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Abstract. We study the set SNA(M,Y ) of those Lipschitz maps from a (complete pointed) metric

space M to a Banach space Y which (strongly) attain their Lipschitz norm (i.e. the supremum defining
the Lipschitz norm is a maximum). Extending previous results, we prove that this set is not norm dense

when M is a length space (or local) or when M is a closed subset of R with positive Lebesgue measure,

providing new examples which have very different topological properties than the previously known ones.
On the other hand, we study the linear properties which are sufficient to get Lindenstrauss property A

for the Lipschitz-free space F(M) over M , and show that all of them actually provide the norm density

of SNA(M,Y ) in the space of all Lipschitz maps from M to any Banach space Y . Next, we prove that
SNA(M,R) is weakly sequentially dense in the space of all Lipschitz functions for all metric spaces M .

Finally, we show that the norm of the bidual space to F(M) is octahedral provided the metric space M

is discrete but not uniformly discrete or M ′ is infinite.

Contents

1. Introduction 1
1.1. New and old results on the geometry of Lipschitz-free spaces 4

2. New negative results 7
3. A discussion in Lipschitz-free spaces on sufficient conditions for Lindenstrauss property A 10
3.1. Uniformly strongly exposed points 11
3.2. Property α 14
3.3. Property quasi-α 17
3.4. Relationship between the properties for Lipschitz-free spaces 19

4. Weak density of SNA(M,R) 20
5. Octahedrality of the bidual norm of Lipschitz-free spaces 24
References 27

1. Introduction

Our aim in this paper is to discuss when the set of those Lipschitz maps which strongly attain their
norm is dense in the space of Lipschitz maps. Let us give the necessary definitions. A pointed metric
space is just a metric space M in which we distinguish an element, called 0. All along the paper, the
metric spaces will be complete and the Banach spaces will be over the real scalars. Given a pointed
metric space M and a Banach space Y , we write Lip0(M,Y ) to denote the Banach space of all Lipschitz
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maps F : M −→ Y which vanish at 0, endowed with the Lipschitz norm defined by

(1.1) ‖F‖L := sup

{
‖F (x)− F (y)‖

d(x, y)
: x, y ∈M, x 6= y

}
.

Let us comment that the election of the distinguished element is not important, as the resulting spaces
of Lipschitz maps are isometrically isomorphic. Following [32] and [24], we say that F ∈ Lip0(M,Y )
attains its norm in the strong sense or that strongly attains its norm, whenever the supremum in (1.1) is
actually a maximum, that is, whenever there are x, y ∈M , x 6= y, such that

‖F (x)− F (y)‖
d(x, y)

= ‖F‖L.

The subset of all Lipschitz maps in Lip0(M,Y ) which attain their norm in the strong sense is denoted
by SNA(M,Y ).

As far as we know, the study of norm attaining Lipschitz maps was initiated independently in [26]
and [32]. Both papers deal with notions of norm attainment which are different from the strong one,
and they are focused on Lipschitz functionals ([32]) or on vector-valued Lipschitz maps ([26]) defined on
Banach spaces. The paper [26] contains some negative results on the density of the set of Lipschitz maps
which attain their norm in a very weak way. The paper [32] contains positive results on the density of
the set of Lipschitz functionals which attain their norm “directionally”, a notion which is weaker than
the strong norm attainment. It also contains negative results: when M is a Banach space, SNA(M,R) is
not dense in Lip0(M,R), and it is also the case when M = [0, 1] or, more generally, when M is metrically
convex (or geodesic) (see Section 2 for the definition). Our first aim in this paper will be to extend
these negative results to more general metric spaces as length spaces and subsets of [0, 1] with positive
Lebesgue measure, see the details in Section 2. As a consequence of our results, we will obtain examples
of metric spaces M where SNA(M) is not dense in Lip0(M) and, in contrast with the previously known
results, no connectedness assumption is needed on M (e.g. we can consider M to be a “fat” Cantor set).

On the other hand, the paper [24] contains the first positive result on the density of strongly norm
attaining Lipschitz functionals (and also some results for Lipschitz maps): this is the case when the little
Lipschitz space over M strongly separates M (as it is the case of M being compact and countable [13],
when M is the middle third Cantor set, or when M is a compact Hölder space [41, Proposition 3.2.2]).
A slight generalisation can be found in [20, Section 4]. These results have been recently extended in
[19, Proposition 7.4], but we need a little more background in order to enunciate the result. Let M
be a pointed metric space. We denote by δ the canonical isometric embedding of M into Lip0(M,R)∗,
which is given by 〈f, δ(x)〉 = f(x) for x ∈M and f ∈ Lip0(M,R). We denote by F(M) the norm-closed
linear span of δ(M) in the dual space Lip0(M,R)∗, which is usually called the Lipschitz-free space over
M , see the papers [24] and [27], and the book [41] (where it receives the name of Arens-Eells space) for
background on this. It is well known that F(M) is an isometric predual of the space Lip0(M,R) [24, pp.
91], indeed it is the unique isometric predual when M is bounded or a geodesic space [42]. Now, [19,
Proposition 7.4] states that if F(M) has the Radon-Nikodým property (RNP in short), then SNA(M,Y )
is dense in Lip0(M,Y ) for every Banach space Y , extending by far the results of [24]. At the beginning
of Section 3 we will give a short exposition of why this result holds. Examples of metric spaces for which
F(M) has the RNP are exhibited in Example 1.2.

There is a connection between the study of the density of norm attaining Lipschitz maps and the
study of norm attaining linear operators, a research line which goes back to Lindenstrauss’ seminal paper
[36] from 1963. Let us give a piece of notation for Banach spaces. Given a Banach space X, we will
denote by BX and SX the closed unit ball and the unit sphere of X, respectively. We will also denote
by X∗ the topological dual of X. If Y is another Banach space, we write L(X,Y ) to denote the Banach
space of all bounded linear operators from X to Y , endowed with the operator norm. We say that
T ∈ L(X,Y ) attains its norm, and write T ∈ NA(X,Y ), if there is x ∈ X with ‖x‖ = 1 such that
‖Tx‖ = ‖T‖. The study of the density of norm attaining linear operators has its root in the classical
Bishop-Phelps theorem which states that NA(X,R) is dense in X∗ = L(X,R) for every Banach space X.
J. Lindenstrauss extended such study to general linear operators, showed that this is not always possible,
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and also gave positive results. If we say that a Banach space X has (Lindenstrauss) property A when

NA(X,Y ) = L(X,Y ) for every Banach space Y , it is shown in [36] that reflexive spaces have property
A. This result was extended by J. Bourgain [9] showing that Banach spaces X with the RNP also have
Lindenstrauss property A, and he also provided a somehow reciprocal result. We refer the interested
reader to the survey paper [3] for a detailed account on norm attaining linear operators.

Coming back to Lipschitz maps, let us recall that when M is a pointed metric space and Y is a
Banach space, it is well known that every Lipschitz map f : M −→ Y can be isometrically identified

with the continuous linear map f̂ : F(M) −→ Y defined by f̂(δp) = f(p) for every p ∈ M . This
mapping completely identifies the spaces Lip0(M,Y ) and L(F(M), Y ). Bearing this fact in mind, the set
SNA(M,Y ) is identified with the set of those elements of L(F(M), Y ) which attain their operator norm

at elements of the form δ(x)−δ(y)
d(x,y) for some x, y ∈ M , x 6= y. It then follows that when SNA(M,Y ) is

dense in Lip0(M,Y ), in particular, NA(F(M), Y ) has to be dense in L(F(M), Y ). The converse result
is not true as, for instance, NA(F(M),R) is always dense by the Bishop-Phelps theorem but, as we have
already mentioned, there are many metric spaces M such that SNA(M,R) is not dense in Lip0(M,R).
Of course, if SNA(M,Y ) is dense in Lip0(M,Y ) for every Banach space Y , then F(M) has Lindenstrauss
property A. We do not know whether the converse result is true, but it is now not very surprising the
appearance of the RNP of F(M) as a sufficient condition for the density of SNA(M,Y ) in Lip0(M,Y )
for every Y [19, Proposition 7.4]. Actually, as far as we know, the RNP of F(M) could be a necessary
condition for the density of SNA(M,Y ) in Lip0(M,Y ) for every space Y . On the other hand, there are
several geometric properties of a Banach space X which imply Lindenstrauss property A, being the most
common, apart from having X the RNP, the properties α and quasi-α and the existence of a uniformly
strongly exposed set of BX whose closed convex hull is the whole BX . In Section 3, we analyse these
properties for Lipschitz-free spaces and show that each of them actually forces SNA(M,Y ) to be dense
in Lip0(M,Y ) for every Banach space Y . We also provide characterisations of these properties for F(M)
in terms of the metric space M and study the relationship between them. To this end, one of the main
tools will be the recent characterisations of strongly exposed points and denting points of the unit ball
of Lipschitz-free spaces appearing in [21] and [19], respectively, which we will include at Subsection 1.1.

The previous results make clear that the density of SNA(M,R) in Lip0(M,R) is a strong requirement
and there are not too many metric spaces having this property. A completely different situation holds
when we deal with weak density: we show in Section 4 that SNA(M,R) is weakly sequentially dense in
Lip0(M,R) for every pointed metric space M , extending [32, Theorem 2.6], where the result was proved
when M is a Banach space or, more generally, when M is a length space.

The main tool to get the above result is an extension of a lemma from [32] which provides an easy
criterium to get weak convergence of a sequence of Lipschitz maps which we include in Subsection 1.1.
Such a result produces a by-product of our study: that the norm of the bidual of F(M) is octahedral
when M ′ is infinite or M is discrete but not uniformly discrete. Recall that the norm of a Banach space
X is said to be octahedral if, given a finite-dimensional subspace Y of X and ε > 0, we can find x ∈ SX
such that the inequality

‖y + λx‖ > (1− ε)(‖y‖+ |λ|)
holds for every y ∈ Y and λ ∈ R. From an isomorphic point of view, it was proved in [23] that a Banach
space X can be equivalently renormed to have an octahedral norm if, and only if, the space X contains
an isomorphic copy of `1 and it was left as an open problem whether any Banach space containing an
isomorphic copy of `1 can be equivalently renormed so that the bidual norm is octahedral. From an
isometric point of view, it is proved in [15, Theorem 1 and Proposition 3] that if a Banach space X has
an octahedral norm, then every convex combination of weak-star slices of BX∗ has diameter two, and
the reciprocal result has been recently proved in [6]. By using this characterisation, it was proved in [7,
Theorem 2.4] that if M is not uniformly discrete and bounded, then F(M) has an octahedral norm. This
result was pushed further in [38], where the authors characterised all the Lipschitz-free Banach spaces
F(M) whose norm is octahedral in terms of a geometric property of the underlying metric space M .
Observe that the norm of X∗∗ is octahedral if and only if every convex combination of weak slices of
BX∗ has diameter two [6, Corollary 2.2]. Thus, easy examples show that the norm of a Banach space
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X can be octahedral without its bidual norm being octahedral (e.g. X = C([0, 1]) does the work). It is
then a natural question to check when the bidual norm of F(M) can be octahedral. Particular examples
of metric spaces M satisfying that the norm of F(M)∗∗ is octahedral are known (for instance when M
is a subset of an R-tree as a consequence of [22, Theorem 4.2] and [43, Proposition 3.4]). However, it is
not known whether there exists a metric space M such that the norm of F(M) is octahedral but that of
F(M)∗∗ is not. As we have already announced, we will prove that the norm of the bidual space of F(M)
is octahedral when M ′ is infinite or M is a discrete but not uniformly discrete metric space. Besides, as
a consequence of the techniques involved in the proof, we obtain a partial positive answer to [7, Question
3.1].

