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Some stability properties for the
Bishop–Phelps–Bollobás property for Lipschitz maps

by

Rafael Chiclana and Miguel Martín (Granada)

Abstract. We study the stability behavior of the Bishop–Phelps–Bollobás property
for Lipschitz maps (Lip-BPB property). This property is a Lipschitz version of the clas-
sical Bishop–Phelps–Bollobás property and deals with the possibility of approximating a
Lipschitz map that almost attains its (Lipschitz) norm at a pair of distinct points by a
Lipschitz map attaining its norm at a pair of distinct points (relatively) very close to the
previous one. We first study the stability of this property under the (metric) sum of the
domain spaces. Next, we study when it is possible to pass the Lip-BPB property from
scalar functions to some vector-valued maps, getting some positive results related to the
notions of Γ -flat operators and ACK structure. We get sharper results for the case of
Lipschitz compact maps. The behavior of the property with respect to absolute sums of
the target space is also studied. We also get results similar to the above for the density of
strongly norm attaining Lipschitz maps and of Lipschitz compact maps.

1. Introduction. A pointed metric space is just a metric space M in
which we have distinguished an element, denoted by 0, that acts like the cen-
ter of the metric space. All along this paper, metric spaces will be complete
and Banach spaces will be over the real scalars. Given a Banach space X,
the closed unit ball and the sphere of X will be denoted by BX and SX
respectively. If Y is another Banach space, L(X,Y ) will denote the space
of bounded linear operators from X to Y . In the case Y = R, we simply
write X∗.

Given a pointed metric space M and a Banach space Y , Lip0(M,Y )
denotes the vector space of Lipschitz maps from M to Y that vanish at 0.
It becomes a Banach space when endowed with the norm

‖F‖L = sup

{
‖F (p)− F (q)‖

d(p, q)
: p, q ∈M, p 6= q

}
∀F ∈ Lip0(M,Y ).
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We say that a Lipschitz map F : M → Y strongly attains its norm if the
above supremum is a maximum, that is, there exist distinct points p, q ∈M
such that

‖F (p)− F (q)‖
d(p, q)

= ‖F‖L.

We write LipSNA(M,Y ) for the subset of those Lipschitz maps fromM to Y
which strongly attain their norm. If M is a finite metric space, it is clear
that every Lipschitz map strongly attains its norm. On the other hand, for
any infinite metric spaceM it is easy to find a Lipschitz function F : M → R
which does not strongly attain its norm (see [19, Corollary 3.46]).

In view of this, a natural question arises: Is it always possible to ap-
proximate a Lipschitz map by strongly norm attaining Lipschitz maps? The
negative answer was given in [17, Example 2.1], where it is shown that this
is not the case, e.g., for M = [0, 1] and Y = R. On the other hand, the first
positive examples appeared in [13, §5], which include the case when M is
a compact Hölder metric space and Y is finite-dimensional. The question
is then reformulated in [13, Problem 6.7]: for which metric spaces M and
Banach spaces Y is the subset LipSNA(M,Y ) dense in Lip0(M,Y )? Hence-
forth we will say that we have strong density for M and Y if the answer
is affirmative. Several papers studying this problem have appeared (see [10,
Section 7], [3], [6]). Analyzing those results (which we will briefly comment
on), it is possible to extract a common idea in them: a Lipschitz map is iden-
tified with a bounded linear operator between Banach spaces. This allows
one to apply some results of the classical theory of norm attaining linear
operators to obtain results in the Lipschitz context. In order to understand
this identification, we need to introduce the Lipschitz-free space over a metric
space.

LetM be a pointed metric space. We denote by δ the canonical isometric
embedding of M into Lip0(M,R)∗, which is given by

〈f, δ(p)〉 = f(p) ∀p ∈M, ∀f ∈ Lip0(M,R).

We denote by F(M) the norm-closed linear span of δ(M),

F(M) = span {δ(p) : p ∈M} ⊆ Lip0(M,R)∗,

usually called the Lipschitz-free space over M . It is well known that F(M) is
an isometric predual ofLip0(M,R). Moreover, in [19] it was shown that it is the
unique isometric predual when M is bounded or a geodesic space. For back-
ground we refer to the papers [13] and [14], and to the book [19] (where these
spaces are called Arens–Eells spaces). Given a Lipschitz map F : M → Y , we
can consider the unique bounded linear operator F̂ : F(M)→ Y satisfying

F̂ (δ(p)) = F (p) ∀p ∈M.
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It turns out that the mapping F 7→ F̂ is an isometric isomorphism between
Lip0(M,Y ) and L(F(M), Y ). Therefore, we can identify every Lipschitz map
from M to Y with a bounded linear operator from F(M) to Y . In order to
reformulate our question in terms of this identification, we need to introduce
the notion of molecule of F(M), which is just an element of the form

mp,q =
δ(p)− δ(q)
d(p, q)

, where p, q ∈M, p 6= q.

We write Mol(M) for the set of all molecules of F(M). As a consequence of
the Hahn–Banach theorem, every molecule has norm 1 and we can recover
the unit ball of F(M) as the closed convex hull of the molecules,

BF(M) = co(Mol(M)).

Now, we can reformulate our question using the notation introduced. It is
enough to notice that F strongly attains its norm at a pair of distinct points
(p, q) of M if and only if F̂ attains its norm (in the classical sense) at the
molecule mp,q, that is, ‖F̂‖ = ‖F̂ (mp,q)‖. Thus, a Lipschitz map strongly
attains its norm if and only if its associated bounded linear operator attains
its norm at some molecule. Hence, we are studying for which metric spacesM
and Banach spaces Y the set of those bounded linear operators from F(M)
to Y which attain their norm at some molecule is dense in L(F(M), Y ). Fur-
thermore, we are also interested in the following stronger version of density,
which was introduced in [7].

Definition 1.1 ([7]). Let M be a pointed metric space and let Y be
a Banach space. We say that the pair (M,Y ) has the Lipschitz Bishop–
Phelps–Bollobás property (Lip-BPB property for short) if given ε > 0 there
exists η(ε) > 0 such that for every norm-one F ∈ Lip0(M,Y ) and any
p, q ∈ M , p 6= q, such that ‖F (p)− F (q)‖ > (1− η(ε))d(p, q), one may find
G ∈ Lip0(M,Y ) and r, s ∈M , r 6= s, such that
‖G(r)−G(s)‖

d(r, s)
= ‖G‖L = 1, ‖G− F‖L < ε,

d(p, r) + d(q, s)

d(p, q)
< ε.

Equivalently (see [7, Remark 1.2.a]), (M,Y ) has the Lip-BPB property if
and only if given ε > 0 there is η(ε) > 0 such that for every norm-one
F̂ ∈ L(F(M), Y ) and every m ∈ Mol(M) such that ‖F̂ (m)‖ > 1 − η(ε),
there exist Ĝ ∈ L(F(M), Y ) and u ∈ Mol(M) such that

‖Ĝ(u)‖ = ‖G‖L = 1, ‖F̂ − Ĝ‖ < ε, ‖m− u‖ < ε.

The definition of the Lip-BPB property can be understood as a nonlin-
ear generalization of the classical Bishop–Phelps–Bollobás property (BPBp
for short). It is clear that if a pair (M,Y ) has the Lip-BPB property, then
LipSNA(M,Y ) is norm-dense in Lip0(M,Y ). On the other hand, the con-
verse is far from being true. In fact, if M is a finite pointed metric space,
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while it is clear that LipSNA(M,Y ) = Lip0(M,Y ) for every Banach space Y ,
Example 2.5 in [7] shows that one can find finite pointed metric spaces M
and Banach spaces Y such that (M,Y ) fails to have the Lip-BPB property.
For this reason, throughout this paper each of these notions of approximation
by strongly norm attaining Lipschitz maps will be discussed separately.

We will also study the following version of the Lip-BPB property: given a
pointed metric space M and a Banach space Y , we say that the pair (M,Y )
has the Lip-BPB property for Lipschitz compact maps if the requirements
of Definition 1.1 are satisfied when the map F is Lipschitz compact and the
relevant map G is Lipschitz compact too. Recall that F : M → Y is Lipschitz
compact when its Lipschitz image, that is, the set{

F (p)− F (q)
d(p, q)

: p, q ∈M, p 6= q

}
⊆ Y,

is relatively compact. We denote by Lip0K(M,Y ) the space of Lipschitz
compact maps from M to Y . Some results related to this notion appear
in [15]. One can easily check that F : M → Y is Lipschitz compact if and
only if its associated linear operator F̂ : F(M)→ Y is compact, a fact that
we will use without further mention. Therefore, if Y is finite-dimensional
then every Lipschitz map from M to Y is Lipschitz compact. We denote
by LipSNAK(M,Y ) the set of those Lipschitz compact maps from M to Y
which strongly attain their norm, that is,

LipSNAK(M,Y ) = LipSNA(M,Y ) ∩ Lip0K(M,Y ).

We are also interested in studying for which pointed metric spaces M and
Banach spaces Y , either the set LipSNAK(M,Y ) is dense in Lip0K(M,Y )
or (M,Y ) has the Lip-BPB property for Lipschitz compact maps.

