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Abstract. We show that the numerical index of any operator ideal is less than or equal to the minimum
of the numerical indices of the domain space and the range space. Further, we show that the numerical
index of the ideal of compact operators or the ideal of weakly compact operators is less than or equal to
the numerical index of the dual of the domain space, and this result provides interesting examples. We also
show that the numerical index of a projective or injective tensor product of Banach spaces is less than or
equal to the numerical index of any of the factors. Finally, we show that if a projective tensor product of
two Banach spaces has the Daugavet property and the unit ball of one of the factor is slicely countably
determined or its dual contains a point of Fréchet differentiability of the norm, then the other factor inherits
the Daugavet property. If an injective tensor product of two Banach spaces has the Daugavet property and
one of the factors contains a point of Fréchet differentiability of the norm, then the other factor has the
Daugavet property.

1. Introduction

The numerical index of a Banach space is a constant that relates the numerical radius and the norm of
bounded linear operators on the space. It was introduced by G. Lumer in 1968 (see [8]). Let us present the
needed definitions and notation. Given a Banach space X, we write SX and BX to denote, respectively, the
unit sphere and the closed unit ball of the space. By X∗ we denote the topological dual of X and L(X)
will denote the Banach space of all bounded linear operators on X. The numerical range of an operator
T ∈ L(X) is the set of scalars given by

V (T ) := {x∗(Tx) : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1},
and the numerical radius of T is then given by

v(T ) := sup{|λ| : λ ∈ V (T )}.
It is clear that the numerical radius is a seminorm on L(X) which is not greater than the operator norm.
Very often, the numerical radius is actually an equivalent norm on L(X) and to quantify this fact it is used
the numerical index of the space X:

n(X) := inf{v(T ) : T ∈ L(X), ‖T‖ = 1}
= max{k > 0: k‖T‖ 6 v(T )∀T ∈ L(X)}.

It is clear that 0 6 n(X) 6 1; the value n(X) = 1 means that the numerical radius and the norm coincide,
while n(X) = 0 when the numerical radius is not an equivalent norm on L(X). We refer the reader to the
expositive paper [12], to Chapter 1 of the recent book [10], and to Subsection 1.1 of the very recent paper
[14]. Some results on numerical index which we would like to emphasize are the following. For every Banach
space X, n(X∗) 6 n(X) and the inequality can be strict; n(c0) = n(`1) = n(`∞) = 1, a result which is also
valid for all L- and M -spaces, the disk algebra, and H∞. The numerical index behaves differently when
dealing with real or complex Banach spaces. For instance, Hilbert spaces of dimension greater than or equal
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to two have numerical index 0 in the real case and 1/2 in the complex case. In general, if X is a complex
Banach space, then n(X) > 1/ e and all the values in the interval [1/ e, 1] are valid; for real Banach spaces,
there is no restriction and all the values of the interval [0, 1] are possible. The numerical index of Lp spaces
for 1 < p < ∞, p 6= 2, is still unknown, but it is known that n(Lp(µ)) > 0 in the real case for p 6= 2. All
these results can be found in the cited papers [10, 12, 14]. Some recent results can be found in [18], where
the exact value of some two-dimensional `p spaces is calculated, and in [1, 2, 22], for instance. Different
extensions of the concept of numerical index appear in [11] and [25].

There is a property somehow related to the numerical index called Daugavet property. A Banach space
X has the Daugavet property [13] if the norm equality

(DE) ‖Id + T‖ = 1 + ‖T‖

holds for all rank-one operators T ∈ L(X) and, in this case, the same happens for all weakly compact
operators on X. Examples of Banach spaces satisfying this property are L1(µ, Y ) when the positive measure
µ is atomless and Y is arbitrary, C(K,Y ) when the compact space K is perfect and Y is arbitrary, or the
disk algebra. Let us say that there is a relation between the Daugavet property and the numerical range of
operators: an operator T satisfies (DE) if and only if sup ReV (T ) = ‖T‖ (see [8] for instance). Classical
references for Daugavet property include [13, 24, 26]. For very recent results, we refer the reader to [5, 19],
for instance.

To state the results of the paper, we need to introduce some definitions and notation. Given Banach
spaces X and Y , we write L(X,Y ), K(X,Y ), W(X,Y ), and A(X,Y ) to denote, respectively, the space of
(bounded linear) operators, compact operators, weakly compact operators, and approximable operators (i.e.
norm limits of finite rank operators), all of them endowed with the operator norm. Finally, we consider the
space of all nuclear operators: an operator T : X −→ Y between Banach spaces is called nuclear if there
exist x∗n ∈ X and yn ∈ Y for every n ∈ N such that

∑∞
n=1 ‖x∗n‖ ‖yn‖ <∞ and

Tx =

∞∑
n=1

x∗n(x)yn (x ∈ X).

