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Basic notation

Notation

Basic notation
X Banach space.

K base field (it may be R or C),
SX unit sphere, BX unit ball,
X∗ dual space,
L(X) bounded linear operators,
Iso(X) surjective linear isometries,
T∗ ∈ L(X∗) adjoint operator of T ∈ L(X),
aconv(B) = co(T B) absolutely convex hull of B,
ext(C) extreme points of C,
slice of C:

S(C, x∗, α) =
{

x ∈ C : Re x∗(x) > sup Re x∗(C)− α
}

where x∗ ∈ X∗ and 0 < α < sup Re x∗(C).
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Numerical range of operators

Numerical range of operators

2 Numerical range of operators
Definitions and first properties

F. F. Bonsall and J. Duncan
Numerical Ranges. Vol I and II.
London Math. Soc. Lecture Note Series, 1971 & 1973.
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Numerical range of operators Definitions and first properties

Numerical range: Hilbert spaces

Hilbert space numerical range (Toeplitz, 1918)
A n× n real or complex matrix

W(A) =
{
(Ax | x) : x ∈ Kn, (x | x) = 1

}
.

H real or complex Hilbert space, T ∈ L(H),

W(T) =
{
(Tx | x) : x ∈ H, ‖x‖ = 1

}
.

Remark
F Given T ∈ L(H) we associate

a sesquilinear form ϕT(x, y) = (Tx | y) (x, y ∈ H),
a quadratic form ϕ̂T(x) = ϕT(x, x) = (Tx | x) (x ∈ H).

F Then, W(T) = ϕ̂T(SH). Therefore:
ϕ̂T(BH) = [0, 1] W(T),
ϕ̂T(H) = R+ W(T).
But we cannot get W(T) from ϕ̂T(BH) !
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Numerical range of operators Definitions and first properties

Numerical range: Hilbert spaces. Properties.

Some properties
H Hilbert space, T ∈ L(H):

W(T) is convex.
T, S ∈ L(H), α, β ∈ K:

W(αT + βS) ⊆ αW(T) + βW(S);
W(αId + S) = α + W(S).

W(U∗TU) = W(T) for every T ∈ L(H) and every U unitary.
Sp(T) ⊆W(T).
If T is normal, then W(T) = co Sp(T).
In the real case (dim(H) > 1), there is T ∈ L(H), T 6= 0 with
W(T) = {0}.
In the complex case,

sup{|(Tx | x)| : x ∈ SH} >
1
2
‖T‖.

If T is actually self-adjoint, then
sup{|(Tx | x)| : x ∈ SH} = ‖T‖.
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Numerical range of operators Definitions and first properties

Numerical range: Hilbert spaces. Motivation.

Some reasons to study numerical ranges
It gives a “picture” of the matrix/operator which allows to “see” many
properties (algebraic or geometrical) of the matrix/operator.
It is a comfortable way to study the spectrum.
It is useful to estimate spectral radii of small perturbations of matrices.
It is useful to work with some concepts like hermitian operator,
skew-hermitian operator, dissipative operator. . .

Example

Consider A =
(

0 M
0 0

)
and B =

(
0 0
ε 0

)
.

Sp(A) = {0}, Sp(B) = {0}.
Sp(A + B) = {±

√
Mε} ⊆W(A + B) ⊆W(A) + W(B),

so the spectral radius of A + B is bounded above by 1
2 (|M|+ |ε|).

Miguel Mart́ın (University of Granada (Spain)) Numerical ranges and indices Yong Pyong resort, August 2009 7 / 54



Numerical range of operators Definitions and first properties

Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, T ∈ L(X),

V(T) =
{

x∗(Tx) : x∗ ∈ SX∗ , x ∈ SX , x∗(x) = 1
}

Some properties
X Banach space, T ∈ L(X).

V(T) is connected but not necessarily convex.
T, S ∈ L(X), α, β ∈ K:

V(αT + βS) ⊆ αV(T) + βV(S);
V(αId + S) = α + V(S).

Sp(T) ⊆ V(T).
Actually, co

(
Sp(T)

)
⊆ V(T).

co Sp(T) =
⋂{

Vp(T), : p equivalent norm
}

where Vp(T) is the numerical range of T in the Banach space (X, p).
V(U−1TU) = V(T) for every T ∈ L(X) and every U ∈ Iso(X).
V(T) ⊆ V(T∗) ⊆ V(T).
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Numerical range of operators Definitions and first properties

Numerical range: Banach spaces (II)

Some motivation for the numerical range
It allows to carry from Hilbert spaces to Banach spaces the concepts of
hermitian operator, skew-hermitian operator, dissipative operators. . .
It gives a description of the Lie algebra corresponding to the Lie group of
all onto isometries on the space.
It gives an easy and quantitative proof of the fact that Id is an strongly
extreme point of BL(X) (MLUR point).
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Numerical range of operators Definitions and first properties

