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Abstract. We study the density of the set SNA(M,Y") of those Lipschitz
maps from a (complete pointed) metric space M to a Banach space Y
which strongly attain their norm (i.e. the supremum defining the Lips-
chitz norm is actually a maximum). We present new and somehow coun-
terintuitive examples, and we give some applications. First, we show that
SNA(T,Y) is not dense in Lipy(T,Y’) for any Banach space Y, where T
denotes the unit circle in the Euclidean plane. This provides the first ex-
ample of a Gromov concave metric space (i.e. every molecule is a strongly
exposed point of the unit ball of the Lipschitz-free space) for which the
density does not hold. Next, we construct metric spaces M satisfying
that SNA(M,Y) is dense in Lip,(M,Y) regardless Y but which contain
isometric copies of [0,1] and so the Lipschitz-free space F(M) fails the
Radon—Nikodym property, answering in the negative a question posed in
[8]. Furthermore, an example of such M can be produced failing all the
previously known sufficient conditions for the density of strongly norm at-
taining Lipschitz maps. Finally, among other applications, we prove that
given a compact metric space M which does not contain any isometric copy
of [0,1] and a Banach space Y, if SNA(M,Y) is dense, then SNA(M,Y)
actually contains an open dense subset and Br () = co(str-exp (B;(M))).
Further, we show that if M is a boundedly compact metric space for which
SNA(M,R) is dense in Lip, (M, R), then the unit ball of the Lipschitz-free
space on M is the closed convex hull of its strongly exposed points.
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1. Introduction

In this paper we will solve some questions related to when the set of those Lipschitz
maps which strongly attain their norm is dense. Let us start with necessary defi-
nitions. A pointed metric space is just a metric space M in which we distinguish
an element, called 0. Throughout the paper, the metric spaces will be complete
and the Banach spaces will be over the real scalars. Given a pointed metric space
M and a Banach space Y, we write Lipy(M,Y") to denote the Banach space of all
Lipschitz maps F' : M — Y which vanish at 0, endowed with the Lipschitz norm
defined by

| F(z) — F(y)]
d(z,y)

Let us comment that the choice of the distinguished element is not important,
as the resulting spaces of Lipschitz maps are isometrically isomorphic. Following
[21] and [17], we say that F' € Lip,(M,Y) attains its norm in the strong sense or
strongly attains its norm, whenever the supremum in (#) is actually a maximum,
that is, whenever there are x,y € M, x # y, such that

| F(2) = Fy)
d(z,y)

The set of all Lipschitz maps in Lip,(M,Y’) which attain their norm in the strong
sense is denoted by SNA(M.,Y).

As the starting point of the study of strong norm attainment we can consider
the papers [17, 21], where the first examples of spaces failing and satisfying that the
set of strongly norm attaining functionals is dense are found. On the one hand, the
first negative example is [21, Example 2.1], where a norm-one Lipschitz function
f € Lipy([0,1],R) is found so that d(f,SNA([0,1],R)) > 0 (see [17, p. 109] for a
quantitative sharper result). On the other hand, the first positive result comes
from [17], where it is proved that SNA(M,Y) is dense in Lip,(M,Y") whenever M
is a compact metric space such that the space of little Lipschitz functions uniformly
separates points and Y is a finite-dimensional Banach space, leaving as an open
question to determine those compact metric spaces M and those Banach spaces Y
for which SNA(M,Y) is dense in Lipy(M,Y) [17, Question 6.7].

After that, new positive results were obtained in [14, Section 4] and in [13,
Section 7], where the result [13, Proposition 7.4] is of particular interest. In order
to state this result, we need to introduce the Lipschitz-free space. Let M be
a pointed metric space. We denote by ¢ the canonical isometric embedding of
M into Lipy(M,R)*, which is given by (f,d(z)) = f(x) for z € M and f €
Lipy(M,R). We denote by F(M) the norm-closed linear span of 6(M) in the dual
space Lipy(M,R)*, which is usually called the Lipschitz-free space over M, see
the papers [17] and [18], and the book [24] (where it receives the name of Arens-
Eells space) for background on this. It is well known that F (M) is an isometric
predual of the space Lip,(M,R) [17, p. 91]. With this notion in mind, then [13,
Proposition 7.4] asserts that SNA(M,Y") is dense in Lip,(M,Y) for every Banach

(&) ||F||L::sup{ :x,yeM,m;éy}.

= [1F[lz-
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space Y whenever F (M) has the Radon-Nikodym property (RNP in short). Later
on, taking advantage of the recent progress on the study of the extremal structure
of the unit ball of Lipschitz-free spaces [3, 13, 15], an intensive study of strongly
norm attaining Lipschitz maps was done in [8]. Also, a Bishop—Phelps—Bollobds
type property for Lipschitz maps (this is a stronger quantitative way in which the
set of strongly norm attaining Lipschitz maps can be dense) is considered in [10].
Let us summarise these and some other known results on the density of strongly
norm attaining Lipschitz maps; see subsection 1.1 to find the needed definitions.

(N1) If M is a length metric space (in particular, if it is geodesic), then SNA (M, R)
is not dense in Lipy(M,R) [8, Theorem 2.2].

(N2) If M is a closed subset of an R-tree (in particular, a subset of R) with positive
length measure, then SNA (M, R) is not dense in Lipy (M, R) [8, Theorem 2.3].

(P1) If (M) has the RNP, then SNA(M,Y) is dense in Lipy(M,Y) for every
Banach space Y [13, Proposition 7.4].

(P2) If M satisfies that By is the closed convex hull of a uniformly strongly
exposed set, then SNA(M,Y") is dense in Lip,(M,Y) for every Banach space
Y [8, Proposition 3.3]. In particular, this happens in the following situations:

(P2.1) if F(M) has property « [8, Corollary 3.10],
(P2.2) if M is any Hoélder space [10, Proposition 3.8].

(P3) If F(M) has property quasi-, then SNA(M,Y) is dense in Lipy(M,Y") for
every Banach space Y [8, Proposition 3.19].

Let us comment on some properties that all these examples have in common.
In all the negative results, the space F(M) contains isomorphic copies of L;[0,1].
In all the positive results, the unit ball of F(M) is the closed convex hull of its
strongly exposed points and, actually, it is not known whether in all positive known
results, (M) has the RNP. In view of all these, the following questions are natural
on a complete metric space M:

(Q1) Does F(M) have the RNP if SNA(M,Y) is dense in Lip,(M,Y") for every
Banach space Y7

(Q2) Is SNA(M,R) dense in Lipy (M, R) if Bry = @(str—exp (B}-(M))) (or, even,
if M is Gromov concave)?

(Q3) Conversely, is Bryy = @(str—exp (B}-(M))) when SNA(M,R) is dense in
Lipy(M,R)?

(Q4) Does SNA(M,R) fail to be dense in Lipy(M,R) provided F(M) contains an
isomorphic (or even isometric) copy of L1[0,1]?

Note that all the questions above have positive answer if M is a compact
subset of R: see [16, Theorem 3.2] for a description of F(M) as an L; space and
[8, Corollary 2.6] for description of those compact subsets of R for which strongly
norm attaining Lipschitz maps are dense.
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Let us also notice that (Q1l) was asked in [8, p. 29]. Also, in the case that
M is compact, it is asked in [17, p. 115] whether F(M) is isometric to the dual
of the space of little Lipschitz functions when SNA (M, R) is dense in Lipy (M, R).
Outside the compact setting, it is known that there are metric spaces M for which
F(M) has the RNP but it is not isometric to any dual space [13, Example 5.8].

A natural candidate to study is the unit circle T, as F(T) does not have the
RNP (it contains an isomorphic copy of L1[0,1]) but the curvature of T sug-
gests that F(T) should contain a lot of strongly exposed points, according to the
characterisation of these points given in [15, Theorem 5.4]. Then, depending on
whether SNA(T,R) is dense in Lipy(T,R) or not, it would provide a negative
answer to either (Q1) or (Q2). One of the main results of the paper is Theo-
rem 2.1, where we prove that SNA(T,R) is not dense in Lipy(T,R), while every
molecule (see Subsection 1.1 for the definition) is a strongly exposed point, so
Brm = @(Str—exp (B ].-(T))), which provides a negative answer for (Q2). Let us
observe that this example is somehow counterintuitive, as all the previously known
negative examples either live in the real line or have some kind of convexity (that
is, either are contained in a segment or contain many “almost” segments).

For a counterexample for (Q1), we find in Theorem 2.5 two metric spaces for
which strongly norm attaining maps are dense regardless of the range space, while
each of them contains an isometric copy of [0,1]. This proves that the answer to
both (Q1) and (Q4) is negative. In particular, this result seems to provide the first
example of a compact metric space M for which SNA(M,Y) is dense in Lip,(M,Y)
and whose space of little Lipschitz functions does not separate the points of M,
answering by the negative the already mentioned question of G. Godefroy (see the
paragraph following [17, Question 6.7]). Again, this example is somehow coun-
terintuitive, as it implies that every function in Lip,([0, 1], R) which is far from
SNA([0,1],R) (and there are many of them) admits extensions to a function in
Lipy(M,R) which can be approximated by strongly norm attaining ones. Further-
more, as another consequence of Theorem 2.5, we find in Example 2.12 a metric
space M for which SNA(M,Y") is dense in Lipy(M,Y") regardless of Y, but failing
all the sufficient conditions studied in [8, 10, 17], which makes of M an example of
a metric space in which the density is obtained differently from all the previously
known ways.

With respect to (Q3), we begin Section 3 by showing in Theorem 3.3 that,
given a complete metric space M, if SNA (M, R) is dense in Lipy(M,R), then

Br(w) = (ext (Bra))) -

A complete affirmative answer to (Q3) in the compact case is obtained in Theo-
rem 3.15 and extended to the boundedly compact case in Corollary 3.21.
Furthermore, in the case that M is a compact metric space which does not con-
tain any isometric copy of [0, 1], we even obtain in Theorem 3.7 that SNA(M,Y)
actually contains an open dense subset: the one of non-local Lipschitz maps (which
actually attain their norms at strongly exposed points, see Lemma 3.13). In gen-
eral, given Banach spaces X and Y, the presence of open subsets in the set of
norm attaining operators from X to Y is a rare phenomenon (see Remark 3.10).
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However, an adaptation of the techniques of Theorem 3.7 allows us to prove in
Proposition 3.18 that if M is a locally compact metric space not containing any
isometric copy of [0, 1], then the set of absolutely strongly exposing operators from
F(M) to Y is dense in L(F(M),Y) if, and only if, SNA(M,Y") contains a certain
open dense subset B (see Proposition 3.18 for a description of such set). Notice
that, in general, in order to ensure that a certain set of norm attaining operators
NA(X,Y) contains an open subset it is not sufficient that X has the RNP (see
Remark 3.10). However, combining Theorem 3.7 and Proposition 3.18 we obtain
that SNA(M,Y") (and henceforth NA(F(M),Y)) contains an open dense subset in
the classical examples in which F(M) is known to enjoy the RNP as in the case
when M is uniformly discrete or for the class of compact metric spaces described
in [17, p. 110].

