x € X)

satisfies T2 = —Id and T is an isometry.
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Q@ If dim(X) < oo, X has complex structure iff dim(X) is even.

Q If X ~ Z @ Z (in particular, X =~ X?), then X has complex structure.

© There are infinite-dimensional Banach spaces without complex structure:
Dieudonné, 1952: the James’ space J (since J** = J ® R).

o Szarek, 1986: uniformly convex examples.

o Gowers-Maurey, 1993: their H.l. space.
]

Ferenczi-Medina Galego, 2007: there are odd and even
infinite-dimensional spaces X.

o X is even if admits a complex structure but its hyperplanes does not.
o X is odd if its hyperplanes are even (and so X does not admit a complex
structure).
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Complex structures |l

Some examples

Q@ If dim(X) < oo, X has complex structure iff dim(X) is even.

Q If X ~ Z@ Z (in particular, X ~ X?), then X has complex structure.
© There are infinite-dimensional Banach spaces without complex structure:

Dieudonné, 1952: the James' space J (since J** = J @ R).
o Szarek, 1986: uniformly convex examples.
o Gowers-Maurey, 1993: their H.l. space.
o Ferenczi-Medina Galego, 2007: there are odd and even
infinite-dimensional spaces X.
o X is even if admits a complex structure but its hyperplanes does not.
o X is odd if its hyperplanes are even (and so X does not admit a complex
structure).

X is extremely non-complex if dist(Tz,—Id) is the maximum possible, i.e.

d+ T2 =1+|T?) (T € L(X))
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What Daugavet did in 1963

The norm equality
1d +T|| = 1+ [|T]]

holds for every compact T € L(C[0,1]).
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The Daugavet equation

What Daugavet did in 1963

The norm equality

1d +T|| = 1+ [|T]]
holds for every compact T € L(C[0,1]).

\

X Banach space, T € L(X), [Id+ T|| =1+ ||T|| (DE).

v

Classical examples

© Daugavet, 1963:
Every compact operator on C[0,1] satisfies (DE).

@ Lozanoskii, 1966:
Every compact operator on L1[0,1] satisfies (DE).

@ Abramovich, Holub, and more, 80’s:
X = C(K), K perfect compact space
or X = Ly(u), p atomless measure
— every weakly compact T € L(X) satisfies (DE).

v
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The Daugavet property (Kadets—Shvidkoy—Sirotkin—Werner, 1997)

A Banach space X is said to have the Daugavet property iff every rank-one
operator on X satisfies (DE).
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Some results

Let X be a Banach space with the Daugavet
property. Then

o Every weakly compact operator on X
satisfies (DE).
o X contains /7.

@ X does not embed into a Banach space
with unconditional basis.

(Kadets—Shvidkoy—Sirotkin—-Werner, 1997 & 2000)
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The Daugavet property

A Banach space X is said to have the Daugavet property iff every rank-one

operator on X satisfies (DE).

Some results

Let X be a Banach space with the Daugavet
property. Then

o Every weakly compact operator on X
satisfies (DE).
o X contains /7.

@ X does not embed into a Banach space
with unconditional basis.

o Geometric characterization: X has the
Daugavet property iff for each x € Sx

co (Bx\ (x+ (2—€)Bx)) = Bx.
(Kadets—Shvidkoy—Sirotkin—-Werner, 1997 & 2000)

Bx \ (z+(2—¢)Bx)
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The Daugavet property |l

More examples

The following spaces have the Daugavet property.
o Wojtaszczyk, 1992:
The disk algebra and H*.
e Werner, 1997:
“Nonatomic” function algebras.

o Oikhberg, 2005:
Non-atomic C*-algebras and preduals of non-atomic von Neumann
algebras.
e Becerra—M., 2005:
Non-atomic JB*-triples and their preduals.
o Becerra—M., 2006:
Preduals of L;(p) without Fréchet-smooth points.

o lvankhno, Kadets, Werner, 2007:
Lip(K) when K C IR" is compact and convex.
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Daugavet—type inequalities

Some examples

o Benyamini—Lin, 1985:
For every 1 < p < oo, p # 2, there exists ¢}, : (0,00) — (0, o)
such that
IMd + Tl > 1+, (IIT])

for every compact operator T on Ly[0,1].