1.1. Known results. As already mentioned, all these questions have
been studied before in the papers [3, 6, 7, 10, 13], among others. Let us
present some of the known results concerning these types of density.

First, it was shown in [10, Proposition 7.4], extending results from [13],
that ifM is a pointed metric space such that F(M) has the Radon–Nikodym
property (RNP), then LipSNA(M,Y ) is dense in Lip0(M,Y ) for every Ba-
nach space Y . Some cases of metric spaces M for which F(M) has the RNP
are: uniformly discrete, countable and compact, and compact Hölder metric
spaces (see [3, Example 1.2] to get references for each result).

Furthermore, properties of F(M), different from the RNP, that also imply
strong density for every Banach space, were given in [3]. More precisely, it
is shown there that if F(M) has either property α or property quasi-α,
then LipSNA(M,Y ) is dense in Lip0(M,Y ) for every Banach space Y . Also,
we get the same result if we can find inside F(M) a uniformly strongly
exposed 1-norming set of molecules, that is, a uniformly strongly exposed
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set generating the unit ball of F(M) by taking the closed absolutely convex
hull. We refer to [3, Section 3], where these sufficient conditions and the
relationship between them are discussed. Also, we refer to [6, Theorem 2.5],
where it is shown that the Radon–Nikodym property and having a uniformly
strongly exposed 1-norming set of molecules are not necessary for strong
density, and they are distinct properties.

On the other hand, let us comment on some negative results. Recall
that [17, Example 2.1] proves that for M = [0, 1] with its usual metric and
Y = R, the subset LipSNA([0, 1],R) is not dense in Lip0([0, 1],R). In fact,
[17] proved the same result for geodesic spaces. Later, it was generalized
to length spaces (see [3, Theorem 2.2]), where the lack of strongly exposed
points of BF(M) seems to be essential in the proofs. However, if we consider
T = {x ∈ R2 : ‖x‖2 = 1} endowed with the Euclidean metric, then the unit
ball of F(T) is generated by its strongly exposed molecules (in fact, every
molecule is strongly exposed), but [6, Theorem 2.1] shows that LipSNA(T,R)
is not dense in Lip0(T,R).

Given a metric space M , the last cited result shows that the require-
ment that BF(M) is generated by its extreme molecules, or even its strongly
exposed molecules, does not guarantee strong density. Interestingly, [6, The-
orem 3.3] proves that if M is a metric space for which LipSNA(M,R) is
dense in Lip0(M,R), then BF(M) is generated by its extreme molecules, so
the converse holds. Moreover, if we assume thatM is compact, then [6, The-
orem 3.15] shows that BF(M) is indeed generated by its strongly exposed
molecules.

As regards the Lip-BPB property, given a finite pointed metric space M
and a Banach space Y , [7, Theorem 2.1] shows that if (F(M), Y ) has the
classical BPBp, then (M,Y ) has the Lip-BPB property. This shows, for
instance, that if M is finite and Y is finite-dimensional, then (M,Y ) has the
Lip-BPB property. Moreover, Examples 2.5 and 2.6 in [7] show that both
finiteness assumptions are needed. It is also proved in that paper that ifM is
a pointed metric space such that Mol(M) is a uniformly strongly exposed
set, then (M,Y ) has the Lip-BPB property for any Banach space Y . This is
the case e.g. whenM is concave and F(M) has property α,M is ultrametric,
or M is a Hölder metric space.

We may also find in [7] some results on the vector-valued case and on
Lipschitz compact maps. Further, [7, Proposition 4.4] states that if M is a
metric space such that (M,R) has the Lip-BPB property and Y is a Banach
space with property β, then (M,Y ) also has the Lip-BPB property. It is also
shown that this result holds when we replace Lip-BPB by strong density
(in both the hypothesis and the conclusion) and property β by the weaker
property quasi-β. Analogous results are given for Lipschitz compact maps.
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Moreover, we can find some results only valid in this context. For instance,
[7, Proposition 4.17] says that if M is a metric space such that (M,R) has
the Lip-BPB property and Y ∗ is isometrically isomorphic to an L1-space,
then (M,Y ) has the Lip-BPB property for Lipschitz compact maps.

1.2. Outline of the present paper. The main aim of this work is to
study the behavior under some natural operations on the domain or on the
range spaces of the density of strongly norm attaining Lipschitz maps, of the
Lip-BPB property, and of the corresponding versions for Lipschitz compact
maps. The results complement the study initiated in [7].

In the second section we focus on the domain space, studying the behavior
of the properties under sums of metric spaces (this sum can be understood
as the `1-sum of the metric spaces after identifying their centers and can
be found in [19, Definition 1.13]). First, Proposition 2.2 shows that if M is
the sum of two metric spaces M1 and M2 and Y is a Banach space such
that (M,Y ) has the LipBPB property, then so does (Mi, Y ) for i = 1, 2,
but the converse is not true, as shown in Example 2.4. For the density of
norm attaining Lipschitz maps, the situation is better: if M is the (metric)
sum of a family {Mi : i ∈ I} of metric spaces and Y is a Banach space,
then LipSNA(M,Y ) is dense in Lip0(M,Y ) if and only if LipSNA(Mi, Y ) is
dense in Lip0(Mi, Y ) for every i ∈ I (Theorem 2.5). We also obtain analogous
results for Lipschitz compact maps.

In the third section we study the problem of strong density or the Lip-BPB
property for vector-valued Lipschitz maps for some Banach space Y assum-
ing that we have that property for scalar-valued Lipschitz functions. Notice
that [7, Proposition 4.1] shows that if M is a pointed metric space such
that (M,Y ) has the Lip-BPB property for some Banach space Y 6= 0, then
(M,R) has the Lip-BPB property. Moreover, [7, Proposition 4.2] gives an
analogous result for strong density. Therefore, in order to get the vector-
valued versions of the last properties, these assumptions are necessary. It is
not known if the assumption that LipSNA(M,R) is dense in Lip0(M,R) is
also sufficient to guarantee that LipSNA(M,Y ) is dense in Lip0(M,Y ) for
every Banach space Y . However, [7, Example 2.5] shows that the Lip-BPB
property for (M,R) does not imply the Lip-BPB property for (M,Y ) in
general. In order to get positive results, we follow the recent paper [4],
where the class of Γ -flat operators and the notion of ACK structure on
Banach spaces are introduced. Our main results in this section are Theo-
rems 3.5 and 3.10, from which we extract several implications about ap-
proximability of Γ -flat maps into spaces of continuous functions, spaces of
sequences, and injective tensor products. Also, we state versions of these
theorems for Lipschitz compact maps, for which we obtain more satisfactory
results.
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Finally, in the fourth section we focus on stability properties related to
the range space. First, given a pointed metric space M , Proposition 4.3
shows that if Y1 is an absolute summand of a Banach space Y and (M,Y )
has the Lip-BPB property (respectively, LipSNA(M,Y ) is dense), then so
does (M,Y1) (resp. LipSNA(M,Y1) is dense). Conversely, Propositions 4.9
and 4.10 show that if Y is the c0 or `∞ sum of a family {Yi : i ∈ I} of
Banach spaces such that all the pairs (M,Yi) have the Lip-BPB property
with the same function ε 7→ η(ε) (respectively, LipSNA(M,Yi) is dense in
Lip0(M,Yi) for all i ∈ I), then (M,Y ) has the Lip-BPB property (respec-
tively, LipSNA(M,Y ) is dense in Lip0(M,Y )). Furthermore, we give some
stability results involving spaces of continuous functions. The corresponding
results for Lipschitz compact maps are also established.

2. Results concerning the domain space: relationship with met-
ric sums. In this section we will study the behavior of the Lip-BPB property
with respect to “metric” sums on the domain of Lipschitz maps. We need the
following definition.

Definition 2.1 ([19, Definition 1.13]). Given a family {(Mi, di)}i∈I of
pointed metric spaces, the (metric) sum of the family, denoted by

∐
i∈IMi,

is the disjoint union of allMi’s, with the base points identified, endowed with
the metric d(x, y) = di(x, y) if x, y ∈ Mi, and d(x, y) = di(x, 0) + dj(0, y) if
x ∈Mi, y ∈Mj and i 6= j.

It is known (see e.g. [18] or [19, Proposition 3.9]) that Lipschitz-free
spaces behave well with respect to sums of metric spaces. Indeed, if M =∐
i∈IMi, then

F(M) ∼=
[⊕
i∈I
F(Mi)

]
`1

isometrically.
Now, we give some results which show the good behavior of sums of

metric spaces with respect to the Lip-BPB property and the density of
LipSNA(M,Y ).

Proposition 2.2. Let M = M1 qM2 be the sum of two pointed metric
spaces and let Y be a Banach space. If (M,Y ) has the Lip-BPB property,
then so do (M1, Y ) and (M2, Y ).