Numerical radius: definition and properties

Numerical radius
X real or complex Banach space, T ∈ L(X),

v(T) = sup
{
|λ| : λ ∈ V(T)

}
= sup

{
|x∗(Tx)| : x∗ ∈ SX∗ , x ∈ SX , x∗(x) = 1

}
Elementary properties
X Banach space, T ∈ L(X)

v(·) is a seminorm, i.e.
v(T + S) 6 v(T) + v(S) for every T, S ∈ L(X).
v(λ T) = |λ| v(T) for every λ ∈ K, T ∈ L(X).

sup | Sp(T)| 6 v(T).
v(U−1TU) = v(T) for every U ∈ Iso(X).
v(T∗) = v(T).

Miguel Mart́ın (University of Granada (Spain)) Numerical ranges and indices Yong Pyong resort, August 2009 10 / 54



Numerical range of operators Definitions and first properties

Numerical radius: examples

Some examples
1 H real Hilbert space dim(H) > 1

=⇒ exist T ∈ L(X) with v(T) = 0 and ‖T‖ = 1.
2 H complex Hilbert space dim(H) > 1

v(T) > 1
2‖T‖,

the constant 1
2

is optimal.

3 X = L1(µ) =⇒ v(T) = ‖T‖ for every T ∈ L(X).
4 X∗ ≡ L1(µ) =⇒ v(T) = ‖T‖ for every T ∈ L(X).
5 In particular, this is the case for X = C(K).
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Numerical range of operators Definitions and first properties

Numerical radius: real and complex spaces

Example
The numerical range depends on the base field: X complex Banach space, XR

real space underlying X, define T ∈ L(XR) by

T(x) = i x (x ∈ X).

‖T‖ = 1 and v(T) = 0 if viewed in XR.

‖T‖ = 1 and V(T) = {i}, so v(T) = 1 if viewed in (complex) X.

Theorem (Bohnenblust-Karlin; Glickfeld)
X complex Banach space, T ∈ L(X):

v(T) >
1
e
‖T‖.

The constant 1
e

is optimal:

∃ X two-dimensional complex, ∃ T ∈ L(X) with ‖T‖ = e and v(T) = 1.
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Numerical ranges and surjective isometries

Numerical ranges and surjective isometries

3 Numerical ranges and surjective isometries
Relationship with semigroups of operators

Finite-dimensional spaces
Isometries and duality

M. Mart́ın
The group of isometries of a Banach space and duality.
J. Funct. Anal. (2008).

M. Mart́ın, J. Meŕı, and A. Rodŕıguez-Palacios.
Finite-dimensional spaces with numerical index zero.
Indiana U. Math. J. (2004).

H. P. Rosenthal
The Lie algebra of a Banach space.
in: Banach spaces (Columbia, Mo., 1984), LNM, Springer, 1985.
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Numerical ranges and surjective isometries Relationship with semigroups of operators

Relationship with semigroups of operators

A motivating example
A real or complex n× n matrix. TFAE:

A is skew-adjoint (i.e. A∗ = −A).
Re(Ax | x) = 0 for every x ∈ H.
B = exp(ρA) is unitary for every ρ ∈ R (i.e. B∗B = BB∗ = Id).

In term of Hilbert spaces
H (n-dimensional) Hilbert space, T ∈ L(H). TFAE:

Re W(T) = {0}.
exp(ρT) ∈ Iso(H) for every ρ ∈ R.

For general Banach spaces
X Banach space, T ∈ L(X). TFAE:

Re V(T) = {0}.
exp(ρT) ∈ Iso(X) for every ρ ∈ R.
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Numerical ranges and surjective isometries Relationship with semigroups of operators

Characterizing uniformly continuous semigroups of operators

Theorem (Bonsall-Duncan, 1970’s; Rosenthal, 1984)
X real or complex Banach space, T ∈ L(X). TFAE:

Re V(T) = {0} (T is skew-hermitian).
‖ exp(ρT)‖ 6 1 for every ρ ∈ R.{

exp(ρT) : ρ ∈ R+
0
}
⊂ Iso(X).

T belongs to the tangent space to Iso(X) at Id.

lim
ρ→0

‖Id + ρ T‖ − 1
ρ

= 0.

Main consequence
If X is a real Banach space such that

v(T) = 0 =⇒ T = 0,

then Iso(X) is “small”:
it does not contain any uniformly continuous one-parameter semigroups,
the tangent space of Iso(X) at Id is zero.

