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Preface

This text is not a book and it is not in its �nal form. This is going to be used as classroom
notes for the mini-course of the same title I will give at Kent State University in March-April
2012.
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Basic notation

• K is the base �eld, R or C.

� T = {λ ∈ K : |λ| = 1}.
� Reλ means the real part of λ if K = C and just the identity if K = R.

• H Hilbert space: (· | ·) denotes the inner product.

• X and Y Banach spaces.

� X∗: topological dual of X.

� BX , SX : closed unit ball and unit sphere.

� L(X,Y ) (L(X) when X = Y ): bounded linear operators from X to Y .

� K(X,Y ) (K(X) when X = Y ): compact linear operators from X to Y .

� W (X,Y ) (W (X) when X = Y ): weakly compact linear operators from X to Y .

� Iso(X): group of surjective isometries on X.

� Π(X) = {(x, x∗) ∈ X ×X∗ : ‖x‖ = ‖x∗‖ = x∗(x) = 1}.
� X ⊕p Y denotes the `p-direct sum of the spaces X and Y

• X Banach space, T ∈ L(X):

� Sp(T ) is the spectrum of T .

� T ∗ is the adjoint of T .

• X Banach space, B ⊂ X, C convex subset of X:

� B is rounded if TB = B.

� co(B) and co(B) are, respectively, the convex hull and the closed convex hull of B.

� aconv(B) denotes the absolutely convex hull of B.

� ext(C) is the set of extreme points of C ⊆ X.

� A slice of C is

S(C, x∗, α) =
{
x ∈ C : Rex∗(x) > sup Rex∗(C)− α

}

where x∗ ∈ X∗ and 0 < α < sup Rex∗(C).

• X Banach space, A ⊂ SX∗ is norming for X if ‖x‖ = sup{|a∗(x)| : a∗ ∈ A} ∀x ∈ X.





Chapter 1
Numerical Range of operators. Surjective

isometries

1.1 Introduction

The notion of numerical range (also called �eld of values) was �rst introduced by O. Toeplitz
in 1918 [110] for matrices, but his de�nition applies equally well to operators on in�nite-
dimensional Hilbert spaces.

De�nition 1.1.1. Hilbert space numerical range (Toeplitz, 1918)

• A n× n real or complex matrix

W (A) =
{

(Ax | x) : x ∈ Kn, (x | x) = 1
}
.

• H real or complex Hilbert space, T ∈ L(H),

W (T ) =
{

(Tx | x) : x ∈ H, ‖x‖ = 1
}
.

Let us give an interpretation of the numerical range using quadratic form. Given T ∈
L(H), we may associate to it a sesquilinear form ϕT given by

ϕT (x, y) = (Tx | y) (x, y ∈ H),

and the corresponding quadratic form ϕ̂T given by

ϕ̂T (x) = ϕT (x, x) = (Tx | x) (x ∈ H).

With this in mind, W (T ) is nothing more than the range of the restriction of ϕ̂T to the unit
sphere of H. One reason for the emphasis on the image of the unit sphere is that the image

9



10 Chapter 1. Numerical Range of operators. Surjective isometries

of the unit ball, and also the entire range, are easily described in terms of it, but not vice
versa. (The image of the unit ball is the union of all the closed segments that join the origin
to points of the numerical range; the entire range is the union of all the closed rays from the
origin through points of the numerical range).

Some properties of the Hilbert space numerical range are discussed in the classical book
of P. Halmos [44, �17]. Let us just mention that the numerical range of a bounded linear
operator is (surprisingly) convex and, in the complex case, its closure contains the spectrum
of the operator. Moreover, if the operator is normal, then the closure of its numerical range
coincides with the convex hull of its spectrum. Further developments can be found in a recent
book of K. Gustafson and D. Rao [42]. Let us emphasize some of them which are speci�c of
the Hilbert space case.

Proposition 1.1.2. Let H be a Hilbert space.

(a) (Toeplitz-Hausdor� theorem) The numerical range is convex.

(b) T, S ∈ L(H), α, β ∈ K:

• W (αT + βS) ⊆ αW (T ) + βW (S);

• W (αId + S) = α+W (S).

(c) Sp(T ) ⊆W (T ).

(d) W (U∗TU) = W (T ) for every T ∈ L(H) and every U unitary.

(e) If T is normal, then W (T ) = co Sp(T ).

(f) In the real case (dim(H) > 1), there is T ∈ L(H), T 6= 0 with W (T ) = {0}.
(g) In the complex case,

sup{|(Tx | x)| : x ∈ SH} >
1

2
‖T‖.

If T is actually self-adjoint, then

sup{|(Tx | x)| : x ∈ SH} = ‖T‖.

One of the main utilities of the numerical range is that it allows us to give an estimation
of the espectral radius which is stable under sums. Let us show it by an example.

Example 1.1.3. Consider the matrices A =

(
0 M
0 0

)
and B =

(
0 0
ε 0

)
. Then, Sp(A) = {0},

Sp(B) = {0}, while

Sp(A+B) = {±
√
Mε} ⊆W (A+B) ⊆W (A) +W (B),

and so the spectral radius of A+B is bounded above by 1
2(|M |+ |ε|).

In the sixties, the concept of numerical range was extended to operators on general Banach
spaces by G. Lumer [75] and F. Bauer [6] in the 1960's. Their de�nitions are di�erent but,
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concerning most of the applications, they are equivalent. Even though Lumer's paper have
had more in�uence in the further development of the theory, Bauer's de�nition is easier and
clearer and it is the one we are going to present here.

De�nition 1.1.4. Banach space numerical range (Bauer, 1962; Lumer, 1961)

Let X be a Banach space and T ∈ L(X). The numerical range of T is the subset of the base
�eld given by

V (T ) = {x∗(Tx) : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1}.

Let us observe that, thanks to the Riesz representation theorem on the dual of a Hilbert
space, the above de�nition coincides with the Hilbert space numerical range for operators on
Hilbert spaces.

Classical references here are the monographs by F. Bonsall and J. Duncan [7, 8] from the
seventies. Let us mention that the numerical range of a bounded linear operator is connected
(but not necessarily convex, see [8, Example 21.6]) and, in the complex case, its closure
contains the spectrum of the operator. The theory of numerical ranges has played a crucial
role in the study of some algebraic structures, especially in the non-associative context (see
the expository paper [62] by A. Kaidi, A. Morales, and A. Rodríguez Palacios, for example).

Let us present some elementary properties of the Banach space numerical range which will
be useful in the sequel.

Proposition 1.1.5. Let X be a Banach space.

(a) The numerical range is connected but not necessarily convex.

(b) T, S ∈ L(X), α, β ∈ K:

• V (αT + βS) ⊆ αV (T ) + βV (S);

• V (αId + S) = α+ V (S).

(c) Sp(T ) ⊆ V (T ).

(d) (Zenger�Crabb) Actually, co
(
Sp(T )

)
⊆ V (T ).

(e) co Sp(T ) =
⋂{Vp(T ) : p equivalent norm}, where Vp(T ) is the numerical range of T in

the Banach space (X, p) for every norm p equivalent to the given norm of X.

(f) V (U−1TU) = V (T ) for every T ∈ L(X) and every U ∈ Iso(X).

(g) For T ∈ L(X),

V (T ) ⊆ V (T ∗) ⊆ V (T ).

The numerical range of an operator depends strongly upon the base �eld. This is clear
from the de�nition, since it lays in di�erent set when considering real or complex spaces. When
X is a complex Banach space, we may consider XR as the real Banach space underlying X
(i.e. XR is the same Banach space but considering only multiplication by real scalars). In this
case, for T ∈ L(X) we may consider TR ∈ L(XR) which is nothing than T viewed as a real
operator on the real space XR. Then, two di�erent numerical ranges of T , the usual V (T ) and
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V (TR) which is the numerical range of TR de�ned on the real space XR. From the well-known
fact that the mapping f 7−→ Re f from

(
X∗
)
R to

(
XR
)∗ is an isometric real isomorphism, the

following result follows.

Proposition 1.1.6. Let X be a complex Banach space. For T ∈ L(X) one has

V (TR) = ReV (T ).

The following result allows us to see the suprema of the real part of the numerical range
of an operator as a directional derivative.

Proposition 1.1.7. Let X be a Banach space. For T ∈ L(X), one has

sup ReV (T ) = inf
α>0

‖Id + αT‖ − 1

α
= lim

α↓0

‖Id + αT‖ − 1

α
.

Associated to the numerical range, we may de�ne a seminorm called the numerical radius.

De�nition 1.1.8. Numerical radius

Let X be a Banach space and T ∈ L(X). The numerical radius of T is given by

v(T ) = sup{|λ| : λ ∈ V (T )}
= sup{|x∗(Tx)| : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1}.

Let us give some elementary properties of this new concept.

Proposition 1.1.9. Let X be a Banach space.

(a) v(·) is a seminorm, i.e.

• v(T + S) 6 v(T ) + v(S) for every T, S ∈ L(X).

• v(λT ) = |λ| v(T ) for every λ ∈ K, T ∈ L(X).

(b) For every T ∈ L(X), the spectral radius of T is less or equal than v(T ).

(c) v(U−1TU) = v(T ) for every T ∈ L(X) and every U ∈ Iso(X).

(d) For T ∈ L(X), v(T ∗) = v(T ).

Some interesting examples are the following.

Examples 1.1.10.

(a) If H is a real Hilbert space with dim(H) > 1, then there is T ∈ L(X) with v(T ) = 0
and ‖T‖ = 1.
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(b) If H is a complex Hilbert space with dim(H) > 1, then v(T ) > 1
2‖T‖ and the constant

1
2 is optimal.

(c) For X = L1(µ), one has v(T ) = ‖T‖ for every T ∈ L(X).

(d) If X∗ ≡ L1(µ), then v(T ) = ‖T‖ for every T ∈ L(X). In particular, this is the case for
X = C(K).

Sketch of the proof of (c) and (d). Since v(T ∗∗) = v(T ∗) = v(T ) for every T ∈ L(X) and
every Banach space X, we are done by just showing that v(T ) = ‖T‖ for every T ∈ L

(
C(K)

)

and every compact Hausdor� topological space K (since the dual of an L1(µ) space is always
isometrically isomorphic to a C(K) space). Indeed, �x T ∈ L

(
C(K)

)
and ε > 0. Find

f0 ∈ C(K) with ‖f0‖ = 1 and ξ0 ∈ K such that
∣∣[Tf0](ξ0)

∣∣ > ‖T‖ − ε. Consider the
non-empty open set

V =
{
ξ ∈ K : |f0(ξ)− f0(ξ0)| < ε

}

and �nd ϕ : K −→ [0, 1] continuous with supp(ϕ) ⊂ V and ϕ(ξ0) = 1. Write f0(ξ0) =
λω1 + (1− λ)ω2 with |ωi| = 1, and consider the functions

fi = (1− ϕ)f0 + ϕωi for i = 1, 2.

Then, fi ∈ C(K), ‖fi‖ 6 1, and
∥∥f0 −

(
λf1 + (1− λ)f2

)∥∥ = ‖ϕf0 − ϕf0(ξ0)‖ < ε.

Therefore, there is i ∈ {1, 2} such that
∣∣[T (fi)](ξ0)

∣∣ > ‖T‖ − 2ε, but now |fi(ξ0)| = 1.
Equivalently, ∣∣δξ0

(
T (fi)

)∣∣ > ‖T‖ − 2ε and |δξ0(fi)| = 1,

meaning that v(T ) > ‖T‖ − 2ε. The arbitrariness of ε > 0 gives the result.

The case of the Hilbert space shows a di�erent behavior of the numerical range with
respect to the real case and the complex case, since in the �rst case the numerical radius may
not be a norm while in the complex case it always is. Actually, this is a phenomenon which
occurs not only for Hilbert spaces, as the following important theorem shows.

Theorem 1.1.11 (Bohnenblust�Karlin; Glickfeld). Let X be a complex Banach space. Then

V (T ) >
1

e
‖T‖

(
T ∈ L(X)

)
.

The constant 1
e is optimal: there is a two-dimensional complex space X and T ∈ L(X) such

that ‖T‖ = e and v(T ) = 1.

Let us comment that if X is any complex Banach space, then the operator T ∈ L(X)
de�ned by T (x) = i x for every x ∈ X satis�es V (T ) = {i}. Therefore, v(T ) = ‖T‖ = 1. On
the other hand, if we consider TR as an operator on XR, we have ‖TR‖ = 1 while v(TR) = 0.
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This elementary fact, together with the theorem above, shows how di�erent is the theory of
numerical ranges when working in the real case or in the complex case.

We �nish this introduction by introducing the concept of numerical index of a Banach
space.

De�nition 1.1.12. Numerical index of Banach spaces

Let X be a Banach space. The numerical index of X is the number

n(X) = max{k > 0 : k ‖T‖ 6 v(T ) ∀T ∈ L(X)}
= inf{v(T ) : T ∈ L(X), ‖T‖ = 1}.

Some elementary properties of the numerical index are the following.

Proposition 1.1.13. Let X be a Banach space.

(a) In the real case, 0 6 n(X) 6 1.

(b) In the complex case, 1/e 6 n(X) 6 1.

(c) Actually, the above inequalities are best possible:

{n(X) : X complex Banach space } = [e−1, 1],

{n(X) : X real Banach space } = [0, 1].

(d) If X is a complex Banach space, then n(XR) = 0.

(e) v is a norm on L(X) equivalent to the given norm if and only if n(X) > 0.

(f) v(T ) = ‖T‖ for every T ∈ L(X) if and only if n(X) = 1.

(g) n(X∗) 6 n(X).

Some examples following from the previous results in this introduction are the following.

Examples 1.1.14.

(a) If H is a Hilbert space with dim(H) > 1, then

n(H) =

{
0 real case,
1
2 complex case.

(b) If X is a complex Banach space, then n
(
XR
)

= 0.

(c) n
(
L1(µ)

)
= 1 for every positive measure µ.

(d) If X∗ ≡ L1(µ), then n(X) = 1.

(e) In particular, n
(
C(K)

)
= 1, n

(
C0(L)

)
= 1, n

(
L∞(µ)

)
= 1.

(f) n(A(D) = 1 and n(H∞) = 1.
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1.2 The exponential function. Isometries

The aim of this section is to introduce the exponential function for bounded linear operators
on a Banach space, to study some of its properties and to present the relation with the
numerical range of operators. All the material here may be found in the 1985 paper [100] by
H. Rosenthal.

De�nition 1.2.1. The exponential function

Let X be a Banach space. For T ∈ L(X), we de�ne the exponential of T , exp(T ) by

exp(T ) =
∞∑

n=0

1

n!
Tn

where, as usual, T 0 = Id and Tn = T ◦ n)· · · ◦ T .

Observe that the exponential of an operator is well-de�ned since the series giving it is
absolutely convergent and so convergent. Also, this observation shows that

‖exp(T )‖ 6 e‖T‖

for every T ∈ L(X). The main result in this section will be to improve the above easy
inequality in a non trivial way. Let us present some elementary properties of the exponential
function.

Proposition 1.2.2. Let X be a Banach space and T, S ∈ L(X).

(a) If TS = ST , then exp(T + S) = exp(T ) exp(S).
(b) Therefore, exp(T ) exp(−T ) = exp(0) = Id and so exp(T ) is a surjective isomorphism.
(c) The set

{
exp(ρ T ) : ρ ∈ R+

0

}
is a semigroup called the exponential one-parameter semi-

group generated by T .

(d) exp(T ) = lim
n→∞

(
Id +

1

n
T

)n
.

The following important result relates the supremum of the real part of the numerical
range with the norm of the exponential function and will give a deep consequence relating the
numerical range of an operator and the behavior of the exponential one-parameter semigroup
that generates.

Theorem 1.2.3. The exponential formula.

Let X be a Banach space. For T ∈ L(X) one has

sup ReV (T ) = sup
α>0

log ‖ exp(αT )‖
α

= lim
α↓0

log ‖ exp(αT )‖
α

.
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As an immediate consequence we obtain the following.

Corollary 1.2.4. Let X be a Banach space and T ∈ L(X). Then

‖exp(λT )‖ 6 e|λ| v(T )

for every λ ∈ K, and v(T ) is the best possible constant in the above inequality.

One of the bene�ts of the concept of numerical range is that allows to carry to the Banach
space setting de�nitions which were originally posed for operators on Hilbert spaces, like her-
mitian operator, skew hermitian operator, and dissipative operator which are very important
for their applications to linear evolution equations in Banach spaces. The above result allows
us to characterize these concepts in terms of the behavior of the exponential one-parameter
semigroup generated by the operator.

De�nition 1.2.5. Let X be a Banach space and T ∈ L(X).

(a) In the complex case, T is hermitian if V (T ) ⊆ R or, equivalently, if ‖ exp(ρ i T )‖ 6 1
for every ρ ∈ R.

(b) T is dissipative if ReV (T ) ⊂ R−0 or, equivalently, if ‖ exp(ρT )‖ 6 1 for every ρ ∈ R+.

There is one more concept de�ned using the numerical range. We emphasize it since it
would be of much interest in the rest of the chapter.

De�nition 1.2.6. Skew-hermitian operator. Lie algebra of a Banach space.

Let X be a Banach space.

• We say that T ∈ L(X) is skew-hermitian if ReV (T ) = {0}.

• We write Z(X) for the closed (real) subspace of L(X) consisting of all skew-hermitian
operators on X, which is called the Lie algebra of X.

• Observe that in the real case, T ∈ Z(X) if and only if v(T ) = 0.

Let us give a clarifying example. If H is a n-dimensional Hilbert space, it is easy to check
that Z(H) is the space of skew-symmetric operators on H (i.e. T ∗ = −T in the Hilbert space
sense), so it identi�es with the space of skew-symmetric matrices. It is a classical result from
the theory of linear algebra that an n× n matrix A is skew-symmetric if and only if exp(ρA)
is an orthogonal matrix for every ρ ∈ R. The same is true for an in�nite-dimensional Hilbert
space by just replacing orthogonal matrices by unitary operators (i.e. surjective isometries).
Actually, the above fact extends to general Banach spaces.

Proposition 1.2.7. Let X be a Banach space and T ∈ L(X). Then, the following are
equivalent.
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(i) T is skew-hermitian.

(ii) ‖ exp(ρ T )‖ 6 1 for every ρ ∈ R.
(iii) {exp(ρ T ) : ρ ∈ R} ⊂ Iso(X), i.e. the exponential one-parameter group generated by T

consists of isometries.

(iv) T belongs to the tangent space of Iso(X) at Id. That is, there is a function γ : [−1, 1] −→
L(X), valued in Iso(X), di�erentiable at 0 with γ(0) = Id and γ′(0) = T .

Therefore, Z(X) coincides with the tangent space of Iso(X) at Id and with the set of generators
of exponential one-parameter groups of isometries.

In the �nite-dimensional case, Iso(X) is a Lie group (in the �classical� sense of the di�er-
ential geometry) and Z(X) is its tangent space at Id. The result above just says that the
�exponential map� which recovers the connected component of Iso(X) at the identity from its
tangent space (in the sense of the di�erential geometry) is nothing more than the �analytical�
exponential function.

Some properties of the Lie algebra of a Banach space are the following.

Proposition 1.2.8. Let X be a Banach space.

(a) Z(X) is a real subspace of L(X) closed under the weak operator topology (in particular,
norm closed).

(b) If T, S ∈ Z(X), then [T, S] = TS − ST ∈ Z(X)

(c) If T ∈ Z(X) and U ∈ Iso(X), then U−1TU ∈ Z(X).

1.3 Finite-dimensional spaces with in�nitely many isometries

Our aim here is to study �nite-dimensional (real) spaces with in�nitely many isometries using
the techniques developed in the last section. To do so, we start with a deep classical result,
a proof of which can be found in the paper by H. Rosenthal [100, Theorem 3.8], stating
that a �nite-dimensional real Banach space with in�nitely many isometries has non-trivial Lie
algebra. Since the unit sphere of L(X) is compact in the �nite-dimensional setting, we may
also get that Z(X) is non-trivial from n(X) > 0 (this is not true in the in�nite-dimensional
setting, as we will show up later.)

Theorem 1.3.1. Let X be a �nite-dimensional real Banach space. Then, the following
assertions are equivalent:

(a) Iso(X) is in�nite.

(b) Z(X) 6= {0}.
(c) n(X) > 0.

As we commented in the introduction, Hilbert spaces of dimension greater than one, and



18 Chapter 1. Numerical Range of operators. Surjective isometries

real Banach spaces underlying complex Banach spaces have numerical index 0 and so, by the
above result, they have non-trivial Lie algebra. It is not so di�cult to check, we also have
non-trivial Lie algebra whenever X = Y ⊕Z with Z(Z) 6= {0} and the direct sum is absolute.
Recall that a direct-sum Y ⊕Z is said to be an absolute sum if ‖y+z‖ only depends on ‖y‖ and
‖z‖ for (y, z) ∈ Y ×Z. The next easy result somehow generalizes all the latter examples. We
say that a real vector space has a complex structure if it is the real space underlying a complex
vector space or, equivalently, if there is a linear mapping T : X −→ X with T 2 = −Id.

Proposition 1.3.2. Let X be a real Banach space, and let Y,Z be closed subspaces of X,
with Z 6= 0. Suppose that Z is endowed with a complex structure, that X = Y ⊕ Z, and
that the equality

∥∥y + eiρz
∥∥ = ‖y + z‖ holds for every (ρ, y, z) ∈ R × Y × Z. Then we have

Z(X) 6= {0}.

We may wonder whether every �nite-dimensional real Banach space with non-trivial Lie
algebra admits a decomposition of the above form. The main result of this section states that
this is almost true.

Theorem 1.3.3. Let (X, ‖·‖) be a �nite-dimensional real Banach space. Then, the following
are equivalent:

(i) Iso(X) is in�nite.
(ii) There are nonzero complex vector spaces X1, . . . , Xn, a real vector space X0, and posi-

tive integer numbers q1, . . . , qn such that X = X0 ⊕X1 ⊕ · · · ⊕Xn and
∥∥x0 + eiq1ρx1 + · · ·+ eiqnρxn

∥∥ = ‖x0 + x1 + · · ·+ xn‖
for all ρ ∈ R, xj ∈ Xj (j = 0, 1, . . . , n).

In 1984, H. Rosenthal [100] got this result with real qi's. The above version, due to
M. Martín, J. Merí and A. Rodríguez-Palacios [84], was stated before the authors learned
about Rosenthal's paper.

Sketch of the proof of Theorem . Of course, (ii) ⇒ (i) is clear. For the bulky (i) ⇒ (ii), we
only give an sketch of the proof given in [84].

• Use Theorem 1.3.1 to �nd (and �x) T ∈ Z(X) with ‖T‖ = 1.

• We get that
∥∥ exp(ρT )

∥∥ = 1 for every ρ ∈ R.

• A Theorem by Auerbach: there exists a Hilbert space H with dim(H) = dim(X) such
that every surjective isometry in L(X) remains isometry in L(H).

• Apply the above to exp(ρT ) for every ρ ∈ R.

• You get that iT is hermitian in L(H), so T ∗ = −T and T 2 is self-adjoint. The Xj 's are
the eigenspaces of T 2.
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• Use Kronecker's Approximation Theorem to change the eigenvalues of T 2 by rational
numbers.

In dimension two or three, the above result can be written in the more suitable form given
by Corollary 1.3.4 which follows.

Corollary 1.3.4. Let X be a real Banach space with in�nitely many isometries.

(a) If dim(X) = 2, then X is isometrically isomorphic to the two-dimensional real Hilbert
space.

(b) If dim(X) = 3, then X is an absolute sum of R and the two-dimensional real Hilbert
space.

In view of Corollary 1.3.4 it might be thought that the number of complex spaces in
Assertion (ii) of Theorem 1.3 can be always reduced to one or, equivalently, that there are
no �nite-dimensional real Banach spaces with numerical index zero others than those given
by Proposition 1.3.2. As a matter of fact, this is not true, as the following example shows.

Example 1.3.5. We consider the four-dimensional real space X = (R4, ‖ · ‖) where

‖(a, b, c, d)‖ =
1

4

∫ 2π

0

∣∣Re
(
e2it(a+ ib) + eit(c+ id)

)∣∣ dt (a, b, c, d ∈ R).

Then, Iso(X) is in�nite but the number of complex spaces in Theorem 1.3.(ii) cannot be
reduced to one.

1.3.1 The dimension of the Lie algebra

Our next aim is to discuss some questions related to the Lie algebra of skew-hermitian op-
erators Z(X) of an arbitrary n-dimensional space. The main related open question is the
following.

Problem 1.3.6. Figure out what are the possible values for the dimension of Z(X) when
dim(X) = n.

Let us �x an n-dimensional Banach space X. It follows from a theorem of Auerbach [98,
Theorem 9.5.1], that there exists an inner product (·|·) on X such that every skew-hermitian
operator on X remains skew-hermitian (hence skew-symmetric) on H := (X, (·|·)). Then, by
just �xing an orthonormal basis of H, we get an identi�cation of Z(X) with a Lie subalgebra
of the Lie algebra A(n). Therefore,

dim
(
Z(X)

)
6
n(n− 1)

2
.
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The equality holds if and only if X is a Hilbert space (see [100, Theorem 3.2] or [84, Corol-
lary 2.7]). It is a good question whether or not all the intermediate numbers are possible
values for the dimension of Z(X). The answer is negative, as a consequence of Theorem 3.2
in Rosenthal's paper [100], which reads as follows.

(a) If dim
(
Z(X)

)
> (n−1)(n−2)

2 , then X is a Hilbert space and so dim
(
Z(X)

)
= n(n−1)

2 .

(b) dim
(
Z(X)

)
= (n−1)(n−2)

2 if and only if X is a non-Euclidean absolute sum of R and a
Hilbert space of dimension n− 1.

For low dimensions, Problem 1.3.6 has been solved in [101]. When the dimension of X is 3,
the above result leaves only the following possible values for the dimension of Z(X): 0 as for
X = `3∞, 1 as for R⊕1 C, and 3 as for `32. When the dimension of X is 4, the possible values
of the dimension of Z(X) allowed by the above result are 0, 1, 2, 3, 6; all of them are possible
[101, pp. 443]. The �rst dimension in which Problem 1.3.6 is open is n = 5.

Problem 1.3.7. What are the possible values for the dimension of Z(X) when X is a 5-
dimensional real Banach space?

1.4 Surjective isometries and duality

The aim of this section is to construct a real Banach space X whose Lie algebra is trivial but
such that the Lie algebra of its dual is as big as the Lie algebra of the in�nite-dimensional
separable Hilbert space. In other words, Iso(X) does not have any exponential semigroups of
isometries, while Iso(X) contains in�nitely many di�erent exponential semigroups of isome-
tries.

We start presenting the Banach spaces we are going to work with.

De�nition 1.4.1. Let K be a (Hausdor�) compact (topological) space and let L ⊆ K be
a nowhere dense closed subset. Given a closed subspace E of C(L), we will consider the
subspace of C(K) given by

CE(K‖L) = {f ∈ C(K) : f |L ∈ E}.
This notation is compatible with the Semadeni's book [106, II. 4] notation of

C0(K‖L) = {f ∈ C(K) : f |L = 0}.
This latter space can be identi�ed with the space C0(K \ L) of those continuous functions
f : K \ L −→ R vanishing at in�nity.

The main idea in the construction is that CE(K‖L) shares some properties with C(K),
while CE(K‖L)∗ contains a �good� copy of E∗ and so, some operators on E∗ can be extended
to the whole CE(K‖L)∗. We summarize all the information in the following result.
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Theorem 1.4.2. Let K be a compact space, let L ⊆ K be a nowhere dense closed subset
and let E be a Banach space viewed as a closed subspace of C(L).

(a) n
(
CE(K‖L)

)
= 1 and so, Z

(
CE(K‖L)

)
reduces to zero.

(b) CE(K‖L)∗ ≡ C0(K‖L)∗ ⊕1 C0(K‖L)⊥ ≡ C0(K‖L)∗ ⊕1 E
∗. Therefore,

• Given an operator S ∈ L(E∗), the operator T ∈ L
(
CE(K‖L)∗

)
de�ned by

T (y, z) = (Sy, 0)
(
y ∈ E∗, z ∈ C0(K‖L)∗

)

satis�es ‖T‖ = ‖S‖ and V (T ) ⊂ [0, 1]V (S).

• For every S ∈ Iso(E∗), the operator

T (y, z) = (Sy, z)
(
y ∈ E∗, z ∈ C0(K‖L)∗

)

belongs to Iso
(
CE(K‖L)∗

)
.

• As a consequence of any of the above two facts, Z
(
CE(K‖L)∗

)
contains Z(E∗) as

a subalgebra and Iso
(
CE(K‖L)∗

)
contains Iso(E∗) as a subgroup.

Sketch of the proof.

