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Basic notation

Notation

Basic notation I
K base field (R or C):

T modulus-one scalars,
Re z real part of z (Re z = z if K = R).

H Hilbert space: (· | ·) denotes the inner product.
X Banach space:

SX unit sphere, BX unit ball,
X∗ dual space,
L(X) bounded linear operators,
W(X) weakly compact linear operators,
Iso(X) surjective linear isometries,

X Banach space, T ∈ L(X):
Sp(T) spectrum of T.
T∗ ∈ L(X∗) adjoint operator of T.
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Basic notation

Notation

Basic notation (II)
X Banach space, B ⊂ X, C convex subset of X:

B is rounded if TB = B,
co(B) convex hull of B,
co(B) closed convex hull of B,
aconv(B) = co(T B) absolutely convex hull of B,
aconv(B) = co(T B) absolutely convex hull of B,
ext(C) extreme points of C,
slice of C:

S(C, x∗, α) =
{

x ∈ C : Re x∗(x) > sup Re x∗(C)− α
}

where x∗ ∈ X∗ and 0 < α < sup Re x∗(C).

Re f (x) = α

A
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Numerical range of operators

Numerical range of operators

2 Numerical range of operators
Definitions and first properties

Numerical range
Numerical radius
The Bohnenblust-Karlin theorem
The numerical index

F. F. Bonsall and J. Duncan
Numerical Ranges. Vol I and II.
London Math. Soc. Lecture Note Series, 1971 & 1973.
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Numerical range of operators Definitions and first properties

Numerical range: Hilbert spaces

Hilbert space numerical range (Toeplitz, 1918)
A n× n real or complex matrix

W(A) =
{
(Ax | x) : x ∈ Kn, (x | x) = 1

}
.

H real or complex Hilbert space, T ∈ L(H),

W(T) =
{
(Tx | x) : x ∈ H, ‖x‖ = 1

}
.

Remark
F Given T ∈ L(H) we associate

a sesquilinear form ϕT(x, y) = (Tx | y) (x, y ∈ H),
a quadratic form ϕ̂T(x) = ϕT(x, x) = (Tx | x) (x ∈ H).

F Then, W(T) = ϕ̂T(SH).

Therefore:
ϕ̂T(BH) = [0, 1]W(T),
ϕ̂T(H) = R+ W(T).
But we cannot get W(T) from ϕ̂T(BH) !
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Numerical range of operators Definitions and first properties

Numerical range: Hilbert spaces. Properties.

Some properties
H Hilbert space, T ∈ L(H):

(Toeplitz-Hausdorff) W(T) is convex.
T, S ∈ L(H), α, β ∈ K:

W(αT + βS) ⊆ αW(T) + βW(S);
W(αId + βS) = α + βW(S).

W(U∗TU) = W(T) for every T ∈ L(H) and every U unitary.
Sp(T) ⊆W(T).
If T is normal, then W(T) = co Sp(T).
In the real case (dim(H) > 1), there is T ∈ L(H), T 6= 0 with
W(T) = {0}.
In the complex case,

sup{|(Tx | x)| : x ∈ SH} >
1
2
‖T‖.

If T is actually self-adjoint, then
sup{|(Tx | x)| : x ∈ SH} = ‖T‖.
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Numerical range of operators Definitions and first properties

Proving a result

H complex Hilbert space, T ∈ L(H), then

v(T) := sup{|(Tx | x)| : x ∈ SH} >
1
2
‖T‖.

For x, y ∈ SH fixed, use the polarization formula:

(Tx | y) =
1
4

[
(T(x + y) | x + y) − (T(x− y) | x− y)

+ i (T(x + iy) | x + iy) − i (T(x− iy) | x− iy)
]
.

|(Tx | y)| 6 1
4

v(T)
[
‖x + y‖2 + ‖x− y‖2 + ‖x + iy‖2 + ‖x− iy‖2].

By the parallelogram’s law:

|(Tx | y)| 6 1
4

v(T)
[
2‖x‖2 + 2‖y‖2 + 2‖x‖2 + 2‖iy‖2] = 2v(T).

We just take supremum on x, y ∈ SH X
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Numerical range of operators Definitions and first properties

Numerical range: Hilbert spaces. Motivation.

Some reasons to study numerical ranges

It gives a “picture” of the matrix/operator which allows to “see” many
properties (algebraic or geometrical) of the matrix/operator.
It is a comfortable way to study the spectrum.
It is useful to estimate spectral radii of small perturbations of matrices.
It is useful to work with some concepts like hermitian operator,
skew-hermitian operator, dissipative operator. . .

Example

Consider A =

(
0 M
0 0

)
and B =

(
0 0
ε 0

)
.

Sp(A) = {0}, Sp(B) = {0}.
Sp(A + B) = {±

√
Mε} ⊆W(A + B) ⊆W(A) + W(B),

so the spectral radius of A + B is bounded above by 1
2 (|M|+ |ε|).
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Numerical range of operators Definitions and first properties

Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, T ∈ L(X),

V(T) =
{

x∗(Tx) : x∗ ∈ SX∗ , x ∈ SX , x∗(x) = 1
}

Some properties
X Banach space, T ∈ L(X).

V(T) is connected but not necessarily convex.
T, S ∈ L(X), α, β ∈ K:

V(αT + βS) ⊆ αV(T) + βV(S);
V(αId + βS) = α + βV(S).

Sp(T) ⊆ V(T).
(Zenger–Crabb) Actually, co

(
Sp(T)

)
⊆ V(T).

co Sp(T) =
⋂{Vp(T) : p equivalent norm}

where Vp(T) is the numerical range of T in the Banach space (X, p).
V(U−1TU) = V(T) for every T ∈ L(X) and every U ∈ Iso(X).
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Numerical range of operators Definitions and first properties

Numerical range: Banach spaces (II)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, T ∈ L(X),

V(T) =
{

x∗(Tx) : x∗ ∈ SX∗ , x ∈ SX , x∗(x) = 1
}

The numerical range as a derivative
X Banach space, T ∈ L(X). Then

sup Re V(T) = lim
α→0∗

‖Id + αT‖ − 1
α

i.e. sup Re V(T) is the derivative of the norm at Id in the direction of T.

Consequence
X Banach space, T ∈ L(X). Then co

(
V(T)

)
= co

(
V(T∗)

)
.

Stronger result (Bollobás, 1970)
X Banach space, T ∈ L(X). Then

V(T) ⊆ V(T∗) ⊆ V(T).
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Numerical range of operators Definitions and first properties

Numerical range: Banach spaces (III)

Observation
The numerical range depends on the base field:

X complex Banach space =⇒ XR real space underlying X.
T ∈ L(X) =⇒ TR ∈ L(XR) is T view as a real operator.
Then V(TR) = Re V(T).

Consequence:
X complex, then there is S ∈ L(XR) with ‖S‖ = 1 and V(S) = {0}.
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Numerical range of operators Definitions and first properties

Numerical range: Banach spaces (IV)

Some motivation for the numerical range

It allows to carry to the general case the concepts of hermitian operator,
skew-hermitian operator, dissipative operators. . .
It gives a description of the Lie algebra corresponding to the Lie group of
all onto isometries on the space.
It gives an easy and quantitative proof of the fact that Id is an strongly
extreme point of BL(X) (MLUR point).
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Numerical range of operators Definitions and first properties

Numerical radius: definition and properties

Numerical radius
X real or complex Banach space, T ∈ L(X),

v(T) = sup
{
|λ| : λ ∈ V(T)

}

= sup
{
|x∗(Tx)| : x∗ ∈ SX∗ , x ∈ SX , x∗(x) = 1

}

Elementary properties
X Banach space, T ∈ L(X)

v(·) is a seminorm, i.e.

v(T + S) 6 v(T) + v(S) for every T, S ∈ L(X).
v(λ T) = |λ| v(T) for every λ ∈ K, T ∈ L(X).

sup | Sp(T)| 6 v(T).
v(U−1TU) = v(T) for every U ∈ Iso(X).
v(T∗) = v(T).
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Numerical range of operators Definitions and first properties

Numerical radius: examples

Some examples

1 H real Hilbert space dim(H) > 1
=⇒ exist T ∈ L(X) with v(T) = 0 and ‖T‖ = 1.

2 H complex Hilbert space dim(H) > 1

v(T) > 1
2‖T‖,

the constant 1
2

is optimal.

3 X = L1(µ) =⇒ v(T) = ‖T‖ for every T ∈ L(X).
4 X∗ ≡ L1(µ) =⇒ v(T) = ‖T‖ for every T ∈ L(X).
5 In particular, this is the case for X = C(K).
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Numerical range of operators Definitions and first properties

Proving a result

X = C(K) =⇒ v(T) = ‖T‖ for every T ∈ L(X).

Fix T ∈ L
(
C(K)

)
. Find f0 ∈ SC(K) and ξ0 ∈ K such that

∣∣[T f0](ξ0)
∣∣ ∼ ‖T‖.

If f0(ξ0) ∼ 1, then we were done. This our goal.

Consider the non-empty open set
V =

{
ξ ∈ K : f0(ξ) ∼ f0(ξ0)

}

and find ϕ : K −→ [0, 1] continuous with supp(ϕ) ⊂ V and ϕ(ξ0) = 1.
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Numerical range of operators Definitions and first properties

Differences between real and complex spaces

Example
X complex Banach space, define T ∈ L(XR) by

T(x) = i x (x ∈ X).

‖T‖ = 1 and v(T) = 0 if viewed in XR.

‖T‖ = 1 and V(T) = {i}, so v(T) = 1 if viewed in (complex) X.

Theorem (Bohnenblust-Karlin, 1955; Glickfeld, 1970)
X complex Banach space, T ∈ L(X):

v(T) >
1
e
‖T‖.

The constant 1
e

is optimal:

∃ X two-dimensional complex, ∃ T ∈ L(X) with ‖T‖ = e and v(T) = 1.
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Numerical range of operators Definitions and first properties

Proof of Bohnenblust-Karlin’s theorem. Preliminaries

The exponential function

X Banach space, T ∈ L(X), define exp(T) =
∞

∑
n=0

1
n!

Tn.

First properties
X Banach space, T, S ∈ L(X).

TS = ST =⇒ exp(T + S) = exp(T) exp(S).
exp(T) exp(−T) = exp(0) = Id =⇒ exp(T) surjective isomorphism.{

exp(ρ T) : ρ ∈ R+
0
}

one-parameter semigroup generated by T.

‖exp(T)‖ 6 e‖T‖ (we will improve this inequality in the sequel).

Exponential formula
X Banach, T ∈ L(X), then ‖ exp(ζT)‖ 6 e|ζ|v(T) for every ζ ∈ K.

Actually, ‖ exp(T)‖ 6 esup Re V(T) 6 ev(T).
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Proof

For α > 0 and T ∈ L(X),

e1/α‖ exp(T)‖ =
∥∥∥∥exp

(
1
α

Id + T
)∥∥∥∥ 6 exp

(∥∥∥∥
1
α

Id + T
∥∥∥∥
)

.

Therefore,

‖ exp(T)‖ 6 exp
( ‖Id + αT‖ − 1

α

)
.

Taking limit with α→ 0+, we get

‖ exp(T)‖ 6 exp
(
sup Re V(T)

)
6 ev(T)

and the result follows.
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( ‖Id + αT‖ − 1

α

)
.

Taking limit with α→ 0+, we get

‖ exp(T)‖ 6 exp
(
sup Re V(T)

)
6 ev(T)

and the result follows.
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Numerical range of operators Definitions and first properties

Proof of Bohnenblust-Karlin’s theorem

Theorem
X complex Banach space, T ∈ L(X). Then ‖T‖ 6 e v(T).

Proof.
Consider f (ζ) = exp(ζT) (ζ ∈ C) which is an entire function.

If v(T) = 0, then ‖ f (ζ)‖ 6 exp(|ζ|v(T)) 6 1
[Liouville’s theorem] =⇒ f is constant, so T = f ′(0) = 0.
Now, it is enough to show that v(T) = 1 implies ‖T‖ 6 e.
Indeed, by Cauchy integral formula

T = f ′(0) =
1

2π i

∫

C(0,1)

f (ζ)
ζ2 dζ .

Therefore,

‖T‖ 6 1
2π

∫

C(0,1)
‖ exp(ζT)‖ dζ 6

1
2π

∫

C(0,1)
e|ζ|v(T) dζ = e

and we are done.
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Numerical range of operators Definitions and first properties

Numerical index: definition and properties

Numerical index
X real or complex Banach space

n(X) = max{k > 0 : k ‖T‖ 6 v(T) ∀T ∈ L(X)
}

= inf
{

v(T) : T ∈ L(X), ‖T‖ = 1
}

.

Elementary properties
X Banach space.

In the real case, 0 6 n(X) 6 1.
In the complex case, 1/e 6 n(X) 6 1.
Actually, the above inequalities are best possible:

{n(X) : X complex Banach space } = [e−1, 1],

{n(X) : X real Banach space } = [0, 1].

v norm on L(X) equivalent to the given norm ⇐⇒ n(X) > 0.
v(T) = ‖T‖ for every T ∈ L(X) ⇐⇒ n(X) = 1.
n(X∗) 6 n(X).
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Numerical range of operators Definitions and first properties

Numerical index: examples

Some examples

1 H Hilbert, dim(H) > 1:

n(H) =

{
0 real case,
1
2 complex case.

2 X complex space =⇒ n
(
XR

)
= 0.

3 n
(

L1(µ)
)
= 1, µ positive measure.

4 X∗ ≡ L1(µ) =⇒ n(X) = 1.
5 In particular,

n
(
C(K)

)
= 1, n

(
C0(L)

)
= 1, n

(
L∞(µ)

)
= 1.

6 n(A(D)) = 1 and n(H∞) = 1.
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Two results on surjective isometries

Surjective isometries

3 Two results on surjective isometries
Numerical ranges and isometries
Isometries on finite-dimensional spaces
Isometries and duality

M. Mart́ın
The group of isometries of a Banach space and duality.
J. Funct. Anal. (2008).

M. Mart́ın, J. Meŕı, and A. Rodŕıguez-Palacios.
Finite-dimensional spaces with numerical index zero.
Indiana U. Math. J. (2004).

H. P. Rosenthal
The Lie algebra of a Banach space.
in: Banach spaces (Columbia, Mo., 1984), LNM, Springer, 1985.
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Two results on surjective isometries Numerical ranges and isometries

Semigroups of isometries: motivating example

A motivating example
A real or complex n× n matrix. TFAE:

A is skew-adjoint (i.e. A∗ = −A).

Re(Ax | x) = 0 for every x ∈ H.

B = exp(ρA) is unitary for every ρ ∈ R (i.e. B∗B = BB∗ = Id).

In term of Hilbert spaces
H (n-dimensional) Hilbert space, T ∈ L(H). TFAE:

Re W(T) = {0}.
exp(ρT) ∈ Iso(H) for every ρ ∈ R.

For general Banach spaces
X Banach space, T ∈ L(X). TFAE:

Re V(T) = {0}.
exp(ρT) ∈ Iso(X) for every ρ ∈ R.
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Two results on surjective isometries Numerical ranges and isometries

Semigroups of isometries: characterization

Theorem (Bonsall-Duncan, 1970’s; Rosenthal, 1984)
X real or complex Banach space, T ∈ L(X). TFAE:

Re V(T) = {0} (T is skew-hermitian).
‖ exp(ρT)‖ 6 1 for every ρ ∈ R.{

exp(ρT) : ρ ∈ R+
0
}
⊂ Iso(X).

T belongs to the tangent space to Iso(X) at Id.

lim
ρ→0

‖Id + ρ T‖ − 1
ρ

= 0.
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Re V(T) = {0} (T is skew-hermitian).
‖ exp(ρT)‖ 6 1 for every ρ ∈ R.{

exp(ρT) : ρ ∈ R+
0
}
⊂ Iso(X).

T belongs to the tangent space to Iso(X) at Id.

lim
ρ→0

‖Id + ρ T‖ − 1
ρ

= 0.

This follows from the exponential formula

sup Re V(T) = lim
β↓0
‖Id + β T‖ − 1

β
= sup

α>0

log ‖ exp(α T)‖
α

.
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lim
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Remark
If X is complex, there always exists exponential one-parameter semigroups of
surjective isometries:

t 7−→ eit Id generator: i Id.
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exp(ρT) : ρ ∈ R+
0
}
⊂ Iso(X).

