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FÉLIX CABELLO SÁNCHEZ, SHELDON DANTAS, VLADIMIR KADETS,

SUN KWANG KIM, HAN JU LEE, AND MIGUEL MARTÍN

Abstract. We study Banach spaces whose group of isometries acts micro-transitively on the unit
sphere. We introduce a weaker property, inherited by one-complemented subspaces, that we call uniform

micro-semitransitivity. We prove a number of results about both micro-transitive and uniformly micro-

semitransitive spaces. In particular, they are uniformly convex and uniformly smooth, and form a
self-dual class. To this end, we relate the fact that the group of isometries acts micro-transitively with a

property of operators called the pointwise Bishop-Phelps-Bollobás property and use some known results

on it. Besides, we show that if there is a non-Hilbertian non-separable Banach space with uniform
micro-semitransitive (or micro-transitive) norm, then there is a non-Hilbertian separable one. Finally,

we show that an Lp(µ) space is micro-transitive or uniformly micro-semitransitive only when p = 2.

1. Introduction

Let G be a (Hausdorff) topological group with identity e and let T be a (Hausdorff) topological space.
By an action of G on T we mean a continuous map G × T −→ T , (g, x) 7−→ gx, such that ex = x
for every x ∈ T and g(hx) = (gh)x for every g, h ∈ G and every x ∈ T . The action of G on T is
transitive if the orbit of every element is the whole space, that is, if Gx = T for every x ∈ T (if U ⊂ G,
Ux := {gx : g ∈ U}). The action is micro-transitive if for every x ∈ T and every neighborhood U of
e in G, the set Ux is a neighborhood of x in T ; in this case, the orbits of the elements are open (see
[4, Lemma 1] or [27, Assertion 1 on p. 106]) and they form a partition of the space T into disjoint
open sets. Therefore, when T is connected, micro-transitivity implies transitivity. Conversely, there is a
famous result of E. G. Effros [18] saying that if G is Polish (i.e., separable completely metrizable) acting
transitively on a second category separable topological space, then it acts micro-transitively, see [4] or
[29]. Micro-transitive actions are also called open actions, as to be micro-transitive is equivalent to the
fact that the application g 7−→ gx is open from G to T for every x ∈ T [27, Assertion 1 in p. 106]. We
refer the reader to already cited [4, 27, 29] and references therein for more information and background
on micro-transitive actions.

A famous open problem of S. Mazur in Banach space theory asks whether a separable Banach space
whose group of surjective isometries acts transitively on its unit sphere has to be isometrically isomorphic
to a Hilbert space; see [7, p. 151]. To simplify the notation, it is usually said that the norm of a
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Banach space is transitive if its group of surjective isometries acts transitively on its unit sphere. We
refer the reader to the classical book [33] and the expository papers [8, 10] for an extensive account on
Mazur’s problem, and to [17, 20, 21, 32] and references therein for more recent results. In the finite-
dimensional setting, Mazur question was solved very early in the affirmative ([6]; see [8, Corollary 2.42]
for a contemporary proof). For non-separable Banach spaces, the answer to Mazur’s problem is known
to be negative as, for instance, there are non-separable Lp(µ) spaces whose norms are transitive for
1 6 p <∞; see [33, Proposition 9.6.7]. Actually, ultrapowers of Lp[0, 1] do the job, use [8, Example 2.13
and Proposition 2.19], for instance. Moreover, every Banach space can be isometrically regarded as a
subspace of a suitable transitive Banach space (see [8, Corollary 2.21]) and every dual space is one-
complemented in some transitive space (see [8, Proposition 2.22]) and, therefore, there exist transitive
Banach spaces failing the approximation property (see [8, Corollary 2.23]).

In this paper we deal with the “microscopic” version of the transitivity: we say that the norm of
a Banach space is micro-transitive if its group of surjective isometries acts micro-transitively on its
unit sphere. This is the case of the norm of a Hilbert space. Observe that due to the comments
on the first paragraph, micro-transitive norms are transitive (we may also use [8, Proposition 2.6], for
instance). Moreover if the norm of a Banach space X is micro-transitive, then actually a uniform version
of the property holds (see Proposition 2.1): for every ε > 0, there is δ > 0 such that if x, y ∈ X with
‖x‖ = ‖y‖ = 1 satisfy ‖x − y‖ < δ, then there is a linear surjective isometry T : X −→ X such that
Tx = y and ‖T − Id ‖ < ε, where Id is the identity operator on X. Due to this fact, we also introduce and
study a weaker property, which we will call uniform micro-semitransitivity (see Definition 2.2) relaxing
the requirement of T being an isometry to only require ‖T‖ = 1. Contrary to what happens with most
classical transitivity properties, uniform micro-semitransitivity is inherited by 1-complemented subspaces.

We have devoted a considerable effort to prove that both micro-transitivity and uniform micro-
semitransitivity are somehow “separably determined”: if X is a micro-transitive (respectively, uniform
micro-semitransitive), then every separable subspace of X is contained in a separable micro-transitive
(respectively, uniform micro-semitransitive) subspace. This is also very different than the usual behaviour
of transitive properties.