Even though all the main results of the paper have been presented so far, we would like to include an
outline of the paper. We finish this introduction with a subsection including the needed notation and
terminology on metric spaces and some new and previously known results on the geometry of Lipschitz-
free spaces which will be relevant in our discussion. In Section 2 we extend the negative examples of
[32] to more general ones: we prove that SNA(M,R) is not dense in Lip0(M,R) whenever M is a length
metric space and when M is a subset of an R-tree of positive measure, in particular, when M is a subset
of R with positive Lebesgue measure. We devote Section 3 to discuss some sufficient conditions for
Lindenstrauss property A in the setting of Lipschitz-free spaces, showing that all of them actually imply
the density of strongly norm attaining Lipschitz maps; we also give metric characterisations of some of
them and discuss the relations between them. The main result of Section 4 is that SNA(M,R) is weakly
sequentially dense in Lip0(M,R) for every pointed metric space M . Finally, we show in Section 5 that
the norm of F(M)∗∗ is octahedral when M ′ is infinite or M is discrete but not uniformly discrete.

1.1. New and old results on the geometry of Lipschitz-free spaces. Let X be a Banach space.
A slice of the unit ball BX is a non-empty intersection of an open half-space with BX ; all slices can be
written in the form

S(BX , f, β) := {x ∈ BX : f(x) > 1− β}
where f ∈ SX∗ , β > 0. The notations ext (BX), pre-ext (BX), str-exp (BX) stand for the set of extreme
points, preserved extreme points (i.e. extreme points which remain extreme in the bidual ball), and
strongly exposed points of BX , respectively. A point x ∈ BX is said to be a denting point of BX if there
exist slices of BX containing x of arbitrarily small diameter. We will denote by dent (BX) the set of
denting points of BX . We always have that

str-exp (BX) ⊂ dent (BX) ⊂ pre-ext (BX) ⊂ ext (BX) .

Given a metric space M , B(x, r) denotes the closed ball in M centered at x ∈M with radius r. Given
x, y ∈M , we write [x, y] to denote the metric segment between x and y, that is,

[x, y] := {z ∈M : d(x, z) + d(z, y) = d(x, y)}.

By a molecule we mean an element of F(M) of the form

mx,y :=
δ(x)− δ(y)

d(x, y)

for x, y ∈M , x 6= y. We write Mol (M) to denote the set of all molecules of M . Note that, since Mol (M)
is balanced and norming for Lip0(M), a straightforward application of Hahn-Banach theorem implies
that

co(Mol (M)) = BF(M)

(the notation co(A) denotes the closed convex hull of a set A).

The following proposition summarises some known results about extremality in Lipschitz-free spaces
that we may find in [41, Corollary 2.5.4], [19, Theorem 2.4], [21, Theorem 5.4], and [19, Proposition 2.9].
We need some notation: given x, y, z ∈M , the Gromov product of x and y at z is defined as

(x, y)z :=
1

2

(
d(x, z) + d(y, z)− d(x, y)

)
> 0,
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see e.g. [10]. It corresponds to the distance of z to the unique closest point b on the unique geodesic
between x and y in any R-tree into which {x, y, z} can be isometrically embedded (such a tree, tripod
really, always exists). Notice that (x, z)y + (y, z)x = d(x, y) and that (x, y)z 6 d(x, z), facts which we
will use without further comment.

Proposition 1.1. Let M be a complete metric space. Then:

(a) Every preserved extreme point of BF(M) is both a molecule and a denting point of BF(M), so

pre-ext
(
BF(M)

)
= dent

(
BF(M)

)
⊆ Mol (M) .

(b) Given x, y ∈M with x 6= y, the following assertions are equivalent:
(i) mx,y is a strongly exposed point of BF(M).

(ii) There exists ε0 > 0 such that the inequality

(x, y)z > ε0 min{d(x, z), d(y, z)}

holds for every z ∈M \ {x, y} (in other words, the pair (x, y) fails property (Z) of [31]).
(c) Mol (M) is closed in F(M).

According to [41, p. 51], a metric space M is said to be concave if every molecule mx,y ∈ Mol (M) is a
preserved extreme point of BF(M). Thanks to the characterisation of the preserved extreme points given
in [4], a metric space M is concave if, and only if, for every x, y ∈M and every ε > 0, there exists δ > 0
such that the inequality

d(x, z) + d(y, z) > d(x, y) + δ

holds for every z ∈M such that min{d(x, z), d(y, z)} > ε. It is known that every Hölder metric space is
a concave metric space [41, p. 51]. Recall that a Hölder metric space is (M,dθ) where (M,d) is a metric
space and 0 < θ < 1. We refer the reader to [33] and [41] for background on Hölder metric spaces and
the structure of their Lipschitz-free spaces. Moreover, [4, Corollary 4.4] yields that a compact metric
space M is concave if and only if d(x, z) + d(z, y) > d(x, y) for every x, y, z distinct points in M , that is,
if [x, y] = {x, y} for every x, y ∈M .

In general, examples of Banach spaces with a rich extremal structure are those with the RNP. Because
of this reason and its relation with strongly norm attainment (see Theorem 3.1), let us exhibit some
known examples of Lipschitz-free spaces with the RNP.

Example 1.2. The space F(M) has the RNP in the following cases:

(a) M is uniformly discrete (i.e. infx 6=y d(x, y) > 0); [33, Proposition 4.4].
(b) M is a countable compact metric space (since, in this case, F(M) is a separable dual Banach

space); [13, Theorem 2.1].
(c) M is a compact Hölder metric space (since, in this case, F(M) is a separable dual Banach space);

[41, Corollary 3.3.4].
(d) M is a closed subset of R with measure 0 (since, in this case, F(M) is isometric to `1); [22].

The following lemma, coming from [18], provides a useful estimate of the norm of differences of mo-
lecules. For completeness, we will include a proof of the result.

Lemma 1.3. Let M be a metric space and x, y, u, v ∈M , with x 6= y and u 6= v. Then

‖mx,y −mu,v‖ 6 2
d(x, u) + d(y, v)

max{d(x, y), d(u, v)}
.

If, moreover, ‖mx,y −mu,v‖ < 1, then

max{d(x, u), d(y, v)}
min{d(x, y), d(u, v)}

6 ‖mx,y −mu,v‖ .
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Proof. The first inequality follows from the well-known one∥∥∥∥ z

‖z‖
− w

‖w‖

∥∥∥∥ 6 2
‖z − w‖

max{‖z‖ , ‖w‖}
,

which holds for z, w 6= 0 in any Banach space, applied to z = δ(x)− δ(y) and w = δ(u)− δ(v).

To prove the second inequality, we assume that ‖mx,y−mu,v‖ < 1 and take r := min{d(x, y), d(x, u)}.
We define f(t) := max{r − d(t, x), 0} for every t ∈ M and g := f − f(0). It follows that g ∈ Lip0(M,R)
with ‖g‖L 6 1, so we get that

‖mx,y −mu,v‖ > |〈g,mx,y −mu,v〉| >
r

d(x, y)
,

from where r < d(x, y). This implies that r = d(x, u) and

d(x, u)

d(x, y)
6 ‖mx,y −mu,v‖.

Changing the roles of the pairs, we get the proof of the lemma. �

We also need the following result coming from [34], which is not included in the final version of that

paper [35]. Given a family {Xγ : γ ∈ Γ} of Banach spaces, we will denote by
[⊕

γ∈ΓXγ

]
`1

the `1-sum of

the family.

Proposition 1.4 (Proposition 5.1 in [34]). Suppose that M =
⋃
γ∈ΓMγ is a metric space with metric d,

and suppose that there exists 0 ∈M satisfying

(1) Mγ ∩Mη = {0} if γ 6= η, and
(2) there exists C > 1 such that d(x, 0) + d(y, 0) 6 Cd(x, y) for all γ 6= η, x ∈Mγ and y ∈Mη.

Then, F(M) is isomorphic to
[⊕

γ∈Γ F(Mγ)
]
`1

. If C = 1 such an isomorphism can be chosen to be

isometric.

The previous result motivated the following definition: if M is a metric space which can be written as
M =

⋃
γ∈ΓMγ satisfying (1) and (2) in the statement of the previous proposition for C = 1, we say that

M is the `1-sum of the family {Mγ}γ∈Γ.

The next lemma provides a criterion to get weak convergence of sequences of Lipschitz functionals and
maps, for which the weak topology does not have any easy description. It is inspired by [32, Lemma 2.4],
improves [32, Corollary 2.5] and will be the key to prove the main results of Sections 4 and 5.

Lemma 1.5. Let M be a pointed metric space, let Y be a Banach space, and let {fn} be a sequence of
functions in the unit ball of Lip0(M,Y ). For each n ∈ N, we write Un := {x ∈ M : fn(x) 6= 0} for the
support of fn. If Un ∩ Um = ∅ for every n 6= m, then the sequence {fn} is weakly null.

Proof. We will show that for every finite collection of reals {aj}nj=1, we have∥∥∥∥∥∥
n∑
j=1

ajfj

∥∥∥∥∥∥
L

6 2 max
j
|aj |

and so Ten := fn defines a bounded linear operator from c0 to Lip0(M,Y ).

To this end, denote f =
∑n
j=1 ajfj . Take x, y ∈ M with x 6= y, and let us give an upper estimate for

‖f(x)−f(y)‖
d(x,y) . Since the supports of the functions {fn} are pairwise disjoint, there are j1, j2 ∈ {1, . . . , n}

such that {x, y} ∩ Uj = ∅ if j ∈ {1, . . . , n} \ {j1, j2}. Therefore,

‖f(x)− f(y)‖
d(x, y)

=
‖aj1(fj1(x)− fj1(y)) + aj2(fj2(x)− fj2(y))‖

d(x, y)

6 |aj1 |+ |aj2 | 6 2 max
j
|aj |.
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This shows that the operator T defined above is bounded. Thus, it is also weak-to-weak continuous and
the conclusion follows. �

Finally, it is convenient to recall an important tool to construct Lipschitz functions: the classical
McShane’s extension theorem. It says that if N ⊆M and f : N −→ R is a Lipschitz function, then there
is an extension to a Lipschitz function F : M −→ R with the same Lipschitz constant; see for example
[41, Theorem 1.5.6].

2. New negative results

In this section we will exhibit new examples of metric spaces M such that SNA(M,R) is not dense in
Lip0(M,R). As we commented in the introduction, it was shown in [32, Example 2.1] that SNA([0, 1],R)
is not dense in Lip0([0, 1],R) and that this is extended in the same paper to all metrically convex pointed
metric spaces [32, Theorem 2.3]. Let us introduce some notation. A metric space (M,d) is said to be a
length space if d(x, y) is equal to the infimum of the length of the rectifiable curves joining x and y for
every pair of points x, y ∈M . In the case that such an infimum is actually a minimum, it is said that M
is geodesic (or metrically convex ). It is clear that every geodesic space is a length space, but Example
2.4 in [31] shows that the converse is not true. On the other hand, length spaces have been recently
considered in [21] where it is proved that a metric space M is a length space if, and only if, Lip0(M,R)
has the Daugavet property [21, Theorem 3.5]. Note by passing that for a complete metric space M , being
a length space is also equivalent to the fact that every Lipschitz function on M approximate its Lipschitz
norm at points which are arbitrarily close (that is, M is local), see [21, Proposition 3.4].

In this section we will consider two different generalisations of the fact from [32] that SNA(M,R) is
not dense in Lip0(M,R) when M is metrically convex. Our first aim is to replace metrically convex with
being a length space in this result. To this end, we will need the following technical lemma, which is a
generalisation of Lemma 2.2 in [32].