v
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e Benyamini—Lin, 1985:
For every 1 < p < oo, p # 2, there exists ¢y, : (0,00) — (0, 0)
such that
I1d + T[> 1+ ¢p([IT])

for every compact operator T on Ly[0,1].

o If p =2, then there is a non-null compact T on L;[0,1] such that

Id+T| =1.
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Daugavet—type inequalities

Some examples

e Benyamini—Lin, 1985:
For every 1 < p < oo, p # 2, there exists ¢y, : (0,00) — (0, 0)
such that
[1d + Tl > 1+ ¢, (IT1)
for every compact operator T on Ly[0,1].
o If p =2, then there is a non-null compact T on L,[0,1] such that

|[Id + T| = 1.
o Boyko—Kadets, 2004:

If Py is the best possible function above, then

pliﬁnil{ Pp(t) =t  (t>0).

v
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Daugavet—type inequalities

Some examples

e Benyamini—Lin, 1985:
For every 1 < p < oo, p # 2, there exists ¢y, : (0,00) — (0, 0)
such that
I1d + T[> 1+ ¢p([IT])

for every compact operator T on Ly[0,1].
o If p =2, then there is a non-null compact T on L,[0,1] such that

Id+T| = 1.

o Boyko—Kadets, 2004:
If ¥y is the best possible function above, then
lim 1pp(t) ={ (t >0).

p—1t
o Oikhberg, 2005:
If K(fz) CXC L(éz), then

Md+T[>1 Tl

1
+8ﬁ|

for every compact T on X.

v
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Norm equalities for operators

Motivating question

Are there other norm equalities which could define interesting properties of
Banach spaces ?

Concretely

We looked for non-trivial norm equalities of the forms

Md+T[ = F(ITI) or gD = fATI) or [1d+g(T) = f(llg(T)I)

(g analytic, f arbitrary) satisfied by all rank-one operators on a Banach space.
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Norm equalities for operators

Are there other norm equalities which could define interesting properties of
Banach spaces ?

v

We looked for non-trivial norm equalities of the forms

MA+T[ = fATI)  or (DI =fAUTI) or [1d+g(T)[l = f(I(TI)

(g analytic, f arbitrary) satisfied by all rank-one operators on a Banach space.

We proved that there are few possibilities. . . \
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Equalities of the form ||Id + T|| = (|| T|)

Proposition

X real or complex, f : IRar — R arbitrary, a,b € K. If the norm equality
lald+bT| = f(IIT)
holds for every rank-one operator T € L(X), then
f(t) =lal+1o[t  (t€R]).

If a #0, b # 0, then X has the Daugavet property.
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Equalities of the form ||Id + T|| = (|| T|)

Proposition

X real or complex, f : IRar — R arbitrary, a,b € K. If the norm equality
lald+bT| = f(IIT)
holds for every rank-one operator T € L(X), then
f(t) =lal+1o[t  (t€R]).

If a #0, b # 0, then X has the Daugavet property.

Then, we have to look for Daugavet-type equalities in which Id + T is replaced
by something different.
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Proof

lald+bT| = f(||T||) VT € L(X) rank-one
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Proof

lald+bT| = f(||T||) VT € L(X) rank-one

@ Trivial if a-b = 0. Suppose a # 0 and b # 0 and write wy =

?

= f)=lad+blt  (teR).

e Fix xo € Sx, xj € Sx- with x5(x9) = wp and consider

Ty = tx§ @ xg € L(X)

(t e RY).

‘n—\

2 eT.

la]

=
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Proof

?
lald+bT| = f(IT||) ¥T € L(X) rank-one = f()=lal+ bt (teR]).

‘n—\

2 eT.

la]

@ Trivial if a-b = 0. Suppose a # 0 and b # 0 and write wy =

=

e Fix xp € Sx, x} € Sx- with x{j(x9) = wp and consider
Ty=tx;®xg € L(X)  (teR]).
o Since || T¢|| = t, we have

FO) = ald+bTy||  (teR).
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Proof
?

lald+bT| = F(IT|) VT € L(X) rank-one =>  f(t)=lal+[b|t (teRY).
@ Trivial if a-b = 0. Suppose a # 0 and b # 0 and write wy = \%II%I eT.
e Fix xp € Sx, x} € Sx- with x{j(x9) = wp and consider

Ty=tx;®xg € L(X)  (teR]).
@ Since || T¢|| = ¢, we have

f(t) = ||ald + b T¢|| (t e RY).
o |t follows that

la| + [b| t = f(t) = ||ald 4+ b T¢|| > ||[ald + b T¢] (xo) |
~llao + bant x| = o+ bl ol =+ b2 ] = 1ol +
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Proof

?
lald+bT| = f(IT||) ¥T € L(X) rank-one = f()=lal+ bt (teR]).