The space of all nuclear operators, denoted by N (X,Y ), is a Banach space endowed with the norm

N(T ) = inf

{ ∞∑
n=1

‖x∗n‖ ‖yn‖ : Tx =

∞∑
n=1

x∗n(x)yn

}
,

where the infimum is taken over all the representations of T as above. The projective tensor product of X
and Y , denoted by X⊗̂πY , is the completion of X ⊗ Y under the norm given by

‖u‖π = inf

{
n∑
i=1

‖xi‖ ‖yi‖ : u =

n∑
i=1

xi ⊗ yi

}
,

where the infimum is taken over all the representations of u =
∑n
i=1 xi⊗yi. It follows from the definition that

BX⊗̂πY = conv(BX ⊗ BY ). The projective tensor product of two operators S ∈ L(X,W ) and T ∈ L(Y,Z)

between Banach spaces, denoted by S ⊗π T , is the unique operator between X⊗̂πY and W ⊗̂πZ such that
(S ⊗π T )(x⊗ y) = Sx⊗ Ty for every x ∈ X and y ∈ Y , which also satisfies that ‖S ⊗π T‖ = ‖S‖ ‖T‖. The
injective tensor product of X and Y , denoted by X⊗̂εY , is the completion of X ⊗ Y under the norm given
by

‖u‖ε = sup

{∣∣∣∣∣
n∑
i=1

x∗(xi)y
∗(yi)

∣∣∣∣∣ : x∗ ∈ BX∗ , y∗ ∈ BY ∗

}
,

where
∑n
i=1 xi⊗yi is any representation of u. The injective tensor product of two operators S ∈ L(X,W ) and

T ∈ L(Y,Z) between Banach spaces, denoted by S ⊗ε T , is the unique operator between X⊗̂εY and W ⊗̂εZ
such that (S⊗εT )(x⊗y) = Sx⊗Ty for every x ∈ X and y ∈ Y , which also satisfies that ‖S⊗εT‖ = ‖S‖ ‖T‖.
We refer the reader to [7] and [21] for more information and background about ideals of operators and tensor
products of Banach spaces.
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For ideals of operators, we show in Section 2 that for every operator ideal Z of L(X,Y ) endowed with the
operator norm we have that n(Z) 6 min{n(X), n(Y ). In the case of compact and weakly compact operators,
we may improve this inequality to

n(K(X,Y )) 6 min{n(X∗), n(Y )}, n(W(X,Y )) 6 min{n(X∗), n(Y )}.

This result allows us to present some interesting examples as the existence of a real Banach space X such
that n(X) = 1 while n(K(X,Y )) = n(W(X,Y )) = 0 for every Banach space Y . In particular, n(X) = 1
while n(K(X,X)) = n(W(X,X)) = 0.

For tensor products of Banach spaces, we prove in Section 3 that the numerical indices of X⊗̂πY and
X⊗̂εY are less than or equal to the minimum of n(X) and n(Y ). As a consequence, and just using repre-
sentation theorems, we get some consequences for the space of approximable operators and for the space of
nuclear operators:

n(A(X,Y )) 6 min{n(X∗), n(Y )}
and, in the case where X∗ or Y has the approximation property,

n(N (X,Y )) 6 min{n(X∗), n(Y )}.

Finally, we study in Section 4 the Daugavet property of tensor products of Banach spaces. We show that
when X⊗̂πY has the Daugavet property and BY is a slicely countably determined set (see the definition
at the beginning of the section), then X has the Daugavet property. We also provide with the analogous
result in the case where the space Y ∗ has a point of Fréchet differentiability of the norm. For injective tensor
products, we do not know if the result with the hypothesis of slicely countably determined unit ball is true
or not, but there is a positive result when the space Y has a point of Fréchet differentiability of the norm.

2. Numerical index of some operator ideals of L(X,Y )

Given two Banach spaces X and Y , we first study the relationship between the numerical index of
subspaces of L(X,Y ) which are ideals and the numerical indices of the spaces X and Y . Recall that,
according to Pietsch, an operator ideal Z is a “rule” (formally a subclass of the class of all continuous linear
operators between Banach spaces) assigning to every pair of Banach spaces X and Y a linear subspace
Z(X,Y ) of L(X,Y ) (called a component of Z) which contains the finite rank operators and satisfies that

L(F, Y ) ◦ Z(E,F ) ◦ L(X,E) ⊆ Z(X,Y )

for all Banach spaces E, F , X, Y . We refer the reader to the monograph [7] for background. Here, we will
only consider ideals whose components are closed subspaces.

Proposition 2.1. Let X, Y be Banach spaces, then n
(
L(X,Y )

)
6 min{n(X), n(Y )}. Moreover, the same

happens to every operator ideal Z(X,Y ) 6 L(X,Y ) endowed with the operator norm, that is, n(Z(X,Y )) 6
min{n(X), n(Y )}.

To give the proof of the proposition, we need the following lemma which is well known and can be deduced,
for instance, from [6, Corollary 2.1.2].

Lemma 2.2. Let X1, X2 be Banach spaces and suppose that there is an isometric embedding Φ: L(X1) −→
L(X2) satisfying Φ(IdX1

) = IdX2
. Then, n(X2) 6 n(X1).