Remark
For every T ∈ L(X) one has∥∥exp(ρT)

∥∥ 6 esup |Re V(T)| ρ (
ρ ∈ R

)
and sup |Re V(T)| is the smallest possibility.
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Numerical ranges and surjective isometries Relationship with semigroups of operators

Isometries on finite-dimensional spaces

Theorem (Rosenthal, 1984)
X real finite-dimensional Banach space. TFAE:

Iso(X) is infinite.
There is T ∈ L(X), T 6= 0, with V(T) = {0}.

Theorem (Rosenthal, 1984; M.–Meŕı–Rodŕıguez-Palacios, 2004)
X finite-dimensional real space. TFAE:

Iso(X) is infinite.

X = X0 ⊕ X1 ⊕ · · · ⊕ Xn such that
X0 is a (possible null) real space,
X1, . . . , Xn are non-null complex spaces,

there are ρ1, . . . , ρn rational numbers, such that∥∥∥x0 + ei ρ1 θ x1 + · · ·+ ei ρn θ xn

∥∥∥ =
∥∥x0 + x1 + · · ·+ xn

∥∥
for every xi ∈ Xi and every θ ∈ R.
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Numerical ranges and surjective isometries Relationship with semigroups of operators

Isometries on finite-dimensional spaces II

Remark
The theorem is due to Rosenthal, but with real ρ’s.
The fact that the ρ’s may be chosen as rational numbers is due to
M.–Meŕı–Rodŕıguez-Palacios.

Corollary
X real space with infinitely many isometries.

If dim(X) = 2, then X ≡ C.
If dim(X) = 3, then X ≡ R⊕C (absolute sum).

Example

X = (R4, ‖ · ‖), ‖(a, b, c, d)‖ =
1
4

∫ 2π

0

∣∣∣Re
(

e2it(a + ib) + eit(c + id)
)∣∣∣ dt.

Then, Iso(X) is infinite but the unique possible decomposition is X = C⊕C

with ∥∥∥eitx1 + e2itx2

∥∥∥ = ‖x1 + x2‖.
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Numerical ranges and surjective isometries Relationship with semigroups of operators

The Lie-algebra of a Banach space

Lie-algebra

X real Banach space, Z(X) =
{

T ∈ L(X) : V(T) = {0}
}

.
When X is finite-dimensional, Iso(X) is a Lie-group and Z(X) is the
tangent space (i.e. its Lie-algebra).

Remark
If dim(X) = n, then

0 6 dim(Z(X)) 6
n(n− 1)

2
.

An open problem

Given n > 3, which are the possible dim
(
Z(X)

)
over all n-dimensional X’s?

Observation (Javier Meŕı, PhD)
When dim(X) = 3, dim(Z(X)) cannot be 2.
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Numerical ranges and surjective isometries Relationship with semigroups of operators

Semigroups of surjective isometries and duality

Remark
X Banach space.

T ∈ Iso(X) =⇒ T∗ ∈ Iso(X∗).
Iso(X∗) can be bigger than Iso(X).

The problem
How much bigger can be Iso(X∗) than Iso(X)?
Is it possible that Z

(
Iso(X∗)

)
is big while Z

(
Iso(X)

)
is trivial?

The answer is yes. This is what we are going to present next.
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Numerical ranges and surjective isometries Relationship with semigroups of operators

Semigroups of surjective isometries and duality

The construction (M., 2008)
E ⊂ C(∆) separable Banach space. We consider the Banach space

CE([0, 1]‖∆) = { f ∈ C[0, 1] : f |∆ ∈ E} .

Then, every T ∈ L
(
CE([0, 1]‖∆)

)
satisfies sup |V(T)| = ‖T‖ and

CE([0, 1]‖∆)∗ ≡ E∗ ⊕1 L1(µ).

The main consequence
Take E = `2 (real). Then

Iso
(
C`2 ([0, 1]‖∆)

)
is “small” (there is no uniformly continuous

semigroups).
Since C`2 ([0, 1]‖∆)∗ ≡ `2 ⊕1 L1(µ), given S ∈ Iso(`2), the operator

T =
(

S 0
0 Id

)
∈ Iso

(
C`2 ([0, 1]‖∆)∗

)
.

Therefore, Iso
(
C`2 ([0, 1]‖∆)∗

)
contains infinitely many uniformly

continuous semigroups of isometries.
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Numerical ranges and surjective isometries Relationship with semigroups of operators

Some comments

In terms of linear dynamical systems
In C`2 ([0, 1]‖∆) there is no A ∈ L(X) such that the solution to the linear
dynamical system

x′ = A x
(

x : R+
0 −→ C`2 ([0, 1]‖∆)

)
(which is x(t) = exp(t A)(x(0))) is given by a semigroup of isometries.
There are infinitely many such A’s in C`2 ([0, 1]‖∆)∗, in C`2 ([0, 1]‖∆)∗∗. . .