(a). Fix T ∈ L
(
CE(K‖L)

)
and ε > 0. Find f0 ∈ CE(K‖L) with ‖f0‖ = 1 and ξ0 ∈ K \L

such that
∣∣[Tf0](ξ0)

∣∣ > ‖T‖ − ε. Consider the non-empty open set

V =
{
ξ ∈ K \ L : |f0(ξ)− f0(ξ0)| < ε

}

and �nd ϕ : K −→ [0, 1] continuous with supp(ϕ) ⊂ V and ϕ(ξ0) = 1. Write f0(ξ0) =
λω1 + (1− λ)ω2 with |ωi| = 1, and consider the functions

fi = (1− ϕ)f0 + ϕωi for i = 1, 2.

Then, fi ∈ C0(K‖L) ⊂ CE(K‖L), ‖fi‖ 6 1, and
∥∥f0 −

(
λf1 + (1− λ)f2

)∥∥ = ‖ϕf0 − ϕf0(ξ0)‖ < ε.

Therefore, there is i ∈ {1, 2} such that
∣∣[T (fi)](ξ0)

∣∣ > ‖T‖ − 2ε, but now |fi(ξ0)| = 1.
Equivalently, ∣∣δξ0

(
T (fi)

)∣∣ > ‖T‖ − 2ε and |δξ0(fi)| = 1,

meaning that v(T ) > ‖T‖ − 2ε. The arbitrariness of ε > 0 gives the result.

(b). We only prove the decomposition of CE(K‖L)∗, the following consequences can be
proved by computation. We write P : C(K) −→ C(L) for the restriction operator, i.e.

[P (f)](t) = f(t) (t ∈ L, f ∈ C(K)).

Then, C0(K‖L) = kerP and CE(K‖L) = {f ∈ C(K) : P (f) ∈ E}. Since C0(K‖L) is an
M -ideal in C(K), it is a fortiori an M -ideal in CE(K‖L) by [43, Proposition I.1.17], meaning
that

CE(K‖L)∗ ≡ C0(K‖L)∗ ⊕1 C0(K‖L)⊥ ≡ C0(K‖L)∗ ⊕1

[
CE(K‖L)/C0(K‖L)

]∗
.
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Now, it su�ces to prove that the quotient CE(K‖L)/C0(K‖L) is isometrically isomorphic to
E. To do so, we de�ne the operator Φ : CE(K‖L) −→ E given by Φ(f) = P (f) for every
f ∈ CE(K‖L). Then Φ is well de�ned, ‖Φ‖ 6 1, and ker Φ = C0(K‖L). To see that the
canonical quotient operator Φ̃ : CE(K‖L)/C0(K‖L) −→ E is a surjective isometry, it su�ces
to show that

Φ
(
{f ∈ CE(K‖L) : ‖f‖ < 1}

)
= {g ∈ E : ‖g‖ < 1}.

Indeed, the left-hand side is contained in the right-hand side since ‖Φ‖ 6 1. Conversely, for
every g ∈ E ⊆ C(L) with ‖g‖ < 1, we just use Tietze's extension theorem to �nd f ∈ C(K)
such that Φ(f) = f |L = g and ‖f‖ = ‖g‖.

The main example of the section, which is a particular case of the above theorem, is the
following. We write ∆ for the Cantor middle third subset of [0, 1], which is clearly closed and
nowhere dense.

Example 1.4.3. The real Banach space C`2([0, 1]‖∆) satis�es that Iso
(
C`2([0, 1]‖∆)

)
does

not contain any non-trivial exponential one-parameter subgroup, while Iso
(
C`2([0, 1]‖∆)∗

)

contains in�nitely many exponential one-parameter subgroups. Equivalently, Z
(
C`2([0, 1]‖∆)

)

is trivial but Z
(
C`2([0, 1]‖∆)∗

)
contains Z(`2) and, therefore, it is in�nite-dimensional.

We will see later that the above example can be improved, but with much harder proof.



Chapter 2
Numerical index of Banach spaces

2.1 Introduction

As we explained in the �rst chapter, the numerical index of a Banach space is a constant
relating the behavior of the numerical range with that of the usual norm on the Banach
algebra of all bounded linear operators on the space. The concept of numerical index of a
Banach space X was �rst suggested by G. Lumer in 1968 (see [21]), and it is the constant
n(X) de�ned by

n(X) := inf{v(T ) : T ∈ L(X), ‖T‖ = 1}
or, equivalently,

n(X) = max{k > 0 : k ‖T‖ 6 v(T ) ∀T ∈ L(X)}.
Note that n(X) > 0 if and only if v and ‖ · ‖ are equivalent norms on L(X).

In the last ten years, many results on the numerical index of Banach spaces have appeared
in the literature. This chapter aims at reviewing the state of the art on this topic and proposing
a variety of open questions.

2.2 Computing the numerical index

Let us start by recalling the examples given in the �rst chapter of spaces whose numerical
index has been computed and some more examples.

Examples 2.2.1.

(a) If H is a Hilbert space with dim(H) > 1, then

n(H) =

{
0 real case,
1
2 complex case.

23
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(b) If X is a complex Banach space, then n
(
XR
)

= 0.

(c) n
(
L1(µ)

)
= 1 for every positive measure µ.

(d) If X∗ ≡ L1(µ), then n(X) = 1.

(e) In particular, n
(
C(K)

)
= 1, n

(
C0(L)

)
= 1, n

(
L∞(µ)

)
= 1.

(f) n(A(D)) = 1 and n(H∞) = 1.

In view of the above examples, the most important family of classical Banach spaces (in
the sense of H. Lacey [67]) whose numerical indices remain unknown is the family of Lp spaces
when p 6= 1, 2,∞. This is actually one of the most intriguing open problems in the �eld but,
very recently, E. Ed-Dari and M. Khamsi [22, 23] and M. Martín, J. Merí and M. Popov
[82, 83] have made some progresses. We summarize their results in the following statement
and use them to motivate some conjectures.

Theorem 2.2.2. Let 1 6 p 6∞ be �xed. Then,

(a) The sequence
(
n(`mp )

)
m∈N is decreasing.

(b) n
(
Lp(µ)

)
= inf{n(`mp ) : m ∈ N} for every measure µ such that dim

(
Lp(µ)

)
=∞.

(c) In the real case,

max

{
1

21/p
,

1

21/q

}
Mp 6 n(`2p) 6Mp, where Mp = sup

t∈[0,1]

|tp−1 − t|
1 + tp

.

(d) In the real case, n
(
Lp(µ)

)
>
Mp

8e
. In particular, n

(
Lp(µ)

)
> 0 for p 6= 2.

We will present the proof of item (d) of the above theorem in section 6.1

With respect to item (c) in the above theorem, let us explain the meaning of the number
Mp. It can be deduced from [21, �3] that, given an operator T ∈ L(`2p) represented by the

matrix
(
a b
c d

)
, one has

v(T ) = max





max
t∈[0,1]

z∈T

∣∣a+ d tp + z b t+ z c tp−1
∣∣

1 + tp
, max
t∈[0,1]

z∈T

∣∣d+ a tp + z c t+ z b tp−1
∣∣

1 + tp




. (2.1)

It follows thatMp is equal to the numerical radius of the norm-one operator U ≡
(

0 1
−1 0

)
in

L(`2p) (real case), so n(`2p) 6 Mp. For p = 2, the operator U has minimum numerical radius,
namely 0. We may ask if U is also the norm-one operator with minimum numerical radius
for all the real spaces `2p.
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Problem 2.2.3. Is it true that, in the real case, n(`2p) = sup
t∈[0,1]

|tp−1 − t|
1 + tp

for every 1 < p <∞?

In the complex case, the operator U acting on `22 satis�es v(U) = ‖U‖ (take z = i and
t = 1 in (2.1)) and, therefore, its numerical radius is not the minimum. Actually, one has

n(`22) =
1

2
= v(S),

where S ∈ L(`22) is the `shift' S ≡
(

0 0
1 0

)
. Therefore, we bet that n(`2p) = v(S) for every p

in the complex case. It can be checked from (2.1) that

v(S) =
(p− 1)

p−1
p

p
=

1

p
1
p q

1
q

,

where 1
p + 1

q = 1.

Problem 2.2.4. Is it true that, in the complex case, n(`2p) =
1

p
1
p q

1
q

for every 1 < p <∞?

In view of Theorem 2.2.2.a, the two-dimensional case is only the �rst step in the computa-
tion of n(`p), but it is reasonable to expect that the sequence {n(`mp )}m∈N is always constant,
as it happens in the cases p = 1, 2,∞.

Problem 2.2.5. Is it true that n(`p) = n(`2p) for every 1 < p <∞?

In a 1977 paper [47], T. Huruya determined the numerical index of a C∗-algebra. Part of
the proof was recently clari�ed by A. Kaidi, A. Morales, and A. Rodríguez-Palacios in [61],
where the result is extended to JB∗-algebras and preduals of JBW ∗-algebras. Let us state
here those results just for C∗-algebras and preduals of von Neumann algebras.

Theorem 2.2.6 ([47] and [61, Proposition 2.8]). Let A be a C∗-algebra. Then, n(A) is equal
to 1 or 1

2 depending on whether or not A is commutative. If A is actually a von Neumann
algebra with predual A∗, then n(A∗) = n(A).

We do not know if there is an analogous result in the real case. We recall that a real C∗-
algebra can be de�ned as a norm-closed self-adjoint real subalgebra of a complex C∗-algebra,
and a real W ∗-algebra (or real von Neumann algebra) is a real C∗-algebra which admits a
predual (see [48] for more information).
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Problem 2.2.7. Compute the numerical index of real C∗-algebras and isometric preduals of
real W ∗-algebras.

The fact that the disk algebra has numerical index 1 was extended to function algebras
by D. Werner in 1997 [113]. A function algebra A on a compact Hausdor� space K is a closed
subalgebra of C(K) which separates the points of K and contains the constant functions.

Proposition 2.2.8 ([113, Corollary 2.2 and proof of Theorem 3.3]). If A is a function alge-
bra, then n(A) = 1.

Of course, there are many other Banach spaces whose numerical index is unknown. We
propose to calculate some of them.

Problem 2.2.9. Compute the numerical index of Cm[0, 1] (the space ofm-times continuously
di�erentiable real functions on [0, 1], endowed with any of its usual norms), Lip(K) (the space
of all Lipschitz functions on the complete metric space K), Lorentz spaces, and Orlicz spaces.

Some of the classical results given in the introduction about the numerical index of par-
ticular spaces have been extended to sums of families of Banach spaces and to spaces of
vector-valued functions in various papers by G. López, M. Martín, J. Merí, R. Payá, and
A. Villena [74, 86, 88].

We start by presenting the result for sums of spaces. Given a family {Xλ : λ ∈ Λ}
of Banach spaces, we denote by [⊕λ∈ΛXλ]c0 , [⊕λ∈ΛXλ]`1 and [⊕λ∈ΛXλ]`∞ the c0-, `1- and
`∞-sum of the family.

Proposition 2.2.10 ([86, Proposition 1]). Let {Xλ : λ ∈ Λ} be a family of Banach spaces.
Then

n
(

[⊕λ∈ΛXλ]c0

)
= n

(
[⊕λ∈ΛXλ]`1

)
= n

(
[⊕λ∈ΛXλ]`∞

)
= inf

λ
n(Xλ).

The above result is not true for `p-sums if p is di�erent from 1 and ∞. Nevertheless, it is
possible to give one inequality and, actually, the same is true for absolute sums. Recall that
a direct sum Y ⊕Z is said to be an absolute sum if ‖y + z‖ only depends on ‖y‖ and ‖z‖ for
(y, z) ∈ Y × Z.

Proposition 2.2.11 ([76, Proposición 1]). Let X be a Banach space and let Y , Z be closed
subspaces of X. Suppose that X is the absolute sum of Y and Z. Then

n(X) 6 min
{
n(Y ), n(Z)

}
.

The following somehow surprising example was obtained in [86] by using Proposition 2.2.10.
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Example 2.2.12 ([86, Example 2.b]). There is a real Banach spaceX for which the numerical
radius is a norm but is not equivalent to the operator norm, i.e. the numerical index of X is
0 although v(T ) > 0 for every non-null T ∈ L(X).

The numerical index of some vector-valued function spaces was also computed in [74, 86,
88]. Given a real or complex Banach space X and a compact Hausdor� topological space K,
we write C(K,X) and Cw(K,X) to denote, respectively, the space of X-valued continuous
(resp. weakly continuous) functions on K. If µ is a positive σ-�nite measure, by L1(µ,X) and
L∞(µ,X) we denote respectively the space of X-valued µ-Bochner-integrable functions and
the space of X-valued µ-Bochner-measurable functions which are essentially bounded.

Theorem 2.2.13 ([74], [86], and [88]). Let K be a compact Hausdor� space, and let µ be a
positive σ-�nite measure. Then

n(Cw(K,X)) = n(C(K,X)) = n(L1(µ,X)) = n(L∞(µ,X)) = n(X)

for every Banach space X.

The numerical index of Cw∗(K,X∗), the space of X∗-valued weakly-star continuous func-
tions on K is also studied in [74]. Unfortunately, only a partial result is achieved.

Proposition 2.2.14 ([74, Propositions 5 and 7] ). Let K be a compact Hausdor� space and
let X be a Banach space. Then

n(Cw∗(K,X
∗)) 6 n(X).

If, in addition, X is an Asplund space or K has a dense subset of isolated points, then

n(X∗) 6 n(Cw∗(K,X
∗)).

To �nish this section let us comment that, roughly speaking, when one �nds an explicit
computation of the numerical index of a Banach space in the literature only few values appear;
namely, 0 (real Hilbert spaces), e−1 (Glickfeld's example), 1/2 (complex Hilbert spaces), and 1
(C(K), L1(µ), and many more). The preceding results about sums and vector-valued function
spaces do not help so much, and the exact values of n(`2p) are not still known. Let us also say
that, when the authors of [21] prove the range of variation of the numerical index, they only
use examples of Banach spaces whose numerical indices are the extremes of the intervals, and
then a connectedness argument is applied. Recently, M. Martín and J. Merí have partially
covered this gap in [81], where they explicitly compute the numerical index for four families
of norms on R2. The most interesting one is the family of regular polygons.

Proposition 2.2.15 ([81, Theorem 5]). Let n > 2 be a positive integer, and let Xn be the
two-dimensional real normed space whose unit ball is the convex hull of the (2n)th roots of
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unity, i.e. BXn is a regular 2n-polygon centered at the origin and such that one of its vertices
is (1, 0). Then,

n(Xn) =





tan
( π

2n

)
if n is even,

sin
( π

2n

)
if n is odd.

As a consequence of the above proposition together with Proposition 2.2.11, we may give
a surprising result. We have shown in section 1.3 that �nite-dimensional real Banach spaces
with numerical index zero have complex subspaces. In the in�nite-dimensional case, the
situation is completely di�erent.

Example 2.2.16. There is an in�nite-dimensional real Banach space X with n(X) = 0
which is polyhedral (i.e. the unit ball of each �nite-dimensional subspace is a polyhedron). In
particular, X does not contain any copy of C.

2.3 Numerical index and duality

As we commented in the �rst chapter, given a Banach space X and T ∈ L(X) one has

v(T ) = v(T ∗),

and the result given in [21, Proposition 1.3] that

n(X∗) 6 n(X) (2.2)

clearly follows. The question if this is actually an equality had been around from the beginning
of the subject (see [62, pp. 386], for instance). Let us comment some partial results which led
to think that the answer could be positive. Namely, it is clear that n(X) = n(X∗) for every
re�exive space X, and this equality also holds whenever n(X∗) = 1 , in particular when X is
an L- or an M -space. Moreover, it is also true that n(X) = n(X∗) when X is a C∗-algebra
or a von Neumann algebra predual (Theorem 2.2.6).

Nevertheless, in a recent paper [13], K. Boyko, V. Kadets, M. Martín, and D. Werner
have answered the question in the negative by giving an example of a Banach space whose
numerical index is strictly greater than the numerical index of its dual. Let us present such
counterexample.

As usual, c denotes the Banach space of all convergent scalar sequences x = (x(1), x(2), . . .)
equipped with the sup-norm. The dual space of c is (isometric to) `1 and we will write
c∗ ≡ `1 ⊕1 K where

〈(y, λ) , x〉 =
∞∑

n=1

y(n)x(n) + λ limx
(
x ∈ c, (y, λ) ∈ `1 ⊕1 K

)
.
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For every n ∈ N, we denote by e∗n the norm-one element of c∗ given by

e∗n(x) = x(n)
(
x ∈ c

)
.

We are now ready to show that the numerical index of a Banach space and the one of its dual
do not always coincide.

Example 2.3.1 ([13, Example 3.1]). Let us consider the Banach space

X =
{

(x, y, z) ∈ c⊕∞ c⊕∞ c : limx+ lim y + lim z = 0
}
.

Then, n(X) = 1 and n(X∗) < 1.

Proof. We observe that

X∗ =
[
c∗ ⊕1 c

∗ ⊕1 c
∗]/〈(lim, lim, lim)〉

so that, writing Z = `31/〈(1, 1, 1)〉, we can identify

X∗ ≡ `1 ⊕1 `1 ⊕1 `1 ⊕1 Z and X∗∗ ≡ `∞ ⊕∞ `∞ ⊕∞ `∞ ⊕∞ Z∗. (2.3)

Figure 2.1: The unit ball of Z

With this in mind, we write A to denote the set

{(e∗n, 0, 0, 0) : n ∈ N} ∪ {(0, e∗n, 0, 0) : n ∈ N} ∪ {(0, 0, e∗n, 0) : n ∈ N}.
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Then A is clearly a norming subset of SX∗ and

|x∗∗(a∗)| = 1
(
x∗∗ ∈ ext(BX∗∗), a∗ ∈ A

)
. (2.4)

Let us prove that n(X) = 1. Indeed, we �x T ∈ L(X) and ε > 0. Since T ∗ is w∗-continuous
and A is norming, we may �nd a∗ ∈ A such that

‖T ∗(a∗)‖ > ‖T‖ − ε.

Now, we take x∗∗ ∈ ext(BX∗∗) such that

|x∗∗(T ∗(a∗))| = ‖T ∗(a∗)‖.

Since |x∗∗(a∗)| = 1 thanks to (2.4), we get

v(T ) = v(T ∗) > |x∗∗(T ∗(a∗))| > ‖T‖ − ε.

It clearly follows that v(T ) = ‖T‖ and n(X) = 1.

To show that n(X∗) < 1, we use (2.3) and Proposition 2.2.10 to get

n(X∗) 6 n(Z),

and the fact that n(Z) < 1 follows easily from a result due to C. McGregor [89, Theorem 3.1].
Actually, in the real case, the unit ball of Z is an hexagon (see Figure 2.1 above), which is
isometrically isomorphic to the space X3 of Proposition 2.2.15, so n(Z) = 1/2.

The above example can be pushed forward, to produce even more striking counterexam-
ples.

Examples 2.3.2 ([13, Examples 3.3]).

(a) There exists a real Banach space X such that n(X) = 1 and n(X∗) = 0.

(b) There exists a complex Banach space X satisfying that n(X) = 1 and n(X∗) = 1/e.

On the other hand, the fact that the numerical index of the spaces in all the examples
above is equal to 1 has nothing to do with the possibility of getting an strict inequality in 2.2.

Example 2.3.3.

(a) For every t ∈]0, 1] there is a real Banach space Xt with n(Xt) = t and n(X∗t ) = 0.

(b) For every t ∈]1
e , 1] there is a complex Banach space Xt with n(Xt) = t and n(X∗t ) = 1

e .

Let us observe that it is possible to construct more counterexamples by using the spaces
CE(K‖L) given in section 1.4. As shown in Theorem 2.2.6, if A or A∗ is a C∗-algebra, then
n(A) = n(A∗). The next example shows that it is not possible to go further.



2.3. Numerical index and duality 31

Example 2.3.4 ([78, Example 4.3]). Let us consider the space X = CK(`2)([0, 1]‖∆). Then,
n(X) = 1 and

X∗ ≡ K(`2)∗ ⊕1 C0(K‖∆)∗ and X∗∗ ≡ L(`2)⊕∞ C0(K‖∆)∗∗.

Therefore, X∗∗ is a C∗-algebra, but n(X∗) = 1/2 < n(X).

We now present some more results concerning numerical index and duality. The �rst
result is a su�cient condition to get the equality of the numerical index of a Banach space
and its dual. We recall that a Banach space X is said to be L-embedded if X∗∗ = X⊕1Xs for
some closed subspace Xs of X∗∗. We refer to [43] for background. Examples of L-embedded
spaces are the re�exive ones (trivial), preduals of von Neumann algebras (in particular, L1(µ)
spaces), the Lorentz spaces d(w, 1) and Lp,1 (see [43, Examples III.1.4 and IV.1.1]).

Theorem 2.3.5 ([80, Theorem 2.1]). Let X be an L-embedded space. Then, n(X) = n(X∗).

Let us comment that it has been shown recently that separable L-embedded Banach spaces
are unique predual of their duals [95]. By a predual of a Banach space Y we mean a Banach
space X such that X∗ is (isometrically isomorphic to) Y . Therefore, it makes sense to ask
whether a Banach space X having a unique predual X∗ satis�es n(X∗) = n(X).

Problem 2.3.6. Let Y be a dual space admitting a unique predual X (up to isometric
isomorphisms). Is it true that n(Y ) = n(X)?

We recall that a Banach space X is M -embedded if X⊥ is an L-summand of X∗∗∗ or,
equivalently, if the natural (Dixmier) projection from X∗∗∗ onto X∗ is an L-projection (i.e.
X∗∗∗ = iX∗(X

∗) ⊕1 X
⊥). We refer the reader to [43] for more information and background.

Typical examples of M -embedded spaces are c0(Γ) for any set Γ and K(H), the space of
compact operators on a Hilbert space H [43, Examples III.1.4].

The following is another particular case in which the equality in (2.2) holds.

Theorem 2.3.7 ([80, Theorem 3.3]). Let X be anM -embedded space with n(X) = 1. If Y is
a closed subspace of X∗∗ containing (the canonical copy of) X, then n(Y ) = 1. In particular,
n(X∗) = 1 and n(X∗∗) = 1.

Remark 2.3.8. It is not always possible to get n(Y ∗) = 1 in the above theorem. Indeed, let
X be the space given Example 2.3.1. Then, one clearly has that

c0(N× N× N) ⊂ X ⊂ `∞(N× N× N),

c0(N× N× N) is M -embedded, but n(X∗) < 1.



32 Chapter 2. Numerical index of Banach spaces

Once we know that the numerical index of a Banach space and the one of its dual may be
di�erent, the question arises if two preduals of a given Banach space have the same numerical
index. The answer is again negative, as the following result shows.

Example 2.3.9 ([13, Example 3.6]). Let us consider the Banach spaces

X1 =
{

(x, y, z) ∈ c⊕∞ c⊕∞ c : limx+ lim y + lim z = 0
}

and

X2 =
{

(x, y, z) ∈ c⊕∞ c⊕∞ c : x(1) + y(1) + z(1) = 0
}
.

Then, X∗1 and X∗2 are isometrically isomorphic, but n(X1) = 1 and n(X2) < 1.

The following question might also be addressed.

Problem 2.3.10. Let Y be a dual space. Does there exist a predual X of Y such that
n(X) = n(Y )?

Another interesting issue could be to �nd isomorphic properties of a Banach space X
ensuring that n(X∗) = n(X). On the one hand, Example 2.3.1 shows that Asplundness is
not such a property. On the other hand, it is shown in [13, Proposition 4.1] that if a Banach
space X with the Radon-Nikodým property has numerical index 1, then X∗ has numerical
index 1 as well. Therefore, the following question naturally arises.

Problem 2.3.11. Let X be a Banach space with the Radon-Nikodým property. Is it true
that n(X) = n(X∗)?

2.4 Banach spaces with numerical index one

The guiding open question on these spaces is the following.

Problem 2.4.1. Find necessary and su�cient conditions for a Banach space to have numer-
ical index 1 which do not involve operators.

In 1971, C. McGregor [89, Theorem 3.1] gave such a characterization in the �nite dimen-
sional case. More concretely, a �nite-dimensional normed space X has numerical index 1 if
and only if

|x∗(x)| = 1 for every x ∈ ext(BX) and every x∗ ∈ ext(BX∗). (2.5)

It is not clear how to extend this result to arbitrary Banach spaces. If we use literally
(2.5) in the in�nite-dimensional context, we do not get a su�cient condition, since the set
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ext(BX) may be empty and this does not imply numerical index 1 (e.g. ext(Bc0(`2)) = ∅ but
n(c0(`2)) < 1). On the other hand, (2.5) is not necessary condition.

Example 2.4.2 ([53, Examples 5.1 and 5.2]). There is a Banach space X with n(X) = 1
and there are f0 ∈ ext(BX) and x∗0 ∈ ext(BX∗) satisfying x

∗
0(f0) = 0.

Our �rst aim in this section is to discuss several reformulations of assertion (2.5) to get
either su�cient or necessary conditions for a Banach space to have numerical index 1.

Aiming at su�cient conditions, it is not di�cult to show that (2.5) implies numerical
index 1 for a Banach space X as soon as the set ext(BX) is large enough to determine the
norm of operators on X, i.e. BX = co(ext(BX)). Actually, we may replace ext(BX) with any
subset of SX satisfying the same property. On the other hand, we may replace ext(BX) by
ext(BX∗∗) and the role of ext(BX∗) can be played by any norming subset of SX∗ . Let us
comment that this is is what we did in the proof of Example 2.3.1. We summarize all these
ideas in the following proposition.

Proposition 2.4.3. Let X be a Banach space. Then, any of the following three conditions
is su�cient to ensure that n(X) = 1.

(a) There exists a subset C of SX such that co(C) = BX and

|x∗(c)| = 1

for every x∗ ∈ ext(BX∗) and every c ∈ C.

(b) |x∗∗(x∗)| = 1 for every x∗∗ ∈ ext(BX∗∗) and every x∗ ∈ ext(BX∗).

(c) There exists a norming subset A of SX∗ such that

|x∗∗(a∗)| = 1

for every x∗∗ ∈ ext(BX∗∗) and every a∗ ∈ A.

Let us comment on the converse of the above result. First, condition (a) is not necessary
as shown by c0. Second, it was proved in [13, Example 3.4] that condition (b) is not necessary
either, the counterexample being the space given in Example 2.3.1. Finally, a Banach with
numerical index 1 in which condition (c) is not satis�ed has been discovered very recently [54]
(see section 3.4 for details).

Necessary conditions in the spirit of McGregor's result were given in 1999 by G. López,
M. Martín, and R. Payá [73]. The key idea was considering denting points instead of general
extreme points. Recall that x0 ∈ BX is said to be a denting point of BX if it belongs to slices
of BX with arbitrarily small diameter. If X is a dual space and the slices can be taken to be
de�ned by weak∗-continuous functionals, then we say that x0 is a weak∗-denting point.
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Proposition 2.4.4 ([73, Lemma 1]). LetX be a Banach space with numerical index 1. Then,

(a) |x∗(x)| = 1 for every x∗ ∈ ext(BX∗) and every denting point x ∈ BX .

(b) |x∗∗(x∗)| = 1 for every x∗∗ ∈ ext(BX∗∗) and every weak∗-denting point x∗ ∈ BX∗ .

This result will play a key role in the next section.

Let us comment that, like McGregor original result, the conditions in Proposition 2.4.4
are not su�cient in the in�nite-dimensional context. Indeed, the space X = C([0, 1], `2) does
not have numerical index 1, while BX has no denting points and there are no w∗-denting
points in BX∗ . Actually, all the slices of BX and the w∗-slices of BX∗ have diameter 2 (see
[59, Lemma 2.2 and Example on p. 858], for instance).

Anyhow, if we have a Banach space X such that BX has enough denting points (if X has
the Radon-Nikodým property, for instance), then item (a) in the above proposition combines
with Proposition 2.4.3 to characterize the numerical index 1 for X. The same is true for item
(b) when BX∗ has enough weak∗-denting points (if X is an Asplund space, for instance).

Corollary 2.4.5 ([77, Theorem 1] and [79, �1]). Let X be a Banach space.

(a) If X has the Radon-Nikodým property, then the following are equivalent:

(i) X has numerical index 1.

(ii) |x∗(x)| = 1 for every x∗ ∈ ext(BX∗) and every denting point x of BX .

(iii) |x∗∗(x∗)| = 1 for every x∗∗ ∈ ext(BX∗∗) and every x∗ ∈ ext(BX∗).

(b) If X is an Asplund space, then the following are equivalent:

(i) X has numerical index 1.

(ii) |x∗∗(x∗)| = 1 for every x∗∗ ∈ ext(BX∗∗) and every weak∗-denting point x∗ ∈ BX∗ .