T belongs to the tangent space to Iso(X) at Id.

lim
ρ→0

‖Id + ρ T‖ − 1
ρ

= 0.

Main consequence
If X is a real Banach space such that

V(T) = {0} =⇒ T = 0,

then Iso(X) is “small”:
it does not contain any exponential one-parameter semigroup,
the tangent space of Iso(X) at Id is zero.
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Two results on surjective isometries Isometries on finite-dimensional spaces

Isometries in finite-dimensional spaces

Theorem
X finite-dimensional real space. TFAE:

Iso(X) is infinite.
n(X) = 0.
There is T ∈ L(X), T 6= 0, with v(T) = 0.

Examples of spaces of this kind

1 Hilbert spaces.
2 XR, the real space subjacent to any complex space X.
3 An absolute sum of any real space and one of the above.
4 Moreover, if X = X0 ⊕ X1 where X1 is complex and

∥∥∥x0 + eiθ x1

∥∥∥ = ‖x0 + x1‖
(
x0 ∈ X0, x1 ∈ X1, θ ∈ R

)
.

(Note that the other 3 cases are included here)

Question

Can every Banach space X with n(X) = 0 be decomposed as in ?
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1 Hilbert spaces.
2 XR, the real space subjacent to any complex space X.
3 An absolute sum of any real space and one of the above.
4 Moreover, if X = X0 ⊕ X1 where X1 is complex and

∥∥∥x0 + eiθ x1
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Two results on surjective isometries Isometries on finite-dimensional spaces

Negative answer

Infinite-dimensional case
There is an infinite-dimensional real Banach space X with n(X) = 0 but X is
polyhedral. In particular, X does not contain C isometrically.

An easy example is

X =


⊕

n>2
Xn




c0

Xn is the two-dimensional space whose unit ball is the regular polygon of 2n
vertices.

Note
Such an example is not possible in the finite-dimensional case.
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Two results on surjective isometries Isometries on finite-dimensional spaces

Quasi affirmative answer

Finite-dimensional case
X finite-dimensional real space. TFAE:

n(X) = 0.

X = X0 ⊕ X1 ⊕ · · · ⊕ Xn such that
X0 is a (possible null) real space,
X1, . . . , Xn are non-null complex spaces,

there are ρ1, . . . , ρn rational numbers, such that
∥∥∥x0 + ei ρ1 θ x1 + · · ·+ ei ρn θ xn

∥∥∥ =
∥∥x0 + x1 + · · ·+ xn

∥∥

for every xi ∈ Xi and every θ ∈ R.

Remark
The theorem is due to Rosenthal, but with real ρ’s.
The fact that the ρ’s may be chosen as rational numbers is due to
M.–Meŕı–Rodŕıguez-Palacios.
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Two results on surjective isometries Isometries on finite-dimensional spaces

Sketch of the proof

Fix T ∈ L(X) with ‖T‖ = 1 and v(T) = 0.

We get that
∥∥ exp(ρT)

∥∥ = 1 for every ρ ∈ R.

A Theorem by Auerbach: there exists a Hilbert space H with
dim(H) = dim(X) such that every surjective isometry in L(X) remains
isometry in L(H).

Apply the above to exp(ρT) for every ρ ∈ R.

You get that T is skew-hermitian in L(H), so T∗ = −T and T2 is
self-adjoint. The Xj’s are the eigenspaces of T2.

Use Kronecker’s Approximation Theorem to change the eigenvalues of T2

by rational numbers.X
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Two results on surjective isometries Isometries on finite-dimensional spaces

A simple case of getting rational numbers

Let X = X0 ⊕ X1 ⊕ X2 and α ∈ R \Q s.t.
∥∥∥x0 + eiρx1 + eiαρx2

∥∥∥ = ‖x0 + x1 + x2‖ ∀ρ, ∀x0, x1, x2.

Then ‖x0 + x1 + x2‖ =
∥∥∥x0 + eiρ

(
x1 + ei(α−1)ρx2

)∥∥∥ ∀ρ.

Take ρ =
2πk

α− 1
with k ∈ Z.

Then ‖x0 + (x1 + x2)‖ =
∥∥∥x0 + ei 2πk

α−1 (x1 + x2)
∥∥∥ ∀k ∈ Z

But
{

exp
(

i
2πk

α− 1

)
: k ∈ Z

}
is dense in T, so

‖x0 + (x1 + x2)‖ =
∥∥∥x0 + eiρ(x1 + x2)

∥∥∥ ∀ρ ∈ R

and X = X0 ⊕ Z where Z = X1 ⊕ X2 is a complex space
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Two results on surjective isometries Isometries on finite-dimensional spaces

Consequences

Corollary
X real space with n(X) = 0.

If dim(X) = 2, then X ≡ C.
If dim(X) = 3, then X ≡ R⊕C (absolute sum).

Natural question
Are all finite-dimensional X’s with n(X) = 0 of the form X = X0 ⊕ X1 ?

Answer
No.

Example

X = (R4, ‖ · ‖), ‖(a, b, c, d)‖ = 1
4

∫ 2π

0

∣∣∣Re
(

e2it(a + ib) + eit(c + id)
)∣∣∣ dt.

Then n(X) = 0 but the unique possible decomposition is X = C⊕C with
∥∥∥eitx1 + e2itx2

∥∥∥ = ‖x1 + x2‖.
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Two results on surjective isometries Isometries on finite-dimensional spaces

The Lie-algebra of a Banach space

Lie-algebra

X real Banach space, Z(X) =
{

T ∈ L(X) : v(T) = 0
}

.
When X is finite-dimensional, Iso(X) is a Lie-group and Z(X) is the
tangent space (i.e. its Lie-algebra).

Remark

dim(X) = n =⇒ dim(Z(X)) 6
n(n− 1)

2
.

Equality holds ⇐⇒ H Hilbert space.

An open problem

Given n > 3, which are the possible dim
(
Z(X)

)
over all n-dimensional X’s?

Observation (Javier Meŕı, PhD)
When dim(X) = 3, dim(Z(X)) cannot be 2.
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When dim(X) = 3, dim(Z(X)) cannot be 2.

Proof
If dim(X) = 3, n(X) = 0, then X = C⊕R (absolute sum).

If ⊕ = ⊕2, then X is a Hilbert space and dim(Z(X)) = 3. X
If ⊕ 6= ⊕2, then isometries respect summands and
dim(Z(X)) = 1. X
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Two results on surjective isometries Isometries and duality

Semigroups of surjective isometries and duality

Remark
X Banach space.

T ∈ Iso(X) =⇒ T∗ ∈ Iso(X∗).
Iso(X∗) can be bigger than Iso(X).

The problem
How much bigger can be Iso(X∗) than Iso(X)?
Is it possible that Z

(
Iso(X∗)

)
is big while Z

(
Iso(X)

)
is trivial?

The answer is yes. This is what we are going to present next.
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Two results on surjective isometries Isometries and duality

Semigroups of surjective isometries and duality

Spaces CE(K‖L)

K compact, L ⊂ K closed nowhere dense, E ⊂ C(L).

CE(K‖L) = { f ∈ C(K) : f |L ∈ E}.

Theorem
CE(K‖L)∗ ≡ E∗ ⊕1 C0(K‖L)∗ & n

(
CE(K‖L)

)
= 1.
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Theorem
CE(K‖L)∗ ≡ E∗ ⊕1 C0(K‖L)∗ & n

(
CE(K‖L)

)
= 1.

Proof.

C0(K‖L) is an M-ideal of C(K)
=⇒ C0(K‖L) is an M-ideal of CE(K‖L).

Meaning that CE(K‖L)∗ ≡ C0(K‖L)⊥ ⊕1 C0(K‖L)∗.

C0(K‖L)⊥ ≡ (CE(K‖L)/C0(K‖L))∗ ≡ E∗:

Φ : CE(K‖L) −→ E, Φ( f ) = f |L.
‖Φ‖ 6 1 and ker Φ = C0(K‖L).
Φ̃ : CE(K‖L)/C0(K‖E) −→ E onto isometry:
{g ∈ E : ‖g‖ < 1} ⊆ Φ

(
{ f ∈ CE(K‖L) : ‖ f ‖ < 1}

)
. X
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Proof.

Fix T ∈ L
(
CE(K‖L)

)
. Take f0 ∈ SCE (K‖L) and ξ0 ∈ K \ L with

∣∣[T f0](ξ0)
∣∣ ∼ ‖T‖.

Consider V =
{

ξ ∈ K \ L : f0(ξ) ∼ f0(ξ0)
}

and take ϕ : K −→ [0, 1] continuous with
supp(ϕ) ⊂ V and ϕ(ξ0) = 1.
Write f0(ξ0) = λω1 + (1− λ)ω2 with |ωi | = 1 and consider the functions

fi = (1− ϕ) f0 + ϕωi
[
= f0 + ϕ(ωi − f0)

]
∈ CE(K‖L) for i = 1, 2.

Then ‖ fi‖ 6 1 and
∥∥ f0 −

(
λ f1 + (1− λ) f2

)∥∥ = ‖ϕ f0 − ϕ f0(ξ0)‖ ∼ 0.

Therefore, we may choose i ∈ {1, 2} with
∣∣[T( fi)](ξ0)

∣∣ ∼ ‖T‖, but now | fi(ξ0)| = 1.

Equivalently,
∣∣δξ0

(
T( fi)

)∣∣ ∼ ‖T‖ y |δξ0 ( fi)| = 1, so v(T) ∼ ‖T‖. X
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= f0 + ϕ(ωi − f0)

]
∈ CE(K‖L) for i = 1, 2.

Then ‖ fi‖ 6 1 and
∥∥ f0 −

(
λ f1 + (1− λ) f2

)∥∥ = ‖ϕ f0 − ϕ f0(ξ0)‖ ∼ 0.

Therefore, we may choose i ∈ {1, 2} with
∣∣[T( fi)](ξ0)

∣∣ ∼ ‖T‖, but now | fi(ξ0)| = 1.

Equivalently,
∣∣δξ0

(
T( fi)

)∣∣ ∼ ‖T‖ y |δξ0 ( fi)| = 1, so v(T) ∼ ‖T‖. X
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Theorem
CE(K‖L)∗ ≡ E∗ ⊕1 C0(K‖L)∗ & n

(
CE(K‖L)

)
= 1.

Consequence: the example
Take K = [0, 1], L = ∆ (Cantor set), E = `2 ⊂ C(∆).

Iso
(
C`2 ([0, 1]‖∆)

)
has no exponential one-parameter semigroups.

C`2 ([0, 1]‖∆)∗ ≡ `2 ⊕1 C0([0, 1]‖∆)∗, so taken S ∈ Iso(`2)

=⇒ T =

(
S 0
0 Id

)
∈ Iso

(
C`2 ([0, 1]‖∆)∗

)

Then, Iso
(
C`2 ([0, 1]‖∆)∗

)
contains infinitely many exponential

one-parameter semigroups.
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Some comments

In terms of linear dynamical systems

In C`2 ([0, 1]‖∆) there is no A ∈ L(X) such that the solution to the linear
dynamical system

x′ = A x
(
x : R+

0 −→ C`2 ([0, 1]‖∆)
)

(which is x(t) = exp(t A)(x(0))) is given by a semigroup of isometries.
There are infinitely many such A’s in C`2 ([0, 1]‖∆)∗, in C`2 ([0, 1]‖∆)∗∗. . .

Further results (Koszmider–M.–Meŕı., 2011)

There are unbounded As on C`2 ([0, 1]‖∆) such that the solution to the
linear dynamical system

x′(t) = A x(t)

is a one-parameter C0 semigroup of isometries.
There is X such that
Iso(X) = {−Id, Id} and X∗ = `2 ⊕1 L1(ν).
Therefore, there is no semigroups in Iso(X), but there are infinitely many
exponential one-parameter semigroups in Iso(X∗).
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There are unbounded As on C`2 ([0, 1]‖∆) such that the solution to the
linear dynamical system

x′(t) = A x(t)

is a one-parameter C0 semigroup of isometries.
There is X such that
Iso(X) = {−Id, Id} and X∗ = `2 ⊕1 L1(ν).
Therefore, there is no semigroups in Iso(X), but there are infinitely many
exponential one-parameter semigroups in Iso(X∗).

34 / 152



Two results on surjective isometries Isometries and duality

Some comments

In terms of linear dynamical systems
In C`2 ([0, 1]‖∆) there is no A ∈ L(X) such that the solution to the linear
dynamical system

x′ = A x
(

x : R+
0 −→ C`2 ([0, 1]‖∆)

)

(which is x(t) = exp(t A)(x(0))) is given by a semigroup of isometries.
There are infinitely many such A’s in C`2 ([0, 1]‖∆)∗, in C`2 ([0, 1]‖∆)∗∗. . .

Further results (Koszmider–M.–Meŕı., 2011)
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Numerical index

Numerical index of Banach spaces

4 Numerical index of Banach spaces
Basic definitions and examples
Stability properties
Duality
The isomorphic point of view
Banach spaces with numerical index one

Isomorphic properties
Isometric properties
Asymptotic behavior

How to deal with numerical index 1 property?
Some open problems

V. Kadets, M. Mart́ın, and R. Payá.
Recent progress and open questions on the numerical index of Banach spaces.
RACSAM (2006)
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Numerical index Basic definitions and examples

Numerical index of Banach spaces: definitions

Numerical radius
X Banach space, T ∈ L(X). The numerical radius of T is

v(T) = sup
{
|x∗(Tx)| : x∗ ∈ SX∗ , x ∈ SX , x∗(x) = 1

}

Remark
The numerical radius is a continuous seminorm in L(X). Actually, v(·) 6 ‖ · ‖

Numerical index (Lumer, 1968)
X Banach space, the numerical index of X is

n(X) = inf
{

v(T) : T ∈ L(X), ‖T‖ = 1
}

= max
{

k > 0 : k ‖T‖ 6 v(T) ∀ T ∈ L(X)
}

= inf
{

M > 0 : ∃T ∈ L(X), ‖T‖ = 1, ‖ exp(ρT)‖ 6 e|ρ|M ∀ρ ∈ R
}
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Numerical index Basic definitions and examples

Numerical index of Banach spaces: basic properties

Recalling some basic properties

n(X) = 1 iff v and ‖ · ‖ coincide.
n(X) = 0 iff v is not an equivalent norm in L(X)

X complex ⇒ n(X) > 1/e.
(Bohnenblust–Karlin, 1955; Glickfeld, 1970)

Actually,

{n(X) : X complex, dim(X) = 2} = [e−1, 1]

{n(X) : X real, dim(X) = 2} = [0, 1]

(Duncan–McGregor–Pryce–White, 1970)
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Numerical index Basic definitions and examples

Numerical index of Banach spaces: examples (I)

Some examples
1 H Hilbert space, dim(H) > 1,

n(H) = 0 if H is real
n(H) = 1/2 if H is complex

2 n
(

L1(µ)
)
= 1 µ positive measure

n
(
C(K)

)
= 1 K compact Hausdorff space

(Duncan et al., 1970)

3 If A is a C∗-algebra ⇒
{

n(A) = 1 A commutative
n(A) = 1/2 A not commutative

(Huruya, 1977; Kaidi–Morales–Rodŕıguez, 2000)
4 If A is a function algebra ⇒ n(A) = 1

(Werner, 1997)
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Numerical index Basic definitions and examples

Numerical index of Banach spaces: some examples (II)

More examples
5 For n > 2, the unit ball of Xn is a 2n regular polygon:

n(Xn) =





tan
( π

2n

)
if n is even,

sin
( π

2n

)
if n is odd.

(M.–Meŕı, 2007)

6 Every finite-codimensional subspace of C[0, 1] has numerical index 1

(Boyko–Kadets–M.–Werner, 2007)
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Numerical index Basic definitions and examples

Numerical index of Banach spaces: some examples (III)

Even more examples
7 Numerical index of Lp-spaces, 1 < p < ∞:

n
(

Lp[0, 1]
)
= n(`p) = lim

m→∞
n
(
`
(m)
p
)
.