Proof. Fix 0 < ε < 1 and let η(ε) be the constant given by the Lip-
BPB property of (M,Y ), which we may suppose to satisfy η(ε) < ε. Let
F̂1 ∈ L(F(M1), Y ) with ‖F1‖L = 1 and m ∈ Mol(M1) such that ‖F̂1(m)‖ >
1− η(ε). Now, define F̂ ∈ L(F(M), Y ) by

F (p) =

{
F1(p) if p ∈M1,

0 if p ∈M2.
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It is easy to see that ‖F‖L = 1 and ‖F̂ (m)‖ > 1 − η(ε), where we see m
as a molecule of F(M). By hypothesis, there exist Ĝ ∈ L(F(M), Y ) and a
molecule u ∈ Mol(M) such that

‖Ĝ(u)‖ = ‖G‖L = 1, ‖m− u‖ < ε, ‖F −G‖L < ε.

Let Ĝ1 ∈ L(F(M1), Y ) be the restriction of Ĝ to the subspace F(M1). Then
it is clear that

‖G1‖L ≤ ‖G‖L = 1 and ‖F1 −G1‖L ≤ ‖F −G‖L < ε.

Hence, it will be enough to show that Ĝ1 attains its norm at a molecule close
enough to m. Let

u =
δp − δq
d(p, q)

,

where p, q ∈M , p 6= q. We distinguish four cases:

(1) p, q ∈ M1: In this case u can be seen as a molecule of M1 and so Ĝ1

attains its norm at u.
(2) p, q ∈M2: Then

F̂ (u) =
F (p)− F (q)
d(p, q)

= 0,

from which we deduce that ‖Ĝ(u)‖ < ε, a contradiction.
(3) p ∈M1, q ∈M2: Let us write u as the following convex combination:

u =
δp − δq
d(p, q)

=
δp − δ0
d(p, 0)

d(p, 0)

d(p, q)
+
δ0 − δq
d(0, q)

d(0, q)

d(p, q)

= mp,0
d(p, 0)

d(p, q)
+m0,q

d(0, q)

d(p, q)
.

Since Ĝ attains its norm at u, it also attains its norm atmp,0 ∈ Mol(M1).
Hence, Ĝ1 attains its norm at mp,0. Also, note that

‖F̂ (u)‖ = d(p, 0)

d(p, q)
‖F̂ (mp,0)‖ ≤

d(p, 0)

d(p, q)
.

On the other hand, ‖F̂ (m)‖ > 1 − η(ε) and ‖m − u‖ < ε. Therefore,
we must have ‖F̂ (u)‖ > 1− η(ε)− ε, which yields d(p,0)

d(p,q) > 1− η(ε)− ε.
Consequently, d(0,q)d(p,q) < η(ε) + ε. Now, note that

‖m−mp,0‖ =
∥∥∥∥(m− u) + (d(p, 0)d(p, q)

− 1

)
mp,0 +

d(0, q)

d(p, q)
m0,q

∥∥∥∥
≤ ‖m− u‖+ 2

d(0, q)

d(p, q)
≤ ‖m− u‖+ 2η(ε) + 2ε

< 2η(ε) + 3ε < 5ε.
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(4) p ∈M2, q ∈M1: We just have to repeat the previous argument.

Consequently, (M1, Y ) has the Lip-BPB property. By symmetry, so does
(M2, Y ).

Note that from this result we obtain the next corollary by just observing
that for every j∈I, we have

∐
i∈IMi≡MjqZ for some pointedmetric spaceZ.

Corollary 2.3. Let M =
∐
i∈IMi be the sum of a family {Mi}i∈I

of pointed metric spaces and let Y be a Banach space. If (M,Y ) has the
Lip-BPB property, then so does (Mi, Y ) for every i ∈ I.

The converse of Proposition 2.2 is false, as the next example shows.

Example 2.4. Let M1 = {0, 1} and M2 = {1, 2} viewed as subsets of R
with the usual metric and consider 1 as the base point for both spaces. First,
observe that M =M1qM2 is isometric to the subset {0, 1, 2} of R with the
usual metric. Now, (Mi, Y ) has the Lip-BPB property for i = 1, 2 and every
Banach space Y (this is obvious since the spaces F(M1) and F(M2) are
one-dimensional), but for every strictly convex Banach space Y which is not
uniformly convex, (M,Y ) fails the Lip-BPB property [7, Example 2.5].

For the density of LipSNA(M,Y ), we actually get a characterization, as
the following result shows.

Theorem 2.5. Let {Mi}i∈I be a family of pointed metric spaces, letM =∐
i∈IMi and let Y be a Banach space. Then the following are equivalent:

(1) LipSNA(Mi, Y ) is dense in Lip0(Mi, Y ) for every i ∈ I.
(2) LipSNA(M,Y ) is dense in Lip0(M,Y ).

Proof. (1)⇒(2) Consider the natural embeddings Ei : F(Mi) → F(M)
and the natural projections Pi : F(M) → F(Mi) for every i ∈ I. Fix ε > 0

and take F̂ ∈ L(F(M), Y ) ∼= Lip0(M,Y ). Without loss of generality, we
may assume that ‖F‖L = 1. Using ‖F‖L = sup {‖F̂Ei‖ : i ∈ I} we can
find h ∈ I such that ‖F̂Eh‖ > ‖F‖L − ε. By hypothesis, we can find Gh ∈
LipSNA(Mh, Y ) satisfying ‖Gh‖L = ‖F̂Eh‖ and ‖Ĝh − F̂Eh‖ ≤ ε. Define
Ĝ ∈ L(F(M), Y ) by

ĜEi = (1− ε)F̂Ei for i ∈ I, i 6= h, and ĜEh = Ĝh.

Then ‖G‖L = sup {‖ĜEi‖ : i ∈ I} = ‖Gh‖L and

‖G− F‖L = sup {‖(Ĝ− F̂ )Ei‖ : i ∈ I} ≤ ε.

Moreover, if we take a molecule mph,qh ∈ F(Mh) such that ‖Ĝh(mph,qh)‖
= ‖Gh‖L, and we consider the molecule Eh(mph,qh) ∈ F(M), we have

‖Ĝ(Eh(mph,qh))‖ = ‖Ĝh(mph,qh)‖ = ‖Gh‖L = ‖G‖L.
Hence, G ∈ LipSNA(M,Y ).
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(2)⇒(1) Pick a summand Mi of M and let Z =
∐
j∈I\{i}Mj . Then

M = Mi q Z. Hence, we can simply repeat the arguments in the proof of
Proposition 2.2, but forgetting about the distance between the molecules.

Let us show that the previous results also work for Lipschitz compact
maps.

Proposition 2.6. Let M = M1 qM2 be the sum of two pointed metric
spaces and let Y be a Banach space. If (M,Y ) has the Lip-BPB property for
Lipschitz compact maps, then so do (M1, Y ) and (M2, Y ).

Proof. We repeat the proof of Proposition 2.2 for a Lipschitz compact
map F1 observing that, in that case, the strongly norm attaining Lipschitz
map which approximates F1 is Lipschitz compact too.

From this result we obtain the following corollary.

Corollary 2.7. Let M =
∐
i∈IMi be the sum of pointed metric spaces

and let Y be a Banach space. If (M,Y ) has the Lip-BPB property for Lips-
chitz compact maps, then so does (Mi, Y ) for every i ∈ I.

In the same way as in the general case, the converse of Proposition 2.6 is
not true, as the same Example 2.4 shows. And again, the analogous result
for the density of LipSNAK(M,Y ) is more satisfactory.

Proposition 2.8. Let {Mi}i∈I be a family of pointed metric spaces, let Y
be a Banach space, and let M =

∐
i∈IMi. Then the following are equivalent:

(1) LipSNAK(Mi, Y ) is dense in Lip0K(Mi, Y ) for every i ∈ I.
(2) LipSNAK(M,Y ) is dense in Lip0K(M,Y ).

Proof. It is enough to note that the operators Ĝ and Ĝh defined in the
proof of Theorem 2.5 are compact whenever F̂ and F̂h are.

3. From scalar functions to vector-valued maps. Our aim in this
section is to study the problem of passing from the Lip-BPB property for
scalar-valued functions to some vector-valued maps, and the problem of pass-
ing from the density of LipSNA(M,R) to the density of LipSNA(M,Y ) for
some Y ’s. In [7] one can find examples of metric spacesM for which there are
Banach spaces Y such that (M,R) has the Lip-BPB property, but (M,Y )
does not. Actually, our Example 2.4 contains one of such metric spaces:
M = {0, 1, 2} with the usual metric. We will present sufficient conditions on
a Banach space Y ensuring that (M,Y ) has the Lip-BPB property whenever
(M,R) does, formally extending [7, Proposition 4.4] in which the result is
proved for Y having Lindenstrauss’ property β. As regards the density of
strongly norm attaining Lipschitz maps, we do not know of any metric space
M such that LipSNA(M,R) is dense in Lip0(M,R) but there is Y such that
LipSNA(M,Y ) is not dense in Lip0(M,Y ). Nevertheless, we will also present
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sufficient conditions on Y ensuring that the density of LipSNA(M,R) implies
the density of LipSNA(M,Y ).

Our work is based on the recent paper [4]. First of all, we need to recall
the necessary notions.

Definition 3.1. Let A be a topological space and (M,d) be a metric
space. A function f : A → M is said to be openly fragmented if for every
nonempty open subset U ⊂ A and every ε > 0 there exists a nonempty open
subset V ⊂ U with diam(f(V )) < ε.