Finally, as a by-product of our study, we prove that for all the known sufficient
conditions for Lindenstrauss property A, one actually obtains that the absolutely
strongly exposing operators form a dense subset (see Section 4).

1.1. Notation and a little background

We will only consider real Banach spaces. Given a Banach space X we will denote
by Bx and Sy the closed unit ball and the closed unit sphere. Also, X* stands
for the topological dual of X and Jyxy: X — X** is the canonical inclusion. A
slice of the unit ball Bx is a non-empty intersection of an open half-space with
Bx; every slice can be written in the form

S(BX7f7ﬂ) ::{$€Bx:f(m)>l_ﬁ}a

where f € Sx+, 8> 0.

The notations ext (Bx ), pre-ext (Bx), str-exp (Bx ) stand for the set of extreme
points, preserved extreme points (i.e. extreme points which remain extreme in the
bidual ball), and strongly exposed points of By, respectively. A point z € Bx
is said to be a denting point of Bx if there exist slices of Bx containing x of
arbitrarily small diameter. We will denote by dent (Bx ) the set of denting points
of Bx. We always have that

str-exp (Bx) C dent (Bx) C pre-ext (Bx) C ext (Bx) .

If X and Y are Banach spaces, we write £(X,Y") to denote the Banach space
of all bounded linear operators from X to Y, endowed with the operator norm.
We say that T € L(X,Y) attains its norm, and write T' € NA(X,Y), if there is
x € X with [|z| = 1 such that ||Tz| = ||T||. The study of the density of norm
attaining linear operators has its root in the classical Bishop—Phelps theorem,
which states that NA(X,R) is dense in X* = L(X,R) for every Banach space X.
J. Lindenstrauss extended such study to general linear operators, showing that this
is not always possible, and also giving positive results. A Banach space X is said to
have Lindenstrauss property A when NA(X,Y) = L(X,Y) for every Banach space
Y; it is shown in [22] that reflexive spaces have this property. This result was
extended by J. Bourgain [7] to Banach spaces with the RNP. In order to be more
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precise, we will introduce a bit of notation. According to [7], given two Banach
spaces X and Y, an operator T: X — Y is absolutely strongly exposing if there
exists © € Sx such that for every sequence {x,} C Bx such that lim, ||Tz,| =
IT]|, there is a subsequence {z,, } which converges to either z or —z. Clearly, if T'
is an absolutely strongly exposing operator, then 7" attains its norm at the point
x appearing at the definition and it is easy to show that such point x € Sy is a
strongly exposed point (see Proposition 3.14 for details). The announced result of
J. Bourgain [7, Theorem 5] says that if X is a Banach space with the RNP and YV
is any Banach space, then the set of absolutely strongly exposing operators from
X to Y is a Gs-dense subset of L(X,Y).

In order to connect the theory of norm attaining operators and the theory of
strong norm attainment of Lipschitz maps, let us recall that when M is a pointed
metric space and Y is a Banach space, it is well known that every Lipschitz map
f: M — Y can be isometrically identified with the continuous linear opera-
tor f: F(M) — Y defined by f(6,) = f(p) for every p € M. This mapping
completely identifies the spaces Lip,(M,Y") and L(F(M),Y). Bearing this fact in
mind, the set SNA(M,Y) is identified with the set of those elements of L(F(M),Y)
which attain their operator norm at some molecule, that is, at an element of F (M)
of the form

6(x) — 6(y)

d(z,y)

for x,y € M, x # y. We write Mol (M) to denote the set of all molecules of M.
Note that, since Mol (M) is balanced and norming for Lip,(M,R), a straightfor-
ward application of Hahn-Banach theorem implies that

It is clear now that when SNA(M,Y) is dense in Lipy(M,Y), then NA(F(M),Y)
has to be dense in L(F(M),Y) a fortiori. The converse result is not true as, for
instance, NA(F(M),R) is always dense by the Bishop-Phelps theorem but, as we
have already mentioned, there are many metric spaces M such that SNA(M,R)
is not dense in Lipy(M,R). Of course, if SNA(M,Y) is dense in Lipy(M,Y) for
every Banach space Y, then F(M) has Lindenstrauss property A. Let us recall
the exact definition of some sufficient conditions to get that SNA(M,Y") is dense
in Lipy(M,Y) for every Y, considered in [8], which have been commented in the
introduction.

Definition 1.1. Let X be a Banach space.

1. A subset S C Sx is said to be a uniformly strongly exposed set (or a set
of uniformly strongly exposed points) [22] if there is a family of functionals
{hy}wes with ||hy]| = ha(x) =1 for every x € S such that, given £ > 0 there
is 0 > 0 satisfying that

sup diam (S(Bx, hs,0)) < &
T€S

Mgy =

equivalently, if for every € > 0 there is ¢’ > 0 such that whenever z € By
satisfies hy(z) > 1— ¢’ for some = € S, then ||z —z|| < € (that is, all elements
of S are strongly exposed points with the same relation e-9).
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2. X has property o [23] if there exist a balanced subset {zx}xea of X and a
subset {z3}rea € X* such that

() laall = 3]l = [ wx)] = 1 for all A € A,
(ii) There exists 0 < p < 1 such that

@@l <p Vo # L.

(iii) 0 ({zx}ren) = Bx.

3. X has property quasi-o [11] if there exist a balanced subset A := {xx: A € A}
of X, asubset {z}: A € A} C X*, and p: A — R such that

() [fexll = 23] = [#X(zx)] = 1 for all A € A.
(i) |z3(zp)| < p(A) <1 for all zy # +x,.
(ili) For every e € ext (Bx+~), there exists a subset A, C A such that either
e or —e belong to JX(AE)UJ and 7. = sup{p(p): z, € Ac} < 1.

It follows that, in the definition of property quasi-a (and henceforth in property
«), every point x is a strongly exposed point.

Given a metric space M, B(z, r) denotes the closed ball in M centered at z € M
with radius r. The space M is said to be boundedly compact if every closed ball is
compact. Given z,y € M, we write [z,y] to denote the metric segment between x
and y, that is,

[z, y] ={z € M: d(z,z)+d(z,y) = d(z,y)}.

Given z,y,z € M, the Gromov product of x and y at z is defined as

1
(,9): = 5 (d(z,2) + d(y, ) — d(z,y)).
Related to the definition of Gromov product is the definition of property (Z). Given
x,y € M with x # y, we say that the pair (x,y) has property (Z) if, for every € > 0,
there exists z € M \ {z,y} satisfying that

(,y), < emin{d(z, z),d(y, z) }.

It is known that the pair (z,y) fails property (Z) if, and only if, the molecule mg ,
is strongly exposed [15, Theorem 5.4].

According to [10], a metric space M is said to be Gromov concave if, for every
pair of distinct points x,y € M, there exists €;, > 0 such that

(,T, y)z 2 Ez,y min{d(:m 2)7 d(y> Z)}

holds for every z € M \ {z,y}. By the above paragraph, this is equivalent to the

fact that all molecules are strongly exposed points of the unit ball of F(M).
Connected with property (Z) is the concept of length and geodesic metric space.

Given a metric space M, we say that M is a length space if d(z,y) is equal to the
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infimum of the length of the rectifiable curves joining x and y for every pair of
points x,y € M. In the case that such an infimum is actually a minimum, it is
said that M is a geodesic space. It is clear that every geodesic space is a length
space, but Example 2.4 in [20] shows that the converse is not true. On the other
hand, length spaces have been recently considered in [15], where it is proved that a
metric space M is length if, and only if, Lip,(M, R) has the Daugavet property [15,
Theorem 3.5]. Note by passing that for a complete metric space M, it is known
that if M is length then every pair of different points =,y € M enjoys property (Z)
[20, Proposition 2.3 and Proposition 2.8]. The converse has been recently proved
in [5, Main Theorem]. Also, it was proved in [15, Proposition 3.4] that a complete
metric space M is length if, and only if, every Lipschitz function of Lip,(M,R) is
local. Given a Lipschitz map f: M — Y, we say that f is local if, for every € > 0,
there are z,y € M such that 0 < d(z,y) < € and ||f(mzy)|| > ||fllL —e. This
means that f approximates its norm at arbitrarily close points. So, the Lipschitz
functions which are farthest to the local ones are the elements of the little Lipschitz
space, lipy (M, R), that is, the space of those f € Lipy(M, R) such that for any € > 0
there exists § > 0 such that if d(z,y) < d, then |f(z) — f(y)| < ed(z,y). On the
other hand, let us comment that since every strongly exposed point of Br(ys) is

a molecule [24], it is clear that if f € F(M)* is a strongly exposing functional,
then f is a non-local Lipschitz function by [8, Lemma 1.3]. A partial converse also
holds: if M is compact and f € Lipy(M,Y) is non-local, then f attains its norm at
a strongly exposed molecule (see Lemma 3.13) and, in particular, f € SNA(M,Y).

2. The new examples

It is well known that there is a close relation between Lindenstrauss property A
and the presence of a rich extremal structure in a Banach space. For instance, it is
a classical result from [22, Theorem 2] that, given a Banach space X which admits
an equivalent locally uniformly rotund renorming (in particular, a separable one),
if X has Lindenstrauss property A, then Bx = co(str-exp (Bx)). From this fact,
it is immediate, for instance, that if M = [0, 1] then NA(F(M),Y) is not dense in
Lipy(M,Y) for some Banach space Y, since F(M) = L1[0,1] (c.f. e.g. [17, Example
2.1]) and then, Br(y) has no extreme points. Also, as we already commented in
the introduction, it is not difficult to prove that SNA([0,1],R) is not dense in
Lipy ([0, 1], R) because any strongly norm attaining Lipschitz function on [0, 1] is
affine in a whole segment as soon as it attains its norm at its extreme points [21,
Lemma 2.2].