(Ed-Dari, 2005 & Ed-Dari-Khamsi, 2006)

n
(
`
(2)
p
)

?
In the real case,

max
{

1
21/p ,

1
21/q

}
Mp 6 n

(
`
(2)
p
)
6 Mp

and Mp = v
(

0 1
−1 0

)
= max

t∈[0,1]

|tp−1 − t|
1 + tp

(M.–Meŕı, 2009)

In the real case, n
(

Lp(µ)
)
>

Mp

6 p
1
p q

1
q

.

In particular, n
(

Lp(µ)
)
> 0 for p 6= 2.

(M.–Meŕı–Popov, 2011)
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(M.–Meŕı–Popov, 2011)

40 / 152



Numerical index Basic definitions and examples

Numerical index of Banach spaces: some examples (III)

Even more examples
7 Numerical index of Lp-spaces, 1 < p < ∞:

n
(

Lp[0, 1]
)
= n(`p) = lim

m→∞
n
(
`
(m)
p
)
.

(Ed-Dari, 2005 & Ed-Dari-Khamsi, 2006)

n
(
`
(2)
p
)

?
In the real case,

max
{

1
21/p ,

1
21/q

}
Mp 6 n

(
`
(2)
p
)
6 Mp

and Mp = v
(

0 1
−1 0

)
= max

t∈[0,1]

|tp−1 − t|
1 + tp
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Numerical index Basic definitions and examples

Numerical index: open problems on computing

Open problems

1 Compute n
(

Lp[0, 1]
)

for 1 < p < ∞, p 6= 2.

2 Is n
(
`
(2)
p
)
= Mp (real case) ?

3 Is n
(
`
(2)
p
)
=
(

p
1
p q

1
q
)−1

(complex case) ?
4 Compute the numerical index of real C∗-algebras.
5 Compute the numerical index of more classical Banach spaces: Cm[0, 1],

Lip(K), Lorentz spaces, Orlicz spaces. . .
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Numerical index Stability properties

Stability properties

Direct sums of Banach spaces (M.–Payá, 2000)

n
(
[⊕λ∈ΛXλ]c0

)
= n

(
[⊕λ∈ΛXλ]`1

)
= n

(
[⊕λ∈ΛXλ]`∞

)
= inf

λ
n(Xλ)

Consequences

There is a real Banach space X such that

v(T) > 0 when T 6= 0,

but n(X) = 0
(i.e. v(·) is a norm on L(X) which is not equivalent to the operator norm).
For every t ∈ [0, 1], there exist a real Xt isomorphic to c0 (or `1 or `∞)
with n(Xt) = t.
For every t ∈ [e−1, 1], there exist a complex Yt isomorphic to c0 (or `1 or
`∞) with n(Yt) = t.
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Numerical index Stability properties

Stability properties (II)

Vector-valued function spaces (López-M.-Meŕı-Payá-Villena, 2000’s)
E Banach space, µ positive σ-finite measure, K compact space. Then

n
(
C(K, E)

)
= n

(
Cw(K, E)

)
= n

(
L1(µ, E)

)
= n

(
L∞(µ, E)

)
= n(E),

and n
(
Cw∗ (K, E∗)

)
6 n(E)

Tensor products (Lima, 1980)
There is no general formula for n

(
X⊗̃εY

)
nor for n

(
X⊗̃πY

)
:

n
(
`
(4)
1 ⊗̃π `

(4)
1
)
= n

(
`
(4)
∞ ⊗̃ε `

(4)
∞
)
= 1.

n
(
`
(4)
1 ⊗̃ε `

(4)
1
)
= n

(
`
(4)
∞ ⊗̃π `

(4)
∞
)
< 1.

Lp-spaces (Askoy–Ed-Dari–Khamsi, 2007)

n
(

Lp([0, 1], E)
)
= n

(
`p(E)

)
= lim

m→∞
n
(
E⊕p

m· · · ⊕p E
)
.
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Numerical index Duality

Numerical index and duality

Proposition
X Banach space, T ∈ L(X). Then

sup Re V(T) = lim
α→0+

‖Id + α T‖ − 1
α

.

Then, v(T∗) = v(T) for every T ∈ L(X).
Therefore, n(X∗) 6 n(X).

(Duncan–McGregor–Pryce–White, 1970)

Question (From the 1970’s)

Is n(X) = n(X∗) ?

Negative answer (Boyko–Kadets–M.–Werner, 2007)
Consider the space

X =
{
(x, y, z) ∈ c⊕∞ c⊕∞ c : lim x + lim y + lim z = 0

}
.

Then, n(X) = 1 but n(X∗) < 1.
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Numerical index Duality

Numerical index and duality. Proof of main example

X =
{
(x, y, z) ∈ c⊕∞ c⊕∞ c : lim x + lim y + lim z = 0

}
:

n(X) = 1 but n(X∗) < 1.

Proof
c∗ = `1 ⊕1 K lim =⇒ X∗ =

[
c∗ ⊕1 c∗ ⊕1 c∗

]
/(lim, lim, lim).

Then, writing Z = `
(3)
1 /(1, 1, 1), we can identify

X∗ ≡ `1 ⊕1 `1 ⊕1 `1 ⊕1 Z, X∗∗ ≡ `∞ ⊕∞ `∞ ⊕∞ `∞ ⊕∞ Z∗.
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Then BX∗ = acow∗ (A) and

|x∗∗(a)| = 1 ∀ x∗∗ ∈ ext(BX∗∗ ) ∀ a ∈ A.

Fix T ∈ L(X), ε > 0. Find a ∈ A with ‖T∗(a)‖ > ‖T∗‖ − ε.
Then we find x∗∗ ∈ ext(BX∗∗ ) such that

|x∗∗(T∗(a))| = ‖T∗(a)‖ > ‖T∗‖ − ε.

Since |x∗∗(a)| = 1, this gives that v(T∗) > ‖T∗‖ − ε, so v(T) = ‖T‖ and
n(X) = 1. X
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Numerical index Duality

Numerical index and duality (II)

The above example can be squeezed to get more counterexamples.

Example 1
Exists X real with n(X) = 1 and n(X∗) = 0.
Exists X complex with n(X) = 1 and n(X∗) = 1/e.

Example 2
Given t ∈]0, 1], exists X real with n(X) = t and n(X∗) = 0.
Given t ∈]1/e, 1], exists X complex with n(X) = t and n(X∗) = 1/e.
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Numerical index Duality

Numerical index and duality (III)

Some positive partial answers
One has n(X) = n(X∗) when

X is reflexive (evident).
X is a C∗-algebra or a von Neumann predual (1970’s – 2000’s).
X is L-embedded in X∗∗ (M., 2009).
If X has RNP and n(X) = 1, then n(X∗) = 1 (M., 2002).
If X is M-embedded in X∗∗ and n(X) = 1
=⇒ n(Y) = 1 for X ⊆ Y ⊆ X∗∗.

Example
X = CK(`2)([0, 1]‖∆). Then n(X) = 1 and

X∗ ≡ K(`2)
∗ ⊕1 C0(K‖∆)∗ and X∗∗ ≡ L(`2)⊕∞ C0(K‖∆)∗∗.

Therefore, X∗∗ is a C∗-algebra, but n(X∗) = 1/2 < n(X) = 1.
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Numerical index Duality

Numerical index and duality: open problems

Main question
Find isometric or isomorphic properties assuring that n(X) = n(X∗).

Question 1
If Z has a unique predual X, does n(X) = n(X∗) ?

Question 2
Z dual space, does there exists a predual X such that n(X) = n(X∗) ?

Question 4
If X has the RNP, does n(X) = n(X∗) ?
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Numerical index The isomorphic point of view

The isomorphic point of view

Renorming and numerical index (Finet–M.–Payá, 2003)
(X, ‖ · ‖) (separable or reflexive) Banach space. Then

Real case:
[0, 1[⊆ {n(X, | · |) : | · | ' ‖ · ‖}

Complex case:
[e−1, 1[⊆ {n(X, | · |) : | · | ' ‖ · ‖}

Open question
The result is known to be true when X has a long biorthogonal system.
Is it true in general ?

Remark
In some sense, any other value of n(X) but 1 is isomorphically trivial.

F What about the value 1 ?
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Numerical index Banach spaces with numerical index one

Banach spaces with numerical index one

Numerical index 1

Recall that X has numerical index one (n(X) = 1) iff

‖T‖ = sup
{
|x∗(Tx)| : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1

}

(i.e. v(T) = ‖T‖) for every T ∈ L(X).

Observation
For Hilbert spaces, the above formula is equivalent to

‖T‖ = sup {|〈Tx, x〉| : x ∈ SX}

which is known to be valid for every self-adjoint operator T.

Examples
C(K), L1(µ), A(D), H∞, finite-codimensional subspaces of C[0, 1]. . .
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Numerical index Banach spaces with numerical index one

Isomorphic properties (prohibitive results)

Question
Does every Banach space admit an equivalent norm with numerical index 1 ?

Negative answer (López–M.–Payá, 1999)
Not every real Banach space can be renormed to have numerical index 1.

Concretely:
If X is real, reflexive, and dim(X) = ∞, then n(X) < 1.
Actually, if X is real, X∗∗/X separable and n(X) = 1,
then X is finite-dimensional.
Moreover, if X is real, RNP, dim(X) = ∞, and n(X) = 1, then X ⊃ `1.

A very recent result (Avilés–Kadets–M.–Meŕı–Shepelska)
If X is real, dim(X) = ∞ and n(X) = 1, then X∗ ⊃ `1.

More details on this later on.
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Not every real Banach space can be renormed to have numerical index 1.

Concretely:
If X is real, reflexive, and dim(X) = ∞, then n(X) < 1.
Actually, if X is real, X∗∗/X separable and n(X) = 1,
then X is finite-dimensional.
Moreover, if X is real, RNP, dim(X) = ∞, and n(X) = 1, then X ⊃ `1.

A very recent result (Avilés–Kadets–M.–Meŕı–Shepelska)
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Numerical index Banach spaces with numerical index one

Proving the 1999 results (I)

Lemma
X Banach space, n(X) = 1
=⇒ |x∗0(x0)| = 1 for all x∗0 ∈ ext (BX∗ ) and all denting point x0 of BX.

Proof:
Fix ε > 0. As x0 denting point, ∃y∗ ∈ SX∗ and α > 0 such that

‖z− x0‖ < ε whenever z ∈ BX satisfies Re y∗(z) > 1− α.
(Choquet’s lemma): x∗0 ∈ ext (BX∗ ), ∃y ∈ SX and β > 0 such that
|z∗(x0)− x∗0(x0)| < ε whenever z∗ ∈ BX∗ satisfies Re z∗(y) > 1− β.

Let T = y∗ ⊗ y ∈ L(X). ‖T‖ = 1 =⇒ v(T) = 1.
We may find x ∈ SX, x∗ ∈ SX∗ , such that

x∗(x) = 1 and |x∗(Tx)| = |y∗(x)||x∗(y)| > 1−min{α, β}.
By choosing suitable s, t ∈ T we have

Re y∗(sx) = |y∗(x)| > 1− α & Re tx∗(y) = |x∗(y)| > 1− β.

It follows that ‖sx− x0‖ < ε and |tx∗(x0)− x∗0(x0)| < ε,

and so
1− |x∗0(x0)| 6 |tx∗(sx)− x∗0(x0)| 6

6 |tx∗(sx)− tx∗(x0)|+ |tx∗(x0)− x∗0(x0)| < 2ε.X
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Numerical index Banach spaces with numerical index one

Proving the 1999 results (II)

Proposition
X real, A ⊂ SX infinite with |x∗(a)| = 1 ∀x∗ ∈ ext (BX∗ ), ∀a ∈ A.
=⇒ X ⊇ c0 or X ⊇ `1.

Proof:
X ⊇ `1 X
(Rosenthal `1-theorem): Otherwise, ∃ {an} ⊆ A non-trivial weak Cauchy.
Consider Y the closed linear span of {an : n ∈N}.
‖an − am‖ = 2 if n 6= m =⇒ dim(Y) = ∞.
(Krein-Milman theorem): every y∗ ∈ ext (BY∗ ) has an extension which
belongs to ext (BX∗ ).
So, |y∗(an)| = 1 ∀y∗ ∈ ext (BY∗ ), ∀n ∈N.
{an} weak Cauchy =⇒ {y∗(an)} is eventually 1 or −1.
Then ext (BY∗ ) =

⋃

k∈N

(Ek ∪−Ek) where

Ek = {y∗ ∈ ext (BY∗ ) : y∗(an) = 1 for n > k}.

{an} separates points of Y∗ =⇒ Ek finite, so ext (BY∗ ) countable.
(Fonf): Y ⊇ c0. So, X ⊇ c0.X
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Numerical index Banach spaces with numerical index one

Proving the 1999 results (III)

Lemma
X Banach space, n(X) = 1
=⇒ |x∗0(x0)| = 1 for all x∗0 ∈ ext (BX∗ ) and all denting point x0 of BX.

Proposition
X real, A ⊂ SX infinite with |x∗(a)| = 1 ∀x∗ ∈ ext (BX∗ ), ∀a ∈ A.
=⇒ X ⊇ c0 or X ⊇ `1.

Main consequence
X real, RNP, dim(X) = ∞, and n(X) = 1 =⇒ X ⊇ `1.

54 / 152



Numerical index Banach spaces with numerical index one

Proving the 1999 results (III)

Lemma
X Banach space, n(X) = 1
=⇒ |x∗0(x0)| = 1 for all x∗0 ∈ ext (BX∗ ) and all denting point x0 of BX.

Proposition
X real, A ⊂ SX infinite with |x∗(a)| = 1 ∀x∗ ∈ ext (BX∗ ), ∀a ∈ A.
=⇒ X ⊇ c0 or X ⊇ `1.

Main consequence
X real, RNP, dim(X) = ∞, and n(X) = 1 =⇒ X ⊇ `1.

54 / 152



Numerical index Banach spaces with numerical index one

Proving the 1999 results (III)

Lemma
X Banach space, n(X) = 1
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Proof.

X RNP, dim(X) = ∞ =⇒ ∃ infinitely many denting points of BX.
Therefore, X ⊇ c0 or X ⊇ `1.
If X RNP, then X + c0. X
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Proving the 1999 results (III)
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Corollary
X real, dim(X) = ∞, n(X) = 1.

X is not reflexive.
X∗∗/X is non-separable.
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Numerical index Banach spaces with numerical index one

Isomorphic properties (positive results)

A renorming result (Boyko–Kadets–M.–Meŕı, 2009)
If X is separable, X ⊃ c0, then X can be renormed to have numerical index 1.

Consequence
X separable containing c0 =⇒ there is Z ' X such that

n(Z) = 1 and
{

n(Z∗) = 0 real case
n(Z∗) = e−1 complex case

Open questions

Find isomorphic properties which assures renorming with numerical index 1

In particular, if X ⊃ `1, can X be renormed to have numerical index 1 ?

Negative result (Bourgain–Delbaen, 1980)
There is X such that X∗ ' `1 and X has the RNP. Then, X can not be
renormed with numerical index 1 (in such a case, X ⊃ `1 ! )
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Numerical index Banach spaces with numerical index one

Isometric properties: finite-dimensional spaces

Finite-dimensional spaces (McGregor, 1971; Lima, 1978)
X real or complex finite-dimensional space. TFAE:

n(X) = 1.
|x∗(x)| = 1 for every x∗ ∈ ext (BX∗ ), x ∈ ext (BX).
BX = aconv(F) for every maximal convex subset F of SX
(X is a CL-space).

Remark
This shows a rough behavior of the norm of a finite-dimensional space
with numerical index 1:

The space is not smooth.
The space is not strictly convex.

Question
What is the situation in the infinite-dimensional case ?
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Numerical index Banach spaces with numerical index one

Isometric properties: infinite-dimensional spaces

Theorem (Kadets–M.–Meŕı–Payá, 2009)
X infinite-dimensional Banach space, n(X) = 1. Then

X∗ is neither smooth nor strictly convex.
The norm of X cannot be Fréchet-smooth.
There is no WLUR points in SX.
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X infinite-dimensional Banach space, n(X) = 1. Then

X∗ is neither smooth nor strictly convex.
The norm of X cannot be Fréchet-smooth.
There is no WLUR points in SX.