It is clear that every continuous function f : A → M is openly frag-
mented. In particular, if A is a discrete topological space then every function
f : A→M is openly fragmented.

Definition 3.2. Let X, Y be Banach spaces and Γ ⊂ Y ∗. An operator
T ∈ L(X,Y ) is said to be Γ -flat if T ∗|Γ : (Γ,w∗) → (X∗, ‖ · ‖X∗) is openly
fragmented. In other words, if for every w∗-open subset U ⊆ Y ∗ with U ∩ Γ
6= ∅ and every ε > 0 there exists a w∗-open subset V ⊂ U with V ∩ Γ 6= ∅
such that diam(T ∗(V ∩ Γ )) < ε. The set of all Γ -flat operators in L(X,Y )
will be denoted by FlΓ (X,Y ).

In [4] it is shown that every Asplund operator T ∈ L(X,Y ) is Γ -flat
for every Γ ⊆ BY ∗ . Consequently, every compact operator is Γ -flat for ev-
ery Γ ⊆ BY ∗ . In addition, it is shown that if (Γ,w∗) is discrete then every
bounded operator T ∈ L(X,Y ) is Γ -flat. Let us also mention that the re-
cently introduced notion of dentable map [11] implies Γ -flatness.

Finally, [4] introduces the notion of ACKρ structure, which has the struc-
tural properties of C(K) and its uniform subalgebras that are essential for the
BPB property to hold. Recall that a subset Γ of the unit ball of the dual of a
Banach space Y is 1-norming if the weak-star closed absolutely convex hull
of Γ equals the whole of BY ∗ or, equivalently, if ‖y‖ = sup {|f(y)| : f ∈ Γ}
for every y ∈ Y .

Definition 3.3. We say that a Banach space Y has ACK structure
with parameter ρ ∈ [0, 1) (Y ∈ ACKρ for short) whenever there exists a
1-norming set Γ ⊂ BY ∗ such that for every ε > 0 and every nonempty
relatively w∗-open subset U ⊂ Γ there exist a nonempty subset V ⊂ U ,
vectors y∗1 ∈ V , e ∈ SX , and an operator F ∈ L(Y, Y ) such that

(1) ‖Fe‖ = ‖F‖ = 1;
(2) y∗1(Fe) = 1;
(3) F ∗y∗1 = y∗1;
(4) denoting V1 = {y∗ ∈ Γ : ‖F ∗y∗‖ + (1 − ε)‖(IdY ∗ − F ∗)(y∗)‖ ≤ 1}, we

have |v∗(Fe)| ≤ ρ for every v∗ ∈ Γ \ V1;
(5) d(F ∗y∗, aco {0, V }) < ε for every y∗ ∈ Γ ; and
(6) |v∗(e)− 1| ≤ ε for every v∗ ∈ V .
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The Banach space Y has simple ACK structure (X ∈ ACK) if V1 = Γ (and
so ρ is redundant).

The following statement is a compilation of results that can be found
in [4]. We introduce some notation. Given a Banach space Y , we write
c0(Y,w) for the Banach space of all weakly null sequences in Y ; if K is
a compact Hausdorff topological space, Cw(K,Y ) is the Banach space of all
Y -valued weakly continuous functions from K to Y .

Proposition 3.4 ([4]).

(1) C(K) has simple ACK structure for every compact Hausdorff topological
space K.

(2) Finite injective tensor products of Banach spaces which have ACKρ

structure also have ACKρ structure.
(3) Given a compact Hausdorff topological space K, if Y ∈ ACKρ then

C(K,Y ) ∈ ACKρ.
(4) Let Y be a Banach space having ACKρ structure. Then c0(Y ), `∞(Y ),

and c0(Y,w) have ACKρ structure.
(5) Given a compact Hausdorff topological space K, if Y ∈ ACKρ, then

Cw(K,Y ) has ACKρ structure.

The main result of this section is the following.

Theorem 3.5. Let M be a pointed metric space such that (M,R) has
the Lip-BPB property, let Y be a Banach space in ACKρ with associated
1-norming set Γ ⊆ BY ∗ of Definition 3.3, and let ε > 0. Then there exists
η(ε, ρ) > 0 such that if T̂ ∈ L(F(M), Y ) is a Γ -flat operator with ‖T‖L = 1

and m ∈ Mol(M) satisfying ‖T̂ (m)‖ > 1− η(ε, ρ), then there exist an oper-
ator Ŝ ∈ L(F(M), Y ) and a molecule u ∈ Mol(M) such that

‖Ŝ(u)‖ = ‖S‖L = 1, ‖m− u‖ < ε, ‖T − S‖L < ε.

By abuse of language, we will say that Γ -flat operators on (M,Y ) have
the Lip-BPB property when the conclusion of the theorem above is satisfied.
Observe that it is not the same kind of version of the Lip-BPB property as
the one we gave in the introduction for Lipschitz compact maps since we do
not require the approximating operator to be Γ -flat.

Before proving the result, we present the main consequences of Theo-
rem 3.5.

Corollary 3.6. Let M be a pointed metric space such that (M,R) has
the Lip-BPB property. The following statements hold.

(1) For every compact Hausdorff topological space K, Γ -flat operators on
(M,C(K)) have the Lip-BPB property.
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(2) Let Z be a finite injective tensor product of Banach spaces which have
ACKρ structure. Then Γ -flat operators on (M,Z) have the Lip-BPB
property.

(3) Let K be a compact Hausdorff topological space. If Y ∈ ACKρ, then Γ -
flat operators on (M,C(K,Y )) and on (M,Cw(K,Y )) have the Lip-BPB
property.

(4) Let Y ∈ ACKρ. Then Γ -flat operators on (M, c0(Y )), on (M, `∞(Y )),
and on (M, c0(Y,w)), have the Lip-BPB property.

In each case, Γ is any 1-norming set for which the corresponding space sat-
isfies Definition 3.3.

This follows immediately from Theorem 3.5 and Proposition 3.4.
Identifying the set Γ of Definition 3.3 in concrete examples is not an easy

task in general. One exception is the case of C(K) spaces which we discuss
in the next remark.

Remark 3.7. Let us comment on assertion (1) of Corollary 3.6. First,
the set Γ of Definition 3.3 for Y = C(K) is just Γ = {δt : t ∈ K} ⊂ SC(K)∗

(this follows from the results in [4]), so given T ∈ L(X,C(K)), T ∗|Γ is just
the usual representation function of the operator T , that is, µT : K → X∗

given by µT (t) = T ∗(δt) for all t ∈ K. This procedure actually gives an
identification between L(X,C(K)) and the space of weak-star continuous
functions µ : K → X∗. Norm continuous functions correspond to compact
operators (which are Γ -flat). We do not know which functions are openly
fragmented or, equivalently, which functions correspond to Γ -flat operators,
but there is an intermediate condition which has been studied widely in the
literature: quasi-continuity. A function µ : K → X∗ is quasi-continuous if for
every nonempty open subset U ⊂ K, every s ∈ U , and every neighborhood V
of µ(s), there exists a nonempty open subset W ⊂ U such that µ(W ) ⊂ V .
This is a classical notion which is still investigated; see [2] and references
therein for a sample. Quasi-continuous functions are openly fragmented and
they form a class more general than the one of continuous functions.

There is one more consequence of Theorem 3.5 that was already stated
in [7, Proposition 4.4] with a different proof. Indeed, if a Banach space Y
has Lindenstrauss’ property β (see [7, Definition 4.3] for instance), then
Y ∈ ACKρ for a discrete 1-norming set Γ , so every operator mapping to Y
is Γ -flat. Therefore, Theorem 3.5 yields another proof of the following fact
given in [7, Proposition 4.4]: if (M,R) has the Lip-BPB property and Y has
property β, then (M,Y ) has the Lip-BPB property.

Let us now prepare for the proof of Theorem 3.5 by presenting some
preliminary results. The next easy lemma shows that if the Lip-BPB property
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is satisfied for (M,R), then we can also approximate Lipschitz functions
whose norm is less than 1 as long as it is close enough to 1.

Lemma 3.8. Let M be a pointed metric space and let ε > 0. Suppose
that (M,R) has the Lip-BPB property witnessed by a function ε 7→ η(ε) > 0.
Then, given f ∈ Lip0(M,R) with ‖f‖L ≤ 1 and m ∈ Mol(M) such that
|f̂(m)| > 1−η(ε), there exist g ∈ Lip0(M,R) with ‖g‖L = 1 and u ∈ Mol(M)
satisfying

|ĝ(u)| = 1, ‖f − g‖L < ε+ η(ε), ‖m− u‖ < ε.

Proof. If ‖f‖L = 1 then it is enough to apply the Lip-BPB property.
If ‖f‖L < 1, then by the Lip-BPB property there exist g ∈ SLip0(M,R) and
u ∈ Mol(M) satisfying∥∥∥∥g − f

‖f‖

∥∥∥∥
L

< ε, ‖u−m‖ < ε.

Then

‖g − f‖L ≤
∥∥∥∥g − f

‖f‖

∥∥∥∥
L

+

∥∥∥∥ f

‖f‖
− f

∥∥∥∥
L

< ε+ |1− ‖f‖L| ≤ ε+ η(ε).