Further results (Koszmider–M.–Meŕı., 2009)
There are unbounded As on C`2 ([0, 1]‖∆) such that the solution to the
linear dynamical system

x′(t) = A x(t)

is a one-parameter C0 semigroup of isometries.
There is X such that
Iso(X ) = {−Id, Id} and X ∗ = `2 ⊕1 L1(ν).
Therefore, there is no semigroups in Iso(X ), but there are infinitely many
exponential one-parameter semigroups in Iso(X ∗).
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Numerical index

Numerical index of Banach spaces

4 Numerical index of Banach spaces
Basic definitions and examples
Stability properties
Duality
The isomorphic point of view

V. Kadets, M. Mart́ın, and R. Payá.
Recent progress and open questions on the numerical index of Banach spaces.
RACSAM (2006)
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Numerical index Basic definitions and examples

Numerical index of Banach spaces: definitions

Numerical radius
X Banach space, T ∈ L(X). The numerical radius of T is

v(T) = sup
{
|x∗(Tx)| : x∗ ∈ SX∗ , x ∈ SX , x∗(x) = 1

}
Remark
The numerical radius is a continuous seminorm in L(X). Actually, v(·) 6 ‖ · ‖

Numerical index (Lumer, 1968)
X Banach space, the numerical index of X is

n(X) = inf
{

v(T) : T ∈ L(X), ‖T‖ = 1
}

= max
{

k > 0 : k ‖T‖ 6 v(T) ∀ T ∈ L(X)
}

= inf
{

M > 0 : ∃T ∈ L(X), ‖T‖ = 1, ‖ exp(ρT)‖ 6 eρM ∀ρ ∈ R
}
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Numerical index Basic definitions and examples

Numerical index of Banach spaces: basic properties

Some basic properties
n(X) = 1 iff v and ‖ · ‖ coincide.
n(X) = 0 iff v is not an equivalent norm in L(X)

X complex ⇒ n(X) > 1/e.
(Bohnenblust–Karlin, 1955; Glickfeld, 1970)

Actually,

{n(X) : X complex, dim(X) = 2} = [e−1, 1]
{n(X) : X real, dim(X) = 2} = [0, 1]

(Duncan–McGregor–Pryce–White, 1970)
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Numerical index Basic definitions and examples

Numerical index of Banach spaces: examples (I)

Some examples
1 H Hilbert space, dim(H) > 1,

n(H) = 0 if H is real
n(H) = 1/2 if H is complex

2 n
(

L1(µ)
)

= 1 µ positive measure
n
(
C(K)

)
= 1 K compact Hausdorff space

(Duncan et al., 1970)

3 If A is a C∗-algebra ⇒
{

n(A) = 1 A commutative
n(A) = 1/2 A not commutative

(Huruya, 1977; Kaidi–Morales–Rodŕıguez, 2000)
4 If A is a function algebra ⇒ n(A) = 1

(Werner, 1997)
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Numerical index Basic definitions and examples

Numerical index of Banach spaces: some examples (II)

More examples
5 For n > 2, the unit ball of Xn is a 2n regular polygon:

n(Xn) =


tan

( π

2n

)
if n is even,

sin
( π

2n

)
if n is odd.

(M.–Meŕı, 2007)
6 Every finite-codimensional subspace of C[0, 1] has numerical index 1

(Boyko–Kadets–M.–Werner, 2007)
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Numerical index Basic definitions and examples

Numerical index of Banach spaces: some examples (III)

Even more examples
7 Numerical index of Lp-spaces, 1 < p < ∞:

n
(

Lp[0, 1]
)

= n(`p) = lim
m→∞

n
(
`
(m)
p
)
.

(Ed-Dari, 2005 & Ed-Dari-Khamsi, 2006)

n
(
`
(2)
p
)

?
In the real case,

max
{

1
21/p ,

1
21/q

}
Mp 6 n

(
`
(2)
p
)

6 Mp

and Mp = v
(

0 1
−1 0

)
= max

t∈[0,1]

|tp−1 − t|
1 + tp

(M.–Meŕı, 2009)

In the real case, n
(

Lp(µ)
)

>
Mp

8e
.

In particular, n
(

Lp(µ)
)

> 0 for p 6= 2.

(M.–Meŕı–Popov, 2009)
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Numerical index Basic definitions and examples

Numerical index: open problems on computing

Open problems
1 Compute n

(
Lp[0, 1]

)
for 1 < p < ∞, p 6= 2.

2 Is n
(
`
(2)
p
)

= Mp (real case) ?
3 Is n

(
`
(2)
p
)

= p−
1
p q−

1
q (complex case) ?