The case of the unit sphere of the Euclidean plane T is, however, quite more
delicate. On the one hand, T contains subsets which are bi-Lipschitz equivalent to
a segment in R (in particular, 7 (T) contains isomorphic copies of L1[0, 1], so it fails
the RNP), which should make it difficult for SNA(T,R) to be dense in Lipy (T, R).
On the other hand, the curvature of T suggests an abundance of strongly exposed
points in Br(ry thanks to [15, Theorem 5.4], which could help to get density of
SNA(T,R) (for instance, such density would be obtained if By(ty were the closed
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convex hull of a uniformly strongly exposing set according to [8, Proposition 3.3]).
This fact makes of T an interesting example to analyse because, if SNA(T, R) were
dense, we would get a negative answer to (Q1); if not, T would be a counterexample
to question (Q2). This is what is done in the following theorem.

Theorem 2.1. Let T be the unit sphere of the Euclidean plane endowed with the
inherited Euclidean metric. Then:

(a) SNA(Ta R) 7é Lipo (T’ R)7

(b) but T is Gromov concave, that is, mg, € str-exp (B}-(T)) for every pair of
distinct points z,y € T.

Prior to its proof, let us comment some interesting remarks.

Remark 2.2. (a) As far as we know, T is the first known example of a Gromov
concave metric space for which strongly norm attaining functionals are not
dense. This provides a negative answer to question (Q2).

(b) The Banach space F(T) satisfies that its unit ball is the closed convex hull
of the set of its strongly exposed points, but strongly exposing functionals
are not dense in F(T)*.
Indeed, the first assertion is given by (b) in the theorem above, while the
second one follows from (a) and the fact that strongly exposing functionals
attain their norm on strongly exposed points, and strongly exposed points of
a Lipschitz-free space are molecules.

Let us now prove Theorem 2.1. In order to prove assertion (a), we will need
the following key result, which has been suggested to us by F. Nazarov.
Lemma 2.3. Let M = ([0, 1], d) where d(x,y) := | ' — ¥ | = \/2(1 — cos(z — y)).
Then, there exists a compact subset C inside the open interval ]0,1[ such that the
function f € Lipy(M,R) defined by

f(x) = /0z xc(t) dt Yz el0,1]

is a norm-one Lipschitz function which does not belong to SNA(M,R).

Proof. Consider a Cantor set C' = () —,Cy, where Cy = [1/4,3/4] and Cp41 is
obtained by removing an interval of length A(I)? at the middle of each connected
component I of C,. Note that C), has 2" connected components, all of them with

2
the same length )‘(C ). By construction, AMCp\Cpy1) =27 <%) . Taking into
account that A\(C, ) 1 for n > 1, it follows that

L B () 1 E1

l\D\F—‘

x

Consider the Lipschitz function f: ([0,1],d) — R given by f(x) = / xo(t)dt
0
for every = € [0, 1]. Note that || f||, # 0 since A(C') > 0. We claim that f does not
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attain its Lipschitz norm. Indeed, assume that there are x,y € [0,1], © < y, such

that

g d(z,y) d(z,y)
Clearly, =,y € [1/4,3/4]. We claim that z,y € C. Indeed, assume that z ¢ C.
Then there is 0 < ¢ < y — x such that (x,x +¢&) N C = 0. Thus, f(z) = f(z +¢).

Then,

()~ flz) _ fly) — flz+e)
d(z,y) d(z +e¢,y)
a contradiction. So xz € C. Analogously, we get that y € C. Now, let n be the
maximum integer such that x and y belong to the same connected component
of C,. Since x and y do not belong to the same connected component of Cj, 41,
there are u, v such that (u,v) C Cy \ Cpy1 and |u —v| = A(1)? > |z — y|?. Note
also that (u,v) NC =0 and so f(u) = f(v). We have

1l = T = 1@ _ 10) = 1) + 1)~ f@
L d(z,y) A(z.y)

1l =2

i

<1, o)

and so d(z,y) < d(y,v) + d(u,z). One can check that

3
t—;—4< (1 —cos(t)) <t Vtelo1].

Thus,

R .0 =
(y— ) < V2(1 = cos(y — x)) = d(z,y) < d(y,v) + d(u, x)

24
= 1/2(1 — cos(y — v)) + /2(1 — cos(u — x))

<y—-v4u—z<y—x—(y—x)°

3
Therefore, (y—x)? < (y;f) , a contradiction. Thus, f does not attain its Lipschitz

norm. It remains to show that || f||, = 1. First, note that

o U@-twl . @@
||f||L N w,je[%),l] d(l‘,y) 2 w,;e[lg,l] |‘T - y| ”f ||oo L

Now, pick a pair of sequences {x,},{y,} with x,, # y, for every n and such that
% — || fll - Observe that d(z,,y,) —> 0. Otherwise, we could extract,
by compactness, subsequences {z, } and {yy, } converging to different points z,y

in [0,1], so f would attains its Lipschitz norm at the pair (z,y), a contradiction.

Consequently, le(’;;z:l) — 1 and then

. 2 o f@a) = flyn) L f@n) = f(yn) |yn — @l
M) = O ) o Ty —ml  damym) <

Hence, we conclude that || f||z = 1. O
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We are now able to show the proof of the theorem.
Proof of Theorem 2.1. (a). Let A C T be the following arc of T:
A={e":tel0,1]}.

Let us first show that SNA(A,R) # Lipy(A,R). In order to do so, remember that
Lipy ([0, 1], R) is isometrically isomorphic to Lo[0, 1], where the isometry is given
by the derivative operator, and observe that ®: Lipy(A4, R) — Lip,([0, 1], R) given
by

[@(N))(t) = f(e") Vf€Lipy(AR), Vte[0,1]

defines a linear isomorphism. Consequently, a Lipschitz function g will be close to
f if, and only if, ®(g)’ € L[0,1] is close to ®(f)’. Furthermore, we know that
there exists a constant 0 < K < 1 such that

Klu—v| <|e™—e”| < |ju—v| Yu,ve][0,1].

Now, let C' be the set given by Lemma 2.3. We define f € Lip,(4,R) by
fe) = [ xewde vie ..
0

Let us consider 0 < § < % and define h € Lipy(A,R) such that

, 1 ifzec,
q’(h)(x):{—a if 2 ¢ C.

We will show that if g € Lipy(A4,R) verifies that ||®(g) — ®(h)||c < d and
()|l = ||®(R)||] = 1, then g does not attain its Lipschitz norm. Firstly,
note that if ||®(g)||r = 1 then ||g||r = 1 and ||®(g)’||cc = 1, and so

’ (1—(571) if.TEC,
®(9)' (@) G{ (-20,0) ifx¢cC.

Let us prove that g(meiu civ) < 1 for every molecule meiv oiv € Mol (A). Let us
distinguish two cases:
Case 1: u < v. In this case we have that

g(e™™) — g(e™) = _/ D(g)'(t)dt g/ §— 1dt+/ 26 dt
w [u,v]NC [u,v]\C

<20)u —v| < Klu—v| < |e™—e™|,

so g cannot attain its Lipschitz norm at the molecule mgiu giv.
Case 2: u > v. In this case we have that

g(e™) — g(e™) = /uq)(g)/(t) dt < /[ Inc 1dt+/[ ]\COdt
/u xe(t)dt = /u D(f) () dt
ez’u)

f( _f(eiv) < ||fHL|eiu_eiv| — |eiu_eiv ,
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since f does not attain its Lipschitz norm by Lemma 2.3. Consequently ||g||z =1
and g does not attain its Lipschitz norm at the molecule mgiu ¢iv. By the arbi-
trariness of u and v, we get that g ¢ SNA(A,R).

Consequently, h ¢ SNA(A,R). Now let us consider an extension of h, say ¢,
satisfying that ¢ ¢ SNA(T,R). In order to do so, pick 0 < 1 < 1 and define

h(e') z € [0,1],

h(e’) z e [1,1+7),

—Z 4+ h(e')+ 2 2 e [L+n,2h(e’) + 1+,
0 z € [2h(e') + 1+ n, 27].

It is clear from the definition that ¢ € Lipy(T,R) with |||z = ||k]|L = 1 and satis-
fies that, for every sequence of molecules {1 itn eisn } such that G(meitn gisn ) — 1
there exists a natural number m such that t¢,, s, €]0,1[ for all n > m. From that
fact and the fact that h ¢ SNA(A,R) it follows immediately that ¢ ¢ SNA(T,R),
as desired.

(b). We have to check that m, , € str-exp (BF(T)) for every z,y € T. Clearly,
we may assume that y = 1 and 2 = e with t € (0,7] as, clearly, isometries of
T can be used to carry strongly exposed molecules to strongly exposed molecules
using the characterization [15, Theorem 5.4]. Let us define the continuous function
¢: [—-m+1¢/2,¢/2] \ {0} — R given by

p(e') =

1]es—1  et—1 ]
os) =3 leis =1 [eit —1]|

A simple calculation shows that e := inf{¢(s): s € [-m +¢/2,t/2] \ {0}} > 0. We
claim that

(#,9): = emin{d(z, 2),d(y, 2)}
for every z € T\ {x,y} and so the pair (z,y) fails property (Z). Indeed, let z = e®*.
By symmetry, we may assume that s € [—7 +¢/2,¢/2] \ {0} and so,

min{d(z, z),d(y, z)} = d(y, 2).
Now, Clarkson’s inequality [12, Theorem 3] yields that
|e® —1] < (1 —20(ay))| e —e® | + (1 — 26(az))| e® —1],

where , , , , ,
ezt —els ezt -1 els 1 ezt —1
T | et —eis | - |eit —1] |ei571|_ leit —1||”
and §(u) = 1 — (1 —u?/4)*/? > 4?/8 is the modulus of uniform convexity of R2.
Thus,

aq , Q2=

(2,y)= _ d(on)|e" —e™| + d(az)|e™ —1|

0y, 2) o 1]
1 ,]ett—es| 1 1
> gafm + 308> gas =9(s) > ¢,

as desired. O
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Remark 2.4. We do not know if there exists a distance d’ on [0,1], equiva-
lent to the usual one, such that SNA((]0, 1],d’),R) is dense in Lip,(([0,1],d'), R).
Observe that Lemma 2.3 and the proof of Theorem 2.1 provide a concrete equiv-
alent distance d on [0,1] which makes ([0,1],d) Gromov concave and for which
SNA((]0, 1], d),R) is not dense in Lipy(([0, 1], d), R). On the other hand, any Holder
distance on [0, 1] provides the density (as the corresponding Lipschitz-free space
has the RNP, see [24, Corollary 4.39] for instance, see also [10, Corollary 3.7]). But
Holder distances are not equivalent to the original ones.