Lemma 3.9. Let M be a pointed metric space such that (M,R) has the
Lip-BPB property, let Y be a Banach space, and let Γ ⊆ BY ∗ be a 1-norming
set. Fix ε > 0 and let η(ε) be the constant given by the Lip-BPB property
of (M,R). Let T̂ ∈ FlΓ (F(M), Y ) be a Γ -flat operator with ‖T‖L = 1 and
m ∈ Mol(M) such that

‖T̂ (m)‖ > 1− η(ε).
Then for every r > 0 there exist

(1) a w∗-open subset Ur ⊂ Y ∗ with Ur ∩ Γ 6= ∅,
(2) f̂r ∈ SF(M)∗ and u ∈ Mol(M) satisfying

(3.1) f̂r(u) = 1, ‖m−u‖ ≤ ε, ‖T̂ ∗z∗−f̂r‖ ≤ r+ε+η(ε) ∀z∗ ∈ Ur∩Γ.

Proof. Since Γ is a 1-norming set, we can pick y∗0 ∈ Γ such that

|T̂ ∗(y∗0(m))| = |y∗0(T̂ (m))| > 1− ε.

Set U = {y∗ ∈ Y ∗ : |(T̂ ∗y∗)(m)| > 1− ε}. Then, according to Definition 3.2,
for every r > 0 there exists a w∗-open subset Ur ⊆ U with Ur ∩ Γ 6= ∅ such
that diam(T̂ ∗(Ur ∩ Γ )) < r. Fix y∗1 ∈ Ur ∩ Γ and set f̂1 = T̂ ∗(y∗1). Then

1 ≥ ‖f1‖L ≥ |f̂1(m)| > 1− ε.

Now we obtain the function f̂r and the molecule u by applying Lemma 3.8.
It is easily checked that they satisfy the required properties (for details see
[4, proof of Lemma 2.9]).
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Proof of Theorem 3.5. Given ε > 0, let η̂(ε) > 0 be the constant asso-
ciated to the Lip-BPB property of (M,R). Fix 0 < ε0 < ε and take ε1 > 0
such that

max

{
ε1, 2

(
(ε1 + η(ε1)) +

2(ε1 + η(ε1))

1− ρ+ (ε1 + η(ε1))

)}
≤ ε0.

Take r > 0 and 0 < ε2 < 2/3. Let T̂ ∈ L(F(M), Y ) be a Γ -flat operator
with ‖T‖L = 1 and a molecule m ∈ Mol(M) such that ‖T̂ (m)‖ > 1 − η̂(ε).
Then, applying Lemma 3.9 with Y , Γ , r and ε1, we obtain a w∗-open subset
Ur ⊆ Y ∗ with Ur ∩ Γ 6= ∅, and f̂r ∈ SF(M)∗ , ur ∈ Mol(M) satisfying

f̂r(ur) = 1, ‖m−ur‖ ≤ ε1, ‖T̂ ∗z∗− f̂r‖ ≤ r+ ε1+ η(ε1) ∀z∗ ∈ Ur ∩Γ.
On the other hand, since Ur ∩ Γ 6= ∅, by applying the definition of ACKρ

structure to U = Ur∩Γ and ε2, we obtain a nonempty subset V ⊆ U , points
y∗1 ∈ V and e ∈ SY , an operator F ∈ L(Y, Y ), and a subset V1 ⊆ Γ satisfying
the properties of Definition 3.3.

Define a linear operator Ŝ : F(M)→ Y by

Ŝ(x) = f̂r(x)Fe+ (1− δ)(IdY − F )T̂ (x),

where δ ∈ [ε2, 1). We will show that one can choose δ so that ‖Ŝ‖ ≤ 1. Recall
that since Γ is a 1-norming set, we have

‖Ŝ‖ = ‖Ŝ∗‖ = sup {‖Ŝ∗y∗‖ : y∗ ∈ Γ}.
Therefore, we take y∗ ∈ Γ and estimate

‖Ŝ∗y∗‖ = ‖y∗(Fe)f̂r + (1− δ)T̂ ∗(IdY ∗ − F ∗)(y∗)‖.

If y∗ ∈ V1, then ‖Ŝ∗y∗‖ ≤ 1 follows from the definition of V1 (see (4) in
Definition 3.3) and from δ ≥ ε2. Therefore, we only have to consider the
case when y∗ ∈ Γ \ V1. By Definition 3.3(5), for every y∗ ∈ Γ there exists a
point v∗ =

∑n
k=1 λkv

∗
k satisfying

(3.2) {v∗1, . . . , v∗n} ⊆ V,
n∑
k=1

|λk| ≤ 1, ‖F ∗y∗ − v∗‖ < ε2.

Now, by Definition 3.3(6) and by (3.1), we obtain

‖v∗(e)f̂r − T̂ ∗v∗‖ ≤
n∑
k=1

|λk| ‖v∗k(e)f̂r − T̂ ∗v∗k‖

≤
n∑
k=1

|λk|(‖v∗k(e)f̂r − f̂r‖+ ‖f̂r − T̂ ∗v∗k‖)

≤ ε2 +
n∑
k=1

|λk| ‖f̂r − T̂ ∗v∗k‖ ≤ ε2 + r + ε1 + η(ε1).
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Using Definition 3.3(4) and (3.2), for every y∗ ∈ Γ \ V1 we have

‖Ŝ∗y∗‖ ≤ δ|y∗(Fe)|+ (1− δ)‖y∗(Fe)f̂r + T̂ ∗y∗ − T̂ ∗F ∗y∗‖

≤ δρ+ (1− δ)‖T̂ ∗y∗‖+ (1− δ)‖(F ∗y∗)(e)f̂r − T̂ ∗F ∗y∗‖

≤ δρ+ (1− δ) + 2ε2(1− δ) + (1− δ)‖v∗(e)f̂r − T̂ ∗v∗‖
≤ δρ+ (1− δ) + 2ε2(1− δ) + (1− δ)(ε2 + r + ε1 + η(ε1))

≤ δρ+ (1− δ)(1 + 3ε2 + r + ε1 + η(ε1)).

Therefore, if we choose

δ =
3ε2 + r + ε1 + η(ε1)

1− ρ+ 3ε2 + r + ε1 + η(ε1)
,

then ‖Ŝ‖ ≤ 1. Moreover, if ε2 is small enough, we will have δ ≥ ε2 which
was needed before. In this case,

1 = |f̂r(ur)| = |y∗1(f̂r(ur)Fe)| = |y∗1(Ŝ(ur))| ≤ ‖Ŝ(ur)‖ ≤ 1,

from which we deduce that ‖Ŝ‖ = 1 and Ŝ attains its norm at the molecule ur,
which we already know to satisfy ‖m− ur‖ ≤ ε1 ≤ ε0 < ε.

Finally, let us estimate ‖Ŝ − T̂‖. First,

‖Ŝ − T̂‖ = ‖Ŝ∗ − T̂ ∗‖ = sup {|Ŝ∗y∗ − T̂ ∗y∗| : y∗ ∈ Γ}

≤ 2δ + sup {‖y∗(Fe)f̂r − T̂ ∗F ∗y∗‖ : y∗ ∈ Γ}.

Second,

‖(F ∗y∗)(e)f̂r − T̂ ∗F ∗y∗‖ ≤ 2ε2 + ‖v∗(e)f̂r − T̂ ∗v∗‖ ≤ 3ε2 + r + ε1 + η(ε1).

Therefore,
‖Ŝ − T̂‖ ≤ 2δ + 3ε2 + r + ε1 + η(ε1).

Since ε2 and r were arbitrary, by taking these constants with 3ε2 + r ≤
ε1 + η(ε1), we will have

‖Ŝ − T̂‖ ≤ 2(ε1 + η(ε1) + δ)

≤ 2

(
(ε1 + η(ε1)) +

2(ε1 + η(ε1))

1− ρ+ ε1 + η(ε1)

)
≤ ε0 < ε.

Given a pointed metric space M and a Banach space Y , it is possible to
give a result analogous to Theorem 3.5 but for the density of LipSNA(M,Y ).
We just have to repeat the previous proof using the fact that LipSNA(M,R)
is dense in Lip0(M,R) instead of the Lip-BPB property of (M,R), forgetting
the estimation on the distance between molecules.

Theorem 3.10.Let M be a pointed metric space such that LipSNA(M,R)
is dense in Lip0(M,R), let Y be a Banach space in ACKρ, and let Γ ⊆ BY ∗
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be the 1-norming set given by Definition 3.3. Then

FlΓ (F(M), Y ) ⊆ LipSNA(M,Y ).

As before, we obtain a series of consequences.

Corollary 3.11. Assume that M is a pointed metric space such that
LipSNA(M,R) is dense in Lip0(M,R).
(1) Let K be a compact Hausdorff topological space and Γ = {δt : t ∈ K}

(see Remark 3.7). Then FlΓ (F(M), C(K)) ⊆ LipSNA(M,C(K)).
(2) Let Z be a finite injective tensor product of Banach spaces which have

ACKρ structure. If Γ is the 1-norming set given by Definition 3.3, then
FlΓ (F(M), Z) ⊆ LipSNA(M,Z).

