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We study the relationship between the residuality of the set 
of norm attaining functionals on a Banach space and the 
residuality and the denseness of the set of norm attaining 
operators between Banach spaces. Our first main result says 
that if C is a bounded subset of a Banach space X which admit 
an LUR renorming satisfying that, for every Banach space Y , 
the operators T from X to Y for which the supremum of ‖Tx‖
with x ∈ C is attained are dense, then the Gδ set of those 
functionals which strongly exposes C is dense in X∗. This 
extends previous results by J. Bourgain and K.-S. Lau. The 
particular case in which C is the unit ball of X, in which we get 
that the norm of X∗ is Fréchet differentiable at a dense subset, 
improves a result by J. Lindenstrauss and we even present an 
example showing that Lindenstrauss’ result was not optimal. 
In the reverse direction, we obtain results for the density of 
the Gδ set of absolutely strongly exposing operators from X
to Y by requiring that the set of strongly exposing functionals 
on X is dense and conditions on Y or Y ∗ involving RNP and 
discreteness on the set of strongly exposed points of Y or Y ∗. 
These results include examples in which even the denseness of 
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norm attaining operators was unknown. We also show that the 
residuality of the set of norm attaining operators implies the 
denseness of the set of absolutely strongly exposing operators 
provided the domain space and the dual of the range space are 
separable, extending a recent result for functionals. Finally, 
our results find important applications to the classical theory 
of norm-attaining operators, to the theory of norm-attaining 
bilinear forms, to the geometry of the preduals of spaces 
of Lipschitz functions, and to the theory of strongly norm-
attaining Lipschitz maps. In particular, we solve a proposed 
open problem showing that the unique predual of the space 
of Lipschitz functions from the Euclidean unit circle fails to 
have Lindenstrauss property A.

© 2023 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Given Banach spaces X and Y , we write L(X, Y ) to denote the space of all (bounded 
linear) operators from X to Y , and NA(X, Y ) for the set of norm attaining operators 
(i.e., those T ∈ L(X, Y ) for which there is a norm one vector x ∈ X such that ‖T‖ =
‖Tx‖). Our notation is standard, and it can be found in Subsection 1.1 together with the 
definition of some needed well known concepts. The study of the denseness of the set of 
norm attaining operators started with the celebrated result by Bishop and Phelps of the 
1960’s that NA(X, K) is dense in X∗ ≡ L(X, K) for every Banach space X (K denotes 
the base field R or C). Shortly afterward, J. Lindenstrauss initiated a systemic study 
on norm attaining operators between Banach spaces [60]. He introduced two properties 
– nowadays called (Lindenstrauss) properties A and B – as follows: a Banach space X
has property A if NA(X, W ) is dense in L(X, W ) for every Banach space W , and a 
Banach space Y has property B if NA(Z, Y ) is dense in L(Z, Y ) for every Banach space 
Z. What he proved is, among other results, that reflexive spaces and those spaces for 
which the unit ball is the closed convex hull of a set of uniformly strongly exposed points, 
have property A. It is also shown that finite-dimensional spaces whose dual unit ball have 
finitely many extreme points up to rotations (in the real case, these are finite-dimensional 
spaces whose unit ball is a polyhedron) and subspaces of �∞ containing the canonical 
copy of c0 (among other spaces) have property B. On the other hand, Lindenstrauss 
presented a useful necessary condition for Banach spaces to have property A. Namely, if 
a Banach space admits an LUR renorming and has property A, then its closed unit ball 
is the closed convex hull of its strongly exposed points. Up to our knowledge, this is the 
strongest necessary condition for property A which has appeared in the literature.

In 1977, J. Bourgain linked the study of the denseness of norm attaining operators with 
the Radon-Nikodým property (RNP, for short) in the remarkable paper [21]. It is shown 
that the RNP implies property A and, conversely, that if a Banach space X has property 
A for all equivalent norms, then X has the RNP (this formulation requires a refinement 
made by R. Huff [51]). Since then, there has been an intensive research on norm attaining 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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operators, an account of which can be found in the expository papers [2,4,63]. Let us 
just mention here a few known results. With respect to property A, apart from the 
aforementioned results on the RNP, it is known that any weakly compactly generated 
space can be renormed with property A [72]; examples of Banach spaces failing property 
A in their usual norm are C0(L) for infinite metrizable space L and L1(μ) when μ is 
not purely atomic [60]. With respect to property B, it is known that infinite dimensional 
strictly convex Banach spaces fail property B and the same happens with any infinite-
dimensional L1(μ) [3], and that every Banach space can be renormed to have property 
B [67]. Moreover, there are even compact operators which can not be approximated by 
norm attaining ones [62]. It is not known, however, whether finite rank operators can be 
always approximated by norm attaining operators.

The main importance of Bourgain’s paper [21] is that it relates (via the concept 
of RNP) two geometric properties whose relationship was unknown at that moment: 
dentability and strong exposition. Indeed, Bourgain actually studied the following gen-
eralization of Lindenstrauss property A replacing the unit ball with a bounded closed 
convex subset. A bounded subset C of a Banach space X has the Bishop-Phelps prop-
erty if, for every Banach space Y , the set of those operators in L(X, Y ) for which 
sup{‖Tx‖ : x ∈ C} is a maximum, is dense in L(X, Y ). A Banach space X has the 
Bishop-Phelps property if all of its bounded closed absolutely convex subsets have the 
property. What Bourgain proved is that a Banach space has the Bishop-Phelps prop-
erty if and only if it has the RNP. This equivalence is proved through the following two 
separate results:

(a) If C is a separable bounded closed convex set with the Bishop-Phelps property, then 
it is dentable (i.e., it contains slices of arbitrarily small diameter).

(b) If B is a bounded closed absolutely convex subset of a Banach space X such that 
every nonempty subset of B is dentable (that is, B is an RNP set), then B has 
the Bishop-Phelps property. Moreover, for every Banach space Y , the set of those 
operators in L(X, Y ) which absolutely strongly expose B is dense in L(X, Y ).

The first main aim of this paper is to give an improvement of the item (a) above, which 
is presented in Section 2. Indeed, Theorem 2.1 shows that for a bounded subset C of a 
Banach space X admitting an LUR renorming and having the Bishop-Phelps property, 
the set of its strongly exposing functionals is dense in X∗ so, in particular, C is contained 
in the closed convex hull of its strongly exposed points. This result generalized the same 
conclusion already known for weakly compact convex sets [20,57] and for bounded closed 
convex RNP sets [21, Theorem 8]. The particular case of Theorem 2.1 for the unit ball 
of a Banach space X (Corollary 2.6) provides a necessary condition for Lindenstrauss 
property A stronger than the one given in [60]: if X admits an LUR renorming and has 
property A, then the norm of X∗ is Fréchet differentiable at a dense subset of X∗ (or, 
equivalently, the set SE(X) of strongly exposing functionals on X is dense in X∗). This 
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allows us to show that Lindenstrauss’ original necessary condition for property A is not 
sufficient, see Example 5.2 and Remark 5.3.

With respect to the result in item (b) above, let us give some comments. First, this 
result was extended from far by C. Stegall [74] to a wide class of non-linear functions 
defined on bounded RNP sets, which is now known as the Stegall variational principle. 
Second, Bourgain’s result is stronger than the mere denseness of norm attaining oper-
ators, even when the set B is the unit ball of a Banach space. On the one hand, it 
provides the denseness of operators T such that the application x �−→ ‖Tx‖ attains a 
strong maximum (up to rotations). On the other hand, as the set of absolutely strongly 
exposing operators is a Gδ set, his result shows that NA(X, Y ) is residual in L(X, Y ). 
Some consequences of the residuality of the set of norm attaining operators are included 
in subsection 1.3. Let us comment that other topological properties of the set of norm 
attaining functionals and norm attaining operators have been studied in the literature, 
see [36] for functionals and [14] for operators, for instance.

In Section 3, we investigate the possible density of the set ASE(X, Y ) of absolutely 
strongly exposing operators from X to Y , which is our second main aim in this paper. 
It is easy to show that the denseness of ASE(X, Y ) in L(X, Y ) for a non-trivial Banach 
space Y implies that SE(X) is dense in X∗ (see Proposition 1.5). We do not know when 
the converse result holds, so the following is our leading question.

Find conditions on Y such that ASE(X, Y ) is dense in L(X, Y ) whenever 
SE(X) is dense in X∗. (Q1)

It is well known that SE(X) is dense in X∗ when X has the RNP and in this case 
ASE(X, Y ) is dense for every Y thanks to (b) above. On the other hand, SE(X) is also 
dense in X∗ if the Banach space X is ALUR (in particular, if X is LUR) or even when 
every element in the unit sphere of X is strongly exposed (see Proposition 3.11 where a 
stronger result is proved). Let us comment on this that we do not know whether being 
LUR implies property A, so in this case partial answers to (Q1) are especially interesting.

Some of our main results in Section 3 are the following ones. Let X be a Banach 
space for which SE(X) is dense in X∗. Then, the Gδ set ASE(X, Y ) is dense in L(X, Y )
provided the range space Y is in one of the situations below:

(1) Y has property quasi-β (Theorem 3.1),
(2) Y has ACKρ structure and X or Y are Asplund (Corollary 3.6),
(3) Y has the RNP and str-exp(BY ) is either countable up to rotations or discrete up 

to rotations (Theorem 3.17 and 3.32),
(4) Y ∗ has the RNP and str-exp(BY ∗) is countable up to rotations (Theorem 3.20),
(5) Y ∗ has the RNP and for every sequence {y∗n} in w∗ -str-exp(BY ∗) which converges 

to an element y∗0 ∈ str-exp(BY ∗), there exist n0 ∈ N and a sequence {θn} in T such 
that y∗n = θny

∗
0 for every n � n0 (Theorem 3.34).
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We also give several concrete examples where the above result applies, including preduals 
of �1(Γ) spaces and finite-dimensional spaces for which the dual unit ball has countably 
many extreme points (see Example 3.2, 3.18, 3.35, and Remark 3.8). For the cases (3), 
(4), and (5), even the denseness of NA(X, Y ) was unknown for many Xs. Let us also 
mention that in Example 3.2, new examples of Banach spaces having property quasi-β
(hence Lindenstrauss property B), such as real polyhedral predual spaces of �1 and 
arbitrary (real or complex) closed subspaces of c0(Γ), are exhibited.

By (b) above, ASE(X, Y ) is dense in L(X, Y ) for any Banach space Y when X has the 
RNP. Besides, it was observed in [29, Proposition 4.2] that for X satisfying any of the 
known conditions which guarantee property A (namely, property α, property quasi-α, 
or having a norming subset of uniformly strongly exposed points), the set ASE(X, Y ) is 
dense in L(X, Y ) for every Banach space Y . We do not know, however, whether property 
A of X implies the denseness of ASE(X, Y ) for all Banach spaces Y .

Does property A of a Banach space X imply that ASE(X, Y ) is dense in L(X, Y )
for every Banach space Y ?

(Q2)

Corollary 2.6 links (Q2) with the previous question (Q1) and allows us to present partial 
answers to the question (Q2) by applying the aforementioned results. Namely, if X has 
property A and admits an equivalent LUR renorming and Y satisfies one of the conditions 
(1)–(5) above, then ASE(X, Y ) is dense in L(X, Y ).

Furthermore, we obtain some results concerning the denseness of the set ASE(X, Y ) ∩
K(X, Y ), where K(X, Y ) denotes the space of all compact linear operators from X to Y . 
We prove that the denseness of SE(X) in X∗ implies ASE(X, Y ) ∩ K(X, Y ) is dense in 
K(X, Y ) not only when the Banach space Y is in one of the above conditions (1), (3), 
(4), (5), but also when Y is an L1-predual, or has ACKρ structure (this is (2) without 
the Asplundness condition on X or Y ), or it admits a countable James boundary (see 
Example 3.4, Theorem 3.5 and Corollary 3.22). In particular, if Y is a (real) polyhedral 
space or Y is a closed subspace of a C(K) space for a scattered Hausdorff compact 
topological space K (see Examples 3.28 and 3.30).

In the fourth section of the paper, we prove that the residuality of NA(X, Y ) in 
L(X, Y ) is equivalent to the denseness of the set of points of L(X, Y ) at which the norm is 
Fréchet differentiable provided X and Y ∗ are separable Banach spaces, which generalizes 
a result of Guirao, Montesinos, and Zizler [49, Theorem 3.1] (see Theorem 4.1). Moreover, 
by using a result of Moors and Tan [65] and one of Avilés et al. [13], we observe that this 
equivalence also holds in the case when X is a subspace of weakly compactly generated 
space, Y is a reflexive space, and L(X, Y ) = K(X, Y ) (see Remark 4.3).

In the final section, we present several applications of the results in Section 2 and 
3 to the geometry of Lipschitz free spaces, to the denseness of strongly norm attaining 
Lipschitz maps, and to the denseness of strongly norm attaining bilinear forms. First, 
we show that for a separable metric space M , property A of F(M) forces the density of 
the set of strongly norm attaining Lipschitz functions on M (Corollary 5.1). As a con-
sequence, we show that the Banach space F(T ) fails to have property A (Example 5.2), 
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answering a question implicitly possed in [29]. We also present new examples of Banach 
spaces, coming from the theory of Lipschitz maps, which can be used as target spaces in 
the results of Section 3 (Examples 5.5, 5.6, and 5.7). Next, some sufficient conditions on 
a metric space M and on a Banach space Y are discussed for the set of strongly norm at-
taining Lipschitz maps from M into Y to be dense (Corollary 5.8). Finally, some results 
on the density of strongly norm attaining bilinear forms are presented (Corollaries 5.9
and 5.10) which improve previous results.

The rest of this introduction is devoted to introduce the needed notation and pre-
liminaries (Subsection 1.1), to present some background on absolutely strongly exposing 
operators (Subsection 1.2), and to expose some consequences of residuality of norm at-
taining operators (Subsection 1.3).

1.1. Notation and preliminaries

Here K denotes the field R of real numbers or C of complex numbers, and T is the 
subset of K of modulus one elements. Let X and Y be Banach spaces over K. We write 
BX and SX to denote, respectively, the closed unit ball and the unit sphere of X. Given 
x ∈ X and r > 0, B(x, r) is the open ball centered in x with radius r.

The notation L(X, Y ) stands for the space of all bounded linear operators from X to 
Y and we simply write X∗ ≡ L(X, K). We write Lw∗−w∗(Y ∗, X∗) = {T ∗ : T ∈ L(X, Y )}
for the space of w∗-w∗-continuous bounded linear operators from Y ∗ into X∗ which is 
isometrically isomorphic to L(X, Y ). The space of all compact linear operators from X
to Y is denoted by K(X, Y ) and X⊗̂πY denotes the projective tensor product of X and 
Y .

For a nonempty bounded subset C of X, a point x0 ∈ C is called an exposed point of 
C if there is x∗ ∈ X∗ such that

Rex∗(x0) = sup
x∈C

Rex∗(x) and {x ∈ C : Rex∗(x) = Rex∗(x0)} = {x0}.