Further, we relate uniform micro-semitransitivity with a property called pointwise Bishop-Phelps-
Bollobás property (see Definition 2.10) which has something to do with norm-attaining operators. With
all of these, we will be able to show that every uniformly micro-semitransitive space is both uniformly
smooth and uniformly convex, with modulus of convexity of power type.

Finally, we show that an Lp(µ)-space is not uniformly micro-semitransitive unless it is Hilbertian. In
the way of proving this result, we show that both micro-transitivity and uniform micro-semitransitivity
pass from a norm to its dual.

Notation and terminology. Given a Banach space X over the field K (= R or C), we write BX and
SX to denote, respectively, the closed unit ball and the closed unit sphere of X; X∗ is the dual space of
X and L(X) is the space of bounded linear operators from X to itself. If Y is another Banach space,
L(X,Y ) is the Banach space of all bounded linear operators from X to Y .

A Banach space X is said to be smooth if the norm is Gâteaux differentiable at every non-zero point
of X or, equivalently, if for every x ∈ X \ {0} there is only one x∗ ∈ SX∗ such that x∗(x) = ‖x‖. A space
X is said to be uniformly smooth if its norm is Fréchet differentiable uniformly on SX . The modulus of
convexity of a Banach space X is given by

δX(ε) = inf

{
1−

∥∥∥∥x+ y
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∥∥∥∥ : x, y ∈ BX , ‖x− y‖ > ε
}

(0 < ε 6 2).

The space X is said to be uniformly convex if δX(ε) > 0 for all ε ∈ (0, 2]. Recall that a Banach space X
is uniformly convex if and only if X∗ is uniformly smooth. We refer the reader to [19, §9] and [16] for
background on uniform convexity and uniform smoothness.
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2. Micro-transitivity and related properties

Our aim here is to present the announced definition of uniform micro-semitransitivity and some prelim-
inary results, to prove that uniform micro-semitransitivity and micro-transitivity are somehow separably
determined, to recall some known results on the pointwise Bishop-Phelps-Bollobás property, and to relate
both properties.

2.1. Uniform micro-semitransitivity. We start this subsection by showing that a Banach space with
micro-transitive norm actually fulfills a uniform version of the property.

Proposition 2.1. Let X be a Banach space with micro-transitive norm. Then, there is a function
β : (0, 2) −→ R+ such that if x, y ∈ SX satisfy ‖x − y‖ < β(ε), then there is a surjective isometry
T ∈ L(X) satisfying that Tx = y and ‖T − Id ‖ < ε.

Proof. Let 0 < ε < 2 and write U = {S ∈ L(X) : S onto isometry, ‖S − Id ‖ < ε}. Fix x0 ∈ SX and use
the micro-transitivity of the norm to find δ > 0 such that

{x ∈ SX : ‖x− x0‖ < δ} ⊆ Ux0.

Now, given x, y ∈ SX with ‖x − y‖ < δ, we find an onto isometry R ∈ L(X) such that Rx = x0 (this is
possible as micro-transitivity implies transitivity) and observe that Ry ∈ SX satisfies that

‖x0 −Ry‖ = ‖Rx−Ry‖ = ‖x− y‖ < δ.

Then, there is S ∈ U such that Sx0 = S(Rx) = Ry. Now, the operator T = R−1SR is an onto isometry,
Tx = R−1Sx0 = y and

‖T − Id ‖ = ‖R−1SR−R−1R‖ = ‖S − Id ‖ < ε. �

Hilbert spaces are the touchstone of all transitivity problems. Let us take a look at the action of their
isometry groups. Let H be a real Hilbert space and x, y ∈ SH . Then there is a surjective isometry T
of H such that y = Tx and ‖T − Id ‖ = ‖y − x‖. To see this we may assume that x and y are linearly
independent. Let E be the two-dimensional subspace of H spanned by x and y and let R be a unique
isometry on E that rotates x onto y and has minimal angle. Let T be the isometry that extends R as
the identity on the orthogonal complement of E. It is pretty clear that ‖T − Id ‖ = ‖y−x‖ and also that
T − Id has rank two. Hence real Hilbert spaces are micro-transitive with β(ε) = ε for every ε ∈ (0, 2);
see [3, Lemma 2.2] for complex Hilbert spaces.

Proposition 2.1 motivates us to introduce the following definition.

Definition 2.2. Let X be a Banach space. We say that X (or the norm of X) is uniformly micro-
semitransitive if there exists a function β : (0, 2) −→ R+ such that whenever x, y ∈ SX satisfies ‖x−y‖ <
β(ε), then there is T ∈ L(X) with ‖T‖ = 1 satisfying

Tx = y and ‖T − Id ‖ < ε.

Observe that Proposition 2.1 implies that micro-transitive norms are uniformly micro-semitransitive.
The following observation is immediate.

Remark 2.3. If the norm of a Banach space X is uniformly micro-semitransitive and Y is a one-
complemented subspace of X, then the norm of Y is uniformly micro-semitransitive.