Proof of Proposition 2.1. We first show that n
(
L(X,Y )

)
6 n(X). Fixed J ∈ L(X), we define the map

ΦJ : L(X,Y ) −→ L(X,Y ) by ΦJ(T ) = T ◦ J for every T ∈ L(X,Y ) and observe that ‖ΦJ‖ = ‖J‖. Indeed,
the inequality ‖ΦJ‖ 6 ‖J‖ is evident. To prove the reverse one, given ε > 0, we find xε ∈ SX satisfying
‖Jxε‖ > ‖J‖ − ε and then we take x∗ε ∈ SX∗ such that x∗ε(Jxε) = ‖Jxε‖ > ‖J‖ − ε. We fix y0 ∈ SY and
define the rank-one operator Tε ∈ L(X,Y ) by Tε(x) = x∗ε(x)y0 for every x ∈ X, which satisfies ‖Tε‖ = 1 and

‖ΦJ(Tε)‖ = ‖Tε ◦ J‖ > ‖[Tε ◦ J ](xε)‖ = ‖x∗ε(Jxε)y0‖ > ‖J‖ − ε.
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Therefore ‖ΦJ‖ > ‖J‖, and hence the mapping J 7−→ ΦJ is an isometric embedding from L(X) to
L
(
L(X,Y )

)
carrying IdX to IdL(X,Y ), so the inequality n

(
L(X,Y )

)
6 n(X) follows by Lemma 2.2. The

inequality n
(
L(X,Y )

)
6 n(Y ) can be proved analogously, using ΨS(T ) = S ◦ T instead of ΦJ .

To prove the moreover part it suffices to observe that if T ∈ Z(X,Y ) ⊂ L(X,Y ) and J ∈ L(X), then
ΦJ(T ) = T ◦ J belongs to Z(X,Y ) for every T ∈ Z(X,Y ) by the ideal property. So the map J 7−→ ΦJ
is an isometric embedding from L(X) to L(Z(X,Y )) carrying IdX to IdZ(X,Y ), and the result follows
again by Lemma 2.2. For the inequality involving n(Y ), the argument is analogous, considering now that
ΨS(T ) = S ◦ T ∈ Z(X,Y ) for every T ∈ Z(X,Y ) and so the map S 7−→ ΨS is an isometric embedding from
L(Y ) to L(Z(X,Y )) carrying IdY to IdZ(X,Y ). �

We can get a stronger result for the numerical indices of K(X,Y ) and W(X,Y ). To do so, we recall
that Kw∗(X∗, Y ) denotes the space of compact operators that are weak∗-weakly continuous from X∗ into
Y endowed with the usual operator norm. This space was originally introduced by L. Schwartz [23] as the
ε-product of the spaces X and Y . It is well-known that Kw∗(X∗, Y ) ≡ Kw∗(Y ∗, X) and that K(X,Y ) can
be identified with Kw∗(X∗∗, Y ) using the mapping T 7−→ T ∗∗. Analogously, Lw∗(X∗, Y ) denotes the space
of operators that are weak∗-weakly continuous from X∗ into Y. Finally, we recall that W(X,Y ) can be
identified with Lw∗(X∗∗, Y ). We refer the reader to [20, 23] for background on this type of spaces.

Theorem 2.3. Let X, Y be Banach spaces, then the following hold:

(a) n
(
Lw∗(X∗, Y )

)
6 min{n(X), n(Y )}.

(b) n
(
Kw∗(X∗, Y )

)
6 min{n(X), n(Y )}.

(c) n
(
W(X,Y )

)
6 min{n(X∗), n(Y )}.

(d) n
(
K(X,Y )

)
6 min{n(X∗), n(Y )}.

Proof. To prove (a), for J ∈ L(X) we define the operator ΨJ : Lw∗(X∗, Y ) −→ Lw∗(X∗, Y ) given by
ΨJ(T ) = T ◦ J∗ for every T ∈ Lw∗(X∗, Y ). Observe that it is well-defined because J∗ is weak∗-weak∗
continuous. Moreover, reasoning as in the proof of Proposition 2.1 we get ‖ΨJ‖ = ‖J‖. Therefore, the
mapping J 7−→ ΨJ is an isometric embedding from L(X) to L

(
Lw∗(X∗, Y )

)
carrying IdX to IdLw∗ (X∗,Y ) so

the inequality n
(
Lw∗(X∗, Y )

)
6 n(X) follows from Lemma 2.2.

For the proof of n
(
Lw∗(X∗, Y )

)
6 n(Y ), just note that Lw∗(X∗, Y ) ≡ Lw∗(Y ∗, X).

Let us prove (b). To show that n
(
Kw∗(X∗, Y )

)
6 n(X) it suffices to observe that ΨJ |Kw∗ (X∗,Y ), the

restriction of ΨJ to Kw∗(X∗, Y ), lies in L
(
Kw∗(X∗, Y )

)
and satisfies

∥∥ΨJ |Kw∗ (X∗,Y )

∥∥ = ‖J‖. Therefore,
the mapping J 7−→ ΨJ |Kw∗ (X∗,Y ) is an isometric embedding from L(Y ) to L

(
Kw∗(X∗, Y )

)
carrying IdX to

IdKw∗ (X∗,Y ) and Lemma 2.2 gives the result. To prove n
(
Kw∗(X∗, Y )

)
6 n(Y ), we use what we just proved

and the identification Kw∗(X∗, Y ) ≡ Kw∗(Y ∗, X).