Note that Theorem 2.1 proves that the answer to question (Q2) is negative. In
the proof that SNA(T,R) is not dense in Lipy(T,R) it is essential the fact that T
has a “plenty” of subsets which are bi-Lipschitz equivalent to intervals in R. One
may think that this property is enough to provide the lack of density of the set of
strongly norm attaining Lipschitz maps. However, we are going to show that there
are metric spaces M containing copies of [0, 1] but which satisfy that SNA(M,Y)
is dense in Lipy(M,Y) for every Y (thanks to the fact that they contain dense
discrete subsets which provide rich extremal structure to F(M)).

In the following theorem we construct two metric spaces with the desired prop-
erties, proving that the density of SNA(M,Y) for every Banach space Y does not
imply the RNP, answering a question from [8, Section 3.4] and [17, p. 115], and
giving a negative answer to (Q1).

Theorem 2.5. Consider the subsets of R? given by

ko1
An:{<2n72n>k€{oav2n}}CR2 anNU{O}’

My = G An, M =My U([0,1] x {0}).

n=0

Let M, be the set M endowed with the distance inherited from (R2,|| - ||,) for
p =1,2. Then, SNA(OM,,Y) is dense in Lipy(M,,Y) for every Banach space Y
and for p =1,2. Moreover,

(a) F(OMy1) has property o,

(b) The unit sphere of F(Ms) does not contain any uniformly strongly exposed
set which generates the ball by closed convex hull.

We divide the proof of the theorem into several steps. We start by showing
that SNA(9,,Y") is dense in Lipg(9M,,Y") for every Y and p = 1,2. Actually, we

will give a more general result.

Proposition 2.6. Let M,,, M C R? be the sets defined in Theorem 2.5, and let
|- | be a norm in R? satisfying that |||, < || < |||l;. Consider now M to be the
set M endowed with the distance inherited from (R?,|-|). Then, SNA(I,Y) is
dense in Lipy(IM,Y") for every Banach space Y.

Proof. Let f € Lipy(M,Y) with ||f||z = 1. Our aim is to approximate f by
strongly norm attaining Lipschitz maps, so we may assume that f does not strongly
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attain its norm. In order to clarify the proof, let us introduce some notation. For

every n € NU {0} and k € {0,...,2"}, we denote by (n, k) the point (2ﬁ’ =) €

Ms. Given n € NU{0} and k € {0,...,2" — 1}, we write h,; to denote the
molecule M, 1), (n,k+1)- We will say that

H={hy,:neNU{0},ke{0,...,2" —1}}

is the set of horizontal molecules. Given n € NU{0} and k € {0,...,2"}, we write
U,k to denote the molecule m, 1) (n+1,2x)- We will say that

V={vpr:neNU{0},ke{0,...,2"}}

is the set of vertical molecules. Finally, we define I' = +H U +V.
Fix € > 0 and let us distinguish two cases: First of all, assume that

p= sup{Hf(m)H mel} <1
Since M is dense, we may find u = (ny, k1), v = (na, k2) € My such that

ki, ko

14 pe
o 7 g

1+¢e’

ny #no and f(mw,) >

Let us write ng = max{nj, no} and consider the set

n3

N = U A,.

n=0

Note that if we denote by ¢g the restriction of f to A,,, we have ||po|lL < p < 1.
Then, we may extend this function to a Lipschitz function ¢: [0,1] — Y with
lellz < p <1 (we may define it affine in the gaps). We define h: Mo, — Y by

h((n,k)) = { f((n,k)) if n < ns;

cp(%) if n > ngs.

By the way we have extended ¢y, it is clear that
sup{”ﬁ(m)”: m € F} < sup{”f(m)”: m € I‘} =p<l

Furthermore, [(s,0)] = s < |(s,t)] and [(0,t)] = t < |(s,t)] for every s, t € R.
Consequently, if p, ¢ are distinct points of M, \ N, then we may find a molecule
m € I such that ||A(myq)|| < [[R(m)||. Indeed, given two different points p =
(B, L) and ¢ = (£2, 5) of My \ N, we assume with no loss of generality that
n > m, define ¢ := (zn;;nk2 , 2%) By the assumptions on the norm we get that

ko _ 2" ™My
om T 2n I

_ o) =GR _ lle(3) — o) _ e
- Ip — q| = p—¢| = [|h(mp,¢)l,

we obtain that

Ip — ¢'| < |p— q| and, since

il(m:mq)
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and notice that my o € co(I"). Given € > 0, let us define
(2.1) g M—Y, g=f+e¢h.

It is clear that ||g — f||z < ¢, so it will be enough to show that g strongly attains
its norm. On the one hand, note that

14 pe

>
1+e

Fmuy) + eh(ma,,)

19(muw)ll = (14+2) =1+ pe.

On the other hand, given p, ¢ distinct points of M, \ N, we have that
3mp0) | < 1+ ||mpg) | < 1420 < [30m00)I-

Therefore, g cannot approximate its norm at points of My, \ N. Since M, \ N is
dense in [0, 1] x {0}, this implies that g cannot approximate its norm at arbitrarily
close points, that is, g is non-local. Consequently, by compactness of M, we
conclude that g must strongly attain its norm.

Secondly, assume that sup{”f(m)” m €'} = || f|lz. In this case we need to
define two kinds of functionals. By a density argument, it will be enough to define
them on M.,. First of all, we will define functionals associated to the vertical
molecules. Fix n € NU {0}, k € {0,...,2"}. Then, we define f, ;: Moo — R

given by
{ e ifp=(n,k);

frk(p) 0 if p #£ (n, k).

Note that

Fo(Vni) = Jnk((n, k) = fror((n+1,2k)) _ 1/2n+1
A |(n,k) — (n+1,2k)]| 1/2n+1

=1.

Furthermore, if (n/, k") € M is such that m, x),(n/ k) € T and (n', k') # (n+1,2k),
then we have that |(n,k) — (n/,k")| > 522, which implies that

[frk((n, K)) = fra (0 K))] _ 1/2770 2

[(n, k) = (k)] T3/

Since f,, x is null on the rest of the points, we obtain that fnk(m) < % holds for
every m € I with m # vy, i.
Next, we define functionals associated to the horizontal molecules. Fix n €

NU{0} and k € {0,...,2" — 1}. Let us define ¢, : [0,1] — R given by

2
3

3
BYEs] if @ € [0, 35 ;
2k+3 =z . o
pnk(@) = T -5 el
1
BT if o € (55, 1]
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It is easy to see that ¢, x is a Lipschitz function with [|¢, x|z = 3. Now, define
Ink: Moo — R as follows

2% if n <n and ;Ilé%;
gn k(P E)) =40 if n/ < n and Zk—/, > 2%;
g@n,k(z%) if n’ > n.

On the one hand, note that

~ o gn,k((na k)) - gn,k((na k + 1)) _ 1/2n _
Il = = ok Ol 12

On the other hand, let us show that for every u € I with u # £h(, 1) we have

DN | =

|G,k ()] <

For this, take any vertical molecule v,y € V. Note that we have gy x(vy x) =0
unless n’ = n. On the one hand, if ¥’ < k we get

X |9k ((0,K') = g ((n +1,2k"))] _ 1/2" =3/2"*+2 1
|gn,k:(vn,k:’)| = =

|(n, k") — (n 41,2k 1/2n+1 2
On the other hand, if ¥’ > k + 1 we have

N _gnk (0 K) = gnp((n+1,26)) _ 1/27+> 1
|g’ﬂ7/€(v’ﬂ7k')| - / / - ntl — 9"
(0 #) — (0 + 1,27 2

Finally, take any horizontal molecule h, ;s such that (n’, k") # (n,k). If n’ < n,
we have that

_ gkl F) = gnp (0K + 1)) /201

An hn’ r) = < =5
9o )] (0, k) — (0, K + 1) 1/2n=1 7 2

If n’ = n, the only horizontal molecule h such that g, x(h) # 0 is h = hy, i, and if
n’ > n we obtain

N . 1
k(M 1) = Gk (Ao i) < O illc = 3

n
Actually, notice that given a pair of different points p,q € My \ |J 4, it follows
j=0
n
that there exists a pair of different points p’, ¢" € Mo\ |J A; such that my o € T’
j=0
and ‘gn,k(mz),qﬂ < ‘gn,k(mp’,q/” < %
Finally, let us consider § > 0 satisfying

(1+§)(1—5)>1+§.
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Since || f|lz = sup{||f(m)|| m € F}, we may find m € T such that || f(m)| > 1-4.

If m € HUV, then consider fm the functional associated to m, and if —m € HUV,
consider the same functional but multiplied by —1. Now, let us define

(22) ¢ M—Y,  §@)=f@)+ i@ fm) VaeFM).

It is clear that || f — g/lr < §, so it remains to prove that g strongly attains its

norm. On the one hand, note that

(15 - (1+5) o

On the other hand, if m = my, 4, for suitable po € Ay, ,q0 € An,, we have, by
the properties of the functionals f,,  and g, x, that

1g(m)

| frn (Mp,q)| <

[SSIN )

J
if p and ¢ does not belong to |J A; for j = max{ny,,ny}. Consequently, for
i=0

J
p,q ¢ U A; we get that
i=0

1=

~ ~ £ A ~ £ 3 ~

13mpa)| = |[£0mp0) + 5 Fmmp ) Fm) | < (14 5) < (1+5) (1=0) < la(m)]l,
which implies that g cannot approximate its norm at arbitrarily close points, that
is, it is non-local. By compactness, we deduce that g strongly attains its norm. O

Remark 2.7. Note that, in the above proof, the map g defined in both cases by,
respectively, formulas (2.1) and (2.2), is non-local.

Next, we show that F(9;) has property «, giving the proof of assertion (a) of
Theorem 2.5.

Proposition 2.8. For the metric space My defined in Theorem 2.5, we have that
F(OMy) has property .