Next chapter is devoted to study a su�cient condition for a Banach space to have numerical
index 1, namely the so-called lushness property.

2.5 Renorming and numerical index

In 2003, C. Finet, M. Martín, and R. Payá [30] studied the numerical index from the iso-
morphic point of view, i.e. they investigated the set N (X) of those values of the numerical
index which can be obtained by equivalent renormings of a Banach space X. This study has
a precedent in the 1974 paper [108] by K. Tillekeratne, where it is proved that every complex
space of dimension greater than one can be renormed to achieve the minimum value of the
numerical index; the same is true for real spaces.
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Proposition 2.5.1 ([30, Proposition 1] and [108, Theorem 3.1]). Let X be a Banach space
of dimension greater than one. Then 0 ∈ N (X) in the real case, e−1 ∈ N (X) in the complex
case.

One of the main aims of [30] is to show that N (X) is a interval for every Banach space X.
To get this result, the authors use the continuity of the mapping carrying every equivalent
norm on X to its numerical index with respect to a metric taken from [8, �18].

Proposition 2.5.2 ([30, Proposition 2]). N (X) is an interval for every Banach space X.

As an immediate consequence of the above two results, we get the following.

Corollary 2.5.3 ([30, Corollary 3]). If 1 ∈ N (X) for a Banach space X of dimension greater
than one, then N (X) = [0, 1] in the real case and N (X) = [e−1, 1] in the complex case.

Since n(`m∞) = 1 for every m, the following particular case arises.

Corollary 2.5.4 ([108, Theorem 3.2]). Let m be an integer larger than 1. Then

N (Rm) = [0, 1] and N (Cm) = [e−1, 1].

Now, one may ask if the above result is also true in the in�nite-dimensional context, equiv-
alently, whether or not every Banach space can be equivalently renormed to have numerical
index 1. The answer is negative, as shown in the already cited paper [73].

Theorem 2.5.5 ([73, Theorem 3]). Let X be an in�nite-dimensional real Banach space with
1 ∈ N (X). If X has the Radon-Nikodým property, then X contains `1. If X is an Asplund
space, then X∗ contains `1.

It follows that in�nite-dimensional real re�exive spaces cannot be renormed to have nu-
merical index 1. But even more is true.

Corollary 2.5.6 ([73, Corollary 5]). Let X be an in�nite-dimensional real Banach space. If
X∗∗/X is separable, then 1 /∈ N (X).

It is easy to explain how Theorem 2.5.5 was proved in [73]. Namely, the authors used
Proposition 2.4.4, the well-known facts that the unit ball of a space with the Radon-Nikodým
property has many denting points and that the dual unit ball of an Asplund space has many
weak∗-denting points (see [11], for instance), and the following su�cient condition for a real
Banach space to contain either c0 or `1.
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Lemma 2.5.7 ([73, Proposition 2]). Let X be a real Banach space, and assume that there is
an in�nite set A ⊂ SX such that |x∗(a)| = 1 for every a ∈ A and every x∗ ∈ ext(BX∗). Then
X contains c0 or `1.

Thus, the �rst open question in this line is the following.

Problem 2.5.8. Characterize those Banach spaces which can be equivalently renormed to
have numerical index 1.

The better result we have in this line is the following, for which we will give a detailed
proof in section 6.2.

Theorem 2.5.9 ([5, Corollary 4.10]). Let X be an in�nite-dimensional real Banach space
satisfying that 1 ∈ N (X). Then, X∗ ⊇ `1.

One may wonder whether the above necessary condition for a Banach space to be renormed
with numerical index 1 is also su�cient. The answer is not, as the following example shows.

Example 2.5.10 ([12, Example 3.8]). There is a Banach space Y such that Y ∗ is isomorphic
to `1 but Y does not admit any equivalent norm with numerical index 1. Indeed, let us
consider the real space Y given in [10] such that Y ∗ is isomorphic to `1 and Y has the
Radon-Nikodým property. Then, Y is an in�nite-dimensional real Banach space having the
Radon-Nikodým property and it is also Asplund, so Theorem 2.5.5 shows that it does not
admit an equivalent norm with numerical index 1.

We propose to study separately necessary and su�cient conditions for a Banach space
to be renormable with numerical index 1. With respect to necessary conditions, we have
obtained two in the real case, namely Theorems 2.5.5 and 2.5.9. It is not known if they are
valid in the complex case; actually, the following especial case remains open.

Problem 2.5.11. Does there exist an in�nite-dimensional complex re�exive space which can
be renormed to have numerical index 1?

For more necessary conditions, we suggest to study the following question.

Problem 2.5.12. Let X be an in�nite-dimensional (real) Banach space satisfying that 1 ∈
N (X). Does X contain c0 or `1?

With respect to su�cient conditions, the only we know is the following one. We will give
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a detailed proof of it in section 6.2.

Theorem 2.5.13 ([12, Corollary 3.6]). Every separable Banach space containing an isomor-
phic copy of c0 can be equivalently renormed to have numerical index 1.

Corollary 2.5.14. Every closed subspace of c0 can be equivalently renormed to have numer-
ical index 1.

More possible su�cient conditions are the following.

Problem 2.5.15. Let X be a Banach space containing an in�nite-dimensional subspace Y
such that 1 ∈ N (Y ). Is it true that 1 ∈ N (X)?

One may consider an especial case.

Problem 2.5.16. Let X be a Banach space containing a subspace isomorphic to `1. Is it
true that 1 ∈ N (X)?

We �nish this section by showing that the value 1 of the numerical index is very particular.
Indeed, it is proved in [30] that �most� Banach spaces can be renormed to achieve any possible
value for the numerical index except eventually 1. Recall that a system {(xλ, x∗λ)}λ∈Λ ⊂
X ×X∗ is said to be biorthogonal if x∗λ(xµ) = δλ,µ for λ, µ ∈ Λ, and long if the cardinality of
Λ coincides with the density character of X.

Theorem 2.5.17 ([30, Theorem 10]). Let X be a Banach space admitting a long biorthog-
onal system. Then supN (X) = 1. Therefore, when the dimension of X is greater than one,
N (X) ⊃ [0, 1[ in the real case and N (X) ⊃ [e−1, 1[ in the complex case.

Typical examples of Banach spaces admitting a long biorthogonal system are WCG spaces
(see [16]). For instance, if X∗∗/X is separable, then the Banach space X is WCG (see [111,
Theorem 3], for example) while, in the real case, 1 /∈ N (X) unless X is �nite-dimensional (see
Corollary 2.5.6). Therefore, in many cases one of the inclusions of Theorem 2.5.17 becomes
an equality.

Corollary 2.5.18 ([30, Corollary 11]). Let X be an in�nite-dimensional real Banach space
such that X∗∗/X is separable. Then N (X) = [0, 1[.

Let us comment that Theorem 2.5.17 is proved by using a geometrical property that
was introduced by J. Lindenstrauss in the study of norn-attaining operators [69] and called
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property α by W. Schachermayer [104]. It is known that, under the continuum hypothesis,
there are Banach spaces which cannot be renormed with property α [38, 90]. Nevertheless,
B. Godun and S. Troyanski proved in [38, Theorem 1] that this renorming is possible for
Banach spaces admitting a long biorthogonal system; as far as we know, this is the largest
class of spaces for which renorming with property α is possible.

The question arises if the assumption of having a long biorthogonal system in Theo-
rem 2.5.17 can be dropped.

Problem 2.5.19. Is is true that supN (X) = 1 for every Banach space X?

It is also studied in [30] the relationship between the numerical index and the so-called
property β [69, 104]. Contrary to property α, property β is isomorphically trivial (J. Part-
ington [92]), but it does not produce such a good result as Theorem 2.5.17. At least, it can
be used to prove that N (X) does not reduces to a point when the dimension of X is greater
than one.

Theorem 2.5.20 ([30, Theorem 9]). Let X be a Banach space with dim(X) > 1. Then
N (X) ⊃ [0, 1/3[ in the real case and N (X) ⊃ [e−1, 1/2[ in the complex case.

2.6 Asymptotic behavior of the set of �nite-dimensional spaces

with numerical index one

Our aim in this section is to consider the asymptotic behavior (as the dimension grows to
in�nity) of some parameters related to the Banach-Mazur distance for the family of �nite-
dimensional real normed spaces with numerical index 1. Let us write Nm for the space of all
m-dimensional normed spaces endowed with the Banach-Mazur distance

d(X,Y ) = inf{‖T‖ ‖T−1‖ : T : X −→ Y isomorphism} (X,Y ∈ Nm),

and let us writeMm for the subset consisting of those m-dimensional spaces with numerical
index 1. Our aim is to study some questions related to these two spaces. As far as we know,
the �rst result of this kind was given very recently by T. Oikhberg [91].

Theorem 2.6.1 ([91, Theorem 4.1]). There exists a universal positive constant c such that

d(X, `m2 ) > cm
1
4

for every m > 1 and every X ∈Mm.

It is well-known that d(`m1 , `
m
2 ) = d(`m∞, `

m
2 ) =

√
m for every m > 1 (see [36, pp. 720] for

instance). Therefore, the following question arises naturally.
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Problem 2.6.2. Does there exist a universal constant c > 0 such that

d(X, `m2 ) > c
√
m

for every m > 1 and every X ∈Mm?

It was observed in [91, pp. 622] that the answer to this question is positive for some class
of Banach spaces with numerical index 1: those constructed starting from the real line and
producing successively `∞ and/or `1 sums. But not every element ofMm is of this form.

Finally, we would like to propose some related questions.

Problem 2.6.3. What is the diameter ofMm? Is it (asymptotically) close to the diameter
of Nm?

Problem 2.6.4. What is the biggest possible distance from an element of Nm to the set
Mm?

2.7 Relationship to the Daugavet property.

In every Banach space with the Radon-Nikodým property (in particular in every re�exive
space) the unit ball must have denting points. There are Banach spaces X (as C[0, 1], L1[0, 1],
and many others) with an extremely opposite property: for every x ∈ SX and for arbitrarily
small ε > 0, the closure of

co
(
BX \ (x+ (2− ε)BX)

)

equals to the whole BX (see Figure 2.2 below). This geometric property of the space is
equivalent to the following exotic property of operators on X: for every compact operator
T : X −→ X, the so-called Daugavet equation

‖Id + T‖ = 1 + ‖T‖ (DE)

holds. This property of C[0, 1] was discovered by I. K. Daugavet in 1963 and is called the
Daugavet property [58, 59]. Over the years, the validity of the Daugavet equation was proved
for some classes of operators on various spaces, including weakly compact operators on C(K)
and L1(µ) provided that K is perfect and µ does not have any atoms (see [112] for an
elementary approach), and on certain function algebras such as the disk algebra A(D) or the
algebra of bounded analytic functions H∞ [113, 115]. In the nineties, new ideas were infused
into this �eld and the geometry of Banach spaces having the Daugavet property was studied;
we cite the papers of V. Kadets, R. Shvidkoy, G. Sirotkin, and D. Werner [59] and R. Shvidkoy
[107] as representatives. Let us comment that the original de�nition of Daugavet property
given in [58, 59] only required rank-one operators to satisfy (DE) and, in such a case, this
equation also holds for every bounded operator which does not �x a copy of `1 [107].
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x

BX \
(
x+ (2− ε)BX

)

Figure 2.2: The space `2∞ does not have the Dau-

gavet property

Although the Daugavet property is of isometric nature, it induces various isomorphic
restrictions. For instance, a Banach space with the Daugavet property contains `1 [59], it
does not have unconditional basis (V. Kadets [50]) and, moreover, it does not isomorphically
embed into an unconditional sum of Banach spaces without a copy of `1 [107]. It is worthwhile
to remark that the latest result continues a line of generalization ([49], [57], [59]) of the well
known theorem by A. Peªczy«ski [94] that L1[0, 1] (and so C[0, 1]) does not embed into a
space with unconditional basis.

The state-of-the-art on the Daugavet property can be found in [114].

Let us explain the relation between (DE) and the numerical range of an operator. The
following result appeared for the �rst time in the aforementioned paper [21] by J. Duncan,
C. McGregor, J. Pryce, and A. White.

Lemma 2.7.1. Let X be a Banach space and T ∈ L(X). Then, T satis�es (DE) if and only
if sup ReV (T ) = ‖T‖. Therefore, X has the Daugavet property if and only if all rank-one
operators T ∈ L(X) satisfy sup ReV (T ) = ‖T‖.

Let us introduce a needed de�nition. An operator T on a Banach space X satis�es the
alternative Daugavet equation if the norm equality

max
ω∈T
‖Id + ω T‖ = 1 + ‖T‖ (aDE)

holds. A Banach space X is said to have the alternative Daugavet property if every rank-one
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operator on X satis�es (aDE). In such a case, every weakly compact operator on X also
satis�es (aDE) [85, Theorem 2.2]. Therefore, X has the alternative Daugavet property if and
only if v(T ) = ‖T‖ for every weakly compact operator T ∈ L(X). It follows from the above
lemma that

Lemma 2.7.2. Let X be a Banach space and T ∈ L(X). Then, T satis�es (aDE) if and only
if v(T ) = ‖T‖. Therefore, X has the alternative Daugavet property if and only if all rank-one
operators T ∈ L(X) satisfy v(T ) = ‖T‖.

Therefore, it was known since 1970 that every bounded linear operator on C(K) or L1(µ)
satis�es (aDE), a fact that was rediscovered and reproved in some papers from the eighties
and nineties as the ones by Y. Abramovich [1], J. Holub [46], and K. Schmidt [105].

Let us comment that, contrary to the Daugavet property, the alternative Daugavet prop-
erty depends upon the base �eld (e.g. C has it as a complex space but not as a real space). For
more information on the alternative Daugavet property we refer to the papers [79, 85]. From
the second one we take the following geometric characterizations of the alternative Daugavet
property.

Proposition 2.7.3 ([85, Propositions 2.1 and 2.6]). Let X be a Banach space. Then, the
following are equivalent.

(i) X has the alternative Daugavet property.

(ii) For all x0 ∈ SX , x∗0 ∈ SX∗ and ε > 0, there is some x ∈ SX such that

|x∗0(x)| > 1− ε and ‖x+ x0‖ > 2− ε.

(ii∗) For all x0 ∈ SX , x∗0 ∈ SX∗ and ε > 0, there is some x∗ ∈ SX∗ such that

|x∗(x0)| > 1− ε and ‖x∗ + x∗0‖ > 2− ε.

(iii) BX = co
(
T
[
BX \

(
x+ (2− ε)BX

)])
for every x ∈ SX and every ε > 0 (see Figure 2.3

below).

(iii∗) BX∗ = cow
∗
(
T
[
BX∗ \

(
x∗ + (2− ε)BX∗

)])
for every x∗ ∈ SX∗ and every ε > 0.

(iv) BX∗⊕∞X∗∗ = cow
∗ ({(x∗, x∗∗) : x∗ ∈ ext(BX∗), x

∗∗ ∈ ext(BX∗∗), |x∗∗(x∗)| = 1}
)
.

It is clear that both spaces with the Daugavet property and spaces with numerical index 1
have the alternative Daugavet property. Both converses are false: the space c0⊕1 C([0, 1], `2)
has the alternative Daugavet property but fails the Daugavet property and its numerical index
is not 1 [85, Example 3.2]. Nevertheless, under certain isomorphic conditions, the alternative
Daugavet property forces the numerical index to be 1.
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x

BX \ (x + (2 − ε)BX)

BX \ (−x + (2 − ε)BX)

Figure 2.3: The space `2∞ has the alternative Dau-

gavet property

Proposition 2.7.4 ([73, Remark 6]). LetX be a Banach space with the alternative Daugavet
property. If X has the Radon-Nikodým property or X is an Asplund space, then n(X) = 1.

With this result in mind, one realizes that the necessary conditions for a real Banach
space to be renormed with numerical index 1 given in section 2.5 (namely Theorem 2.5.5 and
Corollary 2.5.6), can be written in terms of the alternative Daugavet property. Even more, in
the proof of Proposition 2.4.4 given in [73], only rank-one operators are used and, therefore,
it can be also written in terms of the alternative Daugavet property.

Proposition 2.7.5 ([73, Lemma 1 and Remark 6]). Let X be a Banach space with the al-
ternative Daugavet property. Then,

(a) |x∗∗(x∗)| = 1 for every x∗∗ ∈ ext(BX∗∗) and every weak∗-denting point x∗ ∈ BX∗ .

(b) |x∗(x)| = 1 for every x∗ ∈ ext(BX∗) and every denting point x ∈ BX .

Proposition 2.7.6 ([85, Remark 2.8]). Let X be an in�nite-dimensional real Banach space
with the alternative Daugavet property. If X has the Radon-Nikodým property, then X
contains `1. If X is an Asplund space, then X∗ contains `1. In particular, X∗∗/X is not
separable.

The above two results give us an indication of why it is di�cult to �nd characterizations
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of Banach spaces with numerical index 1 that do not involve operators. Indeed, it is not easy
to construct noncompact operators on an abstract Banach space. Thus, when one uses the
assumption that a Banach space has numerical index 1, only the alternative Daugavet property
can be easily exploited. Of course, things are easier if one is working in a context where the
alternative Daugavet property ensures numerical index 1, as it happens with Asplund spaces
and spaces with the Radon-Nikodým property. We will study a more general isomorphic
property for which the alternative Daugavet property and the numerical index 1 are equivalent
in chapter 4. In particular, the following important result will be shown.

Theorem 2.7.7. Let X be a Banach space which does not contain any copy of `1 and having
the alternative Daugavet property. Then, n(X) = 1.

On the other hand, it is not possible to �nd isomorphic properties ensuring that the
alternative Daugavet property and the Daugavet property are equivalent.

Proposition 2.7.8 ([85, Corollary 3.3]). Let X be a Banach space with the alternative Dau-
gavet property. Then there exists a Banach space Y , isomorphic to X, which has the alter-
native Daugavet property but fails the Daugavet property.

We may then look for isometric conditions that allow passing from the alternative Dau-
gavet property to the Daugavet property. Having a complex structure could be such a condi-
tion.

Problem 2.7.9. LetX be a complex Banach space such thatXR has the alternative Daugavet
property. Does it follow that X (equivalently XR) has the Daugavet property?

2.8 Smoothness and convexity for Banach spaces with numer-

ical index 1

We present here some prohibitive isometric conditions for a Banach space to have numerical
index 1. Actually, the usage of this hypothesis is done through the alternative Daugavet
property.

Theorem 2.8.1. Let X be a Banach space with the alternative Daugavet property and
dimension greater than one. Then, X∗ is neither smooth nor strictly convex.

Proof. Since the dimension of X is greater than 1, we may �nd x0 ∈ SX and x∗0 ∈ SX∗ such
that x∗0(x0) = 0. Then, we consider the norm-one operator T = x∗0 ⊗ x0, which satis�es
T 2 = 0. On the other hand, thanks to [3, Theorem 1.2], there is a sequence of norm-one
operators (Tn) converging in norm to T and such that the adjoint of each of them attains its
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numerical radius. Moreover, we may suppose that all the Tn's are compact by [3, Remark 1.3].
Since X has the alternative Daugavet property, we get

v(T ∗n) = v(Tn) = ‖Tn‖ = 1.

As the operators T ∗n attain their numerical radius, for every positive integer n, we may �nd
λn ∈ T and (x∗n, x

∗∗
n ) ∈ SX∗ × SX∗∗ such that

λn x
∗∗
n (x∗n) = 1 and

[
T ∗∗n (x∗∗n )

]
(x∗n) = x∗∗n (T ∗n(x∗n)) = 1. (2.6)

If X∗ is smooth, we deduce that

T ∗∗n (x∗∗n ) = λn x
∗∗
n

(
n ∈ N

)
.

Thus, ∥∥∥[T ∗∗n ]2 (x∗∗n )
∥∥∥ = ‖λ2

n x
∗∗
n ‖ = 1 (n ∈ N).

But, since Tn −→ T and T 2 = 0, we have that [T ∗∗n ]2 −→ 0, a contradiction.

If X∗ is strictly convex, we deduce from (2.6) that

T ∗n(x∗n) = λn x
∗
n

(
n ∈ N

)
,

which leads to a contradiction the same way as before.

Corollary 2.8.2. Let X be a Banach space with n(X) = 1. Then, X∗ is neither smooth nor
strictly convex.

As a consequence of the above result, we get that n(H1) < 1, where H1 represents the
Hardy space. Actually, we have more.

Example 2.8.3. Let X be C(T)/A(D). Then, its dual X∗ = H1 is smooth (see [43, Remark
IV.1.17], for instance), soX does not have the alternative Daugavet property by Theorem 2.8.1
and neither does X∗ = H1. In particular, n(X) < 1 and n(X∗) < 1.

Remarks 2.8.4.

(a) The proof of Theorem 2.8.1 can be adapted to yield the following result. Let X be a
Banach space with the alternative Daugavet property and such that the set of compact
operators attaining its numerical radius is dense in the space of all compact operators.
Then, X is neither strictly convex nor smooth, unless it is one-dimensional. Indeed, we
may follow the proof of Theorem 2.8.1 (without considering adjoint operators) to get
the result.
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(b) It is known that for Banach spaces with the Radon-Nikodým property, the set of compact
operators attaining their numerical radius is dense in the space of all compact operators
[3, Theorem 2.4]. Therefore, we get that a Banach space having the Radon-Nikodým
property and the alternative Daugavet property is neither smooth nor strictly convex,
unless it is one-dimensional.

(c) Actually, the above result was essentially known. Namely, if X has the alternative
Daugavet property and the Radon-Nikodým property, then X is an almost-CL-space
[77, Theorem 1]. It is clear that a (non-trivial) almost-CL-space cannot be strictly
convex. On the other hand, the fact that a non-trivial real almost-CL-space cannot be
smooth follows from a very recent result [14, Theorem 3.1].

(d) The fact that there are Banach spaces in which the set of numerical radius attaining
operators is not dense in the space of all operators was discovered in 1992 [93]. Nev-
ertheless, we do not know of any Banach space for which the set of compact operators
which attain their numerical radius is not dense in the space of all compact operators.

(e) Let us comment that it is also an open problem whether a Banach space with the
Daugavet property can be smooth or strictly convex. We recall that the Daugavet
property implies the alternative Daugavet property (and the converse result is not true).
Therefore, an example of a smooth or strictly convex Banach space with the Daugavet
property would give an example of a Banach space where the rank-one operators cannot
be approximated by compact operators attaining the numerical radius.

More prohibitive results for the alternative Daugavet property are the following. A point
x in SX is said to be weakly midpoint locally uniformly rotund or WMLUR if for any sequence
(yn) in BX , limn ‖x± yn‖ 6 1 implies limn yn = 0 in the weak topology.

Proposition 2.8.5. Let X be a Banach space with the alternative Daugavet property. Then,
BX fails to contain a WLUR point, unless X is one-dimensional.

The above result is not true if we replace the WLUR point by a point of Fréchet smooth-
ness. For instance, n(c0) = 1 but the norm of c0 is Fréchet di�erentiable at a dense subset of
Sc0 since c0 is Asplund. But it is not di�cult to show that a Banach space with the alternative
Daugavet property cannot have a Fréchet smooth norm, unless it is one-dimensional.

Proposition 2.8.6. Let X be a Banach space with the alternative Daugavet property. Then,
the norm of X is not Fréchet smooth, unless X is one-dimensional.

Let us comment that without completeness, it is possible to �nd an isometric predual of
L1(µ) which is strictly convex.

Example 2.8.7. There is a non-complete isometric predual of an L1(µ)-space (in particular,
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it has numerical index 1) which is strictly convex.

The completion of the above example (which of course also has numerical index 1) is not
strictly convex.



Chapter 3
Lush spaces

The classical formula ‖T‖ = sup{|〈Tx, x〉| : x ∈ X, ‖x‖ = 1} for the norm of a self-adjoint
operator T on a Hilbert space X can be rewritten, thanks to the well-known representation
of the dual, as

‖T‖ = sup{|x∗(Tx)| : x ∈ X, x∗ ∈ X∗, x∗(x) = ‖x∗‖ = ‖x‖ = 1}. (3.1)

For a non self-adjoint operator this formula may fail. Nevertheless, there are some Banach
spaces X in which equality (3.1) is valid for every bounded linear operator T on X. As the
reader may imagine, this are the Banach spaces with numerical index 1. Among these spaces
are all classical C(K) and L1(µ) spaces.

A big di�culty when studying Banach spaces with numerical index 1 is that this property
deals with all operators on the space and we do not know of any characterization of it in terms
of the space and its successive duals. The previous solutions to this di�culty have been to
deal with either weaker or stronger geometrical properties. Let us brie�y give an account of
some of them. Let X be a real or complex Banach space.

(a) X is said to be a CL-space if BX is the absolutely convex hull of every maximal convex
subset of SX .

(b) We say that X is an almost-CL-space if BX is the closed absolutely convex hull of every
maximal convex subset of SX .

(c) X is lush if for every x, y ∈ SX and every ε > 0, there is a slice S = S(BX , x
∗, ε) with

x∗ ∈ SX∗ such that x ∈ S and dist (y, aconv(S)) < ε.

(d) X has numerical index 1 (n(X) = 1 in short) if v(T ) = ‖T‖ for every T ∈ L(X).

(e) We say that X has the alternative Daugavet property provided that every rank-one
operator T ∈ L(X) satis�es v(T ) = ‖T‖. The same equality is then satis�ed by all
weakly compact operators on X [85, Theorem 2.2].

47
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The implications (a) =⇒ (b) =⇒ (c) and (d) =⇒ (e) are clear and none of them reverses (see
[13, �3 and �7] for a detailed account). Also, (c) =⇒ (d) by [13, Proposition 2.2] and it has
been very recently shown that this implication does not reverses [54]. Let us emphasize and
prove the result that lush spaces have numerical index 1.

Proposition 3.0.8. Let X be a lush Banach space. Then n(X) = 1.

Proof. For T ∈ L(X) with ‖T‖ = 1, and 0 < ε < 1/2 �xed, we take x0 ∈ SX such that

‖Tx0‖ > 1− ε, and we apply the de�nition of lushness to x0 and y0 =
Tx0

‖Tx0‖
to get y∗ ∈ SY ∗

with y0 ∈ S(BX , y
∗, ε) and x1, . . . , xn ∈ S(BX , y

∗, ε), θ1, . . . , θn ∈ T such that a convex
combination v =

∑
λkθkxk of elements θ1x1, . . . , θnxn approximates x0 up to ε. Then

|y∗(Tv)| =
∣∣∣∣y∗(y0)− y∗

(
T

(
x0

‖Tx0‖
− v
))∣∣∣∣ > 1− 4ε,

but on the other hand y∗(Tv) is a convex combination of y∗(θ1Tx1), . . . , y∗(θnTxn). So there
is an index j such that

|y∗(Txj)| = |y∗(θjTxj)| > 1− 4ε.

Now, we have

max
ω∈T
‖Id + ω T‖ > max

ω∈T

∣∣y∗
(
[Id + ω T ](xj)

)∣∣ > max
ω∈T
|y∗(xj) + ωy∗(Txj)|

= |y∗(xj)|+ |y∗(Txj)| > 2− 5ε.

Letting ε ↓ 0 we deduce that max
ω∈T
‖Id + ω T‖ = 1 + ‖T‖ and therefore, v(T ) = ‖T‖.

Some additional comments on the above properties may be in place. CL-spaces where
introduced in 1960 by R. Fullerton [35] and it was later shown that a �nite-dimensional
Banach space has numerical index 1 if and only if it is a CL-space ([89, Theorem 3.1] and [72,
Corollary 3.7]). Therefore, the above �ve properties are equivalent in the �nite-dimensional
case. All C(K) spaces as well as real L1(µ) spaces are CL-spaces, while in�nite-dimensional
complex L1(µ) spaces are only almost-CL-spaces (see [87]). Almost-CL-spaces �rst appeared
without a name in the memoir by J. Lindenstrauss [68] and were further discussed by Å. Lima
[71, 72] who showed that real Lindenstrauss spaces (i.e. isometric preduals of L1(µ)) are
CL-spaces [71, �3] and complex Lindenstrauss spaces are almost-CL-spaces [72, �3]. The
disk algebra is another classical example of an almost-CL-space [8, Theorem 32.9]. More
information can be found in [14, 77, 87, 97].

The concept of lushness was introduced recently in [13] as a geometrical property of a
Banach space which ensures that the space has numerical index 1. The concept of lushness
is proven to be a useful tool in the theory of numerical index of Banach spaces since in [13] it
helped to construct an example showing that numerical index is not inherited in general by
the dual space, a latent question in the theory from the beginning of the subject. Also, in [63]
the lushness was applied for estimating the related concept of polynomial numerical index in
some real spaces like c0 or `1.
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3.1 Examples of lush spaces

The following observation is immediate.

Remark 3.1.1. Any almost-CL-space is lush.