Proving that X∗ is not smooth:

dim(X) > 1, exists x0 ∈ SX and x∗0 ∈ SX∗ such that x∗0(x0) = 0. Then,
consider T = x∗0 ⊗ x0 which satisfies T2 = 0, ‖T‖ = 1.
(AcostaPayá1993): exists {Tn} −→ T such that
‖Tn‖ = 1, T∗n attains its numerical radius v(T∗n ) = v(Tn) = ‖Tn‖ = 1.
We may find λn ∈ T and (x∗n, x∗∗n ) ∈ SX∗ × SX∗∗ such that

λn x∗∗n (x∗n) = 1 and
[
T∗∗n (x∗∗n )

]
(x∗n) = x∗∗n (T∗n (x∗n)) = 1.

If X∗ is smooth: T∗∗n (x∗∗n ) = λn x∗∗n . Thus,
∥∥[T∗∗n ]2 (x∗∗n )

∥∥ = ‖λ2
n x∗∗n ‖ = 1.

But, since Tn −→ T and T2 = 0, then [T∗∗n ]2 −→ 0 !! X
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We may find λn ∈ T and (x∗n, x∗∗n ) ∈ SX∗ × SX∗∗ such that

λn x∗∗n (x∗n) = 1 and
[
T∗∗n (x∗∗n )
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The norm of X cannot be Fréchet-smooth.
There is no WLUR points in SX.

Corollary
X = C(T)/A(D). X∗ = H1 is smooth =⇒ n(X) < 1 & n(H1) < 1.

Example without completeness
There is X (non-complete) strictly convex with X∗ ≡ L1(µ), so n(X) = 1.
X̃ completion of X. For F ⊆ SX̃ maximal face, BX̃ = aconv(F).

Open question
Is there X with n(X) = 1 which is smooth or strictly convex ?
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There is no WLUR points in SX.

Corollary
X = C(T)/A(D). X∗ = H1 is smooth =⇒ n(X) < 1 & n(H1) < 1.

Example without completeness
There is X (non-complete) strictly convex with X∗ ≡ L1(µ), so n(X) = 1.
X̃ completion of X. For F ⊆ SX̃ maximal face, BX̃ = aconv(F).

Open question
Is there X with n(X) = 1 which is smooth or strictly convex ?

57 / 152



Numerical index Banach spaces with numerical index one

Isometric properties: infinite-dimensional spaces

Theorem (Kadets–M.–Meŕı–Payá, 2009)
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Numerical index Banach spaces with numerical index one

Asymptotic behavior of the set of spaces with numerical index one

Theorem (Oikhberg, 2005)
There is a universal constant c such that

dist
(
X, `(m)

2
)
> c m

1
4

for every m ∈N and every m-dimensional X with n(X) = 1.

Old examples

dist
(
`
(m)
1 , `(m)

2
)
= dist

(
`
(m)
∞ , `(m)

2
)
= m

1
2

Open questions
Is there a universal constant c̃ such that

dist
(
X, `(m)

2
)
> c̃ m

1
2

for every m ∈N and every m-dimensional X’s with n(X) = 1 ?
What is the diameter of the set of all m-dimensional X’s with n(X) = 1 ?
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Numerical index How to deal with numerical index 1 property?

How to deal with numerical index 1 property?

One the one hand: weaker properties

In a general Banach space, we only can construct compact (actually,
finite-rank) operators.
Actually, we only may easily calculate the norm of rank-one operators.
All the results given before for Banach spaces in which we use numerical
index 1 only need

v(T) = ‖T‖ for every rank-one operator T.
This is called the alternative Daugavet property (ADP) and we will present
it in the next section.

One the other hand: stronger properties

We do not know any operator-free characterization of Banach spaces with
numerical index 1.
When we know that a Banach space has numerical index 1 (or that it can
be renormed with numerical index 1), we actually prove more.
Later we will study sufficient geometrical conditions.
The weakest property is called lushness.
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Numerical index How to deal with numerical index 1 property?

How to deal with numerical index 1 property?

Relationship between the properties

One of the key ideas to get interesting results for Banach spaces with
numerical index 1 is to study when the three properties below are
equivalent.
A very interesting property appears: the slicely countably determination.
We will study this property later on.

lushness ===-
�=6== Numerical index 1 ===-

�=6== ADP

�=================
with SCD property

(RNP, Asplund...)
=================
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Numerical index Some open problems

Some interesting open problems

Open problems

1 Characterize (without operators) Banach spaces with numerical index 1.
2 X with n(X) = 1, dim(X) = ∞ X ⊃ c0 or X ⊃ `1 ?
3 Characterize those X admitting a renorming with numerical index 1.
4 If X ⊃ c0 or ⊃ `1 can X be renormed with numerical index 1 ?
5 Find isomorphic or isometric conditions assuring that n(X) = n(X∗).

The oldest open problem
Calculate the numerical index of “classical” spaces.
• In particular, calculate n(Lp(µ)).
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The alternative Daugavet property

5 The alternative Daugavet property
The Daugavet property
The alternative Daugavet property

Geometric characterizations
C∗-algebras and preduals
Some results

M. Mart́ın and T. Oikberg
An alternative Daugavet property
J. Math. Anal. Appl. (2004)

M. Mart́ın
The alternative Daugavet property of C∗-algebras and JB∗-triples
Math. Nachr. (2008)
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The alternative Daugavet property The Daugavet property

The Daugavet property: motivation

In a Banach space X with the
Radon-Nikodým property the unit ball has
many denting points.

x ∈ SX is a denting point of BX if for
every ε > 0 one has

x /∈ co
(

BX \ (x + εBX)
)
.

C[0, 1] and L1[0, 1] have an extremely
opposite property: for every x ∈ SX and
every ε > 0

co
(

BX \
(

x + (2− ε)BX
))

= BX .

This geometric property is equivalent to a
property of operators on the space.
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The alternative Daugavet property The Daugavet property

The Daugavet property: definition

The Daugavet equation
X Banach space, T ∈ L(X)

‖Id + T‖ = 1 + ‖T‖ (DE)
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The Daugavet property: definition

The Daugavet equation
X Banach space, T ∈ L(X)

‖Id + T‖ = 1 + ‖T‖ (DE)

Classical examples
1 Daugavet, 1963:

Every compact operator on C[0, 1] satisfies (DE).
2 Lozanoskii, 1966:

Every compact operator on L1[0, 1] satisfies (DE).
3 Abramovich, Holub, and more, 80’s:

X = C(K), K perfect compact space
or X = L1(µ), µ atomless measure
=⇒ every weakly compact T ∈ L(X) satisfies (DE).
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The Daugavet property: definition

The Daugavet equation
X Banach space, T ∈ L(X)

‖Id + T‖ = 1 + ‖T‖ (DE)

The Daugavet property
A Banach space X is said to have the Daugavet property iff every rank-one
operator on X satisfies (DE).
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The alternative Daugavet property The Daugavet property

The Daugavet property: some results

Some propaganda
X with the Daugavet property. Then:

X does not have the Radon-Nikodým property.
(Wojtaszczyk, 1992)

Every weakly-open subset of BX has diameter 2.
(Shvidkoy, 2000)

X contains a copy of `1. X∗ contains a copy of L1[0, 1].
(Kadets–Shvidkoy–Sirotkin–Werner, 2000)

X does not have unconditional basis.
(Kadets, 1996)

X does not embed into a unconditional sum of Banach spaces without a
copy of `1.

(Shvidkoy, 2000)
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The alternative Daugavet property The alternative Daugavet property

The DPr, the ADP and numerical index 1

Observation (Duncan-McGregor-Price-White, 1970)
X Banach space, T ∈ L(X):

sup Re V(T) = ‖T‖ ⇐⇒ ‖Id + T‖ = 1 + ‖T‖.
v(T) = ‖T‖ ⇐⇒ max

θ∈T
‖Id + θ T‖ = 1 + ‖T‖.

X Banach space:
Daugavet property (DPr): every rank-one T satisfies

‖Id + T‖ = 1 + ‖T‖ (DE)

numerical index 1: every T satisfies

max
θ∈T
‖Id + θ T‖ = 1 + ‖T‖ (aDE)

The alternative Daugavet property (M.–Oikhberg, 2004)

alternative Daugavet property (ADP): every rank-one T ∈ L(X) satisfies (aDE).
F Then, every weakly compact operator satisfies (aDE).
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The alternative Daugavet property The alternative Daugavet property

Relations between the properties

Daugavet property ====6====-
�===6===== Numerical index 1

ADP
�==

==
==
==
==========-

Examples
C
(
[0, 1], K(`2)

)
has DPr, but has not numerical index 1

c0 has numerical index 1, but has not DPr
c0 ⊕∞ C

(
[0, 1], K(`2)

)
has ADP, neither DPr nor numerical index 1

Remarks

For RNP or Asplund spaces, ADP =⇒ numerical index 1 .
Every Banach space with the ADP can be renormed still having the ADP
but failing the Daugavet property.
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The alternative Daugavet property The alternative Daugavet property

Geometric characterizations of the ADP

Theorem
X Banach space. TFAE:

X has the ADP.

For every x ∈ SX , x∗ ∈ SX∗ , and ε > 0, there exists
y ∈ SX such that

|x∗(y)| > 1− ε and ‖x− y‖ > 2− ε.

For every x ∈ SX , x∗ ∈ SX∗ , and ε > 0, there exists
y∗ ∈ SX∗ such that

|y∗(x)| > 1− ε and ‖x∗ − y∗‖ > 2− ε.

For every x ∈ SX and every ε > 0, we have
BX = co

(
T {y ∈ BX : ‖x− y‖ > 2− ε}

)
.

Every rank-one operator
T ∈ L(X) (equivalently, every

weakly compact operator)
satisfies

max
|ω|=1

‖Id + ω T‖ = 1 + ‖T‖.
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Theorem
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69 / 152



The alternative Daugavet property The alternative Daugavet property

C∗-algebras and preduals (I)

Let V∗ be the predual of the von Neumann algebra V.

The Daugavet property of V∗ is equivalent to:
V has no atomic projections, or
the unit ball of V∗ has no extreme points.

V∗ has numerical index 1 iff:
V is commutative, or
|v∗(v)| = 1 for v ∈ ext (BV) and v∗ ∈ ext (BV∗ ).

The alternative Daugavet property of V∗ is equivalent to:
the atomic projections of V are central, or
|v(v∗)| = 1 for v ∈ ext (BV) and v∗ ∈ ext (BV∗ ), or
V = C⊕∞ N, where C is commutative and N has no atomic projections.
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The alternative Daugavet property The alternative Daugavet property

C∗-algebras and preduals (II)

Let X be a C∗-algebra.

The Daugavet property of X is equivalent to:
X does not have any atomic projection, or
the unit ball of X∗ does not have any w∗-strongly exposed point.

X has numerical index 1 iff:
X is commutative, or
|x∗∗(x∗)| = 1 for x∗∗ ∈ ext (BX∗∗ ) and x∗ ∈ ext (BX∗ ).

The alternative Daugavet property of X is equivalent to:
the atomic projections of X are central, or
|x∗∗(x∗)| = 1, for x∗∗ ∈ ext (BX∗∗ ), and x∗ ∈ BX∗ w∗-strongly exposed, or
∃ a commutative ideal Y such that X/Y has the Daugavet property.
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The alternative Daugavet property The alternative Daugavet property

Some results on the ADP: isomorphic properties

Remark
Since when we use the numerical index 1 only rank-one operators may be used,
most of the known results are valid for the ADP.

Theorem (López–M.–Payá, 1999)
Not every real Banach space can be renormed with the ADP.

X real reflexive with ADP =⇒ X finite-dimensional.
Moreover, X real, RNP, dim(X) = ∞, and ADP, then X ⊃ `1.

A very recent result (Avilés–Kadets–M.–Meŕı–Shepelska)
If X is real, dim(X) = ∞ and X has the ADP, then X∗ ⊃ `1.

A renorming result (Boyko–Kadets–M.–Meŕı, 2009)
If X is separable, X ⊃ c0, then X can be renormed with the ADP.
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Some results on the ADP: isometric properties

Remark
Also some isometric properties of Banach spaces with numerical index 1 are
actually true for ADP.

Theorem (Kadets–M.–Meŕı–Payá, 2009)
X infinite-dimensional with the ADP. Then

X∗ is neither smooth nor strictly convex.
The norm of X cannot be Fréchet-smooth.
There is no WLUR points in SX.

Corollary
X = C(T)/A(D). Since X∗ = H1 is smooth =⇒ nor X nor H1 have the
ADP.

Open question
Is there X with the ADP which is smooth or strictly convex ?
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There is no WLUR points in SX.

Corollary
X = C(T)/A(D). Since X∗ = H1 is smooth =⇒ nor X nor H1 have the
ADP.

Open question
Is there X with the ADP which is smooth or strictly convex ?

73 / 152



The alternative Daugavet property The alternative Daugavet property

Some results on the ADP: isometric properties

Remark
Also some isometric properties of Banach spaces with numerical index 1 are
actually true for ADP.

Theorem (Kadets–M.–Meŕı–Payá, 2009)
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Lush spaces

6 Lush spaces
Definition and examples
Lush renorming
Reformulations of lushness and applications
Lushness is not equivalent to numerical index one
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Lush spaces

Motivation

Remark

Usually, when we show that a Banach space has numerical index 1, we
actually prove more.
We do not have an operator-free characterization of the spaces with
numerical index 1.
Hence, it makes sense to study geometrical sufficient conditions.

Some sufficient conditions
Let X be a Banach space. Consider:

(a) Lindenstrauss, 1964: X has the 3.2.I.P. if the intersection of every family
of three mutually intersecting balls is not empty.

(b) Fullerton, 1961: X is a CL-space if BX is the absolutely convex hull of
every maximal face of SX.

(c) Lima, 1978: X is an almost-CL-space if BX is the closed absolutely
convex hull of every maximal face of SX.

(a) ===-
�=6== (b) ===-

�=6== (c) ===-
�=6== n(X) = 1
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(c) Lima, 1978: X is an almost-CL-space if BX is the closed absolutely

convex hull of every maximal face of SX.

(a) ===-
�=6== (b) ===-

�=6== (c) ===-
�=6== n(X) = 1

Observation
Showing that (c) =⇒ n(X) = 1, one realizes that (c) is too much.

Lushness (Boyko–Kadets–M.–Werner, 2007)
X is lush if given x, y ∈ SX, ε > 0, there is x∗ ∈ SX∗ such that

x ∈ S(BX , x∗, ε) and dist
(
y, aconv

(
S(BX , x∗, ε)

))
< ε.
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Lush spaces Definition and examples

Definition and first property

Lushness (Boyko–Kadets–M.–Werner, 2007)
X is lush if given x, y ∈ SX, ε > 0, there is x∗ ∈ SX∗ such that

x ∈ S(BX , x∗, ε) and dist
(
y, aconv

(
S(BX , x∗, ε)

))
< ε.

Theorem
X lush =⇒ n(X) = 1.

Proof.
T ∈ L(X) with ‖T‖ = 1, ε > 0. Find y0 ∈ SX which ‖Ty0‖ > 1− ε.
Use lushness for x0 = Ty0/‖Ty0‖ and y0 to get x∗ ∈ SX∗ and

v =
n

∑
i=1

λiθixi where xi ∈ S(BX , x∗, ε), λi ∈ [0, 1], ∑ λi = 1, θi ∈ T,

with Re x∗(x0) > 1− ε and ‖v− y0‖ < ε.

Then |x∗(Tv)| =
∣∣∣x∗(x0)− x∗

(
T
(

y0
‖Ty0‖ − v

))∣∣∣ ∼ ‖T‖.
By a convexity argument, ∃ i such that |x∗(Txi)| ∼ ‖T‖ and Re x∗(xi) ∼ 1.
Then maxω∈T ‖Id + ω T‖ ∼ 1 + ‖T‖ =⇒ v(T) ∼ ‖T‖. X
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Lush spaces Definition and examples

Examples of lush spaces

Examples of lush spaces

1 Almost-CL-spaces.
2 In particular, C(K), L1(µ), C0(L). . .
3 Preduals of L1(µ)-spaces.

C-rich subspaces
K compact, X subspace of C(K) is C-rich iff ∀U open nonempty and ∀ε > 0

exists h : K −→ [0, 1] continuous, supp(h) ⊆ U such that dist
(
h, X) < ε.