(3) Let K be a compact Hausdorff topological space. If Y ∈ ACKρ and Γ is
the 1-norming set given by Definition 3.3, then

FlΓ (F(M), C(K,Y )) ⊆ LipSNA(M,C(K,Y )).

(4) Let Y ∈ ACKρ. If Γ is the 1-norming set given by Definition 3.3, then

FlΓ (F(M), c0(Y )) ⊆ LipSNA(M, c0(Y )),

FlΓ (F(M), `∞(Y )) ⊆ LipSNA(M, `∞(Y )),

FlΓ (F(M), c0(Y,w)) ⊆ LipSNA(M, c0(Y,w)).

(5) Let K be a compact Hausdorff topological space. If Y ∈ ACKρ and Γ is
the 1-norming set given by Definition 3.3, then

FlΓ (F(M), Cw(K,Y )) ⊆ LipSNA(M,Cw(K,Y )).

As in Corollary 3.6, the following consequence also follows: if the set
LipSNA(M,R) is dense in Lip0(M,R) and a Banach space Y has property β,
then LipSNA(M,Y ) is dense in Lip0(M,Y ). This result also appeared in [7].
Actually, a more general result dealing with a property weaker than prop-
erty β called property quasi-β holds [7, Proposition 4.7].

We next deal with Lipschitz compact maps. Observe that one of the
disadvantages of Theorems 3.5 and 3.10 and their consequences in Corol-
laries 3.6 and 3.11 is the need to deal with Γ -flat operators. But now this
requirement disappears: given a Banach space Y , every compact operator
with codomain Y is Γ -flat for every Γ ⊆ BY ∗ [4, Example A]. Moreover, if
we take a compact operator T̂ in the proof of Theorem 3.5, then the oper-
ator Ŝ that approximates T̂ will also be compact. Consequently, we obtain
the following result.

Proposition 3.12. Let M be a pointed metric space such that (M,R)
has the Lip-BPB property and let Y be an ACKρ Banach space. Then (M,Y )
has the Lip-BPB property for Lipschitz compact maps.

Again, in view of Proposition 3.4, we obtain a series of implications.
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Corollary 3.13. Let M be a pointed metric space such that (M,R) has
the Lip-BPB property.

(1) Let K be a compact Hausdorff topological space. Then (M,C(K)) has
the Lip-BPB property for Lipschitz compact maps.

(2) Let Z be a finite injective tensor product of Banach spaces which have
ACKρ structure. Then (M,Z) has the Lip-BPB property for Lipschitz
compact maps.

(3) Let K be a compact Hausdorff topological space. If Y ∈ ACKρ, then
(M,C(K,Y )) and (M,Cw(K,Y )) have the Lip-BPB property for Lips-
chitz compact maps.

(4) Let Y ∈ ACKρ. Then (M, c0(Y )), (M, `∞(Y )), and (M, c0(Y,w)) have
the Lip-BPB property for Lipschitz compact maps.

The case when Y has property β in the above proposition already ap-
peared in [7, Proposition 4.13]. Also, item (1) above is covered by [7, Propo-
sition 4.17].

Just as with Proposition 3.12, the proof of Theorem 3.10 can be easily
adapted to the density of Lipschitz compact maps.

Proposition 3.14. Let M be a pointed metric space such that
LipSNA(M,R) is dense in Lip0(M,R) and Y ∈ ACKρ be a Banach space.
Then the set LipSNAK(M,Y ) is dense in Lip0K(M,Y ).

As before, this result has many consequences.

Corollary 3.15. Assume that M is a pointed metric space such that
LipSNA(M,R) is dense in Lip0(M,R).

(1) LipSNAK(M,C(K)) is dense in Lip0K(M,C(K)) for every compact
Hausdorff topological space K.

(2) Let Z be a finite injective tensor product of Banach spaces which have
ACKρ structure. Then LipSNAK(M,Z) is dense in Lip0K(M,Z).

(3) Let K be a compact Hausdorff topological space. If Y ∈ ACKρ, then
LipSNAK(M,C(K,Y )) and LipSNAK(M,Cw(K,Y )) are dense in
Lip0K(M,C(K,Y )) and Lip0K(M,Cw(K,Y )), respectively.

(4) Let Y ∈ ACKρ. Then LipSNAK(M, c0(Y )), LipSNAK(M, `∞(Y )), and
LipSNAK(M, c0(Y,w)) are dense in the spaces Lip0K(M, c0(Y )),
Lip0K(M, `∞(Y )), and Lip0K(M, c0(Y,w)), respectively.

Let us mention another result which follows from Proposition 3.14: prop-
erty β of Y is enough to pass from the density of LipSNA(M,R) to the
density of LipSNAK(M,Y ). Actually, [7, Proposition 4.15] gives a stronger
result: let M be a pointed metric space such that LipSNA(M,R) is dense
in Lip0(M,R) and let Y be a Banach space with property quasi-β (weaker
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than property β); then LipSNAK(M,Y ) = Lip0K(M,Y ). Moreover, item (1)
above is covered by [7, Corollary 4.19].

We finish this section by presenting some more results on the Lip-BPB
property for Lipschitz compact maps and on the density of strongly norm
attaining Lipschitz compact maps. They easily follow from the results of [7].
We start with a result on the Lip-BPB property for Lipschitz compact maps.

Proposition 3.16 ([7, Proposition 4.16]). Let M be a pointed metric
space and let Y be a Banach space. Suppose that there exists a net {Qλ}λ∈Λ ⊂
L(Y, Y ) of norm-one projections such that {Qλ(y)} → y in norm for every
y ∈ Y . If there is a function η : R+ → R+ such that for every λ ∈ Λ, the pair
(M,Qλ(Y )) has the Lip-BPB property for Lipschitz compact maps witnessed
by η, then (M,Y ) has the Lip-BPB property for Lipschitz compact maps.

The following result collects several consequences of the proposition above.
None of themwas included in [7]. Observe that item (1) below formally extends
items (1) and (3) of our Corollary 3.13.

Corollary 3.17. Let M be a pointed metric space and let Y be a Banach
space such that (M,Y ) has the Lip-BPB property for Lipschitz compact maps.

(1) For every compact Hausdorff topological space K, (M,C(K,Y )) has the
Lip-BPB property for Lipschitz compact maps.

(2) For 1 ≤ p < ∞, if (M, `p(Y )) has the Lip-BPB property for Lipschitz
compact maps, then so does (M,Lp(µ, Y )) for every positive measure µ.

(3) For every σ-finite positive measure µ, the pair (M,L∞(µ, Y )) has the
Lip-BPB property for Lipschitz compact maps.

Proof. This proof is based on [9, proof of Theorem 3.15]. To prove (1), fol-
lowing [16, proof of Theorem 4], by using peaked partitions of unity in C(K)
we can find a net {Qλ}λ∈Λ of norm-one projections on C(K,Y ) such that
{Qλ(f)} → f in norm for every f ∈ C(K,Y ) and Qλ(C(K,Y )) is isometri-
cally isomorphic to `m∞(Y ). Consequently, (1) follows from Propositions 4.11
and 3.16.

To prove (2), fix 1 ≤ p < ∞. If L1(µ) is finite-dimensional, the result
is a consequence of Proposition 4.3. Otherwise, by using [9, Lemma 3.12]
we may find a net {Qλ}λ∈Λ of norm-one projections on Lp(µ, Y ) such that
{Qλ} → f in norm for every f ∈ Lp(µ, Y ) and Qλ(Lp(µ, Y )) is isometrically
isomorphic to `p(Y ). Therefore, it is enough to apply Proposition 3.16.

As before, if L∞(µ) is finite-dimensional, the result is a consequence
of Proposition 4.11. If L∞(µ) is infinite-dimensional, we may suppose that
the measure is finite by using [5, Proposition 1.6.1]. Then [9, Lemma 3.12]
provides a net {Qλ}λ∈Λ of norm-one projections on L∞(µ, Y ) such that
{Qλ} → f in norm for every f ∈ L∞(µ, Y ) and Qλ(Lp(µ, Y )) is isometrically
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isomorphic to `∞(Y ). Consequently, the result follows from Propositions 4.11
and 3.16.

An analogous result to Proposition 3.16 also appeared in [7] for the den-
sity of strongly norm attaining Lipschitz compact maps.

Proposition 3.18 ([7, Proposition 4.18]). Let M be a pointed metric
space and Y be a Banach space. Suppose that there exists a net {Qλ}λ∈Λ ⊂
L(Y, Y ) of norm-one projections such that {Qλ(y)} → y in norm for every
y ∈ Y . If LipSNAK(M,Qλ(Y )) is dense in Lip0K(M,Qλ(Y )) for every
λ ∈ Λ, then

LipSNAK(M,Y ) = Lip0K(M,Y ).

Now, by using this proposition instead of Proposition 3.16 and replacing
the necessary results by their versions for the density of LipSNAK(M,Y ),
the proof of Corollary 3.17 can be easily adapted to get the following results
about the density of strongly norm attaining Lipschitz compact maps. None
of them appeared in [7].

Corollary 3.19. LetM be a pointed metric space and let Y be a Banach
space such that LipSNAK(M,Y ) is dense in Lip0K(M,Y ).