4 Compute the numerical index of real C∗-algebras.
5 Compute the numerical index of more classical Banach spaces: Cm[0, 1],

Lip(K), Lorentz spaces, Orlicz spaces. . .
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Numerical index Stability properties

Stability properties

Direct sums of Banach spaces (M.–Payá, 2000)

n
(
[⊕λ∈ΛXλ]c0

)
= n

(
[⊕λ∈ΛXλ]`1

)
= n

(
[⊕λ∈ΛXλ]`∞

)
= inf

λ
n(Xλ)

Vector-valued function spaces (López-M.-Meŕı-Payá-Villena, 2000’s)
E Banach space, µ positive σ-finite measure, K compact space. Then

n
(
C(K, E)

)
= n

(
Cw(K, E)

)
= n

(
L1(µ, E)

)
= n

(
L∞(µ, E)

)
= n(E),

and n
(
Cw∗ (K, E∗)

)
6 n(E)

Lp-spaces (Askoy–Ed-Dari–Khamsi, 2007)

n
(

Lp([0, 1], E)
)

= n
(
`p(E)

)
= lim

m→∞
n
(
E⊕p

m· · · ⊕p E
)
.
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Numerical index Duality

Numerical index and duality

Proposition
X Banach space, T ∈ L(X). Then

sup Re V(T) = lim
α→0+

‖Id + α T‖ − 1
α

.

Then, v(T∗) = v(T) for every T ∈ L(X).
Therefore, n(X∗) 6 n(X).

(Duncan–McGregor–Pryce–White, 1970)

Question (From the 1970’s)

Is n(X) = n(X∗) ?

Negative answer (Boyko–Kadets–M.–Werner, 2007)
Consider the space

X =
{
(x, y, z) ∈ c⊕∞ c⊕∞ c : lim x + lim y + lim z = 0

}
.

Then, n(X) = 1 but n(X∗) < 1.
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Numerical index Duality

Numerical index and duality (II)

The above example can be squeezed to get more counterexamples.

Example 1
Exists X real with n(X) = 1 and n(X∗) = 0.
Exists X complex with n(X) = 1 and n(X∗) = 1/e.

Example 2
Given t ∈]0, 1], exists X real with n(X) = t and n(X∗) = 0.
Given t ∈]1/e, 1], exists X complex with n(X) = t and n(X∗) = 1/e.
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Numerical index Duality

Numerical index and duality (III)

Some positive partial answers
One has n(X) = n(X∗) when

X is reflexive (evident).
X is a C∗-algebra or a von Neumann predual (1970’s – 2000’s).
X is L-embedded in X∗∗ (M., 2009).
If X has RNP and n(X) = 1, then n(X∗) = 1 (M., 2002).
If X is M-embedded in X∗∗ and n(X) = 1
=⇒ n(Y) = 1 for X ⊆ Y ⊆ X∗∗.

Example
X = CK(`2)([0, 1]‖∆). Then n(X) = 1 and

X∗ ≡ K(`2)∗ ⊕1 C0(K‖∆)∗ and X∗∗ ≡ L(`2)⊕∞ C0(K‖∆)∗∗.

Therefore, X∗∗ is a C∗-algebra, but n(X∗) = 1/2 < n(X) = 1.
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Numerical index Duality

Numerical index and duality: open problems

Main question
Find isometric or isomorphic properties assuring that n(X) = n(X∗).

Question 1
If Z has a unique predual X, does n(X) = n(X∗) ?

Question 2
Z dual space, does there exists a predual X such that n(X) = n(X∗) ?

Question 4
If X has the RNP, does n(X) = n(X∗) ?
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Numerical index The isomorphic point of view

The isomorphic point of view

Renorming and numerical index (Finet–M.–Payá, 2003)
(X, ‖ · ‖) (separable or reflexive) Banach space. Then

Real case:
[0, 1[⊆ {n(X, | · |) : | · | ' ‖ · ‖}

Complex case:
[e−1, 1[⊆ {n(X, | · |) : | · | ' ‖ · ‖}

Open question
The result is known to be true when X has a long biorthogonal system.
Is it true in general ?

Remark
In some sense, any other value of n(X) but 1 is isomorphically trivial.
F What about the value 1 ?
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Banach spaces with numerical index one

5 Banach spaces with numerical index one
How to deal with numerical index 1 property?
The old approach: working with weaker properties
The new approach: stronger properties
The link: slicely countably determined Banach spaces

V. Kadets, M. Mart́ın, and R. Payá.
Recent progress and open questions on the numerical index of Banach spaces.
RACSAM (2006)

A. Avilés, V. Kadets, M. Mart́ın, J. Meŕı, and V. Shepelska
Slicely Countably Determined Banach spaces
Trans. Amer. Math. Soc. (to appear)

K. Boyko, V. Kadets, M. Mart́ın, and J. Meŕı.
Properties of lush spaces and applications to Banach spaces with numerical index 1.
Studia Math. (2009).