More examples of lush spaces

4 C-rich subspaces of C(K).
5 In particular, finite-codimensional subspaces of C[0, 1].
6 CE(K‖L), where L nowhere dense in K and E ⊆ C(L).
7 Y if c0 ⊆ Y ⊆ `∞ (canonical copies).
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Lush spaces Lush renorming

Lush rernoming

The goal
When we may get a lush equivalent norm?

Proposition
X separable, X ⊇ c0 =⇒ exists ||| · ||| ' ‖ · ‖ and T : (X, ||| · |||) −→ `∞ with
T isometric embedding & c0 ⊆ T(X) (canonical copy).

Recall this family of examples of lush spaces
7 Y if c0 ⊆ Y ⊆ `∞ (canonical copies).

Theorem
X separable, X ⊇ c0 =⇒ X admits an equivalent lush norm.

Corollary
Every closed subspace of c0 admits an equivalent lush norm.
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Every closed subspace of c0 admits an equivalent lush norm.

Open problems

Find more sufficient conditions to get equivalent lush norms.
When X ⊇ `1 ?
When X ⊇ `∞ ?
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Lush spaces Lush renorming

Even more examples of lush spaces

Observation
X Banach space. Consider the following assertions.
(a) Exists A ⊂ BX∗ norming, |x∗∗(a∗)| = 1 ∀a∗ ∈ A and ∀x∗∗ ∈ ext (BX∗∗ ).
(b) For x ∈ SX and ε > 0, exists x∗ ∈ SX∗ such that

x ∈ S(BX , x∗, ε) and BX = aconv
(
S(BX , x∗, ε)

)
.

(a) ====- (b) ===- lushness

Definition (Werner, 1997)

X is nicely embedded in Cb(Ω) if exists J : X −→ Cb(Ω) linear isometry with
(N1) ‖J∗δs‖ = 1 ∀s ∈ Ω,
(N2) span(J∗δs) L-summand in X∗ ∀s ∈ Ω.

Even more examples of lush spaces

8 Nicely embedded Banach spaces (they fulfil (a) ).
9 In particular, function algebras (as A(D) and H∞).
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Lush spaces Reformulations of lushness and applications

Some reformulations of lushness

Proposition
X Banach space. TFAE:

X is lush,
Every separable E ⊂ X is contained in a separable lush Y with E ⊂ Y ⊂ X.

Separable lush spaces
X separable. TFAE:

X is lush.
There is G ⊆ SX∗ norming such that

BX = aconv(S(BX , x∗, ε))
(
ε > 0, x∗ ∈ G

)
.

Therefore, |x∗∗(x∗)| = 1 for every x∗∗ ∈ ext (BX∗∗ ) and every x∗ ∈ G.
This implies that BX = aconv

({
x ∈ BX : x∗(x) = 1

})
∀x∗ ∈ G.
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This implies that BX = aconv

({
x ∈ BX : x∗(x) = 1

})
∀x∗ ∈ G.

We almost returned to the almost-CL-space definition !!
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Therefore, |x∗∗(x∗)| = 1 for every x∗∗ ∈ ext (BX∗∗ ) and every x∗ ∈ G.
This implies that BX = aconv

({
x ∈ BX : x∗(x) = 1

})
∀x∗ ∈ G.

Consequence
X ⊆ C[0, 1] strictly convex or smooth =⇒ C[0, 1]/X contains C[0, 1].
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Lush spaces Reformulations of lushness and applications

An important consequence

Remark
X lush separable, dim(X) = ∞ =⇒ there is G ∈ SX∗ infinite such that

|x∗∗(x∗)| = 1
(
x∗∗ ∈ ext (BX∗∗ ) , x∗ ∈ G

)
.

Proposition (López–M.–Payá, 1999)
X real, A ⊂ SX infinite such that

|x∗(a)| = 1
(

x∗ ∈ ext (BX∗ ) , a ∈ A
)
.

Then, X ⊇ c0 or X ⊇ `1.

Main consequence
X real lush, dim(X) = ∞ =⇒ X∗ ⊇ `1.
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X real, A ⊂ SX infinite such that

|x∗(a)| = 1
(

x∗ ∈ ext (BX∗ ) , a ∈ A
)
.

Then, X ⊇ c0 or X ⊇ `1.

Main consequence
X real lush, dim(X) = ∞ =⇒ X∗ ⊇ `1.

Proof.

There is E ⊆ X separable and lush.
Then E∗ ⊇ c0 or E∗ ⊇ `1 =⇒ E∗ ⊇ `1.
By “lifting” property of `1 =⇒ X∗ ⊇ `1. X

82 / 152



Lush spaces Reformulations of lushness and applications

An important consequence

Remark
X lush separable, dim(X) = ∞ =⇒ there is G ∈ SX∗ infinite such that

|x∗∗(x∗)| = 1
(

x∗∗ ∈ ext (BX∗∗ ) , x∗ ∈ G
)
.
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X real, A ⊂ SX infinite such that

|x∗(a)| = 1
(

x∗ ∈ ext (BX∗ ) , a ∈ A
)
.

Then, X ⊇ c0 or X ⊇ `1.

Main consequence
X real lush, dim(X) = ∞ =⇒ X∗ ⊇ `1.

Question
What happens if just n(X) = 1 ? The same, we will prove later.

82 / 152



Lush spaces Lushness is not equivalent to numerical index one

Lushness is not equivalent to numerical index one

Example
There is a separable Banach space X such that

X ∗ is lush but X is not lush.
Since n(X ∗) = 1, also n(X ) = 1.
The set

{x∗ ∈ SX ∗ : |x∗∗(x∗)| = 1 for every x∗∗ ∈ ext (BX ∗∗ )}

is empty.

Consequence

X lush =6==-
�=6== X∗ lush

Proposition

X∗∗ lush ===-
�=6== X lush
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Slicely countably determined spaces

Slicely countably determined spaces

7 Slicely countably determined spaces
Slicely Countably Determined sets and spaces
Applications to numerical index 1 spaces
SCD operators
Open questions

A. Avilés, V. Kadets, M. Mart́ın, J. Meŕı, and V. Shepelska
Slicely Countably Determined Banach spaces
Trans. Amer. Math. Soc. (2010)
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Slicely countably determined spaces SCD sets & spaces

SCD sets: Definitions and preliminary remarks

X Banach space, A ⊂ X bounded and convex.

SCD sets
A is Slicely Countably Determined (SCD) if there is a sequence {Sn : n ∈ N}
of slices of A satisfying one of the following equivalent conditions:

every slice of A contains one of the Sn’s,
A ⊆ conv(B) if B ⊆ A satisfies B ∩ Sn 6= ∅ ∀n,
given {xn}n∈N with xn ∈ Sn ∀n ∈N, A ⊆ conv

(
{xn : n ∈N}

)
.

Remarks
A is SCD iff A is SCD.
If A is SCD, then it is separable.
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Slicely countably determined spaces SCD sets & spaces

SCD sets: Elementary examples I

Example
A separable and A = conv(dent(A)) =⇒ A is SCD.

Proof.
Take {an : n ∈N} denting points with A = conv

(
{an : n ∈N}

)
.

For every n, m ∈N, take a slice Sn,m containing an and of diameter 1/m.
If B ∩ Sn,m 6= ∅ ∀n, m ∈N =⇒ an ∈ B ∀n ∈N.
Therefore, A = conv

(
{an : n ∈N}

)
⊆ conv(B) = conv(B). X

Example
In particular, A RNP separable =⇒ A SCD.

Corollary
If X is separable LUR =⇒ BX is SCD.
So, every separable space can be renormed such that B(X,|·|) is SCD.
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Slicely countably determined spaces SCD sets & spaces

SCD sets: Elementary examples II

Example
If X∗ is separable =⇒ A is SCD.

Proof.
Take {x∗n : n ∈N} dense in SX∗ .
For every n, m ∈N, consider Sn,m = S(A, x∗n, 1/m).

It is easy to show that any slice of A contains one of the Sn,m. X

Negative example
If X has the Daugavet property =⇒ BX is not SCD.
Therefore, BC[0,1], BL1[0,1] are not SCD.

Proof.
Fix x0 ∈ BX and {Sn} sequence of slices of BX.
By [KSSW] there is a sequence (xn) ⊂ BX such that

xn ∈ Sn for every n ∈N,
(xn)n>0 is equivalent to the basis of `1,
so x0 /∈ lin{xn : n ∈N}. X
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Fix x0 ∈ BX and {Sn} sequence of slices of BX.
By [KSSW] there is a sequence (xn) ⊂ BX such that

xn ∈ Sn for every n ∈N,
(xn)n>0 is equivalent to the basis of `1,
so x0 /∈ lin{xn : n ∈N}. X
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Slicely countably determined spaces SCD sets & spaces

SCD sets: Further examples I

Convex combination of slices

W =
m
∑

k=1
λk Sk ⊂ A where λk > 0, ∑ λk = 1, Sk slices.

Proposition
In the definition of SCD we can use a sequence {Sn : n ∈N} of convex
combination of slices.

Small combinations of slices
A has small combinations of slices iff every slice of A contains convex combina-
tions of slices of A with arbitrary small diameter.

Example
If A has small combinations of slices + separable =⇒ A is SCD.

Particular case
A strongly regular + separable =⇒ A is SCD.
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Slicely countably determined spaces SCD sets & spaces

SCD sets: Further examples II

Bourgain’s lemma
Every relative weak open subset of A contains a convex combination of slices.

Corollary
In the definition of SCD we can use a sequence {Sn : n ∈N} of relative weak
open subsets.

π-bases
A π-base of the weak topology of A is a family {Vi : i ∈ I} of weak open sets
of A such that every weak open subset of A contains one of the Vi’s.

Proposition
If (A, σ(X, X∗)) has a countable π-base =⇒ A is SCD.
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Slicely countably determined spaces SCD sets & spaces

SCD sets: Further examples III

Theorem
A separable without `1-sequences =⇒ (A, σ(X, X∗)) has a countable π-base.

Proof.
We see (A, σ(X, X∗)) ⊂ C(T) where T = (BX∗ , σ(X∗, X)).
By Rosenthal `1 theorem, (A, σ(X, X∗)) is a relatively compact subset of
the space of first Baire class functions on T.
By a result of Todorčević, (A, σ(X, X∗)) has a σ-disjoint π-base.
{Vi : i ∈ I} is σ-disjoint if I =

⋃
n∈N In and each {Vi : i ∈ In} is pairwise

disjoint.
A σ-disjoint family of open subsets in a separable space is countable. X

Example
A separable without `1-sequences =⇒ A is SCD.
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Slicely countably determined spaces SCD sets & spaces

SCD spaces: definition and examples

SCD space
X is Slicely Countably Determined (SCD) if so are its convex bounded subsets.

Examples of SCD spaces

1 X separable strongly regular. In particular, RNP, CPCP spaces.
2 X separable X + `1. In particular, if X∗ is separable.

Examples of NOT SCD spaces

1 X having the Daugavet property.
2 In particular, C[0, 1], L1[0, 1]
3 There is X with the Schur property which is not SCD.

Remark
Every subspace of a SCD space is SCD.
This is false for quotients.
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Slicely countably determined spaces SCD sets & spaces

SCD spaces: stability properties

Theorem
Z ⊂ X. If Z and X/Z are SCD =⇒ X is SCD.

Corollary
X separable NOT SCD

If `1 ' Y ⊂ X =⇒ X/Y contains a copy of `1.
If `1 ' Y1 ⊂ X =⇒ there is `1 ' Y2 ⊂ X with Y1 ∩Y2 = 0.

Corollary
X1, . . . , Xm SCD =⇒ X1 ⊕ · · · ⊕ Xm SCD.
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Slicely countably determined spaces SCD sets & spaces

SCD spaces: stability properties II

Theorem
X1, X2, . . . SCD, E with unconditional basis.

E + c0 =⇒ [
⊕

n∈N Xn]E SCD.
E + `1 =⇒ [

⊕
n∈N Xn]E SCD.

Examples
1 c0(`1) and `1(c0) are SCD.
2 c0 ⊗ε c0, c0 ⊗π c0, c0 ⊗ε `1, c0 ⊗π `1, `1 ⊗ε `1, and `1 ⊗π `1 are SCD.
3 K(c0) and K(c0, `1) are SCD.
4 `2 ⊗ε `2 ≡ K(`2) and `2 ⊕π `2 ≡ L1(`2) are SCD
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4 `2 ⊗ε `2 ≡ K(`2) and `2 ⊕π `2 ≡ L1(`2) are SCD
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Slicely countably determined spaces Applications to numerical index 1 spaces

The DPr, the ADP and numerical index 1

Recalling the properties

1 Kadets-Shvidkoy-Sirotkin-Werner, 1997:
X has the Daugavet property (DPr) if

‖Id + T‖ = 1 + ‖T‖ (DE)

for every rank-one T ∈ L(X).
FThen every weakly compact T also satisfies (DE).

2 Lumer, 1968: X has numerical index 1 if every operator on X satisfies

max
θ∈T
‖Id + θ T‖ = 1 + ‖T‖ (aDE)

FEquivalently, v(T) = ‖T‖ for every T ∈ L(X).

3 M.-Oikhberg, 2004: X has the alternative Daugavet property (ADP) if
every rank-one T ∈ L(X) satisfies (aDE).
FThen every weakly compact T also satisfies (aDE).
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Slicely countably determined spaces Applications to numerical index 1 spaces

Relations between these properties

Daugavet property ====6====-
�===6===== Numerical index 1

ADP
�==

==
==
==
==========-

Examples
C
(
[0, 1], K(`2)

)
has DPr, but has not numerical index 1

c0 has numerical index 1, but has not DPr
c0 ⊕∞ C

(
[0, 1], K(`2)

)
has ADP, neither DPr nor numerical index 1

Remarks

For RNP or Asplund spaces, ADP =⇒ numerical index 1 .
Every Banach space with the ADP can be renormed still having the ADP
but failing the Daugavet property.
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Slicely countably determined spaces Applications to numerical index 1 spaces

ADP + SCD =⇒ numerical index 1

Characterizations of the ADP
X Banach space. TFAE:

X has ADP (i.e. maxθ∈T ‖Id + θ T‖ = 1 + ‖T‖ for all T rank-one).

Given x ∈ SX, a slice S of BX and ε > 0, there is y ∈ S with

max
θ∈T
‖x + θ y‖ > 2− ε.

Given x ∈ SX, a sequence {Sn} of slices of BX, and ε > 0,
there is y∗ ∈ SX∗ such that x ∈ S(BX , y∗, ε) and

conv
(
T S(BX , y∗, ε)

)⋂
Sn 6= ∅ (n ∈N).

Theorem
X ADP + BX SCD =⇒ given x ∈ SX and ε > 0, there is y∗ ∈ SX∗ such that

x ∈ S(BX , y∗, ε) and BX = conv
(
T S(BX , y∗, ε)

)
.

F This implies lushness and so, numerical index 1.
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Slicely countably determined spaces Applications to numerical index 1 spaces

Some consequences

Corollary
ADP + strongly regular =⇒ numerical index 1 (actually, lushness).
ADP + X + `1 =⇒ numerical index 1 (actually, lushness).

Corollary
X real + dim(X) = ∞ + ADP =⇒ X∗ ⊇ `1.
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X real, dim(X) = ∞, n(X) = 1 =⇒ X ⊃ c0 or X ⊃ `1 ?
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Slicely countably determined spaces SCD operators

SCD operators

SCD operator
T ∈ L(X) is an SCD-operator if T(BX) is an SCD-set.

Examples
T is an SCD-operator when T(BX) is separable and

1 T(BX) is RPN,
2 T(BX) has no `1 sequences,
3 T does not fix copies of `1

Theorem
X ADP + T SCD-operator =⇒ maxθ∈T ‖Id + θ T‖ = 1 + ‖T‖.
X DPr + T SCD-operator =⇒ ‖Id + T‖ = 1 + ‖T‖.

Main corollary
X ADP + T does not fix copies of `1 =⇒ maxθ∈T ‖Id + θ T‖ = 1 + ‖T‖.
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X DPr + T SCD-operator =⇒ ‖Id + T‖ = 1 + ‖T‖.

Main corollary
X ADP + T does not fix copies of `1 =⇒ maxθ∈T ‖Id + θ T‖ = 1 + ‖T‖.