Proof. Since the metric d consists of summing vertical and horizontal coordinates,
and M, is dense in M, it is clear that the set I' = +H U £V considered in the
proof of Proposition 2.6 verifies that Br(5s) = co(I'). To see this, it is enough to
note that given (nq, k1), (n2, k2) € M, with n; < ng, we will have that

d((nh kl)» (1’L27 kQ)) = d((nlv kl)ﬂ (n27 2n2_n1k1)) + d((n27 2n2_n1k1)7 (n27 kQ))

Therefore, we need to find a set of functionals I'* associated to I' verifying the
definition of property a. In view of the proof of Proposition 2.6, it will be enough
to consider the sets

H ={fur:neNU{0},ke{0,...,2" —1}},
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V*={gnr:ne NU{0},k€{0,...,2"}},

and I = £H* U £V*, to obtain that the pair (I',I*) C F(M) x Lipy,(M,R)
satisfies the statements of property o with constant % |

The last part of the proof of Theorem 2.5 is contained in the next proposition.

Proposition 2.9. Let 9y be the metric space given in Theorem 2.5. If T' C
Mol (9My) is a subset satisfying that c6(I') = Br(an,), then I' is not a uniformly
strongly exposed set.

Proof. Pick such a subset I'. By the paragraph below Corollary 3.10 in 8], it
follows that dent (B]:(gﬂ2)) CT. Now, for every n € N, consider the points

= (0. d ypo= (1,
Ty = 727 an Yn = ,ﬁ .

It is clear that the pair (z,,yy) fails property (Z), so my,, ,,, is a strongly exposed
point. Furthermore, [8, Lemma 1.3] implies that m,, ,, is an isolated point in
Mol (M), so my,, 4, € I'. We will prove that the set {mg,, ,,: n € N} is not uni-
formly strongly exposed. To do so, we will use the criterium given in [8, Proposition
3.6]. Let z, = (3, or7). Note that

1
min{d(xy, zn), d(2n, yn)} = 5

and

1 1 /2 1 1/2
2(Tn, Yn)z, = (4 + 22n+2) + 9 (1 + 22n+2> —0

as n — co. Now, [8, Proposition 3.6] finishes the proof. O

Remark 2.10. Note that the Lipschitz-free space over the metric spaces 9, in
Theorem 2.5 fails the RNP for p = 1,2 since 9, contains an isometric copy of [0, 1].
Even more, there is a 1-Lipschitz retraction r: 9%, — [0, 1], and this implies that
F(9M,) even contains a complemented copy of L0, 1].

Let us point out some consequences from the previous examples.

Remark 2.11. In [17, p. 115] the author asks whether, given a compact metric
space M, the density of SNA(M,R) in Lip,(M,R) implies that lipy(M) strongly
separates the points of M (see [17, p. 110] for details). Note that the spaces M,
provide a counterexample for p = 1,2, because if lip,(M) strongly separates the
points of M then, in particular, F(M) is isometric to a dual Banach space. How-
ever, F (M) is not even isomorphic to any dual Banach space as it is a separable
Banach space failing the RNP.

Let M be a metric space. In [8, Section 3.4] it is stated to be unknown whether
the density of SNA(M,Y") in Lipy(M,Y), for every Banach space Y, implies any
of the following properties:
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1. F(M) has the RNP.
2. By = c0(S), where S is a uniformly strongly exposed set.

3. F(M) has property quasi-a.

From our results it follows that the density of SNA(M,Y) for every Y does not
imply any of the above properties. Indeed, an example failing simultaneously all
the above properties can be given, as the following example shows.

Example 2.12. There is a complete metric space M satistying that SNA(M,Y)
is dense in Lipy(M,Y) for every Banach space Y and such that F(M) fails the
RNP, property «, property quasi-«, and it does not contain any norming uniformly
strongly exposed set.

We need the following easy result which we prove since we have not been able
to find a reference.

Lemma 2.13. Let X, Y be two Banach spaces and write Z := X &1 Y.
(a) If Z has property quasi-«, then X has property quasi-c.

(b) Assume that Sz contains a uniformly strongly exposed subset T' such that
(") = Bz. Then, Sx contains a uniformly strongly exposed subset A such
that @(A) = Byx.

Proof. (a). Let Ay := {(x,\,yA): A E AZ}, {(xj{,yj‘\) AE AZ} and pz : Az — R
be the sets and the function given by the definition of property quasi-a. Since

AZ C ext (Bz) = (ext (Bx) X {0}) @] ({0} X ext (By)),
we may consider
Ax = Az N (BX X {0}) = {LU)\I A E Ax}

for convenient non-empty subset Ax of Az. Let us see that X has property
quasi-o witnessed by the sets Ax and {z}: A € Ax} and the function px :=
pz|ax : Ax — R. Indeed:

e For every A € Ax, we have that
zi(za) = (23, 43) (22, 0) = 1.

e For pu # A, we have that
23 (@)] = 12X, y3) (2, 0)] < pz(X)

* Given e** € ext (Bx=~), then (e™,0) € ext (Bz~), so we can find A(e o) C
Az and w € {—1,1} such that

w

w(e™,0) € Jz(A(er~ 0))
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and sup{pz(A): (Tx,yxn) € Aex=,0)} < 1; we define Ag+x = m(A(ex= o)) (Where
m: Z — X denotes the natural projection) and observe that

*

w

w*\ ¢
we™ = wr™*(e*,0) € T (JZ(A(eW,O)) ) C [ o Jz](A(e==0))

* *
w w

= [Jx om](A(e0) = JIx(Aess)

where the inclusion < follows from the weak-star continuity of 7**. Now, it
is clear that

sup{px(A): zx € Ae=s} <sup{pz(A): (zx,yn) € A=)} < 1.

(b). Since T is made of strongly exposed points of Bz, then every element
(z,y) € T satisfies that either ||z|]] =1 and y =0 or x = 0 and ||y|| = 1. Define

A:={x € Sx: (z,0) eT}.

Given (z,0) € T, the definition of uniformly strongly exposing set yields a strongly
exposing functional (f;, g,) € Sz~ associated to (z,0). Notice that || f;|| = 1 since
1 ={(fzy92),(x,0)) = fu(x). It is clear that A is a uniformly strongly exposed
set by making use of the fact that it is identified with a subset of I' which is a
uniformly strongly exposed set. The fact that ¢6(A) = Bx follows from the fact
that ©o(T") = Bz and the shape of the unit ball of an ¢;-sum. O

Proof of Example 2.12. Let us consider, following the notation of [24], the metric
space

M =2, [ 10, 1)7.

It is known (c.f. e.g. [8, Proposition 1.4] or [24, Proposition 3.9]) that F(M) =
F(9My)@1F([0,1]2). By Proposition 2.6, (P2.2) on page 3, and [9, Proposition 5.6],
we get that SNA(M,Y) is dense in Lip,(M,Y") for every Banach space Y. Also
F (M) fails property quasi-a because F ([0, 1]%) fails property quasi-« [8, Example
3.22] and we may use Lemma 2.13.a. Further, (M) fails the RNP because it
contains an isometric copy of L1[0,1]. Finally, there is no uniformly strongly
exposed set I' C Sy such that co(I') = Bz(y) by Proposition 2.9 and Lemma
2.13.b. O

Although we know that the density of SNA(M,Y) in Lip,(M,Y) for every
Banach space Y does not imply the RNP by the examples given in Theorem 2.5,
we would like to take a closer look to the possible relationship between these two
properties. Since the RNP is an isomorphic property, if a Banach space X has the
RNP, then X has Lindenstrauss property A for all equivalent norms. A classical
result in theory of norm attaining operators is that the converse also holds, i.e. a
Banach space X has the RNP if, and only if, every equivalent renorming of X has
Lindenstrauss property A (a result by Bourgain and Huff, see [19]). On the other
hand, the RNP of X is also equivalent to the dentability of the unit ball of each
equivalent renorming of X and so, equivalent to the dentability of the unit balls
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of all equivalent renormings of closed subspaces of X. It is then natural to wonder
whether there is a Lipschitz version for strongly norm attaining Lipschitz maps.
Namely, we consider the following assertions on a complete metric space M:

(1) F(M) has the RNP.

(2) SNA(N',Y) = Lipy(N',Y) for every metric space N’ bi-Lipschitz equivalent
to a closed subset of M and every Banach space Y.

(3) For every metric space N’ bi-Lipschitz equivalent to a closed subset of M,
the unit ball of F(N') is dentable.

Then, we have that (1)=-(2)=(3). Indeed, note that (1)=(2) follows from [13,
Proposition 7.4] since, in this case, F(N’) has the RNP. In order to prove that
(2)=-(3), notice that given a metric space M under the assumption (2), it follows
that, if N’ is a metric space bi-Lipschitz equivalent to a subspace of M, then F(N")
has Lindenstrauss property A, so Br(y/ is dentable (see [7, Proposition 1]). We
do not know whether the implication (2)=-(1) holds. On the other hand, another
natural question is whether the implication (3)=-(1) holds. However, this is not
longer true, and even the implication (3)=-(2) fails.

Example 2.14. Let M be a nowhere dense closed subset of [0, 1] whose Lebesgue
measure is positive. Then, given any metric space N’ bi-Lipschitz equivalent to a
closed subspace of M, it follows that N’ is not geodesic (because it is disconnected).
Consequently, Br(yy has strongly exposed points by [15, Corollary 5.11] and so, it
is dentable. However, SNA(M,R) is not dense in Lipy(M,R) by [8, Theorem 2.3].

Let us finally mention that we do not know whether any of the following two
properties, which are weaker than (2) above, implies (M) to have the RNP:

(4) SNA(N,Y) = Lipy(NV,Y) for every closed subset N of M and every Banach
space Y.

(5) SNA(M",Y) = Lipy(M',Y) for every metric space M’ bi-Lipschitz equivalent
to M and every Banach space Y.

3. Consequences of the density of strongly norm attaining
Lipschitz maps

It is known that the density of the set of strongly norm attaining Lipschitz maps
from a metric space M to a Banach space Y is stronger than the density of
NA(F(M),Y) as, for instance, NA(F (M), R) is always dense by the Bishop-Phelps
theorem, but there are many metric spaces M for which SNA(M,R) is not dense.
Our aim in this section is to deepen in this line, showing that the density of
SNA(M,Y) has important consequences. In particular, we will show that some
results of Lindenstrauss and Bourgain can be somehow improved in the setting of
Lipschitz-free spaces.

The next two technical results are the key to getting all the goals of this section.
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Lemma 3.1. Let M be a complete metric space, let f € SNA(M,R), and let
My q € Mol (M) such that f(my ) = ||fllr. Consider the set

Fpq:={(z,y) € M?:x #y, d(p,q) = d(p,z) + d(x,y) +d(y,q)}.