@ Trivial if a-b = 0. Suppose a # 0 and b # 0 and write wy = \%l%l eT.
e Fix xp € Sx, x} € Sx- with x{j(x9) = wp and consider
Ty=tx;®xg € L(X)  (teR]).
@ Since || T¢|| = ¢, we have
f(t) = ||ald + b T¢|| (t e RY).
o It follows that
la| + [b| t = f(t) = ||ald 4+ b T¢|| > ||[ald + b T¢] (xo) |
=l + beot oll = la-+ bt ol = o+ 60| <ol +

o Finally, for rank-one T € L(X), write S = § T and observe
la| L+ (ITN) = la| + [b] S]] = [lald + b S[| = |a| [|1d + T||.v"
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Equalities of the form ||g(T)|| = f(||T||)

X real or complex with dim(X) > 2.
Suppose that the norm equality

8Tl = fAITI)

holds for every rank-one operator
T € L(X), where

o g: K — K is analytic,

° f: ]Rg — R is arbitrary.
Then, there are a,b € K such that

g(Q)=a+bl (€K).
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Equalities of the form ||g(T)|| = f(||T||)

Corollary

X real or complex with dim(X) > 2. Only three norm equalities of the form
Suppose that the norm equality
8Tl = £(ITI)
(D)l = FUITID :
are possible:
holds for every rank-one operator e b=0: [ald| = |a,

T € L(X), where
o g: K — K is analytic,
° f: ]Rg — R is arbitrary.

0a=0: ||bT| = |bl||T],

(trivial cases)

ea#0,b#0:
Then, there are a,b € K such that lald + b T|| = |a| + |b] || T]|,
g(0)=a+b (¢ € K). (Daugavet property)
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Proof (complex case)

? m
lg(T)|l = £(IT||) YT € L(X) rank-one # g is affine

(o)

o Write g(¢) = Y. aZ¥ y § = g —ao.
k=0
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Proof (complex case)

? m
Ig(T)|| = f(|IT||]) YT € L(X) rank-one # g is affine

o Write (0) = Y al" y § =g —ao.
k=0
@ Take xq, x1 € Sx and xj, x] € Sx+ such that

x5 (x0) =0 and ¥ (x1) =1,

and define the operators Ty = x5 @ xg and T; = x] ® x1.
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Proof (complex case)

? m
lg(T)|l = £(IT||) YT € L(X) rank-one i g is affine

(o)

° Write g(¢) = kZ%)aké" y§=g—ao.
@ Take xq, x1 € Sx and xj, x] € Sx« such that
x5(x0) =0 and X (x1) =1,
and define the operators Ty = xj ® xg and T; = x] ® x1.
o Then ¢(ATy) = apgld+mA Ty and g(ATy) =apld+3(A) Ty
(Ae@).
@ Therefore, for A € C we have

lagld + (M) Tal| = lIg(AT1)[| = f(IA]) = lIg(ATo)[| = [laold + a1ATo||.
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Proof (complex case)

? m
lg(T)|l = £(IT||) YT € L(X) rank-one i g is affine

(o)

° Write g(¢) = kZ%)akC" y§=g—ao.
@ Take xq, x1 € Sx and xj, x] € Sx« such that
x5(x0) =0 and X (x1) =1,
and define the operators Ty = xj ® xg and T; = x] ® x1.
o Then ¢(ATy) = apgld+mA Ty and g(ATy) =apld+3(A) Ty
(Ae@).
o Therefore, for A € C we have

llaold + (M) Th || = lIg(ATh) || = F(IA]) = llg(ATo) || = [laold + a1 ATo|-

@ We use the triangle inequality to get
|8 < 2[ao] + [ar][A] - (A €C),
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Proof (complex case)

? m
lg(T)|l = £(IT||) YT € L(X) rank-one ? g is affine

(o)