Remark
Separability is not needed !
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Slicely countably determined spaces Open questions

Open questions

On SCD-sets
Find more sufficient conditions for a set to be SCD.
For instance, if X has 1-symmetric basis, is BX an SCD-set ?
Is SCD equivalent to the existence of a countable π-base for the weak
topology ?

On SCD-spaces
E with unconditional basis. Is E SCD ?
X, Y SCD. Are X⊗ε Y and X⊗π Y SCD ?
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Containment of c0 and `1

On the containment of c0 or `1

8 Remarks on the containment of c0 and `1

A. Avilés, V. Kadets, M. Mart́ın, J. Meŕı, and V. Shepelska.
Slicely countably determined Banach spaces.
Trans. Amer. Math. Soc. (2010).

V. Kadets, M. Mart́ın, J. Meŕı, and R. Payá.
Smoothness and convexity for Banach spaces with numerical index 1.
Illinois J. Math. (2009).
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Containment of c0 and `1

Containment of c0 or `1

Open question (Godefroy, private communication)

X real, dim(X) = ∞, n(X) = 1 =⇒ X ⊃ c0 or X ⊃ `1 ?

F Old approaches to this problem:
López–M.–Payá, 1999:
X real, RNP, dim(X) = ∞, n(X) = 1 =⇒ X ⊃ `1.
Kadets–M.–Meŕı–Payá, 2009:
X real lush, dim(X) = ∞ =⇒ X∗ ⊃ `1.
Avilés–Kadets–M.–Meŕı–Shepelska, 2010:
X real, dim(X) = ∞ =⇒ X∗ ⊃ `1.
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X real, RNP, dim(X) = ∞, n(X) = 1 =⇒ X ⊃ `1.

Kadets–M.–Meŕı–Payá, 2009:
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X real, dim(X) = ∞ =⇒ X∗ ⊃ `1.

Proof of the last statement:

If X ⊇ `1 we use the “lifting” property of `1 X
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X real, RNP, dim(X) = ∞, n(X) = 1 =⇒ X ⊃ `1.
Kadets–M.–Meŕı–Payá, 2009:
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López–M.–Payá, 1999:
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X real lush, dim(X) = ∞ =⇒ X∗ ⊃ `1.
Avilés–Kadets–M.–Meŕı–Shepelska, 2010:
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9 Numerical index of Lp-spaces
The 2000’s results on the numerical index on Lp-spaces
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Numerical index of Lp The 2000’s results

Numerical index of LP-spaces

Known results on the numerical index of Lp-spaces

1 n(`p) 6 n
(
`
(m+1)
p

)
6 n

(
`
(m)
p
)

for m ∈N.
(M.–Payá, 2000)

2 n
(

Lp[0, 1]
)
= n(`p) = lim

m→∞
n
(
`
(m)
p
)
= inf

m∈N
n
(
`
(m)
p
)
.

(Ed-Dari, 2005 & Ed-Dari–Khamsi, 2006)
3 In the real case,

max
{

1
21/p ,

1
21/q

}
v
(

0 1
−1 0

)
6 n

(
`
(2)
p
)
6 v

(
0 1
−1 0

)

and v
(

0 1
−1 0

)
= max

t∈[0,1]

|tp−1 − t|
1 + tp

(M.–Meŕı, 2009)
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Numerical index of Lp The 2000’s results

Ideas behind the proofs I

The numerical index decreases with the dimension

n(`p) 6 n
(
`
(m+1)
p

)
6 n

(
`
(m)
p
)

for m ∈N.

Proposition (M.–Payá, 2000)
Z = U ⊕V with absolute sum (i.e. ‖u + v‖ = f (‖u‖, ‖v‖) for u ∈ U, v ∈ V).
=⇒ n(Z) 6 min{n(U), n(V)}.

Proof of the decreasing

`
(m)
p is an absolute summand in both `

(m+1)
p and in `p.
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Numerical index of Lp The 2000’s results

Ideas behind the proofs II

One inequality

n
(

Lp[0, 1]
)
6 lim

m→∞
n
(
`
(m)
p
)
.

Proposition (M.–Meŕı–Popov–Randrianantoanina, 2011)
E order continuous Köthe space, X Banach space

=⇒ n
(
E(X)

)
6 n(X).

Proof of the inequality

E = Lp[0, 1], X = `
(m)
p .

E ≡ E(X) so n(E) 6 n(`(m)
p ).
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Numerical index of Lp The 2000’s results

Ideas behind the proofs III

The reversed inequality

n
(

Lp[0, 1]
)
> lim

m→∞
n
(
`
(m)
p
)

and n(`p) > lim
m→∞

n
(
`
(m)
p
)
.

Proposition (M.–Meŕı–Popov–Randrianantoanina, 2011)
Z Banach space, {Zi}i∈I increasing family of one-complemented subspaces
whose union is dense. Then, =⇒ n(Z) > lim sup

i∈I
n(Zi).

Corollary
Z Banach space with monotone basis (em), Zm = span{ek : 1 6 k 6 m}.
=⇒ n(Z) > lim sup

m→∞
n(Zm).

Proof of the inequality

Z = `p, (em) canonical basis =⇒ Zm ≡ `
(m)
p for all m ∈N.

E = Lp[0, 1], (em) Haar system =⇒ Zm ≡ `
(m)
p for m = 2k (k ∈N).
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Proposition (M.–Meŕı–Popov–Randrianantoanina, 2011)
Z Banach space, {Zi}i∈I increasing family of one-complemented subspaces
whose union is dense. Then, =⇒ n(Z) > lim sup

i∈I
n(Zi).

Corollary
Z Banach space with monotone basis (em), Zm = span{ek : 1 6 k 6 m}.
=⇒ n(Z) > lim sup

m→∞
n(Zm).

Proof of the inequality

Z = `p, (em) canonical basis =⇒ Zm ≡ `
(m)
p for all m ∈N.

E = Lp[0, 1], (em) Haar system =⇒ Zm ≡ `
(m)
p for m = 2k (k ∈N).

106 / 152



Numerical index of Lp The 2000’s results

Ideas behind the proofs III

The reversed inequality

n
(

Lp[0, 1]
)
> lim

m→∞
n
(
`
(m)
p
)

and n(`p) > lim
m→∞

n
(
`
(m)
p
)
.
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Ideas behind the proofs IV

The two-dimensional case
In the real case,

max
{

1
21/p , 1

21/q

}
Mp 6 n

(
`
(2)
p
)
6 Mp where Mp = max

t∈[0,1]

|tp−1−t|
1+tp

Proposition (Duncan-McGregor-Pryce-White, 1970)

T =

(
a b
c d

)
operator in `

(2)
p . Then

v(T) = max

{
max
t∈[0,1]

|a + d tp|+
∣∣b t + c tp−1

∣∣
1 + tp , max

t∈[0,1]

|d + a tp|+
∣∣c t + b tp−1

∣∣
1 + tp

}
.

Proof of the result

n(`(2)p ) 6 Mp since
∥∥∥∥
(

0 1
−1 0

)∥∥∥∥ = 1 and v
(

0 1
−1 0

)
= Mp.

We compare v(T) with Mp, but we use ‖T‖1 and ‖T‖∞ instead of ‖T‖p.
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Questions

Questions

1 Is n
(
`
(m+1)
p

)
= n

(
`
(m)
p
)

for m > 2 ?
2 In the real case, is n(Lp[0, 1]) positive ?
3 We do not have results for the complex case, even for dimension two.

The 2010’s results

We left the finite-dimensional approach and introduce
the absolute numerical radius.
This allows to show that n(Lp[0, 1]) > 0 in the real case.
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Numerical index of Lp The new results

The absolute numerical radius in Lp

The numerical radius in Lp

For x ∈ Lp(µ), write x# = |x|p−1 sign(x).
It is the unique element in Lq(µ) such that

‖x‖p
p = ‖x#‖q

q and
∫

x x# dµ = ‖x‖p ‖x#‖q = ‖x‖p
p.

Therefore, for T ∈ L
(

Lp(µ)
)

one has

v(T) = sup
{∣∣∣
∫

x#Tx dµ
∣∣∣ : x ∈ Lp(µ), ‖x‖p = 1

}

= sup
{∣∣∣
∫
|x|p−1 sign(x) Tx dµ

∣∣∣ : x ∈ Lp(µ), ‖x‖p = 1
}

Absolute numerical radius

For T ∈ L
(

Lp(µ)
)
,

|v|(T) : = sup
{∫
|x#Tx| dµ : x ∈ Lp(µ), ‖x‖p = 1

}

= sup
{∫
|x|p−1|Tx| dµ : x ∈ Lp(µ), ‖x‖p = 1

}
.
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The absolute numerical index of Lp

Obvious remark
v(T) 6 |v|(T) 6 ‖T‖ for every T ∈ L

(
Lp(µ)

)
.

Absolute numerical index
|n|(Lp(µ)) = inf

{
|v|(T) : T ∈ L(Lp(µ)), ‖T‖ = 1

}

= max
{

k > 0 : k‖T‖ 6 |v|(T) ∀ T ∈ L(Lp(µ))
}

.

n(Lp(µ)) is the greatest constant M > 0 such that

sup
{∣∣∣
∫
|x|p−1 sign(x) Tx dµ

∣∣∣ : x ∈ Lp(µ), ‖x‖p = 1
}

> M ‖T‖

for every T ∈ L(Lp(µ)).

|n|(Lp(µ)) is the greatest constant K > 0 such that

sup
{∣∣∣
∫
|x|p−1|Tx| dµ

∣∣∣ : x ∈ Lp(µ), ‖x‖p = 1
}

> K ‖T‖

for every T ∈ L(Lp(µ)).
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Numerical index of Lp The new results

Giving an estimation of n(Lp(µ))

Roadmap
We would like to give an estimation of n(Lp(µ)) in two steps:

First, we study the relationship between v(T) and |v|(T) for all
operators T.
Second, we study the relationship between |v|(T) and ‖T‖ for all
operators T. Here, we actually calculate |n|(Lp(µ)).
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Numerical index of Lp The new results

Relating the numerical radius and the absolute numerical radius

The constant
Write

Mp = max
t∈[0,1]

|tp−1 − t|
1 + tp = v

(
0 1
−1 0

)

the numerical radius taken in the real `2
p.

Remark
It is not difficult to see that in every Lp(µ) space there is an operator T with
‖T‖ = 1 and v(T) = Mp.

F We may use Mp to relate v and |v|:

Theorem (M.–Meŕı–Popov, 2011)
In the real case,

v(T) >
Mp

6
|v|(T)

for every T ∈ L(Lp(µ)).
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F We may use Mp to relate v and |v|:

Theorem (M.–Meŕı–Popov, 2011)
In the real case,

v(T) >
Mp

6
|v|(T)

for every T ∈ L(Lp(µ)).
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Numerical index of Lp The new results

Calculating |n|(Lp(µ)) I

The constant

Set κp := max
τ>0

τp−1

1 + τp = max
λ∈[0,1]

λ
1
q (1− λ)

1
p =

1
p1/pq1/q .

The best possibility for |n|(Lp(µ))

If dim(Lp(µ)) > 2, then there is a (positive) operator T ∈ L(Lp(µ)) with

‖T‖ = 1, |v|(T) = κp.

The examples for `p and Lp[0, 1]:

For `p: consider the extension by zero of the matrix
(

0 1
0 0

)
.

For Lp[0, 1]:

T f = 2
[∫ 1/2

0
f (s) ds

]
χ[ 1

2 ,1]
(

f ∈ Lp[0, 1]
)
.
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Numerical index of Lp The new results

Calculating |n|(Lp(µ)) II

Theorem (M.–Meŕı–Popov, 2011)
|n|(Lp(µ)) > κp

Proof for positive operators:
Fix T ∈ L(Lp(µ)) positive with ‖T‖ = 1, τ > 0 and ε > 0.
Find x > 0 with ‖x‖ = 1 and ‖Tx‖p > 1− ε, set

y = x ∨ τTx and A = {ω ∈ Ω : x(ω) > τ(Tx)(ω)},
and observe that

‖y‖p =
∫

A
xp dµ +

∫

Ω\A
(τTx)p dµ 6 1 + τp and y# = xp−1 ∨ (τTx)p−1.

Now,

|v|(T) > 1
‖y‖p

∫

Ω
y#Ty dµ >

1
1 + τp

∫

Ω
y#Ty dµ

>
1

1 + τp

∫

Ω
(τTx)p−1Tx dµ =

τp−1

1 + τp

∫

Ω
(Tx)p dµ >

τp−1

1 + τp (1− ε).

Taking supremum on τ > 0 and ε > 0, we get |v|(T) > κp.
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Theorem (M.–Meŕı–Popov, 2011)
|n|(Lp(µ)) > κp

Proof for positive operators:
Fix T ∈ L(Lp(µ)) positive with ‖T‖ = 1, τ > 0 and ε > 0.
Find x > 0 with ‖x‖ = 1 and ‖Tx‖p > 1− ε, set

y = x ∨ τTx and A = {ω ∈ Ω : x(ω) > τ(Tx)(ω)},
and observe that

‖y‖p =
∫

A
xp dµ +

∫

Ω\A
(τTx)p dµ 6 1 + τp and y# = xp−1 ∨ (τTx)p−1.

Now,

|v|(T) > 1
‖y‖p

∫

Ω
y#Ty dµ >

1
1 + τp

∫

Ω
y#Ty dµ

>
1

1 + τp

∫

Ω
(τTx)p−1Tx dµ =

τp−1

1 + τp

∫

Ω
(Tx)p dµ >

τp−1

1 + τp (1− ε).

Taking supremum on τ > 0 and ε > 0, we get |v|(T) > κp.

114 / 152



Numerical index of Lp The new results

Calculating |n|(Lp(µ)) II

Theorem (M.–Meŕı–Popov, 2011)
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Numerical index of Lp The new results

The main consequence:

Corollary

n
(

Lp(µ)
)
>

Mp κp

6
in the real case.

In particular,

Corollary
In the real case, n(Lp(µ)) > 0 for every p 6= 2.
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Numerical index of Lp The new results

Further results

More results

If T ∈ L(Lp[0, 1]) is rank-one =⇒ v(T) > κ2
p‖T‖.

If T ∈ L(Lp[0, 1]) is compact, then

v(T) > κ2
p‖T‖ (complex case), v(T) > max

τ>0

κpτp−1 − τ

1 + τp ‖T‖ (real case).

Open problems with conjectures

Is n(Lp(µ)) = Mp (dim > 2) in the real case ?

It is enough to prove that n(Lp[0, 1]) > Mp or n(`p) > Mp.

Is n(Lp(µ)) = κp (dim > 2) in the complex case ?

It is enough to prove that n(Lp[0, 1]) > κp or n(`p) > κp.

116 / 152



Numerical index of Lp The new results

Further results

More results
If T ∈ L(Lp[0, 1]) is rank-one =⇒ v(T) > κ2

p‖T‖.
If T ∈ L(Lp[0, 1]) is compact, then

v(T) > κ2
p‖T‖ (complex case), v(T) > max

τ>0

κpτp−1 − τ

1 + τp ‖T‖ (real case).

Open problems with conjectures

Is n(Lp(µ)) = Mp (dim > 2) in the real case ?

It is enough to prove that n(Lp[0, 1]) > Mp or n(`p) > Mp.

Is n(Lp(µ)) = κp (dim > 2) in the complex case ?

It is enough to prove that n(Lp[0, 1]) > κp or n(`p) > κp.

116 / 152



Numerical index of Lp The new results

Further results

More results
If T ∈ L(Lp[0, 1]) is rank-one =⇒ v(T) > κ2

p‖T‖.
If T ∈ L(Lp[0, 1]) is compact, then

v(T) > κ2
p‖T‖ (complex case), v(T) > max

τ>0

κpτp−1 − τ

1 + τp ‖T‖ (real case).

Open problems with conjectures

Is n(Lp(µ)) = Mp (dim > 2) in the real case ?

It is enough to prove that n(Lp[0, 1]) > Mp or n(`p) > Mp.

Is n(Lp(µ)) = κp (dim > 2) in the complex case ?

It is enough to prove that n(Lp[0, 1]) > κp or n(`p) > κp.