(1) LipSNAK(M,C(K,Y )) is dense in Lip0K(M,C(K,Y )) for every com-
pact Hausdorff topological space K.

(2) For 1 ≤ p < ∞, if LipSNAK(M, `p(Y )) is dense in Lip0K(M, `p(Y )),
then LipSNAK(M,Lp(µ, Y )) is dense in Lip0K(M,Lp(µ, Y )) for every
positive measure µ.

(3) LipSNAK(M,L∞(µ, Y )) is dense in Lip0K(M,L∞(µ, Y )) for every σ-
finite positive measure µ.

Item (1) above extends items (1) and (3) of Corollary 3.15 and it is indeed
stronger. Actually, for Y having property quasi-β but not property β, item (1)
above implies that LipSNAK(M,C(K,Y )) is dense in Lip0K(M,C(K,Y ))
for every compact Hausdorff topological space K, and this result does not
follow from Corollary 3.15.

Proof of Corollary 3.19. We proceed as in the proof of Corollary 3.17.
To prove (1), [16, Theorem 4] shows that we can find a net {Qλ}λ∈Λ of
norm-one projections on C(K,Y ) such that {Qλ(f)} → f in norm for ev-
ery f ∈ C(K,Y ) and Qλ(C(K,Y )) is isometrically isomorphic to `p(Y ).
Consequently, we can apply Propositions 4.12 and 3.18.

For (2), fix 1 ≤ p < ∞. If L1(µ) is finite-dimensional, the result is a
consequence of Proposition 4.5. Otherwise, using [9, Lemma 3.12] we find a
net {Qλ}λ∈Λ of norm-one projections on Lp(µ, Y ) such that {Qλ} → f in
norm for every f ∈ Lp(µ, Y ) and Qλ(Lp(µ, Y )) is isometrically isomorphic
to `p(Y ). Consequently, we can apply Proposition 3.18.
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Finally, if L∞(µ) is finite-dimensional, (3) follows from Proposition 4.12
below. If L∞(µ) is infinite-dimensional, we may suppose that the measure
is finite by using [5, Proposition 1.6.1]. Then [9, Lemma 3.12] provides a
net {Qλ}λ∈Λ of norm-one projections on L∞(µ, Y ) such that {Qλ} → f in
norm for every f ∈ L∞(µ, Y ) and Qλ(Lp(µ, Y )) is isometrically isomorphic
to `∞(Y ). Consequently, we can apply Propositions 4.12 and 3.18.

4. Absolute sums of codomains. In this last section we study the
behavior of the Lip-BPB property and the density of LipSNA(M,Y ) with
respect to absolute sums of the codomain. We need some definitions.

Definition 4.1. An absolute norm is a norm | · |a in R2 such that
|(1, 0)|a = |(0, 1)|a = 1 and |(s, t)|a = |(|s|, |t|)|a for every s, t ∈ R.

Given two Banach spaces W and Z and an absolute norm | · |a, the absolute
sum of W and Z with respect to | · |a, denoted by W ⊕a Z, is the Banach
space W × Z endowed with the norm

‖(w, z)‖a = |(‖w‖, ‖z‖)|a ∀w ∈W, ∀z ∈ Z.
A closed subspace Y1 of a Banach space Y is said to be an absolute summand
of Y whenever there exists a closed subspace Z of Y and an absolute norm
| · |a in R2 such that Y ≡ Y1 ⊕a Z.

We will need an easy lemma (for a proof, see [12, Lemma 2.2]).
Lemma 4.2. Let W and Z be Banach spaces and | · |a be any absolute

norm in R2. If (w, z) ∈ SW⊕aZ and (w∗, z∗) ∈ SW ∗⊕a∗Z∗ are such that
〈(w, z), (w∗, z∗)〉 = 1, then

w∗(w) = ‖w∗‖ ‖w‖ and z∗(z) = ‖z∗‖ ‖z‖.
Our first result is the following lifting of the Lip-BPB property from a

space to its absolute summands.
Proposition 4.3. Let M be a pointed metric space, Y be a Banach space

and Y1 be an absolute summand of Y . If (M,Y ) has the Lip-BPB property
with a function ε 7→ η(ε), then so does (M,Y1) with ε 7→ η(ε/3).

The case of ⊕a = ⊕∞ appeared in [7, Lemma 4.8].
Proof of Proposition 4.3. Since Y1 is an absolute summand of Y , we can

write Y = Y1 ⊕a Y2 for some Banach space Y2. Fix ε > 0 and consider
F̂1 ∈ L(F(M), Y1) with ‖F1‖L = 1 and m ∈ Mol(M) ⊂ SF(M) satisfying

‖F̂1(x0)‖ > 1− η(ε/3).
Define T̂ ∈ L(F(M), Y ) by T̂ (x) = (F̂1(x), 0) for all x ∈ F(M), and note
that ‖T̂‖ = 1 and

‖T̂ (m)‖ = ‖(F̂1(m), 0)‖a = ‖F̂1(m)‖ > 1− η(ε/3).
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Since (M,Y ) has the Lip-BPB property, there are Ĥ ∈ L(F(M), Y ) and
m′ ∈ Mol(M) such that

‖Ĥ(m′)‖ = ‖H‖L = 1, ‖T −H‖L < ε/3, ‖m−m′‖ < ε/3.

Write Ĥ = (Ĥ1, Ĥ2), where Hi ∈ L(F(M), Yi) for i = 1, 2. For all x ∈ BF(M)

we have

‖(Ĥ1(x)− F̂1(x), Ĥ2(x))‖∞ ≤ ‖(Ĥ1(x)− F̂1(x), Ĥ2(x))‖a ≤ ‖Ĥ − T̂‖.
Then ‖F1 − H1‖L < ε/3 and ‖H2‖L < ε/3. Now consider y∗ = (y∗1, y

∗
2) ∈

Y ∗1 ⊕a∗ Y ∗2 with ‖y∗‖a∗ = 1 satisfying

1 = ‖Ĥ(m′)‖ = y∗1(Ĥ1(m
′)) + y∗2(Ĥ2(m

′)).

Define Ĝ1 ∈ L(F(M), Y1) by

Ĝ1(x) = ‖y∗1‖Ĥ1(x) + y∗2(Ĥ2(x))
Ĥ1(x)

‖Ĥ1(x)‖
∀x ∈ F(M).

Now, following [8, proof of Theorem 2.1] one can verify that

‖Ĝ1(m
′)‖ = ‖G1‖L = 1, ‖F1 −G1‖L < ε, ‖m−m′‖ < ε/3.

Hence, (M,Y1) has the Lip-BPB property with the function ε 7→ η(ε/3).

Note that, as proved in the above proposition, essentially the same func-
tion η from the Lip-BPB property of (M,Y ) works for the Lip-BPB property
of (M,Y1). This is the key fact to obtain the following consequence.

Corollary 4.4. Let M be a pointed metric space such that (M,Y ) has
the Lip-BPB property for all Banach spaces Y . Then there exists a function
ηM (ε), which only depends onM , such that (M,Y ) has the Lip-BPB property
witnessed by ηM (ε) for every Banach space Y .

Proof. Suppose this is not the case. Then there is a sequence Yn of Banach
spaces such that whenever each pair (M,Yn) has the Lip-BPB property
witnessed by ηn(ε) > 0, one has infn ηn(ε) = 0 for some 0 < ε < 1. Let
Y = [

⊕
n∈N Yn]c0 and observe that, by hypothesis, (M,Y ) has the Lip-

BPB property witnessed by a function ε 7→ η(ε) > 0. As each Yn is clearly
an absolute summand of Y , Proposition 4.3 shows that for every n ∈ N,
each pair (M,Yn) has the Lip-BPB property witnessed by ε 7→ η(ε/3) > 0,
contrary to assumption.

For the density of LipSNA(M,Y ), we can give the following result whose
proof is a modification of that of [8, Proposition 2.5], in the same way as the
proof of Proposition 4.3 follows from [8, Theorem 2.1].

Proposition 4.5. Let M be a pointed metric space, let Y be a Banach
space, and let Y1 be an absolute summand of Y . If LipSNA(M,Y ) is dense
in Lip0(M,Y ), then LipSNA(M,Y1) is dense in Lip0(M,Y1).
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Another result in the same direction is the following modification of [1,
Proposition 2.8].

Proposition 4.6. Let M be a pointed metric space, Y be a Banach
space, and K be a compact Hausdorff topological space. If (M,C(K,Y )) has
the Lip-BPB property witnessed by a function η, then (M,Y ) has the Lip-
BPB property witnessed by the same function.

Proof. Fix ε > 0. Consider F̂1 ∈ L(F(M), Y ) with ‖F̂1‖ = 1 and m ∈
Mol(M) satisfying

‖F̂1(m)‖ > 1− η(ε).

Define F̂ : F(M)→ C(K,Y ) by

[F̂ (x)](t) = F̂1(x) for every x ∈ F(M), t ∈ K.

It is clear that ‖F̂‖ = ‖F̂1‖ = 1. Furthermore, ‖F̂ (m)‖ > 1 − η(ε). By the
assumption, there exist Ĝ ∈ L(F(M), C(K,Y )) and u ∈ Mol(M) such that

‖Ĝ(u)‖ = ‖Ĝ‖ = 1, ‖F̂ − Ĝ‖ < ε, ‖m− u‖ < ε.