The name of CL-space comes from the fact that this property is shared by the real spaces
C(K) and L1(µ) [71]. In the complex case, C(K) is a CL-space while L1(µ) is an almost-CL-
space [87].

This gives us the �rst examples of lush spaces.

Example 3.1.2. The real or complex spaces C(K) and L1(µ) are lush.

The converse of Remark 3.1.1 is not true in general (see [13, Example 3.4]), but this is the
case for Banach spaces having the Radon-Nikodým property.

Proposition 3.1.3. Let X be a Banach space with the Radon-Nikodým property. Then, the
following are equivalent:

(i) X has numerical index 1,

(ii) There are a compact Hausdor� space K and a linear isometry J : X → C(K) such that
|x∗∗(J∗δs)| = 1 for all s ∈ K and x∗∗ ∈ ext(BX∗∗),

(iii) |x∗∗(x∗)| = 1 for all x∗ ∈ ext(BX∗) and x
∗∗ ∈ ext(BX∗∗),

(iv) X is an almost-CL-space,

(v) X is lush.

In the �nite-dimensional setting, Proposition 3.1.3 has an even better shape.

Proposition 3.1.4. Let X be a �nite-dimensional Banach space. Then, the following are
equivalent:

(i) X has numerical index 1,

(ii) |x∗(x)| = 1 for every x∗ ∈ ext(BX∗) and every x ∈ ext(BX),

(iii) X is a CL-space,

(iv) X is lush.

For Asplund spaces we also have a characterization of lushness. Some notation is needed.
Given a completely regular Hausdor� topological space Ω, we write Cb(Ω) to denote the
Banach space of all K-valued bounded continuous functions on Ω, endowed with the supremum
norm.
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Theorem 3.1.5. Let X be an Asplund space. Then, the following are equivalent:

(i) n(X) = 1,
(ii) There is a completely regular Hausdor� topological space Ω and an isometric embedding

J : X −→ Cb(Ω) such that |x∗∗(J∗(δs))| = 1 for every s ∈ Ω and x∗∗ ∈ ext(BX∗∗),
(iii) There is a subset A ⊂ BX∗ norming for X such that |x∗∗(a∗)| = 1 for every a∗ ∈ A and

every x∗∗ ∈ ext(BX∗∗),
(iv) For each x ∈ SX and ε > 0 there exists x∗ ∈ SX∗ such that

x ∈ S = S(BX , x
∗, ε) and BX = aconv(S),

(v) X is lush.

The equivalences above lead us to consider su�cient conditions for lushness which will be
useful.

Proposition 3.1.6. Let X be a Banach space. We consider the following assertions.

(a) There is a completely regular Hausdor� topological space Ω and an isometric embedding
J : X −→ Cb(Ω) such that |x∗∗(J∗(δs))| = 1 for every s ∈ Ω and x∗∗ ∈ ext(BX∗∗),

(b) There is a norming set A ⊂ BX∗ for X such that |x∗∗(a∗)| = 1 for every a∗ ∈ A and
every x∗∗ ∈ ext(BX∗∗),

(c) For each x ∈ SX and ε > 0 there exists x∗ ∈ SX∗ such that

x ∈ S = S(BX , x
∗, ε) and BX = aconv(S),

(d) X is lush.

Then (a)⇔ (b)⇒ (c)⇒ (d).

We are giving now two classes of spaces where the above proposition applies. The �rst
class consists of preduals of L1(µ) spaces. Indeed, it is clear that

∣∣∫ ϕf dµ
∣∣ = 1 for every

f ∈ ext(BL1(µ)) and every ϕ ∈ ext(BL∞(µ)). Now, if L1(µ) has a predual X, then the set
ext(BL1(µ)) is norming for X and condition (b) of Proposition 3.1.6 applies.

Example 3.1.7. The preduals of any L1(µ) space are lush.

Let us comment that, in the real case, preduals of L1(µ) spaces are actually CL-spaces
[71, �3].

The second class of spaces in which Proposition 3.1.6 applies is the one of nicely embedded
spaces in Cb(Ω) spaces. Following [113], a Banach space X is said to be nicely embedded in
Cb(Ω) if there exists a linear isometry J : X −→ Cb(Ω) such that for all s ∈ Ω the following
properties are satis�ed:
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(N1) ‖J∗δs‖ = 1.

(N2) span(J∗δs) is an L-summand in X∗.

It is immediate that nicely embedded spaces ful�ll condition (a) in Proposition 3.1.6, so they
are lush.

Example 3.1.8. Any Banach space which nicely embeds into a Cb(Ω) space is lush.

An important family of nicely embedded spaces is the one of function algebras [113].
A function algebra A on a compact Hausdor� space K is a closed subalgebra of the space
of complex-valued functions C(K) separating the points of K and containing the constant
functions.

Example 3.1.9. Every function algebra is lush. In particular, the disk algebra and H∞ are
lush.

Another class of lush spaces was introduced in the aforementioned paper [13], the so-called
C-rich subspaces of C(K).

De�nition 3.1.10. Let K be a compact Hausdor� space. A closed subspace X of C(K) is
said to be C-rich if for every nonempty open subset U of K and every ε > 0, there is a positive
function h of norm 1 with support inside U such that the distance from h to X is less than ε.

Example 3.1.11 ([13, Theorem 2.4]). C-rich subspaces of C(K) are lush.

Some examples and remarks about C-rich subspaces will be useful.

Remarks 3.1.12.

(a) Due to [13, Proposition 2.5], if K is a perfect compact space, then every �nite-codimen-
sional subspace of C(K) is C-rich and, in particular, lush.

(b) If one considers `∞ as C(βN), then c0 is C-rich in `∞. Indeed, this follows easily from
the fact that N is a dense subset of βN consisting of isolated points.

(c) If X ⊂ C(K) is C-rich, then every subspace Y ⊂ C(K) containing X is C-rich.

(d) In particular, every subspace of `∞ containing c0 is C-rich.

(e) Let K be an in�nite compact set and X be a Banach space such that it is C-rich in
C(K). Then, X contains an isomorphic copy of c0. Indeed, we take a sequence of
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disjoint open sets Vn ⊂ K. Since X is C-rich in C(K), for ε > 0 and n ∈ N we can �nd
fn ∈ C(K) such that

supp(fn) ⊂ Vn, fn > 0, ‖fn‖ = 1, and dist(fn, X) 6
ε

2n
.

The sequence {fn} is a c0-basic sequence in C(K), and a perturbation argument gives
us a basic sequence in X which is equivalent to {fn} and so, it spans an isomorphic
copy of c0.

3.2 Lush renormings

Our goal in this section is to prove that a separable Banach space containing an isomorphic
copy of c0 can be equivalently renormed to be lush (in particular, to have numerical index 1).
To do so, we need the following result which characterizes isomorphically the separable Banach
spaces containing c0.

Theorem 3.2.1. For a separable in�nite-dimensional Banach space X, the following condi-
tions are equivalent:

(i) X contains an isomorphic copy of c0,

(ii) X is isomorphic to a rich subspace of `∞ = C(βN),

(iii) X is isomorphic to a rich subspace of some C(K).

The following result is an evident consequence of the above theorem.

Corollary 3.2.2. Every separable Banach space containing an isomorphic copy of c0 can be
equivalently renormed to be lush.

The following is an interesting particular case.

Corollary 3.2.3. Every closed subspace of c0 can be renormed to be lush.

The construction can be stretched to get the following result.

Theorem 3.2.4. Let X be a separable Banach space containing c0. Then, there is a Banach
space Z isomorphic to X such that n(Z) = 1 and

n(Z∗) = 0 in the real case, n(Z∗) = 1/e in the complex case.
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3.3 Some reformulations of lushness

The results we are going to present are useful reformulations of lushness.

Proposition 3.3.1. Let X be a Banach space and G ⊂ SX∗ be a norming rounded subset.
Then, the following are equivalent:

(i) X is lush.

(ii)R In the real case: for every x ∈ SX , y ∈ BX and ε > 0, there exist λ1, λ2 > 0, λ1 +λ2 = 1
and x1, x2 ∈ BX such that

‖x+ x1 + x2‖ > 3− ε
and

‖y − (λ1x1 − λ2x2)‖ < ε

(ii)C In the complex case: For every x ∈ SX , y ∈ BX , n ∈ N and ε > 0, there exist
λ1, . . . , λn > 0,

∑n
k=1 λk = 1 and x1, . . . , xn ∈ BX such that

∥∥∥∥x+
n∑
k=1

xk

∥∥∥∥ > n+ 1− ε

and ∥∥∥∥y −
n∑
k=1

λk exp
(

2πik
n

)
xk

∥∥∥∥ < ε+
2π

n

(iii) For every x ∈ SX , y ∈ BX and for every ε > 0, there is x∗ ∈ G such that x ∈ S =
S(BX , x

∗, ε) and dist (y, aconv(S)) < ε.

The following is the main application of the above characterization.

Corollary 3.3.2. For a Banach space X the following two conditions are equivalent:

(i) X is lush,
(ii) Every separable subspace E ⊂ X is contained in a separable lush subspace Y such that

E ⊂ Y ⊂ X.

In the separable case, it is possible to give more characterizations of lushness which will
give some important consequences.

Theorem 3.3.3. For a separable Banach space X, the following are equivalent:

(i) X is lush.

(ii) There is a norming subset K̃ ⊂ ext(BX∗) such that BX = aconv(S(BX , x∗, ε)) for every
ε > 0 and for every x∗ ∈ K̃.
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(iii) There is a norming subset K̃ ⊂ ext(BX∗) such that for every x∗1 ∈ K̃ and for every
x∗2 ∈ SX∗ there is θ ∈ T such that ‖x∗1 + θx∗2‖ = 2.

We may get two interesting consequences in the real case.

Corollary 3.3.4. Let X be a lush real separable space. Then, there is a subset A of SX∗

norming for X such that for every a∗ ∈ A one has

BX = aconv
(
{x ∈ SX : a∗(x) = 1}

)
.

Corollary 3.3.5. Let X be a real Banach space which is lush. Then, X is neither strictly
convex nor smooth, unless it is one-dimensional.

We do not know whether the above two results are true in the complex case. We do
not know either whether there are real strictly convex Banach spaces with numerical index 1
others than R.

As a consequence of the corollary above, we get a negative answer to a problem by
M. Popov.

Corollary 3.3.6. A C-rich closed subspace of the real space C[0, 1] is neither strictly convex
nor smooth.

It is known that a subspace X of C[0, 1] is C-rich whenever C[0, 1]/X does not contain
a copy of C[0, 1] (see [56, Proposition 1.2 and De�nition 2.1]). Therefore, the following is a
particular case of the above proposition.

Corollary 3.3.7. Let X be a closed subspace of the real space C[0, 1]. If X is smooth or
strictly convex, then C[0, 1]/X contains an isomorphic copy of C[0, 1].

Finally, another interesting consequence of Theorem 3.3.3 is the following. We will improve
this result in chapter 4.

Corollary 3.3.8. Let X be an in�nite-dimensional real lush Banach space. Then X∗ ⊇ `1.

Let us �nish the section with another reformulation of lushness only valid in the real case.

Proposition 3.3.9. Let X be a real Banach space. Then, the following are equivalent:

(i) X is lush,



3.4. Lushness is not equivalent to numerical index 1 55

y z
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x+ γ1z

x+ γ2z

Figure 3.1: `2∞ is lush

(ii) for every x ∈ SX , y ∈ BX and every ε > 0, there are z ∈ SX , γ1, γ2 ∈ R with
|γ1 − γ2| = 2, such that

‖x+ z‖ > 2− ε and ‖y + γiz‖ 6 1 + ε (i = 1, 2).

See Figure 3.1 for an interpretation of this property in dimension 2. An interesting ap-
plication of the above characterization of lushness if the following characterization of C-rich
subspaces of C(K)-spaces for K perfect taken from [54, �6].

Theorem 3.3.10. Let K be a perfect compact space and let Y be a subspace of the real
space C(K). Then, Y is C-rich if and only if every subspace Z ⊂ X containing Y is lush.

3.4 Lushness is not equivalent to numerical index 1

We present an example constructed in [54] of a Banach space with numerical index 1 which
is not lush.

Consider Ω = [0, 2] equipped with the standard Lebesgue measure. Introduce a partition
Ω =

⊔∞
n=0 ∆n into subsets of positive measure with ∆0 = [0, 1]. We consider all L∞(∆n)

(in the natural way) as subspaces of L∞[0, 2]. We denote by F the subspace of L∞[1, 2],
consisting of the functions satisfying the condition

∫

∆n

f dλ = 0 (n ∈ N).
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For a �xed dense countable subset {fm : m ∈ N} ⊂ SL2[0,1], let us de�ne an operator
J : L∞[0, 1] −→ L∞[1, 2] as follows:

J(g) =
∑

m∈N

(∫

[0,1]
gfm dλ

)
1∆m

(
g ∈ L∞[0, 1]

)
.

Observe that for every g ∈ L∞[0, 1] one has

‖J(g)‖ = sup
m∈N

∣∣∣∣∣

∫

[0,1]
g fm dλ

∣∣∣∣∣ = ‖g‖L2[0,1],

so J is a weakly compact operator mapping every modulus-one function from L∞[0, 1] into a
norm-one element of L∞[1, 2]. Finally, denote

Z =
{
g + 2J(g) + f : g ∈ L∞[0, 1], f ∈ F

}
.

Theorem 3.4.1. Z is a weak∗-closed C-rich subspace of L∞[0, 2] such that for Y = ⊥Z ⊂
L1[0, 2], the quotient X = L1[0, 2]/Y is a Banach space which is not lush, but whose dual
X ∗ = Z is lush.

We now enunciate other properties of the space X constructed in the above theorem.

Remarks 3.4.2. Let X be the space constructed in Theorem 3.4.1.

(a) X has numerical index 1 but it is not lush.

(b) It was asked in [55, Problem 13] and in [13, Remark 3.5], whether for every Banach
space E with numerical index one, the subset of SE∗ given by

A(E) = {x∗ ∈ SE∗ : |x∗∗(x∗)| = 1 for every x∗∗ ∈ ext(BE∗∗)}

is norming for E. Since this condition implies lushness of E [12, Theorem 2.1], we have
that A(X ) is not norming and our space X answers in the negative the cited question.

(c) Even more, the set A(X ) is empty.

The following result gives the unique true implication between the lushness of a space and
lushness of the dual or of the bidual.

Proposition 3.4.3. Let X be a Banach space. If X∗∗ is lush, then X is lush.

3.5 Stability results for lushness

We present here some results which can be used to produce more examples of lush spaces.
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The �rst two results deal with ultrapoducts and ultrapower. Let us recall the notion of
(Banach) ultraproducts [45]. Let U be a free ultra�lter on N, and let {Xn}n∈N be a sequence
of Banach spaces. We can consider the `∞-sum of the family, [⊕n∈NXn]`∞ , together with its
closed subspace

NU =

{
{xn}n∈N ∈ [⊕n∈NXn]`∞ : lim

U
‖xn‖ = 0

}
.

The quotient space (Xn)U = [⊕n∈NXn]`∞ /NU is called the ultraproduct of the family {Xn}n∈N
relative to the ultra�lter U . Let (xn)U stand for the element of (Xn)U containing a given family
{xn} ∈ [⊕n∈NXn]`∞ . It is easy to check that

‖(xn)U‖ = lim
U
‖xn‖.

If all the Xn are equal to the same Banach space X, the ultraproduct of the family is called
the U-ultrapower of X and it is usually denoted by XU .

Proposition 3.5.1. Let {Xn}n∈N be a sequence of lush spaces and let U be a free ultra�lter
on N. Then the ultraproduct E = (Xn)U is lush.

Proposition 3.5.2. Let X be a Banach space and U be a free ultra�lter on N. Then, the
ultrapower E = (X)U is lush if and only if X is lush.

Next we would like to deal with absolute sums of Banach spaces. Let us recall that a norm
‖ · ‖a on Rn is said to be an absolute norm if

‖(a1, . . . , an)‖a = ‖(|a1|, . . . , |an|)‖a
(
a1, . . . , an ∈ R

)

and ‖(1, 0, . . . , 0)‖a = · · · = ‖(0, . . . , 0, 1)‖a = 1. If E = (Rn, ‖·‖a) is a space with an absolute
norm and X1, . . . , Xn are Banach spaces, we write X =

[
X1⊕X2⊕ . . .⊕Xn

]
E
to denote the

E-direct sum (or the E-absolute sum) of X1, . . . , Xn, that is, X = X1 ⊕ · · · ⊕ Xn endowed
with the norm

‖(x1, . . . , xn)‖ = ‖(‖x1‖, . . . , ‖xn‖)‖a
For background, we refer the reader to [8, � 21]. Easy examples of absolute norms are the
`p-norms for 1 6 p 6∞ leading to the `p-direct sums of Banach spaces.

Theorem 3.5.3. Let E = (Rn, ‖ · ‖) be a Banach space with an absolute norm. Then, the
following are equivalent.

(i) E is lush.

(ii) For every collection X1, X2, . . . , Xn of lush spaces, the E-direct sum of them is lush.

Although the above theorem only deals with �nite sums of lush spaces, one can deduce
from it the lushness of some in�nite sums.
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Corollary 3.5.4. Let {Xi : i ∈ I} be a family of lush spaces. Then the c0-, `1- and `∞-sums
of the family are also lush.

The �nal results in this section deal with vector valued continuous function spaces.

Proposition 3.5.5. Let E be a lush Banach space and K be a Hausdor� compact. Then,
the (real or complex) space C(K,E) is also lush.

The next result shows that C-rich subspaces are lush also in the vector-valued case. The
proof is valid in the real case only. We need to de�ne �rst C-rich subspaces of C(K,E) spaces.
Recall that for α ∈ C(K) and x ∈ E, α⊗ x ∈ C(K,E) denotes the function t 7−→ α(t)x.

De�nition 3.5.6. Let K be a compact space and let E be a Banach space. A subspace X
of C(K,E) is called C-rich if for every ε > 0, every x ∈ E and every open subset U of K,
there exists a nonnegative function α ∈ C(K) with ‖α‖ = 1 and supp(α) ⊂ U such that
dist(α⊗ x,X) < ε.

Proposition 3.5.7. Let E be a lush real Banach space and K be a Hausdor� compact space.
Then, every C-rich subspace X of C(K,E) is also lush.



Chapter 4
Slicely countably determined Banach spaces

A (separable) Banach space X is slicely countably determined if for every closed convex
bounded subset A of X there is a sequence of slices (Sn) such that each slice of A contains
one of the Sn. SCD-spaces form a joint generalization of spaces not containing `1 and those
having the Radon-Nikodým property. We present many examples and several properties of
this class. We give some applications to Banach spaces with the Daugavet and the alternative
Daugavet properties, lush spaces and Banach spaces with numerical index 1.

We refer to the manuscript [5] for a detailed account of all the material in this chapter.

We recall some facts about the Daugavet property, the alternative Daugavet property and
Banach spaces with numerical index 1 which will be useful to understand the motivation of
the SCD property.

A Banach spaceX has the Daugavet property if every rank-one operator T ∈ L(X) satis�es

‖Id + T‖ = 1 + ‖T‖. (DE)

In this case, all operators on X which do not �x copies of `1 (in particular, weakly compact
operators) also satisfy (DE) [107]. If every rank-one operator T ∈ L(X) satis�es the norm
equality

max
θ∈T
‖Id + θ T‖ = 1 + ‖T‖ (aDE)

(T being the set of modulus one scalars), X has the alternative Daugavet property and then
all weakly compact operators on X also satisfy (aDE). A Banach space has numerical index 1
if every T ∈ L(X) satis�es (aDE). It follows from the above discussion that�



�
	Daugavet property ==⇒

�



�
	Alternative Daugavet property ⇐==

�� ��Numerical index 1

None of the above implications reverses in general [85, Example 3.2]. For the �rst implication,
it is even known that it is not reversible under any isomorphic property [85, Corollary 3.3].
On the other hand, it is known that the second implication reverses for Asplund spaces and
for Banach spaces with the Radon-Nikodým property [73, Remark 6].
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The SCD property is su�cient to get numerical index 1 from the alternative Daugavet
property (actually provides lushness) and it is weaker than both RNP and being Asplund
(for separable spaces). Actually, this property is satis�ed by both separable strongly regular
spaces and separable Banach spaces which do not contain copies of `1. This is our main
motivation of the study of SCD spaces.

4.1 Slicely countably determined sets

Given a real or complex Banach space, we write SX for its unit sphere and BX for its closed
unit ball. The dual space of X is denoted by X∗ and L(X) is the Banach algebra of all
bounded linear operators from X to itself. A slice of a convex subset A of X is a nonempty
subset of the form

S(A, x∗, ε) = {x ∈ A : Rex∗(x) > sup Rex∗(A)− ε}

and conv(·) stands for the closed convex hull.

De�nition 4.1.1. Let X be a Banach space and let A be a convex bounded subset of X.
The set A is said to be slicely countably determined (SCD set in short) if there is a countable
family {Sn : n ∈ N} of slices of A satisfying one of the following equivalent conditions:

(i) every slice of A contains one of the Sn,

(ii) A ⊆ conv(B) for every B ⊆ A intersecting all the sets Sn,

(iii) for every sequence {xn}n∈N with xn ∈ Sn ∀n ∈ N, one has A ⊆ conv
(
{xn : n ∈ N}

)
.

Two immediate remarks are pertinent.

Remarks 4.1.2. (a) It is clear from the de�nition that every SCD set is separable.

(b) A convex bounded subset is SCD if and only if its closure is an SCD set.

The basic examples related to De�nition 4.1.1 are the following. Separable Radon-Nikodým
sets and separable Asplund sets are SCD (this is immediate from the de�nition), whereas the
unit balls of C[0, 1] and L1[0, 1] are not (this needs more e�ort) and, actually, if X is a
separable Banach space with the so-called Daugavet property [58, 59], then BX is not SCD.

With the help of a lemma by J. Bourgain [9, Lemma 5.3] (i.e. that every weakly open
subset of a bounded convex set contains a convex combination of slices), it is straightforward
to get the following reformulation of the SCD property.

Proposition 4.1.3. In the de�nition of SCD sets, we may take a family (Sn) of relatively
weakly open subsets instead of slices.
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This result is the key ingredient to be able to present two important families of SCD sets
which extend Radon-Nikodým sets and Asplund sets.

To present the �rst family we need some de�nitions. A convex combination of slices of a
convex bounded subset A of a Banach space X is a subset of A of the form

∑m
k=1 λi Si where

λi > 0,
∑m

k=1 λi = 1 and the Si's are slices of A. We recall that a closed convex bounded
subset A of a Banach space X has small combinations of slices if every slice of A contains
convex combinations of slices of A with arbitrarily small diameter. This de�nition is ful�lled
by Radon-Nikodým sets, CPCP sets and, more general, strongly regular sets. We refer to the
monograph [37] for de�nitions and background

Theorem 4.1.4. Let X be a Banach space and let A be a separable closed convex bounded
subset of X having small combinations of slices. Then, A is an SCD set.

Corollary 4.1.5. Strongly regular separable bounded convex sets (in particular CPCP sets)
are SCD.

The second family of SCD-sets is that of those convex sets which do not contain `1 se-
quences (i.e. bounded sequences equivalent to the natural basis of `1). We need the following
topological de�nition. By a π-base of a topology τ on a set T we understand a family of
nonempty τ -open subsets of T such that every nonempty τ -open subset O of T contains one
of the elements of the family. The following result is another consequence of Proposition 4.1.3.

Proposition 4.1.6. Let X be a Banach space and let A be a convex bounded subset of X.
If A has a countable π-base of the weak topology, then A is an SCD set.

To get the main consequence of the above proposition we need the following result which
needs a deep result by S. Todor£evi¢ [109, Lemma 4] together with H. Rosenthal's character-
ization of separable convex sets which do not contain copies of `1 (see [20, Theorem 3.11]).

Theorem 4.1.7. Let X be a Banach space and let A be a separable convex bounded subset
of X which contains no `1-sequences. Then, A has a countable π-base for the weak topology.

Corollary 4.1.8. Separable convex bounded subsets containing no `1-sequences are SCD.

We do not know whether every SCD set actually has a countable π-base of the weak
topology. The following result goes in this line.

Proposition 4.1.9. Let A be a bounded convex subset of a Banach space X and let W the
weak∗-closure of A in X∗∗. Then, the following statements are equivalent.
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(i) A is an SCD set.

(ii) There is a sequence {Vn : n ∈ N} of convex combinations of slices of A such that every
relatively weakly open subset of A contains some of the Vn.

(iii) W has a countable π-base for the weak∗-topology.

4.2 Slicely Countably Determined spaces

De�nition 4.2.1. A separable Banach space X is said to be slicely countably determined

(SCD space in short) if every convex bounded subset of X is an SCD set.

By just using the results of the previous section on SCD sets, we get the main examples.

Examples 4.2.2.

(a) If X is a separable strongly regular space, then X is SCD. In particular, separable
Radon-Nikodým spaces (more generally, separable CPCP spaces) are SCD.

(b) Separable spaces which do not contain copies of `1 are SCD. In particular, if X∗ is
separable, then X is SCD.

(c) Both families include re�exive separable spaces, which are then SCD spaces.

(d) C[0, 1], L1[0, 1] and, in general, Banach spaces which can be renormed with the Daugavet
property, are not SCD spaces.

Dealing with stability results for SCD spaces, we start with the following immediate
observations.

Remarks 4.2.3.

(a) Every subspace of an SCD space is SCD.

(b) For quotients the situation is di�erent. For instance, C[0, 1] is a non-SCD quotient of
the SCD space `1.

On the other hand, it is possible to show that to be an SCD space is a �three space
property�.

Theorem 4.2.4. Let X be a Banach space with a subspace Z such that Z and Y = X/Z
are SCD spaces. Then, X is also an SCD space.
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Let us state two immediate consequences of this result.

Corollary 4.2.5. Let X be a separable Banach space which is not SCD. Then, for every
`1 subspace Y1 of X, there is another `1 subspace Y2 such that Y1 and Y2 are mutually
complemented in the closed linear span of Y1 + Y2 (i.e. Y1 + Y2 = Y1 + Y2 = Y1 ⊕ Y2). In
particular, Y1 ∩ Y2 = {0}.

Corollary 4.2.6. Let X1, . . . , Xn be SCD Banach spaces. Then, X1 ⊕ · · · ⊕Xn is SCD.

We do not know whether the SCD property is stable by arbitrary in�nite unconditional
sums, but it is possible to get partial results. In particular, the following result holds true.

Proposition 4.2.7. Let {Xn : n ∈ N} be a sequence of SCD spaces. Then, the c0-sum and
`p-sum of the family (1 6 p <∞) are SCD.

An immediate consequence is the following example.

Example 4.2.8. The spaces c0(`1) and `1(c0) are SCD.

4.3 Applications to the Daugavet and the alternative Daugavet

properties

Our goal here is to present the concept of SCD-operator and to show the relation to the
Daugavet and the alternative Daugavet equations. We start with the main de�nition.

De�nition 4.3.1. Let X and Y be Banach spaces. A bounded linear operator T : X −→ Y
is said to be an SCD-operator if T (BX) is an SCD set.

By just recalling the examples of SCD sets, we get the main examples of SCD-operators.

Examples 4.3.2. Let X and Y be Banach spaces and let T : X −→ Y be a bounded linear
operator such that T (X) is separable.

(a) If T (BX) has small combinations of slices, then T is an SCD-operator.

(b) In particular, if T (BX) is a Radon-Nikodým set (i.e. if T is a strong Radon-Nikodým
operator), then T is an SCD-operator.

(c) If T (BX) does not contain `1-sequences, then T is an SCD-operator.

(d) In particular, if T does not �x copies of `1, then T is an SCD-operator.



64 Chapter 4. Slicely countably determined Banach spaces

We start with the best result we can get for the alternative Daugavet property.

Theorem 4.3.3. Let X be a Banach space with the alternative Daugavet property and let
T ∈ L(X) be an SCD-operator. Then, T satis�es (aDE).

SCD-operators have separable rank, but for some applications the separability condition
can be removed. We give two results in this line. The �rst one solves in the positive Problem 33
of [55].

Corollary 4.3.4. Let X be a Banach space with the alternative Daugavet property and let
T ∈ L(X) be an operator which does not �x copies of `1. Then, T satis�es (aDE).

Corollary 4.3.5. Let X be a Banach space with the alternative Daugavet property and let
T ∈ L(X) be an operator such that T (BX) is strongly regular. Then, T satis�es (aDE).

It is possible to show an analogous result to Theorem 4.3.3 for spaces with the Daugavet
property. Even more, some stronger results hold true in this case. We need some notation.
A bounded linear operator T : X −→ Y between two Banach spaces X and Y is said to be a
strong Daugavet operator [60, �3] if for every x, y ∈ SX and every ε > 0, there is an element
z ∈ SX such that

‖x+ z‖ > 2− ε and ‖Ty − Tz‖ < ε.