(c) follows from (a) using the identification W(X,Y ) ≡ Lw∗(X∗∗, Y ).

(d) follows from (b) using the identification K(X,Y ) ≡ Kw∗(X∗∗, Y ). �

As a consequence of [4, Examples 3.3] and Theorem 2.3 we have the following interesting examples.

Examples 2.4.

(a) There exists a real Banach space X with n(X) = 1 and n
(
K(X,Y )

)
= n

(
W(X,Y )

)
= 0 for every

Banach space Y . In particular, n(X) = 1 and n(K(X,X)) = n(W(X,X)) = 0. Indeed, the real space
X given in [4, Examples 3.3.a] satisfies n(X) = 1 and n(X∗) = 0 so n

(
K(X,Y )

)
= n

(
W(X,Y )

)
= 0

for every Y by Theorem 2.3.
(b) There exists a complex Banach space X with n(X) = 1 and n

(
K(X,Y )

)
= n

(
W(X,Y )

)
= 1/ e

for every Banach space Y . In particular, n(X) = 1 and n(K(X,X)) = n(W(X,X)) = 1/ e. The
complex space X given in [4, Examples 3.3.b] satisfies n(X) = 1 and n(X∗) = 1/ e, so it works by
Theorem 2.3 and the fact that every complex Banach space has numerical index less than or equal
to 1/ e.
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To obtain the analogue of Theorem 2.3 for the numerical index of the space of approximable operators
and also to get an analogous result for nuclear operators, we will use their representation as suitable tensor
products in the next section.

We emphasize a consequence of the results for the case when the ideal spaces have numerical index one.

Corollary 2.5. Let X, Y be Banach spaces.

(1) If n(L(X,Y )) = 1, then n(X) = n(Y ) = 1.
(2) If n(K(X,Y )) = 1, then n(X∗) = n(Y ) = 1.
(3) If n(W(X,Y )) = 1, then n(X∗) = n(Y ) = 1.

One may wonder whether the inequalities obtained for the numerical indices of operator ideals are equal-
ities in general. The following example shows that this is not the case, even for finite-dimensional spaces.

Example 2.6. There exist finite-dimensional Banach spaces X and Y with n(X∗) = n(Y ) = 1 and
n
(
L(X,Y )

)
= n

(
F(X,Y )

)
= n

(
K(X,Y )

)
= n

(
W(X,Y )

)
< 1. Indeed, consider X = `4∞ and Y = `41,

which have numerical index 1, and observe that n
(
L(X,Y )

)
< 1 by [15, Proposition 2.4, Lemma 3.2].

However there are cases in which the equality holds for the spaces of compact and weakly compact
operators.

Remark 2.7. Let K be a compact Hausdorff space, and let X be a Banach space. Then,

n
(
K(X,C(K))

)
= n

(
W(X,C(K))

)
= n(X∗).

Indeed, the space K(X,C(K)) can be identified with C(K,X∗) (see [9, Theorem VI.7.1]) and we have
n
(
C(K,X∗)

)
= n(X∗) by [17, Theorem 5]. The equality n

(
W(X,C(K))

)
= n(X∗) holds by [16, Corollary 3].

In the next result we give other conditions for which the equality is satisfied for the space of compact
operators.

Proposition 2.8. Let X be a Banach space such that n(X∗∗∗) = 1 and let Z be an isometric predual of `1.
Then the space K(X,Z)∗∗ has numerical index one. Therefore, so do K(X,Z)∗ and K(X,Z). In particular,
n
(
K(c0)

)
= n

(
K(c0)∗

)
= n

(
K(c0)∗∗

)
= n

(
L(`∞)

)
= 1 and n

(
K(`1, c0)∗∗

)
= 1.

Proof. Since Z has the approximation property, K(X,Z) ≡ X∗⊗̂εZ. Since Z∗ has the approximation prop-
erty and the Radon-Nikodým property, we can apply [7, Theorem 16.6] to obtain K(X,Z)∗ ≡ (X∗⊗̂εZ)∗ ≡
X∗∗⊗̂π`1. Therefore, K(X,Z)∗∗ ≡ (X∗∗⊗̂π`1)∗ ≡ L(X∗∗, `∞). Now, by using the identification between `∞
and C(βN), where βN is the Stone–Čech compactification of N, and the one between Cw∗(βN, X∗∗∗) and
L
(
X∗∗, C(βN)

)
(see [9, Theorem VI.7.1]), we obtain that

n
(
L(X∗∗, `∞)

)
= n

(
Cw∗(βN, X∗∗∗)

)
> n(X∗∗∗) = 1,

where the inequality is given by [16, Proposition 7]. Then n
(
K(X,Z)∗∗

)
= 1 as desired. The other statements

follow straightforwardly. �

3. Numerical index of tensor products

Our goal here is to study the numerical index of projective and injective tensor products of Banach spaces.
It is known that n(X⊗̂εY ) and n(X⊗̂πY ) cannot be computed as a function of n(X) and n(Y ). Indeed, it
is shown in [17, Example 10] that there exist Banach spaces X and Y with n(X) = n(Y ) = 1 and such that
n(X⊗̂εX) < 1, n(Y ⊗̂πY ) < 1, and n(X⊗̂πX) = n(Y ⊗̂εY ) = 1. Therefore, our results will be inequalities,
as in the previous section.