In this case, we say that x∗ exposes x0 and that x∗ is an exposing functional. A point 
x0 ∈ C is called a strongly exposed point of C if there is x∗ ∈ X∗ such that Rex∗(x0) =
supx∈C Rex∗(x) and {xn} converges in norm to x0 for all sequences {xn} ⊆ C such that 
limn Rex∗(xn) = x∗(x0). In this case, we say that x∗ strongly exposes x0 in C and x∗

is said to be a strongly exposing functional of C. We write str-exp(C) and SE(C) for, 
respectively, the set of strongly exposed points of C and the set of strongly exposing 
functionals of C. It is immediate that R+ SE(C) = SE(C); if C is actually balanced (i.e. 
λC = C for every λ ∈ K with |λ| = 1), then λ SE(C) = SE(C) for every λ ∈ K \ {0}. 
In the case C = BX , we just write SE(X) := SE(BX) and call the elements of SE(X)
strongly exposing functionals. It is well known that x∗ ∈ SE(X) if and only if the norm 
of X∗ is Fréchet differentiable at x∗ (Šmulyan test, see [37, Corollary 1.5] for instance). 
If X = Z∗ is a dual space and z∗ ∈ BZ∗ is strongly exposed by some x ∈ X ⊂ X∗∗, we 
say that z∗ is a w∗-strongly exposed point.
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A point x0 ∈ X is said to be a locally uniformly rotund point (LUR point, for short) 
if whenever {xn} is a sequence in X such that ‖xn‖ � ‖x0‖ for every n ∈ N and 
‖xn + x0‖ −→ 2‖x0‖, then ‖xn − x0‖ −→ 0. A Banach space X is locally uniformly 
rotund (LUR, for short) if all the elements in X are LUR points, equivalently, if all 
elements in SX are LUR points. It is known that weakly compactly generated (for short, 
WCG) Banach spaces (in particular, separable or reflexive Banach spaces) admit LUR 
equivalent renormings [75, Theorem 1]. A point x0 ∈ X is said to be a rotund point
if for every x ∈ X with ‖x‖ � ‖x0‖ and ‖x + x0‖ = 2‖x0‖, we have that x = x0. A 
Banach space X is rotund if all the elements in X are rotund points, equivalently, if all 
elements in SX are rotund points, equivalently, if all elements in SX are extreme points. 
It is known that �∞ admits a rotund equivalent norm [39, Theorem 8.13] but not an 
LUR equivalent norm (this follows since �∞ does not admit any equivalent norm with 
the Kadec-Klee property [37, Theorem II.7.10]).

1.2. Some preliminary results on absolutely strongly exposing operators

Let X, Y be Banach spaces and let B ⊂ X be a bounded closed absolutely convex 
subset. An operator T ∈ L(X, Y ) is said to absolutely strongly expose B if there exists 
x0 ∈ B such that whenever a sequence {xn} in B satisfies ‖Txn‖ −→ sup{‖Tx‖ : x ∈ B}, 
then there exists a sequence {θn} of elements of T such that {θnxn} −→ x0. When B =
BX , we just say that T is an absolutely strongly exposing operator and write ASE(X, Y )
for the set of those operators. This is the case that we are most interested in. It is easy 
to see and well known that ASE(X, Y ) is a Gδ subset of L(X, Y ). Indeed, given ε > 0, 
we consider the subsets

Aε =
{
T ∈ L(X,Y ) : S(T, η) ⊂ TB(x0, ε) for some x0 ∈ X, η > 0

}
where S(T, η) = {x ∈ BX : ‖T (x)‖ > ‖T‖ − η}. Then, each set Aε is open and it is not 
difficult to check that

ASE(X,Y ) =
⋂∞

n=1
Arn

for every sequence {rn} of positive numbers converging to 0.
The main result on absolutely strongly exposing operators is, of course, its denseness 

when the domain space has the RNP (Bourgain). The next proposition contains two 
versions of this result. Item (a) follows routinely from Stegall variational principle [74, 
Theorem 14] (as it is done in Theorems 15 and 19 of the same paper); item (b) follows in 
the same way using a weak-star version of Stegall variational principle which appeared 
in [6, Theorem 2.6], and it is actually implicit in Theorem 21 of [74].

Proposition 1.1 (Bourgain–Stegall). Let X and Y be Banach spaces.
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(a) If X has the RNP, then ASE(X, Y ) is residual in L(X, Y ). Moreover, given T ∈
L(X, Y ) and ε > 0, there is y ∈ SY , x∗ ∈ SX∗ and 0 < ρ < ε such that the operator 
S := T + ρ x∗ ⊗ y belongs to ASE(X, Y ).

(b) If Y ∗ has the RNP, then ASE(Y ∗, X∗) ∩ Lw∗−w∗(Y ∗, X∗) is residual in the set 
Lw∗−w∗(Y ∗, X∗). Moreover, given T ∈ L(X, Y ) and ε > 0, there is y ∈ SY , x∗ ∈ SX∗

and 0 < ρ < ε such that the operator S := T + ρ x∗⊗ y satisfies S∗ ∈ ASE(Y ∗, X∗).

Next, from the proof of [29, Proposition 3.14], we may extract the following easy 
results which we will use all along the paper.

Lemma 1.2 ([29]). Let X and Y be Banach spaces.

(1) If T ∈ ASE(X, Y ) with ‖Tx0‖ = ‖T‖ and y∗ ∈ SY ∗ satisfies that Re y∗(Tx0) = ‖T‖, 
then T ∗y∗ ∈ SE(X).

(2) If T ∈ L(X, Y ) attains its norm at x0 ∈ str-exp(BX), then for any ε > 0, there 
exists S ∈ ASE(X, Y ) such that ‖Sx0‖ = ‖S‖ and ‖S − T‖ < ε. Moreover, S − T is 
of rank one and Sx0 ∈ R+Tx0.

(3) If T ∈ Lw∗−w∗(Y ∗, X∗) attains its norm at y∗0 ∈ w∗ -str-exp(BY ∗), then for any 
ε > 0, there exists S ∈ ASE(Y ∗, X∗) ∩Lw∗−w∗(Y ∗, X∗) such that ‖Sy∗0‖ = ‖S‖ and 
‖S − T‖ < ε. Moreover, S − T is of rank one and Sy∗0 ∈ R+Ty∗0 .

(4) If T ∈ L(X, Y ) satisfies that ‖T‖ = ‖T ∗(y∗0)‖ and T ∗(y∗0) ∈ SE(X) for some 
y∗0 ∈ BY ∗ , then T attains its norm at a strongly exposed point. Hence, by (2), 
T ∈ ASE(X,Y ).

Some comments on the previous results may be of interest.

Remark 1.3.

(1) The facts that an operator T ∈ L(X, Y ) attains its norm at x0 ∈ str-exp(BX) and 
that y∗0 ∈ SY ∗ satisfies that |y∗0(T (x0))| = ‖T‖ do not imply T ∗(y∗0) ∈ SE(X). For 
instance, take x0 = (1, 1) ∈ �2∞ and x∗

0 = (1, 0) ∈ �21 ≡ (�2∞)∗. Then T := x∗
0 ⊗ x0 ∈

L(�2∞, �2∞) attains its norm at x0 ∈ str-exp(B�2∞
), x∗

0(T (x0)) = ‖T‖, but T ∗(x∗
0) = x∗

0
is not an exposing functional.

(2) Even if T ∗y∗0 ∈ SE(X) and ‖T ∗y∗0‖ = ‖T ∗‖ for some y∗0 ∈ SY ∗ , T may be not 
absolutely strongly exposing. For this, take the identity operator Id on �2; then 
Id∗ y∗ ∈ SE(�2) for every y∗ ∈ �∗2, but Id is not in ASE(�2, �2).

Related to item (4) of Lemma 1.2 is the following easy fact which will be used all 
along the paper.

Fact 1.4. Let X, Y be Banach spaces and T ∈ L(X, Y ). Then, T ∈ NA(X, Y ) if and 
only if T ∗ ∈ NA(Y ∗, X∗) and there is y∗ ∈ SY ∗ such that ‖T ∗y∗‖ = ‖T ∗‖ with T ∗y∗ ∈
NA(X, K). In this case, T attains its norm at the points where T ∗y∗ does.
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A first consequence of Lemma 1.2 is that the denseness of SE(X) is necessary to have 
denseness of absolutely strongly exposing operators.

Proposition 1.5. Let X be a Banach space. If ASE(X, Y ) is dense in L(X, Y ) for some 
nontrivial space Y , then SE(X) is dense in X∗.

Proof. Let x∗ ∈ SX∗ and ε > 0 be given. Fix y0 ∈ SY and consider T = x∗ ⊗ y0 ∈
L(X, Y ). By assumption, there is S ∈ ASE(X, Y ) such that ‖S‖ = 1 and ‖S − T‖ < ε. 
Let say ‖S‖ = ‖Sx0‖ for some x0 ∈ str-exp(BX) and take y∗ ∈ SY ∗ so that 
y∗(S(x0)) = 1 (hence S∗y∗ ∈ SE(X) by Lemma 1.2). Note that |y∗0(S(x0) −T (x0))| < ε, 
so |y∗(y0)||x∗(x0)| > 1 − ε. In particular, |y∗(y0)| > 1 − ε. Pick θ ∈ T such that 
θy∗(y0) = |y∗(y0)|. We observe that

‖θS∗y∗ − x∗‖ � ‖θS∗y∗ − θy∗(y0)x∗‖ + ‖θy∗(y0)x∗ − x∗‖ < 2ε.

As S∗y∗ belongs to SE(X), so does θS∗y∗, finishing the proof. �
The next characterization taken from [50] relates differentiability points of L(X, Y )

with absolutely strongly exposing operators.

Proposition 1.6 ([50, Theorem 3.1]). Let X, Y be Banach spaces and T ∈ L(X, Y ). Then, 
the norm of L(X, Y ) is Fréchet differentiable at T if and only if T absolutely strongly 
exposes a point x0 ∈ SX and Tx0 is a point of Fréchet differentiability of Y .

Even though [50] is the classical reference for the result above, there is no proof there. 
For the sake of completeness, we would like to comment that a proof of it can be routinely 
deduced from [70, Theorem 1.1] with H = L(X, Y ) ⊂ B(X × Y ∗) (the space of bounded 
bilinear forms on X × Y ∗), U = X∗, and V = Y ⊆ Y ∗∗.

Observe that, in particular, the existence of Fréchet differentiability points of the 
norm of L(X, Y ) implies the existence of Fréchet differentiability points of the norm of 
X∗ and of the norm of Y .

1.3. Some consequences of the residuality of norm attaining operators

Our aim in this subsection is to show some implications of the residuality of the set 
of norm attaining operators. The next result contains the particularization to the case 
of operators of some folklore results on residual sets on Banach spaces.

Proposition 1.7. Let X and Y be Banach spaces and suppose that NA(X, Y ) is residual.

(a) Given S ∈ L(X, Y ), the set A(S) := {T ∈ L(X, Y ) : S + T ∈ NA(X, Y )} is residual.
(b) Given a sequence {Sn} in L(X, Y ) and ε > 0, there exists T ∈ L(X, Y ) with ‖T‖ < ε

such that T + Sn ∈ NA(X, Y ) for every n ∈ N.
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(c) L(X, Y ) = NA(X, Y ) − NA(X, Y ).

Proof. (a): It is an immediate consequence of the fact that homeomorphisms preserve Gδ-
dense sets applied to the affine map ΦS : L(X, Y ) −→ L(X, Y ) given by ΦS(T ) = T − S

for every T ∈ L(X, Y ), as ΦS(NA(X, Y )) = A(S).
(b): By (a), the set A(Sn) is residual for each n ∈ N; hence 

⋂
n A(Sn) is residual. In 

particular, there exists T ∈ L(X, Y ) with ‖T‖ < ε such that T ∈
⋂

n A(Sn), meaning 
that T + Sn ∈ NA(X, Y ) for every n ∈ N.

(c): For a given S ∈ L(X, Y ), A(S) ∩NA(X, Y ) is non-empty, so there is T ∈ NA(X, Y )
such that S + T ∈ NA(X, Y ). �

Observe that, in the proof given for Proposition 1.7, we do not use any special property 
of NA(X, Y ) more than its residuality, so it can be also written in terms of ASE(X, Y ).

Proposition 1.8. Let X and Y be Banach spaces and suppose that ASE(X, Y ) is dense.

(a) Given S ∈ L(X, Y ), the set A(S) := {T ∈ L(X, Y ) : S+T ∈ ASE(X, Y )} is residual.
(b) Given a sequence {Sn} in L(X, Y ) and ε > 0, there exists T ∈ ASE(X, Y ) with 

‖T‖ < ε such that T + Sn ∈ ASE(X, Y ) for every n ∈ N.
(c) L(X, Y ) = ASE(X, Y ) − ASE(X, Y ).

It is easy to give examples showing that the assumption that NA(X, Y ) is residual 
cannot be omitted in Proposition 1.7 (or the denseness of ASE(X, Y ) in Proposition 1.8).

Example 1.9. Let X = c0. Then, NA(X, K) = �1 ∩ c00 ⊆ �1, so it is not residual. Besides, 
ASE(X, K) = SE(X) = {0} since the norm of �1 is nowhere Fréchet differentiable. 
Moreover:

• NA(X, K) − NA(X, K) = �1 ∩ c00 �= �1; ASE(X, K) − ASE(X, K) = {0}.
• Given x∗

1 = 0 and x∗
2 ∈ �1\c00, there is no x∗ ∈ L(X, K) such that x∗

1+x∗ ∈ NA(X, K)
and x∗

2 + x∗ ∈ NA(X, K).

2. Necessary conditions for the Bishop-Phelps property and for property A

Our main result here is the following.

Theorem 2.1. Let X be a Banach space and let C be a bounded subset of X with the 
Bishop-Phelps property.

(a) If X admits an equivalent LUR renorming, then SE(C) is dense in X∗. In particular, 
C is contained in the closed convex hull of its strongly exposed points.
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(b) If X admits an equivalent strictly convex norm, then the set of exposing functionals 
of C is dense in X∗. In particular, C is contained in the closed convex hull of its 
exposed points.

We need a preliminary lemma to prove the theorem. Recall that a monomorphism
between two Banach spaces X and Y is an operator T ∈ L(X, Y ) which is an isomorphism 
from X onto T (X). It is well known that T ∈ L(X, Y ) is a monomorphism if and only if 
there is C > 0 such that ‖Tx‖ � C‖x‖ for all x ∈ X, and if and only if kerT = {0} and 
T (X) is closed (see [53, § 10.2.3], for instance). It is also a classical result that the set 
of monomorphisms between Banach spaces is open (see [1, Lemma 2.4], for instance).

Lemma 2.2. Let X, Y be Banach spaces, T ∈ L(X, Y ) be a monomorphism, and let 
C ⊂ X be bounded.

(1) If x0 ∈ C satisfies that ‖Tx0‖ = sup{‖Tx‖ : x ∈ C} and that Tx0 is an LUR point 
of Y , then x0 is a strongly exposed point of C. Moreover, x0 is strongly exposed by 
T ∗y∗ for every y∗ ∈ SY ∗ such that Re y∗(Tx0) = sup{‖Tx‖ : x ∈ C}.

(2) If x0 ∈ C satisfies that ‖Tx0‖ = sup{‖Tx‖ : x ∈ C} and that Tx0 is a rotund point 
of Y , then x0 is a exposed point of C. Moreover, x0 is exposed by T ∗y∗ for every 
y∗ ∈ SY ∗ such that Re y∗(Tx0) = sup{‖Tx‖ : x ∈ C}.

Proof. The proof of both assertions is almost the same, so we only provide that of (1), 
the one in which we are more interested. Take y∗ ∈ SY ∗ such that

Re y∗(Tx0) = ‖Tx0‖ = sup{‖Tx‖ : x ∈ C}.

First, observe that

ReT ∗y∗(x0) = Re y∗(Tx0) = ‖Tx0‖ = sup{‖Tx‖ : x ∈ C}
� sup{Re y∗(Tx) : x ∈ C} = sup{ReT ∗y∗(x) : x ∈ C}.