° Write g({) = kZ ulyg=g—ao.
o Take xg, x1 € S;g and xj, x] € Sx+ such that
x5(x0) =0 and X (x1) =1,
and define the operators Ty = xj ® xg and T; = x] ® x1.
o Then ¢(ATy) = apgld+mA Ty and g(ATy) =apld+3(A) Ty
(Ae@).
o Therefore, for A € C we have

llaold + (M) Th || = lIg(ATh) || = F(IA]) = llg(ATo) || = [laold + a1 ATo|-

@ We use the triangle inequality to get
|§(A)] < 2faol + [ar][A] (A €C),

@ and so § is a degree-one polynomial by Cauchy inequalities. v’
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Equalities of the form ||Id + g(T)|| = f(||g(T)||)

If X has the Daugavet property and g is analytic, then

1d+g(T)[| = 1+ g(0)] = [g(O)] + [I&(T) |
for every rank-one T € L(X).
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Equalities of the form ||Id + g(T)|| = f(||g(T)||)

If X has the Daugavet property and g is analytic, then

1d+g(T)[| = 1+ g(0)] = [g(O)] + [I&(T) |
for every rank-one T € L(X).

@ Our aim here is not to show that g has a suitable form,
@ but it is to see that for every g another simpler equation can be found.

@ From now on, we have to separate the complex and the real case.
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Equalities of the form ||Id + ¢(T)|| = f(

e COMPLEX CASE:

X complex, dim(X) > 2. Suppose that

d +g(T)Il = f(llg(T)II)

for every rank-one T € L(X), where
@ g:C — C analytic non-constant,
° f: ]RS' — R continuous.

Then

|(1+ £(0))1d + T||
= [1+¢(0)| - [g(0)| + [|g(0)1d + T

for every rank-one T € L(X).

g(MI)
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Equalities of the form ||I1d + ¢(T)|| = f(

e COMPLEX CASE:

X complex, dim(X) > 2. Suppose that

d +g(T)Il = f(llg(T)II)

for every rank-one T € L(X), where
@ g:C — C analytic non-constant,
° f: ]Ra' — R continuous.

Then

|(1+ £(0))1d + T||
= [1+¢(0)| - [g(0)| + [|g(0)1d + T

for every rank-one T € L(X).

g(MI)

o [1+g(0)[ - g(0)] # 0 or
° [1+g(0)] - Ig(0)] =0.

|
1

1

1

1

1

1

1

1

1

1

1

I

~1 !
1

1
1
1
1
!
1
1
|
1
1
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Equalities of the form ||Id 4+ ¢(T)|| = f(||g(T)||). Complex case

If Reg(0) # —1/2 and
[1d+g(T)[l = fAlIg(T)I)

for every rank-one T, then X has
the Daugavet property.
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Equalities of the form ||Id 4+ ¢(T)|| = f(||g(T)||). Complex case

If Reg(0) = —1/2 and
1 +g(T)|| = f(llg(T)II)

for every rank-one T, then exists 6 € R s.t.

If Reg(0) # —1/2 and
[1d+g(T)[l = fAlIg(T)I)

for every rank-one T, then X has

the Daugavet property. HId—&-eiGO TH = |Id+ T

for every rank-one T € L(X).
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Equalities of the form ||Id + ¢(T)|| = f(

If Reg(0) # —1/2 and
[1d+g(T)[l = fAlIg(T)I)

for every rank-one T, then X has
the Daugavet property.

g(T)||). Complex case

If Reg(0) = —1/2 and
1 +g(T)|| = f(llg(T)II)

for every rank-one T, then exists 0y € R s.t.

[1d+e® T|| = ||Id + 7|

for every rank-one T € L(X).

| A

Example
If X = C[0,1] &, C[0,1], then
o |ld+eT| =|Id+T|
for every 6 € R, rank-one T € L(X).
@ X does not have the Daugavet property. )
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Equalities of the form ||Id + ¢(T)|| = f(||g(T)|). Real case

e REAL CASE:
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Equalities of the form ||Id + ¢(T)|| = f(

e REAL CASE:

@ The proofs are not valid (we use
Picard’s Theorem).

@ They work when g is onto.

@ But we do not know what is the
situation when ¢ is not onto, even
in the easiest examples:

o |l1d+ T2|| =1+ |72,
° ||Id - T2|| =1+ ||T?.

2(T)]]). Real case
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Equalities of the form ||Id + ¢(T)|| = f(||g(T)|). Real case

e REAL CASE:

“0)=1/2 |

@ The proofs are not valid (we use
Picard’s Theorem).