Our first result on tensor products follows immediately by Proposition 2.1 and the identifications (X⊗̂πY )∗ ≡
L(X,Y ∗) ≡ L(Y,X∗) (see [7, Proposition 3.2], for instance).

Corollary 3.1. Let X, Y be Banach spaces. Then n
(
(X⊗̂πY )∗

)
6 min{n(X∗), n(Y ∗)}.
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Our main result in this section is the following pair of inequalities.

Theorem 3.2. Let X, Y be Banach spaces. Then the following hold:

(a) n(X⊗̂πY ) 6 min{n(X), n(Y )},
(b) n(X⊗̂εY ) 6 min{n(X), n(Y )}.

We introduce some notation in order to present an interesting tool to calculate numerical radii which we
will use in the proof of the theorem. Given a Banach space X, δ > 0, and T ∈ L(X), we write

vδ(T ) := sup
{
|x∗(Tx)| : x ∈ BX , x∗ ∈ BX∗ , Rex∗(x) > 1− δ

}
.

Lemma 3.3 ([11, Lemma 3.4]). Let X be a Banach space. For T ∈ L(X), we have that

v(T ) = inf
δ>0

vδ(T ).

Moreover, if A ⊂ BX satisfies that conv(A) = BX and B ⊂ BX∗ satisfies that convw
∗
(B) = BX∗ , then the

same equality holds if we replace BX and BX∗ by A and B respectively in the definition of vδ(T ), that is,

v(T ) = inf
δ>0

sup
{
|x∗(Tx)| : x ∈ A, x∗ ∈ B, Rex∗(x) > 1− δ

}
.

Proof of the Theorem 3.2. (a). We prove first n(X⊗̂πY ) 6 n(X). Given S ∈ L(X) with ‖S‖ = 1, we
consider the operator T = S⊗π IdY ∈ L(X⊗̂πY ) which satisfies that ‖T‖ = ‖S‖‖IdY ‖ = 1. Since BX⊗̂πY =

conv (BX ⊗BY ) and (X⊗̂πY )∗ = L(Y,X∗), by Lemma 3.3 we can estimate the numerical radius of T as

v(T ) = inf
δ>0

ṽδ(T ),

where for δ > 0,

ṽδ(T ) := sup
{
|〈Φ, T z〉| : z ∈ BX ⊗BY , Φ ∈ BL(Y,X∗), Re〈Φ, z〉 > 1− δ

}
.

Fixed δ > 0, we claim that ṽδ(T ) 6 vδ(S). Indeed, fix z = x ⊗ y ∈ BX ⊗ BY and Φ ∈ BL(Y,X∗) such that
Re〈Φ, z〉 = Re〈Φ(y), x〉 > 1 − δ, define x∗ = Φ(y) ∈ BX∗ , and observe that Rex∗(x) = Re〈Φ, z〉 > 1 − δ.
Then,

|〈Φ, T z〉| = |〈Φ, Sx⊗ y〉| = |〈Φ(y), Sx〉| = |x∗(Sx)| 6 vδ(S)

which gives ṽδ(T ) 6 vδ(S). Then we get that v(T ) 6 v(S) and, as ‖T‖ = ‖S‖ = 1, we deduce that
n(X⊗̂πY ) 6 n(X). By repeating this process using this time the identification (X⊗̂πY )∗ ≡ L(X,Y ∗), we
also obtain that n(X⊗̂πY ) 6 n(Y ).

(b). We prove n(X⊗̂εY ) 6 n(X). Given S ∈ L(X) with ‖S‖ = 1, we consider T = S ⊗ε IdY ∈ L(X⊗̂εY )

which satisfies that ‖T‖ = ‖S‖‖IdY ‖ = 1. Since B(X⊗̂εY )∗ = convw
∗
(BX∗ ⊗BY ∗) and

BX⊗̂εY = {z ∈ X ⊗ Y : ‖z‖ε 6 1},

we use the following to estimate the numerical radius of T (again by by Lemma 3.3):

v(T ) = inf
δ>0

v̄δ(T )

where
v̄δ := sup {|z∗(Tz)| : z∗ ∈ BX∗ ⊗BY ∗ , z ∈ X ⊗ Y with ‖z‖ε 6 1, Re z∗(z) > 1− δ} .