Moreover, if a sequence {xn} ⊂ C satisfies that

lim
n

ReT ∗y∗(xn) = sup{ReT ∗y∗(x) : x ∈ C} = ‖Tx0‖,

we have that ‖Txn‖ � ‖Tx0‖ and

lim
n

‖Txn + Tx0‖ � lim
n

ReT ∗y∗(xn + x0) = 2‖Tx0‖.

As Tx0 is an LUR point, this implies that ‖Txn−Tx0‖ −→ 0. But now T is a monomor-
phism, so it is bounded from below, which implies that lim

n
xn = x0. In other words, T ∗y∗

strongly exposes C at x0 and, in particular, x0 is a strongly exposed point of C. �



12 M. Jung et al. / Journal of Functional Analysis 284 (2023) 109746
We are ready to present the pending proof.

Proof of Theorem 2.1. We only include the arguments to get item (a). The proof of item 
(b) follows the same lines using item (2) of Lemma 2.2 instead of item (1).

We write ‖ · ‖ for the given norm of X. Consider a norm ‖ | · ‖ | on X which is LUR 
and satisfies ‖|x‖| � ‖x‖ for every x ∈ X. Define Y := (X, ‖| · ‖|) ⊕2 K and note that Y is 
LUR. Pick x∗ ∈ X∗ \ {0} and ε > 0. As SE(C) = SE(C + x0) for every x0 ∈ X, without 
loss of generality, we may assume that

x∗(C) ⊂
{
r eiθ : r � 1, |θ|‖x∗‖ � ε/2

}
(2.1)

(in the real case this is just x∗(C) ⊂ [1, +∞[). For each n ∈ N, define Tn ∈ L(X, Y ) by 
Tnx = (n−1x, x∗(x)) for every x ∈ X. Observe that each Tn is a monomorphism.

Define S ∈ L(X, Y ) by Sx = (0, x∗(x)) for every x ∈ X and observe that ‖Tn−S‖ −→
0. Since the set of monomorphisms from X to Y is open and C has the Bishop-Phelps 
property, we may find a sequence {Sn} of monomorphisms from X to Y which attain 
the supremum of their norms on C and lim

n
‖Tn − Sn‖ = 0. Therefore, ‖Sn − S‖ −→ 0. 

As every Sn is a monomorphism attaining the supremum of its norms on C and Y is 
LUR, item (1) of Lemma 2.2 provides a sequence {xn} of points of C and a sequence 
{y∗n} of elements of SY ∗ such that each S∗

ny
∗
n belongs to SE(C) and strongly exposes C

at xn. We write y∗n = (z∗n, λn) ∈ Y ∗ = X∗ ⊕2 K and, passing to a subsequence, assume 
that λn −→ λ0 for some λ0 ∈ K. Since ‖S∗y∗n − S∗

ny
∗
n‖ −→ 0 and S∗y∗n = λnx

∗ for every 
n ∈ N, we have that

‖λ0x
∗ − S∗

ny
∗
n‖ −→ 0. (2.2)

Now, we set

αn := y∗n(Sn(xn)) = sup{‖Sn(x)‖ : x ∈ C}

and observe that

|λnx
∗(xn) − αn| =

∣∣y∗n(Sxn) − y∗n(Snxn)
∣∣ � ‖S − Sn‖ sup

n
‖xn‖ −→ 0.

Passing to a subsequence, we may suppose that α := lim
n

αn and β := lim
n

x∗(xn) exist, 
and we obtain from (2.2) that λ0β = α.

Notice from (2.1) that sup{‖S(x)‖ : x ∈ C} = sup{|x∗(x)| : x ∈ C} � 1; hence we get 
that α � 1 since ‖Sn − S‖ −→ 0. In particular, λ0 �= 0. Besides, using again (2.1), we 
may write β := r eiθ with r � 1 and |θ|‖x∗‖ � ε/2. Now,

λ0 = αβ−1 = |λ0| e−iθ,

and so
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∥∥∥∥x∗ − λ0

|λ0|
x∗

∥∥∥∥ =
∣∣1 − e−iθ

∣∣‖x∗‖ = 2
∣∣sin(θ/2)

∣∣‖x∗‖ � ε/2.

From (2.2), and since λ0 �= 0, we have that∥∥∥λ0|λ0|−1x∗ − |λ0|−1S∗
ny

∗
n

∥∥∥ −→ 0,

so we may find n ∈ N such that 
∥∥x∗ − |λ0|−1S∗

ny
∗
n

∥∥ < ε. The arbitrariness of ε > 0 and 
the fact that λ SE(C) = SE(C) for every λ ∈ R+ finish the proof. �

Some remarks on the previous result are pertinent.

Remark 2.3. If the set C in Theorem 2.1 is balanced, then the proof slightly simplifies. 
Indeed, in this case we have that λ SE(C) = SE(C) for every λ ∈ K \ {0} and so we only 
need to prove that λ0 �= 0, a easier fact to show.

Remark 2.4. Observe that we do not need convexity nor closedness of the set C in 
Theorem 2.1.

(1) With respect to convexity, this is not very important as the set of strongly exposing 
functionals of a set and the one of its convex hull coincide and, on the other hand, 
a set has the Bishop-Phelps property if and only if it convex hull does.

(2) With respect to closedness, the situation is different. On the one hand, SE(C) and 
SE(C) may be completely different, and it is not true that C has the Bishop-Phelps 
property whenever C does (while the other implication is clear).

(3) Let us also comment here that the Bishop-Phelps property of C does not imply C
to be closed: just consider a square in the plane for which we have removed the sides 
but not the vertices.

Remark 2.5. Theorem 2.1 improves results of Lindenstrauss [60, Theorem 2], where C is 
the unit ball and only the fact that BX is the closed convex hull of the strongly exposed 
points is obtained. Besides, the fact that SE(C) is dense in X∗ was previously known for 
weakly compact convex sets (Bourgain [20] and Lau [57]) and for bounded closed convex 
sets with the RNP (Bourgain [21]).

Applying Theorem 2.1 to the unit ball of a Banach space, we get the following im-
provement of the necessary conditions given by Lindenstrauss in [60, Theorem 2].

Corollary 2.6. Let X be a Banach space with property A.

(a) If X admits an LUR renorming, then SE(X) is dense in X∗.
(b) If X admits a strictly convex renorming, then functionals exposing BX are dense in 

X∗.
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We will present in Example 5.2 a separable Banach space X such that BX is the closed 
convex hull of its strongly exposed points but SE(X) is not dense in X∗ (even more, 
the exposing functionals are not dense in X∗), see also Remark 5.3. In particular, this 
space fails property A while it fulfills the necessary condition provided by Lindenstrauss 
in [60, Theorem 2], so Corollary 2.6 really improves Lindenstrauss result. As far as we 
know, no example of such phenomenon has already appeared in the literature (that is, 
an example of a Banach space X for which the unit ball is the closed convex hull of its 
strongly exposed points but SE(X) is not dense in X∗). From the isomorphic point of 
view, it is known that a separable Banach space X has the RNP if and only if every 
equivalent renorming of X satisfies one (and so all) of the following properties (see [49, 
Theorem 3.4] for instance): (i) the unit ball contains slices of arbitrary small diameter, 
(ii) the unit ball is the closed convex hull of its strongly exposed points, (iii) the strongly 
exposing functionals are dense in X∗. It is immediate that conditions (i) and (ii) are 
not equivalent for a concrete norm (containing just one strongly exposed point implies 
dentability). Remark 5.3 shows that conditions (ii) and (iii) are neither equivalent for a 
concrete norm.

3. Sufficient conditions for the denseness of ASE(X, Y )

Our aim here is to provide conditions on a Banach space Y ensuring that ASE(X, Y )
is dense, provided SE(X) is dense.

3.1. When the range space satisfies some previously known conditions

We start showing that the known conditions for a Banach space Y to have Linden-
strauss property B actually imply ASE(X, Y ) to be dense when SE(X) is dense in X∗. 
As far as we know, there are only two properties studied in the literature which im-
ply Lindenstrauss property B: property β introduced by Lindenstrauss himself in the 
seminal paper [60] and the weaker property quasi-β introduced by Acosta, Aguirre, 
and Payá in 1996 [5]. A Banach space Y is said to have property quasi-β if there exist 
A = {y∗λ : λ ∈ Λ} ⊆ SY ∗ , a mapping σ : A −→ SY , and a function ρ : A −→ R satisfying

(i) y∗λ(σ(y∗λ)) = 1 for every λ ∈ Λ,
(ii) |z∗(σ(y∗))| � ρ(y∗) < 1 whenever y∗, z∗ ∈ A with y∗ �= z∗,
(iii) for every e∗ ∈ ext(BY ∗), there exists a subset Ae∗ ⊆ A and t ∈ C with |t| = 1 such 

that te∗ ∈ Ae∗
w∗

and sup{ρ(y∗) : y∗ ∈ Ae∗} < 1.

If there is 0 � R < 1 such that ρ(y∗) � R for all y∗ ∈ A, then the space Y has property 
β introduced by Lindenstrauss (with an equivalent formulation). Examples of Banach 
spaces with property β are finite-dimensional spaces whose unit ball is a polytope (in the 
complex case, those spaces for which the set of extreme points of the dual ball is finite 
up to rotation) and closed subspaces of �∞ containing the canonical copy of c0. There 
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are examples of Banach spaces with property quasi-β which do not have property β (and 
we will show some more in Remark 3.3), including some finite-dimensional real spaces 
whose dual unit ball has infinitely many extreme points and the so-called Gowers space 
[5, Example 7] (which is an isometric predual of the Lorentz sequence space d({1/n}, 1)). 
We refer the interested reader to [5].

The following result can be proved in the same way as in [5, Theorem 2] but using 
the denseness of SE(X) instead of the Bishop-Phelps theorem.

Theorem 3.1. Let X, Y be Banach spaces. Suppose that SE(X) is dense in X∗ and that Y
has property quasi-β. Then, for every closed subspace I(X, Y ) of L(X, Y ) containing all 
rank one operators, ASE(X, Y ) ∩I(X, Y ) is dense in I(X, Y ). In particular, ASE(X, Y )
is dense in L(X, Y ) and ASE(X, Y ) ∩ K(X, Y ) is dense in K(X, Y ).

Proof. Let T ∈ L(X, Y ), ‖T‖ = 1 and ε > 0 be given. Due to a result by Zizler [78, 
Proposition 4], there is S1 ∈ L(X, Y ) with ‖S1‖ = 1 such that ‖T − S1‖ < ε and 
S1 ∈ NA(Y ∗, X∗). Going into the proof of [78, Proposition 4], one realizes that when 
T ∈ I(X, Y ), then S1 ∈ I(X, Y ) as T − S1 is the limit of a sequence of operators of 
finite rank. On the other hand, by a result of Johannesen (see [59, Theorem 5.8]), S∗

1
attains its norm at an extreme point e∗ of BY ∗ . As Y has property quasi-β, there exists 
Ae∗ ⊆ A and t ∈ T such that te∗ ∈ Ae∗

w∗

and η := sup{ρ(y∗) : y∗ ∈ Ae∗} < 1. Fix γ > 0
so that

1 + η
(ε

2 + γ
)
<

(
1 + ε

2

)
(1 − γ)

and find y∗1 ∈ Ae∗ such that ‖S∗
1y

∗
1‖ > 1 − γ. Since SE(X) is dense, there exists z∗ ∈

SE(X) such that ‖z∗ − S∗
1y

∗
1‖ < γ and ‖z∗‖ = ‖S∗

1 (y∗1)‖. Define S2 ∈ I(X, Y ) by

S2(x) = S1(x) +
[(

1 + ε

2

)
z∗(x) − S∗

1 (y∗1)(x)
]
y1

for every x ∈ X, where y1 = σ(y∗1). Arguing as in the proof of [5, Theorem 2], we have

(1) ‖S2 − S1‖ < ε,
(2) S∗

2 (y∗1) =
(
1 + ε

2
)
z∗,

(3) ‖S∗
2‖ = ‖S∗

2 (y∗1)‖.

Since z∗ ∈ SE(X), it follows from (2), (3), and Lemma 1.2, that there exists S3 ∈
ASE(X, Y ) ∩I(X, Y ) such that ‖S2 −S3‖ < ε; hence ‖T −S3‖ < 3ε. This completes the 
proof. �

Let us present now new examples of Banach spaces with property quasi-β. We need 
some notation. Given a Banach space Y , let us consider the equivalence relation on 
ext(BY ∗) given by x∗ ∼ y∗ if and only if x∗ = λy∗ for some λ ∈ T . We write EY to 
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denote the topological space ext(BY ∗)/ ∼ endowed with the quotient topology of the 
weak star topology. A real Banach space is said to be polyhedral if the unit ball of any of 
its finite-dimensional subspaces is a polyhedron (the convex hull of finitely many points). 
We refer to [42] and references therein for an exhaustive account on different definitions 
of polyhedrality.

Example 3.2. The following are examples of Banach spaces having property quasi-β

(1) Preduals of �1 which are polyhedral (real case).
(2) Banach spaces Y for which EY is discrete (i.e. it has no accumulation points). In 

particular:
(a) a real Banach space Y which satisfies that the w∗-accumulation points of 

ext(BY ∗) belong to the norm interior of BY ∗ (they are the so-called (III)-
polyhedral spaces following [42, Definition 1.1]);

(b) arbitrary closed subspaces of (real or complex) c0(Γ).

As far as we know, assertion (1) was unknown. Assertion (2) appeared in the PhD 
dissertation of F. Aguirre (see [8, Teorema 1.20]) but it has not been published in the 
journal literature. Its consequences for (III)-polyhedral spaces and for closed subspaces 
of c0(Γ), while easy, seem to be new.

Proof. (1): Suppose that Y is a real polyhedral �1-predual space. Notice that every ex-
treme point of BY ∗ is w∗-exposed [73, Lemma 3.3]. So, for y∗ ∈ ext(BY ∗), we can consider 
σ(y∗) ∈ SY such that y∗(σ(y∗)) = 1 and |z∗(σ(y∗))| < 1 whenever z∗ /∈ {y∗, −y∗}. Next, 
by [26, Theorem 4.1] we have that

ρ(y∗) := sup
{
|z∗(σ(y∗))| : z∗ ∈ ext(BY ∗) \ {±y∗}

}
< 1

for every y∗ ∈ ext(BY ∗) (this is called (BD) polyhedrality in [26]). Now, consider the 
set A ⊆ SY ∗ given by A = {y∗ ∈ ext(BY ∗) : u(y∗) = 1}, where u is the vector in Y ∗∗

which corresponds isometrically to (1, 1, . . .) ∈ �∞. Since u is an extreme point of BY ∗∗ , 
we have that |u(y∗)| = 1 for every y∗ ∈ ext(BY ∗) (see [54, Corollary 2.8], for instance). 
For each e∗ ∈ ext(BY ∗), take t ∈ {1, −1} so that u(te∗) = 1 and set Ae∗ := {te∗} ⊂ A. 
Therefore, the set A and the mappings σ and ρ satisfy the conditions (i)-(iii) of property 
quasi-β.