The name micro-semitransitivity comes from the fact that to get a micro-transitive norm from Defi-
nition 2.2, one just needs to further impose that T is invertible (which is free for 0 < ε < 1) and that
‖T−1‖ = 1, so we need a half of the requirements. It is worth to remark that if the norm of X is uniformly
micro-semitransitive, we may further get that the norm is “transitive by norm-one isomorphisms”:

Remark 2.4. If the norm of a Banach space X is uniformly micro-semitransitive, then given x, y ∈ SX ,
there is an isomorphism T ∈ L(X) with ‖T‖ = 1 such that Tx = y. Indeed, we may find x1, . . . , xn ∈ SX

such that x1 = x, xn = y, and ‖xi+1 − xi‖ < β(1/2) for i = 1, . . . , n− 1. Then, by hypothesis, there are
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T1, . . . , Tn−1 ∈ L(X) with ‖Ti‖ = 1 satisfying that ‖Ti− Id ‖ < 1/2 and Ti(xi) = xi+1 for i = 1, . . . , n−1.
As all Ti are isomorphisms by the Neumann series for i = 1, . . . , n− 1, so is T = Tn−1 ◦ · · · ◦ T1. Further,
‖T‖ 6 1 and Tx = y (so, in particular, ‖T‖ = 1).

Let us observe that, while it is conceivable that the property of the remark above (i.e. “transitivity
by norm-one isomorphisms”) characterizes Hilbert spaces among separable ones, it is immediate that all
Banach spaces fulfill the following property: given x, y ∈ SX , there is T ∈ L(X) with ‖T‖ = 1 such that
Tx = y. Indeed, consider x∗ ∈ SX∗ such that x∗(x) = 1 and define the rank-one operator T ∈ L(X) by
Tz = x∗(z)y for all z ∈ X; then ‖T‖ = 1 and Tx = y.

2.2. Micro-transitivity, separability, and completeness. Mazur rotation problem is arguably very
difficult: one can hardly imagine a way to produce a counterexample since completeness tends to in-
terfere with separability in transitive spaces, and vice-versa. In the opposite direction, separability and
completeness seem to be superfluous. See, however, [21, Theorem 2].

All these difficulties disappear in our micro-transitivity setting. This is so because both micro-
transitivity and uniform micro-semitransitivity are separably determined and they do not really depend
on completeness, as we will see very soon.

For a normed space X we will use the name “contractive automorphism of X” for any linear operator
T : X −→ X with ‖T‖ 6 1. Let X be a normed space, U a subset of the semigroup of contractive
automorphisms of X and E a subset of the unit sphere of X, not necessarily U -invariant. Let us say,
slightly bending the rules, that U acts uniformly micro-semitransitively on E if, for each ε > 0, there
exists β(ε) > 0 such that, whenever x, y ∈ E satisfy ‖x − y‖ < β(ε), there is T ∈ U satisfying Tx = y
and ‖T − Id ‖ < ε.

Lemma 2.5. A Banach space is uniformly micro-semitransitive (respectively, micro-transitive) if and
only if the semigroup of contractive automorphisms (respectively, the isometry group) acts uniformly
micro-semitransitively on some dense subset of the unit sphere.

Proof. We only write the proof for uniform micro-semitransitivity. The other case follows the same lines.

Assume that D is dense in SX and that U , the semigroup of all contractive automorphisms of X, acts
uniformly micro-semitransitively on D.

Step 1. For every ε > 0, there exists δ(ε) > 0 so that, if x ∈ D and y ∈ SX satisfy ‖x− y‖ < δ(ε), then
there is T ∈ U such that Tx = y and ‖T − Id ‖ < ε.

For each n > 1 let δn = β(2−n) be the number provided by the definition. Needless to say, δn 6 2−n.
Pick ε > 0 and then k so large that

∑
n>k 2−n < ε.

Set δ = β(ε) and assume that ‖x − y‖ < δ. Choose a sequence of points in D ∩ B(x, δ), labeled as
(yn)n>k, so that ‖yn − y‖ < δn+1/2 and ‖yn − yn+1‖ < δn+1. After that, take a sequence of contractive
automorphisms (Tn)n>k such that

• yk = Tk(x) and ‖Tk − Id ‖ < ε.
• For n > k one has yn = Tn(yn−1) and ‖Tn − Id ‖ < 2−n.

Let us see that the operator T defined by

T (z) = lim
m→∞

[
Tm ◦ · · · ◦ Tk+1 ◦ Tk

]
(z) (z ∈ X),

does the trick. Of course we have to check that the definition makes sense.

First of all, note that for m > n > k one has the obvious estimate∥∥[Tm ◦ · · · ◦ Tn]− Id
∥∥ 6 m∑

i=n

‖Ti − Id ‖.
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This shows that the sequence defining T (z) converges for all z, that T is a contractive operator, and also
that

‖T − Id ‖ 6 ε+
∑
i>k

2−i 6 2ε.