Given δ > 0, we claim that v̄δ(T ) 6 vδ(S). Indeed, fixed z =
∑n
i=1 xi ⊗ yi ∈ X ⊗ Y with ‖z‖ε 6 1 and

z∗ = x∗0⊗y∗0 ∈ BX∗⊗BY ∗ with Re z∗(z) = Re
∑n
i=1 x

∗
0(xi)y

∗
0(yi) > 1−δ, we consider x =

∑n
i=1 y

∗
0(yi)xi ∈ BX

which satisfies

‖x‖ =

∥∥∥∥∥
n∑
i=1

y∗0(yi)xi

∥∥∥∥∥ 6 sup

{∣∣∣∣∣
n∑
i=1

y∗0(yi)x
∗(xi)

∣∣∣∣∣ : x∗ ∈ BX∗

}
6 ‖z‖ε

and Rex∗0(x) = Re
∑n
i=1 x

∗
0(xi)y

∗
0(yi) > 1− δ. Hence we can write

|z∗(Tz)| =

∣∣∣∣∣〈x∗0 ⊗ y∗0 ,
n∑
i=1

Sxi ⊗ yi〉

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

x∗0(Sxi)y
∗
0(yi)

∣∣∣∣∣ = |x∗0(Sx)| 6 vδ(S).
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Then, we deduce that v̄δ(T ) 6 vδ(S) as claimed. From this, we get that v(S) > v(T ) > n(X⊗̂εY ). Therefore
n(X⊗̂εY ) 6 n(X). The inequality n(X⊗̂εY ) 6 n(Y ) follows by symmetry. �

Let us observe that it is not possible to improve Theorem 3.2 to get the numerical index of the dual of
the factors in the right-hand side.

Example 3.4. Let X1 = C[0, 1], X2 = L1[0, 1] and let Y be a Banach space with n(Y ) = 1 and n(Y ∗) < 1
(use [4, Examples 3.3] for instance). Then, X1⊗̂εY ≡ C([0, 1], Y ), so n(X1⊗̂εY ) = 1 by [17, Theorem 5],
while n(Y ∗) < 1. On the other hand, X2⊗̂πY ≡ L1([0, 1], Y ), so n(X1⊗̂πY ) = 1 by [17, Theorem 8], while
n(Y ∗) < 1.

Nevertheless, the next inequality for the numerical index of the dual of an injective tensor product holds.

Corollary 3.5. Let X, Y be Banach spaces. If X∗ or Y ∗ has the approximation property and X or Y has
the Radon-Nikodým property, then

n
(
(X⊗̂εY )∗

)
6 min {n(X∗), n(Y ∗)} .

Proof. The result is an immediate consequence of Theorem 3.2 as the identification (X⊗̂εY )∗ ≡ X∗⊗̂πY ∗
holds under the hypotheses (see [7, Theorem 16.6]). �

The next consequence is an inequality for the numerical index of spaces of approximable operators similar
to the one given in Theorem 2.3 for compact and weakly compact operators.

Corollary 3.6. Let X, Y be Banach spaces. Then

n
(
A(X,Y )

)
6 min {n(X∗), n(Y )} .

Proof. It follows from Theorem 3.2.b as A(X,Y ) ≡ X∗⊗̂εY (see [7, Examples 4.2]). �

For the space of nuclear operators we may also give some interesting inequalities.

Corollary 3.7. Let X, Y be Banach spaces. If either X∗ or Y has the approximation property, then the
following hold:

(a) n
(
N (X,Y )

)
6 min{n(X∗), n(Y )}.

(b) n
(
N (X,Y )∗

)
6 min{n(X∗∗), n(Y ∗)}.

Proof. (a). Since X∗ or Y has the approximation property, we have that N (X,Y ) ≡ X∗⊗̂πY (see [7,
Corollary 5.7.1]) and the result follows from Theorem 3.2.a.

(b). Corollary 3.1 gives the result using the equality N (X,Y )∗ =
(
X∗⊗̂πY

)∗. �

Finally, we may give a result analogous to Corollary 2.5 for the results of this section.

Corollary 3.8. Let X, Y be Banach spaces.

(1) If n
(
(X⊗̂πY )∗

)
= 1, then n(X∗) = n(Y ∗) = 1.

(2) If n(X⊗̂εY ) = 1, then n(X) = n(Y ) = 1.
(3) If n(X⊗̂πY ) = 1, then n(X) = n(Y ) = 1.
(4) If n

(
A(X,Y )

)
= 1, then n(X∗) = n(Y ) = 1.

(5) If n
(
(X⊗̂εY )∗

)
= 1, then n(X∗) = n(Y ∗) = 1.

(6) If n
(
N (X,Y )

)
= 1, then n(X∗) = n(Y ) = 1.