Lemma 2.1. Let M be a pointed metric space, let f ∈ SNA(M,R) which attains its norm at a pair (p, q)
of different elements of M , let ε > 0, and let αε be a rectifiable curve in M joining p, q such that

length(αε) 6 d(p, q) + ε.

Then, we have that

|f(z1)− f(z2)| > ‖f‖L(d(z1, z2)− ε) ∀ z1, z2 ∈ αε.

Proof. Fix z1, z2 ∈ αε. By the definition of length of a curve, we have that

d(p, q) 6 d(p, z1) + d(z1, z2) + d(z2, q) 6 length(αε) 6 d(p, q) + ε.

Consequently,

|f(z1)− f(z2)| = |(f(p)− f(q))− ((f(p)− f(z1)) + (f(z2)− f(q)))|
> |f(p)− f(q)| − |f(p)− f(z1)| − |f(z2)− f(q)|
> |f(p)− f(q)| − ‖f‖Ld(p, z1)− ‖f‖Ld(z2, q)

= ‖f‖L(d(p, q)− d(p, z1)− d(z2, q)) > ‖f‖L(d(z1, z2)− ε). �

We are now ready to state the desired result.

Theorem 2.2. Let M be a complete length pointed metric space. Then, the set SNA(M,R) is not dense
in Lip0(M,R).

Proof. Fix δ > 0, x0 ∈M \ {0}. Let us consider a curve

γδ : [0, (1 + δ)d(0, x0)] −→M

joining 0 and x0.
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Now, let us consider a Lipschitz function u0 : γδ([0, (1 + δ)d(0, x0)]) −→ R such that u0(0) = 0,
u0(x0) = 1. Since γδ([0, (1+δ)d(0, x0)]) is compact and connected, we have that u0(γδ([0, (1+δ)d(0, x0)]))
is a compact connected subset of R, i.e. u0(γδ([0, (1 + δ)d(0, x0)])) = [a0, b0] for certain a0, b0 ∈ R. We
will write

a =
a0

‖u0‖L
, b =

b0
‖u0‖L

,
u0

‖u0‖L
: γδ([0, (1 + δ)d(0, x0)]) −→ [a, b].

We can apply McShane’s extension theorem to u0

‖u0‖L to get a surjective function u : M −→ [a, b] verifying

that ‖u‖L = 1. Let A ⊆ [a, b] be a nowhere dense closed set of positive Lebesgue measure. Consider
g ∈ Lip0([a, b],R) the function whose derivate equals χA (characteristic function of A). We define
h = g ◦ u : M −→ R. It is clear that h(0) = g(u(0)) = g(0) = 0 and ‖h‖L = ‖g‖L = 1. Therefore,
h ∈ Lip0(M,R). Now, take f ∈ SNA(M,R). We will show that ‖h− f‖L > 1

2 . To this end, assume the
contrary, that is,

‖f − h‖L <
1

2
.

In particular, note that ‖f‖L > 1
2 . We know that there exist p, q ∈M with p 6= q such that

‖f‖L =
|f(p)− f(q)|

d(p, q)
.

Suppose that u(p) = u(q), hence h(p) = h(q) and we have that

‖h− f‖L >
|(h− f)(p)− (h− f)(q)|

d(p, q)
=
|f(p)− f(q)|

d(p, q)
= ‖f‖L >

1

2
,

a contradiction. Therefore, u(p) 6= u(q). We can assume that u(p) < u(q) without any loss of generality.
By the construction of g, there exist c, d ∈ R such that the interval [c, d] is contained in (u(p), u(q)) and
that g is constant in [c, d]. Take ε0 > 0 verifying

(2.1) 0 < ε0 < |d− c|
‖f‖L − ‖h− f‖L

‖f‖L
and a rectifiable curve αε0 joining p and q such that

length(αε0) 6 d(p, q) + ε0.

Note that such a curve exists because M is a length space. Let us write Λ = αε0([0, d(p, q) + ε]) ⊆ M
and observe that

[c, d] ⊆ (u(p), u(q)) ⊆ u(Λ),

so there exist z̃1, z̃2 ∈ Λ such that c = u(z̃1), d = u(z̃2). Moreover, we have

|d− c| = |u(z̃2)− u(z̃1)| 6 d(z̃2, z̃1).

Hence, if z1, z2 are different points of Λ, using Lemma 2.1 we get that

|h(z1)− h(z2)| > |f(z1)− f(z2)| − ‖h− f‖Ld(z1, z2)

> ‖f‖Ld(z1, z2)− ‖f‖Lε0 − ‖h− f‖Ld(z1, z2)

=

(
‖f‖L − ‖h− f‖L −

ε0‖f‖L
d(z1, z2)

)
d(z1, z2).

Taking z1 = z̃1, z2 = z̃2 and applying the above inequality, we have

|h(z̃1)− h(z̃2)| >
(
‖f‖L − ‖h− f‖L −

ε0‖f‖L
d(z̃1, z̃2)

)
d(z̃1, z̃2)

(2.1)
> (‖f‖L − ‖h− f‖L − (‖f‖L − ‖h− f‖L))d(z̃1, z̃2) = 0.

This implies that h(z̃1) 6= h(z̃2) and so g(c) 6= g(d), getting a contradiction with the fact that g is constant
in [c, d]. �



ON STRONGLY NORM ATTAINING LIPSCHITZ MAPS 9

Let us now consider another negative example which can be seen as a generalisation of the fact that
SNA([0, 1],R) is not dense in Lip0([0, 1],R). This new generalisation will allow us to produce examples of
metric spaces M with very different geometric and topological properties for which SNA(M,R) is still not
dense in Lip0(M,R). In order to do that, we need to introduce a class of metric spaces M , the so-called
R-trees. An R-tree is a metric space T satisfying:

(1) for any points x, y ∈ T , there exists a unique isometry φ from the closed interval [0, d(x, y)] into
T such that φ(0) = x and φ(d(x, y)) = y. Such isometry will be denoted by φxy;

(2) any one-to-one continuous mapping ϕ : [0, 1] −→ T has the same range as the isometry φ associ-
ated to the points x = ϕ(0) and y = ϕ(1).

Let us introduce some notation, coming from [22]. Given points x, y in an R-tree T , it is usual to write
[x, y] to denote the range of φxy, which is called a segment. We say that a subset A of T is measurable
whenever φ−1

xy (A) is Lebesgue measurable for any x, y ∈ T . If A is measurable and S is a segment [x, y],

we write λS(A) for λ(φ−1
xy (A)), where λ is the Lebesgue measure on R. We denote by R the set of those

subsets of T which can be written as a finite union of disjoint segments, and for R =
⋃n
k=1 Sk (with

disjoint Sk) in R, we put

λR(A) =

n∑
k=1

λSk
(A).

Now, we can define the length measure of a measurable subset A of T by

λT (A) = sup
R∈R

λR(A).

R-trees were considered in [22] in order to characterise those metric spaces M for which F(M) is isometric
to a subspace of L1 as those which isometrically embed into an R-tree.

Here is the promised generalisation of the fact that SNA([0, 1],R) is not dense in Lip0([0, 1],R).

Theorem 2.3. Let T be a pointed R-tree and let M be a closed subset of T containing the origin. If M
has positive length measure, then SNA(M,R) is not dense in Lip0(M,R).

Proof. Note that, as M has positive length measure, we can find a segment S = [x0, y0] ⊆ T such that
λT (M ∩ S) > 0. We distinguish two cases:
First, assume that there exists a segment [x1, y1] ⊆ M ∩ S. By Theorem 2.3 in [32] we know that there
exists a function f ∈ Lip0([x1, y1],R) such that ‖f‖L = 1 and ‖f−g‖L > 1

2 holds for all g ∈ SNA([x1, y1]).
Consider π1 : T −→ [x1, y1] the metric projection, which satisfies that

d(x, y) = d(x, π1(x)) + d(π1(x), y) ∀x ∈ T, y ∈ [x1, y1]

(c.f. e.g. [10, Chapter II.2]). Define the norm-one Lipschitz function f̃ : M −→ R by f̃(p) = [f ◦π1](p) for

every p ∈M , and suppose that there exists g ∈ SNA(M,R) such that ‖f̃ − g‖ < 1
2 . If we take x, y ∈M

satisfying that x 6= y and 〈g,mx,y〉 = ‖g‖L, we get

1

2
>
|f(π1(x))− f(π1(y))− (g(x)− g(y))|

d(x, y)
> ‖g‖L −

|f(π1(x))− f(π1(y))|
d(x, y)

,

so π1(x) 6= π1(y). Using that 〈g,mx,y〉 = ‖g‖L, Lemma 2.2 in [32] gives that 〈g,mπ1(x),π1(y)〉 = ‖g‖L.
Hence, g|[x1,x2] ∈ SNA([x1, y1]). It follows from this that

‖f̃ − g‖L > ‖f − g|[x1,y1] ‖L >
1

2
,

a contradiction.
Now, assume that no segment is contained in M ∩S. Define the norm-one Lipschitz function f : S −→ R
by

f(t) =

∫
[x0,t]

χM (x) dx = λT ([x0, t] ∩M)
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for all t ∈ [x0, y0]. As above, define f̃ : M −→ R by f̃(p) = [f ◦π2](p) for every p ∈M , where π2 : M −→ S

is the metric projection onto S. Again, assume that there exists g ∈ SNA(M,R) such that ‖g− f̃‖L < 1
2 .

Take x, y ∈ M such that x 6= y and 〈g,mx,y〉 = ‖g‖L. Then, using the same argument as above, we
deduce that π2(x) 6= π2(y). Now, since [π2(x), π2(y)] * M ∩ S by the assumption, we can find distinct
points x2, y2 ∈ M such that [x2, y2] ⊆ ]π2(x), π2(y)[ \(M ∩ S). Recall that 〈g,mx,y〉 = ‖g‖L and this
implies that 〈g,mx2,y2〉 = ‖g‖L by Lemma 2.2 in [32]. On the other hand, note that

f̃(x2) = f(x2) = λT ([x0, x2] ∩M) = λT ([x0, y2] ∩M) = f(y2) = f̃(y2).

Therefore, we obtain

1

2
> ‖g − f̃‖L > 〈g − f̃ ,mx2,y2〉 = 〈g,mx2,y2〉 = ‖g‖L >

1

2
,

getting again a contradiction. Consequently, the set SNA(M,R) is not dense in Lip0(M,R), as desired. �

As a particular case, we obtain the following corollary.

Corollary 2.4. Let M be a closed pointed subset of [0, 1] whose Lebesgue measure is positive. Then
SNA(M) is not dense in Lip0(M).

Remark 2.5. Notice that the examples of metric spaces M such that SNA(M) is not dense in Lip0(M)
provided by Theorem 2.2 (and so by [32, Theorem 2.3]) have very strong topological properties. For
instance, it is clear that length metric spaces are arc-connected and, in particular, do not have isolated
points. Nevertheless, Corollary 2.4 produces quite different kind of such examples. For example, let M
be any nowhere dense subset of [0, 1] whose Lebesgue measure is positive (e.g. any so-called “fat” Cantor
set). Corollary 2.4 implies that SNA(M) is not dense in Lip0(M), and M is totally disconnected.

As a consequence of Theorem 2.3, we can characterise when SNA(M,R) is dense in Lip0(M,R) for
compact subsets of R-trees. Indeed, if M is a compact subset of an R-tree such that λT (M) = 0, then
F(M) is isometric to a subspace of `1 [14, Proposition 8], so F(M) has the RNP and thus, SNA(M,R)
is dense in Lip0(M,R) by [19, Proposition 7.4] (see Theorem 3.1 below). Consequently, the following
corollary follows.