@ They work when g is onto.
@ But we do not know what is the

If X = C[0,1] @, C[0,1], then

situation when ¢ is not onto, even o |[1d—T| =|1d+T|

in the easiest examples: for every rank-one T € L(X).
o [|ld+T2|| =1+ T,
o -T2 =1+ |72

@ X does not have the Daugavet
property.
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The question

Godefroy, private communication

Is there any real Banach space X (with dim(X) > 1) such that

I1d + T2 = 1+ || T

for every operator T € L(X) ?

In other words, are there extremely non-complex spaces other than R ?
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The first attempts

The first idea

We may try to check whether the known spaces without complex structure are
actually extremely non-complex.
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The first attempts

The first idea
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Some examples

If dim(X) < oo, X has complex structure iff dim(X) is even.
Dieudonné, 1952: the James’ space J (since J** = J ® R).
Szarek, 1986: uniformly convex examples.

Gowers-Maurey, 1993: their H.l. space.
Ferenczi-Medina Galego, 2007: there are odd and even
infinite-dimensional spaces X.
o X is even if admits a complex structure but its hyperplanes does not.
e X is odd if its hyperplanes are even (and so X does not admit a complex
structure).
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Szarek, 1986: uniformly convex examples.

Gowers-Maurey, 1993: their H.l. space.
Ferenczi-Medina Galego, 2007: there are odd and even
infinite-dimensional spaces X.
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structure).

00 00O

\

(Un)fortunately. . .

This did not work and we moved to C(K) spaces.
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The first example: weak multiplications

Koszmider, 2004; Plebanek, 2004

There are compact spaces K such that C(K) has “few operators”: every
operator is a weak multiplication.

N

Let K be a compact space. T € L(C(K)) is a weak multiplication if
T=gld+S

where ¢ € C(K) and S is weakly compact.

| \

Theorem

K perfect, T = gId + S € L(C(K)) weak multiplication
= [+ T2 =1+ T

N
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o Step 1: We assume | g?| < 1 and min g?(K) > 0.

o It is enough to show that

HId— (g21d+5)H < 1+|gd+S|.

o [I1d - (g2Id + S)|l < [|(1 — g*)Id|| + [|S]| = 1 — ming*(K) + ||S]I.

o [lg*1d + S| = [|Id + S + (g*1d —1d)|| > [[Id + S|| - [|g*1d —Id]|
=1+]S] - (1 - ming?(K)) = ||S]| + ming*(K).
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o |[Id+ S| =1+ S|l (if S € W(X), K perfect) 1d + T2|| = 1+ || T2

o If T =gId+S, then T? = g?>Id + S’ with S’ weakly compact.

o We will prove that [[Id + g2Id + S| = 1+ ||g?Id + S||
for g € C(K) and S weakly compact.

o Step 1: We assume | g?| < 1 and min g?(K) > 0.

o Step 2: We can avoid the assumption that min g?(K) > 0.

Just think that the set of operators satisfying
(DE) is closed.
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o |[Id+ S| =1+ S|l (if S € W(X), K perfect) 1d + T2|| = 1+ || T2

o If T =gId+S, then T? = g?>Id + S’ with S’ weakly compact.

o We will prove that [[Id + g2Id + S| = 1+ ||g?Id + S||
for g € C(K) and S weakly compact.

Step 1: We assume [|g?|| <1 and ming?(K) > 0.

Step 2: We can avoid the assumption that min g?(K) > 0.

o Step 3: Finally, for every g the above gives
1
i+ e (10+8)] =1+ pplstia i

which gives us the result. v’
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o If T =gId+S, then T? = g?>Id + S’ with S’ weakly compact.

o We will prove that [[Id + g2Id + S| = 1+ ||g?Id + S||
for g € C(K) and S weakly compact.

o Step 1: We assume | g?| < 1 and min g?(K) > 0.
o Step 2: We can avoid the assumption that min g?(K) > 0.

o Step 3: Finally, for every g the above gives

1
H‘” T (£714+5) H eyl

which gives us the result. v’

If [lu+ ol = lul + o] == lau+poll =alul +pllo| for «,p € Ry
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The first example: weak multiplications. |l

Let K be a compact space. T € L(C(K)) is a weak multiplication if
T=gld+S

where ¢ € C(K) and S is weakly compact.