(7) If n
(
N (X,Y )∗

)
= 1, then n(X∗∗) = n(Y ∗) = 1.
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4. Daugavet property and tensor products

In this section we study the relationship between the Daugavet property and tensor products. A glance
at Corollary 3.8 may lead to think that an analogous result can be true for the Daugavet property, that is,
if X⊗̂πY or X⊗̂εY has the Daugavet property, do X and Y inherit this property? The answer is negative
in general since, for instance, L1([0, 1], Y ) = L1[0, 1]⊗̂πY and C([0, 1], Y ) = C[0, 1]⊗̂εY have the Daugavet
property for every Banach space Y , regardless that Y has the Daugavet property or not. Our goal here is
to show some cases in which the Daugavet property of a tensor product passes to one of the factors. To
state our results, we need the definition and basic properties of the concept of slicely countably determined
sets introduced in [3], where we refer for background. Let A be a bounded subset of a Banach space X. A
countable family {Vn : n ∈ N} of subsets of A is called determining for A if the inclusion A ⊆ conv(B) holds
for every subset B ⊆ A intersecting all the sets Vn. Recall that a slice of A is a nonempty intersection of A
with an open half space, and for x∗ ∈ X∗ and δ > 0, we write

Slice(A, x∗, δ) := {x ∈ A : Rex∗(x) > sup Rex∗(A)− δ}.
The set A is said to be slicely countably determined (SCD in short) if there exists a countable family of
slices which is determining for A. Examples of SCD sets are the Radon-Nikodým set and those sets not
containing basic sequences equivalent to the basis of `1 [3]. A bounded linear operator T : X −→ Y between
two Banach spaces X and Y is an SCD-operator if T (BX) is an SCD set, so examples of SCD-operators are
the strong Radon-Nikodým ones and those not fixing copies of `1 [3]. Finally, let us comment that a set A
is SCD if and only if conv(A) is SCD [10, Proposition 7.17]. Consequently, if A is SCD then so is every set
C satisfying A ⊂ C ⊂ conv(A).

The main result of this section is the following one which deals with projective tensor products.

Theorem 4.1. Let X, Y be Banach spaces. Suppose that BY is an SCD set and X⊗̂πY has the Daugavet
property. Then, X has the Daugavet property.

We need the following preliminary result which shows that the projective tensor product of an SCD-
operator and a rank-one operator is again an SCD-operator on a projective tensor product.

Lemma 4.2. Let X, Y be Banach spaces, let S ∈ L(X) be a rank-one operator and let T ∈ L(Y ) be an
SCD-operator. Then S ⊗π T ∈ L(X⊗̂πY ) is an SCD-operator.

Proof. We may and do assume that ‖S‖ = ‖T‖ = 1. In order to prove that [S ⊗π T ](BX⊗̂πY ) is SCD it is
enough to prove that S(BX)⊗ T (BY ) is SCD as

S(BX)⊗ T (BY ) ⊂ [S ⊗π T ](BX⊗̂πY ) = [S ⊗π T ](conv(BX ⊗BY )) ⊂ conv (S(BX)⊗ T (BY )) .

Since S is a rank-one operator, there exist x0 ∈ SX and Γ ⊂ K such that S(BX) = Γ{x0} (Γ equals either
BK or its interior). So we can write S(BX)⊗ T (BY ) = {x0}⊗ ΓT (BY ). Observe that ΓT (BY ) is SCD since
T (BY ) is SCD and

T (BY ) ⊂ ΓT (BY ) ⊂ T (BY ).

Therefore, for each n ∈ N we can find Vn = Slice(ΓT (BY ), y∗n, εn) such that the sequence {Vn : n ∈ N}
is determining for ΓT (BY ). Now fix x∗0 ∈ SX∗ satisfying Rex∗0(x0) = 1 and, for each n ∈ N, define
ϕn ∈ (X⊗̂πY )∗ = L(X,Y ∗) by ϕn(x) = x∗0(x)y∗n for every x ∈ X. Let us prove that the slices

Sn = {x0} ⊗ Vn = Slice ({x0} ⊗ ΓT (BY ), ϕn, εn) (n ∈ N)

form a determining sequence for {x0} ⊗ ΓT (BY ). Indeed, if B ⊆ {x0} ⊗ ΓT (BY ) intersects all the Sn, then
B must be of the form {x0} ⊗ B2 with B2 ⊂ ΓT (BY ) satisfying B2 ∩ Vn 6= ∅ for every n ∈ N. Since Vn is
determining for ΓT (BY ), this implies that ΓT (BY ) ⊂ conv(B2) and thus

{x0} ⊗ ΓT (BY ) ⊂ {x0} ⊗ conv(B2) ⊂ conv(B)

which shows that the sequence {Sn} is determining for {x0} ⊗ ΓT (BY ) = S(BX)⊗ T (BY ). �

We are ready to show that the Daugavet property passes from the projective tensor product to one of the
factors if the other one is SCD.
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Proof of Theorem 4.1. Fix a rank-one operator S ∈ L(X) and consider T = S ⊗π IdY ∈ L(X⊗̂πY ) which
satisfies ‖T‖ = ‖S‖ and is an SCD-operator by Lemma 4.2. Since X⊗̂πY has the Daugavet property, T
satifisfies the Daugavet equation by [3, Corollary 5.9]:∥∥IdX⊗̂πY + T

∥∥ = 1 + ‖T‖ = 1 + ‖S‖.
By the definition of T we have∥∥IdX⊗̂πY + T

∥∥ = ‖(IdX + S)⊗π IdY ‖ = ‖IdX + S‖

and so ‖IdX + S‖ = 1 + ‖S‖, as desired. �

We do not know whether the corresponding result for the injective tensor product is true or not. But we
have the following positive result in the same line.