Corollary 2.6. Let T be a pointed R-tree and let M be a compact subset of T containing 0. Then,
SNA(M,R) = Lip0(M,R) if, and only if, λT (M) = 0.

3. A discussion in Lipschitz-free spaces on sufficient conditions for Lindenstrauss
property A

The starting point for this section is [19, Proposition 7.4], which we present here with a short sketch
of a proof slightly different to the one given in [19]. In order to do that, we need a bit of notation. Let
X and Y be Banach spaces. We say that an operator T ∈ L(X,Y ) is absolutely strongly exposing if
there exists x ∈ SX such that for every sequence {xn} ⊂ BX such that limn ‖Txn‖ = ‖T‖, there is a
subsequence {xnk

} which converges to either x or −x. Clearly, if T is an absolutely strongly exposing
operator, then T attains its norm at the point x appearing at the definition; it is easy to show that such
point x ∈ SX is a strongly exposed point (indeed, let y∗ ∈ SY ∗ such that y∗(Tx) = ‖T‖ and consider
x∗ ∈ SX∗ such that ‖T‖x∗ = T ∗(y∗); if {xn} is a sequence in BX such that x∗(xn) −→ 1 = x∗(x), then

‖T (xn)‖ > y∗(Txn) = ‖T‖x∗(xn) −→ ‖T‖,
so there is a subsequence {xnk

} converging to x (it cannot converge to −x), showing that x is strongly
exposed by x∗). A famous result of J. Bourgain [9, Theorem 5] says that if X is a Banach space
with the RNP and Y is any Banach space, the set of absolutely strongly exposing operators from X
to Y is a Gδ-dense subset of L(X,Y ) (in particular, the space X has Lindenstrauss property A). Now,
let M be a pointed metric space such that F(M) has the RNP and let Y be a Banach space. As
str-exp

(
BF(M)

)
⊂ Mol (M) (see Proposition 1.1), the discussion above shows that the set of those

elements in L(F(M), Y ) which attain their norm at points of Mol (M) is dense, in other words, SNA(M,Y )
is dense in Lip0(M,Y ).
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Theorem 3.1 ([19, Proposition 7.4]). Let M be a complete pointed metric space such that F(M) has the
RNP. Then SNA(M,Y ) is dense in Lip0(M,Y ) for every Banach space Y .

Roughly speaking, the proof of the previous theorem shows how a property of Banach spaces (the
RNP) which implies property A may actually imply the density of SNA(M,Y ) in Lip0(M,Y ) by making
a strong use of the special behaviour of the extremal structure of Lipschitz-free spaces. This fact motivates
an analysis of the connections between certain linear properties on F(M) which imply property A and
the fact that SNA(M,Y ) is dense in Lip0(M,Y ) for every Banach space Y .

The properties implying property A that we will discuss in the setting of Lipschitz-free spaces will be
the following ones, whose definitions can be found in the respective subsections:

• the existence of a set of uniformly strongly exposed points whose closed convex hull equals the
unit ball, introduced by Lindenstrauss himself [36] in 1963;

• property α, introduced by W. Schachermayer [40] in 1983, which implies the previous one and
which satisfies that “many” Banach spaces (separable, reflexive, WCG. . . ) can be renormed
having it;

• property quasi-α, which is weaker than property alpha but still implies property A, introduced
by Y. S. Choi and H. G. Song [11] in 2008.

Property α Property quasi-α

BX = co(S)
S unif. str. exp.

Property A RNP

Figure 1. Relations between properties implying property A in general Banach spaces

In general, given a Banach space X, we have the implications given in Figure 1. None of the implications
reverses and the RNP is not related to the others three properties implying property A. We will discuss
the relations between the properties in the setting of Lipschitz-free spaces in subsection 3.4.

3.1. Uniformly strongly exposed points. We start with the definition of the property.

Definition 3.2. Let X be a Banach space. A subset S ⊂ SX is said to be a set of uniformly strongly
exposed points if there is a family of functionals {hx}x∈S with ‖hx‖ = 1 for every x ∈ S such that, given
ε > 0 there is δ > 0 satisfying that

sup
x∈S

diam (S(BX , hx, δ)) 6 ε;

equivalently, if for every ε > 0 there is δ′ > 0 such that whenever z ∈ BX satisfies hx(z) > 1− δ′ for some
x ∈ S, then ‖x − z‖ < ε (that is, all elements of S are strongly exposed points with the same relation
ε–δ).

This concept appeared in the seminal paper by Lindenstrauss [36] (see also [17] for further applications
of it) to give a sufficient condition for a Banach space X to enjoy property A. Namely, if X is a Banach
space containing a set of uniformly strongly exposed points S ⊂ SX such that BX = co(S), then X has
property A [36, Proposition 1]. Moreover, having a look at the proof of the result, something more can
be said. In fact, it is actually proved that, given a Banach space Y , then the set{

T ∈ L(X,Y ) : T attains its norm at a point of S
}

is dense in L(X,Y ). Now, given a metric space M , if F(M) has a subset S ⊆ SX of uniformly strongly
exposed points, then S ⊆ Mol (M) by Proposition 1.1, since S is made of strongly exposed points. Now,
as Mol (M) is norm-closed (use Proposition 1.1 again), the following result follows.
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Proposition 3.3. Let M be a complete pointed metric space and assume that BF(M) is the closed convex
hull of a set of uniformly strongly exposed points. Then SNA(M,Y ) is norm dense in Lip0(M,Y ) for
every Banach space Y .

In view of the previous proposition, we shall begin with a characterisation, inspired by [21, Theorem
5.4], of the existence of such a set of uniformly strongly exposed points, which only depends on the metric
space M . We previously need a technical lemma.

Lemma 3.4. Let M be a complete pointed metric space, let A = {mx,y}(x,y)∈Λ be a family of molecules
in F(M). Assume that there is ε0 > 0 such that

(x, y)z > ε0 min{d(x, z), d(y, z)}
whenever mx,y ∈ A and z ∈M \ {x, y}. Then, there exists a family B = {hx,y}(x,y)∈Λ in SLip0(M,R) such
that

(a) 〈hx,y,mx,y〉 = 1 for every (x, y) ∈ Λ, and
(b) for every ε > 0 there is δ = δ(ε, ε0) > 0 such that

(3.1) 〈hx,y,mu,v〉 > 1− δ implies ‖mx,y −mu,v‖ < ε

for every (x, y) ∈ Λ and every u, v ∈M , u 6= v.

Proof. Fix ε1 > 0 with ε1
1−ε1 < ε0

4 . For x, y ∈ M such that mx,y belongs to A, consider the Lipschitz

function gx,y defined in [31, Proposition 2.8], namely

gx,y(z) :=


max

{
d(x,y)

2 − (1− ε1)d(z, x), 0
}

if d(z, y) > d(z, x),

d(z, y) + (1− 2ε1)d(z, x) > d(x, y),

−max
{
d(x,y)

2 − (1− ε1)d(z, y), 0
}

if d(z, x) > d(z, y),

d(z, x) + (1− 2ε1)d(z, y) > d(x, y).

It is well defined and satisfies that ‖gx,y‖L = 1, 〈gx,y,mx,y〉 = 1, and

(3.2) 〈gx,y,mu,v〉 > 1− ε1 implies max{d(x, u), d(y, v)} < d(x, y)

4

for any u, v ∈M , u 6= v (see the proof of Proposition 2.8 in [31]). Consider also the function defined by

fx,y(t) :=
d(x, y)

2

d(t, y)− d(t, x)

d(t, y) + d(t, x)

for every t ∈ M , and take hx,y = 1
2 (gx,y + fx,y). Now, one can check that the family B = {hx,y}(x,y)∈Λ

does the work following word-by-word the proof of [21, Theorem 5.4]. �

The previous lemma motivates to consider the following property, related to the characterization of
strongly exposed points of the unit ball of the Lipschitz-free spaces given in Proposition 1.1.b.

Definition 3.5. Let M be a metric space and let A ⊂ Mol (M). We say that A is Gromov uniformly
rotund if there is ε > 0 such that

(x, y)z > εmin{d(x, z), d(y, z)}
whenever mx,y ∈ A and z ∈M \ {x, y}.

Observe that, thanks to Proposition 1.1.b, A is Gromov uniformly rotund if and only if it fails property
(Z) in a uniform way.

We can now give a metric characterisation of when a set of molecules in F(M) is uniformly strongly
exposed in the following sense.

Proposition 3.6. Let M be a complete pointed metric space and let A be a set of molecules in F(M).
Then, the following statements are equivalent:
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(i) A is uniformly strongly exposed in BF(M),
(ii) A is Gromov uniformly rotund.

In order to prove the proposition, we need the following lemma.

Lemma 3.7. Let M be a complete pointed metric space. Let x, y ∈ M , x 6= y, and let f ∈ Lip0(M,R)
be such that ‖f‖L = 1 and 〈f,mx,y〉 = 1. Then, for every z ∈M \ {x, y} we have that

〈f,mx,z〉 > 1− 2
(x, y)z
d(x, z)

and 〈f,mz,y〉 > 1− 2
(x, y)z
d(y, z)

.

Proof. Note that

1 = 〈f,mx,y〉 =

〈
f,
d(x, z)

d(x, y)
mx,z +

d(z, y)

d(x, y)
mz,y

〉
=
d(x, z)

d(x, y)
〈f,mx,z〉+

d(z, y)

d(x, y)
〈f,mz,y〉.

Thus,

d(x, z) + d(z, y)− 2(x, y)z = d(x, y) = d(x, z)〈f,mx,z〉+ d(z, y)〈f,mz,y〉
6 d(x, z)〈f,mx,z〉+ d(z, y)

and the conclusion follows. �

Proof of Proposition 3.6. (i)⇒(ii). Let {hx,y}mx,y∈A ⊂ SLip0(M,R) be a family which uniformly strongly
exposes the family A. Take δ > 0 such that

sup
mx,y∈A

diam (S(BF(M), hx,y, δ)) <
1

2
.

Assume that A is not Gromov uniformly rotund. Then, there are x, y ∈ M , x 6= y, and z ∈ M \ {x, y}
such that

(x, y)z <
δ

2
min{d(x, z), d(y, z)}.

By interchanging the roles of x and y if needed, we may assume that d(x, z) 6 d(y, z) and so, d(y, z) >
1
2d(x, y). Now, Lemma 3.7 implies that

〈hx,y,mx,z〉 > 1− 2
(x, y)z
d(x, z)

> 1− δ.

From this and Lemma 1.3, it follows that

1

2
6
d(y, z)

d(x, y)
6 ‖mx,y −mx,z‖ <

1

2

which is a contradiction.

(ii)⇒(i). By hypothesis, there is ε0 > 0 such that

d(x, z) + d(z, y) > d(x, y) + ε0 min{d(x, z), d(z, y)}
whenever mx,y ∈ A and z ∈ M \ {x, y}. Let B = {hx,y}(x,y)∈Λ be the set provided by Lemma 3.4. We
claim that B uniformly strongly exposes A. Indeed, given ε > 0, take 0 < δ < ε such that

〈hx,y,mu,v〉 > 1− δ implies ‖mx,y −mu,v‖ < ε

for every (x, y) ∈ Λ and every u, v ∈M , u 6= v. Thus,

diam
(
S(BF(M), hx,y, δ) ∩Mol (M)

)
6 2ε.

Finally, note that

diam (S(BF(M), hx,y, δ
2) 6 2 diam

(
S(BF(M), hx,y, δ) ∩Mol (M)

)
+ 4δ 6 8ε,

see e.g. Lemma 2.7 in [19]. �
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As an immediate consequence of Propositions 3.3 and 3.6, we obtain the following corollary.