V. Kadets, M. Mart́ın, J. Meŕı, and R. Payá.
Smoothness and convexity for Banach spaces with numerical index 1.
Illinois J. Math. (to appear).
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Banach spaces with numerical index one

Numerical index 1

Recall that X has numerical index one (n(X) = 1) iff

‖T‖ = sup
{
|x∗(Tx)| : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1

}
(i.e. v(T) = ‖T‖) for every T ∈ L(X).

Examples
C(K), L1(µ), A(D), H∞, finite-codimensional subspaces of C[0, 1]. . .

Leading questions (still unsolved)

Let X be an infinite-dimensional Banach space with n(X) = 1.
Can X be smooth or strictly convex ?
Does X contain c0 or `1 ?

What we are going to show
Let X be an infinite-dimensional real Banach space with n(X) = 1.

X∗ cannot be smooth nor strictly convex.
X∗ ⊇ `1.
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How to deal with numerical index 1 property?

One the one hand: weaker properties
In a general Banach space, we only can construct compact (actually,
nuclear) operators.
Actually, we only may easily calculate the norm of rank-one operators.
All the results given before for Banach spaces in which we use numerical
index 1 only need

v(T) = ‖T‖ for every rank-one operator T.
This is called the alternative Daugavet property (ADP).

One the other hand: stronger properties
We do not know any operator-free characterization of Banach spaces with
numerical index 1.
When we know that a Banach space has numerical index 1 (or that it can
be renormed with numerical index 1), we actually prove more.
There are some sufficient geometrical conditions.
The weakest property is called lushness.
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How to deal with numerical index 1 property?

Relationship between the properties
One of the key ideas to get interesting results for Banach spaces with
numerical index 1 is to study when the three properties below are
equivalent.
A very interesting property appears: the slicely countably determination.

lushness ===-
�=6== Numerical index 1 ===-

�=6== ADP

�=================
with SCD property

(RNP, Asplund...)
=================
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Isomorphic properties (prohibitive results)

Question
Does every Banach space admit an equivalent norm with numerical index 1 ?

Negative answer (López–M.–Payá, 1999)
Not every real Banach space can be renormed to have numerical index 1.
Concretely:

If X is real, reflexive, and dim(X) = ∞, then n(X) < 1.
Actually, if X is real, X∗∗/X separable and n(X) = 1,
then X is finite-dimensional.
Moreover, if X is real, RNP, dim(X) = ∞, and n(X) = 1, then X ⊃ `1.
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Proving the 1999 results (I)

Lemma
X Banach space, n(X) = 1
=⇒ |x∗0(x0)| = 1 for all x∗0 ∈ ext (BX∗ ) and all denting point x0 of BX.

Proof:
Fix ε > 0. As x0 denting point, ∃y∗ ∈ SX∗ and α > 0 such that

‖z− x0‖ < ε whenever z ∈ BX∗ satisfies Re y∗(z) > 1− α.
(Choquet’s lemma): x∗0 ∈ ext (BX∗ ), ∃y ∈ SX and β > 0 such that
|z∗(x0)− x∗0(x0)| < ε whenever z∗ ∈ BX∗ satisfies Re z∗(y) > 1− β.

Let T = y∗ ⊗ y ∈ L(X). ‖T‖ = 1 =⇒ v(T) = 1.
We may find x ∈ SX, x∗ ∈ SX∗ , such that

x∗(x) = 1 and |x∗(Tx)| = |y∗(x)||x∗(y)| > 1−min{α, β}.
By choosing suitable s, t ∈ T we have

Re y∗(sx) = |y∗(x)| > 1− α & Re tx∗(y) = |x∗(y)| > 1− β.

It follows that ‖sx− x0‖ < ε and |tx∗(x0)− x∗0(x0)| < ε, and so
1− |x∗0(x0)| 6 |tx∗(sx)− x∗0(x0)| 6

6 |tx∗(sx)− tx∗(x0)|+ |tx∗(x0)− x∗0(x0)| < 2ε.X
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Proving the 1999 results (II)

Proposition
X real, A ⊂ SX infinite with |x∗(a)| = 1 ∀x∗ ∈ ext (BX∗ ), ∀a ∈ A.
=⇒ X ⊇ c0 or X ⊇ `1.