In particular, T is onto for 0 < ε < 1
2 and since the equality y = Tx is trivial, this concludes the proof of

Step 1.

Step 2. For every ε > 0, there exists η > 0, depending only on ε, so that, if x, y ∈ SX satisfy ‖x− y‖ < η,
then there is T ∈ U such that Tx = y and ‖T − Id ‖ < ε.

This is just a rewording of Definition 2.2. To prove it we proceed as before, using Step 1.

For each n > 1, set δn = δ(2−n), where δ(·) is the function provided by Step 1. Fix ε > 0 and take k
so large that

∑
n>k 2−n < ε.

Set η = δ(ε). Now assume ‖x − y‖ < η, with x, y ∈ SX . Choose a sequence of points in D ∩ B(y, η),
labeled as (xn)n>k so that ‖xn − x‖ < δn/2. In particular, ‖xn − xn+1‖ < δn. Take then a sequence of
contractive automorphisms (Ln)n>k such that

• Lk(xk) = y and ‖Lk − Id ‖ < ε.
• For n > k one has Ln(xn+1) = xn and ‖Ln − Id ‖ < 2−n.

Now, we consider the operator L defined as

L(z) = lim
n→∞

[
Lk ◦ Lk+1 · · · ◦ Ln

]
(z) (z ∈ X).

Please note that this time we compose on the right.

Using the estimate
∥∥[Ln ◦ · · · ◦ Lm

]
− Id

∥∥ 6 ∑m
i=n ‖Li − Id ‖, it is easy to see that L(z) is correctly

defined, that ‖L‖ 6 1, and also that ‖L− Id ‖ < 2ε. In particular L belongs to U provided ε < 1
2 . It only

remains to check that y = Lx, which is obvious after realizing the following facts:

• ‖Lk ◦ · · · ◦ Ln − L‖ → 0 as n→∞.
• For each n > k one has y = Lk ◦ · · · ◦ Ln(xn+1).
• ‖xn − x‖ → 0 as n→∞. �

Thus, the completion of a uniformly micro-semitransitive normed space is then a uniformly micro-
semitransitive Banach space. The following result shows that uniformly micro-semitransitive spaces are
“somehow separably determined”.

Theorem 2.6. Let X be a uniformly micro-semitransitive (respectively, micro-transitive) Banach space
and Y a separable subspace of X. Then there is another separable subspace of X which is uniformly
micro-semitransitive (respectively, micro-transitive) and contains Y .

Proof. As before, we do the proof for uniform micro-semitransitivity. The other case requires only minor
changes.

Let β : (0, 2) −→ R+ be any function witnessing that X is uniformly micro-semitransitive. We are
going to construct three sequences (Yn)n>0, (Dn)n>0, (Gn)n>0 having the following properties:

(1) (Yn)n>0 is an increasing sequence of separable subspaces of X, with Y0 = Y .
(2) Every Gn is a countable semigroup of automorphisms of X.
(3) Gn ⊂ Gn+1 for every n > 1.
(4) Every operator in Gn leaves Yn invariant.
(5) Dn is a countable, dense subset of the unit sphere of Yn.
(6) Dn ⊂ Dn+1 for every n > 1.
(7) Given ε > 0, if x, y ∈ Dn are such that ‖x− y‖ < β(ε), there is a contractive T ∈ Gn+1 such that

y = Tx and ‖T − Id ‖ < ε.
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We proceed by induction on n > 0. In the initial step we put Y0 = Y , the set D0 is any countable, dense
subset of the unit sphere of Y and G0 = {Id}.

The induction step is as follows. Denote the semigroup of contractive automorphisms of X by U .
Assume Yn, Dn, Gn have already been defined. For each pair x, y ∈ Dn we select Tk ∈ U such that
y = Tkx for all k, and

‖Tk − Id ‖ < inf{‖T − Id ‖ : y = Tx, T ∈ U}+ k−1.

Observe that we need only countably many automorphisms. Let Un+1 be the (countable) semigroup
generated by all these automorphisms and those of Gn. Then we define Yn+1 as the closed subspace of
Y spanned by the set ⋃

T∈Gn+1

T [Yn].

Clearly, Yn+1 is separable and contains Yn since Id ∈ Gn+1. By the very definition, every operator
in Gn+1 leaves Yn+1 invariant. Taking any countable dense subset Dn+1 of the unit sphere of Yn+1

containing Dn we close the circle.

To end, consider the “limit objects”

Y∞ =
⋃
n>0

Yn, G∞ =
⋃
n>0

Gn, D∞ =
⋃
n>0

Dn.

Clearly, Y∞ is separable and contains Y and D∞ is dense in the unit sphere of Y∞. Moreover, and this
is the key point, every operator T ∈ G∞ leaves Y∞ invariant and so T restricts to an automorphism of
Y∞, with ‖T |Y∞ − IdY∞ ‖ 6 ‖T − IdX ‖.