Corollary 3.8. Let M be a complete pointed metric space. If there exists a Gromov uniformly convex
subset A ⊂ Mol (M) such that BF(M) is the closed convex hull of A, then SNA(M,Y ) is dense in
Lip0(M,Y ) for every Banach space Y .

The space Lip0(M,R) has the Daugavet property if and only if the complete pointed metric space M
has property (Z) (see [31] for the compact case and the very recent preprint [5] for the general case) and
if and only if M is a length space [21, Theorem 3.5]. Thus, the previous result shows that the failure of
the Daugavet property in a very strong sense implies the density of SNA(M,Y ) in Lip0(M,Y ) for every
Banach space Y . Compare with Theorem 2.2, where it is shown that if Lip0(M,R) has the Daugavet
property, then SNA(M,R) is not dense in Lip0(M,R).

3.2. Property α. In the sequel we will consider a particular way in which a Banach space may contain
a subset of uniformly strongly exposed points whose closed convex hull is the whole unit ball. It was
introduced in [40] by W. Schachermayer with the name of property α and its main interest is that
“many” Banach spaces (e.g. separable, reflexive, WCG. . . ) can be equivalently renormed to have it. The
prototype Banach space with property α is `1.

Definition 3.9. A Banach space X is said to have property α if there exist a balanced subset {xλ}λ∈Λ

of X and a subset {x∗λ}λ∈Λ ⊆ X∗ such that

(i) ‖xλ‖ = ‖x∗λ‖ = |x∗λ(xλ)| = 1 for all λ ∈ Λ.
(ii) There exists 0 6 ρ < 1 such that

|x∗λ(xµ)| 6 ρ ∀xλ 6= ±xµ.

(iii) co ({xλ}λ∈Λ) = BX .

Because of methodological reasons, we have modified a little bit the original definition from [40] to an
equivalent one in which we impose the set {xλ}λ∈Λ to be balanced.

It is shown in [40, Fact in p. 202] that if X has property α witnessed by a set Γ ⊂ SX , then Γ is a
set of uniformly strongly exposed points. Therefore, if M is a pointed metric space for which F(M) has
property α, then Proposition 3.3 gives that SNA(M,Y ) is dense in Lip0(M,Y ) for every Banach space
Y . This can be also proved directly by adapting the proof of [40, Proposition 1.3.a] to our case, as it is
shown there that the set of operators from F(M) to Y attaining their norms on points of Γ is dense in
L(F(M), Y ), and we just have to observe that Γ ⊂ str-exp

(
BF(M)

)
⊂ Mol (M) (see Proposition 1.1).

Corollary 3.10. Let M be a complete pointed metric space for which F(M) has property α. Then, the
set SNA(M,Y ) is dense in Lip0(M,Y ) for every Banach space Y .

As we have said, if Γ ⊂ SF(M) witnesses that F(M) has property α, then Γ is made up of molecules.
We can say something more. J. P. Moreno proved in [37, Proposition 3.6] that if a Banach space X has
property α witnessed by Γ ⊂ SX , then Γ = dent (BX) = str-exp (BX). Indeed, if x ∈ SX is a denting
point, then the slices of BX containing x are a neighbourhood basis of x for the norm topology in BX .
Since co(Γ) = BX , we have that every slice of BX intersects Γ. It follows that x ∈ Γ. Finally, if X has
property α, then the set Γ is obviously uniformly discrete, hence closed. Thus,

dent (BX) ⊂ Γ ⊂ str-exp (BX) ⊂ dent (BX)

From this and the fact that every preserved extreme point of BF(M) is a denting point by Proposition 1.1,
we get the following result.

Proposition 3.11. Let M be a complete pointed metric space and assume that F(M) has property α
witnessed by Γ ⊂ SF(M). Then,

Γ = pre-ext
(
BF(M)

)
= str-exp

(
BF(M)

)
.
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In the sequel, we will get a reformulation of property α in F(M). To this end, we need the following
elementary characterisation of uniformly discrete subsets of molecules.

Lemma 3.12. Let M be a metric space and consider A ⊂ Mol (M). Then, A is uniformly discrete if
and only if there exists δ > 0 such that

(3.3) d(x, u) + d(v, y) > δ d(x, y)

whenever mx,y and mu,v are distinct elements of A.

Proof. If A is uniformly discrete, then there is δ > 0 such that

2δ 6 ‖mx,y −mu,v‖ 6 2
d(x, u) + d(y, v)

d(x, y)
,

where the last inequality follows from Lemma 1.3. Conversely, assume that the inequality (3.3) holds for
every mx,y,mu,v ∈ A with mx,y 6= mu,v. If one has that ‖mx,y −mu,v‖ < 1 then, again by Lemma 1.3,
we get that

‖mx,y −mu,v‖ >
max{d(x, u), d(u, v)}

d(x, y)
>

1

2

d(x, u) + d(u, y)

d(x, y)
>
δ

2
.

Thus, ‖mx,y −mu,v‖ > min{1, δ/2} for mx,y 6= mu,v in A. �

The following proposition characterises the Lipschitz-free spaces with property α in terms of the
existence of a norming subset of molecules satisfying certain metrical conditions.

Proposition 3.13. Let M be a complete pointed metric space. The following are equivalent:

(i) F(M) has property α.
(ii) There exists Λ ⊂ {(p, q) ∈M ×M : p 6= q} such that, writing A = {mx,y : (x, y) ∈ Λ} ⊂ Mol (M),

one has that:
• there exists δ > 0 such that d(x, u) + d(y, v) > δd(x, y) for all (x, y), (u, v) ∈ Λ with (x, y) 6=

(u, v) (equivalently, A is uniformly discrete);
• there is ε > 0 such that

(x, y)z > εmin{d(x, z), d(y, z)}
whenever (x, y) ∈ Λ and z ∈M \ {x, y} (equivalently, A is Gromov uniformly rotund);

• ‖f‖L = sup
{
f(x)−f(y)
d(x,y) : (x, y) ∈ Λ

}
for every f ∈ Lip0(M,R) (equivalently, BF(M) = co(A)).

Moreover, in such a case, the set A coincides with the whole set of strongly exposed points of BF(M).

Proof. (i)⇒(ii). Let A ⊂ SF(M) witnessing that F(M) has property α. Then BF(M) = co(A). Moreover,
it is clear that A is uniformly discrete and it is known that it is uniformly strongly exposed [40, Fact in
p. 202], so Proposition 3.6 and Lemma 3.12 give the result.

(ii)⇒(i). Let A = {mx,y}(x,y)∈Λ be a set of molecules satisfying the properties in the statement. Let
B = {hx,y}(x,y) ⊂ SLip0(M,R) be the family provided by Lemma 3.4. By Lemma 3.12,

ε = inf{‖mx,y −mu,v‖ : mx,y,mu,v ∈ A, mx,y 6= mu,v} > 0.

Take δ > 0 such that (3.1) in Lemma 3.4 holds for that ε. Then,

〈hx,y,mu,v〉 6 1− δ
whenever mx,y,mu,v ∈ A and mx,y 6= ±mu,v. Thus, F(M) has property α.

The last assertion follows from Proposition 3.11. �

We can provide an easier characterisation in the bounded and uniformly discrete case.

Proposition 3.14. Let M be a pointed bounded and uniformly discrete metric space. The following are
equivalent:
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(i) F(M) has property α.
(ii) the set str-exp

(
BF(M)

)
consists of uniformly strongly exposed points (equivalently, it is Gromov

uniformly rotund).
(iii) there is ε > 0 such that for every x, y ∈M with x 6= y,

either inf
z∈M\{x,y}

(x, y)z = 0 or inf
z∈M\{x,y}

(x, y)z > ε.

Proof. Denote D = sup{d(x, y) : x 6= y} <∞ and θ = inf{d(x, y) : x 6= y} > 0.

(i)⇒(ii) follows from Propositions 3.11 and 3.13.

Next, assume that (ii) holds. Then, there is ε > 0 such that

(x, y)z > εmin{d(x, z), d(z, y)} > εθ
whenever mx,y ∈ str-exp

(
BF(M)

)
. So, given x, y ∈ M , x 6= y, either mx,y is strongly exposed, and then

infz∈M\{x,y}(x, y)z > εθ, or mx,y is not strongly exposed, and then

inf
z∈M\{x,y}

(x, y)z 6 D inf
z∈M\{x,y}

(x, y)z
min{d(x, z), d(y, z)}

= 0.

This gives (iii).

Finally, assume that (iii) holds and let A = str-exp
(
BF(M)

)
. Then, for every mx,y ∈ A we have that

infz∈M\{x,y}(x, y)z > 0 and so

inf
z∈M\{x,y}

(x, y)z > ε >
ε

D
min{d(x, z), d(z, y)}.

That is, A is Gromov uniformly rotund. Moreover, BF(M) = co(A) since F(M) has the RNP. Finally,

d(x, u) + d(v, y) > δd(x, y),

for every distinct pairs of points (x, y), (u, v) ∈ {(p, q) ∈ M × M : p 6= q}, where δ = 2θ/D. By
Proposition 3.13, F(M) has property α, getting (i). �

Let us exhibit some examples of metric spaces such that F(M) has property α.

Example 3.15. The space F(M) has property α in the following cases:

(a) M is finite.
(b) M is a compact subset of R with measure 0.
(c) There exists a constant 1 6 D < 2 such that

1 6 d(x, y) < D

holds for every pair of distinct points x, y ∈M (equivalently, up to rescaling, there are constants
C > 0 and 1 6 D < 2 such that C 6 d(x, y) < CD for all x, y ∈M , x 6= y).

Proof. (a). Given mx,y ∈ str-exp
(
BF(M)

)
, consider a strongly exposing functional gx,y ∈ SLip0(M,R).

Take ρ to be the maximum of the set

{|〈gx,y,mu,v〉| : mx,y ∈ str-exp
(
BF(M)

)
,mu,v ∈ Mol (M) ,mx,y 6= ±mu,v}.

Then, ρ < 1 since M is finite. Moreover, F(M) is finite dimensional and so BF(M) is the closed convex
hull of its strongly exposed points. Thus, F(M) has property α.

(b). F(M) is isometric to `1 by [22], so it clearly has property α.

(c). Let 0 < ε < 2
D − 1. Observe that given x, y, z ∈M , we get

εmin{d(x, z), d(y, z)} 6 εD < 2−D 6 d(x, z) + d(y, z)−D
6 d(x, z) + d(y, z)− d(x, y) = 2(x, y)z.

Consequently, if we define Λ := {(p, q) ∈M×M : p 6= q}, then Λ satisfies the condition (ii) in Proposition
3.13, and so F(M) has property α. �
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The next result provides a characterisation of those concave metric spaces for which F(M) have
property α.

Theorem 3.16. Let M be a complete pointed concave metric space. Then the following are equivalent:

(i) F(M) has property α.
(ii) M is uniformly discrete and bounded, and there is ε > 0 such that

d(x, z) + d(z, y)− d(x, y) > ε

whenever x, y, z are distinct points in M .

Proof. Assume first that F(M) has property α with constant ρ > 0. By Proposition 3.11, the set
Γ ⊂ SF(M) witnessing property α coincides with pre-ext

(
BF(M)

)
, so Γ = Mol (M) as M is concave.

Now, take mx,y,mu,y ∈ Mol (M) = Γ and let gx,y ∈ SLip0(M,R) be the functional associated to mx,y.
Then, by Lemma 1.3, we have that

2
d(x, u)

d(x, y)
> ‖mx,y −mu,y‖ > |gx,y(mx,y −mu,y)| > 1− ρ.