Moreover, since K is compact, there is t1 ∈ K such that

1 = ‖Ĝ(u)‖ = ‖[Ĝ(u)](t1)‖.

Now, define Ĝ1 : F(M) → Y by Ĝ1(x) = [Ĝ(x)](t1) for every x ∈ F(M).
Note that

‖Ĝ1‖ = sup
x∈BF(M)

‖[Ĝ(x)](t1)‖ = ‖[Ĝ(u)](t1)‖ = ‖Ĝ1(u)‖ = 1.

In addition, we have

‖G1 − F1‖L = sup
x∈BF(M)

‖[Ĝ(x)](t1)− [F̂ (x)](t1)‖

≤ sup
x∈BF(M)

‖Ĝ(x)− F̂ (x)‖ = ‖Ĝ− F̂‖ < ε.

As we already know that ‖m − u‖ < ε, we conclude that (M,Y ) has the
Lip-BPB property witnessed by η.

The previous proposition also has an analogous formulation for the den-
sity of strongly norm-attaining Lipschitz maps.

Proposition 4.7. Let M be a pointed metric space, let Y be a Ba-
nach space, and let K be a compact Hausdorff topological space. Assume that
LipSNA(M,C(K,Y )) is dense in Lip0(M,C(K,Y )). Then LipSNA(M,Y )
is dense in Lip0(M,Y ).

Proof. Given ε > 0, consider F̂1 ∈ L(F(M), Y ) with ‖F̂1‖L = 1. De-
fine F̂ as in the proof of Proposition 4.6. By hypothesis, there exist Ĝ ∈
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L(F(M), C(K,Y )) and u ∈ Mol(M) such that

‖Ĝ(u)‖ = ‖Ĝ‖ = 1 and ‖Ĝ− F̂‖ < ε.

Since K is compact, there is t1 ∈ K such that 1 = ‖Ĝ(u)‖ = ‖[Ĝ(u)](t1)‖.
Now, define a bounded linear operator Ĝ1 : F(M)→ Y by Ĝ1(x) = [Ĝ(x)](t1)
for every x ∈ F(M). By repeating the argument in Proposition 4.6, we find
that Ĝ1 attains its norm at u ∈ Mol(M) and ‖Ĝ1 − F̂1‖ ≤ ‖Ĝ − F̂‖ < ε.
Consequently, LipSNA(M,Y ) is dense in Lip0(M,Y ).

A careful inspection of the proofs in this section shows that if one starts
with a Lipschitz compact map, then one also gets a Lipschitz compact map in
each case. Thus, every result has a version for the Lip-BPB property for Lip-
schitz compact maps and for the density of strongly norm attaining Lipschitz
compact maps. We summarize all the results in the following proposition,
whose proof we skip.

Proposition 4.8. LetM be a pointed metric space and let Y be a Banach
space.

(a) Let Y1 be an absolute summand of Y . If (M,Y ) has the Lip-BPB prop-
erty for Lipschitz compact maps with a function η, then so does (M,Y1).

(b) If for all Banach spaces Z the pair (M,Z) has the Lip-BPB property
for Lipschitz compact maps, then there exists a function η, which only
depends on M , such that for every Banach space Z the pair (M,Z) has
the Lip-BPB property for Lipschitz compact maps witnessed by η.

(c) Let Y1 be an absolute summand of Y . If LipSNAK(M,Y ) is dense in
Lip0K(M,Y ), then LipSNAK(M,Y1) is dense in Lip0K(M,Y1).

(d) If for some compact Hausdorff space K the pair (M,C(K,Y )) has the
Lip-BPB property for Lipschitz compact maps witnessed by a function η,
then (M,Y ) has the Lip-BPB property for Lipschitz compact maps wit-
nessed by the same function.

(e) If LipSNAK(M,C(K,Y )) is dense in Lip0K(M,C(K,Y )) for some com-
pact Hausdorff space K, then LipSNAK(M,Y ) is dense in Lip0K(M,Y ).

LetM be a pointed metric space, let {Yi}i∈I be a family of Banach spaces
and let Y = [

⊕
i∈I Yi]c0 or Y = [

⊕
i∈I Yi]`∞ . By Proposition 4.3, if (M,Y )

has the Lip-BPB property, then all (M,Yi) have the Lip-BPB property wit-
nessed by the same function. By Proposition 4.5, if LipSNA(M,Y ) is dense
in Lip0(M,Y ), then LipSNA(M,Yi) is dense in Lip0(M,Yi) for all i ∈ I. Our
next aim is to show that the converse results also hold. We start with the
Lip-BPB property.

Proposition 4.9. Let M be a pointed metric space, let {Yi}i∈I be a
family of Banach spaces, and let Y be [

⊕
i∈I Yi]c0 or [

⊕
i∈I Yi]`∞. Assume

that (M,Yi) has the Lip-BPB property witnessed by a function ηi for every
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i ∈ I. If inf {ηi(ε) : i ∈ I} > 0 for every ε > 0, then (M,Y ) has the Lip-BPB
property.

Proof. Fix ε > 0, take η(ε) := inf {ηi(ε) : i ∈ I} > 0 and note that
we have ηi(ε) ≥ η(ε) for every i ∈ I. Let Qi : Y → Yi be the natural
projection and Ei : Yi → Y the natural embedding for every i ∈ I. Take
F̂ ∈ L(F(M), Y ) with ‖F‖L = 1 and m ∈ Mol(M) such that

‖F̂ (m)‖ > 1− η(ε).
Then there exists k ∈ I such that ‖QkF̂ (m)‖ > 1 − η(ε). By hypothesis,
there exist Ĝk ∈ L(F(M), Yk) and u ∈ Mol(M) satisfying

‖Ĝk(u)‖ = ‖Gk‖L = 1, ‖QkF̂ − Ĝk‖ < ε, ‖m− u‖ < ε.

Now, define Ĝ : F(M)→ Y by

Ĝ(x) =
∑
i 6=k

Ei(Qi(F̂ ))(x) + EkĜk(x) ∀x ∈ F(M).

Then ‖G‖L ≤ 1 and ‖Ĝ(u)‖ ≥ ‖Ĝk(u)‖ = 1. Therefore, Ĝ attains its norm
at u ∈ Mol(M). Finally,

‖F −G‖L = sup {‖Qi(F̂ − Ĝ)‖ : i ∈ I} = ‖Qk(F̂ − Ĝ)‖ < ε,

that is, (M,Y ) has the Lip-BPB property.
It is possible to give a result analogous to Proposition 4.9 for the density

of LipSNA(M,Y ).
Proposition 4.10. Let M be a pointed metric space, let {Yi}i∈I be a

family of Banach spaces, and let Y be either [
⊕

i∈I Yi]c0 or [
⊕

i∈I Yi]`∞ . If
LipSNA(M,Yi) = Lip0(M,Yi) for every i ∈ I, then

LipSNA(M,Y ) = Lip0(M,Y ).

Proof. For each i ∈ I, let Qi : Y → Yi be the natural projection and
Ei : Yi → Y the natural embedding. Fix ε > 0 and F̂ ∈ L(F(M), Y )

with ‖F‖L = 1. There exists k ∈ I such that ‖QkF̂‖ > 1 − ε/2. Since
LipSNA(M,Yk) = Lip0(M,YK) we may find Gk ∈ Lip0(M,Yk) and u ∈
Mol(M) such that

‖Ĝk(u)‖ = ‖Gk‖L = 1, ‖Ĝk −QkF̂‖ < ε.

Now, define Ĝ : F(M)→ Y by

Ĝ(x) =
∑
i 6=k

Ei(Qi(F̂ ))(x) + EkĜk(x) ∀x ∈ F(M).

Then ‖G‖L ≤ 1 and ‖Ĝ(u)‖ ≥ ‖Ĝk(u)‖ = 1. Therefore, Ĝ attains its norm
at u. Finally,

‖F −G‖L = sup {‖Qi(F̂ − Ĝ)‖ : i ∈ I} = ‖Qk(F̂ − Ĝ)‖ < ε.
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A look at the above two proofs shows that the analogous results for
Lipschitz compact maps are also valid.

Proposition 4.11. Let M be a pointed metric space, let {Yi}i∈I be a
family of Banach spaces, and let Y be [

⊕
i∈I Yi]c0 or [

⊕
i∈I Yi]`∞. Assume

that for each i ∈ I the pair (M,Yi) has the Lip-BPB property for Lipschitz
compact maps witnessed by a function ηi(ε). If inf {ηi(ε) : i ∈ I} > 0 for
every ε > 0, then (M,Y ) has the Lip-BPB property for Lipschitz compact
maps.

Proposition 4.12. Let M be a pointed metric space, let {Yi}i∈I be a
family of Banach spaces, and let Y be either [

⊕
i∈I Yi]c0 or [

⊕
i∈I Yi]`∞. If

LipSNAK(M,Yi) is dense in Lip0K(M,Yi) for every i ∈ I, then the set
LipSNAK(M,Y ) is dense in Lip0K(M,Y ).
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