(2): Suppose that Y is a real or complex Banach space satisfying that EY contains no 
accumulation points. By [17, Proposition 2.2], this implies that every point in ext(BY ∗)
is w∗-strongly exposed. Consider a subset A of ext(BY ∗) which consists of a unique 
representative of each equivalence class. For y∗ ∈ A, let σ(y∗) be an element in SY which 
strongly exposes y∗. Observe that

ρ(y∗) := sup{|z∗(σ(y∗))| : z∗ ∈ A, z∗ �= y∗} < 1
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for each y∗ ∈ A. Indeed, otherwise, we may find a sequence {z∗n} ⊆ A with z∗n �= y∗ (so 
[z∗n] �= [y∗] by the way we have selected A) such that z∗n(σ(y∗)) −→ 1. Since σ(y∗) strongly 
exposes y∗, we get that {z∗n} converges in norm to y∗. This implies that the sequence of 
equivalence classes {[z∗n]} converges to the equivalence class [y∗], which contradicts the 
fact that EY has no accumulation points. Finally, given e∗ ∈ ext(BY ∗), let t ∈ C with 
|t| = 1 such that te∗ ∈ A and set Ae∗ := {te∗}. Then e∗ ∈ tAe∗ and sup{ρ(y∗) : y∗ ∈
Ae∗} < 1. This shows that Y has property quasi-β.

Finally, it is immediate that (a) implies that EY is discrete. To get (b), it is immediate 
that Y = c0(Γ) satisfies that 0 is the unique w∗-accumulation point of ext(BY ∗), and 
this property goes down to closed subspaces (see, for instance, [42, Theorem 1.2]). �
Remark 3.3.

(1) Observe that [5, Theorem 2] and Example 3.2 show that closed subspaces of c0 have 
property B. As far as we know, this result is new.

(2) Also, by the proof of [5, Theorem 2], it follows from Example 3.2 that for every 
closed subspace Y of c0, NA(X, Y ) ∩K(X, Y ) is dense in K(X, Y ) for every Banach 
space X. As far as we know, this result is also new. It was known with the extra 
assumption that Y has the approximation property (and in this case every element 
in K(X, Y ) can be approximated by elements in NA(X, Y ) of finite rank), see [62, 
Example 4.7].

(3) There are closed subspaces of c0 without property β. Indeed, for each k ∈ N, consider 
Yk = R2 endowed with the norm ‖(x, y)‖ = max{|x|, |y| + 1

k |x|}. Viewing Yk as a 
closed subspace of the three dimensional �∞ space, the space Y := [⊕∞

k=1Yk]c0 is a 
closed subspace of c0. It is known that Y lacks property β (see the arguments in [11, 
Example 4.1]).

Dealing with compact operators, there are other sufficient conditions on a Banach 
space Y than the property quasi-β to ensure that NA(X, Y ) ∩ K(X, Y ) is dense in 
K(X, Y ) for every Banach space X. We refer to [63] for a detailed account. Some of the 
results have a counterpart for ASE(X, Y ) ∩K(X, Y ) when SE(X) is dense. The following 
is one of interesting examples.

Example 3.4. Let X be a Banach space such that SE(X) is dense in X∗ and let Y be a 
Banach space such that Y ∗ ≡ L1(μ) for some measure μ. Then ASE(X, Y ) ∩K(X, Y ) is 
dense in K(X, Y ).

The proof is motivated by the corresponding result of Johnson and Wolfe [52] for 
norm attaining compact operators.

Proof. Let T ∈ K(X, Y ) and ε > 0 be given. Take {y1, . . . , yn} a ε
8 -net of T (BX). By 

results of Lazar and Lindenstrauss in the real case (see [58, Theorem 3.1]) and Nielsen 
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and Olsen in the complex case (see [66, Theorem 1.3]), we may find a 1-complemented 
subspace E of Y such that E is isometric to �m∞ for some m ∈ N and for each i = 1, . . . , n, 
there exists ei ∈ E so that ‖yi−ei‖ < ε

8 . Let us denote by P a norm one projection from 
Y onto E and write J : E −→ Y for the canonical inclusion. For each x ∈ BX , there 
exists e ∈ E such that ‖T (x) − e‖ < ε

4 ; hence

‖T (x) − JPT (x)‖ � ‖T (x) − J(e)‖ + ‖e− PT (x)‖ <
ε

2 .

This shows that ‖T − JPT‖ � ε
2 . Since PT ∈ K(X, E) and E is isometric to �m∞, by 

Theorem 3.1, there exists G ∈ ASE(X, E) such that‖PT −G‖ < ε
2 , so

‖T − JG‖ � ‖T − JPT‖ + ‖JPT − JG‖ � ‖T − JPT‖ + ‖PT −G‖ < ε.

Finally, JG ∈ ASE(X, Y ) ∩ K(X, Y ). �
Beside the property of being the predual space of L1-space, there is another property, 

called ACKρ structure, on the range space Y which guarantees that ASE(X, Y ) ∩K(X, Y )
is dense in K(X, Y ) for every Banach space X provided that SE(X) is dense in X∗. In 
order to establish the result, we need the following notation and definition. Recall from 
[25] that a Banach space Y is said to have ACKρ structure whenever there exists a 1-
norming set Γ ⊆ BY ∗ such that for every ε > 0 and every nonempty relatively w∗-open 
subset U ⊆ Γ, there exist a nonempty subset V ⊆ U , y∗1 ∈ V , e ∈ SY and an operator 
F ∈ L(Y, Y ) with the following properties:

(1) ‖Fe‖ = ‖F‖ = 1,
(2) y∗1(Fe) = 1,
(3) F ∗y∗1 = y∗1 ,
(4) denoting V1 = {y∗ ∈ Γ: ‖F ∗y∗‖ + (1 − ε)‖(IdY ∗ − F ∗)(y∗)‖ � 1}, then |y∗(Fe)| � ρ

for every y∗ ∈ Γ \ V1,
(5) dist(F ∗y∗, aconv{0, V }) < ε2 for every y∗ ∈ Γ,
(6) |v∗(e) − 1| � ε for every v∗ ∈ V .

Given Banach spaces X and Y , and Γ ⊂ Y ∗, an operator T ∈ L(X, Y ) is said to be Γ-flat
[25] if T ∗|Γ : (Γ, w∗) −→ (X∗, ‖ · ‖X∗) is openly fragmented (see formal definition in [25, 
Definition 2.6]). We denote the set of all Γ-flat operators by FlΓ(X, Y ). Among other 
results, it is known that every Asplund operator (i.e. an operator which factors through 
an Asplund space) from X to Y is Γ-flat for every Γ ⊆ Y ∗, and that L(X, Y ) = FlΓ(X, Y )
when (Γ, w∗) is discrete.

We state the promised result which provides new information about the set ASE(X, Y )
in presence of ACKρ structure.
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Theorem 3.5. Let X be a Banach space. If SE(X) is dense in X∗ and Y is a Banach 
space having ACKρ structure associated with a 1-norming set Γ ⊆ BY ∗ , then FlΓ(X, Y ) ⊆
ASE(X,Y ).

Before providing the proof of Theorem 3.5, let us derive some consequences about the 
density of ASE(X, Y ).

Observe that if either X or Y is Asplund, then L(X, Y ) = FlΓ(X, Y ); hence we have 
the following.

Corollary 3.6. Let X and Y be Banach spaces. If either X or Y is an Asplund space, 
SE(X) is dense in X∗ and Y is a Banach space having ACKρ structure, then ASE(X, Y )
is dense in L(X, Y ).

As compact operators are particular cases of Asplund operators, we also obtain the 
following consequence.

Corollary 3.7. Let X be a Banach space such that SE(X) is dense in X∗ and let Y be a 
Banach space having ACKρ structure. Then, ASE(X, Y ) ∩K(X, Y ) is dense in K(X, Y ).

Remark 3.8. Let us point out that the previous corollaries provide new examples of pairs 
(X, Y ) for which ASE(X, Y ) (resp. ASE(X, Y ) ∩ K(X, Y )) is dense in L(X, Y ) (resp. 
K(X, Y )). Observe that we can require X being Asplund and SE(X) being dense, and 
we only have to require on Y having ACKρ structure. Let us provide a list of examples 
of Banach spaces with ACKρ structure (see [25] for details):

(1) If Y has property β, then Y has ACKρ structure.
(2) If K is a compact Hausdorff topological space and Y has ACKρ structure, then so 

does C(K, Y ).
(3) A uniform algebra has ACKρ structure.
(4) The property of having ACKρ structure is preserved by taking finite injective tensor 

products.
(5) c0(Y ) and �∞(Y ) has ACKρ structure if Y has ACKρ structure.

Now it is time to prove Theorem 3.5. In order to do so, we will prove a stronger result, 
related with a version of Bishop-Phelps-Bollobás result for absolutely strongly exposing 
operators, which has its own interest and from which Theorem 3.5 will be obtained 
immediately.

To this end, we begin by introducing the following definition for functionals, which 
can be seen as the natural version of the Bishop-Phelps-Bollobás theorem for SE(X).

Definition 3.9. A Banach space X is said to have property [P] if there exists a function 
ε ∈ (0, 1) �−→ η(ε) > 0 such that whenever Rex∗(x) > 1 −η(ε) for x ∈ SX and x∗ ∈ SX∗ , 
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then there exists y∗ ∈ SE(X) and y ∈ SX such that ‖y∗‖ = y∗(y) = 1, ‖y∗ − x∗‖ < ε

and ‖y − x‖ < ε.

Note that the property [P] implies not only that SE(X) is dense in X∗ but also that 
str-exp(BX) is dense in BX . We write

Π(X) :=
{
(x, x∗) ∈ SX × SX∗ : x∗(x) = 1

}
.

Lemma 3.10. Let X be a Banach space. Then, the following assertions are equivalent:

(i) X has property [P],
(ii) the set {(x, x∗) ∈ str-exp(BX) × SE(X) : ‖x∗‖ = x∗(x) = 1} is dense in Π(X),
(iii) X has property [P] witnessed with the function ε �−→ ε2/2.

Proof. Only that (ii) implies (iii) has to be proved. Pick (x, x∗) ∈ SX × SX∗ such that 
Rex∗(x) > 1 − ε2/2 and apply the Bishop-Phelps-Bollobás theorem (see [27, Corol-
lary 2.4] for this version) to find (y, y∗) ∈ Π(X) such that ‖y−x‖ < ε and ‖y∗−x∗‖ < ε. 
Assertion (ii) allows us to find z ∈ str-exp(BX) and z∗ ∈ SE(X) with ‖z∗‖ = z∗(z) = 1
and satisfying that ‖z − x‖ < ε and ‖z∗ − x∗‖ < ε. �

We do not know if the separate density of str-exp(BX) in SX and that of SE(X) in 
X∗ implies property [P ], but the following result provides an useful sufficient condition.

Proposition 3.11. Let X be a Banach space. If SX = str-exp(BX), then X has property 
[P].

Proof. Take (x0, x∗
0) ∈ Π(X). As x0 ∈ str-exp(BX), there is u∗

0 ∈ SE(X) which strongly 
exposed x0. Since x∗

0(x0) = 1, it is immediate that the norm-one functional x∗
n = (1 +

n−1‖u∗
0‖)

(
x∗

0 +n−1u∗
0
)

strongly exposes x0 for every n ∈ N and that {x∗
n} −→ x∗

0. Now, 
Lemma 3.10 gives the result. �

Recall from [16] that a point x in the unit sphere SX of a Banach pace X is said to an 
almost LUR (in short, ALUR) point if any (xn) ⊆ BX and (x∗

m) ⊆ BX∗ , the condition

lim
m

lim
n

x∗
m

(
xn + x

2

)
= 1

implies that ‖xn − x‖ −→ 0. We say that X is ALUR if every element of SX is ALUR. 
It is clear that LUR spaces are ALUR, but the reverse implication is not true (see [16, 
Corollary 12]). It is observed in [15, Corollary 4.6] that if X is ALUR, then each point 
x in SX is strongly exposed by every x∗ ∈ SX∗ which attains its norm at x. Thus, in 
particular, if X is ALUR, then SX = str-exp(BX).

Corollary 3.12. ALUR Banach spaces satisfy property [P].
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Our next aim is to provide a very general result in which the property [P] of a 
Banach space X produces a denseness result of ASE(X, Y ) which recall the Bishop-
Phelps-Bollobás property.

Theorem 3.13. Let X be a Banach space with property [P], Y be a Banach space with 
ACKρ structure with the corresponding 1-norming set Γ ⊆ BY ∗ . Then, there exists a 
function ε ∈ (0, 1) �−→ η(ε, ρ) > 0 such that if T ∈ FlΓ(X, Y ) satisfies that ‖T‖ = 1
and ‖Tx0‖ > 1 − η(ε, ρ) for some x0 ∈ SX , then there exists S ∈ ASE(X, Y ) and 
u0 ∈ str-exp(BX) such that ‖Su0‖ = ‖S‖ = 1, ‖S − T‖ < ε, and ‖u0 − x0‖ < ε.

We need the following lemma which can be obtained by arguing as in [25, Lemma 2.9]
but using property [P] instead of the Bishop-Phelps-Bollobás theorem.

Lemma 3.14. Let X be a Banach space which has property [P] with a function ε �−→ η(ε), 
and let Y be Banach space. Let Γ ⊆ BY ∗ be a 1-norming set, T ∈ L(X, Y ) be a Γ-flat 
operator with ‖T‖ = 1, ε > 0 and x0 ∈ SX such that ‖T (x0)‖ > 1 − η(ε). Then for every 
r > 0, there exist

(1) A w∗-open set Ur ⊆ Y ∗ with Ur ∩ Γ �= ∅,
(2) x∗

r ∈ SE(X) and ur ∈ str-exp(BX) such that |x∗
r(ur)| = 1, ‖T ∗z∗−x∗

r‖ < r+ε +η(ε), 
and ‖ur − x0‖ < ε for every z∗ ∈ Ur ∩ Γ.

Proof of Theorem 3.13. Given ε > 0, let η(ε) be the constant from the property [P]. Fix 
0 < ε0 < ε and take ε1 > 0 such that

max
{
ε1, 4

(
ε1 + η(ε1) + 2(ε1 + η(ε1))

1 − ρ + ε1 + η(ε1)

)}
< ε0.

Take r > 0 and 0 < ε2 < ε
3 so that 3ε2 + r < ε1 + η(ε1).

Now, let T ∈ L(X, Y ) be a Γ-flat operator such that ‖T‖ = 1 and ‖T (x0)‖ > 1 −η(ε1)
for some x0 ∈ SX . By Lemma 3.14, there exist

(1) A w∗-open set Ur ⊆ Y ∗ with Ur ∩ Γ �= ∅,
(2) x∗

r ∈ SE(X) and ur ∈ SX such that |x∗
r(ur)| = 1, ‖ur − x0‖ < ε1 and ‖T ∗z∗ − x∗

r‖ <
r + ε1 + η(ε1), for every z∗ ∈ Ur ∩ Γ.

On the other hand, by definition of ACKρ, we can obtain V ⊆ Ur∩Γ, y∗1 ∈ V, e ∈ SY , F ∈
L(X, Y ) and V1 ⊆ Γ satisfying the desired properties.

Define S(x) := x∗
r(x)F (e) + (1 − δ)(IdY −F )T (x) for every x ∈ X, where δ ∈ (ε2, 1)

is chosen so that ‖S‖ � 1 (it is possible to find such δ, see [25, Lemma 3.5]). Note that

1 = |x∗
r(ur)| = ‖y∗1(x∗

r(ur))F (e)‖ = |y∗1(S(ur))| � ‖S(ur)‖ � 1;
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which implies that S attains its norm at ur. Computing as in [25, Lemma 3.5] (or, see 
[31, Theorem 3.5]), we have ‖S − T‖ < ε

2 . Finally, since ur is a strongly exposed point, 
by Lemma 1.2, there is G ∈ ASE(X, Y ) such that ‖G(ur)‖ = 1 and ‖G − S‖ < ε

2 , so 
‖G − T‖ < ε. �
Proof of Theorem 3.5. The idea is just to follow the proof of Theorem 3.13, forgetting 
the estimation on the distance between vectors in the domain space and then property 
[P] can be easily replaced with the density of SE(X) instead. �
3.2. When the set of strongly exposed points in the range space is countable (up to 
rotations)

Our next aim is to provide results on denseness of absolutely strongly exposing oper-
ators for which even the denseness of the norm attaining operators was unknown. Our 
first general result in this line is the following one from which we will get a number of 
corollaries.