Theorem

| A\

K perfect, T = gId + S € L(C(K)) weak multiplication
= |ld+T?|| =1+ |T?|
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Let K be a compact space. T € L(C(K)) is a weak multiplication if
T=gld+S

where ¢ € C(K) and S is weakly compact.

Theorem
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K perfect, T = gId + S € L(C(K)) weak multiplication
= |ld+T?|| =1+ |T?|

Example (Koszmider, 2004; Plebanek, 2004)

There are perfect compact spaces K such that all operators on C(K) are weak
multiplications.

N
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The first example: weak multiplications. |l

Let K be a compact space. T € L(C(K)) is a weak multiplication if
T=gld+S

where ¢ € C(K) and S is weakly compact.

Theorem

| \

K perfect, T = gId + S € L(C(K)) weak multiplication
= |ld+T?|| =1+ |T?|

\

Example (Koszmider, 2004; Plebanek, 2004)

There are perfect compact spaces K such that all operators on C(K) are weak
multiplications.

N

Consequence

Therefore, there are extremely non-complex C(K) spaces.
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Let K be a compact space. T € L(C(K)) is a weak multiplier if
T =gId+S

where ¢ is a Borel function and S is weakly compact.
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Let K be a compact space. T € L(C(K)) is a weak multiplier if
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where ¢ is a Borel function and S is weakly compact.

Theorem

| A

If K is perfect and all operators on C(K) are weak multipliers, then C(K) is
extremely non-complex.
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Let K be a compact space. T € L(C(K)) is a weak multiplier if
T =¢Id+S

where ¢ is a Borel function and S is weakly compact.

Theorem

| A

If K is perfect and all operators on C(K) are weak multipliers, then C(K) is
extremely non-complex.

Example (Koszmider, 2004)

There are infinitely many different perfect compact spaces K such that all
operators on C(K) are weak multipliers.

N

Corollary

| A\

There are infinitely many non-isomorphic extremely non-complex Banach
spaces.

v
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There is a compact infinite totally disconnected and perfect space K such that
all operators on C(K) are weak multipliers.
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Proposition

There is a compact infinite totally disconnected and perfect space K such that
all operators on C(K) are weak multipliers.

Consequence

There is a family (K;);c1 of pairwise disjoint perfect and totally disconnected
compact spaces such that

@ every operator on C(K;) is a weak multiplier,
o for i # j, every T € L(C(K;), C(Kj)) is weakly compact.
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Further examples

Proposition

There is a compact infinite totally disconnected and perfect space K such that
all operators on C(K) are weak multipliers.

Consequence

There is a family (K;);c1 of pairwise disjoint perfect and totally disconnected
compact spaces such that

@ every operator on C(K;) is a weak multiplier,
o for i # j, every T € L(C(K;), C(Kj)) is weakly compact.

| A

Theorem

There are some compactifications K of the above family (K;);cs such that the
corresponding C(K)'s are extremely non-complex.

142 / 152



Extremely non-complex Extremely non-complex Banach spaces

143 / 152



Extremely non-complex Extremely non-complex Banach spaces

Further examples |l

Main consequence

There are perfect compact spaces Ki, Kj such that:
e C(K7) and C(Kjy) are extremely non-complex,
e C(Kj) contains a complemented copy of C(A).

o C(Ky) contains a 1-complemented isometric copy of Zw.
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Further examples |l

Main consequence

There are perfect compact spaces Ki, Kj such that:
e C(K7) and C(Kjy) are extremely non-complex,
e C(Kj) contains a complemented copy of C(A).

o C(Ky) contains a 1-complemented isometric copy of Zw.

Observation

e C(K7) and C(Ky) have operators which are not weak multipliers.

@ They are not indecomposable spaces.
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Find topological characterization of the compact Hausdorff spaces K such that
the spaces C(K) are extremely non-complex.
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Find topological characterization of the compact Hausdorff spaces K such that
the spaces C(K) are extremely non-complex.

Question 2

Find topological consequences on K when C(K) is extremely non-complex.

For instance:

If C(K) is extremely non-complex and ¢ : K — K is continuous, are there an
open subset U of K such that |y = id and (K \ U) is finite 7
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Related open questions

Find topological characterization of the compact Hausdorff spaces K such that
the spaces C(K) are extremely non-complex.

Find topological consequences on K when C(K) is extremely non-complex.