Then, either there is (x,y) € F,, such that ma,, € ext (Brar)) or there is an
isometric embedding ¢: [0,d(p,q)] — M for which ¢(0) = p and ¢(d(p,q)) = q.

Proof. First, note that (p,q) € Fp, 4 and so F), 4 is not empty. Assume that mg ,
is not an extreme point whenever (x,y) € F,,. By [4, Theorem 1.1], for every
(x,y) € F, 4 there is z € M such that d(z, 2) + d(z,y) = d(z, y).

The rest of the proof is just a small modification of the one of Proposition
4.1 in [15]. Our aim is to show that there is an isometry ¢: [0,d(p,q)] — M
such that ¢(0) = p and ¢(d(p,q)) = q. Consider the set A of all (A,v), where
{0,d(p,q)} € A C [0,d(p,q)] is closed and 9): A — M is an isometry such that
¥(0) = p, ¥(d(p,q)) = ¢, and (Y(t),9¥(s)) € F,, for every t, s € A with ¢t < s.
Consider the following partial order “<” on A: (A,¢) < (B,&) if A C B and
&l 4 = 1. Clearly A # 0.

We claim that every chain in A has an upper bound. Indeed, let (A;, 1;)icr be
a chain in A. Take A = (J;o; As and ¥(z) := ¥;(x) if © € A;. By completeness,
we can extend v uniquely to an isometry defined on A. Moreover, let t,s € A,
t < s. Then there are sequences {t,},{sn} in |J,.; 4; such that ¢, < s,, t, =t
and s,, — s. Then

icl

[ () 00)] = M0 (1100, 0000) | = 15l

since (Y(tn),¥(sn)) € Fp 4 for every n. Thus (¢(t),1(s)) € Fp 4. This means that
(A, 9) € A.

Now, let (A, ¢) be a maximal element in A. Assume that there are a,b € A,
a < bsuch that (a,b) N A = (. Since (¢(a), p(b)) € Fp 4, we have that me(q),¢) 18
not an extreme point. Consequently, there is z € [¢(a), ()] \ {¢(a), ¢(b)}. Then,
we extend ¢ defining ¢(a+d(¢(a), z)) := z. Let us show that this map contradicts
the maximality of (A, ¢). It is clear that ¢ is still an isometry with ¢(0) = p and
#(d(p,q)) = ¢q. It remains to prove that (¢4(t), ¢(s)) € F, 4 for every t € A with
t < s. Clearly, we may assume that either ¢(s) = z or ¢(¢t) = 2. Let’s assume the
first case holds, since the other one is similar. Since t € A and t < ¢~ 1(z), we have
t < a. Then, we have that ¢(a) € [¢(t), 2] and it is clear that ¢(b) € [z, ¢|. Joining
these two equalities we obtain

d(p, ¢(t)) + d(¢(t), 2) + d(z, q)
= d(p, ¢(t)) + d(6(1), ¢(a)) + d(¢(a), 2) + d(z, ¢(b)) + d((D), 9)-

Recall that z € [¢p(a), ¢(b)] and ¢(a) € [¢(t), ¢(b)], so we have that
d(p, ¢(t)) + d(¢(t), 2) +d(z, q) = d(p, ¢(t)) + d((t), ¢(b)) + d(¢(b), q) = d(p, q),
since (¢(t), (b)) € Fp, 4. This means that (¢(t),z) € Fp 4. O
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Lemma 3.2. Let M be a complete metric space. Let I' be a balanced subset of

Sruy and denote Np(M) = {f € Lipg(M,R): sup,,cr |f(m)| = Hf||L} Suppose
that the set

[ € Lipg(M,R): f(may) = | fll, for some m,.,, € Mol (M) ext (Bran)}
is contained in Np(M) and that SNA(M,R) is dense in Lip,(M,R). Then,
SNA(M,R) C Np(M)
and so, B = co(T).

Proof. Assume that h; € SNA(M,R) \ Np(M), with ||h1], =1. Take 0 <6 < 1
in such a way that sup,, < |hi(m)| = 1—6. Now, if hy strongly attains its norm at
a molecule m,, 4, by applying Lemma 3.1 and taking into account that h; does not
attain its norm at any extreme molecule, we find an isometry ¢: [0,d(p,q)] — M
satisfying ¢(0) = p and ¢(d(p,q)) = q. Consider ug: ¢([0,d(p, q)]) — [0,d(p, q)]
its inverse map and an extension u: M — [0,d(p,q)] of ug such that |lul|L =
1. Note that such extension exists thanks to McShane extension theorem. On
the other hand, let C C [0,d(p,q)] be a fat Cantor set, that is, a measurable
closed subset with A(C) > (1 — §)d(p,q) such that for each nontrivial interval
I C[0,d(p, q)] there exists a nontrivial interval J C I such that JNC = (. Let us
consider ¢: [0,d(p,q)] — R given by

ﬂﬂ:*Axdﬁﬁ Vit € [0,d(p, )]

We define ho: M — R by ho = powu and f: M — R by f = %(hl—FhQ). It is
clear that

11l < 5 ([Pl + llhellL) = 1.

N |

Moreover,

1fllL = f(mp,q) = i(hl(mnq) + ha(mp,q)) =

N
7 N
—
+

>~
—
Q
S—
N——
Vv
—_
|
S

On the other hand,

(supﬁl +supfzg) = 1(2 -6 =1- é
r r 2 2

A~

sup f <
r

N | =

Therefore, f ¢ Np(M). Take e > 0 such that ||f||, — > 1 — $. Since Np(M)
is closed and SNA(M,R) is dense there is ¢ € SNA(M,R) \ Np(M) such that
lgll = | fllz and ||f — g||z. < e. Consider m,, € Mol (M) for which §(ms ,) =
llgllz- Since g ¢ Nr(M), we have that § does not attain its norm at any extreme

molecule of Br(y. In particular, by applying Lemma 3.1 we obtain that there
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exists an isometry ¢': [0,d(z,y)] — M satisfying ¢'(0) = = and ¢'(d(z,y)) = .
Notice that

ha(may) > 2f(may) — 1> 2G(may) —€) — 12 2|, —) —1> 14,

from where u(x) # u(y). Hence, we can find different points a, b of ¢’ ([0, d(z, y)]) C
M such that d(z,y) = d(x,a) 4+ d(a,b) + d(b,y) and [u(a),u(b)]NC = . Since g
attains its norm at m, , it follows that §(mas) = ||g|lz and so, f(mas) > || f]lL —e.
As before, this implies that ﬁ2(ma7b) > 1—0, whereas the fact that [u(a), w(b)|NC =
0 implies that A, (mgp) = 0, leading to a contradiction.

This shows that SNA(M,R) C Np(M). Now, Hahn-Banach theorem yields
that B]:(Jw) = @(F) O

The first main result of the section is the following.

Theorem 3.3. Let M be a complete metric space. If SNA(M,R) is dense in
Lipy(M,R), then

Bry = @(ext (Bz(ar)) N Mol (M))
Proof. Apply Lemma 3.2 with T' = Mol (M) Next (B}-(M)). O
We would like to observe that Theorem 3.3 somehow improves, in the case of

Lipschitz-free spaces, a result by Lindenstrauss [22].

Remark 3.4. Let M be a complete metric space. If SNA(M,Y) is dense in
L(F(M),Y) for some Banach space Y, then

Br(u) = @(ext (Brn)))-

Indeed, this follows from Theorem 3.3, as the density of SNA(M,Y) in Lipy(M,Y)
for some Y implies the density of SNA (M, R) in Lip, (M, R) by [10, Proposition 4.2].

Compare this result with the following one by Lindenstrauss [22, Theorem 2.i]:
if X is a Banach space which admits a strictly convex renorming (for instance, if
X is separable) such that NA(X,Y) is dense in £(X,Y) for all Banach spaces Y,
then By = co(ext (Bx)).

The next result deals with strongly norm attaining vector-valued Lipschitz
maps. In the case of real-valued maps, it improves Theorem 3.3 for metric spaces
not containing isometric copies of the unit interval.

Proposition 3.5. Let M be a complete metric space which does not contain any
isometric copy of [0,1] and let Y be a Banach space. Then, SNA(M,Y) coincides
with the set

{f € Lipy(M,Y): ||f(mzy)\| = ||fllz for some my, € Mol (M) Next (B}-(M))} .
In particular, if SNA(M,Y") is dense in Lipy(M,Y), then so is the set

{T € L(F(M),Y): T attains its norm at some element of ext (Bx(ar)) }
in L(F(M),Y).
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Proof. Pick f € SNA(M,Y). Hence there exists u,v € M,u # v and y* € Sy~
such that [y* o f](myw) = ||fllL. Since M does not contain any isometric copy
of [0, 1], then Lemma 3.1 applies to get a molecule mg , € ext (Bx(a) such that

[y* o f] (mg,y) = ||f]lz- From here it is clear that f strongly attains its norm at
the pair (z,y), and we are done. O

Remark 3.6. The assumption that SNA(M,R) is dense cannot be removed in
Theorem 3.3: let M be a fat Cantor set in [0, 1], which clearly does not contain
any isometric copy of [0,1]; then, Br(yr) # @(ext (B}-(M))). Indeed, it is known
that F(M) = L1[0, 1] @1 £ [16, pp. 4315] so, under that identification, any (f, g) €
ext (B}-(M)) is actually of the form (0, g), for certain g € ext(By,), and hence
o (ext (Bx(ay)) C {0} @1 1. This reproves the fact that SNA(M, R) is not dense
in Lipy(M,R) which follows from [8, Theorem 2.3].

In the sequel we will obtain improvements of Theorem 3.3 and Proposition 3.5
in the case of compact metric spaces obtaning, as a consequence, an affirmative
answer to (Q3) in the case of compact metric spaces. To begin with, let us exhibit
the second main result of the section.

Theorem 3.7. Let M be a compact metric space which does not contain any
isometric copy of [0,1] and let Y be a Banach space. Then, the following assertions
are equivalent:

(i) SNA(M,Y) is dense in Lipy(M,Y).

(ii) The set of absolutely strongly exposing operators from F(M) to Y is dense
in L(F(M),Y).

(iii) The set of non-local Y -valued Lipschitz maps is dense in Lipg(M,Y).