Finally, condition (7) guarantees that the semigroup of contractive automorphisms of Y∞ acts uniformly
micro-semitransitively on D∞ and Lemma 2.5 ends the proof. �

The immediate consequence of the preceding Theorem 2.6 is that if every separable transitive Banach
space is isometric (or isomorphic) to a Hilbert space, then every micro-transitive Banach space is isometric
(or isomorphic) to a Hilbert space since the parallelogram law and Kwapien’s theorem [28] say that a
Banach space is isometric (or isomorphic) to a Hilbert space if and only if so are its separable subspaces.

2.3. Ultrapowers. Ultraproducts (and ultrapowers) provide a quite useful technique to deal with tran-
sitivity questions. Here we will only recall a few definitions, mainly to fix the notations. The interested
reader is referred to Sims’ notes [34] or Heinrich’s classic [23] for two rather different, complementary
expositions.

Let X be a Banach space, let I be a non-empty set, and let U be a nontrivial ultrafilter on I. The
space of bounded families `∞(I,X) endowed with the supremum norm is a Banach space, and the space
cU0 (X) := {(xi) ∈ `∞(I,X) : limU ‖xi‖ = 0} is a closed subspace of `∞(I,X). The ultrapower of the
space X following U is defined as the quotient space

[X]U = `∞(I,X)/cU0 (X),

with the quotient norm. We denote by [(xi)] the element of [X]U which has the family (xi) as a represen-
tative. It is easy to see that ‖[(xi)]‖ = limU ‖xi‖. If Ti : X −→ Y , i ∈ I is a uniformly bounded family
of operators, the ultraproduct operator [Ti]U : [X]U −→ [Y ]U is given by [Ti]U[(xi)] = [Ti(xi)]. Quite
clearly, ‖[Ti]U‖ = limU ‖Ti‖. Also, [Ti]U is a surjective isometry when all the Ti’s are.

Regarding the subject of this paper, the most salient feature of ultrapowers is the following result
whose proof is nearly trivial.

Lemma 2.7. Ultrapowers preserve both micro-transitivity and uniform micro-semitransitivity.

For later use, it is worth to mention that the modulus of convexity of X is the same as that of [X]U
[26, p. 184]. Also remark that X is uniformly convex if and only if [X]U is strictly convex. Indeed, if X is
not uniformly convex, there exist ε > 0 and two sequences (xi), (yi) in SX such that infi∈N ‖xi − yi‖ > ε
and limi

∥∥xi+yi

2

∥∥ = 1. This means that [X]U is not strictly convex.
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2.4. Definition and some known results on the pointwise Bishop-Phelps-Bollobás property.
Trying to extend to operators the improvement given by Bollobás of the classical Bishop-Phelps theorem
on the denseness of norm-attaining functionals, M. D. Acosta, R. Aron, D. Garćıa, and M. Maestre [1]
introduced in 2008 the following property.

Definition 2.8 ([1]). A pair (X,Y ) of Banach spaces has the Bishop-Phelps-Bollobás property (BPBp,
for short) if for every ε > 0, there exists η(ε) > 0 such that whenever T ∈ L(X,Y ) with ‖T‖ = 1
and x0 ∈ SX satisfy ‖Tx0‖ > 1 − η(ε), there are S ∈ L(X,Y ) with ‖S‖ = 1 and x ∈ SX such that
‖S‖ = ‖Sx‖ = 1, ‖x0 − x‖ < ε, and ‖S − T‖ < ε.

For background on the BPBp, we refer the reader to the papers [2, 3, 5, 11, 12, 25] and references
therein. The next result summarizes the results of the BPBp that we will use in this paper.

Proposition 2.9 ([1, 2, 25]). Let X be a Banach space.

(a) (Bishop-Phelps-Bollobás theorem) The pair (X,K) has the BPBp.
(b) If X is uniformly convex, then the pair (X,Y ) has the BPBp for every Banach space Y . Moreover,

the function ε 7−→ η(ε) in Definition 2.8 depends only on the modulus of convexity of X.

If, in the definition of BPBp, the point where the new operator S attains its norm is the same that
the point where the operator T almost attains its norm, we get the following stronger version of the
Bishop-Phelps-Bollobás property, introduced in [14] and further developed in [13].

Definition 2.10 ([14]). We say that a pair (X,Y ) of Banach spaces has the pointwise Bishop-Phelps-
Bollobás property (pointwise BPB property, for short) if given ε > 0, there exists η̃(ε) > 0 such that
whenever T ∈ L(X,Y ) with ‖T‖ = 1 and x0 ∈ SX satisfy

‖T (x0)‖ > 1− η̃(ε),

there is S ∈ L(X,Y ) with ‖S‖ = 1 such that

‖S(x0)‖ = 1 and ‖S − T‖ < ε.

The following are pairs of Banach spaces with the pointwise BPB property: (H,Y ) for a Hilbert space
H and every Banach space Y [14, Theorem 2.5], and (X,C(K)) for every uniformly smooth Banach space
X and every Hausdorff compact topological space K [14, Corollary 2.8]. The pointwise BPB property is
actually stronger than the BPBp, as the results from [13, 14] show. We include here an omnibus result
containing the main properties which we will use in this paper.