For instance:

If C(K) is extremely non-complex and ¢ : K — K is continuous, are there an
open subset U of K such that 9|y = id and (K '\ U) is finite ?

o We will show latter than ¢ : K — K homeomorphism =— ¢ =id.
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Definition

X is extremely non-complex if dist(T?, —Id) is the maximum possible, i.e.

ld+ T2 =1+ (T2 (T € L(X))
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Extremely non-complex Banach spaces

X is extremely non-complex if dist(T?, —Id) is the maximum possible, i.e.

1d + T2|| = 1+ || T?|| (T € L(X))

v

There are several extremely non-complex C(K) spaces:

If T = gld+ S for every T € L(C(K)) (K Koszmider).

If T* = gId + S for every T € L(C(K)) (K weak Koszmider).
One C(K) containing a complemented copy of C(A).

One C(K) containing an isometric (1-complemented) copy of {c.
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Isometries on extremely non-complex spaces. |

X extremely non-complex.
o Telso(X) = T?=1Id.
o T, €ls0(X) = T =TDT.
o T, T, €lso(X) = ||y — Tz € {0,2}.
o ®:R;j — Iso(X) one-parameter semigroup = ®(R) = {Id}.
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Isometries on extremely non-complex spaces. |

X extremely non-complex.
o Tclso(X) = T?=1Id.
o T, €ls0(X) = T =TDT.
o T, T, €lso(X) = ||y — Tz € {0,2}.
o ®:R;j — Iso(X) one-parameter semigroup = ®(R) = {Id}.

Proof.

o Take S= 5 (T—-T') = §2=3T°—1d+ ;T2
o 1+ 82 = |1d + 82|| = H%Ter %T‘ZH <1 = $2=0.

@ ThenId = %TZ + %T‘Z.

o Since Id is an extreme point of By (x) = T?=T2=Id. v
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Isometries on extremely non-complex spaces. |

X extremely non-complex.
o Telso(X) = T?=1Id.
o T, €ls0(X) = T, =TT
o T, T, €lso(X) = ||y — Tz € {0,2}.
o ®:R;j — Iso(X) one-parameter semigroup = ®(R) = {Id}.

Proof.

Id=(T1T2)(T1 T2)
= NTh=T(ITNLNTT)T = (T1T)Lhh(hh) =TT v
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Isometries on extremely non-complex spaces. |

X extremely non-complex.
o Telso(X) = T?=1Id.
o T, €ls0(X) = T =TDT.
o T, T, €lso(X) = ||y — Tz € {0,2}.
o ®:R;j — Iso(X) one-parameter semigroup = ®(R) = {Id}.

Proof.

o ([d-T)>=2(Id-T) = 2|[Ild—T| = ||(Id — T)?|| < ||1d — T||*.
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Isometries on extremely non-complex spaces. |

X extremely non-complex.
o Telso(X) = T?=1Id.
o T, €ls0(X) = T =TDT.
o T, T, €lso(X) = ||y — Tz € {0,2}.
o ®:R;j — Iso(X) one-parameter semigroup = ®(R) = {Id}.

Proof.

o ([d-T)>=2(Id-T) = 2|[Ild—T| = ||(Id — T)?|| < ||1d — T||*.
e So |[Id — T|| € {0,2}.
o |T1 - I = [Ti(ld —= 1 Tp)| = [[Id — T1 T»|| € {0,2}. V'
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Isometries on extremely non-complex spaces. |

X extremely non-complex.
o Telso(X) = T?=1Id.
o T, €ls0o(X) = TiTh = DTy
o T, T, €lso(X) = ||y — Tz € {0,2}.
o ®:R;j — Iso(X) one-parameter semigroup = ®(R{) = {Id}.

Proof.

D(t) = d(t/2+1/2) = D(t/2)2 =1d. vV
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Isometries on extremely non-complex spaces. |

X extremely non-complex.
o Telso(X) = T?=1Id.
o T, €ls0(X) = T =TDT.
Ty, T; € Iso(X) = || Ty — Tz € {0,2}.
o ®:R;j — Iso(X) one-parameter semigroup = ®(R) = {Id}.

V.
Consequences
”

146 / 152



Extremely non-complex  Surjective isometries

Isometries on extremely non-complex spaces. |

X extremely non-complex.
o Telso(X) = T?=1Id.
o T, €ls0(X) = T =TDT.
o T, T, €lso(X) = ||y — Tz € {0,2}.
o ®:R;j — Iso(X) one-parameter semigroup = ®(R) = {Id}.