If T ∈ L(X) is a strong Daugavet operator and X has the Daugavet property, then T satis�es
Daugavet equation. On the other hand, �nite-rank operators from a space with the Daugavet
property are strong Daugavet operators.

Proposition 4.3.6. Let X be a Banach space with the Daugavet property, Y a Banach
space, and let T : X −→ Y be an SCD-operator. Then, T is a strong Daugavet operator.

Corollary 4.3.7. Let X be a Banach space with the Daugavet property. If T ∈ L(X) is an
SCD-operator, then T satis�es (DE).

It is actually possible to get a better result than Proposition 4.3.6 for a class of operators
more restrictive than the SCD-operators. We need some notation. A bounded linear operator
T : X −→ Y between two Banach spaces X and Y is said to be a narrow operator [60, �3
and �4] if for every x, y ∈ SX , every ε > 0, and every slice S of BX containing y, there is an
element z ∈ S such that

‖x+ z‖ > 2− ε and ‖Ty − Tz‖ < ε.

A narrow operator is strong Daugavet, but the converse result is not true. It is known that
strong Radon-Nikodým operators and operators which do not �x copies of `1 from a Banach
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space with the Daugavet property are narrow. It is possible to extend these results to the
hereditary-SCD-operators.

De�nition 4.3.8. Let X and Y be Banach spaces. A bounded linear operator T : X −→ Y
is said to be a hereditary-SCD-operator if every convex subset of T (BX) is an SCD set.

Theorem 4.3.9. Let X be a Banach space with the Daugavet property and T : X −→ Y be
a hereditary-SCD-operator. Then, T is narrow.

The following particular cases are especially interesting. The �rst one was proved in [60,
Theorem 4.13] with a di�erent argument.

Corollary 4.3.10. Let X be a Banach space with the Daugavet property and let T ∈ L(X)
be an operator which does not �x copies of `1. Then, T is narrow.

Corollary 4.3.11. Let X be a Banach space with the Daugavet property and let T ∈ L(X)
be an operator such that T (BX) is strongly regular. Then, T is narrow.

4.4 Applications to lush spaces and to Banach spaces with nu-

merical index 1

It follows from Theorem 4.3.3 that SCD spaces with the alternative Daugavet property have
numerical index 1. Actually, it is true that SCD spaces with the alternative Daugavet property
ful�ll lushness.

Theorem 4.4.1. Every Banach space X with the alternative Daugavet property whose unit
ball is an SCD set is lush. In particular, every SCD space with the alternative Daugavet
property is lush.

Concerning applications of this result, the separability assumption (implicit with the SCD
hypothesis) can be removed.

Corollary 4.4.2. Let X be a Banach space with the alternative Daugavet property. If X is
strongly regular (in particular, CPCP), then X is lush.

Corollary 4.4.3. Let X be a Banach space with the alternative Daugavet property. If X
does not contain `1, then X is lush.
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This latter result solves in the positive Problem 32 of [55]. On the other hand, it has been
proved in [53, Corollary 4.9] that the dual of an in�nite-dimensional real lush space contains
`1. The above corollary allows to extend the result to the alternative Daugavet property and
it is one of the main results of the chapter.

Theorem 4.4.4. let X be an in�nite-dimensional real Banach space with the alternative
Daugavet property. Then, X∗ contains `1.

In particular, we get the following corollary which answers in the positive Problem 18 of
[55].

Corollary 4.4.5. Let X be an in�nite-dimensional real Banach space with n(X) = 1. Then,
X∗ ⊇ `1.



Chapter 5
Extremely non-complex Banach spaces

5.1 Introduction

The main aim of this chapter is to give a motivated introduction to extremely non-complex
Banach spaces, and to use them to construct an example of Banach space whose group of
isometries is trivial while, the group of isometries of its dual is quite big. The content of this
chapter can be found in the papers [52, 65, 66].

Let us start by giving the main de�nition of the chapter.

De�nition 5.1.1. We say that X is extremely non-complex if the norm equality

‖Id + T 2‖ = 1 + ‖T 2‖ (sDE)

holds for every T ∈ L(X).

A good interpretation of this property is given by the so-called complex structures on real
Banach spaces. We recall that a (real) Banach space X is said to have a complex structure

if there exists T ∈ L(X) such that T 2 = −Id. This allows us to de�ne on X a structure of
vector space over C, by setting

(α+ iβ)x = αx+ βT (x)
(
α+ iβ ∈ C, x ∈ X

)
.

Moreover, by just de�ning

|||x||| = max
{
‖eiθx‖ : θ ∈ [0, 2π]

}
(x ∈ X),

one gets a complex norm on X which is equivalent to the original one. Conversely, if X is
the real space underlying a complex Banach space, then the bounded linear operator de�ned
by T (x) = i x for every x ∈ X, satis�es that T 2 = −Id. In the �nite-dimensional setting,

67
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complex structures appear if and only if the dimension of the space is even. In the in�nite-
dimensional setting, there are real Banach spaces admitting no complex structure. This is the
case of the James' space J (see [4, �3.4] for the de�nition), as it was shown by J. Dieudonné
in 1952 [19]. More examples of this kind have been constructed over the years, including
uniformly convex examples (S. Szarek 1986 [103]), the hereditary indecomposable space of
T. Gowers and B. Maurey [40] or, more generally, any space such that every operator on it is
a strictly singular perturbation of a multiple of the identity. Gowers also constructed a space
of this kind with an unconditional basis [39, 41]. We refer the reader to the very recent papers
by V. Ferenczi and E. Medina Galego [28, 29] and references therein for a discussion about
complex structures on spaces and on their hyperplanes.

Let us comment that if equation (sDE) holds for all operators on a Banach space X (i.e.
if X is extremely non-complex), then X does not have complex structure in the strongest
possible way, meaning that, for every T ∈ L(X), the distance from T 2 to −Id is the biggest
possible, namely 1 + ‖T 2‖. This observation justi�es the name of the property.

The next section explains the history leading to the appearance of (sDE) in [52] and the
question of the existence of in�nite-dimensional extremely non-complex spaces in the already
cited paper [65]. In section 5.3 we will present some examples of extremely non-complex
Banach spaces. Finally, section 5.4 is devoted to study surjective isometries on extremely
non-complex Banach spaces and to present the announced example of a Banach spaces whose
group of isometries is trivial while the group of isometries of its dual is quite big.

5.2 Norm equalities for operators

The interest in this topic goes back to 1963, when the Russian mathematician I. K. Daugavet
[25] showed that each compact operator T on C[0, 1] satis�es the norm equality

‖Id + T‖ = 1 + ‖T‖. (DE)

The above equation is nowadays referred to as Daugavet equation. Few years later, this result
was extended to various classes of operators on some Banach spaces, including weakly compact
operators on C(K) for perfect K and on L1(µ) for atomless µ (see [112] for an elementary
approach). A new wave of interest in this topic surfaced in the eighties, when the Daugavet
equation was studied by many authors in various contexts. Let us cite, for instance, that a
compact operator T on a uniformly convex Banach space (in particular, on a Hilbert space)
satis�es (DE) only if the norm of T is an eigenvalue [2].

In the late nineties, new ideas were infused into this �eld and, instead of looking for new
spaces and new classes of operators on them for which (DE) is valid, the geometry of Banach
spaces having the so-called Daugavet property was studied. Following [58, 59], we say that
a Banach space X has the Daugavet property if every rank-one operator T ∈ L(X) satis�es
(DE) (we write L(X) for the Banach algebra of all bounded linear operators on X). In such
a case, every operator on X not �xing a copy of `1 also satis�es (DE) [107]; in particular,
this happens to every compact or weakly compact operator on X [59]. There are several
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characterizations of the Daugavet property which do not involve operators (see [59, 114]). For
instance, a Banach space X has the Daugavet property if and only if for every x ∈ SX and
every ε > 0 the closed convex hull of the set

BX \
(
x+ (2− ε)BX

)

coincides with the whole BX (see Figure 2.2 in page 40). Let us observe that the above
characterization shows that the Daugavet property is somehow extremely opposite to the
Radon-Nikodým property.

Although the Daugavet property is clearly of isometric nature, it induces various isomor-
phic restrictions. For instance, a Banach space with the Daugavet property does not have the
Radon-Nikodým property [115] (actually, every slice of the unit ball has diameter 2 [59]), it
contains `1 [59], it does not have unconditional basis [50] and, moreover, it does not isomor-
phically embed into an unconditional sum of Banach spaces without a copy of `1 [107]. It is
worthwhile to remark that the latter result continues a line of generalization ([49], [57], [59])
of the known theorem of A. Peªczy«ski [94] from 1961 saying that L1[0, 1] (and so C[0, 1])
does not embed into a space with unconditional basis.

In view of the deep consequences that the Daugavet property has on the geometry of a
Banach space, one may wonder whether it is possible to de�ne other interesting properties by
requiring all rank-one operators on a Banach space to satisfy a suitable norm equality. This
was the aim of [52] and it is what we are going to explain in this section.

Let us give some remarks on the question which will also serve to present the outline of
our further discussion. First, the Daugavet property clearly implies that the norm of Id + T
only depends on the norm of T . Then, a possible generalization of the Daugavet property is
to require that every rank-one operator T on a Banach space X satis�es a norm equality of
the form

‖Id + T‖ = f(‖T‖)
for a �xed function f : R+

0 −→ R. It is easy to show that the only property which can be
de�ned in this way is the Daugavet property.

Proposition 5.2.1. Let f : R+
0 −→ R+

0 be an arbitrary function. Suppose that there exist
a, b ∈ K and a non-null Banach space X over K such that the norm equality

‖aId + b T‖ = f(‖T‖)

holds for every rank-one operator T ∈ L(X). Then, f(t) = |a| + |b| t for every t ∈ R+
0 . In

particular, if a 6= 0 and b 6= 0, then X has the Daugavet property.

Therefore, we should look for equations in which Id +T is replaced by another function of
T , i.e. we �x functions g and f and we require that every rank-one operator T on a Banach
space X satis�es the norm equality

‖g(T )‖ = f(‖T‖).
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We need g to carry operators to operators and to apply to arbitrary rank-one operators, so it
is natural to impose g to be a power series with in�nite radius of convergence, i.e. an entire
function (when K = C this is the usual de�nition; when K = R, g is the restriction to R of
a complex entire function which carries the real line into itself). Again, the only non trivial
possibility is the Daugavet property, as we will show in subsection 5.2.1. Subsection 5.2.2 is
devoted to the last kind of equations we would like to study. Concretely, we consider an entire
function g, a continuous function f , and a Banach space X, and we require each rank-one
operator T ∈ L(X) to satisfy the norm equality

‖Id + g(T )‖ = f(‖g(T )‖). (5.1)

If X is a Banach space with the Daugavet property and g is an entire function, then it is easy
to see that the norm equality

‖Id + g(T )‖ = |1 + g(0)| − |g(0)|+ ‖g(T )‖

holds for every rank-one T ∈ L(X). Therefore, contrary to the previous cases, our aim here is
not to show that only few functions g are possible in (5.1), but to prove that many functions g
produce the same property. Unfortunately, we have to separate the complex case and the real
case, and only in the �rst one we are able to give fully satisfactory results. More concretely,
we consider a complex Banach space X, an entire function g and a continuous function f ,
such that (5.1) holds for every rank-one operator T ∈ L(X). If Re g(0) 6= −1/2, then X
has the Daugavet property. Surprisingly, the result is not true when Re g(0) = −1/2 and
another family of properties strictly weaker than the Daugavet property appears: there exists
a modulus one complex number ω such that the norm equality

‖Id + ω T‖ = ‖Id + T‖ (5.2)

holds for every rank-one T ∈ L(X). In the real case, the discussion above depends upon the
surjectivity of g, and there are many open questions when g is not onto.

5.2.1 Norm equalities of the form ‖g(T )‖ = f(‖T‖)

We would like to study now norm equalities for operators of the form

‖g(T )‖ = f(‖T‖), (5.3)

where f : R+
0 −→ R+

0 is an arbitrary function and g : K −→ K is an entire function.

Our goal is to show that the Daugavet property is the only non-trivial property that it is
possible to de�ne by requiring all rank-one operators on a Banach space of dimension greater
than one to satisfy a norm equality of the form (5.3). We start by showing that g has to
be a polynomial of degree less or equal than one, and then we will deduce the result from
Proposition 5.2.1.
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Theorem 5.2.2. Let g : K −→ K be an entire function and f : R+
0 −→ R+

0 an arbitrary
function. Suppose that there is a Banach space X over K with dim(X) > 2 such that the
norm equality

‖g(T )‖ = f(‖T‖)
holds for every rank-one operator T on X. Then, there are a, b ∈ K such that

g(ζ) = a+ bζ
(
ζ ∈ K

)
.

We summarize the information given in Proposition 5.2.1 and Theorem 5.2.2.

Corollary 5.2.3. Let f : R+
0 −→ R+

0 be an arbitrary function and g : K −→ K an entire
function. Suppose that there is a Banach space X over K with dim(X) > 2 such that the
norm equality

‖g(T )‖ = f(‖T‖)
holds for every rank-one operator T on X. Then, only three possibilities may happen:

(a) g is a constant function (trivial case).

(b) There is a non-null b ∈ K such that g(ζ) = b ζ for every ζ ∈ K (trivial case).

(c) There are non-null a, b ∈ K such that g(ζ) = a + b ζ for every ζ ∈ K, and X has the
Daugavet property.

5.2.2 Norm equalities of the form ‖Id + g(T )‖ = f(‖g(T )‖)

Let X be a Banach space over K. Our next aim is to study norm equalities of the form

‖Id + g(T )‖ = f(‖g(T )‖) (5.4)

where g : K −→ K is entire and f : R+
0 −→ R+

0 is continuous.

When X has the Daugavet property, it is clear that equality (5.4) holds for every rank-one
operator if we take g(ζ) = ζ and f(t) = 1 + t. But, actually, every entire function g works
with a suitable f .

Remark 5.2.4. If X is a real or complex Banach space with the Daugavet property and
g : K −→ K is an entire function, the norm equality

‖Id + g(T )‖ = |1 + g(0)| − |g(0)|+ ‖g(T )‖

holds for every weakly compact operator T ∈ L(X).

With the above result in mind, it is clear that the aim here cannot be to show that only
few g's are possible in (5.4), but it is to show that many g's produce only few properties.
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Previous to formulate our results, let us discuss the case when the Banach space we consider
is one-dimensional.

Remark 5.2.5.

(a) Complex case: It is not possible to �nd a non-constant entire function g and an
arbitrary function f : R+

0 −→ R such that the equality

|1 + g(ζ)| = f(|g(ζ)|)

holds for every ζ ∈ C ≡ L(C).

(b) Real case: The equality
|1 + t2| = 1 + |t2|

holds for every t ∈ R ≡ L(R).

It follows that real and complex spaces do not behave in the same way with respect to
equalities of the form given in (5.4). Therefore, from now on we study separately the complex
and the real cases. Let us also remark that when a Banach space X has dimension greater
than one, it is clear that

‖g(T )‖ > |g(0)|
for every entire function g : K −→ K and every rank-one operator T ∈ L(X). Therefore, the
function f in (5.4) has to be de�ned only in the interval [|g(0)|,+∞[.

• Complex case:

Our key lemma here states that the function g in (5.4) can be replaced by a degree one
polynomial.

Lemma 5.2.6. Let g : C −→ C be a non-constant entire function, let f : [|g(0)|,+∞[−→ R
be a continuous function and let X be a Banach space with dimension greater than one.
Suppose that the norm equality

‖Id + g(T )‖ = f(‖g(T )‖)

holds for every rank-one operator T ∈ L(X). Then,

∥∥(1 + g(0)
)

Id + T
∥∥ = |1 + g(0)| − |g(0)|+ ‖g(0) Id + T‖

for every rank-one operator T ∈ L(X).

In view of the norm equality appearing in the above lemma, two di�erent cases arise: either
|1 + g(0)| 6= |g(0)| or |1 + g(0)| = |g(0)|; equivalently, Re g(0) 6= −1/2 or Re g(0) = −1/2. In
the �rst case, we get the Daugavet property.
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Theorem 5.2.7. Let X be a complex Banach space with dim(X) > 2. Suppose that there
exist a non-constant entire function g : C −→ C with Re g(0) 6= −1

2 and a continuous function
f :
[
|g(0)|,+∞

[
−→ R+

0 , such that the norm equality

‖Id + g(T )‖ = f(‖g(T )‖)

holds for every rank-one operator T ∈ L(X). Then, X has the Daugavet property.

When Re g(0) = −1
2 , another family of properties apart from the Daugavet property

appears.

Theorem 5.2.8. Let X be a complex Banach space with dim(X) > 2. Suppose that there
exist a non-constant entire function g : C −→ C with Re g(0) = −1

2 and a continuous function
f :
[
|g(0)|,+∞

[
−→ R+

0 , such that the norm equality

‖Id + g(T )‖ = f(‖g(T )‖)

holds for every rank-one operator T ∈ L(X). Then, there is ω ∈ T \ {1} such that

‖Id + ωT‖ = ‖Id + T‖

for every rank-one operator T ∈ L(X). Moreover, two possibilities may happen:

(a) If ωn 6= 1 for every n ∈ N, then

‖Id + ξ T‖ = ‖Id + T‖

for every rank-one operator T ∈ L(X) and every ξ ∈ T.

(b) Otherwise, if we take the minimum n ∈ N such that ωn = 1, then

‖Id + ξ T‖ = ‖Id + T‖

for every rank-one operator T ∈ L(X) and every nth-root ξ of unity.

The next example shows that the properties appearing in Theorem 5.2.8 are strictly weaker
than the Daugavet property.

Example 5.2.9. The real or complex Banach space X = C[0, 1]⊕2 C[0, 1] does not have the
Daugavet property. However, the norm equality

‖Id + ω T‖ = ‖Id + T‖

holds for every rank-one operator T ∈ L(X) and every ω ∈ T.
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• Real case:
The situation in the real case is far away from being so clear. On the one hand, the proof

of Lemma 5.2.6 remains valid if the function g is surjective and then, the proofs of Theorems
5.2.7 and 5.2.8 are valid. In addition, Example 5.2.9 was also stated for the real case. The
following result summarizes all these facts.

Theorem 5.2.10. Let X be a real Banach space with dimension greater or equal than two.
Suppose that there exists a surjective entire function g : R −→ R and a continuous function
f :
[
|g(0)|,+∞

[
−→ R+

0 , such that the norm equality

‖Id + g(T )‖ = f(‖g(T )‖)

holds for every rank-one operator T ∈ L(X).

(a) If g(0) 6= −1/2, then X has the Daugavet property.

(b) If g(0) = −1/2, then the norm equality

‖Id− T‖ = ‖Id + T‖

holds for every rank-one operator T ∈ L(X).

(c) The real space X = C[0, 1]⊕2C[0, 1] does not have the Daugavet property but the norm
equality

‖Id− T‖ = ‖Id + T‖
holds for every rank-one operator T ∈ L(X).

On the other hand, we do not know if a result similar to the above theorem is true when
the function g is not onto. Let us give some remarks about an easy case:

g(t) = t2 (t ∈ R).

It is easy to see that if the norm equality

‖Id + T 2‖ = f(‖T 2‖)

holds for every rank-one operator, then f(t) = 1 + t and, therefore, the interesting norm
equality in this case is

‖Id + T 2‖ = 1 + ‖T 2‖. (5.5)

This equation is satis�ed by every rank-one operator T on a Banach space X with the Dau-
gavet property. Let us also recall that the equality

|1 + t2| = 1 + |t2|

holds for every t ∈ L(R) ≡ R.
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During an informal discussion on these topics in May 2005, Gilles Godefroy asked Miguel
Martín and Javier Merí about the possibility of �nding Banach spaces (of dimension greater
than 1) for which every operator T satis�es

‖Id + T 2‖ = 1 + ‖T 2‖

(i.e. �nding extremely non-complex Banach spaces of dimension greater than one). Let us
comment that, if a Banach space X is extremely non complex, then it cannot contain a
complemented subspace with complex structure (such as a square) and with summand α-
complemented with α < 2. This can be seen by applying (sDE) to the operator T ∈ L(X)
de�ned by Tx = 0 on the summand, and by Tx = Jx with square of J equal to −Id on the
complemented subspace with complex structure. These comments make clear that it is not
possible to �nd such a example among the �classical� Banach spaces.

5.3 Extremely non-complex Banach spaces

The (successful) approach to Godefroy's question in [65] was to consider C(K) spaces with few
operators in the sense introduced by P. Koszmider in [64]. Let us give two needed de�nitions.

De�nition 5.3.1. Let K be a compact space and T ∈ L(C(K)). We say that T is a weak
multiplier if T ∗ = gId + S where g : K −→ R is a function which is integrable with respect
to all Radon measures on K and S ∈ W

(
C(K)∗

)
. If one actually has T = gId + S with

g ∈ C(K) and S ∈W
(
C(K)

)
, we say that T is a weak multiplication.

In the literature, as far as now, there are several nonisomorphic types of C(K) spaces
with few operators in the above sense (in ZFC): (1) of [64] for K totally disconnected such
that C(K) is a subspace of `∞ and all operators on C(K) are weak multipliers; (2) of [64]
for K such that K \ F is connected for every �nite F ⊆ K, such that C(K) is a subspace
of `∞ and all operators on C(K) are weak multipliers; these C(K)s, as shown in [64], are
indecomposable Banach spaces, hence they are nonisomorphic to spaces of type (1); (3) of [96]
for connected K such that all operators on C(K) are weak multiplications; these spaces are
not subspaces of `∞ and hence are nonisomorphic to spaces of type (1) nor (2) (It is still not
known if such spaces can be subspaces of `∞ without any special set-theoretic hypotheses; in
[64] it is shown that the continuum hypothesis is su�cient to obtain such spaces).

The aim here is to present some examples of extremely non-complex Banach spaces of
type C(K). The �rst possibility (easier to prove) is given by the family of C(K) spaces for
which every operator is a weak multiplication. In this case, it is easy to give a detailed proof,
starting with the following lemma.

Lemma 5.3.2. Let K be a perfect compact space. If an operator T ∈ L(C(K)) has the form
T = gId + S where g ∈ C(K) is non-negative and S is weakly compact, then T satis�es the
Daugavet equation.
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We recall here the (already exposed) facts we need in the proof of this lemma.

Remarks 5.3.3.

(a) For every compact space K and every T ∈ L(C(K)), one has

max{‖Id + T‖, ‖Id− T‖} = 1 + ‖T‖.

(b) If K is a perfect compact space, then

‖Id + S‖ = 1 + ‖S‖

for every S ∈W (C(K)).

Proof of Lema 5.3.2. Since the set of those operators on C(K) satisfying (DE) is closed and
stable by multiplication by positive scalars, we may suppose that min

t∈K
g(t) > 0 and ‖g‖ 6 1.

Now, by using Remark 5.3.3.a we have that

max {‖Id + g Id + S‖, ‖Id− (g Id + S)‖} = 1 + ‖g Id + S‖.

So, we will be done by just proving that

‖Id− (g Id + S)‖ < 1 + ‖g Id + S‖.

On the one hand, it is easy to check that

‖Id− (g Id + S)‖ 6 ‖Id− g Id‖+ ‖S‖ = 1−min
t∈K

g(t) + ‖S‖.

On the other hand, we observe that

‖g Id + S‖ = ‖Id + S + (g Id− Id)‖ > ‖Id + S‖ − ‖g Id− Id‖

= 1 + ‖S‖ −
(

1−min
t∈K

g(t)

)
= ‖S‖+ min

t∈K
g(t)

where we used Remark 5.3.3.b. Since min
t∈K

g(t) > 0, it is clear that

‖Id− (g Id + S)‖ < 1 + ‖g Id + S‖.

Suppose now that all the operators on a C(K) space are weak multiplications and K is
perfect. Then, for every T ∈ L(C(K)) one has T 2 = gId +S where g ∈ C(K) is non-negative
and S is weakly compact. The above lemma then yields the following result.

Theorem 5.3.4. Let K be a perfect compact space such that every operator on C(K) is a
weak multiplication. Then, C(K) is extremely non-complex.



5.3. Extremely non-complex Banach spaces 77

As we commented above, there are (even in ZFC) perfect compact spaces whose opera-
tors are weak multiplications [96]. Therefore, the above result really gives the existence of
extremely non-complex in�nite-dimensional Banach spaces.

Corollary 5.3.5. There exist in�nite-dimensional extremely non-complex Banach spaces.

For the next examples of extremely non-complex Banach spaces we are not going to give
a proof. We refer to [65, 66] for a detailed account.

We start with the analogous result to Lemma 5.3.2 for weak multipliers. In this case, the
proof is not that easy.

Theorem 5.3.6. Let K be a perfect compact space and T ∈ L
(
C(K)

)
an operator such that

T ∗ = gId +S where S ∈W
(
M(K)

)
and g is a non-negative Borel function. Then, T satis�es

the Daugavet equation.

As a consequence, we obtain new examples.

Theorem 5.3.7. Let K be a perfect compact space so that every operator on C(K) is a
weak multiplier. Then, C(K) is extremely non-complex.

As we said at the beginning of the subsection, there are in�nitely many nonisomorphic
spaces C(K) on which every operator is a weak multiplier, providing in�nitely many noniso-
morphic extremely non-complex Banach spaces.

Corollary 5.3.8. There exist in�nitely many nonisomorphic in�nite-dimensional extremely
non-complex Banach spaces.

We may get further examples of C(K) spaces which are extremely non-complex.

Theorem 5.3.9. There is a compact space K1 so that C(K1) is extremely non-complex and
contains a complemented isomorphic copy of C(2ω).

Theorem 5.3.10. There is a compact space K2 so that C(K2) is extremely non-complex
and contains an isometric (1-complemented) copy of `∞.

None of the two spaces C(K1) and C(K2) above satis�es that every operator on it is a
weak multiplier.

The next family of examples are subspaces of C(K) spaces. We recall some notation and
results we gave in chapter 1.
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Let K be a (Hausdor�) compact (topological) space and let L ⊆ K be a nowhere dense
closed subset. Given a closed subspace E of C(L), we will consider the subspace of C(K)
given by

CE(K‖L) = {f ∈ C(K) : f |L ∈ E}.

Proposition 5.3.11. Let K be a compact space, let L ⊆ K be a nowhere dense closed subset
and let E be a Banach space viewed as a closed subspace of C(L). Then,

CE(K‖L)∗ ≡ C0(K‖L)∗ ⊕1 C0(K‖L)⊥ ≡ C0(K‖L)∗ ⊕1 E
∗.

The next example gives a new family of extremely non-complex Banach spaces which are
not of the form C(K).

Theorem 5.3.12. Let K be a perfect compact space such that all operators on C(K) are
weak multipliers, let L ⊆ K be closed and nowhere dense, and E a closed subspace of C(L).
Then, CE(K‖L) is extremely non-complex.

When E = 0, we get a su�cient condition to get that a space of the form C0(K \ L) is
extremely non-complex.

Corollary 5.3.13. Let K be a compact space such that all operators on C(K) are weak
multipliers. Suppose L ⊆ K is closed and nowhere dense. Then, C0(K \ L) is extremely
non-complex.

Some consequences are given in the next collection of examples.

Examples 5.3.14.

(a) For every separable Banach space E, there is an extremely non-complex Banach space
CE(K‖L) such that E∗ is an L-summand in CE(K‖L)∗.

(b) If E is in�nite-dimensional and re�exive, then such CE(K‖L) is not isomorphic to any
C(K ′) space.

(c) Therefore, there are extremely non-complex Banach spaces which are not isomorphic to
C(K) spaces.

5.4 Isometries on extremely non-complex Banach spaces

The following result shows that the group of isometries of an extremely non complex Banach
space is a discrete Boolean group.
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Theorem 5.4.1. Let X be an extremely non-complex Banach space. Then

(a) If T ∈ Iso(X), then T 2 = Id.

(b) As a consequence, for every T1, T2 ∈ Iso(X), T1T2 = T2T1.

(c) For every T1, T2 ∈ Iso(X), ‖T1 − T2‖ ∈ {0, 2}.

Proof. (a). Given T ∈ Iso(X), we de�ne the operator S = 1√
2

(
T − T−1

)
and we observe that

S2 = 1
2 T

2 − Id + 1
2 T
−2. Since X is extremely non-complex, we get

1 + ‖S2‖ = ‖Id + S2‖ =

∥∥∥∥
1

2
T 2 +

1

2
T−2

∥∥∥∥ 6 1

and, therefore, S2 = 0. This gives us that Id = 1
2T

2 + 1
2T
−2. Finally, since Id is an extreme

point of L(X) (see [102, Proposition 1.6.6], for instance) and ‖T 2‖ 6 1, ‖T−2‖ 6 1, we get
T 2 = Id.