Proposition 2.11 ([13, 14]). Let X be a Banach space.

(a) If there is a nontrivial Banach space Y such that the pair (X,Y ) has the pointwise BPB property,
then X is uniformly smooth.

(b) If (X,Y ) has the pointwise BPB property for every Banach space Y , then X is uniformly convex.
Moreover, we have that

δX(ε) > C εq (0 < ε < 2)

for suitable 2 6 q <∞ and C > 0.
(c) If X is isomorphic to a Hilbert space and (X,Y ) has the pointwise BPB property for every Banach

space Y , then X has an optimal modulus of convexity, that is, there exists C > 0 such that

δX(ε) > C ε2 (0 < ε < 2).

Moreover, the constant C depends only on the infimum over Y of the collection of functions η̃ in
Definition 2.10 for all the pairs (X,Y ) (which is known to be always positive) and the Banach-
Mazur distance from X to the Hilbert space.
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2.5. The relationship. As we commented before, it is shown in [14, Theorem 2.5] that a pair (H,Y )
where H is a Hilbert space and Y is arbitrary has the pointwise BPB property. To prove this result, it is
used the fact that the norm of a Hilbert space is (uniformly) micro-transitive [3, Lemma 2.2]. Next, we
prove that the uniform micro-semitransitivity of the norm allows to convert the BPBp to its pointwise
version. This is, therefore, an abstract version of [14, Theorem 2.5].

Proposition 2.12. Let X and Y be Banach spaces. Suppose that the norm of X is uniformly micro-
semitransitive (in particular, if the norm is micro-transitive) and that the pair (X,Y ) has the BPBp.
Then, the pair (X,Y ) has the pointwise BPB property.

Proof. Suppose that (X,Y ) has the BPBp with a function ε 7−→ η̄(ε) and that the norm of X is uniformly
micro-semitransitive with the function ε 7−→ β(ε). Fix ε > 0 and suppose that T ∈ L(X,Y ) with ‖T‖ = 1
and x0 ∈ SX satisfy

‖T (x0)‖ > 1− η̄
(
β(ε/2)

)
.

Then, by the BPBp of (X,Y ), there are S̃ ∈ L(X,Y ) with ‖S̃‖ = 1 and x̃0 ∈ SX satisfying that

‖S̃(x̃0)‖ = 1, ‖S̃ − T‖ < β(ε/2) 6
ε

2
, and ‖x0 − x̃0‖ < β(ε/2).

By the uniform micro-semitransitivity of the norm of X, there exists R ∈ L(X) with ‖R‖ = 1 such that

R(x0) = x̃0 and ‖R− Id ‖ < ε

2
.

Define S := S̃ ◦R ∈ L(X,Y ). Then ‖S‖ 6 1 and

‖S(x0)‖ = ‖S̃(R(x0))‖ = ‖S̃(x̃0)‖ = 1.

So, ‖S‖ = ‖S(x0)‖ = 1. Moreover,

‖S − T‖ 6 ‖S̃ ◦R− S̃‖+ ‖S̃ − T‖ 6 ‖R− Id ‖+
ε

2
< ε.

This proves that the pair (X,Y ) has the pointwise BPB property as desired. �

As a consequence, we get again Theorem 2.5 of [14] saying that every pair (H,Y ) where H is a
Hilbert space and Y is a Banach space has the pointwise BPB property. But focusing on the uniform
micro-semitransitivity, we get the following consequence.

Corollary 2.13. Every Banach space whose norm is uniformly micro-semitransitive (in particular, if it
is micro-transitive) is both uniformly smooth and uniformly convex.

Proof. Assume X is uniformly micro-semitransitive. By the Bishop-Phelps-Bollobás theorem (see Propo-
sition 2.9.a), the pair (X,K) has the BPBp. If the norm of X is uniformly micro-semitransitive, then
(X,K) has the pointwise BPB property by Proposition 2.12. Hence, X is uniformly smooth by Proposition
2.11.a.

To prove that X is uniformly convex it clearly suffices to show that the ultrapowers of X are strictly
convex. Note that a uniformly micro-semitransitive space is strictly convex if and only if its unit sphere
has an extreme point: this follows from Remark 2.4, since a norm-one isomorphism cannot send a non-
extreme point of the unit sphere into an extreme point of the unit sphere.

Now, if XU is any ultrapower of X, then we know from Lemma 2.7 that it is uniformly micro-
semitransitive, hence uniformly smooth for the first part of the proof, hence reflexive, and thus the unit
ball of XU has (many!) extreme points. By the preceding remark, XU is strictly convex and so X is
uniformly convex. �

Another consequence of Proposition 2.12 and the results presented in subsection 2.4 is the following.

Corollary 2.14. Let X be a Banach space whose norm is uniformly micro-semitransitive. Then:

(a) (X,Y ) has the BPBp for every Banach space Y ;
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(b) Actually, (X,Y ) has the pointwise BPB property for every Banach space Y ;
(c) There exist 2 6 q <∞ and C > 0 such that δX(ε) > C εq for every 0 < ε < 2.