Theorem 3.15. Let X, Y be Banach spaces and let I(X, Y ) be a closed subspace of 
L(X, Y ) containing all rank one operators. Suppose that there is a sequence {y∗n} in 
SY ∗ such that the set

A =
{
T ∈ I(X,Y ) : ‖T‖ = ‖T ∗y∗n‖ for some n ∈ N

}
is residual in I(X, Y ). Then:

(a) if NA(X, K) is residual, then NA(X, Y ) ∩ I(X, Y ) is residual in I(X, Y );
(b) if SE(X) is dense, then ASE(X, Y ) ∩ I(X, Y ) is dense in I(X, Y ).

In the proof of Theorem 3.15, we will use the following easy result on residuality.

Lemma 3.16. Let Z, W be Banach spaces, let I ′(Z, W ) be a closed subspace of L(Z, W )
and let {zn} be a sequence in SZ . Suppose that for every n ∈ N, the bounded linear 
operator Φn : I ′(Z, W ) −→ W given by Φn(T ) = T (zn) for every T ∈ I ′(Z, W ) is onto. 
Then, for every residual set D of W , the set

B =
{
T ∈ I ′(X,Y ) : T (zn) ∈ D for all n ∈ N

}
is residual in I ′(X, Y ).

Proof. Let {Om} be a sequence of dense open set of W such that 
⋂

m∈N Om ⊆ D. As 
Φn is bounded linear and onto, Φn is an open map. Moreover, Φ−1

n (Om) is open and 
dense in I ′(Z, W ). Indeed, the set is open by continuity; also, for every open subset U



M. Jung et al. / Journal of Functional Analysis 284 (2023) 109746 23
of I ′(Z, W ) and every n, m ∈ N, Φn(U) ∩Om �= ∅ as Φn(U) is open and Om is dense in 
W ; hence Φ−1

n (Om) ∩ U �= ∅. Now, the set⋂
n,m∈N

Φ−1
n (Om)

is residual in I ′(Z, W ) and it is immediate that it is contained in B. �
Proof of Theorem 3.15. Suppose first that NA(X, K) is residual in X∗. We apply 
Lemma 3.16 with Z = Y ∗, W = X∗, zn = y∗n for every n ∈ N, the residual set 
NA(X, K) ⊂ W , and

I ′(Z,W ) = {T ∗ ∈ L(Z,W ) : T ∈ I(X,Y )},

which is closed since it is isometrically isomorphic to I(X, Y ). Moreover, Φn(I ′(Z, W )) =
W for every n ∈ N. Indeed, for every x∗

0 ∈ W = X∗, define T ∈ I(X, Y ) by Tx = x∗
0(x)yn

where yn ∈ Y is a point at which y∗n(yn) = 1. Observe that T ∗ ∈ I ′(Z, W ) and Φn(T ∗) =
T ∗(y∗n) = x∗

0; hence Φn is surjective. Now, we can apply Lemma 3.16 to have that the 
set

B =
{
T ∈ I(X,Y ) : T ∗(y∗n) ∈ NA(X,K) for all n ∈ N

}
is residual in I(X, Y ) ≡ I ′(Z, W ). Therefore, A ∩B is also residual, but this intersection 
is contained in the set

C =
{
T ∈ I(X,Y ) : ‖T‖ = ‖T ∗y∗n‖ with T ∗y∗n ∈ NA(X,K) for some n ∈ N

}
which is a fortiori residual in I(X, Y ). It follows from Fact 1.4 that C ⊂ NA(X, Y ) ∩
I(X, Y ), getting the residuality of the latter set.

In the case when SE(X) is dense, we replace NA(X, K) with the set SE(X). Then 
the set C is contained in the closure of ASE(X, Y ) ∩ I(X, Y ) by Lemma 1.2, hence 
ASE(X, Y ) ∩ I(X, Y ) is dense in I(X, Y ). �

We are ready to present the main consequences of Theorem 3.15.

Corollary 3.17. Let X be a Banach space, let Y be a Banach space with the RNP such that 
str-exp(BY ) is countable up to rotations, and let I(X, Y ∗) a closed subspace of L(X, Y ∗)
containing all rank one operators.

(a) If NA(X, K) is residual, then NA(X, Y ∗) ∩ I(X, Y ∗) is residual in I(X, Y ∗).
(b) If SE(X) is dense, then the elements of I(X, Y ∗) at which the norm of L(X, Y ∗) is 

Fréchet-differentiable are dense in I(X, Y ∗); in particular, ASE(X, Y ∗) ∩ I(X, Y ∗)
is dense in I(X, Y ∗).
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Proof. Write Ψ: L(X, Y ∗) −→ L(Y, X∗) given by Ψ(T ) = T ∗|Y and observe that Ψ
is an isometric isomorphism. Let {yn} a sequence in SY such that T{yn : n ∈ N} =
str-exp(BY ). Then, the set{

T ∈ I(X,Y ∗) : ‖T‖ = ‖Ψ(T )(yn)‖ for some n ∈ N
}

contains

Ψ−1 (ASE(Y,X∗) ∩ Ψ
(
I(X,Y ∗)

))
which is residual in I(X, Y ∗) by Bourgain-Stegall result as Y has the RNP (see the 
item (a) of Proposition 1.1). The first assertion of the corollary now follows from the 
same argument as in the proof of Theorem 3.15, where the Lemma 3.16 is applied to 
Ψ(L(X, Y ∗)) = L(Y, X∗). For the second assertion (b), if SE(X) is dense in X∗, then by 
considering SE(X) instead of NA(X, K), we have the denseness of the set{

T ∈ Ψ
(
I(X,Y ∗)

)
: ‖T‖ = ‖Ty‖ with Ty ∈ SE(X) for some y ∈ str-exp(BY )

}
as in Theorem 3.15. But then Lemma 1.2 gives that the set

C =
{
T ∈ Ψ

(
I(X,Y ∗)

)
∩ ASE(Y,X∗) :

‖T‖ = ‖Ty‖ with Ty ∈ SE(X) for some y ∈ str-exp(BY )
}

is actually dense in Ψ
(
I(X, Y ∗)

)
. Now, Proposition 1.6 shows that the norm of L(Y, X∗)

is Fréchet-differentiable at all elements of C so, the norm of L(X, Y ∗) is Fréchet-
differentiable at all element of Ψ−1(C), which is dense in I(X, Y ∗). The denseness of 
ASE(X, Y ∗) follows also from Proposition 1.6. �

A first immediate consequence of this corollary deals with finite-dimensional range 
spaces.

Example 3.18. Let X be a Banach space and let Y be a finite-dimensional Banach space 
such that ext(BY ∗) is countable up to rotations.

(a) If NA(X, K) is residual, then NA(X, Y ) is residual.
(b) If SE(X) is dense, then Fréchet-differentiability points in L(X, Y ) are dense; in 

particular, ASE(X, Y ) is dense in L(X, Y ).

Remark 3.19. It was observed in [5, p. 414] that a finite-dimensional Banach space has 
property quasi-β if and only if EY = ext(BY ∗)/ ∼ is a discrete topological space. It 
is clear that for a finite-dimensional Banach space Y , the hypothesis that ext(BY ∗) is 
countable up to rotations is much weaker than the hypothesis that EY is discrete; hence 
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we can obtain more examples from Corollary 3.17 than the ones which can be obtained 
via property quasi-β. In particular, it might be worth mentioning that for a 2-dimensional
Banach space Y , the space EY is discrete if and only if EY is finite (since, in this case, 
the set SY ∗ \ ext(BY ∗) is clearly open, hence ext(BY ∗) is compact).

Another interesting consequence of Theorem 3.15 is the following one which looks 
similar to the previous corollary, but now the conditions stated in Corollary 3.17 are 
assumed for a dual Banach space.

Corollary 3.20. Let X be a Banach space, let Y be a Banach space, and let I(X, Y ) a 
closed subspace of L(X, Y ) containing all rank one operators. Suppose that Y ∗ has the 
RNP and str-exp(BY ∗) is countable up to rotations.

(a) If NA(X, K) is residual, then NA(X, Y ) ∩ I(X, Y ) is residual in I(X, Y ).
(b) If SE(X) is dense, then the elements of I(X, Y ) at which the norm of L(X, Y ) is 

Fréchet-differentiable are dense in I(X, Y ); in particular, ASE(X, Y ) ∩ I(X, Y ) is 
dense in I(X, Y ).

Proof. Write Ψ: L(X, Y ) −→ L(Y ∗, X∗) given by Ψ(T ) = T ∗ and observe that Ψ is 
an isometric embedding. Let {y∗n} be a sequence in SY ∗ such that T{y∗n : n ∈ N} =
str-exp(BY ∗) ⊆ NA(Y, K). By Theorem 3.15, it suffices to show that

A :=
{
T ∈ I(X,Y ) : ‖T‖ = ‖T ∗y∗n‖ for some n ∈ N

}
is residual in I(X, Y ). This is immediate since A contains the following set

Ψ−1 (ASE(Y ∗, X∗) ∩ Ψ
(
I(X,Y )

))
,

which is residual in I(X, Y ) by Bourgain-Stegall result (see the item (b) of Proposi-
tion 1.1). Note that the denseness of elements of I(X, Y ) at which the norm of L(X, Y )
is Fréchet-differentiable follows from Proposition 1.6. �

Corollary 3.20 gives the following particular case.

Example 3.21. Let X be a Banach space, let Y be a predual of �1, and let I(X, Y ) a 
closed subspace of L(X, Y ) containing all rank one operators.

(a) If NA(X, K) is residual, then NA(X, Y ) ∩ I(X, Y ) is residual in I(X, Y ).
(b) If SE(X) is dense, then the elements of I(X, Y ) at which the norm of L(X, Y ) is 

Fréchet-differentiable are dense in I(X, Y ); in particular, ASE(X, Y ) ∩ I(X, Y ) is 
dense in I(X, Y ).
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As far as we know, the question of whether all preduals of �1 have Lindenstrauss 
property B remains unsolved, so the above result provides new examples of pairs of 
Banach spaces for which the set of norm attaining operators is dense.

Another consequence of Theorem 3.15 is the following. Recall that a subset B ⊂ SY ∗

is a James boundary for Y if for every y ∈ Y there is y∗ ∈ B such that |y∗(y)| = ‖y‖.

Corollary 3.22. Let X be a Banach space and let Y be a Banach space admitting a 
countable James boundary.

(a) If NA(X, K) is residual, then NA(X, Y ) ∩ K(X, Y ) is residual in K(X, Y ).
(b) If SE(X) is dense, then ASE(X, Y ) ∩ K(X, Y ) is dense in K(X, Y ).

The proof requires the fact, which is easy to prove, that the adjoint of a compact 
operator between Banach spaces attains its norm at an element of a prefixed James 
boundary.

Remark 3.23. Let X, Y be Banach spaces and let B ⊂ SY ∗ be a James boundary. Then, 
given T ∈ K(X, Y ), there is y∗ ∈ B such that ‖T ∗y∗‖ = ‖T‖. Indeed, as T (BX) is 
compact in Y , there is y0 ∈ T (BX) with ‖y0‖ = ‖T‖. Pick y∗0 ∈ B such that |y∗0(y0)| =
‖y0‖ = ‖T‖ and observe that

‖T ∗y∗0‖ � sup
x∈BX

∣∣[T ∗y∗0 ](x)
∣∣ = sup

x∈BX

∣∣y∗0(Tx)
∣∣

= sup
y∈T (BX)

|y∗0(y)| � |y∗0(y0)| = ‖T ∗‖.

Proof of Corollary 3.22. Write B = {y∗n : n ∈ N} for the countable James boundary for 
Y and use the previous Remark 3.23 to show that the set

{T ∈ K(X,Y ) : ‖T‖ = ‖T ∗y∗n‖ for some n ∈ N
}

coincides with K(X, Y ), so is trivially residual in K(X, Y ). Then, Theorem 3.15 applies 
and gives the results. �
Remark 3.24. Observe that a closed subspace of a Banach space admitting a countable 
James boundary also admits a countable James boundary (just consider the restrictions 
of elements of the boundary to the subspace which attain their norm at the subspace). 
Therefore, the denseness results from Corollary 3.22 pass to closed subspaces. This is 
not common in the theory of norm attaining operators: observe that �∞ has property β, 
hence property B and there are separable Banach spaces X and Y for which NA(X, Y ) ∩
K(X, Y ) is not dense in K(X, Y ) [62]. Besides, the space c, which has property β, is not 
polyhedral, so it contains a two-dimensional subspace with infinitely many extreme points 
in its dual ball (this is an old result by Klee, see [56]), hence failing property quasi-β (for 
two dimensional spaces, having property quasi-β is equivalent to being polyhedral, see 
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Remark 3.19), so it is not know if such a subspace has property B. In any case, every 
subspace of c satisfies the conditions of Corollary 3.22.

The following consequence of Corollary 3.22 is specially interesting.

Example 3.25. Let X be a Banach space and let Y be a separable polyhedral space.

(a) If NA(X, K) is residual, then NA(X, Y ) ∩ K(X, Y ) is residual in K(X, Y ).
(b) If SE(X) is dense, then the norm of L(X, Y ) is Fréchet-differentiable at a dense 

subset of K(X, Y ); in particular, ASE(X, Y ) ∩ K(X, Y ) is dense in K(X, Y ).

Proof. Every separable polyhedral space Y admits a countable James boundary [41, 
Theorem 1.4] and then Corollary 3.22 gives the result. Only the part related to the 
denseness of Fréchet-differentiability points in case (b) does not follow directly from 
such corollary, so let us prove it. It is actually proved in [41, Theorem 1.4] that the set 
w∗ -str-exp(BY ∗) is countable and it is a James boundary for Y . Therefore, the proof of 
Corollary 3.22 shows that the set

A =
{
T ∈ K(X,Y ) : ‖T ∗y∗‖ = ‖T ∗‖

and T ∗y∗ ∈ SE(X) for some y∗ ∈ w∗ -str-exp(BY ∗)
}

is dense in K(X, Y ). By Lemma 1.2, for every T ∈ A and every ε > 0 there is 
S ∈ K(X, Y ) such that ‖T − S‖ < ε and S∗ ∈ ASE(Y ∗, X∗), ‖S∗‖ = ‖S∗y∗0‖ with 
S∗y∗0 ∈ SE(X). Proposition 1.6 shows that S∗ is a point of Fréchet-differentiability of 
the norm of L(Y ∗, X∗) so, a fortiori, a point of Fréchet differentiability of the norm of 
Lw∗−w∗(Y ∗, X∗) and, therefore, S is a point of Fréchet-differentiability of the norm of 
L(X, Y ). �
Remark 3.26. It is known (and easy to prove) that for every Banach space X and every 
polyhedral space with the approximation property, NA(X, Y ) ∩ K(X, Y ) is dense in 
K(X, Y ) [63, Corollary 4.5]. As far as we know, whether the assumption for Y to have 
the approximation property can be removed or not is an open question. The previous 
example shows that this is the case when NA(X, K) is residual and Y is separable.