(b). Commutativity comes routinely from the �rst part since T1T2 ∈ Iso(X), so

Id =
(
T1T2

)2
= T1T2T1T2

which �nishes the proof by just multiplying by T1 from the left and by T2 from the right.

(c). We start observing that ‖Id− T‖ ∈ {0, 2} for every T ∈ Iso(X). Indeed, from (a) we
have (

Id− T
)2

= Id + Id− 2T = 2(Id− T ),

which gives us that
2‖Id− T‖ =

∥∥(Id− T )2
∥∥ 6 ‖Id− T‖2.

Therefore, we get either ‖Id − T‖ = 0 or ‖Id − T‖ > 2. Now, if T1, T2 ∈ Iso(X) we observe
that

‖T1 − T2‖ = ‖T1(Id− T1T2)‖ = ‖Id− T1T2‖ ∈ {0, 2}.

Let us recall that a one-parameter semigroup of surjective isometries on a Banach space
Z is a function Φ : R+

0 −→ Iso(Z) such that Φ(t + s) = Φ(t)Φ(s) for every s, t ∈ R+
0 . Φ

is uniformly continuous when it is continuous by doting Iso(Z) with the relative topology
induced by the norm topology of L(Z) and Φ is strongly continuous when for every x ∈ X,
the mapping s 7−→ [Φ(s)](x) from R+

0 to X is continuous (equivalently, Φ is continuous when
doting L(X) with the strong operator topology). Strongly continuous semigroups of operators
are specially interesting for their application to the study of dynamical systems. We refer the
reader to the books [26, 27] for background on one-parameter semigroups of operators and to
the monographs [31, 32] for more information on isometries on Banach spaces.

As an immediate consequence of Theorem 5.4.1 we obtain the following result. Let us
observe that there is no topological consideration on the semigroup.
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Corollary 5.4.2. If X is an extremely non-complex Banach space and Φ : R+
0 −→ Iso(X) is

a one-parameter semigroup, then Φ(R+
0 ) = {Id}.

Proof. Just observe that Φ(t) = Φ(t/2 + t/2) = Φ(t/2)2 = Id for every t ∈ R+
0 .

5.4.1 Isometries on CE(K‖L)-spaces

Here we particularize the above results to CE(K‖L) spaces which are extremely non-complex.

Theorem 5.4.3. Suppose that the space CE(K‖L) is extremely non-complex. Then, for
every T ∈ Iso

(
CE(K‖L)

)
there is a continuous function θ : K \ L −→ {−1, 1} such that

[T (f)](x) = θ(x)f(x)

for all x ∈ K \ L and f ∈ CE(K‖L).

We are now able to completely describe the set of surjective isometries in some special
cases.

Corollary 5.4.4. Suppose E is a subspace of C(L) such that CE(K‖L) is extremely non-
complex and for every x ∈ L, there is f ∈ E such that f(x) 6= 0. If T ∈ Iso

(
CE(K‖L)

)
, then

there is a continuous function θ : K −→ {−1, 1} such that T (f) = θ f for all f ∈ CE(K‖L).

By just taking E = C(L) in the above result, we get a description of all surjective isome-
tries on an extremely non-complex C(K) space. One direction is the above corollary, the
converse result is just a consequence of the classical Banach-Stone theorem (see [31, Theo-
rem 2.1.1], for instance).

Corollary 5.4.5. Let K be a perfect Hausdor� space such that C(K) is extremely non-
complex. If T ∈ Iso

(
C(K)

)
, then there is a continuous function θ : K −→ {−1, 1} such that

T (f) = θ f for every f ∈ C(K). Conversely, for every continuous function θ′ : K −→ {−1, 1},
the operator given by T (f) = θ′ f for every f ∈ C(K) is a surjective isometry. In other words,
Iso
(
C(K)

)
is isomorphic to the Boolean algebra of clopen subsets of K.

It follows from the above result and the Banach-Stone theorem on the representation of
surjective isometries on C(K) (see [31, Theorem 1.2.2] for instance) that the only homeomor-
phism of K is the identity.

Corollary 5.4.6. Let K be a perfect Hausdor� space such that C(K) is extremely non-
complex. Then, the unique homeomorphism from K onto K is the identity.
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In the opposite extreme case, when E = 0, the hypothesis of Corollary 5.4.4 are not
satis�ed, but we obtain a description of the surjective isometries of the spaces C0(K‖L) ≡
C0(K \ L) directly from Theorem 5.4.3. Again, the converse result comes from the Banach-
Stone theorem (see [31, Corollary 2.3.12] for instance).

Corollary 5.4.7. Let K be a compact Hausdor� space, L ⊂ K closed nowhere dense, and
suppose that C0(K \ L) is extremely non-complex. If T ∈ Iso

(
C0(K \ L)

)
, then there is a

continuous function θ : K \ L −→ {−1, 1} such that T (f) = θ f for every f ∈ C0(K \ L).
Conversely, for every continuous function θ′ : K \ L −→ {−1, 1}, the operator

[
T (f)

]
(x) = θ′(x) f(x)

(
x ∈ K \ L, f ∈ C0(K \ L)

)

is a surjective isometry. In other words, Iso
(
C0(K \L)

)
is isomorphic to the Boolean algebra

of clopen subsets of K \ L.

In a very special case, Theorem 5.4.3 get a very nice consequence.

Corollary 5.4.8. Let K be a connected compact space such that K \ L is also connected.
Suppose that CE(K‖L) is extremely non-complex. Then, Iso

(
CE(K‖L)

)
= {Id,−Id}.

Our next goal is to construct a compact space K and a nowhere dense subset L ⊆ K
with very special properties which will allow us to provide the main example on surjective
isometries and duality. The construction in the next theorem is a modi�cation of the compact
space constructed in [64, �5].

Theorem 5.4.9. There exist a compact space K and a closed nowhere dense subset L ⊆ K
with the following properties:

(a) K and K \ L are connected.

(b) There is a continuous mapping φ from L onto the Cantor set. Therefore, C(L) contains
every separable Banach space as a subspace.

(c) Every operator on C(K) is a weak multiplier.

5.4.2 Isometries and duality

We are now able to improve the example of section 1.4 in the strongest possible way.

Theorem 5.4.10. For every separable Banach space E, there is a Banach space X̃(E) such
that Iso

(
X̃(E)

)
= {Id,−Id} and X̃(E)∗ = E∗ ⊕1 Z for a suitable space Z. In particular,

Iso
(
X̃(E)∗

)
contains Iso(E∗) as a subgroup.



82 Chapter 5. Extremely non-complex Banach spaces

The case E = `2 gives the following specially interesting example.

Example 5.4.11. There is a Banach space X̃(`2) such that Iso
(
X̃(`2)

)
= {Id,−Id} but

Iso
(
X̃(`2)∗

)
contains Iso(`2) as a subgroup. Therefore, Iso

(
X̃(`2)

)
is trivial, while Iso

(
X̃(`2)∗

)

contains in�nitely many uniformly continuous one-parameter semigroups of surjective isome-
tries.

Let us comment that in section 1.4 we gave an example of a Banach space X(`2) =
C`2([0, 1]‖∆) such that Iso

(
X(`2)

)
does not contain any uniformly continuous one-parameter

semigroup of surjective isometries, while Iso
(
X(`2)∗

)
contains in�nitely many of them. This

example is much easier to construct than the one we are giving in this section but, on the
other hand, in X(`2) there are strongly continuous one-parameter semigroups of surjective
isometries.

Let us �nish the section by commenting that examples of Banach spaces with trivial
group of surjective isometries have been given in the literature. For instance, A. Peªczy«ski
constructed one example which is a space of continuous functions on a certain topological space
admitting only trivial homeomorphisms. Other spaces with only trivial surjective isometries
are the James' space for some equivalent norms and Tsirelson's space. Even more, W. Davis
showed that there are Banach spaces in which the only isometries (surjective or not) are
±Id. Let us also comment that K. Jarosz has proved that every real Banach space can be
equivalently renormed to have only ±Id as surjective isometries. We refer the reader to [32,
�12] for a detailed account of all of this.



Chapter 6
Detailed proofs of some results

6.1 Lp(µ)-spaces

We present here the proof given in [83] of the fact that the numerical index of Lp(µ) is positive
for every p 6= 2.

Let (Ω,Σ, µ) be any �nite measure space and 1 < p <∞. We write Lp(µ) for the real or
complex Banach space of measurable scalar functions x de�ned on Ω such that

‖x‖p :=

(∫

Ω
|x|p dµ

) 1
p

<∞.

We use the notation `mp for the m-dimensional Lp-space. For A ∈ Σ, χA denotes the char-
acteristic function of the set A. We write q = p/(p − 1) for the conjugate exponent to p
and

Mp := max
t∈[0,1]

|tp−1 − t|
1 + tp

= max
t>1

|tp−1 − t|
1 + tp

,

(which is the numerical radius of the operator T (x, y) = (−y, x) de�ned on the real space `2p,
see [82, Lemma 2] for instance).

The problem of computing the numerical index of the Lp-spaces was posed for the �rst
time in the seminal paper [21, p. 488]. There it is proved that

{
n(`2p) : 1 < p <∞

}
= [0, 1[

in the real case, even though the exact computation of n(`2p) is not achieved for p 6= 2 (even
now!). Recently, some results have been obtained on the numerical index of the Lp-spaces
[22, 23, 24, 82, 86].

(a) The sequence
(
n(`mp )

)
m∈N is decreasing.

(b) n
(
Lp(µ)

)
= inf{n(`mp ) : m ∈ N} for every measure µ such that dim

(
Lp(µ)

)
=∞.

(c) In the real case, max

{
1

21/p
,

1

21/q

}
Mp 6 n(`2p) 6Mp.

83
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(d) In the real case, n(`mp ) > 0 for p 6= 2 and m ∈ N.

The aim of this section is to give a lower estimation for the numerical index of the real

Lp-spaces. Concretely, it is proved that

n
(
Lp(µ)

)
>
Mp

8e
. (6.1)

As Mp > 0 for p 6= 2, this extends item (d) for in�nite-dimensional real Lp-spaces, meaning
that the numerical radius and the operator norm are equivalent on L

(
Lp(µ)

)
for every p 6= 2

and every positive measure µ. This answers in the positive a question raised by C. Finet and
D. Li (see [23, 24]) also posed in [55, Problem 1].

The key idea to get this result is to de�ne a new seminorm on L
(
Lp(µ)

)
which is in

between the numerical radius and the operator norm, and to get constants of equivalence
between these three seminorms. Let us give the corresponding de�nitions.

For any x ∈ Lp(µ), we denote

x# =

{
|x|p−1 sign(x) in the real case,

|x|p−1 sign(x) in the complex case,

which is the unique element in Lq(µ) such that

‖x‖pp = ‖x#‖qq and
∫

Ω
xx# dµ = ‖x‖p ‖x#‖q = ‖x‖pp.

With this notation, for T ∈ L
(
Lp(µ)

)
one has

v(T ) = sup

{∣∣∣
∫

Ω
x#Tx dµ

∣∣∣ : x ∈ Lp(µ), ‖x‖p = 1

}
.

Here is our new de�nition. Given an operator T ∈ L
(
Lp(µ)

)
, the absolute numerical radius

of T is given by

|v|(T ) := sup

{∫

Ω
|x#Tx| dµ : x ∈ Lp(µ), ‖x‖p = 1

}

= sup

{∫

Ω
|x|p−1|Tx| dµ : x ∈ Lp(µ), ‖x‖p = 1

}

Obviously,
v(T ) 6 |v|(T ) 6 ‖T‖

(
T ∈ L

(
Lp(µ)

) )
.

Given an operator T on the real space Lp(µ), we will show that

v(T ) >
Mp

4
|v|(T ) and |v|(T ) >

n
(
LC
p (µ)

)

2
‖T‖ ,
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where n
(
LC
p (µ)

)
is the numerical index of the complex space Lp(µ). Since n

(
LC
p (µ)

)
> 1/e

(as for any complex space, see [7, Theorem 4.1]), the above two inequalities together give, in
particular, the inequality (6.1).

We start proving that the numerical radius is bounded from below by some multiple of
the absolute numerical radius.

Theorem 6.1.1. Let 1 < p <∞ and let µ be a �nite positive meassure. Then, every bounded
linear operator T on the real space Lp(µ) satis�es

v(T ) >
Mp

4
|v|(T ),

where Mp = max
t>1

|tp−1 − t|
1 + tp

.

Proof. Since |v| is a seminorm, we may and do assume that ‖T‖ = 1. Suppose that |v|(T ) > 0
(otherwise there is nothing to prove), �x any 0 < ε < |v|(T ) and choose x ∈ Lp(µ) with
‖x‖ = 1 such that ∫

Ω
|x#Tx| dµ > |v|(T )− ε def= 2β0 > 0.

Now, set A = {t ∈ Ω : x#(t)[Tx](t) > 0} and B = Ω \A. Then
∫

A
x#Tx dµ−

∫

B
x#Tx dµ =

∫

Ω
|x#Tx| dµ > 2β0

and so at least one of the summands above is greater than or equal to β0. Without loss of
generality, we assume that

β
def
=

∫

A
x#Tx dµ > β0

(otherwise we consider −T instead of T ). Remark that

∣∣∣
∫

Ω
x#Tx dµ

∣∣∣ 6 v(T ) and
∣∣∣
∫

B
x#T (xχB) dµ

∣∣∣ 6
∥∥∥(xχB)#

∥∥∥
q
‖xχB‖p v(T ) 6 v(T ).

(6.2)
Now, put yλ = x+ λxχB for each λ ∈ [−1,∞). Observe that

‖y#
λ ‖q‖yλ‖p = ‖yλ‖pp =

∫

A
|x|p dµ+ (1 + λ)p

∫

B
|x|p dµ 6 max

{
1, (1 + λ)p

}
, (6.3)

which obviously implies that

∣∣∣
∫

Ω
y#
λ Tyλ dµ

∣∣∣ 6 v(T )
∥∥∥y#

λ

∥∥∥
q
‖yλ‖p 6 v(T ) max

{
1, (1 + λ)p

}
. (6.4)
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On the other hand, using that y#
λ = x#χA + (1 + λ)p−1x#χB and (6.2), we deduce that

∣∣∣
∫

Ω
y#
λ Tyλ dµ

∣∣∣ =
∣∣∣β + λ

∫

A
x#T (xχB) dµ+ (1 + λ)p−1

∫

B
x#Tx dµ

+ λ(1 + λ)p−1

∫

B
x#T (xχB) dµ

∣∣∣

>
∣∣∣β + λ

∫

A
x#T (xχB) dµ− (1 + λ)p−1β

∣∣∣

− (1 + λ)p−1
∣∣∣
∫

Ω
x#Tx dµ

∣∣∣− |λ|(1 + λ)p−1
∣∣∣
∫

B
x#T (xχB) dµ

∣∣∣

>
∣∣∣
(
1− (1 + λ)p−1

)
β + λ

∫

A
x#T (xχB) dµ

∣∣∣−
(
1 + |λ|

)
(1 + λ)p−1v(T ).

This, together with (6.4), gives us that

v(T )
(

(1+|λ|)(1+λ)p−1+max{1, (1+λ)p−1}
)
>
∣∣∣(1−(1+λ)p−1)β+λ

∫

A
x#T (xχB)dµ

∣∣∣. (6.5)

Therefore, putting a = β−1

∫

A
x#T (xχB) dµ and

f(λ) = |λ|−1
((

1 + |λ|
)
(1 + λ)p−1 + max

{
1, (1 + λ)p−1

}) (
λ ∈ [−1,∞) \ {0}

)
,

and multiplying (6.5) by |λ|−1β−1, we obtain that

β−1v(T )f(λ) >

∣∣∣∣
1− (1 + λ)p−1

λ
− a
∣∣∣∣

for every λ ∈ [−1,∞) \ {0}. Thus,

β−1v(T )
(
1 + f(λ)

)
= β−1v(T )

(
f(−1) + f(λ)

)

>
∣∣−1− a

∣∣+

∣∣∣∣
1− (1 + λ)p−1

λ
− a
∣∣∣∣ >

∣∣∣∣
(1 + λ)p−1 − 1

λ
− 1

∣∣∣∣

for every λ ∈ [−1,∞) \ {0} or, equivalently,

v(T ) > β

∣∣(1 + λ)p−1 − 1− λ
∣∣

|λ|+
(
1 + |λ|

)
(1 + λ)p−1 + max

{
1, (1 + λ)p−1

}

for every λ ∈ [−1,∞). Now we restrict ourselves to λ > 0 and setting t = 1 + λ, we obtain
that

v(T ) > β
|tp−1 − t|

tp + tp−1 + t− 1
= β

|tp−1 − t|
tp + 1

1

1 + tp−1+t−2
tp+1

(6.6)

for every t ∈ [1,∞). We have that

tp−1 + t− 2

tp + 1
6
tp−1 + t

tp + 1
6 1 (6.7)
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for each t ∈ [1,∞) since the derivative of the function ϕ(t) = tp−1+t
tp+1 is non-positive for t > 1.

Applying (6.7) to (6.6), one obtains that

v(T ) >
β

2
sup
t>1

|tp−1 − t|
tp + 1

>
|v|(T )− ε

4
sup
t>1

|tp−1 − t|
tp + 1

=
|v|(T )− ε

4
Mp,

which is enough in view of the arbitrariness of ε.

Our next goal is to prove an inequality relating the absolute numerical radius and the
norm of operators on real Lp-spaces.

Theorem 6.1.2. Let 1 < p <∞ and let µ be a positive �nite measure. Then, every bounded
linear operator T on the real space Lp(µ) satis�es

|v|(T ) >
n
(
LC
p (µ)

)

2
‖T‖,

where n
(
LC
p (µ)

)
is the numerical index of the complex space Lp(µ).

Proof. We consider the complex linear operator TC ∈ L
(
LC
p (µ)

)
given by

TC(x) = T (Rex) + i T (Imx)
(
x ∈ LC

p (µ)
)
. (6.8)

Evidently, ‖T‖ 6 ‖TC‖. Now, consider any simple function

x =
m∑

j=1

aje
iθjχAj ∈ LC

p (µ), m ∈ N, aj > 0, θj ∈ [0, 2π), Ω =
m⊔

k=1

Ak,
m∑

k=1

apjµ(Aj) = 1,

and observe that x# ∈ LC
q (µ) is given by the formula

x# =

m∑

j=1

ap−1
j e−iθjχAj .

Then, writing

αj,k =

∫

Aj

TC(χAk
) dµ =

∫

Aj

T (χAk
) dµ,

we obtain that
∣∣∣
∫

Ω
x#TC(x) dµ

∣∣∣ =
∣∣∣
m∑

j=1

ap−1
j e−iθj

m∑

k=1

ake
iθkαj,k

∣∣∣ 6
m∑

j=1

ap−1
j

∣∣∣
m∑

k=1

ake
iθkαj,k

∣∣∣

6
m∑

j=1

ap−1
j

(∣∣∣
m∑

k=1

ak cos(θk)αj,k

∣∣∣+
∣∣∣
m∑

k=1

ak sin(θk)αj,k

∣∣∣
)

(6.9)

6 2 max
(zk)∈[−1,1]m

m∑

j=1

ap−1
j

∣∣∣
m∑

k=1

akzkαj,k

∣∣∣

= 2 max
(zk)∈{−1,1}m

m∑

j=1

ap−1
j

∣∣∣
m∑

k=1

akzkαj,k

∣∣∣,
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where the last equality follows from the convexity of the function f : [−1, 1]m −→ R de�ned
by

f(z1, . . . , zm) =

m∑

j=1

ap−1
j

∣∣∣
m∑

k=1

akzkαj,k

∣∣∣.

On the other hand, for any �nite sequence (zk) ∈ {−1, 1}m, putting

y(zk) =
m∑

j=1

ajzjχAj ∈ Lp(µ),

one has ‖y(zk)‖ = 1 and that

∫

Ω

∣∣y#
(z`)

T (y(z`))
∣∣ dµ =

∫

Ω

∣∣∣
m∑

j=1

ap−1
j zj χAj

m∑

k=1

akzkT (χAk
)
∣∣∣ dµ

=

m∑

j=1

∫

Aj

∣∣∣ap−1
j zj

m∑

k=1

akzkT (χAk
)
∣∣∣ dµ

=

m∑

j=1

ap−1
j

∫

Aj

∣∣∣
m∑

k=1

akzkTχAk

∣∣∣ dµ

>
m∑

j=1

ap−1
j

∣∣∣
∫

Aj

m∑

k=1

akzkTχAk
dµ
∣∣∣ =

m∑

j=1

ap−1
j

∣∣∣∣∣
m∑

k=1

akzkαj,k

∣∣∣∣∣ .

This, together with (6.9), implies that

2|v|(T ) > 2 max
z`∈{−1,1}

∫

Ω

∣∣y#
(z`)

T (y(z`))
∣∣ dµ

> 2 max
z`∈{−1,1}

m∑

j=1

ap−1
j

∣∣∣
m∑

k=1

akzkαj,k

∣∣∣ >
∣∣∣
∫

Ω
x#TC(x) dµ

∣∣∣.

Since the set of all simple functions is dense in LC
p (µ), it follows from [7, Theorem 9.3] that

the above inequality implies that

2|v|(T ) > v(TC) > n
(
LC
p (µ)

)
‖TC‖ > n

(
LC
p (µ)

)
‖T‖.

It remains to notice that n
(
LC
p (µ)

)
> 1/e (as happens for any complex Banach space, see

[7, Theorem 4.1]), to get the following consequence from the above two theorems.

Corollary 6.1.3. Let 1 < p < ∞ and let µ be a positive �nite measure. Then, in the real
case, one has

n
(
Lp(µ)

)
>
Mp

8e

where Mp = max
t>1

|tp−1 − t|
1 + tp

.
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Since, clearly, Mp > 0 for p 6= 2, we get the following consequence which answers in the
positive a question raised by C. Finet and D. Li (see [23, 24]) also posed in [55, Problem 1].

Corollary 6.1.4. Let 1 < p < ∞, p 6= 2 and let µ be a positive �nite measure. Then
n
(
Lp(µ)

)
> 0 in the real case. In other words, the numerical radius and the operator norm

are equivalent on L
(
Lp(µ)

)
.

We may improve the result of Corollary 6.1.3 by giving an stronger result than the one
given in Theorem 6.1.2:

Theorem 6.1.5. Let 1 < p <∞ and let µ be a positive measure such that dim(Lp(µ)) > 2.
Then,

|n|(Lp(µ)) = κp .

It is immediate to check that for positive operators on Lp(µ), the numerical radius and
the absolute numerical radius coincide. Therefore, the following result is a consequence of
the above theorem. We state here its proof since it is simple and useful to get a better
understanding of the proof of Theorem 6.1.5.

Proposition 6.1.6. Let 1 < p < ∞ and (Ω,Σ, µ) be a measure space. Then, for every
positive operator T ∈ L(Lp(µ)) one has

v(T ) > κp ‖T‖ .

Proof. Let T ∈ L(Lp(µ)) be positive with ‖T‖ = 1, �x ε > 0, and take x ∈ SLp(µ) so that
‖Tx‖p > 1 − ε and x > 0 (observe that x can be taken positive because T |x| > |Tx| due to
the positivity of T ). Next, �x any τ > 0, set

y = x ∨ τTx and A = {ω ∈ Ω : x(ω) > τ(Tx)(ω)},

and observe that

‖y‖p =

∫

A
xp dµ+

∫

Ω\A
(τTx)p dµ 6 1 + τp and y# = xp−1 ∨ (τTx)p−1.

This, together with the positivity of T , allows us to write

v(T ) >
1

‖y‖p
∫

Ω
y#Ty dµ >

1

1 + τp

∫

Ω
y#Ty dµ

>
1

1 + τp

∫

Ω
(τTx)p−1Tx dµ =

τp−1

1 + τp

∫

Ω
(Tx)p dµ >

τp−1

1 + τp
(1− ε)

for every τ > 0. Taking supremum on τ > 0 and ε > 0, we deduce that v(T ) > κp, as
desired.
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The proof of Theorem 6.1.5 depends on the base scalar �eld. In the real case it needs
some auxiliary results which we state here. They carry the main idea for the best possible
estimation of the absolute numerical radius in the real case and allow us to apply positivity
arguments to any operator as it has been done in the proof of Proposition 6.1.6.

Lemma 6.1.7. Let E be a vector lattice, z ∈ E+, and x ∈ E a z-step function with |x| 6 z.
Then there exist n ∈ N, λj ∈ [0, 1], and yj ∈ E with |yj | = z for j = 1, . . . , n such that∑n

j=1 λj = 1 and
x = λ1y1 + · · ·+ λnyn.

Proof. Let x =
∑m

k=1 akzk with ak ∈ R and zk v z, and use induction on m. Observe that the
hypothesis |x| 6 z implies that |ak| 6 1 for every k = 1, . . . ,m. For m = 1, one trivially has
that x = 1+a1

2 z1 + 1−a1
2 (−z1). For the induction step assume that the assertion is true for a

givenm ∈ N and suppose that x =
∑m+1

k=1 akzk where zk v z and |ak| 6 1 for k = 1, . . . ,m+1.
Then for x̃ =

∑m
k=1 akzk and z̃ = z−zm+1 ∈ E+ we have that zk v z̃ for k = 1, . . . ,m. By the

induction assumption there are n0 ∈ N, λ̃j ∈ [0, 1], and ỹj ∈ E with |ỹj | = z̃ for j = 1, . . . , n0

such that
∑n0

j=1 λ̃j = 1 and x̃ = λ̃1ỹ1 + · · ·+ λ̃n0 ỹn0 . Then set λ = 1+am+1

2 and observe that

x = x̃+ am+1zm+1 = λ(x̃+ zm+1) + (1− λ)(x̃− zm+1)

= λ(λ̃1ỹ1 + · · ·+ λ̃n0 ỹn0 + zm+1) + (1− λ)(λ̃1ỹ1 + · · ·+ λ̃n0 ỹn0 − zm+1)

= λ
(
λ̃1(ỹ1 + zm+1) + · · ·+ λ̃n0(ỹn0 + zm+1)

)
+ (1− λ)

(
λ̃1(ỹ1 − zm+1) + · · ·+ λn0(ỹn0 − zm+1)

)
.

Finally, take n = 2n0 and

λj = λλ̃j , yj = ỹj + zm+1 for j = 1, . . . , n0 and

λj = (1− λ)λ̃j , yj = ỹj − zm+1 for j = n0 + 1, . . . , 2n0

which ful�ll the desired conditions.

Corollary 6.1.8. Let E be a vector lattice, f a positive linear functional on E, T : E −→ E
a linear operator, z ∈ E+, and x ∈ E a z-step function with |x| 6 z. Then, there exists y ∈ E
satisfying |y| = z and f

(
|Ty|

)
> f

(
|Tx|

)
.

Proof. By Lemma 6.1.7 there are n ∈ N, λj ∈ [0, 1], and yj ∈ E with |yj | = z for j = 1, . . . , n
such that

∑n
j=1 λj = 1 and x = λ1y1 + · · ·+ λnyn. Then we can write

f
(
|Tx|

)
6 f

(
λ1|Ty1|+ · · ·+ λn|Tyn|

)
= λ1f

(
|Ty1|

)
+ · · ·+ λnf

(
|Tyn|

)

and so, f
(
|Tyj |

)
> f

(
|Tx|

)
for some j.

Corollary 6.1.9. Let E be a sublattice of L0(µ) for some measure space (Ω,Σ, µ) in which
the set of all simple functions is dense, f ∈ (E∗)+, T ∈ L(E), ε > 0, z ∈ E+ and x ∈ E such
that |x| 6 z. Then there exists y ∈ E satisfying |y| = z and f

(
|Ty|

)
> f

(
|Tx|

)
− ε.
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Proof. It follows immediately from Corollary 6.1.8 and the continuity of f , | · |, and T .

We are ready to prove the main result.

Proof of Theorem 6.1.5. To prove that |n|(Lp(µ)) 6 p−1/pq−1/q, it su�ces to construct a
norm one operator T0 ∈ L(Lp(µ)) with |v|(T0) 6 p−1/pq−1/q. Indeed, we pick disjoint sets
A,B ∈ Σ with 0 < µ(A), µ(B) < ∞ (this is possible since dim(Lp(µ)) > 2) and de�ne
T0 ∈ L

(
Lp(µ)

)
by

T0x = µ(A)−1/qµ(B)−1/p

(∫

A
x dµ

)
1B

(
x ∈ Lp(µ)

)
. (6.10)

It is easy to check that ‖T0‖ = 1. Now we show that |v|(T0) 6 κp. Given any x ∈ SLp(µ), we
set

λ = ‖xB‖p =

∫

B
|x|p dµ

and observe that

‖xA‖p =

∫

A
|x|p dµ 6 1− λ.