If, moreover, X is isomorphic to a Hilbert space, then there exists C > 0 such that

δX(ε) > C ε2 (0 < ε < 2),

where the constant C depends only on the modulus of convexity of X, on the function β(·) from the
definition of uniform micro-transitivity, and on the Banach-Mazur distance from X to the Hilbert space.

Proof. As X is uniformly convex by Corollary 2.13, (a) follows from Proposition 2.9.b. Assertion (b)
follows from (a) by using Proposition 2.12. Finally, (c) follows from (b) by using Proposition 2.11.b.

The “moreover” part follows from Proposition 2.11.d. Indeed, suppose that X is uniformly convex and
let Y be an arbitrary Banach space. By Proposition 2.9.b, the function ε 7−→ η(ε) from the definition
of the BPBp for the pair (X,Y ) only depends on the modulus of convexity of X; then, by the proof of
Proposition 2.12, the function ε 7−→ η̃(ε) from the definition of the pointwise BPB property for (X,Y )
only depends on the modulus of convexity of X and the function giving the uniform micro-semitransitivity
of X. With this in mind, the result follows immediately from Proposition 2.11.d. �

3. Further results

Our first aim here is to prove the following result.

Theorem 3.1. The norm of Lp(µ) is uniformly micro-semitransitive (or micro-transitive) if and only if
it is a Hilbertian norm. That is, p = 2 or the space is one-dimensional.

Note that the above result shows that transitivity of a norm does not imply micro-transitivity and so,
Effros’ theorem can not be extended to the group of isometries of arbitrary Banach spaces. For possible
extensions of Effros’ result to some non-separable settings, we refer the reader to [30].

Example 3.2. There are (non-separable) Banach spaces whose norm is transitive but not micro-transitive.
Indeed, it is known that for 1 6 p < ∞, there are (non-separable) Lp(µ) spaces whose standard norms
are transitive [33, Proposition 9.6.7], but they are not micro-transitive by Theorem 3.1 except for p = 2.

To provide the proof of Theorem 3.1 we need to state the following particular case.

Example 3.3. For 1 < p <∞ and p 6= 2, the norm of X = `
(2)
p is not uniformly micro-semitransitive.

Proof. As usual, we denote e1 = (1, 0), e2 = (0, 1). For ap = 2−1/p, we consider xp = ap(1, 1) ∈ SX .
Suppose first that p > 2. Let us demonstrate that there is no isomorphism T ∈ L(X) with ‖T‖ = 1 such
that T (e1) = xp. This would give the result by using Remark 2.4. Indeed, we fix an operator T ∈ L(X)
with ‖T‖ = 1 such that T (e1) = xp and we write Te2 = (u1, u2). Then, for all t ∈ (−1, 1) we have that

‖T (e1 + te2)‖p 6 1 + |t|p,
that is,

(ap + tu1)p + (ap + tu2)p 6 1 + |t|p

and (
1 + t u1/ap

)p
+
(
1 + t u2/ap

)p
6 2 + 2|t|p.

For small values of τ , we have asymptotically that (1 + τ)p = 1 + pτ + p(p−1)
2 τ2 + o(τ2), so

pt
(
u1/ap + u2/ap

)
+
p(p− 1)

2
t2
(
(u2/ap)2 + (u1/ap)2

)
6 2|t|p + o(t2).

Dividing by t2, we get that

lim sup
t→0

p
(
u1/ap + u2/ap

)
t

+
p(p− 1)

2

(
(u2/ap)2 + (u1/ap)2

)
6 0.
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Taking into account that t in the above lim sup takes both negative and positive values, this implies that
u1 = u2 = 0, that is, Te2 = 0 and so T is not an isomorphism.

On the other hand, suppose that 1 < p < 2 and let q be the number satisfying 1/p+ 1/q = 1. Then,
we show that there is no isomorphism T ∈ L(X) with ‖T‖ = 1 such that T (xp) = e1. Indeed, we fix
an operator T ∈ L(X) with ‖T‖ = 1 such that T (xp) = e1. Then T ∗(e1) = xq. The previous argument
shows that T ∗e2 = 0. So T is not an isomorphism. �

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. As we mentioned earlier, it is shown in [3] that the Hilbertian norm is micro-
transitive. Suppose that the norm of Lp(µ) is uniformly micro-semitransitive. Then it is uniformly
smooth by Proposition 2.12. So it is one-dimensional or 1 < p < ∞. We may then assume that
1 < p <∞ and that the dimension of Lp(µ) is greater than one. Then the result follows from Remark 2.3
and Example 3.3. �

Our next result shows that our micro-transitivity properties transfer from the norm of a Banach space
to the norm of its dual space.

Proposition 3.4. A Banach space is uniformly micro-semitransitive (respectively, micro-transitive) if
and only if its dual is.

Proof. It suffices to check the “only if” part since by Corollary 2.13 uniformly micro-semitransitive spaces
are reflexive.