116 / 152



Numerical index of Lp The new results

Further results

More results
If T ∈ L(Lp[0, 1]) is rank-one =⇒ v(T) > κ2

p‖T‖.
If T ∈ L(Lp[0, 1]) is compact, then

v(T) > κ2
p‖T‖ (complex case), v(T) > max

τ>0

κpτp−1 − τ

1 + τp ‖T‖ (real case).

Open problems with conjectures
Is n(Lp(µ)) = Mp (dim > 2) in the real case ?

It is enough to prove that n(Lp[0, 1]) > Mp or n(`p) > Mp.

Is n(Lp(µ)) = κp (dim > 2) in the complex case ?

It is enough to prove that n(Lp[0, 1]) > κp or n(`p) > κp.

116 / 152



Numerical index of Lp The new results

Further results

More results
If T ∈ L(Lp[0, 1]) is rank-one =⇒ v(T) > κ2

p‖T‖.
If T ∈ L(Lp[0, 1]) is compact, then

v(T) > κ2
p‖T‖ (complex case), v(T) > max

τ>0

κpτp−1 − τ

1 + τp ‖T‖ (real case).

Open problems with conjectures
Is n(Lp(µ)) = Mp (dim > 2) in the real case ?

It is enough to prove that n(Lp[0, 1]) > Mp or n(`p) > Mp.

Is n(Lp(µ)) = κp (dim > 2) in the complex case ?

It is enough to prove that n(Lp[0, 1]) > κp or n(`p) > κp.

116 / 152



Numerical index of Lp The new results

Further results

More results
If T ∈ L(Lp[0, 1]) is rank-one =⇒ v(T) > κ2

p‖T‖.
If T ∈ L(Lp[0, 1]) is compact, then

v(T) > κ2
p‖T‖ (complex case), v(T) > max

τ>0

κpτp−1 − τ

1 + τp ‖T‖ (real case).

Open problems with conjectures
Is n(Lp(µ)) = Mp (dim > 2) in the real case ?

It is enough to prove that n(Lp[0, 1]) > Mp or n(`p) > Mp.

Is n(Lp(µ)) = κp (dim > 2) in the complex case ?

It is enough to prove that n(Lp[0, 1]) > κp or n(`p) > κp.

116 / 152



Numerical index of Lp The new results

Further results

More results
If T ∈ L(Lp[0, 1]) is rank-one =⇒ v(T) > κ2

p‖T‖.
If T ∈ L(Lp[0, 1]) is compact, then

v(T) > κ2
p‖T‖ (complex case), v(T) > max

τ>0

κpτp−1 − τ

1 + τp ‖T‖ (real case).

Open problems with conjectures
Is n(Lp(µ)) = Mp (dim > 2) in the real case ?

It is enough to prove that n(Lp[0, 1]) > Mp or n(`p) > Mp.

Is n(Lp(µ)) = κp (dim > 2) in the complex case ?
It is enough to prove that n(Lp[0, 1]) > κp or n(`p) > κp.

116 / 152



Extremely non-complex

Extremely non-complex Banach spaces

10 Extremely non-complex Banach spaces
Motivation
Extremely non-complex Banach spaces
Surjective isometries

V. Kadets, M. Mart́ın, and J. Meŕı.
Norm equalities for operators on Banach spaces.
Indiana U. Math. J. (2007).

P. Koszmider, M. Mart́ın, and J. Meŕı.
Extremely non-complex C(K) spaces.
J. Math. Anal. Appl. (2009).

P. Koszmider, M. Mart́ın, and J. Meŕı.
Isometries on extremely non-complex Banach spaces.
J. Inst. Math. Jussieu (2011).
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Extremely non-complex Motivation

Isometries and duality. Reminder

Example (produced with numerical ranges)
There is a Banach space X such that

Iso(X) has no exponential one-parameter semigroups.
Iso(X∗) contains infinitely many exponential one-parameter semigroups.

F In terms of linear dynamical systems:
There is no A ∈ L(X) such that the solution of

x′ = A x
(
x : R+

0 −→ X
)

is given by a semigroup of isometries.
There are infinitely many such A’s on X∗

But there are unbounded As on X such that the solution of the linear
dynamical system is a one-parameter C0 semigroup of isometries.

We would like to find X such that
Iso(X ) has no C0 semigroup of isometries.
Iso(X ∗) has exponential semigroup of isometries
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Numerical range of unbounded operators

Numerical range of unbounded operators (1960’s)

X Banach space, T : D(T) −→ X linear,

V(T) =
{

x∗(Tx) : x∗ ∈ X∗, x ∈ D(T), x∗(x) = ‖x∗‖ = ‖x‖ = 1
}

.

Teorema (Stone, 1932)
H Hilbert space, A densely defined operator. TFAE:

A generates an strongly continuous one-parameter semigroup of unitary
operators (onto isometries).
A∗ = −A.
Re(Ax | x) = 0 for every x ∈ D(A).
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Numerical range of unbounded operators. II

Difficulty
Which Banach spaces have unbounded operators with numerical range zero?

Examples
In C0(R), Φ(t)( f )(s) = f (t + s) is an strongly continuous one-parameter
semigroup of isometries (generated by the derivative).
In CE([0, 1]‖∆) there are also strongly continuous one-parameter
semigroup of isometries.

Consequence
We have to completely change our approach to the problem.
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Extremely non-complex Motivation

Complex structures

Definition

X has complex structure if there is T ∈ L(X) such that T2 = −Id.

Some remarks

This gives a structure of vector space over C:

(α + i β) x = α x + β T(x)
(
α + i β ∈ C, x ∈ X

)

Defining
|||x||| = max

{
‖eiθ x‖ : θ ∈ [0, 2π]

}
(x ∈ X)

one gets that (X, ||| · |||) is a complex Banach space.
If T is an isometry, then actually the given norm of X is complex.
Conversely, if X is a complex Banach space, then

T(x) = i x
(

x ∈ X
)

satisfies T2 = −Id and T is an isometry.
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Extremely non-complex Motivation

Complex structures II

Some examples

1 If dim(X) < ∞, X has complex structure iff dim(X) is even.
2 If X ' Z⊕ Z (in particular, X ' X2), then X has complex structure.
3 There are infinite-dimensional Banach spaces without complex structure:

Dieudonné, 1952: the James’ space J (since J ∗∗ ≡ J ⊕R).
Szarek, 1986: uniformly convex examples.
Gowers-Maurey, 1993: their H.I. space.
Ferenczi-Medina Galego, 2007: there are odd and even
infinite-dimensional spaces X.

X is even if admits a complex structure but its hyperplanes does not.
X is odd if its hyperplanes are even (and so X does not admit a complex
structure).

Definition

X is extremely non-complex if dist(T2,−Id) is the maximum possible, i.e.

‖Id + T2‖ = 1 + ‖T2‖
(
T ∈ L(X)

)
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Extremely non-complex Motivation

The Daugavet equation

What Daugavet did in 1963
The norm equality

‖Id + T‖ = 1 + ‖T‖
holds for every compact T ∈ L

(
C[0, 1]

)
.

The Daugavet equation
X Banach space, T ∈ L(X), ‖Id + T‖ = 1 + ‖T‖ (DE).

Classical examples
1 Daugavet, 1963:

Every compact operator on C[0, 1] satisfies (DE).
2 Lozanoskii, 1966:

Every compact operator on L1[0, 1] satisfies (DE).
3 Abramovich, Holub, and more, 80’s:

X = C(K), K perfect compact space
or X = L1(µ), µ atomless measure
=⇒ every weakly compact T ∈ L(X) satisfies (DE).
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Extremely non-complex Motivation

The Daugavet property

The Daugavet property (Kadets–Shvidkoy–Sirotkin–Werner, 1997)
A Banach space X is said to have the Daugavet property iff every rank-one
operator on X satisfies (DE).

Some results
Let X be a Banach space with the Daugavet
property. Then

Every weakly compact operator on X
satisfies (DE).
X contains `1.
X does not embed into a Banach space
with unconditional basis.
Geometric characterization: X has the
Daugavet property iff for each x ∈ SX

co
(

BX \
(
x + (2− ε)BX

))
= BX .

(Kadets–Shvidkoy–Sirotkin–Werner, 1997 & 2000)

x

BX \
(
x+ (2− ε)BX

)
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The Daugavet property II

More examples
The following spaces have the Daugavet property.

Wojtaszczyk, 1992:
The disk algebra and H∞.
Werner, 1997:
“Nonatomic” function algebras.
Oikhberg, 2005:
Non-atomic C∗-algebras and preduals of non-atomic von Neumann
algebras.
Becerra–M., 2005:
Non-atomic JB∗-triples and their preduals.
Becerra–M., 2006:
Preduals of L1(µ) without Fréchet-smooth points.
Ivankhno, Kadets, Werner, 2007:
Lip(K) when K ⊆ Rn is compact and convex.
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Daugavet–type inequalities

Some examples

Benyamini–Lin, 1985:
For every 1 < p < ∞, p 6= 2, there exists ψp : (0, ∞) −→ (0, ∞)
such that

‖Id + T‖ > 1 + ψp(‖T‖)
for every compact operator T on Lp[0, 1].

If p = 2, then there is a non-null compact T on L2[0, 1] such that

‖Id + T‖ = 1.

Boyko–Kadets, 2004:
If ψp is the best possible function above, then

lim
p→1+

ψp(t) = t (t > 0).

Oikhberg, 2005:
If K(`2) ⊆ X ⊆ L(`2), then

‖Id + T‖ > 1 + 1
8
√

2
‖T‖

for every compact T on X.
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Extremely non-complex Motivation

Norm equalities for operators

Motivating question
Are there other norm equalities which could define interesting properties of
Banach spaces ?

Concretely
We looked for non-trivial norm equalities of the forms

‖Id+T‖ = f (‖T‖) or ‖g(T)‖ = f (‖T‖) or ‖Id+ g(T)‖ = f (‖g(T)‖)

(g analytic, f arbitrary) satisfied by all rank-one operators on a Banach space.

Solution
We proved that there are few possibilities. . .
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Extremely non-complex Motivation

Equalities of the form ‖Id + T‖ = f (‖T‖)

Proposition
X real or complex, f : R+

0 −→ R arbitrary, a, b ∈ K. If the norm equality

‖a Id + b T‖ = f (‖T‖)

holds for every rank-one operator T ∈ L(X), then

f (t) = |a|+ |b| t
(
t ∈ R+

0
)
.

If a 6= 0, b 6= 0, then X has the Daugavet property.

Then, we have to look for Daugavet-type equalities in which Id + T is replaced
by something different.
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Extremely non-complex Motivation

Proof

We have. . .
‖a Id + b T‖ = f (‖T‖) ∀T ∈ L(X) rank-one

?⇒
We want. . .
f (t) = |a|+ |b| t

(
t ∈ R+

0

)
.

Trivial if a · b = 0. Suppose a 6= 0 and b 6= 0 and write ω0 = b
|b|

a
|a| ∈ T.

Fix x0 ∈ SX, x∗0 ∈ SX∗ with x∗0(x0) = ω0 and consider

Tt = t x∗0 ⊗ x0 ∈ L(X) (t ∈ R+
0 ).

Since ‖Tt‖ = t, we have

f (t) = ‖aId + b Tt‖ (t ∈ R+
0 ).

It follows that

|a|+ |b| t > f (t) = ‖aId + b Tt‖ >
∥∥[aId + b Tt](x0)

∥∥

= ‖a x0 + b ω0t x0‖ = |a + b ω0t| ‖x0‖ =
∣∣∣∣a + b b

|b|
a
|a| t

∣∣∣∣ = |a|+ |b| t.

Finally, for rank-one T ∈ L(X), write S = a
b T and observe

|a|
(
1 + ‖T‖

)
= |a|+ |b| ‖S‖ = ‖aId + b S‖ = |a| ‖Id + T‖.X
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Extremely non-complex Motivation

Equalities of the form ‖g(T)‖ = f (‖T‖)

Theorem
X real or complex with dim(X) > 2.
Suppose that the norm equality

‖g(T)‖ = f (‖T‖)

holds for every rank-one operator
T ∈ L(X), where

g : K −→ K is analytic,
f : R+

0 −→ R is arbitrary.
Then, there are a, b ∈ K such that

g(ζ) = a + b ζ
(
ζ ∈ K).

Corollary
Only three norm equalities of the form

‖g(T)‖ = f (‖T‖)

are possible:
b = 0 : ‖a Id‖ = |a|,
a = 0 : ‖b T‖ = |b| ‖T‖,

(trivial cases)
a 6= 0, b 6= 0 :
‖a Id + b T‖ = |a|+ |b| ‖T‖,

(Daugavet property)

130 / 152



Extremely non-complex Motivation

Equalities of the form ‖g(T)‖ = f (‖T‖)

Theorem
X real or complex with dim(X) > 2.
Suppose that the norm equality

‖g(T)‖ = f (‖T‖)

holds for every rank-one operator
T ∈ L(X), where

g : K −→ K is analytic,
f : R+

0 −→ R is arbitrary.
Then, there are a, b ∈ K such that

g(ζ) = a + b ζ
(
ζ ∈ K).

Corollary
Only three norm equalities of the form

‖g(T)‖ = f (‖T‖)

are possible:
b = 0 : ‖a Id‖ = |a|,
a = 0 : ‖b T‖ = |b| ‖T‖,

(trivial cases)
a 6= 0, b 6= 0 :
‖a Id + b T‖ = |a|+ |b| ‖T‖,

(Daugavet property)

130 / 152



Extremely non-complex Motivation

Equalities of the form ‖g(T)‖ = f (‖T‖)

Theorem
X real or complex with dim(X) > 2.
Suppose that the norm equality

‖g(T)‖ = f (‖T‖)

holds for every rank-one operator
T ∈ L(X), where

g : K −→ K is analytic,
f : R+

0 −→ R is arbitrary.
Then, there are a, b ∈ K such that

g(ζ) = a + b ζ
(
ζ ∈ K).

Corollary
Only three norm equalities of the form

‖g(T)‖ = f (‖T‖)

are possible:
b = 0 : ‖a Id‖ = |a|,
a = 0 : ‖b T‖ = |b| ‖T‖,

(trivial cases)
a 6= 0, b 6= 0 :
‖a Id + b T‖ = |a|+ |b| ‖T‖,

(Daugavet property)

130 / 152



Extremely non-complex Motivation

Proof (complex case)

We have. . .
‖g(T)‖ = f (‖T‖) ∀T ∈ L(X) rank-one

?⇒
We want. . .

g is affine

Write g(ζ) =
∞

∑
k=0

akζk y g̃ = g− a0.

Take x0, x1 ∈ SX and x∗0 , x∗1 ∈ SX∗ such that
x∗0(x0) = 0 and x∗1(x1) = 1,

and define the operators T0 = x∗0 ⊗ x0 and T1 = x∗1 ⊗ x1.
Then g(λT0) = a0Id + a1λ T0 and g(λT1) = a0Id + g̃(λ) T1
(λ ∈ C).
Therefore, for λ ∈ C we have
‖a0Id + g̃(λ)T1‖ = ‖g(λT1)‖ = f (|λ|) = ‖g(λT0)‖ = ‖a0Id + a1λT0‖.

We use the triangle inequality to get
| g̃(λ)| 6 2|a0|+ |a1||λ| (λ ∈ C),

and so g̃ is a degree-one polynomial by Cauchy inequalities. X
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Extremely non-complex Motivation

Equalities of the form ‖Id + g(T)‖ = f (‖g(T)‖)

Remark
If X has the Daugavet property and g is analytic, then

‖Id + g(T)‖ = |1 + g(0)| − |g(0)|+ ‖g(T)‖

for every rank-one T ∈ L(X).

Our aim here is not to show that g has a suitable form,
but it is to see that for every g another simpler equation can be found.
From now on, we have to separate the complex and the real case.
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Extremely non-complex Motivation

Equalities of the form ‖Id + g(T)‖ = f (‖g(T)‖)

• Complex case:

Proposition
X complex, dim(X) > 2. Suppose that

‖Id + g(T)‖ = f (‖g(T)‖)

for every rank-one T ∈ L(X), where
g : C −→ C analytic non-constant,
f : R+

0 −→ R continuous.
Then
∥∥(1 + g(0))Id + T

∥∥

= |1 + g(0)| − |g(0)|+
∥∥g(0)Id + T

∥∥

for every rank-one T ∈ L(X).