Before proving the result, let us present its main consequence, which follows
immediately from the fact that the set of non-local Y-valued Lipschitz maps is an
open set (indeed, if f € Lip,(M,Y) is a non-local Lipschitz map, we can find € > 0
such that

sup | f(may)|l < Ifllz — &
0<d(z,y)<e

then, the whole B(f, £) is made of non-local Lipschitz maps).

Corollary 3.8. Let M be a compact metric space which does not contain any
isometric copy of [0,1] and let Y be a Banach space. If SNA(M,Y) is dense in
Lipy(M,Y), then SNA(M,Y) (and, in particular, NA(F(M),Y)) contains an open
dense subset.

In the case when F(M) = ¢; or, more generally, when F(M) has property
a witnessed by a set I' C Sr(ar), it is easy to see the result from the proof of
[23, Proposition 1.3.a]: indeed, it is proved there that the set of those operators
T: F(M) — Y such that supep (1 1Tyl < [|T]| = [[Tz|| for some xz € I is
dense and, on the other hand, it is clearly open as ¢o(I') = Br ().

A specially interesting particular case of Corollary 3.8 is the one in which F (M)
has the RNP. In this case, M does not contain copies of [0,1] (otherwise, L]0, 1]
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would be a subspace of F(M)) and SNA(M,Y) is dense in Lipy(M,Y) by [13,
Proposition 7.4].

Corollary 3.9. Let M be a compact metric space for which F(M) has the RNP.
Then, for every Banach space Y, SNA(M,Y) (and so NA(F(M),Y)) contains a
dense open subset.

Compare the result above with the one by Bourgain [7, Theorem 5]: if X is a
Banach space with the RNP, then for every Banach space Y, NA(X,Y) contains
a dense G5 subset of L(X,Y). Actually, by the cited results of Bourgain [7],
NA(X,R) contains a dense G5 subset of X* whenever X has the RNP. Moreover,
in this case, X* = NA(X,R) — NA(X,R) (see the proof of [6, Proposition 2.23],
for instance). But this is far from implying that NA(X,R) contains an open set.
Let us comment that the result in Corollary 3.9 is somehow unexpected, even for
functionals, as the following remark shows.

Remark 3.10. The presence of open subsets in the set of norm attaining operators
or even functionals is a rare phenomenon.

(a) If X is a non-reflexive Banach space, then there always exists an equivalent
renorming X of X such that NA(X,R) has empty interior [2]. Therefore, the
RNP is not enough in general to get that the set of norm attaining operators
(or even functionals) has non empty interior.

(b) Even for the Lipschitz-free norm, the hypothesis of density of strongly norm
attaining Lipschitz functions is important to get that the set of norm at-
taining functionals has non-empty interior, as the following example shows:
For M = [0, 1], the norm interior of the set NA(F(M),R) is empty. Indeed,
recall that F([0,1]) = L1]0,1] (c.f. e.g. [17, Example 2.1]). Now, the result
follows immediately since L]0, 1]* \ NA(L;[0, 1], R) is dense in L4[0,1]* by
[1, Theorem 2.7].

On the other hand, we do not know whether the hypothesis that M does not
contain isometric copies of [0, 1] can be dropped in Theorem 3.7. The only metric
spaces M which we know that contain [0,1] and for which SNA(M,R) is dense
in Lipy(M,R) are the ones given in Theorem 2.5. As a matter of facts, the three
assertions of Theorem 3.7 and the thesis of Corollary 3.9 hold for them.

Example 3.11. Let M, be the metric spaces defined in Theorem 2.5 which contain
[0,1] and satisfy that SNA(9M,,Y) is dense in Lip,(9M,,,Y") for every Banach space
Y for p = 1,2. Then, for every Banach space Y, the set of non-local Y -valued
Lipschitz maps is dense in Lipy(9M,,Y") for p = 1,2 by Remark 2.7. In particular,
SNA(IM,,Y) contains a dense open set for p =1,2.

Let now prove Theorem 3.7. We need a number of preliminary results which
could be of independent interest. First, we prove the abundance of non-local
Lipschitz maps when the set of strongly norm attaining maps is dense, in the
compact setting.

Lemma 3.12. Let M be a compact metric space, let Y be a Banach space, and f €
SLip,(M,y)- Assume that there exists m, , € ext (B].-(M)) such that || f(my )| = 1.
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Then, for every e > 0, there exists a non-local Lipschitz map ¢ : M — Y such
that ||f — ¢|lL < e.

Proof. Since ||f(mzy)|| = 1 then we can find y* € Sy such that [y*o f](m..,) = 1.
By assumption, mg, is an extreme point. Hence, by [3, Theorem 4.2] it is a

preserved extreme point or, equivalently by [13, Theorem 2.4], m;, , is a denting

point. Fix 0 < ¢ < % and find a slice S = S(B}-(M),iz, B) with h € Svip, (m,R)

and 8 > 0, containing m, , and such that diam (S) < 6. Select z € Sy such that

y*(2)h(my ) > 1 — B and define
b:=f+eh®z,

where h®@z(may) := h(my )z for every u,v € M, u # v. Tt is clear that ||f— | <
€. Let us now prove that ¢ is not local. To begin with, notice that

19l > [y* o fl(may) +ehlmay)y™ (z) > 1+ (1~ B).
Now, given u,v € M, u # v such that ||¢(m..)| > 14 (1 — ), it follows that
Lt e(1 = B) < [1f(mu) | + elhlmu)| < 1+ elh(ma,)l,

from where we get that fz(mu,v) >1-—/for ﬁ(—muﬂ,) = ﬁ(mv,u) > 1— . Assume
that h(my,») > 1 — B (the other case runs similarly). This implies that m,,, € S,
hence ||my ., — Mg y|| < 6. Now, by using [8, Lemma 1.3] we obtain that
max{d(z,u),d(y,v)}
d(x,y)

so max{d(x,u),d(y,v)} < dd(x,y). Hence

< ||mz,y — My, v” < 57

)

d(u,v) = d(z,y) — d(z,u) = d(y,v) > (1 = 20)d(z,y),

from where we deduce that ¢ does not approximate its Lipschitz constant at arbi-
trarily close points, as desired. O

Next, we also need the following lemma, whose proof is encoded in [20, Propo-
sition 2.8.b] for the real-valued case.

Lemma 3.13. Let M be a compact metric space, let Y be a Banach space and let
I € Svip,(m,y) be a non-local Lipschitz map. Then, there exists a strongly exposed

point my.,, € F(M) such that || f(m, )| = 1.

Proof. Since f is not local, then an easy compactness argument yields that we can
find a pair of different points x,y € M such that not only ||f(mmy)|| =1, but also
if 0 < d(u,v) < d(z,y) then ||f(my.,)|| < 1. We claim that the pair (z,y) fails
property (Z). Indeed, assume by contradiction that (z,y) has property (Z). Pick



28 CHICLANA, GARCIA-LIROLA, MARTIN, AND RUEDA ZOCA

y* € Sy« such that [y* o f](mxy) = 1. Then, for every n € N, there exists a point
zn € M\ {z,y} satisfying that

d(x, Zn) + d(y7 Zn) < d(x, y) + % min{d(a@ Zn)a d(y, Zn)}

Up to taking a subsequence, we may assume that d(z,,z) < d(z,,y) for every
n € N. Also, up to taking a further subsequence, we may assume by compactness
that {z,} — 2z € M. Now, we have two possibilities:

e If x # z then it is clear that d(z, z) + d(y, z) = d(x,y), which implies that
[y* o fl(my ) =1 and, in particular, f strongly attains its norm at the pair
(z, z). However, notice that

A(w,2) < 5w, 2) +d(y, ) = 5d(,0),

N =

which contradicts the minimality condition on d(z,y).

e If x = 2, then

1 (ma 2 = [y o fl(ma,z,)

= [y* o f}(mr,y)(;i((;:’zgi)) — [y* o f}(mzn,y)jginji;
d(x,y) - d(zn,y) 1
= d(z, zp) >1- n’

which entails a contradiction with the assumption that f is not local.

Consequently, we get that the pair (z,y) fails property (Z), so my , is a strongly
exposed point by [15, Theorem 5.4]. O

The last preliminary result we present on the way to proving Theorem 3.7 deals
with norm attaining operators on general Banach spaces.

Proposition 3.14. Let X and Y be Banach spaces. The following assertions are
equivalent:

1. The set {T € L(X,Y): T attains its norm at a strongly exposed point} is
dense in L(X,Y).

2. The set {T € L(X,Y): T is absolutely strongly exposing operator} is dense
in L(X,Y).

Proof. (2) = (1). Pick an absolutely strongly exposing operator T for z € Sy,
and let us prove that z is strongly exposed. Let y* € Sy such that y*(Tz) = ||T|
and consider z* € Sx~ such that ||T|z* = T*(y*). If {x,} is a sequence in Bx
such that x*(z,) — 1 = z*(x), then

1T ()l 2 y* (Twn) = [[T||2" (2n) — [T,
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so there is a subsequence {z,,, } converging to x (it cannot converge to —x), showing
that z is strongly exposed by z*.

(1) = (2). Pick an operator T' € £(X,Y) which attains its norm at a strongly
exposed point x, and let us find an absolutely strongly exposing operator S such
that |7 — S|| < e. For this, pick a strongly exposing functional f, for . Define

S:=T+ef, @T(x).

Note that ||S — T'|| < € is obvious. Let us prove that S is absolutely strongly
exposing. To this end, it is clear that ||S]| < 1+ e. Also, we get that

L+e=1+)T (@) =[Sl

from where ||S|| = 1 +¢. Pick a sequence {z,,} € Sx such that ||S(z,)|]| — 1 +e.
Since S =T + ef, ® T(z) this implies that | f;(z,)] — 1 from where we can find
a subsequence {x,, } such that f,(x,,) — 1 or fi(z,,) — —1. Making use of
the fact that f, strongly exposes z, we get that {x,, } — x or {z,,} — —z. By
definition, S is an absolutely strongly exposing operator, so we are done. o

We are now able to present the pending proof.

Proof of Theorem 3.7. (i)=-(iil) follows from Proposition 3.5 and Lemma 3.12.
(iii)=-(ii) follows by Lemma 3.13 and Proposition 3.14. Finally, (ii)=-(i) follows
from the fact that every absolutely strongly exposing operator attains its norm at
a strongly exposed point, so at a molecule of F(M). O

As a consequence of the techniques involved in the proofs of Theorems 3.3 and
3.7, we get the following result, which improves Theorem 3.3 in the compact case,
and also provides an affirmative answer to (Q3) in this case.