If the norm of X is uniformly micro-semitransitive, then X is both uniformly smooth and uniformly
convex, by Corollary 2.13. Hence, X∗ is uniformly convex and uniformly smooth. Let ε 7−→ β(ε) be a
function witnessing the norm of X to be uniformly micro-semitransitive. Fix ε ∈ (0, 1). Given x∗, y∗ in
SX∗ with

‖x∗ − y∗‖ < δX(β(ε)),

there exist x, y in SX satisfying that x∗(x) = y∗(y) = 1. Then,

|x∗(x)− y∗(x)| < δX(β(ε)), so Re y∗(x) > 1− δX(β(ε))

and thus, ∥∥∥∥x+ y

2

∥∥∥∥ > Re y∗
(
x+ y

2

)
> 1− δX(β(ε)).

This means that ‖x− y‖ < β(ε). The uniform micro-semitransitivity of the norm of X provides us with
S ∈ L(X) satisfying that ‖S‖ = 1 and

Sx = y, and ‖S − Id ‖ < ε.

Then, we have ‖S∗‖ = 1 and ‖S∗ − Id ‖ < ε. As [S∗y∗](x) = y∗(Sx) = y∗(y) = 1, we get that S∗y∗ = x∗

by the (uniform) smoothness of X recalling Corollary 2.13. This gives that the norm of X∗ is uniformly
micro-semitransitive.

In the case of micro-transitive norms, if the operator S in the preceding proof is a surjective isometry,
then so is S∗, giving thus the micro-transitivity of the norm of X∗. �

The proposition above shows that Corollary 2.14 also holds for the dual space X∗ as well as X if
the space is micro-transitive. It is worth to note that using this fact, Example 3.3 can be proved by

Corollary 2.14.e and Proposition 3.4 since the modulus of convexity of `
(2)
p is equivalent to εp for p > 2.

We do not know any examples of Banach spaces whose norm is micro-transitive other than Hilbert
spaces, and it may be possible that this property actually implies the space to be Hilbertian. Even more,
this can be also the case for Banach space with uniformly micro-semitransitive norm. Note that the
“moreover” part of Corollary 2.14 shows that finite dimensional 1-complemented subspaces of uniformly
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micro-semitransitive spaces have “the right” moduli of uniform convexity. The next result also goes in
this line.

Proposition 3.5. Let X be a uniformly micro-semitransitive Banach space. Suppose further that there
is a function β : (0, 2) −→ R+ such that the norm of all two-dimensional subspaces of X and all two-
dimensional quotients of X is uniformly micro-semitransitive witnessed by this function. Then, there is
a constant C > 0 such that

δX(ε) > Cε2 and δX∗(ε) > Cε
2 (0 < ε < 2).

Therefore, X has type 2 and cotype 2 and so, it is isomorphic to a Hilbert space.

Proof. Observe that both X and X∗ are uniformly convex and uniformly smooth. Let Y be a two
dimensional subspace of X. Then Y is uniformly convex with a modulus of convexity smaller than or
equal to δX and its norm is uniformly micro-semitransitive witnessed by the function β. Moreover, the

Banach-Mazur distance from Y to `
(2)
2 is bounded (see [24]). Therefore, Corollary 2.14.e gives us that

there is a constant C > 0, not depending on Y , such that

δY (ε) > C ε2 (0 < ε < 2).

Since the above inequality holds for every two-dimensional subspace Y of X, we get that δX(ε) > Cε2

and so, X has cotype 2 [31].

Next, X∗ is uniformly convex and uniformly smooth, its norm is uniformly micro-semitransitive by
Proposition 3.4, and the norm of all of its two-dimensional subspaces is uniformly micro-semitransitive
witnessed the common function β by Proposition 3.4 and the hypothesis on the quotients of X. Therefore,
the same argument above can be applied to all two-dimensional subspaces of X∗ to get that X∗ is
uniformly convex of power type 2, so X is uniformly smooth of power type 2. Therefore, X has type 2
[31]. Finally, Kwapien’s theorem [28] says that X is isomorphic to a Hilbert space. �

Final remark. The recent paper [9] considers quantitative, weak versions of uniform micro-semitransitivity
and contains a stronger version of Corollary 2.13.
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[2] M. D. Acosta, J. Becerra-Guerrero, D. Garćıa and M. Maestre, The Bishop-Phelps-Bollobás Theorem for

bilinear forms, Trans. Amer. Math. Soc. 365 (2013), 5911–5932.

[3] M. D. Acosta, M. Masty lo, M. Soleimani-Mourchehkhorti, The Bishop-Phelps-Bollobás and approximate hyper-
plane series properties, J. Funct. Anal. 274 (2018), 2673–2699.

[4] F. D. Ancel, An alternative proof and applications of a Theorem of E. G. Effros, Michigan Math. J. 34 (1987), 39–55.
[5] R. Aron, Y. S. Choi, S. K. Kim, H. J. Lee, and M. Mart́ın, The Bishop-Phelps-Bollobás version of Lindenstrauss

properties A and B, Trans. Amer. Math. Soc. 367 (2015), 6085–6101.
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