We obtain two different cases:
|1 + g(0)| − |g(0)| 6= 0 or
|1 + g(0)| − |g(0)| = 0.

−1
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Extremely non-complex Motivation

Equalities of the form ‖Id + g(T)‖ = f (‖g(T)‖). Complex case

Theorem
If Re g(0) 6= −1/2 and

‖Id + g(T)‖ = f (‖g(T)‖)

for every rank-one T, then X has
the Daugavet property.

Theorem
If Re g(0) = −1/2 and

‖Id + g(T)‖ = f (‖g(T)‖)

for every rank-one T, then exists θ0 ∈ R s.t.
∥∥Id + ei θ0 T

∥∥ = ‖Id + T‖

for every rank-one T ∈ L(X).

Example
If X = C[0, 1]⊕2 C[0, 1], then∥∥Id + ei θ T

∥∥ = ‖Id + T‖
for every θ ∈ R, rank-one T ∈ L(X).
X does not have the Daugavet property.
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Extremely non-complex Motivation

Equalities of the form ‖Id + g(T)‖ = f (‖g(T)‖). Real case

• Real case:

Remarks
The proofs are not valid (we use
Picard’s Theorem).

They work when g is onto.
But we do not know what is the
situation when g is not onto, even
in the easiest examples:∥∥Id + T2

∥∥ = 1 + ‖T2‖,∥∥Id− T2
∥∥ = 1 + ‖T2‖.

g(0) = −1/2:

Example
If X = C[0, 1]⊕2 C[0, 1], then∥∥Id− T

∥∥ = ‖Id + T‖
for every rank-one T ∈ L(X).
X does not have the Daugavet
property.
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Extremely non-complex Extremely non-complex Banach spaces

The question

Godefroy, private communication
Is there any real Banach space X (with dim(X) > 1) such that

‖Id + T2‖ = 1 + ‖T2‖

for every operator T ∈ L(X) ?

In other words, are there extremely non-complex spaces other than R ?
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Extremely non-complex Extremely non-complex Banach spaces

The first attempts

The first idea
We may try to check whether the known spaces without complex structure are
actually extremely non-complex.

Some examples
1 If dim(X) < ∞, X has complex structure iff dim(X) is even.
2 Dieudonné, 1952: the James’ space J (since J ∗∗ ≡ J ⊕R).
3 Szarek, 1986: uniformly convex examples.
4 Gowers-Maurey, 1993: their H.I. space.
5 Ferenczi-Medina Galego, 2007: there are odd and even

infinite-dimensional spaces X.
X is even if admits a complex structure but its hyperplanes does not.
X is odd if its hyperplanes are even (and so X does not admit a complex
structure).

(Un)fortunately. . .
This did not work and we moved to C(K) spaces.
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Extremely non-complex Extremely non-complex Banach spaces

The first example: weak multiplications

Koszmider, 2004; Plebanek, 2004
There are compact spaces K such that C(K) has “few operators”: every
operator is a weak multiplication.

Weak multiplication

Let K be a compact space. T ∈ L
(
C(K)

)
is a weak multiplication if

T = g Id + S

where g ∈ C(K) and S is weakly compact.

Theorem
K perfect, T = g Id + S ∈ L

(
C(K)

)
weak multiplication

=⇒ ‖Id + T2‖ = 1 + ‖T2‖
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Extremely non-complex Extremely non-complex Banach spaces

Proof of the theorem

We have X = C(K), K perfect, T = gId + S

max ‖Id± T‖ = 1 + ‖T‖ (true for every K and every T)
‖Id + S‖ = 1 + ‖S‖ (if S ∈W(X), K perfect)

We need
‖Id + T2‖ = 1 + ‖T2‖

If T = gId + S, then T2 = g2 Id + S′ with S′ weakly compact.

We will prove that ‖Id + g2 Id + S‖ = 1 + ‖g2 Id + S‖
for g ∈ C(K) and S weakly compact.

Step 1: We assume ‖g2‖ 6 1 and min g2(K) > 0.

Step 2: We can avoid the assumption that min g2(K) > 0.

Step 3: Finally, for every g the above gives
∥∥∥∥Id +

1
‖g2‖

(
g2 Id + S

)∥∥∥∥ = 1 +
1
‖g2‖ ‖g

2 Id + S‖

which gives us the result. X
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The first example: weak multiplications. II

Weak multiplication

Let K be a compact space. T ∈ L
(
C(K)

)
is a weak multiplication if

T = g Id + S

where g ∈ C(K) and S is weakly compact.

Theorem
K perfect, T = g Id + S ∈ L

(
C(K)

)
weak multiplication

=⇒ ‖Id + T2‖ = 1 + ‖T2‖

Example (Koszmider, 2004; Plebanek, 2004)
There are perfect compact spaces K such that all operators on C(K) are weak
multiplications.

Consequence
Therefore, there are extremely non-complex C(K) spaces.
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More examples: weak multipliers

Weak multiplier

Let K be a compact space. T ∈ L
(
C(K)

)
is a weak multiplier if

T∗ = g Id + S

where g is a Borel function and S is weakly compact.

Theorem
If K is perfect and all operators on C(K) are weak multipliers, then C(K) is
extremely non-complex.

Example (Koszmider, 2004)
There are infinitely many different perfect compact spaces K such that all
operators on C(K) are weak multipliers.

Corollary
There are infinitely many non-isomorphic extremely non-complex Banach
spaces.

141 / 152



Extremely non-complex Extremely non-complex Banach spaces

More examples: weak multipliers

Weak multiplier

Let K be a compact space. T ∈ L
(
C(K)

)
is a weak multiplier if

T∗ = g Id + S

where g is a Borel function and S is weakly compact.

Theorem
If K is perfect and all operators on C(K) are weak multipliers, then C(K) is
extremely non-complex.

Example (Koszmider, 2004)
There are infinitely many different perfect compact spaces K such that all
operators on C(K) are weak multipliers.

Corollary
There are infinitely many non-isomorphic extremely non-complex Banach
spaces.

141 / 152



Extremely non-complex Extremely non-complex Banach spaces

More examples: weak multipliers

Weak multiplier

Let K be a compact space. T ∈ L
(
C(K)

)
is a weak multiplier if

T∗ = g Id + S

where g is a Borel function and S is weakly compact.

Theorem
If K is perfect and all operators on C(K) are weak multipliers, then C(K) is
extremely non-complex.

Example (Koszmider, 2004)
There are infinitely many different perfect compact spaces K such that all
operators on C(K) are weak multipliers.

Corollary
There are infinitely many non-isomorphic extremely non-complex Banach
spaces.

141 / 152



Extremely non-complex Extremely non-complex Banach spaces

More examples: weak multipliers

Weak multiplier

Let K be a compact space. T ∈ L
(
C(K)

)
is a weak multiplier if

T∗ = g Id + S

where g is a Borel function and S is weakly compact.

Theorem
If K is perfect and all operators on C(K) are weak multipliers, then C(K) is
extremely non-complex.

Example (Koszmider, 2004)
There are infinitely many different perfect compact spaces K such that all
operators on C(K) are weak multipliers.

Corollary
There are infinitely many non-isomorphic extremely non-complex Banach
spaces.

141 / 152



Extremely non-complex Extremely non-complex Banach spaces

Further examples

Proposition
There is a compact infinite totally disconnected and perfect space K such that
all operators on C(K) are weak multipliers.

Consequence
There is a family (Ki)i∈I of pairwise disjoint perfect and totally disconnected
compact spaces such that

every operator on C(Ki) is a weak multiplier,
for i 6= j, every T ∈ L(C(Ki), C(Kj)) is weakly compact.

Theorem
There are some compactifications K̃ of the above family (Ki)i∈I such that the
corresponding C(K̃)’s are extremely non-complex.
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Further examples II

Main consequence
There are perfect compact spaces K1, K2 such that:

C(K1) and C(K2) are extremely non-complex,
C(K1) contains a complemented copy of C(∆).
C(K2) contains a 1-complemented isometric copy of `∞.

Observation
C(K1) and C(K2) have operators which are not weak multipliers.
They are not indecomposable spaces.
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Extremely non-complex Extremely non-complex Banach spaces

Related open questions

Question 1
Find topological characterization of the compact Hausdorff spaces K such that
the spaces C(K) are extremely non-complex.

Question 2
Find topological consequences on K when C(K) is extremely non-complex.
For instance:
If C(K) is extremely non-complex and ψ : K −→ K is continuous, are there an
open subset U of K such that ψ|U = id and ψ(K \U) is finite ?

We will show latter than ϕ : K −→ K homeomorphism =⇒ ϕ = id.
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Extremely non-complex Surjective isometries

Extremely non-complex Banach spaces

Definition

X is extremely non-complex if dist(T2,−Id) is the maximum possible, i.e.

‖Id + T2‖ = 1 + ‖T2‖
(
T ∈ L(X)

)

Examples
There are several extremely non-complex C(K) spaces:

If T = gId + S for every T ∈ L(C(K)) (K Koszmider).
If T∗ = gId + S for every T ∈ L(C(K)) (K weak Koszmider).
One C(K) containing a complemented copy of C(∆).
One C(K) containing an isometric (1-complemented) copy of `∞.
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Extremely non-complex Surjective isometries

Isometries on extremely non-complex spaces. I

Theorem
X extremely non-complex.

T ∈ Iso(X) =⇒ T2 = Id.
T1, T2 ∈ Iso(X) =⇒ T1T2 = T2T1.
T1, T2 ∈ Iso(X) =⇒ ‖T1 − T2‖ ∈ {0, 2}.
Φ : R+

0 −→ Iso(X) one-parameter semigroup =⇒ Φ(R+
0 ) = {Id}.
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Take S = 1√
2

(
T − T−1) =⇒ S2 = 1

2 T2 − Id + 1
2 T−2.

1 + ‖S2‖ = ‖Id + S2‖ =
∥∥∥ 1

2 T2 + 1
2 T−2

∥∥∥ 6 1 =⇒ S2 = 0.

Then Id = 1
2 T2 + 1

2 T−2.
Since Id is an extreme point of BL(X) =⇒ T2 = T−2 = Id. X
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Isometries on extremely non-complex spaces. I
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0 −→ Iso(X) one-parameter semigroup =⇒ Φ(R+
0 ) = {Id}.

Consequences

Iso(X) is a Boolean group for the composition operation.
Iso(X) identifies with the set Unc(X) of unconditional projections on X:

P ∈ Unc(X)⇐⇒ P2 = P, 2P− Id ∈ Iso(X)

⇐⇒ P =
1
2
(Id− T), T ∈ Iso(X), T2 = Id.

Iso(X) ≡ Unc(X) is a Boolean algebra
⇐⇒ P1P2 ∈ Unc(X) when P1, P2 ∈ Unc(X)

⇐⇒
∥∥∥ 1

2 (Id + T1 + T2 − T1T2)
∥∥∥ = 1 for every T1, T2 ∈ Iso(X).
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Extremely non-complex Surjective isometries

Extremely non-complex CE(K‖L) spaces.

Theorem
K perfect weak Koszmider, L closed nowhere dense, E ⊂ C(L)
=⇒ CE(K‖L) is extremely non-complex.

Proposition
K perfect =⇒ ∃ L ⊂ K closed nowhere dense with C[0, 1] ⊂ C(L).

Observation: exists a non C(K) extremely non-complex space

C`2 (K‖L) is not isomorphic to a C(K′) space since `2 ⊂comp- C`2 (K‖L)∗.

Important consequence: Example
Take K perfect weak Koszmider, L ⊂ K closed nowhere dense with
E = `2 ⊂ C[0, 1] ⊂ C(L):

C`2 (K‖L) has no non-trivial one-parameter semigroup of isometries.
C`2 (K‖L)∗ = `2 ⊕1 C0(K‖L)∗, so Iso

(
C`2 (K‖L)∗

)
⊃ Iso(`2).

But we are able to give a better result...
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Extremely non-complex Surjective isometries

Isometries on extremely non-complex CE(K‖L) spaces

Theorem (Banach-Stone like)
CE(K‖L) extremely non-complex, T ∈ Iso(CE(K‖L))
=⇒ exists θ : K \ L −→ {−1, 1} continuous such that

[T( f )](x) = θ(x) f (x)
(

x ∈ K \ L, f ∈ CE(K‖L)
)
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=⇒ exists θ : K \ L −→ {−1, 1} continuous such that

[T( f )](x) = θ(x) f (x)
(

x ∈ K \ L, f ∈ CE(K‖L)
)

Sketch of the proof.

D0 = {x ∈ K \ L : ∃ y ∈ K \ L, θ0 ∈ {−1, 1} with T∗(δx) = θ0δy} dense
in K.
Consider φ : D0 −→ D0 and θ : D0 −→ {−1, 1} with

T∗(δx) = θ(x) δφ(x)

φ2 = id, θ(x) θ(φ(x)) = 1, φ homeomorphism.
φ(x) = x for all x ∈ D0.
D0 = K \ L.
θ is continuous. X
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Isometries on extremely non-complex CE(K‖L) spaces

Theorem (Banach-Stone like)
CE(K‖L) extremely non-complex, T ∈ Iso(CE(K‖L))
=⇒ exists θ : K \ L −→ {−1, 1} continuous such that

[T( f )](x) = θ(x) f (x)
(

x ∈ K \ L, f ∈ CE(K‖L)
)

Consequences: cases E = C(L) and E = 0

C(K) extremely non-complex, ϕ : K −→ K homeomorphism =⇒ ϕ = id

C0(K \ L) ≡ C0(K‖L) extremely non-complex, ϕ : K \ L −→ K \ L
homeomorphism =⇒ ϕ = id

In both cases, the group of surjective isometries identifies with a Boolean
algebra of clopen sets.
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=⇒ exists θ : K \ L −→ {−1, 1} continuous such that

[T( f )](x) = θ(x) f (x)
(

x ∈ K \ L, f ∈ CE(K‖L)
)

Consequences: general case
If for every x ∈ L, there is f ∈ E with f (x) 6= 0
=⇒ θ extends to the whole K and

[T( f )](x) = θ(x) f (x)
(

x ∈ K, f ∈ CE(K‖L)
)

for every surjective isometry T.

If this happens, then 0 /∈ ext (BE∗ )
w∗ (V. Kadets).

But for E = `2, 0 ∈ ext (BE∗ )
w∗ .
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Isometries on extremely non-complex CE(K‖L) spaces

Theorem (Banach-Stone like)
CE(K‖L) extremely non-complex, T ∈ Iso(CE(K‖L))
=⇒ exists θ : K \ L −→ {−1, 1} continuous such that

[T( f )](x) = θ(x) f (x)
(

x ∈ K \ L, f ∈ CE(K‖L)
)

Consequence: connected case
If K and K \ L are connected, then

Iso
(
CE(K‖L)

)
= {−Id,+Id}
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Extremely non-complex Surjective isometries

The main example

Koszmider, 2004
∃ K weak Koszmider space such that K \ F is connected if |F| < ∞.

Observation on the above construction
There is L ⊂ K closed nowhere dense with
K \ L connected
C[0, 1] ⊆ C(L)

The best example
Consider X = C`2 (K‖L). Then:

Iso(X) = {−Id,+Id} and Iso(X∗) ⊃ Iso(`2)

Proof.

K weak Koszmider, L nowhere dense, `2 ⊂ C(L)
=⇒ X well-defined and extremely non-complex.
K \ L connected =⇒ Iso(X) = {−Id,+Id}.
X∗ = `2 ⊕1 C0(K‖L)∗, so Iso(`2) ⊂ Iso(X∗). X
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X∗ = `2 ⊕1 C0(K‖L)∗, so Iso(`2) ⊂ Iso(X∗). X
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Extremely non-complex

Open questions on extremely non-complex Banach spaces

Questions
X extremely non complex

Does X have the Daugavet property ?
Stronger: Does Y have the Daugavet property if

‖Id + T2‖ = 1 + ‖T2‖ for every rank-one T ∈ L(Y) ?

Is it true that n(X) = 1 ?

We actually know that n(X) > C > 0.

Is Iso(X) ≡ Unc(X) a Boolean algebra ?

If Y 6 X is 1-codimensional, is Y extremely non complex ?

Is it possible that X ' Z⊕ Z⊕ Z ?
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