Remark 3.27. While every separable polyhedral space contains a countable James bound-
ary (actually the set of w∗-strongly exposed points of its dual ball) which is the key to 
proving Example 3.25, there are examples of polyhedral Banach spaces Y for which 
ext(BY ∗) is uncontable (even that it cannot be covered by a countable union of compact 
sets, see [61]). We do not know whether Corollary 3.20 is applicable for these spaces, as 
we do not know how big is the set str-exp(BY ∗) for these examples.

We can remove the separability hypothesis in Example 3.25 in the case of SE(X)
dense, but the result gives less information.
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Example 3.28. Let X be a Banach space for which SE(X) is dense and let Y be a 
polyhedral space. Then, ASE(X, Y ) ∩ K(X, Y ) is dense in K(X, Y ).

Proof. Fix T ∈ K(X, Y ) and ε > 0. As Z = T (X) is separable and polyhedral, it follows 
from Example 3.25 that there is S ∈ ASE(X, Z) ∩K(X, Z) for which ‖T ′−S‖ < ε, where 
T ′ is just T considered as operator from X to Z. Now, write J : Z −→ Y for the canonical 
inclusion and observe that ‖T−JS‖ = ‖T ′−S‖ < ε and JS ∈ ASE(X, Y ) ∩K(X, Y ). �

Another case in which Corollary 3.22 applies is for real almost-CL-spaces with sep-
arable dual. Recall that a Banach space Y is an almost-CL-space if its unit ball is the 
absolutely closed convex hull of every maximal convex subset of SY . Examples of almost-
CL-spaces are C(K) spaces, L1(μ) spaces, and the disk algebra, among many others. We 
refer the reader to [64] and references therein for more information on almost-CL-spaces. 
Let us comment that real or complex C(K) spaces and real L1(μ) spaces are actually 
CL-spaces (i.e. the unit ball is the absolutely convex hull of every maximal convex sub-
set). The name CL-space, introduced in [43], came from the fact that C(K) spaces and 
L1(μ) spaces are the more natural examples.

Example 3.29. Let X be a Banach space and let Z be a real almost-CL-space with Z∗

separable and let Y be a closed subspace of Z.

(a) If NA(X, K) is residual, then NA(X, Y ) ∩ K(X, Y ) is residual in K(X, Y ).
(b) If SE(X) is dense, then ASE(X, Y ) ∩ K(X, Y ) is dense in K(X, Y ).

Proof. It follows from [64, Lemma 3] that Z admits a countable James boundary (see 
the proof of [64, Theorem 5] for details). Therefore, Corollary 3.22 and Remark 3.24
apply. �

It is not know whether all subspaces of a real almost-CL-space with separable dual 
have Lindenstrauss property B. It is easy to find such subspaces failing property quasi-β: 
a two-dimensional subspace of c with infinitely many extreme points in the dual ball.

The validity of a complex version of Example 3.29 is not clear. For instance, it is 
not true that complex almost-CL-spaces with separable dual contains a countable James 
boundary, as it can be checked from the two-dimensional �1 space. As far as we know, it 
is an open problem if this space has property B. On the other hand, for C(K) spaces the 
result is also valid in the complex case. Recall that a topological space is called scattered
if every subset of it contains an isolated point (relative to the subset).

Example 3.30. Let K be a Hausdorff scattered compact topological space, and let Y
be a closed subspace of (the real or complex space) C(K). If SE(X) is dense, then 
ASE(X, Y ) ∩ K(X, Y ) is dense in K(X, Y ).
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Proof. Fix T ∈ K(X, Y ) and ε > 0. Observe that Z = T (X) is separable and then 
there is countable compact space KT such that Z is contained in C(KT ) [69, Theo-
rem 2]. As {δt : t ∈ KT } is clearly a James boundary for C(KT ) and it is countable, it 
follows that Z admits a countable James boundary. We can now argue as in the proof 
of Example 3.28. �
Remark 3.31. It is known [60] that C(K) spaces have property β when K contains a 
dense subset of isolated points (in particular, when K is scattered); hence Theorem 3.1
can be applied to Y = C(K). Moreover, for a compact space K, since the dual of C(K)
is isometric to L1(μ) for some suitable measure μ, the result in Example 3.4 is also 
valid for Y = C(K). The main interest of Example 3.30 is to show the denseness of 
ASE(X, Y ) ∩ K(X, Y ) when Y is a closed subspace of C(K) spaces provided that K is 
scattered.

3.3. When the set of strongly exposed points in the range space is discrete (up to 
rotations)

Our next aim is to provide results on the residuality of NA(X, Y ) which can be applied 
for non-separable Y ’s. Instead of requiring countability of some sets as in Theorem 3.15
and its consequences, we will require some topological discreteness. Our first result in 
this line is the following one. We will use the following notation: a subset A of BX is 
discrete up to rotations if every sequence {an} of elements of A which converges in norm 
to an element a ∈ A satisfies that an = θna with θn ∈ T for all sufficiently large n (and 
then {θn} converges to 1). In the real case, this is the same as requiring A to be discrete 
for the norm topology.

Theorem 3.32. Let X be a Banach space and let Y be a Banach space with the RNP 
such that str-exp(BY ) is discrete up to rotations. Let I(X, Y ∗) be a closed subspace of 
L(X, Y ∗) containing all rank one operators.

(a) If NA(X, K) is residual, then NA(X, Y ∗) ∩ I(X, Y ∗) is residual in I(X, Y ∗).
(b) If SE(X) is dense in X∗, then the elements of I(X, Y ∗) at which the norm of 

L(X, Y ∗) is Fréchet differentiable are dense in I(X, Y ∗). In particular, ASE(X, Y ∗) ∩
I(X, Y ∗) is dense in I(X, Y ∗).

We need the following easy lemma which will be used in the proof of Theorem 3.32.

Lemma 3.33. Let Z, W be Banach spaces, let E ⊆ W be a dense subset, and let I ′(Z, W )
be a closed subspace of L(Z, W ) such that for every z ∈ SZ , the bounded linear operator 
Φz : I ′(Z, W ) −→ W given by Φz(S) = S(z) is surjective. Then, given T ∈ ASE(Z, W ) ∩
I ′(Z, W ) which absolutely strongly exposes z0 ∈ SZ and given ε > 0, there exists G ∈
I ′(Z, W ) satisfying:
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(1) ‖T −G‖ < ε,
(2) G(z0) ∈ E,
(3) There exists δ > 0 so that

z ∈ BZ satisfies ‖G(z)‖ > ‖G‖ − δ =⇒ z ∈ TB(z0, ε).

Proof. By hypothesis, Φz0 is onto, hence open. Define A to be the set of those S ∈
I ′(Z, W ) such that ‖T −S‖ < ε and satisfying that there exists δ > 0 with the property

z ∈ BZ , ‖S(z)‖ > ‖S‖ − δ =⇒ z ∈ TB(z0, ε).

It is not difficult to prove that A is open and, clearly, T ∈ A. Hence Φz0(A) is a non-
empty open subset of W . Consequently, Φz0(A) ∩E �= ∅ and so, Φ−1

z0 (E) ∩ A �= ∅. �
Proof of Theorem 3.32. Notice that L(X, Y ∗) is isometrically isomorphic to L(Y, X∗)
through the surjective isometry T �−→ Ψ(T ) := T ∗|Y for every T ∈ L(X, Y ∗). Let 
D =

⋂
n∈N On, where On is open and dense, be a Gδ dense subset of NA(X, K). As 

T NA(X, K) = NA(X, K), we may and do suppose that TOn = On for every n ∈ N. We 
claim that the set

C :=
{
T ∈ ASE(Y,X∗) ∩ Ψ(I(X,Y ∗)) :

T attains its norm at some y0 ∈ BY with Ty0 ∈ D
}

is residual in Ψ(I(X, Y ∗)). Once the claim is proved, the proof of the theorem finishes. 
Indeed, Ψ−1(C) ⊆ NA(X, Y ∗) by Fact 1.4. Since Ψ−1(C) forms a Gδ dense set, we 
conclude that NA(X, Y ∗) ∩ I(X, Y ∗) is residual in I(X, Y ∗). If, moreover, SE(X) is 
dense in X∗, we may take D = SE(X) and Proposition 1.6 shows that the norm of 
L(Y, X∗) is Fréchet differentiable at every element of C, hence the norm of L(X, Y ∗) is 
Fréchet differentiable at every element of Ψ−1(C), which is dense in I(X, Y ∗).

Let us go to prove that the set C is residual. For each n ∈ N, define An to be the 
set of those T ∈ Ψ(I(X, Y ∗)) ⊂ L(Y, X∗) with the property that there exists a strongly 
exposed point z0 ∈ BY such that T (z0) ∈

⋂n
k=1 Ok and that there exists δ > 0 satisfying 

that

S(T, δ) ⊆ TB (z0, 1/n) ,

where S(T, δ) := {z ∈ BY : ‖T (z)‖ > ‖T‖ − δ}.
Claim: An is open for every n ∈ N. Indeed, given T ∈ An, take z0 and δ > 0

witnessing the defining property of An. Since T (z0) ∈
⋂n

k=1 Ok, there exists r > 0 such 
that B(T (x0), r) ⊆

⋂n
k=1 Ok. Take 0 < δ′ < δ and choose μ < min{r, (δ − δ′)/2}. Now, 

if ‖G − T‖ < μ and G ∈ Ψ(I(X, Y ∗)), then

S(G, δ′) ⊆ S(T, δ) ⊆ TB (z0, 1/n) .
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Besides, ‖T (z0) −G(z0)‖ � r, so G(z0) ∈
⋂n

k=1 Ok. This proves that B(T, μ) ⊆ An.
Claim: An is dense in Ψ(I(X, Y ∗)) for each n ∈ N. To this end, let G ∈ Ψ(I(X, Y ∗)) ⊂

L(Y, X∗) and n ∈ N be fixed. Given 0 < ε < 2/n, since Y has the RNP, by Bourgain-
Stegall result (see Proposition 1.1), there exists T ∈ ASE(Y, X∗) ∩ Ψ(I(X, Y ∗)) such 
that ‖G − T‖ < ε/2. By applying Lemma 3.33 for Z = Y , W = X∗, E =

⋂n
k=1 Ok, 

I ′(Z, W ) = Ψ(I(X, Y ∗)) and T ∈ ASE(Z, W ) ∩ I ′(Z, W ), we can find an element H ∈
I ′(Z, W ) with ‖T −H‖ < ε/2 such that there are z0 ∈ str-exp(BY ) and δ > 0 so that 
H(z0) ∈

⋂n
k=1 Ok and

S(H, δ) ⊆ TB (z0, ε/2) ⊆ TB(z0, 1/n).

So, H ∈ An and ‖G −H‖ < ε. This shows that An is dense in Ψ(I(X, Y ∗)).
Therefore, A :=

⋂
n∈N An is a Gδ dense subset of Ψ(I(X, Y ∗)). Note that every 

element in A is an absolutely strongly exposing operator. Indeed, take T ∈ A. Then, 
for every n ∈ N, we may find a strongly exposed point zn ∈ BY with the property that 
there exists δn > 0 so that

S(T, δn) ⊆ TB (zn, 1/n) .

It is immediate that ‖T (zn)‖ −→ 1, from where the property defining An implies that 
there is a sequence {θn} in T such that {θnzn} is a Cauchy sequence in Y . Since Y
is complete, we may take z0 ∈ BY to be the limit of (θnzn). It is immediate that T
absolutely strongly exposes z0, hence z0 ∈ str-exp(BY ). By the discreteness assumption 
on the strongly exposed points of BY , we get that z0 = θ′nzn with θ′n ∈ T holds for every 
n � n0 for suitable n0 ∈ N. Consequently, we have that

T (z0) = T (θ′nzn) ∈
n⋂

k=1

TOk =
n⋂

k=1

Ok for every n � n0.

By the arbitrariness of n ∈ N, we conclude that T (z0) ∈ D which shows that T ∈ C. 
Hence, the set C contains the Gδ dense subset A of Ψ(I(X, Y ∗)), finishing the proof. �

Notice that the above Theorem 3.32 is applicable to a closed subspace I(X, Y ∗) of 
L(X, Y ∗) when Y = �1(Γ) for some set Γ. But, in this case, Y ∗ = �∞(Γ) readily has 
property β, so the same result can be achieved from Theorem 3.1.

The next result is somehow a dual version of the previous theorem, but the discreteness 
assumption on strongly exposed points is slightly different.

Theorem 3.34. Let X be a Banach space and let Y be a Banach space such that Y ∗

has the RNP and that for every sequence {y∗n} of elements of w∗ -str-exp(BY ∗) which 
converges to an element y∗0 ∈ str-exp(BY ∗), there is n0 ∈ N and a sequence {θn} in 
T such that y∗n = θny

∗
0 for every n � n0. Let I(X, Y ) be a closed subspace of L(X, Y )

containing all rank one operators.
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(a) If NA(X, K) is residual, then NA(X, Y ) ∩ I(X, Y ) is residual in I(X, Y ).
(b) If SE(X) is dense in X∗, then the elements of I(X, Y ) at which the norm of L(X, Y )

is Fréchet differentiable are dense in I(X, Y ). In particular, ASE(X, Y ) ∩ I(X, Y )
is dense in I(X, Y ).

Proof. The idea of the proof is more or less similar to the one of Theorem 3.32. We give 
a proof for the sake of completeness. For each ε > 0, let us consider the set

Aε := {G ∈ I(X,Y ) : ∃ η > 0 and y∗0 ∈ str-exp(BY ∗) so that S(G∗, η) ⊆ TB(y∗0 , ε)},

where S(G∗, η) := {y∗ ∈ BY ∗ : ‖G∗(y∗)‖ > ‖G∗‖ − η}.
Claim: for each ε > 0, Aε is dense. To prove that, we use Proposition 1.1. Indeed, given 

T ∈ I(X, Y ) and δ > 0, there is 0 < ρ < δ, x∗ ∈ X∗ and y ∈ Y so that S := T +ρx∗⊗ y, 
which is an element of I(X, Y ∗), enjoys that S∗ ∈ ASE(Y ∗, X∗). It is obvious that 
S ∈ Aε. Since ‖T − S‖ < δ, this gives the density.

Claim: for each ε > 0, Aε is contained in

Bε :=
{
G ∈ I(X,Y ∗) : ∃η > 0 and z∗0 ∈ w∗ -str-exp(BY ∗) so that S(G∗, η)⊆TB(z∗0 , 2ε)

}
.

Indeed, let G ∈ Aε be given. Let η > 0 and y∗0 ∈ str-exp(BY ∗) be such that S(G∗, η) ⊆
TB(y∗0 , ε). Since Y ∗ has the RNP, we have that BY ∗ = convw∗(w∗ -str-exp(BY ∗)). Thus, 
there exists z∗0 ∈ w∗ -str-exp(BY ∗) such that z∗0 ∈ S(G∗, η). Find λ ∈ T satisfying that 
‖z∗0 − λy∗0‖ < ε. Now, if y∗ ∈ S(G∗, η), then

‖y∗ − μλz∗0‖ � ‖y∗ − μy∗0‖ + ‖μy∗0 − μλz∗0‖ < 2ε

for some μ ∈ T . This implies that S(G∗, η) ⊆ TB(z∗0 , 2ε); hence G ∈ Bε.
Let D =

⋂
n∈N On be a Gδ subset of NA(X, K) which is dense in X∗. Without loss 

of generality, we may assume that TOn = On for every n ∈ N. For each n ∈ N, define 
Cn to be the set of those T ∈ I(X, Y ) with the property that there exists η > 0 and 
z∗0 ∈ w∗ -str-exp(BY ∗) such that S(T ∗, η) ⊆ TB(z∗0 , 1/n) and T ∗(z∗0) ∈

⋂n
j=1 Oj .