Theorem 3.15. Let M be a compact metric space. If SNA(M,R) is dense in
Lipy(M,R), then
Brarn = @(str—exp (BF(M))).

Proof. Let T' = str-exp (B}-(M)). Assume that f € Lipy(M,R) is such that f
attains its norm at an element of Mol (M) Next (Br(y)). By Lemmata 3.12 and
3.13, f can be approximated by elements in £(F(M),R) attaining their norms on
T. Therefore, sup,,cr | f(m)| = ||f]|,. Now, Lemma 3.2 gives that Bry = co(I),
as desired. O

We would like to observe that this result somehow improves, in the case of
Lipschitz-free spaces on compact metric spaces, another result by Lindenstrauss
[22].

Remark 3.16. Let M be a compact metric space. If SNA(M,Y) is dense in
L(F(M),Y) for some Banach space Y, then

Brarn = @(str—exp (B}-(M))).
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Indeed, this follows from Theorem 3.15, as the density of SNA(M,Y) in Lipy(M,Y)
for some Y implies the density of SNA(M, R) in Lip, (M, R) by [10, Proposition 4.2].

Compare this result with the following one by Lindenstrauss [22, Theorem
2.ii]: if X is a Banach space which admits a LUR renorming (for instance, if X is
separable) such that NA(X,Y) is dense in £(X,Y") for all Banach spaces Y, then
Bx = co(str-exp (Bx)).
Remark 3.17. In [17, Problem 6.7] it is proposed to study for which compact met-
ric spaces M and Banach spaces Y one has that SNA(M,Y") is dense in Lipy (M, Y).
Note that a necessary condition is that Bz = @(str—exp (B F( M))), according
to the previous remark. Note, however, that this is not a sufficient condition, as
the metric space T shows, see Theorem 2.1.

Notice that techniques similar to those of Lemma 3.12 can be used in the locally
compact case to get the following result.
Proposition 3.18. Let M be a locally compact metric space and letY be a Banach
space. Then, the following assertions are equivalent:

(i) The set {f € Lipy(M,Y): f attains its norm at a denting poz’nt} is dense in
Lipy(M,Y).

(ii) The set of absolutely strongly exposing operators from F(M) to Y is dense
in L(F(M),Y).

(iii) SNA(M,Y') contains the open dense set B of the Lipschitz maps f: M — Y
with the following property: there are n > 0, z,y € M with x #y and r > 0
such that

e B(x,r) and B(y,r) are compact and disjoint, and,
o | mu)ll < I fl—=nif (u,0) & (B(w,7) x By, r)U(B(y,r) x B(x,7)),
In particular, in such a case, Brry = @(str—exp (B}-(M))),

In particular, for locally compact metric spaces whose Lipschitz-free space has
the RNP, the proposition above gives the following corollary, which extends Corol-
lary 3.9, since the set of absolutely strongly exposing operators from F(M) to Y
is dense in L(F(M),Y) by [7, Theorem 5].

Corollary 3.19. Let M be a locally compact metric space for which F(M) has
the RNP and let Y be a Banach space. Then, SNA(M,Y) (and so NA(F(M),Y))
contains an open dense set.

Observe that this applies to the main examples in the literature of metric spaces
M for which it is known that F (M) has the RNP, as the class of uniformly discrete
metric spaces or the class of boundedly compact Hélder metric spaces.

Proof of Proposition 3.18. Assume that
A= {f € Lipy(M,Y): f attains its norm at a denting point}

is dense in Lipy(M,Y). Pick f € A with ||f|jz = 1 and find a denting point
M,y € F(M) and an element y* € Sy« such that [y*o f](m,,) = 1. Fix0 <6 < 3
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and find a slice S = S(Br(um), h, B) containing my,, and such that diam (S) < 6.

Select z € Sy such that y*(z)h(ms,) > 1 — 5 and define
(2) = f—i— eh ® z.

It is clear that ||f — ¢||r < e. Also, the proof of Lemma 3.12 reveals that, given
u,v € M,u # v then

||927(mu,v)|| >1+ 6(1 - 5)
= (u,v) € (B(z,dd(x,y)) x B(y,dd(x,y))) U (B(y,dd(x,y)) x B(z,dd(z,y))).

Taking into account that B(z, dd(z,y)) and B(y, dd(x,y)) are compact and disjoint
for a small enough J, we derive that ¢ € B. This proves that the set B is dense.
To get (iii) let us prove that B enjoys the following properties:

1. B is open. Indeed, given a map f € B, consider n > 0, z,y € M with
x # y and r > 0 for which B(z,r) and B(y,r) are compact and disjoint, and
(LS ()| < [ =7 if (u,v) & (B(z,r) x B(y,r))U(B(y,r) x B(x,r)). Pick
0 < d < 7 and let us prove that B(f,d) € B. To this end take g € Lipy(M,Y’)
with ||f — gl < 8. Now, if (u,v) ¢ (B(z,r) x B(y,r)) U (B(y,r) X B(z,r))
then | f(ma0)| < 1£llz — 7, from where

[9(muw)ll <0+ (1 F(mup)ll <+ Fllz —n < llgll +26 —n,
which proves that g € B, as desired.

2. Every map in B attains its norm at a strongly exposed point. To see this, take
f € B and, by definition, consider n > 0, x,y € M with x # y and r > 0
for which B(z,r) and B(y,r) are compact and disjoint, and ||f(m..,)| <
Iflle —n if (u,v) ¢ (B(x,r) x B(y,r)) U (B(y,r) x B(z,r)). Notice that f
strongly attains its norm because the set B(z,r)U B(y,r) is a compact set
and from the fact that f cannot approximate its norm at arbitrarily close
points. The previous fact even provides a pair of different points v € B(x,r)

and v € B(y,r) with the property that || f(mu.,)|| = || fllz. The pair (u,v)
fails property (Z). Indeed, otherwise there would be a sequence {z,} such
that (uv)sy — 0 and so, by [8, Lemma 3.7], it would follow that

min{d(u,zn),d(v,zn)}
zn € B(z,r) N B(y,r) = 0 for large n, a contradiction. Equivalently, the
molecule m,, , is strongly exposed point. This proves that (iii) implies (ii)
by Proposition 3.14.
Now the previous two facts prove that (i) implies (iii). Finally, (ii) implies (i) is
trivial, which finishes the proof. O

Apart from Corollary 3.19, Proposition 3.18 also applies to another large class
of metric spaces.

Example 3.20. Let M be a locally compact metric space, let 0 < 0 < 1, and
consider M? := (M, d’). Then, SNA(M? Y) contains an open dense subset. In-
deed, M? is locally compact and SNA(M? Y) is dense in Lipy(M?,Y) for every
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Banach space Y by [10, Proposition 3.8]; now, Proposition 3.18 applies since every
molecule of F(M?) is a strongly exposed point [10, Proposition 3.8].

Let us end by giving a generalisation of Theorem 3.15.

Corollary 3.21. Let M be a boundedly compact metric space. If SNA(M,R) is
dense in Lipy(M,R), then

B]:(M) = %(str—exp (B]:(M)))

Proof. As in Theorem 3.15, let I' = str-exp (B]:(M)) and suppose f € Lipy(M,R)

is such that f attains its norm at an element m, , € ext (B].-(M)). Since M is a
boundedly compact metric space, by using the techniques involved in the proof
of Theorem 4.2 in [3] and Theorem 2.4 in [13], we obtain that m, , is a denting
point of Bx(yr). Now, it follows from the proof of Proposition 3.18 that f can be
approximated by elements of L(F(M),R) attaining their norms on I'. Therefore,
SUP, et |f(m)| = I f]l;- Now, Lemma 3.2 does the work. O

4. A by-product

We finish the paper with a by-product of the preliminary results used in the proof
of Theorem 3.7. We do not know whether Lindenstrauss property A of a Banach
space X implies that the set

(%) {T € L(X,Y): T is absolutely strongly exposing operator}

is dense in £(X,Y) for every Banach space Y. But we would like to check what
happens if we actually have one of the known properties which imply Lindenstrauss
property A: the RNP, property «, property quasi-c;, and having a norming uni-
formly strongly exposed set. It is known that the answer is positive if X has the
RNP by [7, Theorem 5]. Also, the same follows if X has property « by an easy in-
spection of the proof of [23, Proposition 1.3a]. But this is not clear from the proof
of the result for property quasi-a and when the space has a norming uniformly
strongly exposed set. However, in the first case it is shown in [11, Proposition 2.1]
that if X has property quasi-a then, for every Banach space Y, the set of operators
attaining the norm at a strongly exposed point is dense in £(X,Y") (see also the
comments after Definition 3.18 in [8]). Therefore, by Proposition 3.14 we get that
the set in (&) is dense. In the case when X is a Banach space with a uniformly
strongly exposed set S C Sx such that Bx = ©o(.9), it is shown in (the proof of)
[22, Proposition 1] that the set

{T € L(X,Y): T attains its norm at a point of S}

is dense in £(X,Y) for every Banach space Y. Then, the density of the set in (&)
follows again from Proposition 3.14 and the fact that S is a uniformly strongly
exposed set too:
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Fact 4.1. Let X be a Banach space and assume that S C Sx is a uniformly
strongly exposed set. Then, S is also a uniformly strongly exposed set.

Proof. For every y € S, let f, be the corresponding strongly exposing functional.
Clearly, given € S\ S, we can find a functional f, in the weak-star closure of
{fy:y € S} such that f,(z) = 1. Let us now prove that S is uniformly strongly
exposed. To this end, for € > 0 we find § > 0 such that

€

@) >1-6 =yl <3

for every y € S. Now, given x € S and z € Sx such that f,(z) > 1 —J, we find
y € S such that fy(z) > 1 -9 and fy(x) > 1 — ¢ (recall that f, belongs to the
weak-star closure of { f,: y € S}). The property defining ¢ implies that [y —z|| < §
and ||z — y[| < §, from where ||z —y[| <e. O

Let us state what has been proved so far.

Proposition 4.2. Let X be a Banach space satisfying one of the following prop-
erties:

(a) RNP,
(b) property «a,
(¢) property quasi-c,
(d) having a norming uniformly strongly exposed subset.
Then, the set
{T € L(X,Y): T is absolutely strongly exposing operator}

is dense in L(X,Y) for every Banach space Y.
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