From here, given x, u ∈M we have that

(1− ρ) sup
y∈M

d(x, y) 6 2d(x, u),

from where it follows that M is bounded. Moreover, the following estimate holds:

(1− ρ) diam (M) 6 2(1− ρ) sup
y∈M

d(x, y) 6 4d(x, u).

Since x, u ∈M were arbitrary we conclude that M is uniformly discrete. Now, Proposition 3.14 provides
ε > 0 such that (x, y)z > ε whenever mx,y ∈ str-exp

(
BF(M)

)
and z ∈ M \ {x, y}. Since every molecule

is strongly exposed, the conclusion follows.

Finally, the converse statement follows from Proposition 3.14. �

As an application of the previous theorem, we may show that D = 2 is not possible in Example 3.15.c.

Example 3.17. Let M = {0, xn, yn : n > 2} ⊆ c0, where xn := (2− 1
n )en and yn := en + (1 + 1

n )e1 for
every n > 2. It can be proved routinely that M is concave by using the characterisation of the preserved
extreme points given in [4]. On the other hand, it is clear that the inequality

1 6 d(x, y) < 2

holds for every x, y ∈M with x 6= y. Nevertheless, one has that

d(0, yn) + d(yn, xn)− d(0, xn) =
3

n

for every n > 2, so F(M) fails property α by Theorem 3.16.

3.3. Property quasi-α. In [11] it is defined a property which, in spite of being weaker than property
α, still implies property A. As in the case of property α, we have slightly modified the original definition
to an equivalent one which requires the set {xλ}λ∈Λ ⊆ X bellow to be balanced.

Definition 3.18. A Banach space X is said to have property quasi-α if there exist a balanced subset
{xλ}λ∈Λ of X, a subset {x∗λ}λ∈Λ ⊆ X∗, and ρ : Λ −→ R such that

a) ‖xλ‖ = ‖x∗λ‖ = ‖x∗λ(xλ)‖ = 1 for all λ ∈ Λ.
b) |x∗λ(xµ)| 6 ρ(µ) < 1 for all xλ 6= ±xµ.

c) For every e ∈ ext (BX∗∗), there exists a subset Ae ⊆ A such that either e or −e belong to Ae
ω∗

and re = sup{ρ(µ) : xµ ∈ Ae} < 1.
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It follows that if {xλ}λ∈Λ witnesses that X has property quasi-α, then

BX = co({xλ : λ ∈ Λ}).

Moreover, the same argument that the one used for property α in [40, Fact in p. 202], shows that for
every λ ∈ Λ, ε > 0, and x ∈ BX , one has that

x∗λ(x) > 1− ε(1− ρ(λ)) =⇒ ‖x− xλ‖ < 2ε;

so each xλ is strongly exposed in BX by x∗λ. But now, as supλ∈Λ ρ(λ) may be equal to one, we do not
get that {xλ}λ∈Λ is a set of uniformly strongly exposed points. Nevertheless, the proof of Proposition
2.1 in [11] shows that if F(M) has property quasi-α then the set

A := {T ∈ L(F(M), Y ) : ‖T‖ = ‖T (xλ)‖ for some λ ∈ Λ}

is norm-dense in L(F(M), Y ) ≡ Lip0(M,Y ). Now, every xλ is a strongly exposed point of BF(M), and
so, a molecule by Proposition 1.1. Thus, A ⊆ SNA(M,Y ). We have proved the following.

Proposition 3.19. Let M be a complete pointed metric space and assume that F(M) has property
quasi-α. Then SNA(M,Y ) is norm-dense in Lip0(M,Y ) for every Banach space Y .

An analogous argument to the one given in the proof of Proposition 3.11 shows the following:

Proposition 3.20. Let M be a complete pointed metric space and assume that F(M) has property
quasi-α witnessed by a set Γ ⊂ SF(M). Then,

pre-ext
(
BF(M)

)
⊂ Γ.

As a consequence, we obtain the following result in the case when M is concave.

Proposition 3.21. Let M be a concave complete pointed metric space. If F(M) has property quasi-α,
then the set of isolated points of M is dense in M .

Proof. Assume that F(M) has property quasi-α witnessed by the sets Γ ⊂ SF(M), Γ∗ ⊂ SLip0(M,R), and
the function ρ : Γ −→ R. Take mx,y ∈ Γ and let gx,y ∈ Γ∗ be its associated functional. Then,

(3.4) ‖mx,y −mu,v‖ > |gx,y(mx,y −mu,v)| > 1− ρ(mx,y)

for every mu,v ∈ Γ with mu,v 6= mx,y. By Proposition 3.20,

Mol (M) = pre-ext
(
BF(M)

)
⊂ Γ

and so (3.4) holds also for every mu,v ∈ Mol (M) \ {mx,y}. Thus, by Lemma 1.3, we have that

2
d(x, u)

d(x, y)
> ‖mx,y −mu,y‖ > 1− ρ(mx,y)

whenever mx,y ∈ Γ and u ∈M \{x, y}. In particular, the open ball centred at x of radius
1−ρ(mx,y)

2 d(x, y)
is a singleton whenever mx,y ∈ Γ. This means that the set

A = {x ∈M : mx,y ∈ Γ for some y ∈M \ {x}}

is made up of isolated points. In order to prove that A is dense in M , consider the Lipschitz function
f(t) = d(t, A) − d(0, A) for every t ∈ M , which belongs to Lip0(M,R), and consider its canonical linear

extension f̃ from F(M) to R. Then, f̃ vanishes on the norming set Γ, so f̃ = 0. Thus, f = 0, which
yields that A = M . �
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Figure 2. Relations between the sufficient conditions for property A in Lipschitz-free spaces

3.4. Relationship between the properties for Lipschitz-free spaces. In the context of Lipschitz-
free spaces over complete metric spaces, Figure 2 contains the implications between the properties of the
previous subsections.

Let us discuss why the numbered implications and non-implications hold.

(1). It follows since every infinite-dimensional Lipschitz-free space contains an isomorphic copy of `1 (this
is folklore, but see [12] where more is proved).

(2). F(N) = `1.

(3). It follows from the following example.

Example 3.22. Let (M,d) be a compact metric space and 0 < θ < 1. Then F(M,dθ) has the RNP (see
Example 1.2). Moreover, M is concave [41, p. 51]. By Proposition 3.21, F(M) does not have property
quasi-α.

(4). It follows from Theorem 3.1, whose proof is based on the proof of Bourgain that asserts that RNP
implies property A [9, Theorem 5].

(5). It follows from the definition, introduced in [40].

(6). It follows from Proposition 3.3, whose proof is based on [36, Proposition 1], where it is proved that
the existence of such a set S implies property A.

(7). It follows from the following example.

Example 3.23. For every n ∈ N, consider Mn = {0, xn, yn}, where

d(0, xn) = d(0, yn) = 1 + 1/n and d(xn, yn) = 2

for each n ∈ N, and let M be its `1-sum. Then, F(M) has the RNP, but BF(M) is not the closed convex
hull of any set of uniformly strongly exposed points.

Proof. First, F(M) has the RNP as it is the `1-sum of finite-dimensional Banach spaces by Proposition
1.4. Suppose that BF(M) = co(A). We claim that mxn,yn ∈ A ∪ (−A) for every n ∈ N. Indeed, assume
that mxn,yn /∈ A ∪ (−A). Consider f : M −→ R given by

f(0) = f(xm) = f(ym) = 0 if m 6= n, f(xn) = −1, and f(yn) = 1.
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Clearly, ‖f‖L = 1. Moreover, we have that

|〈f,mx,y〉| < (1 + 1/n)−1 for every mx,y ∈ Mol (M) \ {mxn,yn ,myn,xn}.

Thus, A ∪ (−A) is not norming, a contradiction.

Now, note that

d(xn, 0) + d(yn, 0)− d(xn, yn) =
2

n
goes to 0 as n goes to ∞, and so A is not Gromov uniformly rotund. �

(8). It is obvious.

(9). It is obvious from the very definitions.

(10). It follows from Proposition 3.19, whose proof is based on that of [11, Proposition 2.10], where it is
proved that property quasi-α implies property A.

(11). It follows from the following example.

Example 3.24. Let M = ([0, 1], | · |θ), where 0 < θ < 1. Then, Mol (M) is a set of uniformly strongly
exposed points, BF(M) = co(Mol (M)), but F(M) fails to have property quasi-α.

Proof. In view of Proposition 3.21, we just have to show that Mol (M) is Gromov uniformly rotund. To
this end, define the map f : (0, 1) −→ R given by

f(λ) =
(1− λ)θ + λθ − 1

min{(1− λ)θ, λθ}
It is easy to see that 0 < ε := inf{f(λ) : λ ∈ (0, 1)} 6 1. Take different points x, y, z ∈ [0, 1] such that
x < y. First, if we assume that z < x, then

(x, y)z
min{|x− z|θ, |y − z|θ}

=
|x− z|θ + |z − y|θ − |x− y|θ

|x− z|θ
>
|x− z|θ

|x− z|θ
= 1,

and the same happens in the case of y < z. On the other hand, if z = λx+ (1− λ)y for some λ ∈ (0, 1),
then

(x, y)z
min{|x− z|θ, |y − z|θ}

=
|x− y|θ(1− λ)θ + |x− y|θλα − |x− y|θ

|x− y|θ min{(1− λ)θ, λθ}

=
(1− λ)θ + λθ − 1

min{(1− λ)θ, λθ}
> ε. �

(12). See Example 3.15.

(13). F(N) = `1 has property α.

All the reverse implications not considered in our diagram (or which do not obviously follows from the
ones given in it) are not known in the context of Lipschitz-free spaces. Particularly interesting are the
cases of whether the converse of (4) and (8) holds.

4. Weak density of SNA(M,R)

We have seen in the previous sections that the fact that SNA(M,R) is norm-dense in Lip0(M,R)
imposes severe restrictions on the metric space M (c.f. e.g. Theorem 2.2 or Corollary 2.6), and even more
the known sufficient conditions to get such density of Section 3. However, that is not the case if we
replace norm-density with weak density, as the following theorem shows.

Theorem 4.1. Let M be a complete pointed metric space. Then, SNA(M,R) is weakly sequentially dense
in Lip0(M,R). Moreover, for every g ∈ Lip0(M,R) there is a sequence {gn} ⊂ SNA(M,R) such that

gn
w−→ g, ‖gn‖L → ‖g‖L, and gn → g uniformly on bounded sets.
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This result extends [32, Theorem 2.6], where it was proved under the assumption of M being a local
metric space (equivalently, M being a length space).

In order to prove our result we need a pair of lemmata. To begin with, the following result is implicitly
proved in [32, Theorem 2.6] under the assumption of M being a length space, but thanks to Lemma 1.5,
we can show that the same argument works in a much more general setting.

Lemma 4.2. Let M be a pointed metric space. Assume that there exists a sequence {B(xn, rn)}n∈N
of disjoint balls of M and a sequence {yn}n∈N of points of M such that 0 < d(xn, yn)/rn → 0 and

rn → 0. Then for every g ∈ Lip0(M,R) there is a sequence {gn} ⊂ SNA(M,R) such that gn
w→ g and

‖gn‖L → ‖g‖L and gn → g uniformly.

Proof. Given g ∈ SLip0(M,R), just follow the proof of Theorem 2.6 in [32] to construct a sequence {gn}
in SNA(M,R) with supp(gn − g) ⊂ B(xn, rn), gn(yn) = g(yn) and ‖gn‖L = 1 + 2d(xn,yn)

rn
→ 1. Then,

{gn}
w−→ g by Lemma 1.5. Moreover,

|gn(x)− g(x)| 6 |gn(x)− gn(yn)|+ |g(yn)− g(x)| 6 (‖gn‖L + ‖g‖L)d(yn, x)

6 (2 + 2
d(xn, yn)

rn
)(rn + d(xn, yn))

whenever x ∈ B(xn, rn). Since rn → 0, d(xn, yn)/rn → 0 and supp(gn − g) ⊂ B(xn, rn), it follows that
gn → g uniformly. �

The following technical lemma will allow us to apply Lemma 4.2 in the case of M being discrete but
not uniformly discrete.