Claim: Cn is open and dense for every n ∈ N. Clearly, Cn is open for every n ∈ N, 
and the proof follows from the idea of the first Claim in the proof of Theorem 3.32. 
Let us prove that Cn is dense. Indeed, let G ∈ I(X, Y ) and n ∈ N be fixed. Given 
0 < ε < 1/(2n), by the previous claim, there is T ∈ Bε witnessed by η > 0 and 
z0 ∈ w∗ -str-exp(B∗

Y ) such that ‖G − T‖ < ε/2. Arguing as in the proof of Lemma 3.33, 
we can find H ∈ I(X, Y ) satisfying ‖H − T‖ < ε/2, H∗(z∗0) ∈

⋂n
j=1 Oj and

S(H∗, η) ⊆ TB(z∗0 , 2ε) ⊆ TB(z∗0 , 1/n).

This shows that ‖G −H‖ < ε and H ∈ Cn.
Finally, 

⋂
n Cn is a Gδ dense subset in I(X, Y ). If G ∈

⋂
n Cn, then there would be 

z∗0 ∈ str-exp(BY ∗) and a sequence {z∗n} ⊆ w∗ -str-exp(BY ∗) converging to z∗0 such that 
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‖G∗(z∗0)‖ = ‖G∗‖ and G∗(z∗n) ∈
⋂n

j=1 Oj for every n ∈ N. By our assumption, there is 
a sequence {θn} in T such that z∗n = θnz

∗
0 for all sufficiently large n. Consequently, we 

obtain that G∗(z∗0) ∈
⋂n

j=1 Oj for all large n which implies that G∗(z∗0) ∈ D. Finally, by 
taking pre-adjoint, we conclude that NA(X, Y ) is a residual set in L(X, Y ). �

Note that Theorem 3.34 applies to isometric preduals of �1(Γ) as, clearly, the set of 
extreme points of its dual unit ball is discrete up to rotations.

Example 3.35. Let X be a Banach space and let Y be a predual of �1(Γ) for some set Γ. 
Let I(X, Y ) be a closed subspace of L(X, Y ) containing all rank one operators.

(a) If NA(X, K) is residual, then NA(X, Y ) ∩ I(X, Y ) is residual in I(X, Y ).
(b) If SE(X) is dense in X∗, then the elements of I(X, Y ) at which the norm of L(X, Y )

is Fréchet differentiable are dense in I(X, Y ). In particular, ASE(X, Y ) ∩ I(X, Y ) is 
dense in I(X, Y ).

Beside the case when Y is either �1(Γ) or an isometric predual of �1(Γ), some applica-
tions of Theorem 3.32 and 3.34 to the setting of the Lipschitz-free space over a certain 
metric space will be provided in Section 5.

4. Residuality and Fréchet differentiability in the space of operators

In this section we address the following natural question.

Does the residuality of NA(X, Y ) imply the density of ASE(X, Y ) in L(X, Y )? (Q3)

In the case when Y is one-dimensional, the residuality of NA(X, K) is closely related 
to the Fréchet differentiability of the dual norm on X∗ (and hence to the geometric 
structure of the unit ball of X due to the Šmulyan test). For instance, it has been 
shown by Guirao, Montesinos, and Zizler [49, Theorem 3.1] that if X is separable, then 
NA(X, K) is residual if and only if the dual norm on X∗ is Fréchet differentiable on a 
dense subset of X∗, hence if and only if SE(X) is dense in X∗ (by [37, Corollary 1.5]). 
This result has been extended by Moors and Tan [65] showing that the same conclusion 
holds for dual differentiation Banach spaces. Examples of dual differentiation spaces are 
those Banach space which can be equivalently renormed to be LUR [45] and also RNP 
spaces or even Banach spaces whose duals are weak Asplund [46]. It is actually an open 
question whether every Banach space is a dual differentiation space.

Under separability assumptions on X and Y ∗, the previous result of Guirao et al. can 
be extended to the case of bounded linear operators from X to Y .

Theorem 4.1. Let X and Y be Banach spaces. Suppose that X and Y ∗ are separable, 
and that NA(X, Y ) is residual. Then, the points of L(X, Y ) at which the norm is Fréchet 
differentiable are dense in L(X, Y ), in particular, ASE(X, Y ) is dense in L(X, Y ).
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Proof. Let A ⊆ NA(X, Y ) be the set of all points in NA(X, Y ) where the norm of 
L(X, Y ) is not Fréchet differentiable. We claim that A is meager in L(X, Y ), which 
is enough to get the density of the elements in L(X, Y ) at which the norm is Fréchet 
differentiable. Indeed, as NA(X, Y ) = L(X, Y ) \ M for some meager set M , it follows 
that L(X, Y ) \ [M ∪A] = NA(X, Y ) \A is residual in L(X, Y ). Note that the denseness 
of ASE(X, Y ) in L(X, Y ) is then immediate by Proposition 1.6.

Let us then show that A is meager. For each T ∈ A, there exists xT ∈ SX where 
T attains its norm. Take y∗T ∈ SY ∗ so that y∗T (T (xT )) = ‖T‖. Note that for every 
G ∈ L(X, Y ),

‖T + G‖ − ‖T‖ � Re[xT ⊗ y∗T ](G),

where the tensor xT ⊗ y∗T is considered as an element of L(X, Y )∗. Using that T is not 
a point of Fréchet differentiability, we can take mT ∈ N such that

lim sup
G→0

‖T + G‖ − ‖T‖ − Re[xT ⊗ y∗T ](G)
‖G‖ >

1
mT

.

For each m ∈ N, let Am := {T ∈ A : mT = m} and consider a cover of

BX ⊗BY ∗ := {x⊗ y∗ : x ∈ BX , y ∈ BY ∗} ⊆ L(X,Y )∗

by open balls of radius (12m)−1. Since BX ⊗BY ∗ is separable, by the Lindelöf property, 
there is a countable subcover {Bm

k } of open balls of radius (12m)−1. For m, k ∈ N, define 
Am,k := {T ∈ Am : xT ⊗ y∗T ∈ Bm

k }. Observe that

‖xT ⊗ y∗T − xG ⊗ y∗G‖ < (6m)−1

for all T, G ∈ Am,k. From the definition of the sets A and Am,k, we have A =
⋃

m,k Am,k. 
We claim that Am,k is nowhere dense in L(X, Y ) for each m, k ∈ N, which will show that 
A is meager in L(X, Y ), finishing then the proof of the theorem. Assume to the contrary 
that there is an nonempty open subset O of Am,k for some m, k ∈ N. Pick T ∈ O∩Am,k

and r > 0 such that B(T, r) ⊆ O. Since T ∈ Am, we can find H ∈ L(X, Y ) such that 
‖H‖ < r/2 and

‖T + H‖ − ‖T‖ >
‖H‖
m

+ [xT ⊗ y∗T ](H).

Note that B
(
T + H, ‖H‖

3m

)
⊆ B(T, r) ⊆ O ⊆ Am,k. Thus, the set B

(
T + H, ‖H‖

3m

)
∩Am,k

is nonempty. Take G ∈ B
(
T + H, ‖H‖

3m

)
∩Am,k. Observe that the following is true:

(1) ‖T + H −G‖ < ‖H‖
3m ,

(2) ‖T −G‖ � ‖H‖ + ‖H‖ < 2‖H‖,
3m
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(3) ‖T + H‖ − ‖G‖ � ‖T + H −G‖ < ‖H‖
3m .

Then,

‖T‖ − ‖G‖ = ‖G + (T −G)‖ − ‖G‖
� [xG ⊗ y∗G](G + (T −G)) − [xG ⊗ y∗G](G) = [xG ⊗ y∗G](T −G).

On the other hand,

‖T + H‖ − ‖G‖ = ‖T + H‖ − ‖T‖ + ‖T‖ − ‖G‖

>
‖H‖
m

+ [xT ⊗ y∗T ](H) + [xG ⊗ y∗G)(T −G)

= ‖H‖
m

+ [xT ⊗ y∗T ](T + H −G)+

+ [xG ⊗ y∗G − xT ⊗ y∗T ](T −G)

� ‖H‖
m

− ‖H‖
3m − 2‖H‖ 1

6m = ‖H‖
3m ,

where we have used (1) and (2) in the last inequality. This contradicts (3). So, we 
conclude that Am,k is nowhere dense for each m, k ∈ N. �
Remark 4.2. It is not possible, in general, to get denseness of Fréchet differentiable 
points of L(X, Y ) when NA(X, Y ) is residual. For instance, if X has the Radon-Nikodým 
property, then ASE(X, �1) is dense in L(X, �1) (hence, NA(X, �1) is residual), but there 
is no point in L(X, �1) where the norm on L(X, �1) is Fréchet differentiable since the 
norm of �1 is nowhere Fréchet differentiable (use Proposition 1.6). On the other hand, 
there is no known objection, as far as we know, to get the denseness of ASE(X, Y ) from 
the residuality of NA(X, Y ) in complete generality. On the other hand, we do not know if 
the residuality of NA(X, Y ) for a non-trivial Y implies that of NA(X, K) as the denseness 
of ASE(X, Y ) does.

Remark 4.3.

(1) If the Banach space Y in Theorem 4.1 is reflexive, then the denseness of the set of 
Fréchet differentiable points of L(X, Y ) can be obtained directly from [49, Theo-
rem 3.1]. Indeed, in this case we have that (X⊗̂πY

∗)∗ = L(X, Y ) and the inclusion 
NA(X, Y ) ⊆ NA(X⊗̂πY

∗, K) holds. It follows that NA(X⊗̂πY
∗, K) is residual. Ap-

plying [49, Theorem 3.1] to X⊗̂πY
∗, the norm of (X⊗̂πY

∗)∗ = L(X, Y ) is Fréchet 
differentiable on a Gδ-dense subset.

(2) With the aid of the recent result [13] of A. Avilés et al., we can obtain a non separable 
version of Theorem 4.1. That is, if X is a subspace of a WCG space, Y is a reflexive 
Banach space, and L(X, Y ) = K(X, Y ), then the residuality of NA(X, Y ) implies the 
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denseness of the points of L(X, Y ) at which the norm is Fréchet differentiable. Indeed, 
the assumptions give that X⊗̂πY

∗ is a subspace of a WCG space [13, Corollary 5.21]. 
Since WCG spaces are dual differentiation Banach spaces [45] and a closed subspace 
of a dual differentiation Banach space is again a dual differentiation Banach space 
[46], the space X⊗̂πY

∗ turns out to be a dual differentiation Banach space. Since 
Y is reflexive, arguing as in the above item (1), the residuality of NA(X, Y ) implies 
the residuality of NA(X⊗̂πY

∗, K). Now, [65, Theorem 3] proves that the dual norm 
of (X⊗̂πY

∗)∗ = L(X, Y ) is Fréchet differentiable on a Gδ-dense subset.

We next present two more related observations, one of them providing a partial 
solution to an open problem in [7]. Recall that a Banach space X is said to be convex-
transitive if for any point x ∈ SX , BX coincides with the closed convex hull of the orbit 
of x under the action of the group of all surjective linear isometries on X. For background 
on convex-transitive Banach spaces, see [18,19] and the references therein.

Remark 4.4.

(1) Given separable Banach spaces X and Y , if BX is not dentable and Y is reflexive, 
then NA(X, Y ) is of the first Baire category. To see this, observe first that BX⊗̂πY ∗ is 
not dentable and it is separable. By a result of Bourgain and Stegall (see the proof of 
[23, Theorem 3.5.5]), NA(X⊗̂πY

∗) turns to be of the first category in (X⊗̂πY
∗)∗ =

L(X, Y ). Since NA(X, Y ) ⊆ NA(X⊗̂πY
∗) by the reflexivity of Y , we have that 

NA(X, Y ) is also of the first category in L(X, Y ). This observation gives a partial 
answer to [7, Problem 7 in p. 12].

(2) Let X be a separable Banach space and let Y be a separable reflexive space. If X
is convex-transitive and NA(X, Y ) is of the second Baire category, then X must 
be super-reflexive. Indeed, under the assumption, by the above item, BX must be 
dentable. It follows that the norm on X∗ is not rough [37, Proposition 1.11]. Since 
X is convex-transitive, X∗ is convex w∗-transitive; hence [19, Theorem 3.2] implies 
that X is super-reflexive. This extends the result in [19] that convex-transitive RNP 
spaces are super-reflexive.

5. Applications to the geometry of Lipschitz-free spaces, to strongly norm attaining 
Lipschitz maps, and to norm attaining bilinear forms

5.1. Lipschitz functions spaces and strong norm attainment

Throughout this subsection, we will only consider real Banach spaces. Given a pointed 
metric space M and a Banach space Y , the notation Lip0(M, Y ) denotes the Banach 
space of all Lipschitz maps F : M −→ Y which vanishes at 0, endowed with the Lipschitz 
norm given by

‖F‖L := sup
{
‖F (x) − F (y)‖ : x, y ∈ M,x �= y

}
.

d(x, y)
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Recall from [24] that F ∈ Lip0(M, Y ) is said to strongly attain its norm when the above 
supremum is actually a maximum, that is, when there exists x �= y in M such that

‖F‖L = ‖F (x) − F (y)‖
d(x, y) .

By SNA(M, Y ), we denote the set of all strongly norm attaining Lipschitz maps in 
Lip0(M, Y ).

There is a connection between the strong norm attainment in spaces of Lipschitz 
functions and the classical norm attainment in spaces of operators. In order to exhibit 
it, we need to introduce a bit of notation. Let M be a pointed metric space. We denote by 
δ the canonical isometric embedding of M into Lip0(M, R)∗, which is given by 〈f, δ(x)〉 =
f(x) for x ∈ M and f ∈ Lip0(M, R). We denote by F(M) the norm-closed linear span 
of δ(M) in the dual space Lip0(M, R)∗, which is usually called the Lipschitz-free space 
over M , see the papers [47] and [48], and the book [76] (where it receives the name of 
Arens-Eells space) for background on this. It is well known that F(M) is an isometric 
predual of the space Lip0(M, R) [47, p. 91]. When M is a pointed metric space and 
Y is a Banach space, every Lipschitz map f : M −→ Y can be isometrically identified 
with the continuous linear operator f̂ : F(M) −→ Y defined by f̂(δp) = f(p) for every 
p ∈ M . This mapping completely identifies the spaces Lip0(M, Y ) and L(F(M), Y ). 
Bearing this fact in mind, the set SNA(M, Y ) is identified with the set of those elements 
of L(F(M), Y ) which attain their operator norm at some molecule, that is, at an element 
of F(M) of the form

mx,y := δ(x) − δ(y)
d(x, y)

for x, y ∈ M , x �= y. We write Mol (M) to denote the set of all molecules of M . Note that, 
since Mol (M) is balanced and norming for Lip0(M, R), a straightforward application of 
Hahn-Banach theorem implies that

co(Mol (M)) = BF(M).

From this point of view, it is now clear that when SNA(M, Y ) is dense in Lip0(M, Y ), 
then NA(F(M), Y ) has to be dense in L(F(M), Y ) a fortiori. The converse result is not 
true as, for instance, NA(F(M), R) is always dense by the Bishop-Phelps theorem but 
there are many metric spaces M such that SNA(M, R) is not dense in Lip0(M, R) [55]. 
See [24,29,55] and references therein for background on the denseness of strongly norm 
attaining Lipschitz functions.