Thus,

∫

Ω
|x|p−1|T0x| dµ =

∫

Ω
|x|p−11B|T0x| dµ 6

(∫

B
|x|(p−1)q dµ

)1/q (∫

Ω
|T0x|p dµ

)1/p

=

(∫

B
|x|p dµ

)1/q (
µ(A)−p/qµ(B)−1

∣∣∣
∫

A
x dµ

∣∣∣
p
µ(B)

)1/p

6 λ1/q

(
µ(A)−p/q

(∫

A
|x| dµ

)p)1/p

6 λ1/q
(
µ(A)−p/qµ(A)p/q‖xA‖p

)1/p
6 λ1/q(1− λ)1/p 6 κp.

Now, we take supremum with x ∈ SLp(µ) to get |v|(T0) 6 κp as desired.

For the more interesting converse inequality, �x T ∈ L(Lp(µ)) with ‖T‖ = 1, ε > 0, and
τ > 0, choose x ∈ SLp(µ) so that ‖Tx‖pp > 1− ε, and set

A = {ω ∈ Ω : |x(ω)| > τ |(Tx)(ω)|} and B = Ω \A.

We split the rest of the proof depending on the base scalar �eld.

• Real case. Using Corollary 6.1.9 for x, z = |x|A + τ |Tx|B, and f(u) =

∫

Ω
|Tx|p−1u dµ

(u ∈ Lp(µ)), choose y ∈ Lp(µ) satisfying |y| = z and f
(
|Ty|

)
> f

(
|Tx|

)
− ε. Then

‖y‖p = ‖z‖p 6 1 + τp and |y| > τ |Tx|,
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and therefore, we can write

|v|(T ) >
∫

Ω

∣∣∣∣
y#

‖y#‖T
(

y

‖y‖

)∣∣∣∣ dµ =
1

‖y‖p
∫

Ω
|y|p−1|Ty| dµ >

τp−1

1 + τp

∫

Ω
|Tx|p−1|Ty| dµ

>
τp−1

1 + τp

(∫

Ω
|Tx|p−1|Tx| dµ− ε

)
>

τp−1

1 + τp
(1− 2ε)

for every τ > 0. Finally, since the inequality holds for every ε > 0, we obtain that |v|(T ) >
max
τ>0

τp−1

1+τp and so |n|(Lp(µ)) > κp.

• Complex case. Since |x| < τ |Tx| on B, it is possible to �nd measurable functions θ1, θ2 :
B −→ C such that

x(ω) =
1

2
θ1(ω) +

1

2
θ2(ω) and |θj(ω)| = τ |(Tx)(ω)|

(
ω ∈ B, j = 1, 2

)
.

Indeed, for ω ∈ B de�ne

θ1(ω) = sign
(
x(ω)

) (
|x(ω)|+ i

(
τ2|(Tx)(ω)|2 − |x(ω)|2

)1/2)

θ2(ω) = sign
(
x(ω)

) (
|x(ω)| − i

(
τ2|(Tx)(ω)|2 − |x(ω)|2

)1/2)

if x(ω) 6= 0 and θ1(ω) = 1, θ2(ω) = −1 if x(ω) = 0. Then de�ne

yj = xA + θ̃j (j = 1, 2)

where θ̃j = θj on B and θ̃j = 0 on A, and observe that

x =
1

2
y1 +

1

2
y2, ‖yj‖p 6 1 + τp, and |yj | = |x|A + |θ̃j | > τ |Tx|.

Therefore, we can write

|v|(T ) >
1

2

1

‖y1‖p
∫

Ω
|y1|p−1|Ty1|dµ+

1

2

1

‖y2‖p
∫

Ω
|y2|p−1|Ty2|dµ

>
τp−1

1 + τp

∫

Ω
|Tx|p−1

(1

2
|Ty1|+

1

2
|Ty2|

)
dµ >

τp−1

1 + τp

∫

Ω
|Tx|p−1

∣∣∣∣T
(1

2
y1 +

1

2
y2

)∣∣∣∣ dµ

=
τp−1

1 + τp

∫

Ω
|Tx|pdµ >

τp−1

1 + τp
(1− ε)

for every τ > 0. Since the inequality holds for every ε > 0, we obtain that |v|(T ) > max
τ>0

τp−1

1+τp

and hence |n|(Lp(µ)) > κp which �nishes the proof.

We can use Theorem 6.1.5 together with Theorem 6.1.1 to improve the estimation of
n(Lp(µ)) for the real case.
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Corollary 6.1.10. Let 1 < p <∞ and µ a positive mesure. Then, in the real case, one has

n(Lp(µ)) >
Mpκp

6
.

Remark 6.1.11. From the proof of Theorem 6.1.5 we deduce that κp is also the best constant
of equivalence between the norm and the numerical radius for positive operators (i.e. the
inequality in Proposition 6.1.6 is the best possible). This is because the operator de�ned on
Equation 6.10 is clearly positive.

6.2 Some results on Banach spaces with numerical index one

The two results we would like to present here with detailed proofs are a su�cient condition
and some necessary conditions for a Banach space to be renormed with numerical index 1.

6.2.1 A su�cient condition to renorm with numerical index 1

Our goal in this subsection is to prove that a separable Banach space containing an isomorphic
copy of c0 can be equivalently renormed to be lush (in particular, to have numerical index 1).
We need two lemmata.

Lemma 6.2.1. Let X be a separable Banach space containing an isometric copy of c0. Then
there is a biorthogonal system {(gn, g∗n)} ⊂ BX × (12BX∗) such that

sup
n∈N
|g∗n(x)| > 1

3
‖x‖ (6.11)

for all x ∈ X.

Proof. Since a c0-subspace of a separable space is 2-complemented (Sobczyk's Theorem, see
[4, Corollary 2.5.9] for instance), one can write down X as c0⊕Y in such a way, that for every
e ∈ c0, y ∈ Y

1

6
(‖e‖+ ‖y‖) 6 ‖e+ y‖ 6 ‖e‖+ ‖y‖. (6.12)

Denote by {en}n∈N the canonical basis of c0 and by {e∗n}n∈N ⊂ Y ⊥ ⊂ X∗ denote the cor-
responding coordinate functionals. By (6.12), ‖e∗n‖ 6 6 for every n ∈ N. Now, we use the
separability of Y to take a norming sequence with norming tails {y∗n}n∈N ⊂ SY ∗ , that is

sup
n>m
|y∗n(y)| = ‖y‖

(
y ∈ Y, m ∈ N

)
.

We write ỹ∗n ∈ c⊥0 ⊂ X∗ for the natural extensions of y∗n to the whole of X. Again, by (6.12),
‖ỹ∗n‖ 6 6. Let us show that gn = en, g∗n = e∗n + ỹ∗n form the biorthogonal system we need.
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Indeed, consider an arbitrary x = e+ y ∈ X, e ∈ c0, y ∈ Y . If ‖y‖ 6 1
3‖x‖, then ‖e‖ > 2

3‖x‖
and

sup
n∈N
|g∗n(x)| = sup

n∈N
|e∗n(e) + ỹ∗n(y)|

> sup
n∈N
|e∗n(e)| − 1

3
‖x‖ = ‖e‖ − 1

3
‖x‖ > 1

3
‖x‖.

In the opposite case of being ‖y‖ > 1
3‖x‖, we select a sequence of indices n1 < n2 < · · · such

that
{
|ỹ∗nk

(y)|
}
−→ ‖y‖. Then

sup
n∈N
|g∗n(x)| > lim sup

k→∞
|e∗nk

(e) + ỹ∗nk
(y)|

= lim sup
k→∞

|ỹ∗nk
(y)| = ‖y‖ > 1

3
‖x‖.

Lemma 6.2.2. Let X be a separable Banach space containing an isomorphic copy of c0.
Then there is an isomorphic embedding T : X −→ `∞ such that T (X) ⊃ c0.

Proof. Remark that if X contains an isomorphic copy of c0, then X can be renormed equiv-
alently to have an isometric copy of c0. After this, take {(gn, g∗n)}n∈N from Lemma 6.2.1 and
let us de�ne T : X −→ `∞ as follows:

T (x) = {g∗n(x)}n∈N ∈ `∞ (x ∈ X).

The inequality (6.11) guaranties that

1

3
‖x‖ 6 ‖T (x)‖ 6 12‖x‖ for all x ∈ X, (6.13)

and the image of gn is the n-th unit vector of c0 ⊂ `∞, so T (X) ⊃ c0.

To �nish our arguments, we need to use a class of subspaces of C(K) which was also
introduced in the aforementioned paper [13], the so-called C-rich subspaces.

De�nition 6.2.3. Let K be a compact Hausdor� space. A closed subspace X of C(K) is
said to be C-rich if for every nonempty open subset U of K and every ε > 0, there is a positive
function h of norm 1 with support inside U such that the distance from h to X is less than ε.

For us, the main utility of C-rich subspaces is that they are lush.

Theorem 6.2.4 ([13, Theorem 2.4]). C-rich subspaces of C(K) are lush and, in particular,
they have numerical index 1.

Some examples and remarks about C-rich subspaces will be needed.
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Remarks 6.2.5.

(a) Due to [13, Proposition 2.5], ifK is a perfect compact space, then every �nite-codimensional
subspace of C(K) is C-rich and, in particular, lush.

(b) If one considers `∞ as C(βN), then c0 is C-rich in `∞. Indeed, this follows easily from
the fact that N is a dense subset of βN consisting of isolated points.

(c) If X ⊂ C(K) is C-rich, then every subspace Y ⊂ C(K) containing X is C-rich.

(d) In particular, every subspace of `∞ containing c0 is C-rich.

(e) Let K be an in�nite compact set and X be a Banach space such that it is C-rich in
C(K). Then, X contains an isomorphic copy of c0. Indeed, we take a sequence of
disjoint open sets Vn ⊂ K. Since X is C-rich in C(K), for ε > 0 and n ∈ N we can �nd
fn ∈ C(K) such that

supp(fn) ⊂ Vn, fn > 0, ‖fn‖ = 1, and dist(fn, X) 6
ε

2n
.

The sequence {fn} is a c0-basic sequence in C(K), and a perturbation argument gives
us a basic sequence in X which is equivalent to {fn} and so, it spans an isomorphic
copy of c0.

We are now able to state the main result of the subsection which characterizes isomorphi-
cally separable Banach spaces containing c0.

Theorem 6.2.6. For a separable in�nite-dimensional Banach space X, the following condi-
tions are equivalent:

(i) X contains an isomorphic copy of c0,

(ii) X is isomorphic to a C-rich subspace of `∞ = C(βN),

(iii) X is isomorphic to a C-rich subspace of some C(K).

Proof. (i)⇒ (ii). Lemma 6.2.2 tells us that there is an isomorphic embedding T : X −→ `∞
such that T (X) ⊃ c0. Then, T (X) is a C-rich subspace of `∞ by Remark 6.2.5.d and X
is isomorphic to T (X). The implication (ii) ⇒ (iii) is evident and (iii) ⇒ (i) is shown in
Remark 6.2.5.e.

The following result is an evident consequence of the above theorem and Theorem 6.2.4.

Corollary 6.2.7. Every separable Banach space containing an isomorphic copy of c0 can be
equivalently renormed to be lush and, in particular, to have numerical index 1.
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As an easy consequence we obtain the following.

Corollary 6.2.8. Any closed subspace of c0 can be renormed to be lush and, in particular,
to have numerical index 1.

Proof. Let X be a closed subspace of c0. If X is �nite-dimensional, the result is clear.
Otherwise, X contains an isomorphic copy of c0 [4, Proposition 2.1.1] and the result follows
from the above corollary.

Let us comment that one can avoid the use of C-rich subspaces of C(K) and of lush spaces
to get the last two corollaries (of course, only the part about numerical index 1). Indeed, it
was proved in [30] using property β that every closed subspace of `∞ containing the canonical
copy of c0 has numerical index 1.

6.2.2 Prohibitive results to renorm with numerical index 1

Our aim is to show that the dual of a real in�nite-dimensional Banach space (which can
be renormed) with numerical index 1 contains `1. We need results from many papers as
(chronology) [73], [53] and [5]. Let us comment that when we use the hypothesis of numerical
index 1 we are only able to work (and we do so) with �nite-rank operators. Therefore, two
possibilities arise:

(a) to look for necessary conditions to be renormed satisfying the alternative Daugavet
property,

(b) use some geometrical property stronger that numerical index 1 and get results for this
property.

The next two subsections correspond to each of the possibilities above. The third subsection
explain how join the results (by making use of the SCD property) to get the best result we
know.

We start with a 1999's result providing a copy of c0 or `1.

Proposition 6.2.9. Let X be a real Banach space and assume that there is an in�nite set
A ⊂ SX such that |x∗(a)| = 1 for every a ∈ A and all x∗ ∈ ext(BX∗). Then X contains (an
isomorphic copy of) c0 or `1.

Proof. Suppose that X does not contain `1. Then, by Rosenthal's `1-Theorem [99], every
bounded sequence in X has a weakly Cauchy subsequence, so there is a weakly Cauchy
sequence {an} of distinct members of A. Let Y be the closed subspace generated by this
sequence. The assumption on A clearly gives ‖an − am‖ = 2 for n 6= m, so Y is in�nite-
dimensional. The proof will be �nished by showing that Y contains c0, and this will follow
from Fonf's Theorem [33] if we are able to prove that ext(BY ∗) is countable.

By a well-known application of the Hahn-Banach and Krein-Milman theorems, every y∗ ∈
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ext(BY ∗) is the restriction to Y of some extreme point in BX∗ , so |y∗(an)| = 1 for every n.
Since {an} is weakly Cauchy, the sequence {y∗(an)} must be eventually 1 or −1. This shows
that

ext(BY ∗) =

∞⋃

k=1

(Ek ∪ −Ek)

where Ek = {y∗ ∈ ext(BY ∗) : y∗(an) = 1 for n > k}. Since the sequence {an} separates the
points of Y ∗, each set Ek is �nite and we are done.

The following corollary is immediate.

Corollary 6.2.10. Let X be a real Banach space and assume that there is an in�nite set
A ⊂ SX∗ such that |x∗∗(a∗)| = 1 for every a∗ ∈ A and all x∗∗ ∈ ext(BX∗∗). Then, X

∗ contains
(an isomorphic copy of) `1.

Proof. The proposition above gives that X∗ ⊃ c0 or X∗ ⊃ `1. But a dual space contains `∞
(hence also `1) as soon as it contains c0 (see [17, Theorem V.10] or [70, Proposition 2.e.8], for
instance).

Therefore, we need to �nd conditions under which it is possible to ful�l the hypothesis of
Proposition 6.2.9 or Corollary 6.2.10. Here, we will show some di�erent approach.

• The 1999 approach.

The �rst attempt was given in 1999 using denting points and w∗-denting points.

Recall that x0 ∈ BX is said to be a denting point of BX if it belongs to slices of BX with
arbitrarily small diameter. More precisely, for each ε > 0 one can �nd a functional x∗ ∈ SX∗
and a positive number α such that the slice {x ∈ BX : Rex∗(x) > 1 − α} is contained in
the closed ball centered at x0 with radius ε. If X is a dual space and the functionals x∗ can
be taken to be w∗-continuous, then we say that x0 is a w∗-denting point.

Lemma 6.2.11. Let X be a Banach space with the alternative Daugavet property. Then:

(i) |x∗∗(x∗)| = 1 for every x∗∗ ∈ ext(BX∗∗) and every w∗-denting point x∗ ∈ BX∗ .
(ii) |x∗(x)| = 1 for every x∗ ∈ ext(BX∗) and every denting point x ∈ BX .

Proof. We only give the proof of (i); the other part is analogous.

Let us �x x∗∗0 ∈ ext(BX∗∗), a w∗-denting point x∗0 ∈ BX∗ , and 0 < ε < 1. Due to Choquet's
lemma (that for any locally convex topology, slices containing an extreme point of a compact
convex set make up a neighborhood base of the extreme point, see [15, De�nition 25.3 and
Proposition 25.13]) we may �nd y∗ ∈ SX∗ and α > 0 such that

|(x∗∗ − x∗∗0 )(x∗0)| < ε whenever x∗∗ ∈ BX∗∗ satis�es Rex∗∗(y∗) > 1− α.
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On the other hand, since x∗0 is a w∗-denting point, we can �nd y ∈ SX and β > 0 such that

‖x∗ − x∗0‖ < ε whenever x∗ ∈ BX∗ satis�es Rex∗(y) > 1− β.

Consider now the rank-one operator T ∈ L(X) de�ned by Tx = y∗(x)y for every x ∈ X.
Since X has the alternative Daugavet property, we have v(T ) = ‖T‖ = 1 and the de�nition
of the numerical radius provides us with x ∈ SX and x∗ ∈ SX∗ , such that x∗(x) = 1 and
|x∗(Tx)| = |y∗(x)||x∗(y)| > 1−δ, where we take δ = min{α, β}. By choosing suitable modulus
one scalars s and t we have

{
Re y∗(sx) = |y∗(x)| > 1− δ > 1− α
Re tx∗(y) = |x∗(y)| > 1− δ > 1− β.

It follows that |x∗0(sx)− x∗∗0 (x∗0)| < ε and ‖tx∗ − x∗0‖ < ε, so

1− |x∗∗0 (x∗0)| 6 |tx∗(sx)− x∗∗0 (x∗0)| 6
6 |tx∗(sx)− x∗0(sx)|+ |x∗0(sx)− x∗∗0 (x∗0)| < 2ε

and we let ε ↓ 0.

A natural (isomorphic) assumption on an in�nite-dimensional Banach space providing a
lot of denting points is RNP. Actually the unit ball of a Banach space satisfying RNP is the
closed convex hull of its strongly exposed points, and strongly exposed points are denting.
On the other hand, if X is an Asplund space, then BX∗ is the w∗-closed convex hull of its
w∗-strongly exposed (hence w∗-denting) points. Therefore, as an immediate consequence of
the above lemma and Proposition 6.2.9 and Corollary 6.2.10, we have the following result.

Theorem 6.2.12. Let X be an in�nite-dimensional real Banach space with n(X) = 1. If X
has RNP, then X contains `1. If X is an Asplund space, then X∗ contains `1.

An Asplund space cannot contain `1, so the above theorem has the following consequence.

Corollary 6.2.13. Let X be a real Asplund space satisfying RNP. If n(X) = 1, then X is
�nite-dimensional.

As a special case of the above corollary a re�exive real Banach space with numerical index
1 must be �nite-dimensional. In fact, we have:

Corollary 6.2.14. Let X be an in�nite-dimensional real Banach space with n(X) = 1. Then
X∗∗/X is non-separable.

Proof. It is known (see [18, page 219]) that X and X∗ have RNP if X∗∗/X is separable.
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• The lush approach.

Our next aim is to show that the dual of an in�nite-dimensional real lush space contains
`1. The goal is to show that separable real lush spaces ful�ll a condition which allows to use
Proposition 6.2.9.

We �rst need a characterization of lushness given in [12] in terms of a norming subset of
SX∗ . Also, to carry some consequences to the non-separable case, we need a result of the
same paper saying that lushness is a separably determined property.

Proposition 6.2.15 ([12, Theorems 4.1 and 4.2]). Let X be a Banach space. The following
assertions are equivalent:

(i) X is lush .
(ii) For every x, y ∈ SX and for every ε > 0 there is a slice S = S(BX , x

∗, ε) with x∗ ∈
ext(BX), such that

x ∈ S and dist (y, aconv(S)) < ε

(i.e. x∗ in the de�nition of lushness can be chosen from ext(BX)).
(iii) Every separable subspace E ⊂ X is contained in a separable lush subspace Y , E ⊂ Y ⊂

X.

The following lemma is the key to prove the main result of this part.

Lemma 6.2.16. Let X be a lush space and let K ⊂ BX∗ be the weak* closure of ext(BX∗)
endowed with the weak* topology. Then, for every y ∈ SX , there is a Gδ-dense subset Ky of

K such that y ∈ aconv(S(BX , y∗, ε)) for every ε > 0 and every y∗ ∈ Ky.

Proof. Fix y ∈ SX . For every n,m ∈ N, we consider

Ky,n,m := {x∗ ∈ K : dist (y, aconv(S(BX , x
∗, 1/n))) < 1/m}.

Claim. Ky,n,m is weak*-open and dense in K.

In fact, openness is almost evident: if x∗ ∈ Ky,n,m, then there is a �nite set A = {a1, . . . ak}
of elements of S(BX , x

∗, 1/n) such that dist (y, aconv(A)) < 1/m. Denote

U := {y∗ ∈ K : Re y∗(ai) > 1− 1/n for all i = 1, . . . , k}.

U is a weak*-neighborhood of x∗ in K, and A ⊂ S(BX , y
∗, 1/n) for every y∗ ∈ U . This means

that dist (y, aconv(S(BX , y
∗, 1/n))) < 1/m for all y∗ ∈ U , i.e. U ⊂ Ky,n,m.

To show density of Ky,n,m in K, it is su�cient to demonstrate that the weak* clo-
sure of Ky,n,m contains every extreme point x∗ of SX∗ . Since weak*-slices form a base of
neighborhoods of x∗ in BX∗ (Choquet's lemma again, see [15, De�nition 25.3 and Proposi-
tion 25.13]), it is su�cient to prove that every weak*-slice S(BX , x, δ), δ ∈ (0,min{1/n, 1/m}),
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intersects Ky,n,m, i.e. that there is a point y∗ ∈ S(BX , x, δ) ∩ Ky,n,m. Which property
of y∗ do we need to make this true? We need that y∗(x) > 1 − δ, y∗ ∈ K, and that
dist (y, aconv(S(BX , y

∗, 1/n))) < 1/m. But the existence of such a y∗ is a simple application
of item (ii) from Proposition 6.2.15.(a). The claim is proved.

Now, we consider Ky =
⋂
n,m∈NKy,n,m, which is a weak*-dense Gδ subset of K due to the

Baire theorem.

Theorem 6.2.17. Let X be a separable lush space. Then, there is a norming subset K̃ of
SX∗ such that BX = aconv(S(BX , x∗, ε)) for every ε > 0 and for every x∗ ∈ K̃. The last
condition implies that

|x∗∗(x∗)| = 1
(
x∗∗ ∈ ext(BX∗∗), x

∗ ∈ K̃
)
,

and that in fact K̃ ⊂ ext(BX∗).

Proof. We select a sequence (yn) dense in SX in such a way that every element of the sequence
is repeated in�nitely many times, and consider K̃ =

⋂
n∈NKyn . Due to the Baire theorem,

K̃ is a weak*-dense Gδ subset of K. This implies that for every x ∈ SX and for every ε > 0
there is an x∗ ∈ K̃, such that x ∈ S(BX , x

∗, ε) (i.e. K̃ is 1-norming). For x∗0 ∈ K̃ and
ε > 0 �xed, the inequality dist (yn, aconv(S(BX , x

∗
0, 1/n))) < 1/n holds true for all n ∈ N.

Select an N > 1/ε. Then, for every n > N we have dist (yn, aconv(S(BX , x
∗
0, ε))) < 1/n.

Since every element of the sequence (yn) is repeated in�nitely many times, this means that
dist (yn, aconv(S(BX , x

∗
0, ε))) = 0. So the closure of aconv(S(BX , x

∗
0, ε)) contains the whole

ball BX . Then,

BX∗∗ = BX
w∗ ⊆ aconv(S(BX , x∗0, ε))

w∗
.

Finally, the reversed Krein-Milman theorem gives us that

ext(BX∗∗) ⊂ TS(BX , x∗0, ε)
w∗
,

and the arbitrariness of ε > 0 gives us

|x∗∗(x∗0)| = 1
(
x∗∗ ∈ ext(BX∗∗)

)
.

We are now able to present the result for lush spaces we were looking for.

Corollary 6.2.18. Let X be an in�nite-dimensional real Banach space which is lush. Then
X∗ contains an isomorphic copy of `1.

Proof. If X is lush, by Proposition 6.2.15.(b), there is an in�nite-dimensional separable closed
subspace Y of X which is lush. Then, by Theorem 6.2.17, there is a norming subset K̃ of SY ∗
(in particular, K̃ is in�nite) such that

|y∗∗(y∗)| = 1
(
y∗∗ ∈ ext(BY ∗∗), y

∗ ∈ K̃
)
.
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Now, Corollary 6.2.10 gives that Y ∗ contains `1. Finally, if Y ∗ contains a copy of `1, then so
does X∗ (see [20, p. 11], for instance).

Since there are Banach spaces with numerical index 1 which are not lush (see section 3.4),
the above result does not give any information for general Banach spaces with numerical
index 1, even the more for Banach spaces with the alternative Daugavet property. On the
other hand, what we have actually shown is that for any separable in�nite-dimensional lush
space X, the set

A(X) = {x∗ ∈ SX∗ : |x∗∗(x∗)| = 1 for every x∗∗ ∈ ext(BE∗∗)}

is norming for X and so, it has in�nite cardinal. Let us also mention that for the example
X presented in section 3.4 of a Banach space with n(X ) = 1 which is not lush, the set X is
empty, so the ideas in this subsection can not be applied. To avoid this di�culty, we need to
work with SCD spaces presented in chapter 4.

• The �nal approach: Slicely Countably Determined spaces.

Our �nal goal in this section is to show that SCD spaces with the alternative Daugavet
property are lush. Then, we will use Corollary 6.2.18 to get that the dual of an in�nite-
dimensional real Banach space with numerical index 1 contains `1.

We start by giving two characterizations of the alternative Daugavet property in terms of
slices. The �rst one is taken from the seminal paper [85].

Lemma 6.2.19 ([85, Proposition 2.1]). A Banach space X has the alternative Daugavet
property if and only if for every x ∈ SX , every ε > 0 and every slice S of BX , there is a y ∈ S
such that maxθ∈T ‖x+ θy‖ > 2− ε.

To get the second characterization, we need some notation. Denote K(X∗) the weak∗-
closure in X∗ of ext(BX∗), and for every slice S of BX and every ε > 0, we write

D(S, ε) =
{
y∗ ∈ K(X∗) : S ∩ TS(BX , y

∗, ε) 6= ∅
}

=
{
y∗ ∈ K(X∗) : S ∩ aconv

(
S(BX , y

∗, ε)
)
6= ∅
}
,

which is relatively weak∗-open in K(X∗). Here is the promised characterization of the alter-
native Daugavet property.

Proposition 6.2.20. For a Banach space X, the following assertions are equivalent:

(i) X has the alternative Daugavet property.

(ii) For every x ∈ SX , every ε > 0 and every slice S ⊆ BX , there is y
∗ ∈ K(X∗) such that

x ∈ S(BX , y
∗, ε) and S ∩ TS(BX , y

∗, ε) 6= ∅.
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(iii) For every x ∈ SX , every ε > 0 and every slice S ⊆ BX , there is y
∗ ∈ D(S, ε) such that

x ∈ S(BX , y
∗, ε).

(iv) For every ε > 0 and every slice S ⊆ BX , the set D(S, ε) is weak∗-dense in K(X∗).

(v) For every ε > 0 and every sequence {Sn : n ∈ N} of slices of BX , the set
⋂
n∈ND(Sn, ε)

is weak∗-dense in K(X∗).

Proof. The implications (i) ⇐⇒ (ii) ⇐⇒ (iii) are easy consequences of Lemma 6.2.19.

(iii) =⇒ (iv). To show weak∗-density of D(S, ε) in K(X∗) it is su�cient to demonstrate
that the weak∗ closure of D(S, ε) contains every extreme point x∗ of SX∗ . Since weak∗-slices
form a base of neighborhoods of x∗ in BX∗ , it is su�cient to prove that every weak∗-slice
S(BX∗ , x, δ) with δ ∈ (0, ε) intersects D(S, ε), i.e. that there is a point y∗ ∈ D(S, ε), such
that y∗ ∈ S(BX∗ , x, δ). But we know that there is a point y∗ ∈ D(S, δ) ⊆ D(S, ε), such that
x ∈ S(BX , y

∗, δ), which means that y∗ ∈ S(BX∗ , x, δ).

(iv) =⇒ (iii). If D(S, ε) is weak∗-dense in K(X∗), then for every x ∈ SX there is a
y∗ ∈ D(S, ε) such that x ∈ S(BX , y

∗, ε).

The remaining equivalence (iv) ⇐⇒ (v) follows from the fact that D(S, ε) is not only
weak∗-dense but also weak∗-open, and K(X∗) is weak∗-compact, so Baire's theorem is appli-
cable.

We are now ready to show that SCD + ADP implies lushness.

Theorem 6.2.21. Every Banach space X with the alternative Daugavet property whose
unit ball is an SCD set is lush. In particular, every SCD space with the alternative Daugavet
property is lush.

Proof. Let {Sn : n ∈ N} be the sequence of slices of BX from the de�nition of an SCD set.
Then, by Proposition 6.2.20.v, for every ε > 0 the set

⋂
n∈ND(Sn, ε) is weak∗-dense inK(X∗).