Proposition 4.3. Let X, Y be Banach spaces such that X⊗̂εY has the Daugavet property. Suppose that
the norm of Y is Fréchet differentiable at a point y0 ∈ SY . Then, X has the Daugavet property.

We need the following characterization of the Daugavet property which appears in the seminal paper [13].

Lemma 4.4 ([13, Lemma 2.2]). Let X be a Banach space. Then the following assertions are equivalent:

(i) X has the Daugavet property;
(ii) for every x ∈ SX , x∗ ∈ SX∗ and ε > 0, there is y ∈ Slice(SX , x

∗, ε) such that ‖x+ y‖ > 2− ε;
(iii) for every x ∈ SX , x∗ ∈ SX∗ and ε > 0, there is y∗ ∈ Slice(SX∗ , x, ε) such that ‖x∗ + y∗‖ > 2− ε.

Proof of Proposition 4.3. Since the norm of Y is Fréchet differentiable at y0 ∈ SY , there is a unique y∗0 ∈ SY ∗

which is strongly exposed in BY ∗ by y0, that is,

(4.1) ∀ε > 0 ∃δ > 0: y∗ ∈ BY ∗ , Re y∗(y0) > 1− δ =⇒ ‖y∗0 − y∗‖ < ε.

Given x∗0 ∈ SX∗ and x0 ∈ BX , we consider u0 = x0 ⊗ y0 ∈ BX⊗̂εY and ϕ0 = x∗0 ⊗ y∗0 ∈ S(X⊗̂εY )∗ . Since

X⊗̂εY has the Daugavet property, by Lemma 4.4, fixed ε > 0, we may find ϕ ∈ Slice
(
B(X⊗̂εY )∗ , u0, δ

)
such

that ‖ϕ0+ϕ‖ > 2−ε. As B(X⊗̂εY )∗ = convw
∗
(BX∗⊗BY ∗), we may suppose that ϕ = x∗⊗y∗ with x∗ ∈ BX∗

and y∗ ∈ BY ∗ . On the one hand, from ϕ ∈ Slice
(
B(X⊗̂εY )∗ , u0, δ

)
it follows that x∗ ∈ Slice(BX∗ , x0, δ) and

y∗ ∈ Slice(BY ∗ , y0, δ). On the other hand, we can write

2− ε < ‖ϕ0 + ϕ‖ 6 ‖x∗0 ⊗ y∗0 + x∗ ⊗ y∗0‖+ ‖x∗ ⊗ y∗0 − x∗ ⊗ y∗‖ 6 ‖x∗0 + x∗‖+ ‖y∗0 − y∗‖.
But ‖y∗0 − y∗‖ < ε by (4.1), so we deduce that ‖x∗0 + x∗‖ > 2− 2ε. Now, X has the Daugavet property by
Lemma 4.4. �

We can obtain a result similar to the previous one for the projective tensor product which does not follow
from Theorem 4.1.

Proposition 4.5. Let X, Y be Banach spaces such that X⊗̂πY has the Daugavet property. Suppose that
the norm of Y ∗ is Fréchet differentiable at a point y∗0 ∈ SY ∗ . Then, X has the Daugavet property.

Proof. Since y∗0 ∈ SY ∗ is a point of Fréchet differentiability, there is a unique y0 ∈ SY satisfying:

(4.2) ∀ε > 0 ∃δ > 0: y ∈ BY , Re y∗0(y) > 1− δ =⇒ ‖y0 − y‖ < ε.

Given x0 ∈ SX and x∗0 ∈ BX∗ , we consider u0 = x0⊗y0 ∈ SX⊗̂πY and ϕ0 = x∗0⊗y∗0 ∈ B(X⊗̂πY )∗ . SinceX⊗̂πY
has the Daugavet property and BX⊗̂πY = conv(BX⊗BY ), fixed ε > 0, we may find u ∈ Slice

(
BX⊗̂πY , ϕ0, δ

)
of the form u = x ⊗ y with x ∈ BX and y ∈ BY such that ‖u0 + u‖ > 2 − ε. On the one hand, from
u ∈ Slice

(
BX⊗̂πY , ϕ0, δ

)
it follows that x ∈ Slice(BX , x

∗
0, δ) and y ∈ Slice(BY , y

∗
0 , δ). On the other hand, we

have
2− ε < ‖u0 + u‖ 6 ‖x0 ⊗ y0 + x⊗ y0‖+ ‖x⊗ y − x⊗ y0‖ 6 ‖x0 + x‖+ ‖y − y0‖.

But ‖y − y0‖ < ε by (4.2), so ‖x0 + x‖ > 2− 2ε. Now, X has the Daugavet property by Lemma 4.4. �
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