Proof:
X ⊇ `1 X
(Rosenthal `1-theorem): Otherwise, ∃ {an} ⊆ A non-trivial weak Cauchy.
Consider Y the closed linear span of {an : n ∈N}.
‖an − am‖ = 2 if n 6= m =⇒ dim(Y) = ∞.
(Krein-Milman theorem): every y∗ ∈ ext (BY∗ ) has an extension which
belongs to ext (BX∗ ).
So, |y∗(an)| = 1 ∀y∗ ∈ ext (BY∗ ), ∀n ∈N.
{an} weak Cauchy =⇒ {y∗(an)} is eventually 1 or −1.
Then ext (BY∗ ) =

⋃
k∈N

(Ek ∪−Ek) where

Ek = {y∗ ∈ ext (BY∗ ) : y∗(an) = 1 for n > k}.

{an} separates points of Y∗ =⇒ Ek finite, so ext (BY∗ ) countable.
(Fonf): Y ⊇ c0. So, X ⊇ c0.X
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Proving the 1999 results (III)

Lemma
X Banach space, n(X) = 1
=⇒ |x∗0(x0)| = 1 for all x∗0 ∈ ext (BX∗ ) and all denting point x0 of BX.

Proposition
X real, A ⊂ SX infinite with |x∗(a)| = 1 ∀x∗ ∈ ext (BX∗ ), ∀a ∈ A.
=⇒ X ⊇ c0 or X ⊇ `1.

Main consequence
X real, RNP, dim(X) = ∞, and n(X) = 1 =⇒ X ⊇ `1.

Corollary
X real, dim(X) = ∞, n(X) = 1.

X is not reflexive.
X∗∗/X is non-separable.
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Isometric properties: finite-dimensional spaces

Finite-dimensional spaces (McGregor, 1971; Lima, 1978)
X real or complex finite-dimensional space. TFAE:

n(X) = 1.
|x∗(x)| = 1 for every x∗ ∈ ext (BX∗ ), x ∈ ext (BX).
BX = aconv(F) for every maximal convex subset F of SX
(X is a CL-space).

Remark
This shows a rough behavior of the norm of a finite-dimensional space
with numerical index 1:

The space is not smooth.
The space is not strictly convex.

Question
What is the situation in the infinite-dimensional case ?
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Isometric properties: infinite-dimensional spaces

Theorem (Kadets–M.–Meŕı–Payá, 2009)
X infinite-dimensional Banach space, n(X) = 1. Then

X∗ is neither smooth nor strictly convex.
The norm of X cannot be Fréchet-smooth.
There is no WLUR points in SX.

Corollary
X = C(T)/A(D). X∗ = H1 is smooth =⇒ n(X) < 1 & n(H1) < 1.

Example without completeness
There is X (non-complete) strictly convex with X∗ ≡ L1(µ), so n(X) = 1.
X̃ completion of X. For F ⊆ SX̃ maximal face, BX̃ = aconv(F).

Open question
Is there X with n(X) = 1 which is smooth or strictly convex ?
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5 Banach spaces with numerical index one
How to deal with numerical index 1 property?
The old approach: working with weaker properties
The new approach: stronger properties
The link: slicely countably determined Banach spaces

K. Boyko, V. Kadets, M. Mart́ın, and J. Meŕı.
Properties of lush spaces and applications to Banach spaces with numerical
index 1.
Studia Math. (2009).

V. Kadets, M. Mart́ın, J. Meŕı, and R. Payá.
Smoothness and convexity for Banach spaces with numerical index 1.
Illinois J. Math. (to appear).
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Sufficient conditions for numerical index one

Some sufficient conditions
Let X be a Banach space. Consider:
(a) Lindenstrauss, 1964: X has the 3.2.I.P. if the intersection of every family

of three mutually intersecting balls is not empty.
(b) Fullerton, 1961: X is a CL-space if BX is the absolutely convex hull of

every maximal face of SX.
(c) Lima, 1978: X is an almost-CL-space if BX is the closed absolutely

convex hull of every maximal face of SX.

(a) ===-
�=6== (b) ===-

�=6== (c) ===-
�=6== n(X) = 1

Observation
Showing that (c) =⇒ n(X) = 1, one realizes that (c) is too much.

Lushness (Boyko–Kadets–M.–Werner, 2007)
X is lush if given x, y ∈ SX, ε > 0, there is x∗ ∈ SX∗ such that

x ∈ S(BX , x∗, ε) and dist
(
y, aconv

(
S(BX , x∗, ε)

))
< ε.
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Definition and first property

Lushness (Boyko–Kadets–M.–Werner, 2007)
X is lush if given x, y ∈ SX, ε > 0, there is x∗ ∈ SX∗ such that

x ∈ S(BX , x∗, ε) and dist
(
y, aconv

(
S(BX , x∗, ε)

))
< ε.

Theorem
X lush =⇒ n(X) = 1.