So, for every x ∈ SX there is y∗ ∈ ⋂n∈ND(Sn, ε) such that x ∈ S(BX , y
∗, ε). According to the

de�nition of D(Sn, ε), this means that Sn ∩ aconv
(
S(BX , y

∗, ε)
)
6= ∅ for all n ∈ N. Then, we

obtain that aconv
(
S(BX , y

∗, ε)
)

= BX , which implies lushness of X [12, Theorem 2.1].

This result has already been known for Asplund spaces and for spaces with the RNP [73,
Remark 6], regardless of the separability (necessary for the SCD and so for our result). Our
next goal is to particularize Theorem 6.2.21 to more cases where we are able to remove the
separability. The proof of the following results is a consequence of the facts that lushness and
the alternative Daugavet property are separably determined (see Proposition 6.2.15 for the
�rst case and the remark below for the second one).

Remark 6.2.22. It is shown in [60, Theorem 4.5] that the Daugavet property is separa-
bly determined. With a little e�ort, the proof can be adapted to the alternative Daugavet
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property: A Banach space X has the alternative Daugavet property if and only if for every
separable subspace Y ⊆ X there is a separable subspace Z ⊆ X which contains Y and has
the alternative Daugavet property.

Corollary 6.2.23. Let X be a Banach space with the alternative Daugavet property. If X
is strongly regular (in particular, CPCP), then X is lush.

Corollary 6.2.24. Let X be a Banach space with the alternative Daugavet property. If X
does not contain `1, then X is lush.

Let us comment that what we use in the proof of the above corollary is that separable
Banach spaces which does not contain `1 are SCD, and this is the most intriguing result on
SCD spaces of [5] and need to use a hard result by S. Todor£evi¢ [109]. We may now state
the promised result.

Corollary 6.2.25. let X be an in�nite-dimensional real Banach space with the alternative
Daugavet property. Then, X∗ contains `1.

Proof. If X contains `1, then X∗ contains a quotient isomorphic to `∞, so X∗ contains `1 as
a quotient and the �lifting� property of `1 [70, Proposition 2.f.7] gives us X∗ ⊇ `1. Otherwise,
Corollary 6.2.24 gives us that X is lush. But the dual of an in�nite-dimensional real lush
space contains `1 [53, Corollary 4.8].

In particular,

Corollary 6.2.26. LetX be an in�nite-dimensional real Banach space with n(X) = 1. Then,
X∗ ⊇ `1.

6.2.3 Several open problems

The only non-trivial su�cient condition we know to get an equivalent renorming with numer-
ical index 1 is containing of c0 in the separable case. We may propose some other possibilities.

Problem 6.2.27. Let X be a Banach space containing an in�nite-dimensional subspace Y
which can be renormed to have numerical index 1. Does X admit an equivalent norm with
numerical index 1?

We may particularize the above question for some particular Y 's. We propose the following
one.
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Problem 6.2.28. Let X be a Banach space containing `1. Does X admit an equivalent norm
with numerical index 1?

The di�culty with this problem is that to get a norm with numerical index 1 we usually
need to prove that the space ful�l an stronger property like lushness. But we now know that
there are Banach spaces with numerical index 1 which are not lush [54]. In particular, we do
not know whether the space given in [54] which is not lush but it has numerical index 1 can
be renormed to be lush.

Problem 6.2.29. Let X be a Banach space with n(X) = 1. Does X admit an equivalent
norm with is lush?

Aiming at necessary conditions to be renormed with numerical index 1, the main result
we know is that the dual should contain `1. The main open problem we would like to possed
is the following.

Problem 6.2.30. Let X be an in�nite-dimensional real space with n(X) = 1. Does X
contain c0 or `1?

With the help of the SCD property, we may reduce the above problem to another more
concrete one. Indeed, let X be a Banach space with n(X) = 1. If X contains `1, we are done.
Otherwise, X is lush by Corollary 6.2.24 and, therefore, X contains a separable closed lush
subspace Y . On the one hand, if we show that Y contains c0, we are done. On the other hand,
since Y is separable and lush, it actually ful�ls an stronger property given by Theorem 6.2.17:
there is a norming subset K̃ of SY ∗ such that BY = aconv(S(BY , y∗, ε)) for every ε > 0 and
for every y∗ ∈ K̃. In the real case, it is even possible to show the following [53, Corollary 4.5]:
there is a norming subset K̃ of SY ∗ such that BY = aconv

(
{y ∈ BY : y∗(y) = 1}

)
for every

y∗ ∈ K̃. We are know able to possed a question equivalent to Problem 6.2.30.

Problem 6.2.31. Let Y be an in�nite-dimensional real separable Banach space. Suppose
that there is a subset K̃ of SY ∗ norming for Y such that BY = aconv

(
{y ∈ BY : y∗(y) = 1}

)

for every y∗ ∈ K̃. Does Y contains c0 or `1?

The following particular case of the above problem is also unsolved. Let us mention that
when Y ∗ is separable, Y does not contain copies of `1.

Problem 6.2.32. Let Y be an in�nite-dimensional real space with Y ∗ separable. Suppose
that there is a subset K̃ of SY ∗ norming for Y such that BY = aconv

(
{y ∈ BY : y∗(y) = 1}

)

for every y∗ ∈ K̃. Does Y contains c0?
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Let us comment that the above problem has positive solution if we replace that K̃ is a
norming subset by K̃ is a boundary (i.e. that for every x ∈ Y , there is y∗ ∈ K̃ such that
y∗(x) = ‖x‖), since a countable boundary produces a copy of c0 on the space [34, Remark 2].
But it is not always possible to do this replacement (norming for boundary), even when Y ∗

is separable (see [13, Example 3.4]).



106 Chapter 6. Detailed proofs of some results



Bibliography

[1] Y. Abramovich, A generalization of a theorem of J. Holub, Proc. Amer. Math. Soc.

108 (1990), 937�939. 2.7

[2] Y. Abramovich, C. Aliprantis, and O. Burkinshaw, The Daugavet equation in
uniformly convex Banach spaces, J. Funct. Anal. 97 (1991), 215�230. 5.2

[3] M. D. Acosta and R. Payá, Numerical radius attaining operators and the Radon-
Nikodým property, Bull. London Math. Soc. 25 (1993), 67�73. 2.8, 2.8.4

[4] F. Albiac and N. J. Kalton, Topics in Banach space theory, Graduate Texts in
Mathematics 233, Springer-Verlag, New York, 2006. 5.1, 6.2.1, 6.2.1

[5] A. Avilés, V. Kadets, M. Martín, J. Merí, and V. Shepelska, Slicely count-
ably determined Banach spaces, Trans. Amer. Math. Soc. (to appear). Available at
http://arXiv.org/abs/0809.2723 2.5.9, 4, 6.2.2, 6.2.2

[6] F. L. Bauer, On the �eld of values subordinate to a norm, Numer. Math. 4 (1962),
103�111. 1.1

[7] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and

of Elements of Normed Algebras, London Math. Soc. Lecture Note Series 2, Cambridge,
1971. 1.1, 6.1, 6.1

[8] F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note
Series 10, Cambridge, 1973. 1.1, 2.5, 3, 3.5

[9] J. Bourgain, La propriété de Radon-Nikodym, Publ. Math. de l'Univ. Pierre et Marie
Curie 36, 1979. 4.1

[10] J. Bourgain and F. Delbaen, A class of special L∞ spaces, Acta Math. 145 (1980),
155�176. 2.5.10

[11] R. R. Bourgin, Geometric Aspects of Convex Sets with the Radon-Nikodým Property,
Lecture Notes in Math. 993, Springer-Verlag, Berlin 1983. 2.5

107



108 Bibliography

[12] K. Boyko, V. Kadets, M. Martín, and J. Merí, Properties of lush spaces and
applications to Banach spaces with numerical index 1, Studia Math. 190 (2009), 117�
133. 2.5.10, 2.5.13, 3.4.2, 6.2.2, 6.2.15, 6.2.2

[13] K. Boyko, V. Kadets, M. Martín, and D. Werner, Numerical index of Banach
spaces and duality, Math. Proc. Cambridge Phil. Soc. 142 (2007), 93�102. 2.3, 2.3.1,
2.3.2, 2.3.9, 2.3, 2.4, 3, 3, 3.1, 3.1, 3.1.11, 3.1.12, 3.4.2, 6.2.1, 6.2.4, 6.2.5, 6.2.3

[14] L.-X. Cheng and M. Li, Extreme points, exposed points, di�erentiability points in
CL-spaces, Proc. Amer. Math. Soc. 136 (2008), 2445�2451. 2.8.4, 3

[15] G. Choquet, Lectures on Analysis. Volume II: Representation Theory, W. A. Benjamin,
Inc., London, 1969. 6.2.2, 6.2.2

[16] R. Deville, G. Godefroy, and V. Zizler, Smoothness and Renormings in Banach

spaces, Pitman Monographs 64, New York 1993. 2.5

[17] J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag, New York, 1984.
6.2.2

[18] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, AMS, Providence 1977.
6.2.2

[19] J. Dieudonné, Complex Structures on Real Banach Spaces, Proc. Amer. Math. Soc. 3,
(1952), 162�164. 5.1

[20] D. van Dulst, Characterizations of Banach spaces not containig `1, CWI Tract 59,
Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam,
1989. 4.1, 6.2.2

[21] J. Duncan, C. McGregor, J. Pryce, and A. White, The numerical index of a
normed space, J. London Math. Soc. 2 (1970), 481�488. 2.1, 2.2, 2.2, 2.3, 2.7, 6.1

[22] E. Ed-Dari, On the numerical index of Banach spaces, Linear Algebra Appl. 403 (2005),
86�96. 2.2, 6.1

[23] E. Ed-Dari and M. A. Khamsi, The numerical index of the Lp space, Proc. Amer.

Math. Soc. 134 (2006), 2019�2025. 2.2, 6.1, 6.1, 6.1

[24] E. Ed-dari, M. Khamsi, and A. Aksoy, On the numerical index of vector-valued
function spaces, Linear Mult. Algebra 55 (2007), 507�513. 6.1, 6.1, 6.1

[25] I. K. Daugavet, On a property of completely continuous operators in the space C,
Uspekhi Mat. Nauk 18 (1963), 157�158 (Russian). 5.2

[26] K. J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations,
Graduate Texts in Mathematics 194, Springer-Verlag, New York, 2000. 5.4

[27] K. J. Engel and R. Nagel, A short course on operator semigroups, Universitext,
Springer, New York, 2006. 5.4



Bibliography 109

[28] V. Ferenczi, Uniqueness of complex structure and real hereditarily indecomposable
Banach spaces, Adv. Math. 213 (2007), 462�488. 5.1

[29] V. Ferenczi and E. Medina Galego, Even in�nite-dimensional real Banach spaces,
J. Funct. Anal. 253, (2007), 534�549. 5.1

[30] C. Finet, M. Martín, and R. Payá, Numerical index and renorming, Proc. Amer.

Math. Soc. 131 (2003), 871�877. 2.5, 2.5.1, 2.5, 2.5.2, 2.5.3, 2.5, 2.5.17, 2.5.18, 2.5, 2.5.20,
6.2.1

[31] R. Fleming and J. Jamison, Isometries on Banach spaces: function spaces, Chapman
& Hall/CRC, Monographs & Surveys in Pure & Applied Math. 129, Boca Raton, FL,
2003. 5.4, 5.4.1, 5.4.1, 5.4.1

[32] R. Fleming and J. Jamison, Isometries on Banach spaces: Vector-valued function

spaces and operator spaces, Chapman & Hall/CRC, Monographs & Surveys in Pure &
Applied Math. 132, Boca Raton, FL, 2008. 5.4, 5.4.2

[33] V. P. Fonf, One property of Lindenstrauss-Phelps spaces, Funct. Anal. Appl. 13 (1979),
66�67. 6.2.2

[34] V. P. Fonf, Weakly extremal properties of Banach spaces, Mat. Zametki 45:6 (1989),
83-92, 112 (Russian). English transl.: Math. Notes 45 (1989), 488-494. 6.2.3

[35] R. E. Fullerton, Geometrical characterization of certain function spaces. In: Proc.

Inter. Sympos. Linear spaces (Jerusalem 1960), pp. 227�236. Pergamon, Oxford 1961. 3

[36] A. A. Giannopoulos and V. D. Milman, Euclidean structure in �nite dimensional
normed spaces, Handbook of the geometry of Banach spaces, Vol. I, pp. 707�779, North-
Holland, Amsterdam, 2001. 2.6

[37] N. Ghoussoub, G. Godefroy, B. Maurey, and W. Schachermayer, Some topo-

logical and geometrical structures in Banach spaces, Memoirs of the AMS, Providence,
RI, 1987. 4.1

[38] B. V. Godun and S. L. Troyanski, Renorming Banach spaces with fundamental
biorthogonal system, Contemporary Math. 144 (1993), 119�126. 2.5

[39] W. T. Gowers, A solution to Banach's hyperplane problem, Bull. London Math. Soc.

26 (1994), 523�530. 5.1

[40] W. T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer.

Math. Soc. 6 (1993), 851�874. 5.1

[41] W. T. Gowers and B. Maurey, Banach spaces with small spaces of operators, Math.

Ann. 307 (1997), 543�568. 5.1

[42] K. E. Gustafson, and D. K. M. Rao, Numerical range. The �eld of values of linear

operators and matrices, Springer-Verlag, New York, 1997. 1.1



110 Bibliography

[43] P. Harmand, D. Werner, and D. Werner, M -ideals in Banach spaces and Banach

algebras, Lecture Notes in Math. 1547, Springer-Verlag, Berlin, 1993. 1.4, 2.3, 2.3, 2.8.3

[44] P. Halmos, A Hilbert space problem book, Van Nostrand, New York, 1967. 1.1

[45] S. Heinrich, Ultraproducts in Banach space theory, J. Reine Angew. Math. 313 (1980),
72�104. 3.5

[46] J. R. Holub, A property of weakly compact operators on C[0, 1], Proc. Amer. Math.

Soc. 97 (1986), 396�398. 2.7

[47] T. Huruya, The normed space numerical index of C∗-algebras, Proc. Amer. Math. Soc.

63 (1977), 289�290. 2.2, 2.2.6

[48] J. M. Isidro and A. Rodríguez, On the de�nition of real W ∗-algebras, Proc. Amer.

Math. Soc. 124 (1996), 3407�3410. 2.2

[49] V. Kadets, A generalization of a Daugavet's theorem with applications to the space C
geometry, Funktsional. Analiz i ego Prilozhen. 31 (1997), 74�76. (Russian) 2.7, 5.2

[50] V. M. Kadets, Some remarks concerning the Daugavet equation, Quaestiones Math.

19 (1996), 225�235. 2.7, 5.2

[51] V. Kadets, N. Kalton, and D. Werner, Remarks on rich subspaces of Banach
spaces, Studia Math. 159 (2003), 195�206.

[52] V. Kadets, M. Martín, and J. Merí, Norm equalities for operators on Banach spaces,
Indiana U. Math. J. 56 (2007), 2385�2411. 5.1, 5.1, 5.2

[53] V. Kadets, M. Martín, J. Merí, and R. Payá, Convexity and smoothnes of
Banach spaces with numerical index one, Illinois J. Math. (to appear). Available at
http://www.ugr.es/local/mmartins 2.4.2, 4.4, 6.2.2, 6.2.2, 6.2.3

[54] V. Kadets, M. Martín, J. Merí, and V. Shepelska, Lushness, numerical index
one and duality, J. Math. Anal. Appl. 357 (2009), 15�24. 2.4, 3, 3.3, 3.4, 6.2.3

[55] V. Kadets. M. Martín, and R. Payá, Recent progress and open questions on the
numerical index of Banach spaces, Rev. R. Acad. Cien. Serie A. Mat. 100 (2006), 155�
182. 3.4.2, 4.3, 4.4, 4.4, 6.1, 6.1

[56] V. M. Kadets, M. M. Popov, The Daugavet property for narrow operators in rich
subspaces of C[0, 1] and L1[0, 1], St. Petersburg Math. J. 8 (1997), 571�584. 3.3

[57] V. Kadets and R. Shvidkoy, The Daugavet property for pairs of Banach spaces,
Matematicheskaya Fizika, Analiz, Geometria, 6 (1999), 253�263. 2.7, 5.2

[58] V. M. Kadets, R. V. Shvidkoy, G. G. Sirotkin, and D. Werner, Espaces de
Banach ayant la propriété de Daugavet, C. R. Acad. Sci. Paris, Ser. I, 325 (1997),
1291�1994. 2.7, 4.1, 5.2



Bibliography 111

[59] V. M. Kadets, R. V. Shvidkoy, G. G. Sirotkin, and D. Werner, Banach spaces
with the Daugavet property, Trans. Amer. Math. Soc. 352 (2000), 855�873. 2.4, 2.7, 4.1,
5.2

[60] V. M. Kadets, R. V. Shvidkoy, and D. Werner, Narrow operators and rich sub-
spaces of Banach spaces with the Daugavet property, Studia Math. 147 (2001), 269�298.
4.3, 4.3, 4.3, 6.2.22

[61] A. Kaidi, A. Morales, and A. Rodríguez-Palacios, Geometrical properties of the
product of a C∗-algebra, Rocky Mountain J. Math. 31 (2001), 197�213. 2.2, 2.2.6

[62] A. Kaidi, A. Morales, and A. Rodríguez-Palacios, Non associative C∗-algebras
revisited, In: Recent Progress in Functional analysis, Proceedings of the International
Function Analysis Meeting on the Occasion of the 70th Birthday of Professor Manuel
Valdivia (K. D. Bierstedt, J. Bonet, M. Maestre and J. Schmets Eds.). Elsevier, Amster-
dam, 2001, pp. 379�408. 1.1, 2.3

[63] S. G. Kim, M. Martín, and J. Merí, On the polynomial numerical index of the real
spaces c0, `1 and `∞, J. Math. Anal. Appl. 337 (2008), 98�106. 3

[64] P. Koszmider, Banach spaces of continuous functions with few operators, Math. Ann.

330 (2004), 151�183. 5.3, 5.3, 5.4.1

[65] P. Koszmider, M. Martín, and J. Merí, Extremely non-complex C(K) spaces, J.
Math. Anal. Appl. 350 (2009), 584�598. 5.1, 5.1, 5.3, 5.3

[66] P. Koszmider, M. Martín, and J. Merí, Isometries on extremely non-complex Ba-
nach spaces, preprint. Available at http://www.ugr.es/local/mmartins 5.1, 5.3

[67] H. E. Lacey, The isometric theory of classical Banach spaces, Springer-Verlag, Berlin,
1972. 2.2

[68] J. Lindenstrauss, Extension of compact operators, Memoirs of the Amer. Math. Soc.
48, Providence, 1964. 3

[69] J. Lindenstrauss, On operators which attain their norm, Israel J. Math. 1 (1968),
139�148. 2.5, 2.5

[70] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-Verlag,
Berlin, 1977. 6.2.2, 6.2.2

[71] Å. Lima, Intersection properties of balls and subspaces in Banach spaces, Trans. Amer.

Math. Soc., 227 (1977), 1�62. 3, 3.1, 3.1

[72] Å. Lima, Intersection properties of balls in spaces of compact operators, Ann. Inst.
Fourier Grenoble, 28 (1978), 35�65. 3

[73] G. López, M. Martín, and R. Payá, Real Banach spaces with numerical index 1,
Bull. London Math. Soc. 31 (1999), 207�212. 2.4, 2.4.4, 2.5, 2.5.5, 2.5.6, 2.5, 2.5.7, 2.7.4,
2.7, 2.7.5, 4, 6.2.2, 6.2.2



112 Bibliography

[74] G. López, M. Martín, and J. Merí, Numerical index of Banach spaces of weakly or
weakly-star continuous functions, Rocky Mount. J. Math. 38 (2008), 213�223. 2.2, 2.2,
2.2.13, 2.2, 2.2.14

[75] G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29�43. 1.1

[76] M. Martín, Índice numérico y subespacios (Spanish), Proceedings of the Meeting of

Andalusian Mathematicians (Sevilla, 2000), Vol. II, pp. 641�648, Colecc. Abierta 52,
Univ. Sevilla Secr. Publ., Sevilla, 2001. 2.2.11

[77] M. Martín, Banach spaces having the Radon-Nikodým property and numerical index
1, Proc. Amer. Math. Soc. 131 (2003), 3407�3410. 2.4.5, 2.8.4, 3

[78] M. Martín The group of isometries of a Banach space and duality, J. Funct. Anal. 255
(2008), 2966�2976. 2.3.4

[79] M. Martín, The alternative Daugavet property for C∗-algebras and JB∗-triples, Math.

Nachr. 281 (2008), 376�385. 2.4.5, 2.7

[80] M. Martín, Positive and negative results on the numerical index of Ba-
nach spaces and duality, Proc. Amer. Math. Soc. (to appear). Available at
http://www.ugr.es/local/mmartins 2.3.5, 2.3.7

[81] M. Martín and J. Merí, Numerical index of some polyhedral norms on the plane,
Linear Multilinear Algebra 55 (2007),175�190. 2.2, 2.2.15

[82] M. Martín and J. Merí, A note on the numerical index of the Lp space of dimension
two, Linear Mult. Algebra 57 (2009), 201�204. 2.2, 6.1

[83] M. Martín, J. Merí and M. Popov, On the numerical index of real Lp(µ)-spaces,
preprint. Available at http://www.ugr.es/local/mmartins 2.2, 6.1

[84] M. Martín, J. Merí, and A. Rodríguez-Palacios, Finite-dimensional Banach
spaces with numerical index zero, Indiana University Math. J. 53 (2004), 1279�1289.
1.3, 1.3.1

[85] M. Martín and T. Oikhberg, An alternative Daugavet property, J. Math. Anal. Appl.

294 (2004), 158�180. 2.7, 2.7, 2.7.3, 2.7, 2.7.6, 2.7.8, 3, 4, 6.2.2, 6.2.19

[86] M. Martín and R. Payá, Numerical index of vector-valued function spaces, Studia
Math. 142 (2000), 269�280. 2.2, 2.2.10, 2.2, 2.2.12, 2.2, 2.2.13, 6.1

[87] M. Martín and R. Payá, On CL-spaces and almost-CL-spaces, Ark. Mat. 42 (2004),
107�118. 3, 3.1

[88] M. Martín and A. R. Villena, Numerical index and Daugavet property for L∞(µ,X),
Proc. Edinburgh Math. Soc. 46 (2003), 415�420. 2.2, 2.2, 2.2.13

[89] C. M. McGregor, Finite dimensional normed linear spaces with numerical index 1, J.
London Math. Soc. 3 (1971), 717�721. 2.3, 2.4, 3



Bibliography 113

[90] S. Negrepontis, Banach spaces and topology, in: Handbook of set theoretic topology

(K. Kunen and J. E. Vaughan, eds.), North Holland, Amsterdam, 1984. 2.5

[91] T. Oikhberg, Spaces of operators, the ψ-Daugavet property, and numerical indices,
Positivity 9 (2005), 607�623. 2.6, 2.6.1, 2.6

[92] J. R. Partington, Norm attaining operators, Israel J. Math. 43 (1982), 273�276. 2.5

[93] R. Payá, A counterexample on numerical radius attaining operators, Israel J. Math. 79

(1992), 83�101. 2.8.4

[94] A. Peªczy«ski, On the impossibility of embedding of the space L in certain Banach
spaces, Colloq. Math. 8 (1961), 199�203. 2.7, 5.2

[95] H. Pfitzner, Separable L-embedded Banach spaces are unique preduals, Bull. London
Math. Soc. 39 (2007), 1039�1044. 2.3

[96] G. Plebanek, A construction of a Banach space C(K) with few operators, Topology
Appl. 143 (2004), 217�239. 5.3, 5.3

[97] S. Reisner, Certain Banach spaces associated with graphs and CL-spaces with 1-
unconditonal bases, J. London Math. Soc 43 (1991), 137�148. 3

[98] S. Rolewicz, Metric Linear Spaces (Second edition), Mathematics and its Applications
(East European Series), 20. D. Reidel Publishing Co., Dordrecht; PWN�Polish Scienti�c
Publishers, Warsaw, 1985. 1.3.1

[99] H. P. Rosenthal, A characterization of Banach spaces containing `1, Proc. Nat. Acad.
Sci. U.S.A. 71 (1974), 2411�2413. 6.2.2

[100] H. P. Rosenthal, The Lie algebra of a Banach space, in: Banach spaces (Columbia,
Mo., 1984), 129�157, Lecture Notes in Math. 1166, Springer, Berlin, 1985. 1.2, 1.3, 1.3,
1.3.1

[101] H. P. Rosenthal, Functional hilbertian sums, Pac. J. Math. 124 (1986), 417�467.
1.3.1

[102] S. Sakai, C∗-algebras and W ∗-algebras, Springer-Verlag, New York-Heidelberg, 1971.
5.4

[103] S. Szarek, A superre�exive Banach space which does not admit complex structure,
Proc. Amer. Math. Soc. 97 (1986), 437�444. 5.1

[104] W. Schachermayer, Norm attaining operators and renormings of Banach spaces,
Israel J. Math. 44 (1983), 201�212. 2.5, 2.5

[105] K. D. Schmidt, Daugavet's equation and orthomorphisms, Proc. Amer. Math. Soc.

108 (1990), 905�911. 2.7



114 Bibliography

[106] Z. Semadeni, Banach spaces of Continuous functions Vol. I., Monogra�e Matematy-
czne, Tom 55, PWN�Polish Scienti�c Publishers, Warsaw, 1971. 1.4.1

[107] R. V. Shvidkoy, Geometric aspects of the Daugavet property, J. Funct. Anal. 176
(2000), 198�212. 2.7, 4, 5.2

[108] K. Tillekeratne, Spatial numerical range of an operator, Proc. Camb. Phil. Soc. 76

(1974), 515�520. 2.5, 2.5.1, 2.5.4

[109] S. Todor£evi¢, Compact subsets of the �rst Baire class, J. Amer. Math. Soc. 12

(1999), 1179�1212. 4.1, 6.2.2

[110] O. Toeplitz, Das algebraische Analogon zu einem Satze von Fejer, Math. Z. 2 (1918),
187�197. 1.1

[111] M. Valdivia, Topological direct sum decompositions of Banach spaces, Israel J. Math.

71 (1990), 289�296. 2.5

[112] D. Werner, An elementary approach to the Daugavet equation, in: Interaction be-

tween Functional Analysis, Harmonic Analysis and Probability (N. Kalton, E. Saab and
S. Montgomery-Smith Eds), Lecture Notes in Pure and Appl. Math. 175 (1994), 449�454.
2.7, 5.2

[113] D. Werner, The Daugavet equation for operators on function spaces, J. Funct. Anal.
143 (1997), 117�128. 2.2, 2.2.8, 2.7, 3.1, 3.1

[114] D. Werner, Recent progress on the Daugavet property, Irish Math. Soc. Bull. 46

(2001), 77�97. 2.7, 5.2

[115] P. Wojtaszczyk, Some remarks on the Daugavet equation, Proc. Amer. Math. Soc.

115 (1992), 1047�1052. 2.7, 5.2


	 Preface
	 Basic notation
	Numerical Range of operators. Surjective isometries
	Introduction
	The exponential function. Isometries
	Finite-dimensional spaces with infinitely many isometries
	The dimension of the Lie algebra

	Surjective isometries and duality

	Numerical index of Banach spaces
	Introduction
	Computing the numerical index
	Numerical index and duality
	Banach spaces with numerical index one
	Renorming and numerical index
	Finite-dimensional spaces with numerical index one: asymptotic behavior
	Relationship to the Daugavet property.
	Smoothness, convexity and numerical index 1

	Lush spaces
	Examples of lush spaces
	Lush renormings
	Some reformulations of lushness
	Lushness is not equivalent to numerical index 1
	Stability results for lushness

	Slicely countably determined Banach spaces
	Slicely countably determined sets
	Slicely Countably Determined spaces
	Applications to Daugavet and alternative Daugavet properties
	Applications to lush spaces and to spaces with numerical index 1

	Extremely non-complex Banach spaces
	Introduction
	Norm equalities for operators
	Norm equalities of the form "026B30D g(T)"026B30D =f("026B30D T"026B30D )
	Norm equalities of the form "026B30D Id+ g(T)"026B30D =f("026B30D g(T)"026B30D )

	Extremely non-complex Banach spaces
	Isometries on extremely non-complex Banach spaces
	Isometries on CE(K"026B30D L)-spaces
	Isometries and duality


	Detailed proofs of some results
	Lp()-spaces
	Some results on Banach spaces with numerical index one
	A sufficient condition to renorm with numerical index 1
	Prohibitive results to renorm with numerical index 1
	Several open problems


	 Bibliography