V.
Consequences

@ Iso(X) is a Boolean group for the composition operation.
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Isometries on extremely non-complex spaces. |

X extremely non-complex.
o Telso(X) = T?=1Id.
o T, €ls0o(X) = TiTh = DTy
Ty, T; € Iso(X) = || Ty — Tz € {0,2}.
o ®:R;j — Iso(X) one-parameter semigroup = ®(R) = {Id}.

V.
Consequences

@ Iso(X) is a Boolean group for the composition operation.

o Iso(X) identifies with the set Unc(X) of unconditional projections on X:
P € Unc(X) <= P?> = P, 2P —1d € Iso(X)

< P=-(Id-T), T €Iso(X), T? = 1d.

N[ —
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Isometries on extremely non-complex spaces. |

X extremely non-complex.
o Telso(X) = T?=1Id.
o T, €ls0o(X) = TiTh = DTy
Ty, T; € Iso(X) = || Ty — Tz € {0,2}.
o ®:R;j — Iso(X) one-parameter semigroup = ®(R) = {Id}.

| A\

Consequences

@ Iso(X) is a Boolean group for the composition operation.

o Iso(X) identifies with the set Unc(X) of unconditional projections on X:
P € Unc(X) <= P?> = P, 2P —1d € Iso(X)

<~ P= %(Id —T), T €Iso(X), T? = 1d.

o Iso(X) = Unc(X) is a Boolean algebra
<= PP, € Unc(X) when P, P, € Unc(X)

— H% (d+T, + T — Tsz)H =1 for every Ty, T» € Iso(X).

v
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Extremely non-complex Cg(K]||L) spaces.

K perfect weak Koszmider, L closed nowhere dense, E C C(L)
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Important consequence: Example

Take K perfect weak Koszmider, L. C K closed nowhere dense with
E=1{, C C[0,1] C C(L):
o Cy,(K]||L) has no non-trivial one-parameter semigroup of isometries.
o Cy, (K||L)* = £, &1 Co(K]||L)*, so Iso(Cy, (K[|L)*) D Iso(£y).

But we are able to give a better result...
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e ¢(x) =x for all x € Dy.
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@ 0 is continuous. v’
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Isometries on extremely non-complex Cg(K||L) spaces

Theorem (Banach-Stone like)

Ce(K||L) extremely non-complex, T € Iso(Cg(K]|L))
— exists 6 : K\ L — {—1,1} continuous such that

[T(OI(x) =6(x)f(x)  (x€K\L, fe€Cp(K|L))

Consequences: cases E = C(L) and E =0

o C(K) extremely non-complex, ¢ : K — K homeomorphism — ¢ =id

o Cop(K\ L) =Cy(K||L) extremely non-complex, ¢ : K\ L — K\ L
homeomorphism — ¢ =id

@ In both cases, the group of surjective isometries identifies with a Boolean
algebra of clopen sets.
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— exists 6 : K\ L — {—1,1} continuous such that
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Consequences: general case

o If for every x € L, there is f € E with f(x) # 0
= 0 extends to the whole K and

[T(H](x) =0(x)f(x)  (x€K, feCe(K|L))
for every surjective isometry T.

o If this happens, then 0 & ext(BE*)w (V. Kadets).
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Isometries on extremely non-complex Cg(K||L) spaces

Theorem (Banach-Stone like)

Ce(K||L) extremely non-complex, T € Iso(Cg(K]|L))
— exists 6 : K\ L — {—1,1} continuous such that

[T(OI(x) =6(x)f(x)  (x€K\L, fe€Cp(K|L))

Consequence: connected case

If K and K\ L are connected, then

Iso(Cg(K|L)) = {-Id, +1d}
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Proof.
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Open questions on extremely non-complex Banach spaces

X extremely non complex
@ Does X have the Daugavet property ?
o Stronger: Does Y have the Daugavet property if

|Id + T2|| = 14 ||T?|| for every rank-one T € L(Y) ?

o Isit true that n(X) =17
o We actually know that n(X) > C > 0.

Is Iso(X) = Unc(X) a Boolean algebra ?

e If Y < X is 1-codimensional, is Y extremely non complex ?

Is it possiblethat X ~ Z o ZHZ ?
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