Proof.
T ∈ L(X) with ‖T‖ = 1, ε > 0. Find y0 ∈ SX which ‖Ty0‖ > 1− ε.
Use lushness for x0 = Ty0/‖Ty0‖ and y0 to get x∗ ∈ SX∗ and

v =
n

∑
i=1

λiθixi where xi ∈ S(BX , x∗, ε), λi ∈ [0, 1], ∑ λi = 1, θi ∈ T,

with Re x∗(x0) > 1− ε and ‖v− y0‖ < ε.

Then |x∗(Tv)| =
∣∣∣x∗(x0)− x∗

(
T
(

y0
‖Ty0‖

− v
))∣∣∣ ∼ ‖T‖.

By a convexity argument, ∃ i such that |x∗(Txi)| ∼ ‖T‖ and Re x∗(xi) ∼ 1.
Then maxω∈T ‖Id + ω T‖ ∼ 1 + ‖T‖ =⇒ v(T) ∼ ‖T‖. X
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Reformulations of lushness and applications

Proposition
X Banach space. TFAE:

X is lush,
Every separable E ⊂ X is contained in a separable lush Y with E ⊂ Y ⊂ X.

Separable lush spaces (real case)
X real separable. TFAE:

X is lush.
There is G ⊆ SX∗ norming such that

BX = aconv
({

x ∈ BX : x∗(x) = 1
})

(x∗ ∈ G).

Therefore, |x∗∗(x∗)| = 1 ∀x∗∗ ∈ ext (BX∗∗ ) ∀x∗ ∈ G.

Consequences (real case)
X lush, dim(X) > 1 =⇒ X not smooth nor strictly convex.
X ⊆ C[0, 1] strictly convex or smooth =⇒ C[0, 1]/X contains C[0, 1].
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An important consequence

Proved in the previous slide...
X lush separable, dim(X) = ∞ =⇒ there is G ∈ SX∗ infinite such that

|x∗∗(x∗)| = 1
(

x∗∗ ∈ ext (BX∗∗ ) , x∗ ∈ G
)
.

Proposition (López–M.–Payá, 1999)
X real, A ⊂ SX infinite such that

|x∗(a)| = 1
(

x∗ ∈ ext (BX∗ ) , a ∈ A
)
.

Then, X ⊇ c0 or X ⊇ `1.

Main consequence
X real lush, dim(X) = ∞ =⇒ X∗ ⊇ `1.

Question
What happens if just n(X) = 1 ? The same, we will prove later.
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Lushness is not equivalent to numerical index one

Example (Kadets–M.–Meŕı–Shepelska, 2009)
There is a separable Banach space X such that
X ∗ is lush but X is not lush.
Since n(X ∗) = 1, also n(X ) = 1.
The set

{x∗ ∈ SX ∗ : |x∗∗(x∗)| = 1 for every x∗∗ ∈ ext (BX ∗∗ )}

is empty.

Remark
We cannot expect to show that X∗ ⊇ `1 using the ideas for lush spaces in the
general case when n(X) = 1.
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A. Avilés, V. Kadets, M. Mart́ın, J. Meŕı, and V. Shepelska
Slicely Countably Determined Banach spaces
Trans. Amer. Math. Soc. (to appear)
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SCD sets and spaces: Definitions and examples

SCD sets
A convex subset of B-space X. A is Slicely Countably Determined (SCD) if
there is a sequence {Sn : n ∈ N} of slices of A satisfying one of the following
equivalent conditions:

every slice of A contains one of the Sn’s,
A ⊆ conv(B) if B ⊆ A satisfies B ∩ Sn 6= ∅ ∀n,
given {xn}n∈N with xn ∈ Sn ∀n ∈N, A ⊆ conv

(
{xn : n ∈N}

)
.

SCD spaces
X is Slicely Countably Determined (SCD) if so are its convex bounded subsets.

Examples
1 (Easy): X separable RNP =⇒ X is SCD,
2 (Easy): X separable Asplund =⇒ X is SCD,
3 C[0, 1] and L1[0, 1] are not SCD,
4 (Main): X + `1 =⇒ X is SCD.
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SCD is a link between ADP and lushness

Theorem
X (separable) SCD,

n(X) = 1(actually ADP) =⇒ X lush.

Main consequence
X (arbitrary) such that X + `1,

n(X) = 1(actually ADP) =⇒ X lush.

Corollary
X real + dim(X) = ∞ + n(X) = 1 =⇒ X∗ ⊇ `1.

Proof.
If X ⊇ `1 =⇒ X∗ contains `∞ as a quotient, so X∗ contains `1 as a
quotient, and the lifting property gives X∗ ⊇ `1 X
If X + `1 =⇒ X is SCD + n(X) = 1, so X is lush.
Lush + dim(X) = ∞ =⇒ X∗ ⊇ `1 X
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