Lemma 4.3. Let M be a complete metric space. Assume that M is discrete but not uniformly discrete.
Then, for every k > 2 and every ε > 0, there exist x, y ∈ M such that 0 < d(x, y) 6 ε and the set
M \B(x, k d(x, y)) is not uniformly discrete.

Proof. Assume that there exist k > 2 and ε > 0 such that

α(x, y) := inf{d(u, v) : u, v ∈M \B(x, kd(x, y)), u 6= v} > 0

whenever 0 < d(x, y) 6 ε. Since M is not uniformly discrete, one can construct inductively two sequences
{xn} and {yn} in M such that 0 < d(x1, y1) 6 ε and 0 < d(xn+1, yn+1) 6 min{α(xn, yn), 2−n−1ε} for
every n ∈ N. It follows that either xn+1 ∈ B(xn, kd(xn, yn)) or yn+1 ∈ B(xn, kd(xn, yn)). In any case,

xn+1 ⊂ B(xn, kd(xn, yn) + d(xn+1, yn+1)) ⊂ B(xn, 2
−nε(k + 1/2)).

Thus, {xn} is Cauchy and so it has a limit in M , say x. Moreover, it is clear that {yn} also converges to
x. Since M is discrete, we conclude the existence of n ∈ N such that xn = yn, a contradiction. �

Proof of Theorem 4.1. We distinguish several cases depending on the properties of the set of cluster points
M ′. If M ′ is infinite, then Lemma 4.2 applies and so SNA(M,R) is weakly sequentially dense. Indeed, in
such case it is not difficult to construct an infinite sequence of disjoint balls centered at (different) cluster
points; as the centers are cluster points, we may also get the sequence {yn}n∈N.

If M ′ is empty, then we distinguish two more cases:

• If M is uniformly discrete, then F(M) has the RNP (see Example 1.2), and so SNA(M,R) is
indeed norm-dense in Lip0(M,R) by Theorem 3.1. Note that if ‖gn − g‖L → 0 then gn → g
uniformly on bounded sets.

• If M is discrete but not uniformly discrete, then we can inductively apply Lemma 4.3 to find
sequences {xn}, {yn} in M such that, for every n ∈ N, the space M \

⋃n
m=1B(xm, 2md(xm, ym))

is discrete but not uniformly discrete, xn+1, yn+1 ∈M \
⋃n
m=1B(xm, 2md(xm, ym)) and

d(xn+1, yn+1) 6 min

{
n

n+ 1
d(xn, yn), n−2

}
.
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It is easy to check that the balls {B(xn, nd(xn, yn))} are pairwise disjoint and satisfy the require-
ment of Lemma 4.2. The conclusion follows.

It remains to consider the case when M ′ is non-empty and finite, say M ′ = {a1, . . . , ak}. Moreover,

we may assume that a1 = 0. Given ε > 0, we denote Eε :=
⋃k
i=1

[
M \ B(ai, ε)

]
. If Eε is finite for

every ε > 0, then M is compact and countable. Then, F(M) has the RNP (see Example 1.2) and the
conclusion follows. Thus, we may and do assume that there is 0 < ε0 <

1
4 mini6=j{d(ai, aj)} such that

Eε0 is infinite. Moreover, note that Eε is discrete for every ε > 0. If there is 0 < ε 6 ε0 such that Eε
is not uniformly discrete in M , then the same argument as above provides a sequence of disjoint balls
such that Lemma 4.2 applies. Thus, we may also suppose that Eε is infinite and uniformly discrete in
M for every 0 < ε 6 ε0. By rescaling the metric space, we may assume that ε0 = 2−1. For n ∈ N and
i ∈ {1, . . . , k}, let us denote Cin := E(n+1)−1 ∩B(ai, n

−1) and

αin := inf{d(x,M \ {x}) : x ∈ Cin},

with the convention that inf ∅ = +∞. Note, by passing, that

M = E2−1 ∪
⋃
n,k

Cin.

Now, we distinguish two cases.

Case 1 : assume that there is i ∈ {1, . . . , k} such that lim infn→∞ nαin = 0. Then we claim that it is
possible to find a sequence {jn} in N, and sequences {xn} and {yn} in M , such that:

(1) 3nd(xn, yn) < (jn + 1)−1 for every n;
(2) 4j−1

n+1 < (jn + 1)−1 − 3nd(xn, yn) for every n;

(3) xn ∈ Cijn .

Indeed, take j1 > 1 such that 6j1α
i
j1
< 1. Then there is x1 ∈ Cij1 such that

3d(x1,M \ {x1}) < 2−1j−1
1 6 (j1 + 1)−1.

Thus, there is y1 ∈ M with 3d(x1, y1) < (j1 + 1)−1. Now, assume that we have defined xn, yn and jn,
and let us define xn+1, yn+1 and jn+1. By condition (1), we can take jn+1 ∈ N such that

4j−1
n+1 < (jn + 1)−1 − 3nd(xn, yn) and 6njn+1α

i
jn+1

< 1.

Then, there are xn+1 ∈ Cijn+1
and yn+1 ∈M such that

3nd(xn+1, yn+1) < 2−1j−1
n+1 6 (jn+1 + 1)−1.

This completes the construction of the sequences {xn}, {yn} and {jn}. Now, we claim that

B(xn, 3nd(xn, yn)) ∩B(xm, 3md(xm, ym)) = ∅

whenever n 6= m. Indeed, assume that n < m. It follows from (1) and (2) that

B(xn, 3nd(xn, yn)) ∩B(ai, j
−1
n+1) = ∅.

Moreover, from (1) and (3) it follows that

B(xm, 3md(xm, ym)) ⊂ B(xm, 3(jm + 1)−1)

⊂ B(ai, 3(jm + 1)−1 + j−1
m ) ⊂ B(ai, 4j

−1
m ).

Finally, note that 4j−1
m 6 4j−1

n+1 < (jn+1)−1. Thus B(xm, 3md(xm, ym)) is contained in B(ai, 4j
−1
n+1) and

so it does not intersect B(xn, 3nd(xn, yn)). Therefore, we can apply Lemma 4.2 to get that SNA(M,R)
is weakly sequentially dense. This completes the proof in the first case.

Case 2 : assume now that there is a constant C > 0 such that C 6 nαin for every n ∈ N and
i ∈ {1, . . . , k}. We will show that in this case F(M) has the RNP. To this end, we will apply Proposition
1.4 several times in order to decompose F(M) as an `1-sum of spaces with the RNP. Let us denote

E = E2−1 ∪ {0} and N =
⋃k
i=1B(ai, 1/2). We claim that F(M) is isomorphic to F(E) ⊕1 F(N). Note
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that N is bounded and so, R = sup{d(x, 0) : x ∈ N} < +∞. Moreover, note also that E is uniformly
discrete in M and so,

α := inf{d(x, y) : x ∈ E, y ∈ N, x 6= y} > 0.

Thus, given x ∈ E and y ∈ N , we have that

d(x, 0) + d(y, 0) 6 d(x, y) + 2d(y, 0) 6

(
1 + 2

R

α

)
d(x, y).

By applying Proposition 1.4, we get the claim.

Now, for i ∈ {1, . . . , k}, denote C̃i0 = {0, ai}, C̃in := Cin ∪ {ai} if n > 1 and C̃i :=
⋃∞
n=0 C̃

i
n. Note that

N =
⋃k
i=1 C̃

i and C̃i ∩ C̃j = {0} if i 6= j. We claim that there is a constant L > 0 such that

d(x, 0) + d(y, 0) 6 Ld(x, y)

whenever x ∈ C̃i and y ∈ C̃j with i 6= j. Take such an x and y. Note that

d(x, y) > d(ai, aj)− d(x, ai)− d(y, aj) >
mini 6=j d(ai, aj)

2

>
mini 6=j d(ai, aj)

4 diam (N)
(d(x, 0) + d(y, 0)).

Therefore, L = 4 diam (N)
mini6=j d(ai,aj) does the work. This shows that

F(M) ≈ F(E)⊕1 F(N) ≈ F(E)⊕1 F(C̃1)⊕1 · · · ⊕1 F(C̃k).

Finally, we will show that F(C̃i) ≈
[⊕∞

n=0 F(C̃in)
]
`1

for every i ∈ {1, . . . , k}. To this end, consider ai as

the distinguished point in C̃i and notice that C̃in ∩ C̃im = {ai} if n 6= m. Fix n,m ∈ N∪ {0} with n < m,

take x ∈ C̃in and y ∈ C̃im with x 6= y. Then

d(y, ai) 6
1

m
6
αim
C
6
d(x, y)

C

by definition of αim, and so

d(x, ai) + d(y, ai) 6 d(x, y) + 2d(y, ai) 6 (1 + 2C−1)d(x, y).

Thus, we can apply Proposition 1.4 to get that F(C̃i) ≈
[⊕∞

n=0 F(C̃in)
]
`1

. Therefore,

F(M) ≈ F(E)⊕1

⊕
n,i

F(C̃in)


`1

where each one of the summands has the RNP as they are the Lipschitz-free space over a uniformly
discrete metric space (see Example 1.2). �

Let us finish the section with some observations.

Remark 4.4. It follows from Theorem 4.1 that the linear span of SNA(M,R) is norm dense in Lip0(M,R)
for every metric space M . When F(M) has the RNP, one actually has that

SNA(M,R)− SNA(M,R) = Lip0(M,R).

Indeed, it follows from [9, Theorem 8] that in such a case SNA(M,R) contain a dense Gδ-subset of
Lip0(M,R), so SNA(M,R) is residual. It then follows that SNA(M,R) − SNA(M,R) = Lip0(M,R)
from Baire Category Theorem (indeed, an easy argument is given in [30, Proposition 5.5]: just observe
that for every f ∈ Lip0(M,R), [f + SNA(M,R)] ∩ SNA(M,R) is not empty since, otherwise, the second
category set f + SNA(M,R) would be contained in the first category set Lip0(M,R) \SNA(M,R), which
is impossible).
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Next, we observe that viewing Lip0(M,R) ≡ L(F(M),R) ≡ F(M)∗, the Bishop-Phelps theorem gives
that the set of those elements in Lip0(M,R) which attain their norm as elements of the dual of F(M) is
always norm dense. On the other hand, SNA(M,R) is the set of elements in F(M)∗ which attain their
norm at a molecule. As the unit ball of F(M) is the closed convex hull of Mol (M), one may wonder
whether Theorem 4.1 actually follows from these facts, that is, if whenever a subset A of a Banach space
X satisfies that BX = co(A), then the set of elements of X∗ which attain their norms at a point of A is
weakly dense on X∗. This is not true in general, as the following example shows.

Example 4.5. Let X = c0⊗̂πY be the projective tensor product of c0 and Y , where Y is an equivalent
renorming of `1 such that Y ∗ is strictly convex (see e.g. [16, Theorem II.2.6]). We consider the subset of
BX given by

A := {x⊗ y : x ∈ Bc0 , y ∈ BY }
which satisfies that BX = co(A) (see e.g. [39, Proposition 2.2]). Next, observe that if an element of
X∗ ≡ L(c0, Y

∗) attains its norm at a point of A then, in particular, it attains its norm as an operator
from c0 to Y ∗ (actually more), that is, the set of elements of X∗ attaining their norms at a point of A is
contained in NA(c0, Y

∗). But this set is not weakly dense since it is contained in the space of compact
operators K(c0, Y

∗) by [36, Proposition 4] and there are non-compact operators from c0 to Y ∗.