Of course, if SNA(M, Y ) is dense in Lip0(M, Y ) for every Banach space Y , then F(M)
has property A. However, the question whether the property A of F(M) implies that 
SNA(M, Y ) is dense in Lip0(M, Y ) for every Banach space Y is one of the main questions 
in theory of strong norm attainment of Lipschitz functions (asked at [24,29]). It is even 
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open the question whether Lindenstrauss property A of F(M) implies that SNA(M, R)
is dense in Lip0(M, R). As a consequence of Theorem 2.1, we obtain the following partial 
answer to this question.

Corollary 5.1. If M is a separable metric space and F(M) has property A, then 
SNA(M, R) is dense in Lip0(M, R).

Proof. Since M is separable, the Lipschitz-free space F(M) over M is separable; 
hence it admits an LUR renorming. Thus, by Corollary 2.6, SE(F(M)) is dense in 
F(M)∗ = Lip0(M, R). Since every strongly exposed point of F(M) is indeed a molecule 
[24, Proposition 1.1], SE(F(M)) ⊂ SNA(M, R), we conclude that SNA(M, R) is dense 
in Lip0(M, R). �

We do not know whether the separability assumption can be removed in the above 
result. Clearly, this assumption can be replaced with the hypothesis that F(M) admits 
an LUR renorming. However, we do not know which non-separable metric spaces M
satisfy that F(M) admits an LUR renorming.

Let us obtain consequences of Corollary 5.1. First of all, consider the unit sphere 
T of the Euclidean plane endowed with the inherited Euclidean metric. It is shown 
in [29, Theorem 2.1] that SNA(T , R) is not dense in Lip0(T , R), hence Corollary 5.1
implies F(T ) fails property A. On the other hand, it was also observed in [29, Theo-
rem 2.1] that every molecule of F(T ) is a strongly exposed point hence, in particular, 
co
(
str-exp(BF(T))

)
= BF(T). So, we obtain the following result.

Example 5.2. The separable space F(T ) fails to have property A, while

BF(T) = co
(
str-exp(BF(T))

)
.

This answer the implicit question from [29] of whether F(T ) has property A. This 
question was discussed during the PhD defense of Rafael Chiclana in March 2021 and 
this was the starting point of the research conducting to the elaboration of the present 
manuscript.

Remark 5.3.

(1) The arguments before Example 5.2 show that the space X = F(T ) is an example 
of a separable Banach space where BX = co(str-exp(BX)) but SE(X) is not dense 
in X∗ (and hence X fails property A). As far as we know, a previous example of 
this kind has not been mentioned in the literature. Even more, the functionals in 
X∗ exposing BX are also not dense in X∗. Indeed, every functional exposing BX

attains its norm at an exposed point, hence at a extreme point. Since extreme points 
of BF(T) are molecules [9, Theorem 1], functionals exposing BX are contained in 
SNA(T , R) which is not dense.
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(2) The result of Example 5.2 should be compared with the fact that if BX = co(A) for 
a set A of uniformly strongly exposed points, then ASE(X, Y ) is dense in L(X, Y )
for every Y , see [29, Proposition 4.2].

There are many other examples of separable metric spaces M for which SNA(M, R)
is not dense and hence, F(M) fails property A by using Corollary 5.1: when M is a 
length metric space [24, Theorem 2.2], in particular, when M is a closed convex subset 
of a separable Banach space. But in all these cases, the unit ball of F(M) fails to have 
strongly exposed points, so they fail property A by just using Lindenstrauss’s necessary 
condition [60, Theorem 2]. New examples of metric spaces M for which SNA(M, R) is 
not dense in Lip0(M, R) have appeared recently in [28]: every metric space M which is 
the range of a C1-curve into a Banach space whose derivative is not identically 0. As a 
consequence of Corollary 5.1, we have the following example.

Example 5.4. Let M be the range of a C1-curve into a Banach space whose derivative is 
not identically 0. Then, F(M) fails property A.

Next, we show examples of Lipschitz-free spaces so that the set of strongly exposed 
points is countable up to rotations or discrete up to rotations. This will enlarge the class 
of target spaces to which the results of Section 3 can be applied.

First, in the case of some countable metric spaces, the following result gives a case in 
which the results of Subsection 3.2 apply.

Example 5.5. If M is a countable proper (i.e. every closed ball is compact) metric space, 
then F(M) has the RNP [35] and str-exp(BF(M)) is countable up to rotations (indeed, 
Mol (M) is bijective with a subset of M2, which is countable).
Therefore, Corollary 3.17 can be applied to Y = F(M) getting, for instance, that 
ASE(X, Lip0(M)) is dense in L(X, Lip0(M)) for every Banach space X such that SE(X)
is dense in X∗.

In the cases covered by the previous example, the spaces F(M) are actually dual 
spaces, so Corollary 3.20 can be also applied for the preduals. We need some notation. 
The little Lipschitz space on a metric space M is the subspace lip0(M) of Lip0(M) of those 
functions f satisfying that for every ε > 0, exits δ > 0 such that |f(x) − f(y)| � ε d(x, y)
when d(x, y) < δ. When M is countable compact, lip0(M)∗ ≡ F(M) [34]. When M is 
countable proper, the isometric predual of F(M) is the following space (see [35]:

S(M) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
f ∈ lip0(M) : lim

r→+∞
sup

x or y /∈ B(0, r)
x �= y

|f(x) − f(y)|
d(x, y) = 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
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(which coincides with lip0(M) in the case when M is compact). As we already men-
tioned, Corollary 3.20 can be applied to get the following result with the arguments in 
Example 5.5.

Example 5.6. Let X be a Banach space such that SE(X) is dense in X∗.

(a) If M is a countable compact metric space, then ASE(X, lip0(M)) is dense in 
L(X, lip0(M)).

(b) If M is a countable proper metric space, then ASE(X, S(M)) is dense in L(X, S(M)).

Finally, the results of Subsection 3.3 can be applied for discrete metric spaces.

Example 5.7. If M is a discrete metric space, then F(M) has the RNP and str-exp(BF(M))
is discrete up to rotations. Indeed, it has the RNP by [10, Theorem C] and Mol (M)
satisfies that if a net of molecules mxα,yα

converges weakly to mx,y, then d(xα, x) → 0
and d(yα, y) → 0 [44, Lemma 2.2].
Therefore, Theorem 3.32 can be applied to Y = F(M) getting, for instance, that 
ASE(X, Lip0(M)) is dense in L(X, Lip0(M)) for every Banach space X such that SE(X)
is dense in X∗.

Next, we would like to apply the results of Section 3 to provide more examples of 
pairs (M, Y ) for which the set SNA(M, Y ) is dense in Lip0(M, Y ). Observe that, given a 
metric space M and a Banach space Y , the set ASE(F(M), Y ) is contained in SNA(M, Y )
since their elements attain their norm at strongly exposed points of F(M), which are 
molecules. As a consequence, we get the following result which extends previous results 
from [31] and [30]. We have not included the results which are covered by these two 
references.

Corollary 5.8. Let M be a metric space in one of the following situations:

(a) M is separable and F(M) has property A,
(b) M is a compact metric space not containing any isometric copy of [0, 1] and satisfying 

that SNA(M, R) is dense in Lip0(M, R).

Let Y be a Banach space in one of the following situations:

(1) Y has the RNP and str-exp(BY ) is either countable up to rotations or discrete up 
to rotations.

(2) Y ∗ has the RNP and str-exp(BY ∗) is countable up to rotations.
(3) Y ∗ has the RNP and for every sequence {y∗n} in w∗ -str-exp(BY ∗) which converges 

to an element y∗0 ∈ str-exp(BY ∗), there exist n0 ∈ N and a sequence {θn} in T such 
that y∗n = θny

∗
0 for every n � n0.
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Then, SNA(M, Y ) is dense in Lip0(M, Y ).

Proof. Observe that, by Theorem 2.1 in the case (a) and by [29, Theorem 3.7] in case 
(b), SE(F(M)) is dense in Lip0(M, R). Consequently, depending on the assumptions on 
the space Y , Corollary 3.17, 3.20, Theorem 3.32 or 3.34 concludes the result. �
5.2. Bilinear forms and tensor product spaces

In this subsection, we will give applications to the study of norm attaining bilinear 
forms.

Given Banach spaces X, Y and Z, we let the notation B(X×Y, Z) stand for the space 
of all continuous bilinear mappings from X × Y to Z endowed with the norm

‖B‖ = sup{‖B(x, y)‖ : x ∈ BX , y ∈ BY }

for every B ∈ B(X × Y, Z). When Z = K, we simply denote the space by B(X × Y ). 
A bilinear mapping B ∈ B(X × Y, Z) is said to be norm attaining if the supremum 
defining ‖B‖ is actually a maximum. Let us denote by NAB(X × Y, Z) the set of all 
norm attaining bilinear mappings in B(X × Y, Z).

Before exhibiting classical results in the theory of denseness of bilinear mappings, let 
us exhibit the strong connection with norm attainment of bounded operators, for which 
we need to explain the useful language of tensor product spaces. The projective tensor 
product of X and Y , denoted by X⊗̂πY , is the completion of the space X ⊗ Y endowed 
with the norm given by

‖z‖π = inf
{ ∞∑

n=1
‖xn‖‖yn‖ :

∞∑
n=1

‖xn‖‖yn‖ < ∞, z =
∞∑

n=1
xn ⊗ yn

}

= inf
{ ∞∑

n=1
|λn| : z =

∞∑
n=1

λnxn ⊗ yn,
∞∑

n=1
|λn| < ∞, ‖xn‖ = ‖yn‖ = 1

}
,

where the infimum is taken over all such representations of z. It is well-known that 
‖x ⊗ y‖π = ‖x‖‖y‖ for every x ∈ X, y ∈ Y , and the closed unit ball of X⊗̂πY is the 
closed convex hull of the set BX ⊗BY = {x ⊗ y : x ∈ BX , y ∈ BY }. We refer the reader 
to [71] for background on tensor product theory.

It is known that the three spaces B(X×Y ), L(X, Y ∗) and (X⊗̂πY )∗ are isometrically 
isomorphic. Given B ∈ B(X × Y ), then B can be seen as an operator TB : X −→ Y ∗

acting as TB(x)(y) := B(x, y). Moreover, B can be seen as a linear functional acting on 
X⊗̂πY as follows:

B

(
n∑

xi ⊗ yi

)
:=

n∑
B(xi, yi).
i=1 i=1
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Consequently, given B ∈ B(X×Y ) we have three different ways in which we can consider 
that B is norm attaining: if B is norm-attaining as a bilinear mapping, as an operator 
in L(X, Y ∗), and as a functional on X⊗̂πY . Among all of them, the strongest notion is 
the one inherited from B(X × Y ).

On the one hand, if B ∈ B(X × Y ) then B attains its norm as bilinear form if, and 
only if, B attains its norm as bounded linear functionals on X⊗̂πY at a point of the 
form z = x ⊗ y ∈ SX ⊗ SY . Consequently, every bilinear form which attains its norm as 
bilinear form is a norm-attaining linear functional on X⊗̂πY . Let us mention that the 
converse is not true (see e.g. [47, Remark 5.7]).

On the other hand, if B ∈ B(X × Y ), then B attains its norm as bilinear form at 
(x, y) ∈ SX × SY if, and only if, the associated operator TB : X −→ Y ∗ attains its 
operator norm at x and satisfies that TB(x) ∈ NA(Y, K). Let us also mention that the 
norm attaining of B as bilinear form and the one of TB as operator are different, as also 
are the denseness associated to these two notions of norm attainment, see [32,40].

In view of the previous connection between the different notion of norm attainment 
for a bilinear mapping, it is natural that sufficient conditions for the density of norm 
attaining bounded operators are behind most of the results in the literature about density 
of norm attaining bilinear mappings. Let us mention, for instance, that if X has property 
α [68] (or even quasi-α [33]), then NAB(X×Y ) is dense in B(X×Y ) with no assumption 
on Y . Moreover, it is observed in [33] that if X has property quasi-α and Y has property 
A, then actually X⊗̂πY has property A. Recall that a Banach space X has property 
quasi-α [33] if there exist a subset {xλ}λ∈Λ of SX , a subset {x∗

λ}λ∈Λ ⊆ SX∗ , and a 
function ρ : Λ −→ R such that

(a) x∗
λ(xλ) = 1 for all λ ∈ Λ.

(b) |x∗
λ(xμ)| � ρ(μ) < 1 for all xλ �= xμ.

(c) For every e∗∗ ∈ ext(BX∗∗), there exists a subset Ae∗∗ ⊆ A such that e∗∗ belong to 

Ae∗∗
ω∗

and re∗∗ = sup{ρ(μ) : xμ ∈ Ae∗∗} < 1.

If there is 0 < R < 1 such that re∗∗ � R for every e∗∗ ∈ ext(BX∗∗), then the space X
has property α.

We can obtain stronger results than the mere denseness of NAB(X × Y ) by using 
Theorem 2.1. Let us say that a bilinear mapping B ∈ B(X × Y, Z) is a strongly norm 
attaining bilinear mapping if there exists (x0, y0) ∈ BX × BY such that whenever a 
sequence {(xn, yn)} ⊂ BX × BY satisfies ‖B(xn, yn)‖ −→ ‖B‖, then there exists a 
subsequence {xkn

, ykn
} such that {xkn

} and {ykn
} converge to αx0 and βy0 for some 

α, β ∈ K with |α| = |β| = 1, respectively.
Now we have the following result.

Corollary 5.9. Let X and Y be Banach spaces. Suppose that X has property quasi-α and 
Y has property A. Suppose that one of the following conditions holds:
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(1) X and Y both are separable,
(2) either X or Y has the Dunford-Pettis property, and both X and Y are WCG spaces.

Then, the set of strongly norm attaining bilinear forms in B(X×Y ) is dense in B(X×Y ).

Proof. Notice that, in any case, X⊗̂πY is a WCG space (in the case (2), it follows 
from [38, Theorem 16]). Moreover, X⊗̂πY has property A as X has property quasi-α
and Y has property A [33]. It follows from Corollary 2.6 that SE(X⊗̂πY ) is dense in 
(X⊗̂πY )∗ = B(X × Y ). Suppose that B ∈ (X⊗̂πY )∗ strongly exposes BX⊗̂πY

at some 
μ ∈ BX⊗̂πY

. By [77], we have that μ = x0 ⊗ y0 for some x0 ∈ str-exp(BX) and y0 ∈
str-exp(BY ). Now, if a sequence {(xn, yn)} ⊂ BX × BY satisfies |B(xn, yn)| −→ ‖B‖, 
then {(xn ⊗ yn)} −→ (θx0) ⊗ y0 for some θ ∈ K with |θ| = 1. From this, we have that 
there are subsequences {xkn

} and {ykn
} such that {xkn

} converges to αx0 and {ykn
}

converges to βy0 for some α, β ∈ K with |α| = |β| = 1. �
It is known that if X and Y are Banach spaces having RNP, then NAB(X × Y, Z)

is dense in B(X × Y, Z) for every Banach space Z [12] (compare this with the fact that 
there exists a Banach space E with RNP such that E⊗̂πE fails to have RNP [22]). This, 
in particular, shows that X⊗̂πY has property A provided X and Y have the RNP. Thus, 
the same argument as in the proof of Corollary 5.9 yields the following result.

Corollary 5.10. Let X and Y be Banach space. Suppose that X and Y have the RNP and 
one of the following conditions holds:

(1) X and Y both are separable,
(2) either X or Y has the Dunford-Pettis property, and both X and Y are WCG spaces.

Then, the set of strongly norm attaining bilinear forms in B(X×Y ) is dense in B(X×Y ).
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