5. Octahedrality of the bidual norm of Lipschitz-free spaces

As we have pointed out in the Introduction, it is proved in [7, Theorem 2.4] that F(M) has an
octahedral norm whenever M is not uniformly discrete and bounded. The idea of the proof in [7] is
to show that, under this hypothesis, every convex combination of weak-star slices of the unit ball of
Lip0(M,R) has diameter two, and then use [6, Theorem 2.1] to get the octahedrality of the predual
F(M) of Lip0(M,R). The proof strongly relies on the fact that on bounded subsets of Lip0(M,R) there
is a good characterisation of the weak-star convergence: it agrees with the pointwise convergence. If one
wants to prove the octahedrality of the norm of the bidual space of F(M) for some M , the analogous way
is to show that every convex combination of weak slices of the unit ball of Lip0(M,R) has diameter two and
then use [6, Corollary 2.2] to get from this fact the octahedrality of the norm of F(M)∗∗ = Lip0(M,R)∗.
The main difficulty for this is that, as far as we are concerned, the knowledge of the weak topology
on bounded sets of Lip0(M,R) is not very satisfactory. Nevertheless, our Lemma 1.5 (jointly with [6,
Corollary 2.2]), allows us to provide the following result.

Theorem 5.1. Let M be a complete metric space. If M ′ is infinite or M is discrete but not uniformly
discrete, then the norm of F(M)∗∗ is octahedral.

Remark 5.2. Note that the previous result is not sharp. For instance, it is well-known that the bidual
norm of F(N) = `1 is octahedral because every convex combination of slices of B`∞ has diameter two [1,
Theorem 4.2], but this result is not covered by the assumptions of our theorem.

As we announced above, in order to prove Theorem 5.1, we will focus on proving that Lip0(M,R) has
the so-called SD2P. Recall that a Banach space has the SD2P if every convex combination of weak slices
of BX has diameter two. In fact, we will consider the following stronger notion, introduced in the recent
preprint [2].

Definition 5.3. A Banach space X has the symmetric strong diameter two property (SSD2P in short) if
for every n ∈ N, every slices S1, . . . , Sn of BX and every ε > 0, there are xi ∈ Si for every i ∈ {1, . . . , n}
and there exists ϕ ∈ BX with ‖ϕ‖ > 1− ε such that xi ± ϕ ∈ Si for every i ∈ {1, . . . , n}.

If X is a dual Banach space, the weak-star version of the previous property (the weak-star-SSD2P),
defined in the natural way, was considered in [28, Definition 5.1].

It is easy to prove (see e.g. [1, Lemma 4.1]) that the SSD2P implies the SD2P, but the converse result
is not true [28, Remark 3.2].

Our next result is an abstract condition to get the SSD2P in certain spaces of Lipschitz functions.
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Lemma 5.4. Let M be a pointed metric space and assume that there exists a pair of sequences {xn}, {yn}
in M satisfying that nd(xn, yn) −→ 0 and that the balls B(xn, nd(xn, yn)) are pairwise disjoint. Then,
Lip0(M,R) has the SSD2P.

Proof. By [28, Theorem 2.1, (d)], it is enough to prove that given N ∈ N and norm-one Lipschitz
functions f1, . . . , fN , there are a weakly-null sequence {hn}n∈N of norm-one Lipschitz functions and
sequences {gni }n∈N such that ‖gni ‖ −→ 1 and that gni −→ fi weakly for every i = 1, . . . , N , satisfying
that ‖gni ± hn‖ −→ 1 for every i = 1, . . . , N .

Let us construct the sequences. Given i ∈ {1, . . . , N} and n ∈ N, we define

gni : [M \B(xn, nd(xn, yn))] ∪B(xn, n
2
3 d(xn, yn)) −→ R

by the equation

gni (x) :=

{
fi(xn) x ∈ B

(
xn, n

2
3 d(xn, yn)

)
,

fi(x) x /∈ B(xn, nd(xn, yn)).

It follows that ‖gni ‖L −→ 1. Indeed, pick

x ∈ B(xn, n
2
3 d(xn, yn)) and y /∈ B(xn, nd(xn, yn))

(the remaining cases are immediate). Then,

|gni (x)− gni (y)|
d(x, y)

=
|fi(xn)− fi(y)|

d(x, y)
6
d(xn, y)

d(x, y)
6
d(x, y) + d(x, xn)

d(x, y)

= 1 +
d(x, xn)

d(x, y)
6 1 +

n
2
3 d(xn, yn)

nd(xn, yn)
= 1 +

1

n
1
3

−→ 1.

By McShane extension theorem, we can consider that the functions gni are defined in the whole of M . Now,
observe that supp(gni −fi) ⊆ B(xn, nd(xn, yn)), which are disjoint sets by the assumption. Consequently,

gni
w−→ fi for every i = 1, . . . , n by Lemma 1.5.

Now, again the assumptions on the balls imply the existence of a sequence {hn} ⊆ Lip0(M,R) such

that, for every n ∈ N, we have that ‖hn‖L = 1, that supp(hn) ⊆ B(xn, n
1
3 d(xn, yn)) and that hn(xn) = 0.

Again from the disjointness of the supports, we conclude that {hn} is weakly null from Lemma 1.5. Let
us prove that ‖gni ±hn‖L −→ 1. To this end, pick i ∈ {1, . . . , N} and n ∈ N. Given x, y ∈M with x 6= y,
we have that

|(gni ± hn)(x)− (gni ± hn)(y)|
d(x, y)

6
|gni (x)− gni (y)|

d(x, y)︸ ︷︷ ︸
A

+
|hn(x)− hn(y)|

d(x, y)︸ ︷︷ ︸
B

=: C.

Let us obtain an upper bound for C:

• If B = 0 then C 6 ‖gni ‖L.

• If B 6= 0, then either x or y belongs to B(xn, n
1
3 d(xn, yn)), so let us assume that such a point is

x. In this case, notice that gni (x) = f(xn). Now, if y ∈ B(xn, n
2
3 d(xn, yn)) then gni (y) = f(xn)

from where A = 0 and C 6 1 in this case. Otherwise, if y /∈ B(xn, n
2
3 d(xn, yn)), then hn(y) = 0.

Furthermore,

d(x, y) > (n
2
3 − n 1

3 )d(xn, yn).

So, taking n > 2, we get

B 6
d(xn, x)

d(x, y)
6

n
1
3 d(xn, yn)

(n
2
3 − n 1

3 )d(xn, yn)
=

1

n
1
3 − 1

,

and then C 6 ‖gni ‖L + 1

n
1
3−1

.
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Taking supremum in x, y ∈M with x 6= y, we get that

‖gni ± hn‖L 6 ‖gni ‖L +
1

n
1
3 − 1

for every n > 2. Since it is not difficult to prove that ‖gni ± hn‖L > 1 (it is enough to consider points of

B(xn, n
1
3 d(xn, yn)) from the assumption that ‖hn‖L = 1), we get that ‖gni ± hn‖L −→ 1. �

As a consequence of the previous result we get the promised result about the SSD2P.

Theorem 5.5. Let M be a complete pointed metric space. If M ′ is infinite or M is discrete but not
uniformly discrete, then Lip0(M,R) has the SSD2P.

Note that, as announced, Theorem 5.1 follows from this result by [6, Corollary 2.2].

Proof of Theorem 5.5. If M ′ is infinite, it is not difficult to construct an infinite sequence of disjoint balls
centered at (different) cluster points and use the fact that the center of the balls are cluster points to get
a sequence {yn}n∈N that allows us to use Lemma 5.4.

On the other hand, if M is discrete and not uniformly discrete, we can construct by Lemma 4.3 a
sequence of pairs (xn, yn) such that, for every n ∈ N, 0 < d(xn, yn) < 1

n2 and such that B(xn, nd(xn, yn))
is a sequence of pairwise disjoint balls, so again Lemma 5.4 applies. �

The following comment is pertinent.

Remark 5.6. Note that Theorem 5.5 improves, under its hypotheses, several known results about the big
slice phenomena in spaces of Lipschitz functions. More precisely, given a metric space M such that M ′ is
infinite of M is discrete but not uniformly discrete, Theorem 5.5 improves the consequences obtained in
[7] (respectively, [28], [29]) in Lip0(M,R), namely, that Lip0(M,R) has the weak-star-SD2P (respectively,
weak-star-SSD2P, the property that every slice of its unit ball has diameter two).

In the compact case, we get the following optimal result.

Corollary 5.7. Let M be an infinite compact metric space. Then the norm of F(M)∗∗ is octahedral.

Proof. The case of M ′ being infinite follows from Theorem 5.1. Otherwise, M ′ is finite and then, M is
a countable compact metric space. Therefore, by [13, Theorem 2.1] there is a Banach space Z such that
Z∗∗ = Lip0(M,R). Actually, Z can be considered to be the so-called little Lipschitz space lip0(M,R),
see [41, Definition 3.1.1] for background. Thus, Z is a non-reflexive M -embedded Banach space by [33,
Theorem 6.6]. As a consequence, both Z and Z∗∗ = Lip0(M,R) satisfy that every convex combination
of weak slices of their unit ball has diameter two by [1, Theorem 4.10], and so the norm of F(M)∗∗ =
Lip0(M,R)∗ is octahedral by [6, Corollary 2.2]. �

Let us discuss a little bit with a possible version of Theorem 5.5 for Lipschitz maps. We recall that
given a metric space M and a Banach space Y , it is said that the pair (M,Y ) satisfies the contraction-
extension property (CEP in short) if McShane’s extension theorem holds for Y -valued Lipschitz maps
from subsets of M , that is, given N ⊆ M and a Lipschitz function f : N −→ Y , there exists a Lipschitz
function F : M −→ Y which extends f and satisfies that

‖F‖Lip0(M,Y ) = ‖f‖Lip0(N,Y ).

On the one hand, in the particular case of being M a Banach space, the definition given above agrees
with the one given in [8]. On the other hand, let us give some examples of pairs which have the CEP.
First of all, given M a metric space, the pair (M,R) has the CEP by McShane’s extension theorem.
Actually, the pair (M, `∞(Γ)) has the CEP for every set Γ. Another example coming from [8, Chapter
2] is the fact that the pair (H,H) has the CEP whenever H is any Hilbert space. Anyway, the CEP
is a restrictive property as, for instance, if Y is a strictly convex Banach space such that there exists a
Banach space X with dim(X) > 2 and verifying that the pair (X,Y ) has the CEP, then Y is a Hilbert
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space [8, Theorem 2.11]. See also [25] for the relation between the extension of certain vector-valued
Lipschitz maps and the approximation property of the Lipschitz-free spaces in the context of compact
metric spaces.

Note that, following word-by-word the proof of Lemma 5.4, using the CEP instead of McShane’s
extension theorem, we can get the following vector-valued version of Theorem 5.5.

Theorem 5.8. Let M be a pointed metric space and let Y be a Banach space such that the pair (M,Y )
has the CEP. If M ′ is infinite or M is discrete but not uniformly discrete, then Lip0(M,Y ) has the
SSD2P.

The previous theorem provides a partial positive answer to [7, Question 3.1], where the authors asked
whether Lip0(M,X∗) has the SD2P whenever the pair (M,X∗) has the CEP and M is not uniformly
discrete and bounded.

Acknowledgment: The authors are very grateful to Vladimir Kadets, Colin Petitjean, and Antońın
Procházka for many comments which have improved the final version of this paper. They also thanks the
anonymous referee for the valuable suggestions which have also improved the exposition of the paper.
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